package main import ( "fmt" "math/rand" "sort" "strings" e2e "github.com/tendermint/tendermint/test/e2e/pkg" "github.com/tendermint/tendermint/types" ) var ( // testnetCombinations defines global testnet options, where we generate a // separate testnet for each combination (Cartesian product) of options. testnetCombinations = map[string][]interface{}{ "topology": {"single", "quad", "large"}, "p2p": {NewP2PMode, LegacyP2PMode, HybridP2PMode}, "queueType": {"priority"}, // "fifo", "wdrr" "initialHeight": {0, 1000}, "initialState": { map[string]string{}, map[string]string{"initial01": "a", "initial02": "b", "initial03": "c"}, }, "validators": {"genesis", "initchain"}, } // The following specify randomly chosen values for testnet nodes. nodeDatabases = weightedChoice{ "goleveldb": 35, "badgerdb": 35, "boltdb": 15, "rocksdb": 10, "cleveldb": 5, } nodeABCIProtocols = weightedChoice{ "builtin": 50, "tcp": 20, "grpc": 20, "unix": 10, } nodePrivvalProtocols = weightedChoice{ "file": 50, "grpc": 20, "tcp": 20, "unix": 10, } // FIXME: v2 disabled due to flake nodeBlockSyncs = uniformChoice{"v0"} // "v2" nodeMempools = uniformChoice{"v0", "v1"} nodeStateSyncs = uniformChoice{e2e.StateSyncDisabled, e2e.StateSyncP2P, e2e.StateSyncRPC} nodePersistIntervals = uniformChoice{0, 1, 5} nodeSnapshotIntervals = uniformChoice{0, 3} nodeRetainBlocks = uniformChoice{0, 2 * int(e2e.EvidenceAgeHeight), 4 * int(e2e.EvidenceAgeHeight)} nodePerturbations = probSetChoice{ "disconnect": 0.1, "pause": 0.1, "kill": 0.1, "restart": 0.1, } evidence = uniformChoice{0, 1, 10} txSize = uniformChoice{1024, 10240} // either 1kb or 10kb ipv6 = uniformChoice{false, true} keyType = uniformChoice{types.ABCIPubKeyTypeEd25519, types.ABCIPubKeyTypeSecp256k1} ) // Generate generates random testnets using the given RNG. func Generate(r *rand.Rand, opts Options) ([]e2e.Manifest, error) { manifests := []e2e.Manifest{} switch opts.P2P { case NewP2PMode, LegacyP2PMode, HybridP2PMode: testnetCombinations["p2p"] = []interface{}{opts.P2P} default: testnetCombinations["p2p"] = []interface{}{NewP2PMode, LegacyP2PMode, HybridP2PMode} } for _, opt := range combinations(testnetCombinations) { manifest, err := generateTestnet(r, opt) if err != nil { return nil, err } if len(manifest.Nodes) < opts.MinNetworkSize { continue } if len(manifest.Nodes) == 1 { if opt["p2p"] == HybridP2PMode { continue } } manifests = append(manifests, manifest) } return manifests, nil } type Options struct { MinNetworkSize int NumGroups int Directory string P2P P2PMode } type P2PMode string const ( NewP2PMode P2PMode = "new" LegacyP2PMode P2PMode = "legacy" HybridP2PMode P2PMode = "hybrid" // mixed means that all combination are generated MixedP2PMode P2PMode = "mixed" ) // generateTestnet generates a single testnet with the given options. func generateTestnet(r *rand.Rand, opt map[string]interface{}) (e2e.Manifest, error) { manifest := e2e.Manifest{ IPv6: ipv6.Choose(r).(bool), InitialHeight: int64(opt["initialHeight"].(int)), InitialState: opt["initialState"].(map[string]string), Validators: &map[string]int64{}, ValidatorUpdates: map[string]map[string]int64{}, Nodes: map[string]*e2e.ManifestNode{}, KeyType: keyType.Choose(r).(string), Evidence: evidence.Choose(r).(int), QueueType: opt["queueType"].(string), TxSize: int64(txSize.Choose(r).(int)), } p2pMode := opt["p2p"].(P2PMode) switch p2pMode { case NewP2PMode, LegacyP2PMode, HybridP2PMode: default: return manifest, fmt.Errorf("unknown p2p mode %s", p2pMode) } var numSeeds, numValidators, numFulls, numLightClients int switch opt["topology"].(string) { case "single": numValidators = 1 case "quad": numValidators = 4 case "large": // FIXME Networks are kept small since large ones use too much CPU. numSeeds = r.Intn(2) numLightClients = r.Intn(3) numValidators = 4 + r.Intn(4) numFulls = r.Intn(4) default: return manifest, fmt.Errorf("unknown topology %q", opt["topology"]) } // First we generate seed nodes, starting at the initial height. for i := 1; i <= numSeeds; i++ { node := generateNode(r, e2e.ModeSeed, 0, manifest.InitialHeight, false) switch p2pMode { case LegacyP2PMode: node.UseLegacyP2P = true case HybridP2PMode: node.UseLegacyP2P = r.Intn(2) == 1 } manifest.Nodes[fmt.Sprintf("seed%02d", i)] = node } // Next, we generate validators. We make sure a BFT quorum of validators start // at the initial height, and that we have two archive nodes. We also set up // the initial validator set, and validator set updates for delayed nodes. nextStartAt := manifest.InitialHeight + 5 quorum := numValidators*2/3 + 1 for i := 1; i <= numValidators; i++ { startAt := int64(0) if i > quorum { startAt = nextStartAt nextStartAt += 5 } name := fmt.Sprintf("validator%02d", i) node := generateNode( r, e2e.ModeValidator, startAt, manifest.InitialHeight, i <= 2) switch p2pMode { case LegacyP2PMode: node.UseLegacyP2P = true case HybridP2PMode: node.UseLegacyP2P = r.Intn(2) == 1 } manifest.Nodes[name] = node if startAt == 0 { (*manifest.Validators)[name] = int64(30 + r.Intn(71)) } else { manifest.ValidatorUpdates[fmt.Sprint(startAt+5)] = map[string]int64{ name: int64(30 + r.Intn(71)), } } } // Move validators to InitChain if specified. switch opt["validators"].(string) { case "genesis": case "initchain": manifest.ValidatorUpdates["0"] = *manifest.Validators manifest.Validators = &map[string]int64{} default: return manifest, fmt.Errorf("invalid validators option %q", opt["validators"]) } // Finally, we generate random full nodes. for i := 1; i <= numFulls; i++ { startAt := int64(0) if r.Float64() >= 0.5 { startAt = nextStartAt nextStartAt += 5 } node := generateNode(r, e2e.ModeFull, startAt, manifest.InitialHeight, false) switch p2pMode { case LegacyP2PMode: node.UseLegacyP2P = true case HybridP2PMode: node.UseLegacyP2P = r.Intn(2) == 1 } manifest.Nodes[fmt.Sprintf("full%02d", i)] = node } // We now set up peer discovery for nodes. Seed nodes are fully meshed with // each other, while non-seed nodes either use a set of random seeds or a // set of random peers that start before themselves. var seedNames, peerNames, lightProviders []string for name, node := range manifest.Nodes { if node.Mode == string(e2e.ModeSeed) { seedNames = append(seedNames, name) } else { // if the full node or validator is an ideal candidate, it is added as a light provider. // There are at least two archive nodes so there should be at least two ideal candidates if (node.StartAt == 0 || node.StartAt == manifest.InitialHeight) && node.RetainBlocks == 0 { lightProviders = append(lightProviders, name) } peerNames = append(peerNames, name) } } for _, name := range seedNames { for _, otherName := range seedNames { if name != otherName { manifest.Nodes[name].Seeds = append(manifest.Nodes[name].Seeds, otherName) } } } sort.Slice(peerNames, func(i, j int) bool { iName, jName := peerNames[i], peerNames[j] switch { case manifest.Nodes[iName].StartAt < manifest.Nodes[jName].StartAt: return true case manifest.Nodes[iName].StartAt > manifest.Nodes[jName].StartAt: return false default: return strings.Compare(iName, jName) == -1 } }) for i, name := range peerNames { if len(seedNames) > 0 && (i == 0 || r.Float64() >= 0.5) { manifest.Nodes[name].Seeds = uniformSetChoice(seedNames).Choose(r) } else if i > 0 { manifest.Nodes[name].PersistentPeers = uniformSetChoice(peerNames[:i]).Choose(r) } } // lastly, set up the light clients for i := 1; i <= numLightClients; i++ { startAt := manifest.InitialHeight + 5 manifest.Nodes[fmt.Sprintf("light%02d", i)] = generateLightNode( r, startAt+(5*int64(i)), lightProviders, ) } return manifest, nil } // generateNode randomly generates a node, with some constraints to avoid // generating invalid configurations. We do not set Seeds or PersistentPeers // here, since we need to know the overall network topology and startup // sequencing. func generateNode( r *rand.Rand, mode e2e.Mode, startAt int64, initialHeight int64, forceArchive bool, ) *e2e.ManifestNode { node := e2e.ManifestNode{ Mode: string(mode), StartAt: startAt, Database: nodeDatabases.Choose(r), ABCIProtocol: nodeABCIProtocols.Choose(r), PrivvalProtocol: nodePrivvalProtocols.Choose(r), BlockSync: nodeBlockSyncs.Choose(r).(string), Mempool: nodeMempools.Choose(r).(string), StateSync: e2e.StateSyncDisabled, PersistInterval: ptrUint64(uint64(nodePersistIntervals.Choose(r).(int))), SnapshotInterval: uint64(nodeSnapshotIntervals.Choose(r).(int)), RetainBlocks: uint64(nodeRetainBlocks.Choose(r).(int)), Perturb: nodePerturbations.Choose(r), } if startAt > 0 { node.StateSync = nodeStateSyncs.Choose(r).(string) } // If this node is forced to be an archive node, retain all blocks and // enable state sync snapshotting. if forceArchive { node.RetainBlocks = 0 node.SnapshotInterval = 3 } // If a node which does not persist state also does not retain blocks, randomly // choose to either persist state or retain all blocks. if node.PersistInterval != nil && *node.PersistInterval == 0 && node.RetainBlocks > 0 { if r.Float64() > 0.5 { node.RetainBlocks = 0 } else { node.PersistInterval = ptrUint64(node.RetainBlocks) } } // If either PersistInterval or SnapshotInterval are greater than RetainBlocks, // expand the block retention time. if node.RetainBlocks > 0 { if node.PersistInterval != nil && node.RetainBlocks < *node.PersistInterval { node.RetainBlocks = *node.PersistInterval } if node.RetainBlocks < node.SnapshotInterval { node.RetainBlocks = node.SnapshotInterval } } if node.StateSync != e2e.StateSyncDisabled { node.BlockSync = "v0" } return &node } func generateLightNode(r *rand.Rand, startAt int64, providers []string) *e2e.ManifestNode { return &e2e.ManifestNode{ Mode: string(e2e.ModeLight), StartAt: startAt, Database: nodeDatabases.Choose(r), ABCIProtocol: "builtin", PersistInterval: ptrUint64(0), PersistentPeers: providers, } } func ptrUint64(i uint64) *uint64 { return &i }