You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

686 lines
18 KiB

package p2p
import (
"bufio"
"fmt"
"io"
"math"
"net"
"runtime/debug"
"sync/atomic"
"time"
wire "github.com/tendermint/go-wire"
cmn "github.com/tendermint/tmlibs/common"
flow "github.com/tendermint/tmlibs/flowrate"
)
const (
numBatchMsgPackets = 10
minReadBufferSize = 1024
minWriteBufferSize = 65536
updateState = 2 * time.Second
pingTimeout = 40 * time.Second
flushThrottle = 100 * time.Millisecond
defaultSendQueueCapacity = 1
defaultSendRate = int64(512000) // 500KB/s
defaultRecvBufferCapacity = 4096
defaultRecvMessageCapacity = 22020096 // 21MB
defaultRecvRate = int64(512000) // 500KB/s
defaultSendTimeout = 10 * time.Second
)
type receiveCbFunc func(chID byte, msgBytes []byte)
type errorCbFunc func(interface{})
/*
Each peer has one `MConnection` (multiplex connection) instance.
__multiplex__ *noun* a system or signal involving simultaneous transmission of
several messages along a single channel of communication.
Each `MConnection` handles message transmission on multiple abstract communication
`Channel`s. Each channel has a globally unique byte id.
The byte id and the relative priorities of each `Channel` are configured upon
initialization of the connection.
There are two methods for sending messages:
func (m MConnection) Send(chID byte, msg interface{}) bool {}
func (m MConnection) TrySend(chID byte, msg interface{}) bool {}
`Send(chID, msg)` is a blocking call that waits until `msg` is successfully queued
for the channel with the given id byte `chID`, or until the request times out.
The message `msg` is serialized using the `tendermint/wire` submodule's
`WriteBinary()` reflection routine.
`TrySend(chID, msg)` is a nonblocking call that returns false if the channel's
queue is full.
Inbound message bytes are handled with an onReceive callback function.
*/
type MConnection struct {
cmn.BaseService
conn net.Conn
bufReader *bufio.Reader
bufWriter *bufio.Writer
sendMonitor *flow.Monitor
recvMonitor *flow.Monitor
send chan struct{}
pong chan struct{}
channels []*Channel
channelsIdx map[byte]*Channel
onReceive receiveCbFunc
onError errorCbFunc
errored uint32
config *MConnConfig
quit chan struct{}
flushTimer *cmn.ThrottleTimer // flush writes as necessary but throttled.
pingTimer *cmn.RepeatTimer // send pings periodically
chStatsTimer *cmn.RepeatTimer // update channel stats periodically
LocalAddress *NetAddress
RemoteAddress *NetAddress
}
// MConnConfig is a MConnection configuration.
type MConnConfig struct {
SendRate int64 `mapstructure:"send_rate"`
RecvRate int64 `mapstructure:"recv_rate"`
}
// DefaultMConnConfig returns the default config.
func DefaultMConnConfig() *MConnConfig {
return &MConnConfig{
SendRate: defaultSendRate,
RecvRate: defaultRecvRate,
}
}
// NewMConnection wraps net.Conn and creates multiplex connection
func NewMConnection(conn net.Conn, chDescs []*ChannelDescriptor, onReceive receiveCbFunc, onError errorCbFunc) *MConnection {
return NewMConnectionWithConfig(
conn,
chDescs,
onReceive,
onError,
DefaultMConnConfig())
}
// NewMConnectionWithConfig wraps net.Conn and creates multiplex connection with a config
func NewMConnectionWithConfig(conn net.Conn, chDescs []*ChannelDescriptor, onReceive receiveCbFunc, onError errorCbFunc, config *MConnConfig) *MConnection {
mconn := &MConnection{
conn: conn,
bufReader: bufio.NewReaderSize(conn, minReadBufferSize),
bufWriter: bufio.NewWriterSize(conn, minWriteBufferSize),
sendMonitor: flow.New(0, 0),
recvMonitor: flow.New(0, 0),
send: make(chan struct{}, 1),
pong: make(chan struct{}),
onReceive: onReceive,
onError: onError,
config: config,
LocalAddress: NewNetAddress(conn.LocalAddr()),
RemoteAddress: NewNetAddress(conn.RemoteAddr()),
}
// Create channels
var channelsIdx = map[byte]*Channel{}
var channels = []*Channel{}
for _, desc := range chDescs {
descCopy := *desc // copy the desc else unsafe access across connections
channel := newChannel(mconn, &descCopy)
channelsIdx[channel.id] = channel
channels = append(channels, channel)
}
mconn.channels = channels
mconn.channelsIdx = channelsIdx
mconn.BaseService = *cmn.NewBaseService(nil, "MConnection", mconn)
return mconn
}
func (c *MConnection) OnStart() error {
c.BaseService.OnStart()
c.quit = make(chan struct{})
c.flushTimer = cmn.NewThrottleTimer("flush", flushThrottle)
c.pingTimer = cmn.NewRepeatTimer("ping", pingTimeout)
c.chStatsTimer = cmn.NewRepeatTimer("chStats", updateState)
go c.sendRoutine()
go c.recvRoutine()
return nil
}
func (c *MConnection) OnStop() {
c.BaseService.OnStop()
c.flushTimer.Stop()
c.pingTimer.Stop()
c.chStatsTimer.Stop()
if c.quit != nil {
close(c.quit)
}
c.conn.Close()
// We can't close pong safely here because
// recvRoutine may write to it after we've stopped.
// Though it doesn't need to get closed at all,
// we close it @ recvRoutine.
// close(c.pong)
}
func (c *MConnection) String() string {
return fmt.Sprintf("MConn{%v}", c.conn.RemoteAddr())
}
func (c *MConnection) flush() {
c.Logger.Debug("Flush", "conn", c)
err := c.bufWriter.Flush()
if err != nil {
c.Logger.Error("MConnection flush failed", "error", err)
}
}
// Catch panics, usually caused by remote disconnects.
func (c *MConnection) _recover() {
if r := recover(); r != nil {
stack := debug.Stack()
err := cmn.StackError{r, stack}
c.stopForError(err)
}
}
func (c *MConnection) stopForError(r interface{}) {
c.Stop()
if atomic.CompareAndSwapUint32(&c.errored, 0, 1) {
if c.onError != nil {
c.onError(r)
}
}
}
// Queues a message to be sent to channel.
func (c *MConnection) Send(chID byte, msg interface{}) bool {
if !c.IsRunning() {
return false
}
c.Logger.Debug("Send", "channel", chID, "conn", c, "msg", msg) //, "bytes", wire.BinaryBytes(msg))
// Send message to channel.
channel, ok := c.channelsIdx[chID]
if !ok {
c.Logger.Error(cmn.Fmt("Cannot send bytes, unknown channel %X", chID))
return false
}
success := channel.sendBytes(wire.BinaryBytes(msg))
if success {
// Wake up sendRoutine if necessary
select {
case c.send <- struct{}{}:
default:
}
} else {
c.Logger.Error("Send failed", "channel", chID, "conn", c, "msg", msg)
}
return success
}
// Queues a message to be sent to channel.
// Nonblocking, returns true if successful.
func (c *MConnection) TrySend(chID byte, msg interface{}) bool {
if !c.IsRunning() {
return false
}
c.Logger.Debug("TrySend", "channel", chID, "conn", c, "msg", msg)
// Send message to channel.
channel, ok := c.channelsIdx[chID]
if !ok {
c.Logger.Error(cmn.Fmt("Cannot send bytes, unknown channel %X", chID))
return false
}
ok = channel.trySendBytes(wire.BinaryBytes(msg))
if ok {
// Wake up sendRoutine if necessary
select {
case c.send <- struct{}{}:
default:
}
}
return ok
}
// CanSend returns true if you can send more data onto the chID, false
// otherwise. Use only as a heuristic.
func (c *MConnection) CanSend(chID byte) bool {
if !c.IsRunning() {
return false
}
channel, ok := c.channelsIdx[chID]
if !ok {
c.Logger.Error(cmn.Fmt("Unknown channel %X", chID))
return false
}
return channel.canSend()
}
// sendRoutine polls for packets to send from channels.
func (c *MConnection) sendRoutine() {
defer c._recover()
FOR_LOOP:
for {
var n int
var err error
select {
case <-c.flushTimer.Ch:
// NOTE: flushTimer.Set() must be called every time
// something is written to .bufWriter.
c.flush()
case <-c.chStatsTimer.Ch:
for _, channel := range c.channels {
channel.updateStats()
}
case <-c.pingTimer.Ch:
c.Logger.Debug("Send Ping")
wire.WriteByte(packetTypePing, c.bufWriter, &n, &err)
c.sendMonitor.Update(int(n))
c.flush()
case <-c.pong:
c.Logger.Debug("Send Pong")
wire.WriteByte(packetTypePong, c.bufWriter, &n, &err)
c.sendMonitor.Update(int(n))
c.flush()
case <-c.quit:
break FOR_LOOP
case <-c.send:
// Send some msgPackets
eof := c.sendSomeMsgPackets()
if !eof {
// Keep sendRoutine awake.
select {
case c.send <- struct{}{}:
default:
}
}
}
if !c.IsRunning() {
break FOR_LOOP
}
if err != nil {
c.Logger.Error("Connection failed @ sendRoutine", "conn", c, "error", err)
c.stopForError(err)
break FOR_LOOP
}
}
// Cleanup
}
// Returns true if messages from channels were exhausted.
// Blocks in accordance to .sendMonitor throttling.
func (c *MConnection) sendSomeMsgPackets() bool {
// Block until .sendMonitor says we can write.
// Once we're ready we send more than we asked for,
// but amortized it should even out.
c.sendMonitor.Limit(maxMsgPacketTotalSize, atomic.LoadInt64(&c.config.SendRate), true)
// Now send some msgPackets.
for i := 0; i < numBatchMsgPackets; i++ {
if c.sendMsgPacket() {
return true
}
}
return false
}
// Returns true if messages from channels were exhausted.
func (c *MConnection) sendMsgPacket() bool {
// Choose a channel to create a msgPacket from.
// The chosen channel will be the one whose recentlySent/priority is the least.
var leastRatio float32 = math.MaxFloat32
var leastChannel *Channel
for _, channel := range c.channels {
// If nothing to send, skip this channel
if !channel.isSendPending() {
continue
}
// Get ratio, and keep track of lowest ratio.
ratio := float32(channel.recentlySent) / float32(channel.priority)
if ratio < leastRatio {
leastRatio = ratio
leastChannel = channel
}
}
// Nothing to send?
if leastChannel == nil {
return true
} else {
// c.Logger.Info("Found a msgPacket to send")
}
// Make & send a msgPacket from this channel
n, err := leastChannel.writeMsgPacketTo(c.bufWriter)
if err != nil {
c.Logger.Error("Failed to write msgPacket", "error", err)
c.stopForError(err)
return true
}
c.sendMonitor.Update(int(n))
c.flushTimer.Set()
return false
}
// recvRoutine reads msgPackets and reconstructs the message using the channels' "recving" buffer.
// After a whole message has been assembled, it's pushed to onReceive().
// Blocks depending on how the connection is throttled.
func (c *MConnection) recvRoutine() {
defer c._recover()
FOR_LOOP:
for {
// Block until .recvMonitor says we can read.
c.recvMonitor.Limit(maxMsgPacketTotalSize, atomic.LoadInt64(&c.config.RecvRate), true)
/*
// Peek into bufReader for debugging
if numBytes := c.bufReader.Buffered(); numBytes > 0 {
log.Info("Peek connection buffer", "numBytes", numBytes, "bytes", log15.Lazy{func() []byte {
bytes, err := c.bufReader.Peek(MinInt(numBytes, 100))
if err == nil {
return bytes
} else {
log.Warn("Error peeking connection buffer", "error", err)
return nil
}
}})
}
*/
// Read packet type
var n int
var err error
pktType := wire.ReadByte(c.bufReader, &n, &err)
c.recvMonitor.Update(int(n))
if err != nil {
if c.IsRunning() {
c.Logger.Error("Connection failed @ recvRoutine (reading byte)", "conn", c, "error", err)
c.stopForError(err)
}
break FOR_LOOP
}
// Read more depending on packet type.
switch pktType {
case packetTypePing:
// TODO: prevent abuse, as they cause flush()'s.
c.Logger.Debug("Receive Ping")
c.pong <- struct{}{}
case packetTypePong:
// do nothing
c.Logger.Debug("Receive Pong")
case packetTypeMsg:
pkt, n, err := msgPacket{}, int(0), error(nil)
wire.ReadBinaryPtr(&pkt, c.bufReader, maxMsgPacketTotalSize, &n, &err)
c.recvMonitor.Update(int(n))
if err != nil {
if c.IsRunning() {
c.Logger.Error("Connection failed @ recvRoutine", "conn", c, "error", err)
c.stopForError(err)
}
break FOR_LOOP
}
channel, ok := c.channelsIdx[pkt.ChannelID]
if !ok || channel == nil {
cmn.PanicQ(cmn.Fmt("Unknown channel %X", pkt.ChannelID))
}
msgBytes, err := channel.recvMsgPacket(pkt)
if err != nil {
if c.IsRunning() {
c.Logger.Error("Connection failed @ recvRoutine", "conn", c, "error", err)
c.stopForError(err)
}
break FOR_LOOP
}
if msgBytes != nil {
c.Logger.Debug("Received bytes", "chID", pkt.ChannelID, "msgBytes", msgBytes)
c.onReceive(pkt.ChannelID, msgBytes)
}
default:
cmn.PanicSanity(cmn.Fmt("Unknown message type %X", pktType))
}
// TODO: shouldn't this go in the sendRoutine?
// Better to send a ping packet when *we* haven't sent anything for a while.
c.pingTimer.Reset()
}
// Cleanup
close(c.pong)
for _ = range c.pong {
// Drain
}
}
type ConnectionStatus struct {
SendMonitor flow.Status
RecvMonitor flow.Status
Channels []ChannelStatus
}
type ChannelStatus struct {
ID byte
SendQueueCapacity int
SendQueueSize int
Priority int
RecentlySent int64
}
func (c *MConnection) Status() ConnectionStatus {
var status ConnectionStatus
status.SendMonitor = c.sendMonitor.Status()
status.RecvMonitor = c.recvMonitor.Status()
status.Channels = make([]ChannelStatus, len(c.channels))
for i, channel := range c.channels {
status.Channels[i] = ChannelStatus{
ID: channel.id,
SendQueueCapacity: cap(channel.sendQueue),
SendQueueSize: int(channel.sendQueueSize), // TODO use atomic
Priority: channel.priority,
RecentlySent: channel.recentlySent,
}
}
return status
}
//-----------------------------------------------------------------------------
type ChannelDescriptor struct {
ID byte
Priority int
SendQueueCapacity int
RecvBufferCapacity int
RecvMessageCapacity int
}
func (chDesc *ChannelDescriptor) FillDefaults() {
if chDesc.SendQueueCapacity == 0 {
chDesc.SendQueueCapacity = defaultSendQueueCapacity
}
if chDesc.RecvBufferCapacity == 0 {
chDesc.RecvBufferCapacity = defaultRecvBufferCapacity
}
if chDesc.RecvMessageCapacity == 0 {
chDesc.RecvMessageCapacity = defaultRecvMessageCapacity
}
}
// TODO: lowercase.
// NOTE: not goroutine-safe.
type Channel struct {
conn *MConnection
desc *ChannelDescriptor
id byte
sendQueue chan []byte
sendQueueSize int32 // atomic.
recving []byte
sending []byte
priority int
recentlySent int64 // exponential moving average
}
func newChannel(conn *MConnection, desc *ChannelDescriptor) *Channel {
desc.FillDefaults()
if desc.Priority <= 0 {
cmn.PanicSanity("Channel default priority must be a postive integer")
}
return &Channel{
conn: conn,
desc: desc,
id: desc.ID,
sendQueue: make(chan []byte, desc.SendQueueCapacity),
recving: make([]byte, 0, desc.RecvBufferCapacity),
priority: desc.Priority,
}
}
// Queues message to send to this channel.
// Goroutine-safe
// Times out (and returns false) after defaultSendTimeout
func (ch *Channel) sendBytes(bytes []byte) bool {
select {
case ch.sendQueue <- bytes:
atomic.AddInt32(&ch.sendQueueSize, 1)
return true
case <-time.After(defaultSendTimeout):
return false
}
}
// Queues message to send to this channel.
// Nonblocking, returns true if successful.
// Goroutine-safe
func (ch *Channel) trySendBytes(bytes []byte) bool {
select {
case ch.sendQueue <- bytes:
atomic.AddInt32(&ch.sendQueueSize, 1)
return true
default:
return false
}
}
// Goroutine-safe
func (ch *Channel) loadSendQueueSize() (size int) {
return int(atomic.LoadInt32(&ch.sendQueueSize))
}
// Goroutine-safe
// Use only as a heuristic.
func (ch *Channel) canSend() bool {
return ch.loadSendQueueSize() < defaultSendQueueCapacity
}
// Returns true if any msgPackets are pending to be sent.
// Call before calling nextMsgPacket()
// Goroutine-safe
func (ch *Channel) isSendPending() bool {
if len(ch.sending) == 0 {
if len(ch.sendQueue) == 0 {
return false
}
ch.sending = <-ch.sendQueue
}
return true
}
// Creates a new msgPacket to send.
// Not goroutine-safe
func (ch *Channel) nextMsgPacket() msgPacket {
packet := msgPacket{}
packet.ChannelID = byte(ch.id)
packet.Bytes = ch.sending[:cmn.MinInt(maxMsgPacketPayloadSize, len(ch.sending))]
if len(ch.sending) <= maxMsgPacketPayloadSize {
packet.EOF = byte(0x01)
ch.sending = nil
atomic.AddInt32(&ch.sendQueueSize, -1) // decrement sendQueueSize
} else {
packet.EOF = byte(0x00)
ch.sending = ch.sending[cmn.MinInt(maxMsgPacketPayloadSize, len(ch.sending)):]
}
return packet
}
// Writes next msgPacket to w.
// Not goroutine-safe
func (ch *Channel) writeMsgPacketTo(w io.Writer) (n int, err error) {
packet := ch.nextMsgPacket()
// log.Debug("Write Msg Packet", "conn", ch.conn, "packet", packet)
wire.WriteByte(packetTypeMsg, w, &n, &err)
wire.WriteBinary(packet, w, &n, &err)
if err == nil {
ch.recentlySent += int64(n)
}
return
}
// Handles incoming msgPackets. Returns a msg bytes if msg is complete.
// Not goroutine-safe
func (ch *Channel) recvMsgPacket(packet msgPacket) ([]byte, error) {
// log.Debug("Read Msg Packet", "conn", ch.conn, "packet", packet)
if ch.desc.RecvMessageCapacity < len(ch.recving)+len(packet.Bytes) {
return nil, wire.ErrBinaryReadOverflow
}
ch.recving = append(ch.recving, packet.Bytes...)
if packet.EOF == byte(0x01) {
msgBytes := ch.recving
// clear the slice without re-allocating.
// http://stackoverflow.com/questions/16971741/how-do-you-clear-a-slice-in-go
// suggests this could be a memory leak, but we might as well keep the memory for the channel until it closes,
// at which point the recving slice stops being used and should be garbage collected
ch.recving = ch.recving[:0] // make([]byte, 0, ch.desc.RecvBufferCapacity)
return msgBytes, nil
}
return nil, nil
}
// Call this periodically to update stats for throttling purposes.
// Not goroutine-safe
func (ch *Channel) updateStats() {
// Exponential decay of stats.
// TODO: optimize.
ch.recentlySent = int64(float64(ch.recentlySent) * 0.8)
}
//-----------------------------------------------------------------------------
const (
maxMsgPacketPayloadSize = 1024
maxMsgPacketOverheadSize = 10 // It's actually lower but good enough
maxMsgPacketTotalSize = maxMsgPacketPayloadSize + maxMsgPacketOverheadSize
packetTypePing = byte(0x01)
packetTypePong = byte(0x02)
packetTypeMsg = byte(0x03)
)
// Messages in channels are chopped into smaller msgPackets for multiplexing.
type msgPacket struct {
ChannelID byte
EOF byte // 1 means message ends here.
Bytes []byte
}
func (p msgPacket) String() string {
return fmt.Sprintf("MsgPacket{%X:%X T:%X}", p.ChannelID, p.Bytes, p.EOF)
}