package secp256k1_test import ( "encoding/hex" "math/big" "testing" "github.com/btcsuite/btcutil/base58" "github.com/stretchr/testify/assert" "github.com/stretchr/testify/require" "github.com/tendermint/tendermint/crypto" "github.com/tendermint/tendermint/crypto/secp256k1" underlyingSecp256k1 "github.com/btcsuite/btcd/btcec" ) type keyData struct { priv string pub string addr string } var secpDataTable = []keyData{ { priv: "a96e62ed3955e65be32703f12d87b6b5cf26039ecfa948dc5107a495418e5330", pub: "02950e1cdfcb133d6024109fd489f734eeb4502418e538c28481f22bce276f248c", addr: "1CKZ9Nx4zgds8tU7nJHotKSDr4a9bYJCa3", }, } func TestPubKeySecp256k1Address(t *testing.T) { for _, d := range secpDataTable { privB, _ := hex.DecodeString(d.priv) pubB, _ := hex.DecodeString(d.pub) addrBbz, _, _ := base58.CheckDecode(d.addr) addrB := crypto.Address(addrBbz) priv := secp256k1.PrivKey(privB) pubKey := priv.PubKey() pubT, _ := pubKey.(secp256k1.PubKey) pub := pubT addr := pubKey.Address() assert.Equal(t, pub, secp256k1.PubKey(pubB), "Expected pub keys to match") assert.Equal(t, addr, addrB, "Expected addresses to match") } } func TestSignAndValidateSecp256k1(t *testing.T) { privKey := secp256k1.GenPrivKey() pubKey := privKey.PubKey() msg := crypto.CRandBytes(128) sig, err := privKey.Sign(msg) require.Nil(t, err) assert.True(t, pubKey.VerifySignature(msg, sig)) // Mutate the signature, just one bit. sig[3] ^= byte(0x01) assert.False(t, pubKey.VerifySignature(msg, sig)) } // This test is intended to justify the removal of calls to the underlying library // in creating the privkey. func TestSecp256k1LoadPrivkeyAndSerializeIsIdentity(t *testing.T) { numberOfTests := 256 for i := 0; i < numberOfTests; i++ { // Seed the test case with some random bytes privKeyBytes := [32]byte{} copy(privKeyBytes[:], crypto.CRandBytes(32)) // This function creates a private and public key in the underlying libraries format. // The private key is basically calling new(big.Int).SetBytes(pk), which removes leading zero bytes priv, _ := underlyingSecp256k1.PrivKeyFromBytes(underlyingSecp256k1.S256(), privKeyBytes[:]) // this takes the bytes returned by `(big int).Bytes()`, and if the length is less than 32 bytes, // pads the bytes from the left with zero bytes. Therefore these two functions composed // result in the identity function on privKeyBytes, hence the following equality check // always returning true. serializedBytes := priv.Serialize() require.Equal(t, privKeyBytes[:], serializedBytes) } } func TestGenPrivKeySecp256k1(t *testing.T) { // curve oder N N := underlyingSecp256k1.S256().N tests := []struct { name string secret []byte }{ {"empty secret", []byte{}}, { "some long secret", []byte("We live in a society exquisitely dependent on science and technology, " + "in which hardly anyone knows anything about science and technology."), }, {"another seed used in cosmos tests #1", []byte{0}}, {"another seed used in cosmos tests #2", []byte("mySecret")}, {"another seed used in cosmos tests #3", []byte("")}, } for _, tt := range tests { tt := tt t.Run(tt.name, func(t *testing.T) { gotPrivKey := secp256k1.GenPrivKeySecp256k1(tt.secret) require.NotNil(t, gotPrivKey) // interpret as a big.Int and make sure it is a valid field element: fe := new(big.Int).SetBytes(gotPrivKey[:]) require.True(t, fe.Cmp(N) < 0) require.True(t, fe.Sign() > 0) }) } }