package main
|
|
|
|
import (
|
|
"bufio"
|
|
"container/heap"
|
|
"fmt"
|
|
"math/rand"
|
|
"os"
|
|
)
|
|
|
|
const seed = 0
|
|
const numNodes = 50000 // Total number of nodes to simulate
|
|
const numNodes8 = (numNodes + 7) / 8
|
|
const minNumPeers = 8 // Each node should be connected to at least this many peers
|
|
const maxNumPeers = 12 // ... and at most this many
|
|
const latencyMS = uint16(500) // One way packet latency
|
|
const partTxMS = uint16(3) // Transmission time per peer of 100B of data.
|
|
const sendQueueCapacity = 3200 // Amount of messages to queue between peers.
|
|
const maxAllowableRank = 2 // After this, the data is considered waste.
|
|
const tryUnsolicited = 0.02 // Chance of sending an unsolicited piece of data.
|
|
|
|
var log *bufio.Writer
|
|
|
|
func init() {
|
|
rand.Seed(seed)
|
|
openFile()
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
func openFile() {
|
|
// open output file
|
|
fo, err := os.Create("output.txt")
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
// make a write buffer
|
|
log = bufio.NewWriter(fo)
|
|
}
|
|
|
|
func logWrite(s string) {
|
|
log.Write([]byte(s))
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
type Peer struct {
|
|
node *Node // Pointer to node
|
|
sent uint16 // Time of last packet send, including transmit time.
|
|
remote uint8 // SomeNode.peers[x].node.peers[remote].node is SomeNode for all x.
|
|
wanted []byte // Bitarray of wanted pieces.
|
|
given []byte // Bitarray of given pieces.
|
|
}
|
|
|
|
func newPeer(pNode *Node, remote uint8) *Peer {
|
|
peer := &Peer{
|
|
node: pNode,
|
|
remote: remote,
|
|
wanted: make([]byte, numNodes8),
|
|
given: make([]byte, numNodes8),
|
|
}
|
|
for i := 0; i < numNodes8; i++ {
|
|
peer.wanted[i] = byte(0xff)
|
|
}
|
|
return peer
|
|
}
|
|
|
|
// Send a data event to the peer, or return false if queue is "full".
|
|
// Depending on how many event packets are "queued" for peer,
|
|
// the actual recvTime may be adjusted to be later.
|
|
func (p *Peer) sendEventData(event EventData) bool {
|
|
desiredRecvTime := event.RecvTime()
|
|
minRecvTime := p.sent + partTxMS + latencyMS
|
|
if desiredRecvTime >= minRecvTime {
|
|
p.node.sendEvent(event)
|
|
// p.sent + latencyMS == desiredRecvTime
|
|
// when desiredRecvTime == minRecvTime,
|
|
// p.sent += partTxMS
|
|
p.sent = desiredRecvTime - latencyMS
|
|
return true
|
|
} else {
|
|
if (minRecvTime-desiredRecvTime)/partTxMS > sendQueueCapacity {
|
|
return false
|
|
} else {
|
|
event.time = minRecvTime // Adjust recvTime
|
|
p.node.sendEvent(event)
|
|
p.sent += partTxMS
|
|
return true
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns true if the sendQueue is not "full"
|
|
func (p *Peer) canSendData(now uint16) bool {
|
|
return (p.sent - now) < sendQueueCapacity
|
|
}
|
|
|
|
// Since EventPart events are much smaller, we don't consider the transmit time,
|
|
// and assume that the sendQueue is always free.
|
|
func (p *Peer) sendEventDataResponse(event EventDataResponse) {
|
|
p.node.sendEvent(event)
|
|
}
|
|
|
|
// Does the peer's .wanted (as received by an EventDataResponse event) contain part?
|
|
func (p *Peer) wants(part uint16) bool {
|
|
return p.wanted[part/8]&(1<<(part%8)) > 0
|
|
}
|
|
|
|
func (p *Peer) setWants(part uint16, want bool) {
|
|
if want {
|
|
p.wanted[part/8] |= (1 << (part % 8))
|
|
} else {
|
|
p.wanted[part/8] &= ^(1 << (part % 8))
|
|
}
|
|
}
|
|
|
|
func (p *Peer) setGiven(part uint16) {
|
|
p.given[part/8] |= (1 << (part % 8))
|
|
}
|
|
|
|
// Reset state in preparation for new "round"
|
|
func (p *Peer) reset() {
|
|
for i := 0; i < numNodes8; i++ {
|
|
p.given[i] = byte(0x00)
|
|
}
|
|
p.sent = 0
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
type Node struct {
|
|
index int
|
|
peers []*Peer
|
|
parts []byte // Bitarray of received parts.
|
|
partsCount []uint8 // Count of how many times parts were received.
|
|
events *Heap
|
|
}
|
|
|
|
// Reset state in preparation for new "round"
|
|
func (n *Node) reset() {
|
|
for i := 0; i < numNodes8; i++ {
|
|
n.parts[i] = byte(0x00)
|
|
}
|
|
for i := 0; i < numNodes; i++ {
|
|
n.partsCount[i] = uint8(0)
|
|
}
|
|
n.events = NewHeap()
|
|
for _, peer := range n.peers {
|
|
peer.reset()
|
|
}
|
|
}
|
|
|
|
func (n *Node) fill() float64 {
|
|
gotten := 0
|
|
for _, count := range n.partsCount {
|
|
if count > 0 {
|
|
gotten += 1
|
|
}
|
|
}
|
|
return float64(gotten) / float64(numNodes)
|
|
}
|
|
|
|
func (n *Node) sendEvent(event Event) {
|
|
n.events.Push(event, event.RecvTime())
|
|
}
|
|
|
|
func (n *Node) recvEvent() Event {
|
|
return n.events.Pop().(Event)
|
|
}
|
|
|
|
func (n *Node) receive(part uint16) uint8 {
|
|
/*
|
|
defer func() {
|
|
e := recover()
|
|
if e != nil {
|
|
fmt.Println(part, len(n.parts), len(n.partsCount), part/8)
|
|
panic(e)
|
|
}
|
|
}()
|
|
*/
|
|
n.parts[part/8] |= (1 << (part % 8))
|
|
n.partsCount[part] += 1
|
|
return n.partsCount[part]
|
|
}
|
|
|
|
// returns false if already connected, or remote node has too many connections.
|
|
func (n *Node) canConnectTo(node *Node) bool {
|
|
if len(n.peers) > maxNumPeers {
|
|
return false
|
|
}
|
|
for _, peer := range n.peers {
|
|
if peer.node == node {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
func (n *Node) isFull() bool {
|
|
for _, count := range n.partsCount {
|
|
if count == 0 {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
func (n *Node) String() string {
|
|
return fmt.Sprintf("{N:%d}", n.index)
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
type Event interface {
|
|
RecvTime() uint16
|
|
}
|
|
|
|
type EventData struct {
|
|
time uint16 // time of receipt.
|
|
src uint8 // src node's peer index on destination node
|
|
part uint16
|
|
}
|
|
|
|
func (e EventData) RecvTime() uint16 {
|
|
return e.time
|
|
}
|
|
|
|
func (e EventData) String() string {
|
|
return fmt.Sprintf("[%d:%d:%d]", e.time, e.src, e.part)
|
|
}
|
|
|
|
type EventDataResponse struct {
|
|
time uint16 // time of receipt.
|
|
src uint8 // src node's peer index on destination node.
|
|
part uint16 // in response to given part
|
|
rank uint8 // if this is 1, node was first to give peer part.
|
|
}
|
|
|
|
func (e EventDataResponse) RecvTime() uint16 {
|
|
return e.time
|
|
}
|
|
|
|
func (e EventDataResponse) String() string {
|
|
return fmt.Sprintf("[%d:%d:%d:%d]", e.time, e.src, e.part, e.rank)
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
func createNetwork() []*Node {
|
|
nodes := make([]*Node, numNodes)
|
|
for i := 0; i < numNodes; i++ {
|
|
n := &Node{
|
|
index: i,
|
|
peers: []*Peer{},
|
|
parts: make([]byte, numNodes8),
|
|
partsCount: make([]uint8, numNodes),
|
|
events: NewHeap(),
|
|
}
|
|
nodes[i] = n
|
|
}
|
|
for i := 0; i < numNodes; i++ {
|
|
n := nodes[i]
|
|
for j := 0; j < minNumPeers; j++ {
|
|
if len(n.peers) > j {
|
|
// Already set, continue
|
|
continue
|
|
}
|
|
pidx := rand.Intn(numNodes)
|
|
for !n.canConnectTo(nodes[pidx]) {
|
|
pidx = rand.Intn(numNodes)
|
|
}
|
|
// connect to nodes[pidx]
|
|
remote := nodes[pidx]
|
|
remote_j := len(remote.peers)
|
|
n.peers = append(n.peers, newPeer(remote, uint8(remote_j)))
|
|
remote.peers = append(remote.peers, newPeer(n, uint8(j)))
|
|
}
|
|
}
|
|
return nodes
|
|
}
|
|
|
|
func countFull(nodes []*Node) (fullCount int) {
|
|
for _, node := range nodes {
|
|
if node.isFull() {
|
|
fullCount += 1
|
|
}
|
|
}
|
|
return fullCount
|
|
}
|
|
|
|
type runStat struct {
|
|
time uint16 // time for all events to propagate
|
|
fill float64 // avg % of pieces gotten
|
|
succ float64 // % of times the sendQueue was not full
|
|
dups float64 // % of times that a received data was duplicate
|
|
}
|
|
|
|
func (s runStat) String() string {
|
|
return fmt.Sprintf("{t:%v/fi:%.5f/su:%.5f/du:%.5f}", s.time, s.fill, s.succ, s.dups)
|
|
}
|
|
|
|
func main() {
|
|
|
|
// Global vars
|
|
nodes := createNetwork()
|
|
runStats := []runStat{}
|
|
|
|
// Keep iterating and improving .wanted
|
|
for {
|
|
timeMS := uint16(0)
|
|
|
|
// Each node sends a part to its peers.
|
|
for _, node := range nodes {
|
|
// reset all node state.
|
|
node.reset()
|
|
}
|
|
|
|
// Each node sends a part to its peers.
|
|
for i, node := range nodes {
|
|
// TODO: make it staggered.
|
|
timeMS := uint16(0) // scoped
|
|
for _, peer := range node.peers {
|
|
recvTime := timeMS + latencyMS + partTxMS
|
|
event := EventData{
|
|
time: recvTime,
|
|
src: peer.remote,
|
|
part: uint16(i),
|
|
}
|
|
peer.sendEventData(event)
|
|
//timeMS += partTxMS
|
|
}
|
|
}
|
|
|
|
numEventsZero := 0 // times no events have occured
|
|
numSendSuccess := 0 // times data send was successful
|
|
numSendFailure := 0 // times data send failed due to queue being full
|
|
numReceives := 0 // number of data items received
|
|
numDups := 0 // number of data items that were duplicate
|
|
|
|
// Run simulation
|
|
for {
|
|
// Lets run the simulation for each user until endTimeMS
|
|
// We use latencyMS/2 since causality has at least this much lag.
|
|
endTimeMS := timeMS + latencyMS/2
|
|
|
|
// Print out the network for debugging
|
|
/*
|
|
fmt.Printf("simulating until %v\n", endTimeMS)
|
|
if true {
|
|
for i := 0; i < 40; i++ {
|
|
node := nodes[i]
|
|
fmt.Printf("[%v] parts: %X\n", node.index, node.parts)
|
|
}
|
|
}
|
|
*/
|
|
|
|
numEvents := 0
|
|
for _, node := range nodes {
|
|
|
|
// Iterate over the events of this node until event.time >= endTimeMS
|
|
for {
|
|
_event, ok := node.events.Peek().(Event)
|
|
if !ok || _event.RecvTime() >= endTimeMS {
|
|
break
|
|
} else {
|
|
node.events.Pop()
|
|
}
|
|
|
|
switch _event.(type) {
|
|
case EventData:
|
|
event := _event.(EventData)
|
|
numEvents++
|
|
|
|
// Process this event
|
|
rank := node.receive(event.part)
|
|
// Send rank back to peer
|
|
// NOTE: in reality, maybe this doesn't always happen.
|
|
srcPeer := node.peers[event.src]
|
|
srcPeer.setGiven(event.part) // HACK
|
|
srcPeer.sendEventDataResponse(EventDataResponse{
|
|
time: event.time + latencyMS, // TODO: responseTxMS ?
|
|
src: srcPeer.remote,
|
|
part: event.part,
|
|
rank: rank,
|
|
})
|
|
|
|
//logWrite(fmt.Sprintf("[%v] t:%v s:%v -> n:%v p:%v r:%v\n", len(runStats), event.time, srcPeer.node.index, node.index, event.part, rank))
|
|
|
|
if rank > 1 {
|
|
// Already has this part, ignore this event.
|
|
numReceives++
|
|
numDups++
|
|
continue
|
|
} else {
|
|
numReceives++
|
|
}
|
|
|
|
// Let's iterate over peers & see which wants this piece.
|
|
// We don't need to check peer.given because duplicate parts are ignored.
|
|
for _, peer := range node.peers {
|
|
if peer.wants(event.part) {
|
|
//fmt.Print("w")
|
|
sent := peer.sendEventData(EventData{
|
|
time: event.time + latencyMS + partTxMS,
|
|
src: peer.remote,
|
|
part: event.part,
|
|
})
|
|
if sent {
|
|
//logWrite(fmt.Sprintf("[%v] t:%v S:%v n:%v -> p:%v %v WS\n", len(runStats), event.time, srcPeer.node.index, node.index, peer.node.index, event.part))
|
|
peer.setGiven(event.part)
|
|
numSendSuccess++
|
|
} else {
|
|
//logWrite(fmt.Sprintf("[%v] t:%v S:%v n:%v -> p:%v %v WF\n", len(runStats), event.time, srcPeer.node.index, node.index, peer.node.index, event.part))
|
|
numSendFailure++
|
|
}
|
|
} else {
|
|
//fmt.Print("!")
|
|
// Peer doesn't want it, but sporadically we'll try sending it anyways.
|
|
/*
|
|
if rand.Float32() < tryUnsolicited {
|
|
sent := peer.sendEventData(EventData{
|
|
time: event.time + latencyMS + partTxMS,
|
|
src: peer.remote,
|
|
part: event.part,
|
|
})
|
|
if sent {
|
|
//logWrite(fmt.Sprintf("[%v] t:%v S:%v n:%v -> p:%v %v TS\n", len(runStats), event.time, srcPeer.node.index, node.index, peer.node.index, event.part))
|
|
peer.setGiven(event.part)
|
|
// numSendSuccess++
|
|
} else {
|
|
//logWrite(fmt.Sprintf("[%v] t:%v S:%v n:%v -> p:%v %v TF\n", len(runStats), event.time, srcPeer.node.index, node.index, peer.node.index, event.part))
|
|
// numSendFailure++
|
|
}
|
|
}*/
|
|
}
|
|
}
|
|
|
|
case EventDataResponse:
|
|
event := _event.(EventDataResponse)
|
|
peer := node.peers[event.src]
|
|
|
|
// Adjust peer.wanted accordingly
|
|
if event.rank <= maxAllowableRank {
|
|
peer.setWants(event.part, true)
|
|
} else {
|
|
peer.setWants(event.part, false)
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
if numEvents == 0 {
|
|
numEventsZero++
|
|
} else {
|
|
numEventsZero = 0
|
|
}
|
|
// If network is full or numEventsZero > 3, quit.
|
|
if countFull(nodes) == numNodes || numEventsZero > 3 {
|
|
fmt.Printf("Done! took %v ms. Past: %v\n", timeMS, runStats)
|
|
fillSum := 0.0
|
|
for _, node := range nodes {
|
|
fillSum += node.fill()
|
|
}
|
|
runStats = append(runStats, runStat{timeMS, fillSum / float64(numNodes), float64(numSendSuccess) / float64(numSendSuccess+numSendFailure), float64(numDups) / float64(numReceives)})
|
|
for i := 0; i < 20; i++ {
|
|
node := nodes[i]
|
|
fmt.Printf("[%v] parts: %X (%f)\n", node.index, node.parts[:80], node.fill())
|
|
}
|
|
for i := 20; i < 2000; i += 200 {
|
|
node := nodes[i]
|
|
fmt.Printf("[%v] parts: %X (%f)\n", node.index, node.parts[:80], node.fill())
|
|
}
|
|
break
|
|
} else {
|
|
fmt.Printf("simulated %v ms. numEvents: %v Past: %v\n", timeMS, numEvents, runStats)
|
|
for i := 0; i < 2; i++ {
|
|
peer := nodes[0].peers[i]
|
|
fmt.Printf("[0].[%v] wanted: %X\n", i, peer.wanted[:80])
|
|
fmt.Printf("[0].[%v] given: %X\n", i, peer.given[:80])
|
|
}
|
|
for i := 0; i < 5; i++ {
|
|
node := nodes[i]
|
|
fmt.Printf("[%v] parts: %X (%f)\n", node.index, node.parts[:80], node.fill())
|
|
}
|
|
}
|
|
|
|
// Lets increment the timeMS now
|
|
timeMS += latencyMS / 2
|
|
|
|
} // end simulation
|
|
} // forever loop
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
type Heap struct {
|
|
pq priorityQueue
|
|
}
|
|
|
|
func NewHeap() *Heap {
|
|
return &Heap{pq: make([]*pqItem, 0)}
|
|
}
|
|
|
|
func (h *Heap) Len() int {
|
|
return len(h.pq)
|
|
}
|
|
|
|
func (h *Heap) Peek() interface{} {
|
|
if len(h.pq) == 0 {
|
|
return nil
|
|
}
|
|
return h.pq[0].value
|
|
}
|
|
|
|
func (h *Heap) Push(value interface{}, priority uint16) {
|
|
heap.Push(&h.pq, &pqItem{value: value, priority: priority})
|
|
}
|
|
|
|
func (h *Heap) Pop() interface{} {
|
|
if len(h.pq) == 0 {
|
|
return nil
|
|
}
|
|
item := heap.Pop(&h.pq).(*pqItem)
|
|
return item.value
|
|
}
|
|
|
|
/*
|
|
func main() {
|
|
h := NewHeap()
|
|
|
|
h.Push(String("msg1"), 1)
|
|
h.Push(String("msg3"), 3)
|
|
h.Push(String("msg2"), 2)
|
|
|
|
fmt.Println(h.Pop())
|
|
fmt.Println(h.Pop())
|
|
fmt.Println(h.Pop())
|
|
}
|
|
*/
|
|
|
|
///////////////////////
|
|
// From: http://golang.org/pkg/container/heap/#example__priorityQueue
|
|
|
|
type pqItem struct {
|
|
value interface{}
|
|
priority uint16
|
|
index int
|
|
}
|
|
|
|
type priorityQueue []*pqItem
|
|
|
|
func (pq priorityQueue) Len() int { return len(pq) }
|
|
|
|
func (pq priorityQueue) Less(i, j int) bool {
|
|
return pq[i].priority < pq[j].priority
|
|
}
|
|
|
|
func (pq priorityQueue) Swap(i, j int) {
|
|
pq[i], pq[j] = pq[j], pq[i]
|
|
pq[i].index = i
|
|
pq[j].index = j
|
|
}
|
|
|
|
func (pq *priorityQueue) Push(x interface{}) {
|
|
n := len(*pq)
|
|
item := x.(*pqItem)
|
|
item.index = n
|
|
*pq = append(*pq, item)
|
|
}
|
|
|
|
func (pq *priorityQueue) Pop() interface{} {
|
|
old := *pq
|
|
n := len(old)
|
|
item := old[n-1]
|
|
item.index = -1 // for safety
|
|
*pq = old[0 : n-1]
|
|
return item
|
|
}
|
|
|
|
func (pq *priorityQueue) Update(item *pqItem, value interface{}, priority uint16) {
|
|
heap.Remove(pq, item.index)
|
|
item.value = value
|
|
item.priority = priority
|
|
heap.Push(pq, item)
|
|
}
|