// Copyright 2017 Tendermint. All rights reserved.
|
|
// Use of this source code is governed by Apache 2 LICENSE that can be found in the LICENSE file.
|
|
|
|
package trust
|
|
|
|
import (
|
|
"context"
|
|
"math"
|
|
"time"
|
|
|
|
tmsync "github.com/tendermint/tendermint/internal/libs/sync"
|
|
"github.com/tendermint/tendermint/libs/service"
|
|
)
|
|
|
|
//---------------------------------------------------------------------------------------
|
|
|
|
const (
|
|
// The weight applied to the derivative when current behavior is >= previous behavior
|
|
defaultDerivativeGamma1 = 0
|
|
|
|
// The weight applied to the derivative when current behavior is less than previous behavior
|
|
defaultDerivativeGamma2 = 1.0
|
|
|
|
// The weight applied to history data values when calculating the history value
|
|
defaultHistoryDataWeight = 0.8
|
|
)
|
|
|
|
// MetricHistoryJSON - history data necessary to save the trust metric
|
|
type MetricHistoryJSON struct {
|
|
NumIntervals int `json:"intervals"`
|
|
History []float64 `json:"history"`
|
|
}
|
|
|
|
// Metric - keeps track of peer reliability
|
|
// See tendermint/docs/architecture/adr-006-trust-metric.md for details
|
|
type Metric struct {
|
|
service.BaseService
|
|
|
|
// Mutex that protects the metric from concurrent access
|
|
mtx tmsync.Mutex
|
|
|
|
// Determines the percentage given to current behavior
|
|
proportionalWeight float64
|
|
|
|
// Determines the percentage given to prior behavior
|
|
integralWeight float64
|
|
|
|
// Count of how many time intervals this metric has been tracking
|
|
numIntervals int
|
|
|
|
// Size of the time interval window for this trust metric
|
|
maxIntervals int
|
|
|
|
// The time duration for a single time interval
|
|
intervalLen time.Duration
|
|
|
|
// Stores the trust history data for this metric
|
|
history []float64
|
|
|
|
// Weights applied to the history data when calculating the history value
|
|
historyWeights []float64
|
|
|
|
// The sum of the history weights used when calculating the history value
|
|
historyWeightSum float64
|
|
|
|
// The current number of history data elements
|
|
historySize int
|
|
|
|
// The maximum number of history data elements
|
|
historyMaxSize int
|
|
|
|
// The calculated history value for the current time interval
|
|
historyValue float64
|
|
|
|
// The number of recorded good and bad events for the current time interval
|
|
bad, good float64
|
|
|
|
// While true, history data is not modified
|
|
paused bool
|
|
|
|
// Used during testing in order to control the passing of time intervals
|
|
testTicker MetricTicker
|
|
}
|
|
|
|
// NewMetric returns a trust metric with the default configuration.
|
|
// Use Start to begin tracking the quality of peer behavior over time
|
|
func NewMetric() *Metric {
|
|
return NewMetricWithConfig(DefaultConfig())
|
|
}
|
|
|
|
// NewMetricWithConfig returns a trust metric with a custom configuration.
|
|
// Use Start to begin tracking the quality of peer behavior over time
|
|
func NewMetricWithConfig(tmc MetricConfig) *Metric {
|
|
tm := new(Metric)
|
|
config := customConfig(tmc)
|
|
|
|
// Setup using the configuration values
|
|
tm.proportionalWeight = config.ProportionalWeight
|
|
tm.integralWeight = config.IntegralWeight
|
|
tm.intervalLen = config.IntervalLength
|
|
// The maximum number of time intervals is the tracking window / interval length
|
|
tm.maxIntervals = int(config.TrackingWindow / tm.intervalLen)
|
|
// The history size will be determined by the maximum number of time intervals
|
|
tm.historyMaxSize = intervalToHistoryOffset(tm.maxIntervals) + 1
|
|
// This metric has a perfect history so far
|
|
tm.historyValue = 1.0
|
|
|
|
tm.BaseService = *service.NewBaseService(nil, "Metric", tm)
|
|
return tm
|
|
}
|
|
|
|
// OnStart implements Service
|
|
func (tm *Metric) OnStart(ctx context.Context) error {
|
|
if err := tm.BaseService.OnStart(ctx); err != nil {
|
|
return err
|
|
}
|
|
go tm.processRequests()
|
|
return nil
|
|
}
|
|
|
|
// OnStop implements Service
|
|
// Nothing to do since the goroutine shuts down by itself via BaseService.Quit()
|
|
func (tm *Metric) OnStop() {}
|
|
|
|
// Returns a snapshot of the trust metric history data
|
|
func (tm *Metric) HistoryJSON() MetricHistoryJSON {
|
|
tm.mtx.Lock()
|
|
defer tm.mtx.Unlock()
|
|
|
|
return MetricHistoryJSON{
|
|
NumIntervals: tm.numIntervals,
|
|
History: tm.history,
|
|
}
|
|
}
|
|
|
|
// Instantiates a trust metric by loading the history data for a single peer.
|
|
// This is called only once and only right after creation, which is why the
|
|
// lock is not held while accessing the trust metric struct members
|
|
func (tm *Metric) Init(hist MetricHistoryJSON) {
|
|
// Restore the number of time intervals we have previously tracked
|
|
if hist.NumIntervals > tm.maxIntervals {
|
|
hist.NumIntervals = tm.maxIntervals
|
|
}
|
|
tm.numIntervals = hist.NumIntervals
|
|
// Restore the history and its current size
|
|
if len(hist.History) > tm.historyMaxSize {
|
|
// Keep the history no larger than historyMaxSize
|
|
last := len(hist.History) - tm.historyMaxSize
|
|
hist.History = hist.History[last:]
|
|
}
|
|
tm.history = hist.History
|
|
tm.historySize = len(tm.history)
|
|
// Create the history weight values and weight sum
|
|
for i := 1; i <= tm.numIntervals; i++ {
|
|
x := math.Pow(defaultHistoryDataWeight, float64(i)) // Optimistic weight
|
|
tm.historyWeights = append(tm.historyWeights, x)
|
|
}
|
|
|
|
for _, v := range tm.historyWeights {
|
|
tm.historyWeightSum += v
|
|
}
|
|
// Calculate the history value based on the loaded history data
|
|
tm.historyValue = tm.calcHistoryValue()
|
|
}
|
|
|
|
// Pause tells the metric to pause recording data over time intervals.
|
|
// All method calls that indicate events will unpause the metric
|
|
func (tm *Metric) Pause() {
|
|
tm.mtx.Lock()
|
|
defer tm.mtx.Unlock()
|
|
|
|
// Pause the metric for now
|
|
tm.paused = true
|
|
}
|
|
|
|
// BadEvents indicates that an undesirable event(s) took place
|
|
func (tm *Metric) BadEvents(num int) {
|
|
tm.mtx.Lock()
|
|
defer tm.mtx.Unlock()
|
|
|
|
tm.unpause()
|
|
tm.bad += float64(num)
|
|
}
|
|
|
|
// GoodEvents indicates that a desirable event(s) took place
|
|
func (tm *Metric) GoodEvents(num int) {
|
|
tm.mtx.Lock()
|
|
defer tm.mtx.Unlock()
|
|
|
|
tm.unpause()
|
|
tm.good += float64(num)
|
|
}
|
|
|
|
// TrustValue gets the dependable trust value; always between 0 and 1
|
|
func (tm *Metric) TrustValue() float64 {
|
|
tm.mtx.Lock()
|
|
defer tm.mtx.Unlock()
|
|
|
|
return tm.calcTrustValue()
|
|
}
|
|
|
|
// TrustScore gets a score based on the trust value always between 0 and 100
|
|
func (tm *Metric) TrustScore() int {
|
|
score := tm.TrustValue() * 100
|
|
|
|
return int(math.Floor(score))
|
|
}
|
|
|
|
// NextTimeInterval saves current time interval data and prepares for the following interval
|
|
func (tm *Metric) NextTimeInterval() {
|
|
tm.mtx.Lock()
|
|
defer tm.mtx.Unlock()
|
|
|
|
if tm.paused {
|
|
// Do not prepare for the next time interval while paused
|
|
return
|
|
}
|
|
|
|
// Add the current trust value to the history data
|
|
newHist := tm.calcTrustValue()
|
|
tm.history = append(tm.history, newHist)
|
|
|
|
// Update history and interval counters
|
|
if tm.historySize < tm.historyMaxSize {
|
|
tm.historySize++
|
|
} else {
|
|
// Keep the history no larger than historyMaxSize
|
|
last := len(tm.history) - tm.historyMaxSize
|
|
tm.history = tm.history[last:]
|
|
}
|
|
|
|
if tm.numIntervals < tm.maxIntervals {
|
|
tm.numIntervals++
|
|
// Add the optimistic weight for the new time interval
|
|
wk := math.Pow(defaultHistoryDataWeight, float64(tm.numIntervals))
|
|
tm.historyWeights = append(tm.historyWeights, wk)
|
|
tm.historyWeightSum += wk
|
|
}
|
|
|
|
// Update the history data using Faded Memories
|
|
tm.updateFadedMemory()
|
|
// Calculate the history value for the upcoming time interval
|
|
tm.historyValue = tm.calcHistoryValue()
|
|
tm.good = 0
|
|
tm.bad = 0
|
|
}
|
|
|
|
// SetTicker allows a TestTicker to be provided that will manually control
|
|
// the passing of time from the perspective of the Metric.
|
|
// The ticker must be set before Start is called on the metric
|
|
func (tm *Metric) SetTicker(ticker MetricTicker) {
|
|
tm.mtx.Lock()
|
|
defer tm.mtx.Unlock()
|
|
|
|
tm.testTicker = ticker
|
|
}
|
|
|
|
// Copy returns a new trust metric with members containing the same values
|
|
func (tm *Metric) Copy() *Metric {
|
|
if tm == nil {
|
|
return nil
|
|
}
|
|
|
|
tm.mtx.Lock()
|
|
defer tm.mtx.Unlock()
|
|
|
|
return &Metric{
|
|
proportionalWeight: tm.proportionalWeight,
|
|
integralWeight: tm.integralWeight,
|
|
numIntervals: tm.numIntervals,
|
|
maxIntervals: tm.maxIntervals,
|
|
intervalLen: tm.intervalLen,
|
|
history: tm.history,
|
|
historyWeights: tm.historyWeights,
|
|
historyWeightSum: tm.historyWeightSum,
|
|
historySize: tm.historySize,
|
|
historyMaxSize: tm.historyMaxSize,
|
|
historyValue: tm.historyValue,
|
|
good: tm.good,
|
|
bad: tm.bad,
|
|
paused: tm.paused,
|
|
}
|
|
|
|
}
|
|
|
|
/* Private methods */
|
|
|
|
// This method is for a goroutine that handles all requests on the metric
|
|
func (tm *Metric) processRequests() {
|
|
t := tm.testTicker
|
|
if t == nil {
|
|
// No test ticker was provided, so we create a normal ticker
|
|
t = NewTicker(tm.intervalLen)
|
|
}
|
|
defer t.Stop()
|
|
// Obtain the raw channel
|
|
tick := t.GetChannel()
|
|
loop:
|
|
for {
|
|
select {
|
|
case <-tick:
|
|
tm.NextTimeInterval()
|
|
case <-tm.Quit():
|
|
// Stop all further tracking for this metric
|
|
break loop
|
|
}
|
|
}
|
|
}
|
|
|
|
// Wakes the trust metric up if it is currently paused
|
|
// This method needs to be called with the mutex locked
|
|
func (tm *Metric) unpause() {
|
|
// Check if this is the first experience with
|
|
// what we are tracking since being paused
|
|
if tm.paused {
|
|
tm.good = 0
|
|
tm.bad = 0
|
|
// New events cause us to unpause the metric
|
|
tm.paused = false
|
|
}
|
|
}
|
|
|
|
// Calculates the trust value for the request processing
|
|
func (tm *Metric) calcTrustValue() float64 {
|
|
weightedP := tm.proportionalWeight * tm.proportionalValue()
|
|
weightedI := tm.integralWeight * tm.historyValue
|
|
weightedD := tm.weightedDerivative()
|
|
|
|
tv := weightedP + weightedI + weightedD
|
|
// Do not return a negative value.
|
|
if tv < 0 {
|
|
tv = 0
|
|
}
|
|
return tv
|
|
}
|
|
|
|
// Calculates the current score for good/bad experiences
|
|
func (tm *Metric) proportionalValue() float64 {
|
|
value := 1.0
|
|
|
|
total := tm.good + tm.bad
|
|
if total > 0 {
|
|
value = tm.good / total
|
|
}
|
|
return value
|
|
}
|
|
|
|
// Strengthens the derivative component when the change is negative
|
|
func (tm *Metric) weightedDerivative() float64 {
|
|
var weight float64 = defaultDerivativeGamma1
|
|
|
|
d := tm.derivativeValue()
|
|
if d < 0 {
|
|
weight = defaultDerivativeGamma2
|
|
}
|
|
return weight * d
|
|
}
|
|
|
|
// Calculates the derivative component
|
|
func (tm *Metric) derivativeValue() float64 {
|
|
return tm.proportionalValue() - tm.historyValue
|
|
}
|
|
|
|
// Calculates the integral (history) component of the trust value
|
|
func (tm *Metric) calcHistoryValue() float64 {
|
|
var hv float64
|
|
|
|
for i := 0; i < tm.numIntervals; i++ {
|
|
hv += tm.fadedMemoryValue(i) * tm.historyWeights[i]
|
|
}
|
|
|
|
return hv / tm.historyWeightSum
|
|
}
|
|
|
|
// Retrieves the actual history data value that represents the requested time interval
|
|
func (tm *Metric) fadedMemoryValue(interval int) float64 {
|
|
first := tm.historySize - 1
|
|
|
|
if interval == 0 {
|
|
// Base case
|
|
return tm.history[first]
|
|
}
|
|
|
|
offset := intervalToHistoryOffset(interval)
|
|
return tm.history[first-offset]
|
|
}
|
|
|
|
// Performs the update for our Faded Memories process, which allows the
|
|
// trust metric tracking window to be large while maintaining a small
|
|
// number of history data values
|
|
func (tm *Metric) updateFadedMemory() {
|
|
if tm.historySize < 2 {
|
|
return
|
|
}
|
|
|
|
end := tm.historySize - 1
|
|
// Keep the most recent history element
|
|
for count := 1; count < tm.historySize; count++ {
|
|
i := end - count
|
|
// The older the data is, the more we spread it out
|
|
x := math.Pow(2, float64(count))
|
|
// Two history data values are merged into a single value
|
|
tm.history[i] = ((tm.history[i] * (x - 1)) + tm.history[i+1]) / x
|
|
}
|
|
}
|
|
|
|
// Map the interval value down to an offset from the beginning of history
|
|
func intervalToHistoryOffset(interval int) int {
|
|
// The system maintains 2^m interval values in the form of m history
|
|
// data values. Therefore, we access the ith interval by obtaining
|
|
// the history data index = the floor of log2(i)
|
|
return int(math.Floor(math.Log2(float64(interval))))
|
|
}
|