You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

341 lines
8.7 KiB

package mempool
import (
"errors"
"fmt"
"math"
"time"
cfg "github.com/tendermint/tendermint/config"
"github.com/tendermint/tendermint/libs/clist"
"github.com/tendermint/tendermint/libs/log"
tmsync "github.com/tendermint/tendermint/libs/sync"
"github.com/tendermint/tendermint/p2p"
protomem "github.com/tendermint/tendermint/proto/tendermint/mempool"
"github.com/tendermint/tendermint/types"
)
const (
MempoolChannel = byte(0x30)
peerCatchupSleepIntervalMS = 100 // If peer is behind, sleep this amount
// UnknownPeerID is the peer ID to use when running CheckTx when there is
// no peer (e.g. RPC)
UnknownPeerID uint16 = 0
maxActiveIDs = math.MaxUint16
)
// Reactor handles mempool tx broadcasting amongst peers.
// It maintains a map from peer ID to counter, to prevent gossiping txs to the
// peers you received it from.
type Reactor struct {
p2p.BaseReactor
config *cfg.MempoolConfig
mempool *CListMempool
ids *mempoolIDs
}
type mempoolIDs struct {
mtx tmsync.RWMutex
peerMap map[p2p.ID]uint16
nextID uint16 // assumes that a node will never have over 65536 active peers
activeIDs map[uint16]struct{} // used to check if a given peerID key is used, the value doesn't matter
}
// Reserve searches for the next unused ID and assigns it to the
// peer.
func (ids *mempoolIDs) ReserveForPeer(peer p2p.Peer) {
ids.mtx.Lock()
defer ids.mtx.Unlock()
curID := ids.nextPeerID()
ids.peerMap[peer.ID()] = curID
ids.activeIDs[curID] = struct{}{}
}
// nextPeerID returns the next unused peer ID to use.
// This assumes that ids's mutex is already locked.
func (ids *mempoolIDs) nextPeerID() uint16 {
if len(ids.activeIDs) == maxActiveIDs {
panic(fmt.Sprintf("node has maximum %d active IDs and wanted to get one more", maxActiveIDs))
}
_, idExists := ids.activeIDs[ids.nextID]
for idExists {
ids.nextID++
_, idExists = ids.activeIDs[ids.nextID]
}
curID := ids.nextID
ids.nextID++
return curID
}
// Reclaim returns the ID reserved for the peer back to unused pool.
func (ids *mempoolIDs) Reclaim(peer p2p.Peer) {
ids.mtx.Lock()
defer ids.mtx.Unlock()
removedID, ok := ids.peerMap[peer.ID()]
if ok {
delete(ids.activeIDs, removedID)
delete(ids.peerMap, peer.ID())
}
}
// GetForPeer returns an ID reserved for the peer.
func (ids *mempoolIDs) GetForPeer(peer p2p.Peer) uint16 {
ids.mtx.RLock()
defer ids.mtx.RUnlock()
return ids.peerMap[peer.ID()]
}
func newMempoolIDs() *mempoolIDs {
return &mempoolIDs{
peerMap: make(map[p2p.ID]uint16),
activeIDs: map[uint16]struct{}{0: {}},
nextID: 1, // reserve unknownPeerID(0) for mempoolReactor.BroadcastTx
}
}
// NewReactor returns a new Reactor with the given config and mempool.
func NewReactor(config *cfg.MempoolConfig, mempool *CListMempool) *Reactor {
memR := &Reactor{
config: config,
mempool: mempool,
ids: newMempoolIDs(),
}
memR.BaseReactor = *p2p.NewBaseReactor("Mempool", memR)
return memR
}
// InitPeer implements Reactor by creating a state for the peer.
func (memR *Reactor) InitPeer(peer p2p.Peer) p2p.Peer {
memR.ids.ReserveForPeer(peer)
return peer
}
// SetLogger sets the Logger on the reactor and the underlying mempool.
func (memR *Reactor) SetLogger(l log.Logger) {
memR.Logger = l
memR.mempool.SetLogger(l)
}
// OnStart implements p2p.BaseReactor.
func (memR *Reactor) OnStart() error {
if !memR.config.Broadcast {
memR.Logger.Info("Tx broadcasting is disabled")
}
return nil
}
// GetChannels implements Reactor by returning the list of channels for this
// reactor.
func (memR *Reactor) GetChannels() []*p2p.ChannelDescriptor {
maxMsgSize := memR.config.MaxBatchBytes
return []*p2p.ChannelDescriptor{
{
ID: MempoolChannel,
Priority: 5,
RecvMessageCapacity: maxMsgSize,
},
}
}
// AddPeer implements Reactor.
// It starts a broadcast routine ensuring all txs are forwarded to the given peer.
func (memR *Reactor) AddPeer(peer p2p.Peer) {
if memR.config.Broadcast {
go memR.broadcastTxRoutine(peer)
}
}
// RemovePeer implements Reactor.
func (memR *Reactor) RemovePeer(peer p2p.Peer, reason interface{}) {
memR.ids.Reclaim(peer)
// broadcast routine checks if peer is gone and returns
}
// Receive implements Reactor.
// It adds any received transactions to the mempool.
func (memR *Reactor) Receive(chID byte, src p2p.Peer, msgBytes []byte) {
msg, err := memR.decodeMsg(msgBytes)
if err != nil {
memR.Logger.Error("Error decoding message", "src", src, "chId", chID, "err", err)
memR.Switch.StopPeerForError(src, err)
return
}
memR.Logger.Debug("Receive", "src", src, "chId", chID, "msg", msg)
txInfo := TxInfo{SenderID: memR.ids.GetForPeer(src)}
if src != nil {
txInfo.SenderP2PID = src.ID()
}
for _, tx := range msg.Txs {
err = memR.mempool.CheckTx(tx, nil, txInfo)
if err != nil {
memR.Logger.Info("Could not check tx", "tx", txID(tx), "err", err)
}
}
// broadcasting happens from go routines per peer
}
// PeerState describes the state of a peer.
type PeerState interface {
GetHeight() int64
}
// Send new mempool txs to peer.
func (memR *Reactor) broadcastTxRoutine(peer p2p.Peer) {
peerID := memR.ids.GetForPeer(peer)
var next *clist.CElement
for {
// In case of both next.NextWaitChan() and peer.Quit() are variable at the same time
if !memR.IsRunning() || !peer.IsRunning() {
return
}
// This happens because the CElement we were looking at got garbage
// collected (removed). That is, .NextWait() returned nil. Go ahead and
// start from the beginning.
if next == nil {
select {
case <-memR.mempool.TxsWaitChan(): // Wait until a tx is available
if next = memR.mempool.TxsFront(); next == nil {
continue
}
case <-peer.Quit():
return
case <-memR.Quit():
return
}
}
// Make sure the peer is up to date.
peerState, ok := peer.Get(types.PeerStateKey).(PeerState)
if !ok {
// Peer does not have a state yet. We set it in the consensus reactor, but
// when we add peer in Switch, the order we call reactors#AddPeer is
// different every time due to us using a map. Sometimes other reactors
// will be initialized before the consensus reactor. We should wait a few
// milliseconds and retry.
time.Sleep(peerCatchupSleepIntervalMS * time.Millisecond)
continue
}
// Allow for a lag of 1 block.
memTx := next.Value.(*mempoolTx)
if peerState.GetHeight() < memTx.Height()-1 {
time.Sleep(peerCatchupSleepIntervalMS * time.Millisecond)
continue
}
txs := memR.txs(next, peerID, peerState.GetHeight()) // WARNING: mutates next!
// send txs
if len(txs) > 0 {
msg := protomem.Message{
Sum: &protomem.Message_Txs{
Txs: &protomem.Txs{Txs: txs},
},
}
bz, err := msg.Marshal()
if err != nil {
panic(err)
}
memR.Logger.Debug("Sending N txs to peer", "N", len(txs), "peer", peer)
success := peer.Send(MempoolChannel, bz)
if !success {
time.Sleep(peerCatchupSleepIntervalMS * time.Millisecond)
continue
}
}
select {
case <-next.NextWaitChan():
// see the start of the for loop for nil check
next = next.Next()
case <-peer.Quit():
return
case <-memR.Quit():
return
}
}
}
// txs iterates over the transaction list and builds a batch of txs. next is
// included.
// WARNING: mutates next!
func (memR *Reactor) txs(next *clist.CElement, peerID uint16, peerHeight int64) [][]byte {
batch := make([][]byte, 0)
for {
memTx := next.Value.(*mempoolTx)
if _, ok := memTx.senders.Load(peerID); !ok {
// If current batch + this tx size is greater than max => return.
batchMsg := protomem.Message{
Sum: &protomem.Message_Txs{
Txs: &protomem.Txs{Txs: append(batch, memTx.tx)},
},
}
if batchMsg.Size() > memR.config.MaxBatchBytes {
return batch
}
batch = append(batch, memTx.tx)
}
n := next.Next()
if n == nil {
return batch
}
next = n
}
}
//-----------------------------------------------------------------------------
// Messages
func (memR *Reactor) decodeMsg(bz []byte) (TxsMessage, error) {
msg := protomem.Message{}
err := msg.Unmarshal(bz)
if err != nil {
return TxsMessage{}, err
}
var message TxsMessage
if i, ok := msg.Sum.(*protomem.Message_Txs); ok {
txs := i.Txs.GetTxs()
if len(txs) == 0 {
return message, errors.New("empty TxsMessage")
}
decoded := make([]types.Tx, len(txs))
for j, tx := range txs {
decoded[j] = types.Tx(tx)
}
message = TxsMessage{
Txs: decoded,
}
return message, nil
}
return message, fmt.Errorf("msg type: %T is not supported", msg)
}
//-------------------------------------
// TxsMessage is a Message containing transactions.
type TxsMessage struct {
Txs []types.Tx
}
// String returns a string representation of the TxsMessage.
func (m *TxsMessage) String() string {
return fmt.Sprintf("[TxsMessage %v]", m.Txs)
}