package mempool
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"time"
|
|
|
|
cfg "github.com/tendermint/tendermint/config"
|
|
"github.com/tendermint/tendermint/libs/clist"
|
|
"github.com/tendermint/tendermint/libs/log"
|
|
tmsync "github.com/tendermint/tendermint/libs/sync"
|
|
"github.com/tendermint/tendermint/p2p"
|
|
protomem "github.com/tendermint/tendermint/proto/tendermint/mempool"
|
|
"github.com/tendermint/tendermint/types"
|
|
)
|
|
|
|
const (
|
|
MempoolChannel = byte(0x30)
|
|
|
|
protoOverheadForTxMessage = 4
|
|
|
|
peerCatchupSleepIntervalMS = 100 // If peer is behind, sleep this amount
|
|
|
|
// UnknownPeerID is the peer ID to use when running CheckTx when there is
|
|
// no peer (e.g. RPC)
|
|
UnknownPeerID uint16 = 0
|
|
|
|
maxActiveIDs = math.MaxUint16
|
|
)
|
|
|
|
// Reactor handles mempool tx broadcasting amongst peers.
|
|
// It maintains a map from peer ID to counter, to prevent gossiping txs to the
|
|
// peers you received it from.
|
|
type Reactor struct {
|
|
p2p.BaseReactor
|
|
config *cfg.MempoolConfig
|
|
mempool *CListMempool
|
|
ids *mempoolIDs
|
|
}
|
|
|
|
type mempoolIDs struct {
|
|
mtx tmsync.RWMutex
|
|
peerMap map[p2p.ID]uint16
|
|
nextID uint16 // assumes that a node will never have over 65536 active peers
|
|
activeIDs map[uint16]struct{} // used to check if a given peerID key is used, the value doesn't matter
|
|
}
|
|
|
|
// Reserve searches for the next unused ID and assigns it to the
|
|
// peer.
|
|
func (ids *mempoolIDs) ReserveForPeer(peer p2p.Peer) {
|
|
ids.mtx.Lock()
|
|
defer ids.mtx.Unlock()
|
|
|
|
curID := ids.nextPeerID()
|
|
ids.peerMap[peer.ID()] = curID
|
|
ids.activeIDs[curID] = struct{}{}
|
|
}
|
|
|
|
// nextPeerID returns the next unused peer ID to use.
|
|
// This assumes that ids's mutex is already locked.
|
|
func (ids *mempoolIDs) nextPeerID() uint16 {
|
|
if len(ids.activeIDs) == maxActiveIDs {
|
|
panic(fmt.Sprintf("node has maximum %d active IDs and wanted to get one more", maxActiveIDs))
|
|
}
|
|
|
|
_, idExists := ids.activeIDs[ids.nextID]
|
|
for idExists {
|
|
ids.nextID++
|
|
_, idExists = ids.activeIDs[ids.nextID]
|
|
}
|
|
curID := ids.nextID
|
|
ids.nextID++
|
|
return curID
|
|
}
|
|
|
|
// Reclaim returns the ID reserved for the peer back to unused pool.
|
|
func (ids *mempoolIDs) Reclaim(peer p2p.Peer) {
|
|
ids.mtx.Lock()
|
|
defer ids.mtx.Unlock()
|
|
|
|
removedID, ok := ids.peerMap[peer.ID()]
|
|
if ok {
|
|
delete(ids.activeIDs, removedID)
|
|
delete(ids.peerMap, peer.ID())
|
|
}
|
|
}
|
|
|
|
// GetForPeer returns an ID reserved for the peer.
|
|
func (ids *mempoolIDs) GetForPeer(peer p2p.Peer) uint16 {
|
|
ids.mtx.RLock()
|
|
defer ids.mtx.RUnlock()
|
|
|
|
return ids.peerMap[peer.ID()]
|
|
}
|
|
|
|
func newMempoolIDs() *mempoolIDs {
|
|
return &mempoolIDs{
|
|
peerMap: make(map[p2p.ID]uint16),
|
|
activeIDs: map[uint16]struct{}{0: {}},
|
|
nextID: 1, // reserve unknownPeerID(0) for mempoolReactor.BroadcastTx
|
|
}
|
|
}
|
|
|
|
// NewReactor returns a new Reactor with the given config and mempool.
|
|
func NewReactor(config *cfg.MempoolConfig, mempool *CListMempool) *Reactor {
|
|
memR := &Reactor{
|
|
config: config,
|
|
mempool: mempool,
|
|
ids: newMempoolIDs(),
|
|
}
|
|
memR.BaseReactor = *p2p.NewBaseReactor("Mempool", memR)
|
|
return memR
|
|
}
|
|
|
|
// InitPeer implements Reactor by creating a state for the peer.
|
|
func (memR *Reactor) InitPeer(peer p2p.Peer) p2p.Peer {
|
|
memR.ids.ReserveForPeer(peer)
|
|
return peer
|
|
}
|
|
|
|
// SetLogger sets the Logger on the reactor and the underlying mempool.
|
|
func (memR *Reactor) SetLogger(l log.Logger) {
|
|
memR.Logger = l
|
|
memR.mempool.SetLogger(l)
|
|
}
|
|
|
|
// OnStart implements p2p.BaseReactor.
|
|
func (memR *Reactor) OnStart() error {
|
|
if !memR.config.Broadcast {
|
|
memR.Logger.Info("Tx broadcasting is disabled")
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// GetChannels implements Reactor.
|
|
// It returns the list of channels for this reactor.
|
|
func (memR *Reactor) GetChannels() []*p2p.ChannelDescriptor {
|
|
maxMsgSize := calcMaxMsgSize(memR.config.MaxTxBytes)
|
|
return []*p2p.ChannelDescriptor{
|
|
{
|
|
ID: MempoolChannel,
|
|
Priority: 5,
|
|
RecvMessageCapacity: maxMsgSize,
|
|
},
|
|
}
|
|
}
|
|
|
|
// AddPeer implements Reactor.
|
|
// It starts a broadcast routine ensuring all txs are forwarded to the given peer.
|
|
func (memR *Reactor) AddPeer(peer p2p.Peer) {
|
|
if memR.config.Broadcast {
|
|
go memR.broadcastTxRoutine(peer)
|
|
}
|
|
}
|
|
|
|
// RemovePeer implements Reactor.
|
|
func (memR *Reactor) RemovePeer(peer p2p.Peer, reason interface{}) {
|
|
memR.ids.Reclaim(peer)
|
|
// broadcast routine checks if peer is gone and returns
|
|
}
|
|
|
|
// Receive implements Reactor.
|
|
// It adds any received transactions to the mempool.
|
|
func (memR *Reactor) Receive(chID byte, src p2p.Peer, msgBytes []byte) {
|
|
msg, err := memR.decodeMsg(msgBytes)
|
|
if err != nil {
|
|
memR.Logger.Error("Error decoding message", "src", src, "chId", chID, "msg", msg, "err", err, "bytes", msgBytes)
|
|
memR.Switch.StopPeerForError(src, err)
|
|
return
|
|
}
|
|
memR.Logger.Debug("Receive", "src", src, "chId", chID, "msg", msg)
|
|
|
|
txInfo := TxInfo{SenderID: memR.ids.GetForPeer(src)}
|
|
if src != nil {
|
|
txInfo.SenderP2PID = src.ID()
|
|
}
|
|
err = memR.mempool.CheckTx(msg.Tx, nil, txInfo)
|
|
if err != nil {
|
|
memR.Logger.Info("Could not check tx", "tx", txID(msg.Tx), "err", err)
|
|
}
|
|
// broadcasting happens from go routines per peer
|
|
}
|
|
|
|
// PeerState describes the state of a peer.
|
|
type PeerState interface {
|
|
GetHeight() int64
|
|
}
|
|
|
|
// Send new mempool txs to peer.
|
|
func (memR *Reactor) broadcastTxRoutine(peer p2p.Peer) {
|
|
peerID := memR.ids.GetForPeer(peer)
|
|
var next *clist.CElement
|
|
for {
|
|
// In case of both next.NextWaitChan() and peer.Quit() are variable at the same time
|
|
if !memR.IsRunning() || !peer.IsRunning() {
|
|
return
|
|
}
|
|
// This happens because the CElement we were looking at got garbage
|
|
// collected (removed). That is, .NextWait() returned nil. Go ahead and
|
|
// start from the beginning.
|
|
if next == nil {
|
|
select {
|
|
case <-memR.mempool.TxsWaitChan(): // Wait until a tx is available
|
|
if next = memR.mempool.TxsFront(); next == nil {
|
|
continue
|
|
}
|
|
case <-peer.Quit():
|
|
return
|
|
case <-memR.Quit():
|
|
return
|
|
}
|
|
}
|
|
|
|
memTx := next.Value.(*mempoolTx)
|
|
|
|
// make sure the peer is up to date
|
|
peerState, ok := peer.Get(types.PeerStateKey).(PeerState)
|
|
if !ok {
|
|
// Peer does not have a state yet. We set it in the consensus reactor, but
|
|
// when we add peer in Switch, the order we call reactors#AddPeer is
|
|
// different every time due to us using a map. Sometimes other reactors
|
|
// will be initialized before the consensus reactor. We should wait a few
|
|
// milliseconds and retry.
|
|
time.Sleep(peerCatchupSleepIntervalMS * time.Millisecond)
|
|
continue
|
|
}
|
|
if peerState.GetHeight() < memTx.Height()-1 { // Allow for a lag of 1 block
|
|
time.Sleep(peerCatchupSleepIntervalMS * time.Millisecond)
|
|
continue
|
|
}
|
|
|
|
// ensure peer hasn't already sent us this tx
|
|
if _, ok := memTx.senders.Load(peerID); !ok {
|
|
msg := protomem.Message{
|
|
Sum: &protomem.Message_Tx{
|
|
Tx: &protomem.Tx{
|
|
Tx: []byte(memTx.tx),
|
|
},
|
|
},
|
|
}
|
|
|
|
bz, err := msg.Marshal()
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
success := peer.Send(MempoolChannel, bz)
|
|
if !success {
|
|
time.Sleep(peerCatchupSleepIntervalMS * time.Millisecond)
|
|
continue
|
|
}
|
|
}
|
|
|
|
select {
|
|
case <-next.NextWaitChan():
|
|
// see the start of the for loop for nil check
|
|
next = next.Next()
|
|
case <-peer.Quit():
|
|
return
|
|
case <-memR.Quit():
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Messages
|
|
|
|
func (memR *Reactor) decodeMsg(bz []byte) (TxMessage, error) {
|
|
msg := protomem.Message{}
|
|
err := msg.Unmarshal(bz)
|
|
if err != nil {
|
|
return TxMessage{}, err
|
|
}
|
|
|
|
var message TxMessage
|
|
|
|
if i, ok := msg.Sum.(*protomem.Message_Tx); ok {
|
|
message = TxMessage{
|
|
Tx: types.Tx(i.Tx.GetTx()),
|
|
}
|
|
return message, nil
|
|
}
|
|
return message, fmt.Errorf("msg type: %T is not supported", msg)
|
|
}
|
|
|
|
//-------------------------------------
|
|
|
|
// TxMessage is a Message containing a transaction.
|
|
type TxMessage struct {
|
|
Tx types.Tx
|
|
}
|
|
|
|
// String returns a string representation of the TxMessage.
|
|
func (m *TxMessage) String() string {
|
|
return fmt.Sprintf("[TxMessage %v]", m.Tx)
|
|
}
|
|
|
|
// calcMaxMsgSize returns the max size of TxMessage
|
|
// account for proto overhead of bytesValue
|
|
func calcMaxMsgSize(maxTxSize int) int {
|
|
return maxTxSize + protoOverheadForTxMessage
|
|
}
|