You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

687 lines
20 KiB

package consensus
import (
"bytes"
"context"
"errors"
"fmt"
"io"
"io/ioutil"
"os"
"path"
"runtime"
"testing"
"time"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
"github.com/tendermint/tendermint/abci/example/kvstore"
abci "github.com/tendermint/tendermint/abci/types"
crypto "github.com/tendermint/tendermint/crypto"
auto "github.com/tendermint/tendermint/libs/autofile"
cmn "github.com/tendermint/tendermint/libs/common"
dbm "github.com/tendermint/tendermint/libs/db"
cfg "github.com/tendermint/tendermint/config"
"github.com/tendermint/tendermint/privval"
"github.com/tendermint/tendermint/proxy"
sm "github.com/tendermint/tendermint/state"
"github.com/tendermint/tendermint/types"
"github.com/tendermint/tendermint/libs/log"
)
var consensusReplayConfig *cfg.Config
func init() {
consensusReplayConfig = ResetConfig("consensus_replay_test")
}
// These tests ensure we can always recover from failure at any part of the consensus process.
// There are two general failure scenarios: failure during consensus, and failure while applying the block.
// Only the latter interacts with the app and store,
// but the former has to deal with restrictions on re-use of priv_validator keys.
// The `WAL Tests` are for failures during the consensus;
// the `Handshake Tests` are for failures in applying the block.
// With the help of the WAL, we can recover from it all!
//------------------------------------------------------------------------------------------
// WAL Tests
// TODO: It would be better to verify explicitly which states we can recover from without the wal
// and which ones we need the wal for - then we'd also be able to only flush the
// wal writer when we need to, instead of with every message.
func startNewConsensusStateAndWaitForBlock(t *testing.T, lastBlockHeight int64, blockDB dbm.DB, stateDB dbm.DB) {
logger := log.TestingLogger()
state, _ := sm.LoadStateFromDBOrGenesisFile(stateDB, consensusReplayConfig.GenesisFile())
privValidator := loadPrivValidator(consensusReplayConfig)
cs := newConsensusStateWithConfigAndBlockStore(consensusReplayConfig, state, privValidator, kvstore.NewKVStoreApplication(), blockDB)
cs.SetLogger(logger)
bytes, _ := ioutil.ReadFile(cs.config.WalFile())
// fmt.Printf("====== WAL: \n\r%s\n", bytes)
t.Logf("====== WAL: \n\r%X\n", bytes)
err := cs.Start()
require.NoError(t, err)
defer cs.Stop()
// This is just a signal that we haven't halted; its not something contained
// in the WAL itself. Assuming the consensus state is running, replay of any
// WAL, including the empty one, should eventually be followed by a new
// block, or else something is wrong.
newBlockCh := make(chan interface{}, 1)
err = cs.eventBus.Subscribe(context.Background(), testSubscriber, types.EventQueryNewBlock, newBlockCh)
require.NoError(t, err)
select {
case <-newBlockCh:
case <-time.After(60 * time.Second):
t.Fatalf("Timed out waiting for new block (see trace above)")
}
}
func sendTxs(cs *ConsensusState, ctx context.Context) {
for i := 0; i < 256; i++ {
select {
case <-ctx.Done():
return
default:
tx := []byte{byte(i)}
cs.mempool.CheckTx(tx, nil)
i++
}
}
}
// TestWALCrash uses crashing WAL to test we can recover from any WAL failure.
func TestWALCrash(t *testing.T) {
testCases := []struct {
name string
initFn func(dbm.DB, *ConsensusState, context.Context)
heightToStop int64
}{
{"empty block",
func(stateDB dbm.DB, cs *ConsensusState, ctx context.Context) {},
1},
{"block with a smaller part size",
func(stateDB dbm.DB, cs *ConsensusState, ctx context.Context) {
// XXX: is there a better way to change BlockPartSizeBytes?
cs.state.ConsensusParams.BlockPartSizeBytes = 512
sm.SaveState(stateDB, cs.state)
go sendTxs(cs, ctx)
},
1},
{"many non-empty blocks",
func(stateDB dbm.DB, cs *ConsensusState, ctx context.Context) {
go sendTxs(cs, ctx)
},
3},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
crashWALandCheckLiveness(t, tc.initFn, tc.heightToStop)
})
}
}
func crashWALandCheckLiveness(t *testing.T, initFn func(dbm.DB, *ConsensusState, context.Context), heightToStop int64) {
walPaniced := make(chan error)
crashingWal := &crashingWAL{panicCh: walPaniced, heightToStop: heightToStop}
i := 1
LOOP:
for {
// fmt.Printf("====== LOOP %d\n", i)
t.Logf("====== LOOP %d\n", i)
// create consensus state from a clean slate
logger := log.NewNopLogger()
stateDB := dbm.NewMemDB()
state, _ := sm.MakeGenesisStateFromFile(consensusReplayConfig.GenesisFile())
privValidator := loadPrivValidator(consensusReplayConfig)
blockDB := dbm.NewMemDB()
cs := newConsensusStateWithConfigAndBlockStore(consensusReplayConfig, state, privValidator, kvstore.NewKVStoreApplication(), blockDB)
cs.SetLogger(logger)
// start sending transactions
ctx, cancel := context.WithCancel(context.Background())
initFn(stateDB, cs, ctx)
// clean up WAL file from the previous iteration
walFile := cs.config.WalFile()
os.Remove(walFile)
// set crashing WAL
csWal, err := cs.OpenWAL(walFile)
require.NoError(t, err)
crashingWal.next = csWal
// reset the message counter
crashingWal.msgIndex = 1
cs.wal = crashingWal
// start consensus state
err = cs.Start()
require.NoError(t, err)
i++
select {
case err := <-walPaniced:
t.Logf("WAL paniced: %v", err)
// make sure we can make blocks after a crash
startNewConsensusStateAndWaitForBlock(t, cs.Height, blockDB, stateDB)
// stop consensus state and transactions sender (initFn)
cs.Stop()
cancel()
// if we reached the required height, exit
if _, ok := err.(ReachedHeightToStopError); ok {
break LOOP
}
case <-time.After(10 * time.Second):
t.Fatal("WAL did not panic for 10 seconds (check the log)")
}
}
}
// crashingWAL is a WAL which crashes or rather simulates a crash during Save
// (before and after). It remembers a message for which we last panicked
// (lastPanicedForMsgIndex), so we don't panic for it in subsequent iterations.
type crashingWAL struct {
next WAL
panicCh chan error
heightToStop int64
msgIndex int // current message index
lastPanicedForMsgIndex int // last message for which we panicked
}
// WALWriteError indicates a WAL crash.
type WALWriteError struct {
msg string
}
func (e WALWriteError) Error() string {
return e.msg
}
// ReachedHeightToStopError indicates we've reached the required consensus
// height and may exit.
type ReachedHeightToStopError struct {
height int64
}
func (e ReachedHeightToStopError) Error() string {
return fmt.Sprintf("reached height to stop %d", e.height)
}
// Write simulate WAL's crashing by sending an error to the panicCh and then
// exiting the cs.receiveRoutine.
func (w *crashingWAL) Write(m WALMessage) {
if endMsg, ok := m.(EndHeightMessage); ok {
if endMsg.Height == w.heightToStop {
w.panicCh <- ReachedHeightToStopError{endMsg.Height}
runtime.Goexit()
} else {
w.next.Write(m)
}
return
}
if w.msgIndex > w.lastPanicedForMsgIndex {
w.lastPanicedForMsgIndex = w.msgIndex
_, file, line, _ := runtime.Caller(1)
w.panicCh <- WALWriteError{fmt.Sprintf("failed to write %T to WAL (fileline: %s:%d)", m, file, line)}
runtime.Goexit()
} else {
w.msgIndex++
w.next.Write(m)
}
}
func (w *crashingWAL) WriteSync(m WALMessage) {
w.Write(m)
}
func (w *crashingWAL) Group() *auto.Group { return w.next.Group() }
func (w *crashingWAL) SearchForEndHeight(height int64, options *WALSearchOptions) (gr *auto.GroupReader, found bool, err error) {
return w.next.SearchForEndHeight(height, options)
}
func (w *crashingWAL) Start() error { return w.next.Start() }
func (w *crashingWAL) Stop() error { return w.next.Stop() }
func (w *crashingWAL) Wait() { w.next.Wait() }
//------------------------------------------------------------------------------------------
// Handshake Tests
const (
NUM_BLOCKS = 6
)
var (
mempool = sm.MockMempool{}
evpool = sm.MockEvidencePool{}
)
//---------------------------------------
// Test handshake/replay
// 0 - all synced up
// 1 - saved block but app and state are behind
// 2 - save block and committed but state is behind
var modes = []uint{0, 1, 2}
// Sync from scratch
func TestHandshakeReplayAll(t *testing.T) {
for _, m := range modes {
testHandshakeReplay(t, 0, m)
}
}
// Sync many, not from scratch
func TestHandshakeReplaySome(t *testing.T) {
for _, m := range modes {
testHandshakeReplay(t, 1, m)
}
}
// Sync from lagging by one
func TestHandshakeReplayOne(t *testing.T) {
for _, m := range modes {
testHandshakeReplay(t, NUM_BLOCKS-1, m)
}
}
// Sync from caught up
func TestHandshakeReplayNone(t *testing.T) {
for _, m := range modes {
testHandshakeReplay(t, NUM_BLOCKS, m)
}
}
func tempWALWithData(data []byte) string {
walFile, err := ioutil.TempFile("", "wal")
if err != nil {
panic(fmt.Errorf("failed to create temp WAL file: %v", err))
}
_, err = walFile.Write(data)
if err != nil {
panic(fmt.Errorf("failed to write to temp WAL file: %v", err))
}
if err := walFile.Close(); err != nil {
panic(fmt.Errorf("failed to close temp WAL file: %v", err))
}
return walFile.Name()
}
// Make some blocks. Start a fresh app and apply nBlocks blocks. Then restart the app and sync it up with the remaining blocks
func testHandshakeReplay(t *testing.T, nBlocks int, mode uint) {
config := ResetConfig("proxy_test_")
walBody, err := WALWithNBlocks(NUM_BLOCKS)
if err != nil {
t.Fatal(err)
}
walFile := tempWALWithData(walBody)
config.Consensus.SetWalFile(walFile)
privVal := privval.LoadFilePV(config.PrivValidatorFile())
wal, err := NewWAL(walFile)
if err != nil {
t.Fatal(err)
}
wal.SetLogger(log.TestingLogger())
if err := wal.Start(); err != nil {
t.Fatal(err)
}
defer wal.Stop()
chain, commits, err := makeBlockchainFromWAL(wal)
if err != nil {
t.Fatalf(err.Error())
}
stateDB, state, store := stateAndStore(config, privVal.GetPubKey())
store.chain = chain
store.commits = commits
// run the chain through state.ApplyBlock to build up the tendermint state
state = buildTMStateFromChain(config, stateDB, state, chain, mode)
latestAppHash := state.AppHash
// make a new client creator
kvstoreApp := kvstore.NewPersistentKVStoreApplication(path.Join(config.DBDir(), "2"))
clientCreator2 := proxy.NewLocalClientCreator(kvstoreApp)
if nBlocks > 0 {
// run nBlocks against a new client to build up the app state.
// use a throwaway tendermint state
proxyApp := proxy.NewAppConns(clientCreator2, nil)
stateDB, state, _ := stateAndStore(config, privVal.GetPubKey())
buildAppStateFromChain(proxyApp, stateDB, state, chain, nBlocks, mode)
}
// now start the app using the handshake - it should sync
genDoc, _ := sm.MakeGenesisDocFromFile(config.GenesisFile())
handshaker := NewHandshaker(stateDB, state, store, genDoc)
proxyApp := proxy.NewAppConns(clientCreator2, handshaker)
if err := proxyApp.Start(); err != nil {
t.Fatalf("Error starting proxy app connections: %v", err)
}
defer proxyApp.Stop()
// get the latest app hash from the app
res, err := proxyApp.Query().InfoSync(abci.RequestInfo{""})
if err != nil {
t.Fatal(err)
}
// the app hash should be synced up
if !bytes.Equal(latestAppHash, res.LastBlockAppHash) {
t.Fatalf("Expected app hashes to match after handshake/replay. got %X, expected %X", res.LastBlockAppHash, latestAppHash)
}
expectedBlocksToSync := NUM_BLOCKS - nBlocks
if nBlocks == NUM_BLOCKS && mode > 0 {
expectedBlocksToSync++
} else if nBlocks > 0 && mode == 1 {
expectedBlocksToSync++
}
if handshaker.NBlocks() != expectedBlocksToSync {
t.Fatalf("Expected handshake to sync %d blocks, got %d", expectedBlocksToSync, handshaker.NBlocks())
}
}
func applyBlock(stateDB dbm.DB, st sm.State, blk *types.Block, proxyApp proxy.AppConns) sm.State {
testPartSize := st.ConsensusParams.BlockPartSizeBytes
blockExec := sm.NewBlockExecutor(stateDB, log.TestingLogger(), proxyApp.Consensus(), mempool, evpool)
blkID := types.BlockID{blk.Hash(), blk.MakePartSet(testPartSize).Header()}
newState, err := blockExec.ApplyBlock(st, blkID, blk)
if err != nil {
panic(err)
}
return newState
}
func buildAppStateFromChain(proxyApp proxy.AppConns, stateDB dbm.DB,
state sm.State, chain []*types.Block, nBlocks int, mode uint) {
// start a new app without handshake, play nBlocks blocks
if err := proxyApp.Start(); err != nil {
panic(err)
}
defer proxyApp.Stop()
validators := types.TM2PB.Validators(state.Validators)
if _, err := proxyApp.Consensus().InitChainSync(abci.RequestInitChain{
Validators: validators,
}); err != nil {
panic(err)
}
switch mode {
case 0:
for i := 0; i < nBlocks; i++ {
block := chain[i]
state = applyBlock(stateDB, state, block, proxyApp)
}
case 1, 2:
for i := 0; i < nBlocks-1; i++ {
block := chain[i]
state = applyBlock(stateDB, state, block, proxyApp)
}
if mode == 2 {
// update the kvstore height and apphash
// as if we ran commit but not
state = applyBlock(stateDB, state, chain[nBlocks-1], proxyApp)
}
}
}
func buildTMStateFromChain(config *cfg.Config, stateDB dbm.DB, state sm.State, chain []*types.Block, mode uint) sm.State {
// run the whole chain against this client to build up the tendermint state
clientCreator := proxy.NewLocalClientCreator(kvstore.NewPersistentKVStoreApplication(path.Join(config.DBDir(), "1")))
proxyApp := proxy.NewAppConns(clientCreator, nil) // sm.NewHandshaker(config, state, store, ReplayLastBlock))
if err := proxyApp.Start(); err != nil {
panic(err)
}
defer proxyApp.Stop()
validators := types.TM2PB.Validators(state.Validators)
if _, err := proxyApp.Consensus().InitChainSync(abci.RequestInitChain{
Validators: validators,
}); err != nil {
panic(err)
}
switch mode {
case 0:
// sync right up
for _, block := range chain {
state = applyBlock(stateDB, state, block, proxyApp)
}
case 1, 2:
// sync up to the penultimate as if we stored the block.
// whether we commit or not depends on the appHash
for _, block := range chain[:len(chain)-1] {
state = applyBlock(stateDB, state, block, proxyApp)
}
// apply the final block to a state copy so we can
// get the right next appHash but keep the state back
applyBlock(stateDB, state, chain[len(chain)-1], proxyApp)
}
return state
}
//--------------------------
// utils for making blocks
func makeBlockchainFromWAL(wal WAL) ([]*types.Block, []*types.Commit, error) {
// Search for height marker
gr, found, err := wal.SearchForEndHeight(0, &WALSearchOptions{})
if err != nil {
return nil, nil, err
}
if !found {
return nil, nil, errors.New(cmn.Fmt("WAL does not contain height %d.", 1))
}
defer gr.Close() // nolint: errcheck
// log.Notice("Build a blockchain by reading from the WAL")
var blocks []*types.Block
var commits []*types.Commit
var thisBlockParts *types.PartSet
var thisBlockCommit *types.Commit
var height int64
dec := NewWALDecoder(gr)
for {
msg, err := dec.Decode()
if err == io.EOF {
break
} else if err != nil {
return nil, nil, err
}
piece := readPieceFromWAL(msg)
if piece == nil {
continue
}
switch p := piece.(type) {
case EndHeightMessage:
// if its not the first one, we have a full block
if thisBlockParts != nil {
var block = new(types.Block)
_, err = cdc.UnmarshalBinaryReader(thisBlockParts.GetReader(), block, 0)
if err != nil {
panic(err)
}
if block.Height != height+1 {
panic(cmn.Fmt("read bad block from wal. got height %d, expected %d", block.Height, height+1))
}
commitHeight := thisBlockCommit.Precommits[0].Height
if commitHeight != height+1 {
panic(cmn.Fmt("commit doesnt match. got height %d, expected %d", commitHeight, height+1))
}
blocks = append(blocks, block)
commits = append(commits, thisBlockCommit)
height++
}
case *types.PartSetHeader:
thisBlockParts = types.NewPartSetFromHeader(*p)
case *types.Part:
_, err := thisBlockParts.AddPart(p)
if err != nil {
return nil, nil, err
}
case *types.Vote:
if p.Type == types.VoteTypePrecommit {
thisBlockCommit = &types.Commit{
BlockID: p.BlockID,
Precommits: []*types.Vote{p},
}
}
}
}
// grab the last block too
var block = new(types.Block)
_, err = cdc.UnmarshalBinaryReader(thisBlockParts.GetReader(), block, 0)
if err != nil {
panic(err)
}
if block.Height != height+1 {
panic(cmn.Fmt("read bad block from wal. got height %d, expected %d", block.Height, height+1))
}
commitHeight := thisBlockCommit.Precommits[0].Height
if commitHeight != height+1 {
panic(cmn.Fmt("commit doesnt match. got height %d, expected %d", commitHeight, height+1))
}
blocks = append(blocks, block)
commits = append(commits, thisBlockCommit)
return blocks, commits, nil
}
func readPieceFromWAL(msg *TimedWALMessage) interface{} {
// for logging
switch m := msg.Msg.(type) {
case msgInfo:
switch msg := m.Msg.(type) {
case *ProposalMessage:
return &msg.Proposal.BlockPartsHeader
case *BlockPartMessage:
return msg.Part
case *VoteMessage:
return msg.Vote
}
case EndHeightMessage:
return m
}
return nil
}
// fresh state and mock store
func stateAndStore(config *cfg.Config, pubKey crypto.PubKey) (dbm.DB, sm.State, *mockBlockStore) {
stateDB := dbm.NewMemDB()
state, _ := sm.MakeGenesisStateFromFile(config.GenesisFile())
store := NewMockBlockStore(config, state.ConsensusParams)
return stateDB, state, store
}
//----------------------------------
// mock block store
type mockBlockStore struct {
config *cfg.Config
params types.ConsensusParams
chain []*types.Block
commits []*types.Commit
}
// TODO: NewBlockStore(db.NewMemDB) ...
func NewMockBlockStore(config *cfg.Config, params types.ConsensusParams) *mockBlockStore {
return &mockBlockStore{config, params, nil, nil}
}
func (bs *mockBlockStore) Height() int64 { return int64(len(bs.chain)) }
func (bs *mockBlockStore) LoadBlock(height int64) *types.Block { return bs.chain[height-1] }
func (bs *mockBlockStore) LoadBlockMeta(height int64) *types.BlockMeta {
block := bs.chain[height-1]
return &types.BlockMeta{
BlockID: types.BlockID{block.Hash(), block.MakePartSet(bs.params.BlockPartSizeBytes).Header()},
Header: block.Header,
}
}
func (bs *mockBlockStore) LoadBlockPart(height int64, index int) *types.Part { return nil }
func (bs *mockBlockStore) SaveBlock(block *types.Block, blockParts *types.PartSet, seenCommit *types.Commit) {
}
func (bs *mockBlockStore) LoadBlockCommit(height int64) *types.Commit {
return bs.commits[height-1]
}
func (bs *mockBlockStore) LoadSeenCommit(height int64) *types.Commit {
return bs.commits[height-1]
}
//----------------------------------------
func TestInitChainUpdateValidators(t *testing.T) {
val, _ := types.RandValidator(true, 10)
vals := types.NewValidatorSet([]*types.Validator{val})
app := &initChainApp{vals: types.TM2PB.Validators(vals)}
clientCreator := proxy.NewLocalClientCreator(app)
config := ResetConfig("proxy_test_")
privVal := privval.LoadFilePV(config.PrivValidatorFile())
stateDB, state, store := stateAndStore(config, privVal.GetPubKey())
oldValAddr := state.Validators.Validators[0].Address
// now start the app using the handshake - it should sync
genDoc, _ := sm.MakeGenesisDocFromFile(config.GenesisFile())
handshaker := NewHandshaker(stateDB, state, store, genDoc)
proxyApp := proxy.NewAppConns(clientCreator, handshaker)
if err := proxyApp.Start(); err != nil {
t.Fatalf("Error starting proxy app connections: %v", err)
}
defer proxyApp.Stop()
// reload the state, check the validator set was updated
state = sm.LoadState(stateDB)
newValAddr := state.Validators.Validators[0].Address
expectValAddr := val.Address
assert.NotEqual(t, oldValAddr, newValAddr)
assert.Equal(t, newValAddr, expectValAddr)
}
func newInitChainApp(vals []abci.Validator) *initChainApp {
return &initChainApp{
vals: vals,
}
}
// returns the vals on InitChain
type initChainApp struct {
abci.BaseApplication
vals []abci.Validator
}
func (ica *initChainApp) InitChain(req abci.RequestInitChain) abci.ResponseInitChain {
return abci.ResponseInitChain{
Validators: ica.vals,
}
}