package evidence_test import ( "encoding/hex" "fmt" "sync" "testing" "time" "github.com/go-kit/kit/log/term" "github.com/stretchr/testify/assert" "github.com/stretchr/testify/mock" "github.com/stretchr/testify/require" dbm "github.com/tendermint/tm-db" cfg "github.com/tendermint/tendermint/config" "github.com/tendermint/tendermint/crypto" "github.com/tendermint/tendermint/crypto/tmhash" "github.com/tendermint/tendermint/evidence" "github.com/tendermint/tendermint/evidence/mocks" "github.com/tendermint/tendermint/libs/log" "github.com/tendermint/tendermint/p2p" tmproto "github.com/tendermint/tendermint/proto/tendermint/types" sm "github.com/tendermint/tendermint/state" "github.com/tendermint/tendermint/types" ) var ( numEvidence = 10 timeout = 120 * time.Second // ridiculously high because CircleCI is slow ) // We have N evidence reactors connected to one another. The first reactor // receives a number of evidence at varying heights. We test that all // other reactors receive the evidence and add it to their own respective // evidence pools. func TestReactorBroadcastEvidence(t *testing.T) { config := cfg.TestConfig() N := 7 // create statedb for everyone stateDBs := make([]sm.Store, N) val := types.NewMockPV() // we need validators saved for heights at least as high as we have evidence for height := int64(numEvidence) + 10 for i := 0; i < N; i++ { stateDBs[i] = initializeValidatorState(val, height) } // make reactors from statedb reactors, pools := makeAndConnectReactorsAndPools(config, stateDBs) // set the peer height on each reactor for _, r := range reactors { for _, peer := range r.Switch.Peers().List() { ps := peerState{height} peer.Set(types.PeerStateKey, ps) } } // send a bunch of valid evidence to the first reactor's evpool // and wait for them all to be received in the others evList := sendEvidence(t, pools[0], val, numEvidence) waitForEvidence(t, evList, pools) } // We have two evidence reactors connected to one another but are at different heights. // Reactor 1 which is ahead receives a number of evidence. It should only send the evidence // that is below the height of the peer to that peer. func TestReactorSelectiveBroadcast(t *testing.T) { config := cfg.TestConfig() val := types.NewMockPV() height1 := int64(numEvidence) + 10 height2 := int64(numEvidence) / 2 // DB1 is ahead of DB2 stateDB1 := initializeValidatorState(val, height1) stateDB2 := initializeValidatorState(val, height2) // make reactors from statedb reactors, pools := makeAndConnectReactorsAndPools(config, []sm.Store{stateDB1, stateDB2}) // set the peer height on each reactor for _, r := range reactors { for _, peer := range r.Switch.Peers().List() { ps := peerState{height1} peer.Set(types.PeerStateKey, ps) } } // update the first reactor peer's height to be very small peer := reactors[0].Switch.Peers().List()[0] ps := peerState{height2} peer.Set(types.PeerStateKey, ps) // send a bunch of valid evidence to the first reactor's evpool evList := sendEvidence(t, pools[0], val, numEvidence) // only ones less than the peers height should make it through waitForEvidence(t, evList[:numEvidence/2-1], []*evidence.Pool{pools[1]}) // peers should still be connected peers := reactors[1].Switch.Peers().List() assert.Equal(t, 1, len(peers)) } // This tests aims to ensure that reactors don't send evidence that they have committed or that ar // not ready for the peer through three scenarios. // First, committed evidence to a newly connected peer // Second, evidence to a peer that is behind // Third, evidence that was pending and became committed just before the peer caught up func TestReactorsGossipNoCommittedEvidence(t *testing.T) { config := cfg.TestConfig() val := types.NewMockPV() var height int64 = 10 // DB1 is ahead of DB2 stateDB1 := initializeValidatorState(val, height-1) stateDB2 := initializeValidatorState(val, height-2) state, err := stateDB1.Load() require.NoError(t, err) state.LastBlockHeight++ // make reactors from statedb reactors, pools := makeAndConnectReactorsAndPools(config, []sm.Store{stateDB1, stateDB2}) evList := sendEvidence(t, pools[0], val, 2) pools[0].Update(state, evList) require.EqualValues(t, uint32(0), pools[0].Size()) time.Sleep(100 * time.Millisecond) peer := reactors[0].Switch.Peers().List()[0] ps := peerState{height - 2} peer.Set(types.PeerStateKey, ps) peer = reactors[1].Switch.Peers().List()[0] ps = peerState{height} peer.Set(types.PeerStateKey, ps) // wait to see that no evidence comes through time.Sleep(300 * time.Millisecond) // the second pool should not have received any evidence because it has already been committed assert.Equal(t, uint32(0), pools[1].Size(), "second reactor should not have received evidence") // the first reactor receives three more evidence evList = make([]types.Evidence, 3) for i := 0; i < 3; i++ { ev := types.NewMockDuplicateVoteEvidenceWithValidator(height-3+int64(i), time.Date(2019, 1, 1, 0, 0, 0, 0, time.UTC), val, state.ChainID) err := pools[0].AddEvidence(ev) require.NoError(t, err) evList[i] = ev } // wait to see that only one evidence is sent time.Sleep(300 * time.Millisecond) // the second pool should only have received the first evidence because it is behind peerEv, _ := pools[1].PendingEvidence(10000) assert.EqualValues(t, []types.Evidence{evList[0]}, peerEv) // the last evidence is committed and the second reactor catches up in state to the first // reactor. We therefore expect that the second reactor only receives one more evidence, the // one that is still pending and not the evidence that has already been committed. state.LastBlockHeight++ pools[0].Update(state, []types.Evidence{evList[2]}) // the first reactor should have the two remaining pending evidence require.EqualValues(t, uint32(2), pools[0].Size()) // now update the state of the second reactor pools[1].Update(state, types.EvidenceList{}) peer = reactors[0].Switch.Peers().List()[0] ps = peerState{height} peer.Set(types.PeerStateKey, ps) // wait to see that only two evidence is sent time.Sleep(300 * time.Millisecond) peerEv, _ = pools[1].PendingEvidence(1000) assert.EqualValues(t, []types.Evidence{evList[0], evList[1]}, peerEv) } // evidenceLogger is a TestingLogger which uses a different // color for each validator ("validator" key must exist). func evidenceLogger() log.Logger { return log.TestingLoggerWithColorFn(func(keyvals ...interface{}) term.FgBgColor { for i := 0; i < len(keyvals)-1; i += 2 { if keyvals[i] == "validator" { return term.FgBgColor{Fg: term.Color(uint8(keyvals[i+1].(int) + 1))} } } return term.FgBgColor{} }) } // connect N evidence reactors through N switches func makeAndConnectReactorsAndPools(config *cfg.Config, stateStores []sm.Store) ([]*evidence.Reactor, []*evidence.Pool) { N := len(stateStores) reactors := make([]*evidence.Reactor, N) pools := make([]*evidence.Pool, N) logger := evidenceLogger() evidenceTime := time.Date(2019, 1, 1, 0, 0, 0, 0, time.UTC) for i := 0; i < N; i++ { evidenceDB := dbm.NewMemDB() blockStore := &mocks.BlockStore{} blockStore.On("LoadBlockMeta", mock.AnythingOfType("int64")).Return( &types.BlockMeta{Header: types.Header{Time: evidenceTime}}, ) pool, err := evidence.NewPool(evidenceDB, stateStores[i], blockStore) if err != nil { panic(err) } pools[i] = pool reactors[i] = evidence.NewReactor(pool) reactors[i].SetLogger(logger.With("validator", i)) } p2p.MakeConnectedSwitches(config.P2P, N, func(i int, s *p2p.Switch) *p2p.Switch { s.AddReactor("EVIDENCE", reactors[i]) return s }, p2p.Connect2Switches) return reactors, pools } // wait for all evidence on all reactors func waitForEvidence(t *testing.T, evs types.EvidenceList, pools []*evidence.Pool) { // wait for the evidence in all evpools wg := new(sync.WaitGroup) for i := 0; i < len(pools); i++ { wg.Add(1) go _waitForEvidence(t, wg, evs, i, pools) } done := make(chan struct{}) go func() { wg.Wait() close(done) }() timer := time.After(timeout) select { case <-timer: t.Fatal("Timed out waiting for evidence") case <-done: } } // wait for all evidence on a single evpool func _waitForEvidence( t *testing.T, wg *sync.WaitGroup, evs types.EvidenceList, poolIdx int, pools []*evidence.Pool, ) { evpool := pools[poolIdx] var evList []types.Evidence currentPoolSize := 0 for currentPoolSize != len(evs) { evList, _ = evpool.PendingEvidence(int64(len(evs) * 500)) // each evidence should not be more than 500 bytes currentPoolSize = len(evList) time.Sleep(time.Millisecond * 100) } // put the reaped evidence in a map so we can quickly check we got everything evMap := make(map[string]types.Evidence) for _, e := range evList { evMap[string(e.Hash())] = e } for i, expectedEv := range evs { gotEv := evMap[string(expectedEv.Hash())] assert.Equal(t, expectedEv, gotEv, fmt.Sprintf("evidence at index %d on pool %d don't match: %v vs %v", i, poolIdx, expectedEv, gotEv)) } wg.Done() } func sendEvidence(t *testing.T, evpool *evidence.Pool, val types.PrivValidator, n int) types.EvidenceList { evList := make([]types.Evidence, n) for i := 0; i < n; i++ { ev := types.NewMockDuplicateVoteEvidenceWithValidator(int64(i+1), time.Date(2019, 1, 1, 0, 0, 0, 0, time.UTC), val, evidenceChainID) err := evpool.AddEvidence(ev) require.NoError(t, err) evList[i] = ev } return evList } type peerState struct { height int64 } func (ps peerState) GetHeight() int64 { return ps.height } func exampleVote(t byte) *types.Vote { var stamp, err = time.Parse(types.TimeFormat, "2017-12-25T03:00:01.234Z") if err != nil { panic(err) } return &types.Vote{ Type: tmproto.SignedMsgType(t), Height: 3, Round: 2, Timestamp: stamp, BlockID: types.BlockID{ Hash: tmhash.Sum([]byte("blockID_hash")), PartSetHeader: types.PartSetHeader{ Total: 1000000, Hash: tmhash.Sum([]byte("blockID_part_set_header_hash")), }, }, ValidatorAddress: crypto.AddressHash([]byte("validator_address")), ValidatorIndex: 56789, } } // nolint:lll //ignore line length for tests func TestEvidenceVectors(t *testing.T) { val := &types.Validator{ Address: crypto.AddressHash([]byte("validator_address")), VotingPower: 10, } valSet := types.NewValidatorSet([]*types.Validator{val}) dupl := types.NewDuplicateVoteEvidence( exampleVote(1), exampleVote(2), defaultEvidenceTime, valSet, ) testCases := []struct { testName string evidenceList []types.Evidence expBytes string }{ {"DuplicateVoteEvidence", []types.Evidence{dupl}, "0a85020a82020a79080210031802224a0a208b01023386c371778ecb6368573e539afc3cc860ec3a2f614e54fe5652f4fc80122608c0843d122072db3d959635dff1bb567bedaa70573392c5159666a3f8caf11e413aac52207a2a0b08b1d381d20510809dca6f32146af1f4111082efb388211bc72c55bcd61e9ac3d538d5bb031279080110031802224a0a208b01023386c371778ecb6368573e539afc3cc860ec3a2f614e54fe5652f4fc80122608c0843d122072db3d959635dff1bb567bedaa70573392c5159666a3f8caf11e413aac52207a2a0b08b1d381d20510809dca6f32146af1f4111082efb388211bc72c55bcd61e9ac3d538d5bb03180a200a2a060880dbaae105"}, } for _, tc := range testCases { tc := tc evi := make([]tmproto.Evidence, len(tc.evidenceList)) for i := 0; i < len(tc.evidenceList); i++ { ev, err := types.EvidenceToProto(tc.evidenceList[i]) require.NoError(t, err, tc.testName) evi[i] = *ev } epl := tmproto.EvidenceList{ Evidence: evi, } bz, err := epl.Marshal() require.NoError(t, err, tc.testName) require.Equal(t, tc.expBytes, hex.EncodeToString(bz), tc.testName) } }