You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

143 lines
4.8 KiB

#lang ivy1.7
include order # this is a file from the standard library (`ivy/ivy/include/1.7/order.ivy`)
isolate round = {
type this
individual minus_one:this
relation succ(R1:round, R2:round)
action incr(i:this) returns (j:this)
specification {
# to simplify verification, we treat rounds as an abstract totally ordered set with a successor relation.
instantiate totally_ordered(this)
property minus_one < 0
property succ(X,Z) -> (X < Z & ~(X < Y & Y < Z))
after incr {
ensure succ(i,j)
}
}
implementation {
# here we prove that the abstraction is sound.
interpret this -> int # rounds are integers in the Tendermint specification.
definition minus_one = 0-1
definition succ(R1,R2) = R2 = R1 + 1
implement incr {
j := i+1;
}
}
}
instance node : iterable # nodes are a set with an order, that can be iterated over (see order.ivy in the standard library)
relation well_behaved(N:node) # whether a node is well-behaved or not. NOTE: Used only in the proof and the Byzantine model; Nodes do know know who is well-behaved and who is not.
isolate proposers = {
# each round has a unique proposer in Tendermint. In order to avoid a
# function from round to node (which makes verification more difficult), we
# abstract over this function using a relation.
relation is_proposer(N:node, R:round)
export action get_proposer(r:round) returns (n:node)
specification {
property is_proposer(N1,R) & is_proposer(N2,R) -> N1 = N2
after get_proposer {
ensure is_proposer(n,r);
}
}
implementation {
function f(R:round):node
definition f(r:round) = <<<r % `node.size`>>>
definition is_proposer(N,R) = N = f(R)
implement get_proposer {
n := f(r);
}
}
}
isolate value = { # the type of values
type this
relation valid(V:value)
individual nil:value
specification {
property ~valid(nil)
}
implementation {
interpret value -> bv[2]
definition nil = <<< -1 >>> # let's say nil is -1
definition valid(V) = V ~= nil
}
}
object nset = { # the type of node sets
type this # a set of N=3f+i nodes for 0<i<=3
relation member(N:node, S:nset) # set-membership relation
relation is_quorum(S:nset) # intent: sets of cardinality at least 2f+i+1
relation is_blocking(S:nset) # intent: at least f+1 nodes
export action insert(s:nset, n:node) returns (t:nset)
export action empty returns (s:nset)
implementation {
# NOTE: this is not checked at all by Ivy; it is however useful to generate C++ code and run it for debugging purposes
<<< header
#include <set>
#include <exception>
namespace hash_space {
template <typename T>
class hash<std::set<T> > {
public:
size_t operator()(const std::set<T> &s) const {
hash<T> h;
size_t res = 0;
for (const T &e : s)
res += h(e);
return res;
}
};
}
>>>
interpret nset -> <<< std::set<`node`> >>>
definition member(n:node, s:nset) = <<< `s`.find(`n`) != `s`.end() >>>
definition is_quorum(s:nset) = <<< 3*`s`.size() > 2*`node.size` >>>
definition is_blocking(s:nset) = <<< 3*`s`.size() > `node.size` >>>
implement empty {
<<<
>>>
}
implement insert {
<<<
`t` = `s`;
`t`.insert(`n`);
>>>
}
<<< encode `nset`
std::ostream &operator <<(std::ostream &s, const `nset` &a) {
s << "{";
for (auto iter = a.begin(); iter != a.end(); iter++) {
if (iter != a.begin()) s << ", ";
s << *iter;
}
s << "}";
return s;
}
template <>
`nset` _arg<`nset`>(std::vector<ivy_value> &args, unsigned idx, long long bound) {
throw std::invalid_argument("Not implemented"); // no syntax for nset values in the REPL
}
>>>
}
}
object classic_bft = {
relation quorum_intersection
private {
definition [quorum_intersection_def] quorum_intersection = forall Q1,Q2. exists N. well_behaved(N) & nset.member(N, Q1) & nset.member(N, Q2) # every two quorums have a well-behaved node in common
}
}
trusted isolate accountable_bft = {
# this is our baseline assumption about quorums:
private {
property [max_2f_byzantine] exists N . well_behaved(N) & nset.member(N,Q) # every quorum has a well-behaved member
}
}