// Copyright 2017 Tendermint. All rights reserved. // Use of this source code is governed by Apache 2 LICENSE that can be found in the LICENSE file. package trust import ( "math" "sync" "time" cmn "github.com/tendermint/tendermint/libs/common" ) //--------------------------------------------------------------------------------------- const ( // The weight applied to the derivative when current behavior is >= previous behavior defaultDerivativeGamma1 = 0 // The weight applied to the derivative when current behavior is less than previous behavior defaultDerivativeGamma2 = 1.0 // The weight applied to history data values when calculating the history value defaultHistoryDataWeight = 0.8 ) // MetricHistoryJSON - history data necessary to save the trust metric type MetricHistoryJSON struct { NumIntervals int `json:"intervals"` History []float64 `json:"history"` } // Metric - keeps track of peer reliability // See tendermint/docs/architecture/adr-006-trust-metric.md for details type Metric struct { cmn.BaseService // Mutex that protects the metric from concurrent access mtx sync.Mutex // Determines the percentage given to current behavior proportionalWeight float64 // Determines the percentage given to prior behavior integralWeight float64 // Count of how many time intervals this metric has been tracking numIntervals int // Size of the time interval window for this trust metric maxIntervals int // The time duration for a single time interval intervalLen time.Duration // Stores the trust history data for this metric history []float64 // Weights applied to the history data when calculating the history value historyWeights []float64 // The sum of the history weights used when calculating the history value historyWeightSum float64 // The current number of history data elements historySize int // The maximum number of history data elements historyMaxSize int // The calculated history value for the current time interval historyValue float64 // The number of recorded good and bad events for the current time interval bad, good float64 // While true, history data is not modified paused bool // Used during testing in order to control the passing of time intervals testTicker MetricTicker } // NewMetric returns a trust metric with the default configuration. // Use Start to begin tracking the quality of peer behavior over time func NewMetric() *Metric { return NewMetricWithConfig(DefaultConfig()) } // NewMetricWithConfig returns a trust metric with a custom configuration. // Use Start to begin tracking the quality of peer behavior over time func NewMetricWithConfig(tmc MetricConfig) *Metric { tm := new(Metric) config := customConfig(tmc) // Setup using the configuration values tm.proportionalWeight = config.ProportionalWeight tm.integralWeight = config.IntegralWeight tm.intervalLen = config.IntervalLength // The maximum number of time intervals is the tracking window / interval length tm.maxIntervals = int(config.TrackingWindow / tm.intervalLen) // The history size will be determined by the maximum number of time intervals tm.historyMaxSize = intervalToHistoryOffset(tm.maxIntervals) + 1 // This metric has a perfect history so far tm.historyValue = 1.0 tm.BaseService = *cmn.NewBaseService(nil, "Metric", tm) return tm } // OnStart implements Service func (tm *Metric) OnStart() error { if err := tm.BaseService.OnStart(); err != nil { return err } go tm.processRequests() return nil } // OnStop implements Service // Nothing to do since the goroutine shuts down by itself via BaseService.Quit() func (tm *Metric) OnStop() {} // Returns a snapshot of the trust metric history data func (tm *Metric) HistoryJSON() MetricHistoryJSON { tm.mtx.Lock() defer tm.mtx.Unlock() return MetricHistoryJSON{ NumIntervals: tm.numIntervals, History: tm.history, } } // Instantiates a trust metric by loading the history data for a single peer. // This is called only once and only right after creation, which is why the // lock is not held while accessing the trust metric struct members func (tm *Metric) Init(hist MetricHistoryJSON) { // Restore the number of time intervals we have previously tracked if hist.NumIntervals > tm.maxIntervals { hist.NumIntervals = tm.maxIntervals } tm.numIntervals = hist.NumIntervals // Restore the history and its current size if len(hist.History) > tm.historyMaxSize { // Keep the history no larger than historyMaxSize last := len(hist.History) - tm.historyMaxSize hist.History = hist.History[last:] } tm.history = hist.History tm.historySize = len(tm.history) // Create the history weight values and weight sum for i := 1; i <= tm.numIntervals; i++ { x := math.Pow(defaultHistoryDataWeight, float64(i)) // Optimistic weight tm.historyWeights = append(tm.historyWeights, x) } for _, v := range tm.historyWeights { tm.historyWeightSum += v } // Calculate the history value based on the loaded history data tm.historyValue = tm.calcHistoryValue() } // Pause tells the metric to pause recording data over time intervals. // All method calls that indicate events will unpause the metric func (tm *Metric) Pause() { tm.mtx.Lock() defer tm.mtx.Unlock() // Pause the metric for now tm.paused = true } // BadEvents indicates that an undesirable event(s) took place func (tm *Metric) BadEvents(num int) { tm.mtx.Lock() defer tm.mtx.Unlock() tm.unpause() tm.bad += float64(num) } // GoodEvents indicates that a desirable event(s) took place func (tm *Metric) GoodEvents(num int) { tm.mtx.Lock() defer tm.mtx.Unlock() tm.unpause() tm.good += float64(num) } // TrustValue gets the dependable trust value; always between 0 and 1 func (tm *Metric) TrustValue() float64 { tm.mtx.Lock() defer tm.mtx.Unlock() return tm.calcTrustValue() } // TrustScore gets a score based on the trust value always between 0 and 100 func (tm *Metric) TrustScore() int { score := tm.TrustValue() * 100 return int(math.Floor(score)) } // NextTimeInterval saves current time interval data and prepares for the following interval func (tm *Metric) NextTimeInterval() { tm.mtx.Lock() defer tm.mtx.Unlock() if tm.paused { // Do not prepare for the next time interval while paused return } // Add the current trust value to the history data newHist := tm.calcTrustValue() tm.history = append(tm.history, newHist) // Update history and interval counters if tm.historySize < tm.historyMaxSize { tm.historySize++ } else { // Keep the history no larger than historyMaxSize last := len(tm.history) - tm.historyMaxSize tm.history = tm.history[last:] } if tm.numIntervals < tm.maxIntervals { tm.numIntervals++ // Add the optimistic weight for the new time interval wk := math.Pow(defaultHistoryDataWeight, float64(tm.numIntervals)) tm.historyWeights = append(tm.historyWeights, wk) tm.historyWeightSum += wk } // Update the history data using Faded Memories tm.updateFadedMemory() // Calculate the history value for the upcoming time interval tm.historyValue = tm.calcHistoryValue() tm.good = 0 tm.bad = 0 } // SetTicker allows a TestTicker to be provided that will manually control // the passing of time from the perspective of the Metric. // The ticker must be set before Start is called on the metric func (tm *Metric) SetTicker(ticker MetricTicker) { tm.mtx.Lock() defer tm.mtx.Unlock() tm.testTicker = ticker } // Copy returns a new trust metric with members containing the same values func (tm *Metric) Copy() *Metric { if tm == nil { return nil } tm.mtx.Lock() defer tm.mtx.Unlock() return &Metric{ proportionalWeight: tm.proportionalWeight, integralWeight: tm.integralWeight, numIntervals: tm.numIntervals, maxIntervals: tm.maxIntervals, intervalLen: tm.intervalLen, history: tm.history, historyWeights: tm.historyWeights, historyWeightSum: tm.historyWeightSum, historySize: tm.historySize, historyMaxSize: tm.historyMaxSize, historyValue: tm.historyValue, good: tm.good, bad: tm.bad, paused: tm.paused, } } /* Private methods */ // This method is for a goroutine that handles all requests on the metric func (tm *Metric) processRequests() { t := tm.testTicker if t == nil { // No test ticker was provided, so we create a normal ticker t = NewTicker(tm.intervalLen) } defer t.Stop() // Obtain the raw channel tick := t.GetChannel() loop: for { select { case <-tick: tm.NextTimeInterval() case <-tm.Quit(): // Stop all further tracking for this metric break loop } } } // Wakes the trust metric up if it is currently paused // This method needs to be called with the mutex locked func (tm *Metric) unpause() { // Check if this is the first experience with // what we are tracking since being paused if tm.paused { tm.good = 0 tm.bad = 0 // New events cause us to unpause the metric tm.paused = false } } // Calculates the trust value for the request processing func (tm *Metric) calcTrustValue() float64 { weightedP := tm.proportionalWeight * tm.proportionalValue() weightedI := tm.integralWeight * tm.historyValue weightedD := tm.weightedDerivative() tv := weightedP + weightedI + weightedD // Do not return a negative value. if tv < 0 { tv = 0 } return tv } // Calculates the current score for good/bad experiences func (tm *Metric) proportionalValue() float64 { value := 1.0 total := tm.good + tm.bad if total > 0 { value = tm.good / total } return value } // Strengthens the derivative component when the change is negative func (tm *Metric) weightedDerivative() float64 { var weight float64 = defaultDerivativeGamma1 d := tm.derivativeValue() if d < 0 { weight = defaultDerivativeGamma2 } return weight * d } // Calculates the derivative component func (tm *Metric) derivativeValue() float64 { return tm.proportionalValue() - tm.historyValue } // Calculates the integral (history) component of the trust value func (tm *Metric) calcHistoryValue() float64 { var hv float64 for i := 0; i < tm.numIntervals; i++ { hv += tm.fadedMemoryValue(i) * tm.historyWeights[i] } return hv / tm.historyWeightSum } // Retrieves the actual history data value that represents the requested time interval func (tm *Metric) fadedMemoryValue(interval int) float64 { first := tm.historySize - 1 if interval == 0 { // Base case return tm.history[first] } offset := intervalToHistoryOffset(interval) return tm.history[first-offset] } // Performs the update for our Faded Memories process, which allows the // trust metric tracking window to be large while maintaining a small // number of history data values func (tm *Metric) updateFadedMemory() { if tm.historySize < 2 { return } end := tm.historySize - 1 // Keep the most recent history element for count := 1; count < tm.historySize; count++ { i := end - count // The older the data is, the more we spread it out x := math.Pow(2, float64(count)) // Two history data values are merged into a single value tm.history[i] = ((tm.history[i] * (x - 1)) + tm.history[i+1]) / x } } // Map the interval value down to an offset from the beginning of history func intervalToHistoryOffset(interval int) int { // The system maintains 2^m interval values in the form of m history // data values. Therefore, we access the ith interval by obtaining // the history data index = the floor of log2(i) return int(math.Floor(math.Log2(float64(interval)))) }