You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

352 lines
10 KiB

package hd
// XXX This package doesn't work with our address scheme,
// XXX and it probably doesn't work for our other pubkey types.
// XXX Fix it up to be more general but compatible.
import (
"crypto/ecdsa"
"crypto/hmac"
"crypto/sha256"
"crypto/sha512"
"encoding/base64"
"encoding/binary"
"encoding/hex"
"errors"
"fmt"
"hash"
"math/big"
"strconv"
"strings"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcutil/base58"
"golang.org/x/crypto/ripemd160"
)
/*
This file implements BIP32 HD wallets.
Note it only works for SECP256k1 keys.
It also includes some Bitcoin specific utility functions.
*/
// ComputeBTCAddress returns the BTC address using the pubKeyHex and chainCodeHex
// for the given path and index.
func ComputeBTCAddress(pubKeyHex string, chainCodeHex string, path string, index int32) string {
pubKeyBytes := DerivePublicKeyForPath(
HexDecode(pubKeyHex),
HexDecode(chainCodeHex),
fmt.Sprintf("%v/%v", path, index),
)
return BTCAddrFromPubKeyBytes(pubKeyBytes)
}
// ComputePrivateKey returns the private key using the master mprivHex and chainCodeHex
// for the given path and index.
func ComputePrivateKey(mprivHex string, chainHex string, path string, index int32) string {
privKeyBytes := DerivePrivateKeyForPath(
HexDecode(mprivHex),
HexDecode(chainHex),
fmt.Sprintf("%v/%v", path, index),
)
return HexEncode(privKeyBytes)
}
// ComputeBTCAddressForPrivKey returns the Bitcoin address for the given privKey.
func ComputeBTCAddressForPrivKey(privKey string) string {
pubKeyBytes := PubKeyBytesFromPrivKeyBytes(HexDecode(privKey), true)
return BTCAddrFromPubKeyBytes(pubKeyBytes)
}
// SignBTCMessage signs a "Bitcoin Signed Message".
func SignBTCMessage(privKey string, message string, compress bool) string {
prefixBytes := []byte("Bitcoin Signed Message:\n")
messageBytes := []byte(message)
bytes := []byte{}
bytes = append(bytes, byte(len(prefixBytes)))
bytes = append(bytes, prefixBytes...)
bytes = append(bytes, byte(len(messageBytes)))
bytes = append(bytes, messageBytes...)
privKeyBytes := HexDecode(privKey)
x, y := btcec.S256().ScalarBaseMult(privKeyBytes)
ecdsaPubKey := ecdsa.PublicKey{
Curve: btcec.S256(),
X: x,
Y: y,
}
ecdsaPrivKey := &btcec.PrivateKey{
PublicKey: ecdsaPubKey,
D: new(big.Int).SetBytes(privKeyBytes),
}
sigbytes, err := btcec.SignCompact(btcec.S256(), ecdsaPrivKey, CalcHash256(bytes), compress)
if err != nil {
panic(err)
}
return base64.StdEncoding.EncodeToString(sigbytes)
}
// ComputeMastersFromSeed returns the master public key, master secret, and chain code in hex.
func ComputeMastersFromSeed(seed string) (string, string, string) {
key, data := []byte("Bitcoin seed"), []byte(seed)
secret, chain := I64(key, data)
pubKeyBytes := PubKeyBytesFromPrivKeyBytes(secret, true)
return HexEncode(pubKeyBytes), HexEncode(secret), HexEncode(chain)
}
// ComputeWIF returns the privKey in Wallet Import Format.
func ComputeWIF(privKey string, compress bool) string {
return WIFFromPrivKeyBytes(HexDecode(privKey), compress)
}
// ComputeBTCTxId returns the bitcoin transaction ID.
func ComputeBTCTxId(rawTxHex string) string {
return HexEncode(ReverseBytes(CalcHash256(HexDecode(rawTxHex))))
}
/*
func printKeyInfo(privKeyBytes []byte, pubKeyBytes []byte, chain []byte) {
if pubKeyBytes == nil {
pubKeyBytes = PubKeyBytesFromPrivKeyBytes(privKeyBytes, true)
}
addr := AddrFromPubKeyBytes(pubKeyBytes)
log.Println("\nprikey:\t%v\npubKeyBytes:\t%v\naddr:\t%v\nchain:\t%v",
HexEncode(privKeyBytes),
HexEncode(pubKeyBytes),
addr,
HexEncode(chain))
}
*/
//-------------------------------------------------------------------
// DerivePrivateKeyForPath derives the private key by following the path from privKeyBytes,
// using the given chainCode.
func DerivePrivateKeyForPath(privKeyBytes []byte, chainCode []byte, path string) []byte {
data := privKeyBytes
parts := strings.Split(path, "/")
for _, part := range parts {
prime := part[len(part)-1:] == "'"
// prime == private derivation. Otherwise public.
if prime {
part = part[:len(part)-1]
}
i, err := strconv.Atoi(part)
if err != nil {
panic(err)
}
if i < 0 {
panic(errors.New("index too large."))
}
data, chainCode = DerivePrivateKey(data, chainCode, uint32(i), prime)
//printKeyInfo(data, nil, chain)
}
return data
}
// DerivePublicKeyForPath derives the public key by following the path from pubKeyBytes
// using the given chainCode.
func DerivePublicKeyForPath(pubKeyBytes []byte, chainCode []byte, path string) []byte {
data := pubKeyBytes
parts := strings.Split(path, "/")
for _, part := range parts {
prime := part[len(part)-1:] == "'"
if prime {
panic(errors.New("cannot do a prime derivation from public key"))
}
i, err := strconv.Atoi(part)
if err != nil {
panic(err)
}
if i < 0 {
panic(errors.New("index too large."))
}
data, chainCode = DerivePublicKey(data, chainCode, uint32(i))
//printKeyInfo(nil, data, chainCode)
}
return data
}
// DerivePrivateKey derives the private key with index and chainCode.
// If prime is true, the derivation is 'hardened'.
// It returns the new private key and new chain code.
func DerivePrivateKey(privKeyBytes []byte, chainCode []byte, index uint32, prime bool) ([]byte, []byte) {
var data []byte
if prime {
index = index | 0x80000000
data = append([]byte{byte(0)}, privKeyBytes...)
} else {
public := PubKeyBytesFromPrivKeyBytes(privKeyBytes, true)
data = public
}
data = append(data, uint32ToBytes(index)...)
data2, chainCode2 := I64(chainCode, data)
x := addScalars(privKeyBytes, data2)
return x, chainCode2
}
// DerivePublicKey derives the public key with index and chainCode.
// It returns the new public key and new chain code.
func DerivePublicKey(pubKeyBytes []byte, chainCode []byte, index uint32) ([]byte, []byte) {
data := []byte{}
data = append(data, pubKeyBytes...)
data = append(data, uint32ToBytes(index)...)
data2, chainCode2 := I64(chainCode, data)
data2p := PubKeyBytesFromPrivKeyBytes(data2, true)
return addPoints(pubKeyBytes, data2p), chainCode2
}
// eliptic curve pubkey addition
func addPoints(a []byte, b []byte) []byte {
ap, err := btcec.ParsePubKey(a, btcec.S256())
if err != nil {
panic(err)
}
bp, err := btcec.ParsePubKey(b, btcec.S256())
if err != nil {
panic(err)
}
sumX, sumY := btcec.S256().Add(ap.X, ap.Y, bp.X, bp.Y)
sum := &btcec.PublicKey{
Curve: btcec.S256(),
X: sumX,
Y: sumY,
}
return sum.SerializeCompressed()
}
// modular big endian addition
func addScalars(a []byte, b []byte) []byte {
aInt := new(big.Int).SetBytes(a)
bInt := new(big.Int).SetBytes(b)
sInt := new(big.Int).Add(aInt, bInt)
x := sInt.Mod(sInt, btcec.S256().N).Bytes()
x2 := [32]byte{}
copy(x2[32-len(x):], x)
return x2[:]
}
func uint32ToBytes(i uint32) []byte {
b := [4]byte{}
binary.BigEndian.PutUint32(b[:], i)
return b[:]
}
//-------------------------------------------------------------------
// HexEncode encodes b in hex.
func HexEncode(b []byte) string {
return hex.EncodeToString(b)
}
// HexDecode hex decodes the str. If str is not valid hex
// it will return an empty byte slice.
func HexDecode(str string) []byte {
b, _ := hex.DecodeString(str)
return b
}
// I64 returns the two halfs of the SHA512 HMAC of key and data.
func I64(key []byte, data []byte) ([]byte, []byte) {
mac := hmac.New(sha512.New, key)
mac.Write(data)
I := mac.Sum(nil)
return I[:32], I[32:]
}
//-------------------------------------------------------------------
const (
btcPrefixPubKeyHash = byte(0x00)
btcPrefixPrivKey = byte(0x80)
)
// BTCAddrFromPubKeyBytes returns a B58 encoded Bitcoin mainnet address.
func BTCAddrFromPubKeyBytes(pubKeyBytes []byte) string {
versionPrefix := btcPrefixPubKeyHash // TODO Make const or configurable
h160 := CalcHash160(pubKeyBytes)
h160 = append([]byte{versionPrefix}, h160...)
checksum := CalcHash256(h160)
b := append(h160, checksum[:4]...)
return base58.Encode(b)
}
// BTCAddrBytesFromPubKeyBytes returns a hex Bitcoin mainnet address and its checksum.
func BTCAddrBytesFromPubKeyBytes(pubKeyBytes []byte) (addrBytes []byte, checksum []byte) {
versionPrefix := btcPrefixPubKeyHash // TODO Make const or configurable
h160 := CalcHash160(pubKeyBytes)
_h160 := append([]byte{versionPrefix}, h160...)
checksum = CalcHash256(_h160)[:4]
return h160, checksum
}
// WIFFromPrivKeyBytes returns the privKeyBytes in Wallet Import Format.
func WIFFromPrivKeyBytes(privKeyBytes []byte, compress bool) string {
versionPrefix := btcPrefixPrivKey // TODO Make const or configurable
bytes := append([]byte{versionPrefix}, privKeyBytes...)
if compress {
bytes = append(bytes, byte(1))
}
checksum := CalcHash256(bytes)
bytes = append(bytes, checksum[:4]...)
return base58.Encode(bytes)
}
// PubKeyBytesFromPrivKeyBytes returns the optionally compressed public key bytes.
func PubKeyBytesFromPrivKeyBytes(privKeyBytes []byte, compress bool) (pubKeyBytes []byte) {
x, y := btcec.S256().ScalarBaseMult(privKeyBytes)
pub := &btcec.PublicKey{
Curve: btcec.S256(),
X: x,
Y: y,
}
if compress {
return pub.SerializeCompressed()
}
return pub.SerializeUncompressed()
}
//--------------------------------------------------------------
// CalcHash returns the hash of data using hasher.
func CalcHash(data []byte, hasher hash.Hash) []byte {
hasher.Write(data)
return hasher.Sum(nil)
}
// CalcHash160 returns the ripemd160(sha256(data)).
func CalcHash160(data []byte) []byte {
return CalcHash(CalcHash(data, sha256.New()), ripemd160.New())
}
// CalcHash256 returns the sha256(sha256(data)).
func CalcHash256(data []byte) []byte {
return CalcHash(CalcHash(data, sha256.New()), sha256.New())
}
// CalcSha512 returns the sha512(data).
func CalcSha512(data []byte) []byte {
return CalcHash(data, sha512.New())
}
// ReverseBytes returns the buf in the opposite order
func ReverseBytes(buf []byte) []byte {
var res []byte
if len(buf) == 0 {
return res
}
// Walk till mid-way, swapping bytes from each end:
// b[i] and b[len-i-1]
blen := len(buf)
res = make([]byte, blen)
mid := blen / 2
for left := 0; left <= mid; left++ {
right := blen - left - 1
res[left] = buf[right]
res[right] = buf[left]
}
return res
}