package merkle import ( "bytes" "errors" "fmt" "github.com/tendermint/tendermint/crypto/tmhash" cmn "github.com/tendermint/tendermint/libs/common" ) // SimpleProof represents a simple Merkle proof. // NOTE: The convention for proofs is to include leaf hashes but to // exclude the root hash. // This convention is implemented across IAVL range proofs as well. // Keep this consistent unless there's a very good reason to change // everything. This also affects the generalized proof system as // well. type SimpleProof struct { Total int `json:"total"` // Total number of items. Index int `json:"index"` // Index of item to prove. LeafHash []byte `json:"leaf_hash"` // Hash of item value. Aunts [][]byte `json:"aunts"` // Hashes from leaf's sibling to a root's child. } // SimpleProofsFromByteSlices computes inclusion proof for given items. // proofs[0] is the proof for items[0]. func SimpleProofsFromByteSlices(items [][]byte) (rootHash []byte, proofs []*SimpleProof) { trails, rootSPN := trailsFromByteSlices(items) rootHash = rootSPN.Hash proofs = make([]*SimpleProof, len(items)) for i, trail := range trails { proofs[i] = &SimpleProof{ Total: len(items), Index: i, LeafHash: trail.Hash, Aunts: trail.FlattenAunts(), } } return } // SimpleProofsFromMap generates proofs from a map. The keys/values of the map will be used as the keys/values // in the underlying key-value pairs. // The keys are sorted before the proofs are computed. func SimpleProofsFromMap(m map[string][]byte) (rootHash []byte, proofs map[string]*SimpleProof, keys []string) { sm := newSimpleMap() for k, v := range m { sm.Set(k, v) } sm.Sort() kvs := sm.kvs kvsBytes := make([][]byte, len(kvs)) for i, kvp := range kvs { kvsBytes[i] = KVPair(kvp).Bytes() } rootHash, proofList := SimpleProofsFromByteSlices(kvsBytes) proofs = make(map[string]*SimpleProof) keys = make([]string, len(proofList)) for i, kvp := range kvs { proofs[string(kvp.Key)] = proofList[i] keys[i] = string(kvp.Key) } return } // Verify that the SimpleProof proves the root hash. // Check sp.Index/sp.Total manually if needed func (sp *SimpleProof) Verify(rootHash []byte, leafHash []byte) error { if sp.Total < 0 { return errors.New("Proof total must be positive") } if sp.Index < 0 { return errors.New("Proof index cannot be negative") } if !bytes.Equal(sp.LeafHash, leafHash) { return cmn.NewError("invalid leaf hash: wanted %X got %X", leafHash, sp.LeafHash) } computedHash := sp.ComputeRootHash() if !bytes.Equal(computedHash, rootHash) { return cmn.NewError("invalid root hash: wanted %X got %X", rootHash, computedHash) } return nil } // Compute the root hash given a leaf hash. Does not verify the result. func (sp *SimpleProof) ComputeRootHash() []byte { return computeHashFromAunts( sp.Index, sp.Total, sp.LeafHash, sp.Aunts, ) } // String implements the stringer interface for SimpleProof. // It is a wrapper around StringIndented. func (sp *SimpleProof) String() string { return sp.StringIndented("") } // StringIndented generates a canonical string representation of a SimpleProof. func (sp *SimpleProof) StringIndented(indent string) string { return fmt.Sprintf(`SimpleProof{ %s Aunts: %X %s}`, indent, sp.Aunts, indent) } // Use the leafHash and innerHashes to get the root merkle hash. // If the length of the innerHashes slice isn't exactly correct, the result is nil. // Recursive impl. func computeHashFromAunts(index int, total int, leafHash []byte, innerHashes [][]byte) []byte { if index >= total || index < 0 || total <= 0 { return nil } switch total { case 0: panic("Cannot call computeHashFromAunts() with 0 total") case 1: if len(innerHashes) != 0 { return nil } return leafHash default: if len(innerHashes) == 0 { return nil } numLeft := (total + 1) / 2 if index < numLeft { leftHash := computeHashFromAunts(index, numLeft, leafHash, innerHashes[:len(innerHashes)-1]) if leftHash == nil { return nil } return SimpleHashFromTwoHashes(leftHash, innerHashes[len(innerHashes)-1]) } rightHash := computeHashFromAunts(index-numLeft, total-numLeft, leafHash, innerHashes[:len(innerHashes)-1]) if rightHash == nil { return nil } return SimpleHashFromTwoHashes(innerHashes[len(innerHashes)-1], rightHash) } } // SimpleProofNode is a helper structure to construct merkle proof. // The node and the tree is thrown away afterwards. // Exactly one of node.Left and node.Right is nil, unless node is the root, in which case both are nil. // node.Parent.Hash = hash(node.Hash, node.Right.Hash) or // hash(node.Left.Hash, node.Hash), depending on whether node is a left/right child. type SimpleProofNode struct { Hash []byte Parent *SimpleProofNode Left *SimpleProofNode // Left sibling (only one of Left,Right is set) Right *SimpleProofNode // Right sibling (only one of Left,Right is set) } // FlattenAunts will return the inner hashes for the item corresponding to the leaf, // starting from a leaf SimpleProofNode. func (spn *SimpleProofNode) FlattenAunts() [][]byte { // Nonrecursive impl. innerHashes := [][]byte{} for spn != nil { if spn.Left != nil { innerHashes = append(innerHashes, spn.Left.Hash) } else if spn.Right != nil { innerHashes = append(innerHashes, spn.Right.Hash) } else { break } spn = spn.Parent } return innerHashes } // trails[0].Hash is the leaf hash for items[0]. // trails[i].Parent.Parent....Parent == root for all i. func trailsFromByteSlices(items [][]byte) (trails []*SimpleProofNode, root *SimpleProofNode) { // Recursive impl. switch len(items) { case 0: return nil, nil case 1: trail := &SimpleProofNode{tmhash.Sum(items[0]), nil, nil, nil} return []*SimpleProofNode{trail}, trail default: lefts, leftRoot := trailsFromByteSlices(items[:(len(items)+1)/2]) rights, rightRoot := trailsFromByteSlices(items[(len(items)+1)/2:]) rootHash := SimpleHashFromTwoHashes(leftRoot.Hash, rightRoot.Hash) root := &SimpleProofNode{rootHash, nil, nil, nil} leftRoot.Parent = root leftRoot.Right = rightRoot rightRoot.Parent = root rightRoot.Left = leftRoot return append(lefts, rights...), root } }