package p2p import ( "bufio" "fmt" "io" "math" "net" "runtime/debug" "sync/atomic" "time" wire "github.com/tendermint/go-wire" tmlegacy "github.com/tendermint/go-wire/nowriter/tmlegacy" cmn "github.com/tendermint/tmlibs/common" flow "github.com/tendermint/tmlibs/flowrate" "github.com/tendermint/tmlibs/log" ) var legacy = tmlegacy.TMEncoderLegacy{} const ( numBatchMsgPackets = 10 minReadBufferSize = 1024 minWriteBufferSize = 65536 updateStats = 2 * time.Second pingTimeout = 40 * time.Second // some of these defaults are written in the user config // flushThrottle, sendRate, recvRate // TODO: remove values present in config defaultFlushThrottle = 100 * time.Millisecond defaultSendQueueCapacity = 1 defaultRecvBufferCapacity = 4096 defaultRecvMessageCapacity = 22020096 // 21MB defaultSendRate = int64(512000) // 500KB/s defaultRecvRate = int64(512000) // 500KB/s defaultSendTimeout = 10 * time.Second ) type receiveCbFunc func(chID byte, msgBytes []byte) type errorCbFunc func(interface{}) /* Each peer has one `MConnection` (multiplex connection) instance. __multiplex__ *noun* a system or signal involving simultaneous transmission of several messages along a single channel of communication. Each `MConnection` handles message transmission on multiple abstract communication `Channel`s. Each channel has a globally unique byte id. The byte id and the relative priorities of each `Channel` are configured upon initialization of the connection. There are two methods for sending messages: func (m MConnection) Send(chID byte, msg interface{}) bool {} func (m MConnection) TrySend(chID byte, msg interface{}) bool {} `Send(chID, msg)` is a blocking call that waits until `msg` is successfully queued for the channel with the given id byte `chID`, or until the request times out. The message `msg` is serialized using the `tendermint/wire` submodule's `WriteBinary()` reflection routine. `TrySend(chID, msg)` is a nonblocking call that returns false if the channel's queue is full. Inbound message bytes are handled with an onReceive callback function. */ type MConnection struct { cmn.BaseService conn net.Conn bufReader *bufio.Reader bufWriter *bufio.Writer sendMonitor *flow.Monitor recvMonitor *flow.Monitor send chan struct{} pong chan struct{} channels []*Channel channelsIdx map[byte]*Channel onReceive receiveCbFunc onError errorCbFunc errored uint32 config *MConnConfig quit chan struct{} flushTimer *cmn.ThrottleTimer // flush writes as necessary but throttled. pingTimer *cmn.RepeatTimer // send pings periodically chStatsTimer *cmn.RepeatTimer // update channel stats periodically LocalAddress *NetAddress RemoteAddress *NetAddress } // MConnConfig is a MConnection configuration. type MConnConfig struct { SendRate int64 `mapstructure:"send_rate"` RecvRate int64 `mapstructure:"recv_rate"` maxMsgPacketPayloadSize int flushThrottle time.Duration } func (cfg *MConnConfig) maxMsgPacketTotalSize() int { return cfg.maxMsgPacketPayloadSize + maxMsgPacketOverheadSize } // DefaultMConnConfig returns the default config. func DefaultMConnConfig() *MConnConfig { return &MConnConfig{ SendRate: defaultSendRate, RecvRate: defaultRecvRate, maxMsgPacketPayloadSize: defaultMaxMsgPacketPayloadSize, flushThrottle: defaultFlushThrottle, } } // NewMConnection wraps net.Conn and creates multiplex connection func NewMConnection(conn net.Conn, chDescs []*ChannelDescriptor, onReceive receiveCbFunc, onError errorCbFunc) *MConnection { return NewMConnectionWithConfig( conn, chDescs, onReceive, onError, DefaultMConnConfig()) } // NewMConnectionWithConfig wraps net.Conn and creates multiplex connection with a config func NewMConnectionWithConfig(conn net.Conn, chDescs []*ChannelDescriptor, onReceive receiveCbFunc, onError errorCbFunc, config *MConnConfig) *MConnection { mconn := &MConnection{ conn: conn, bufReader: bufio.NewReaderSize(conn, minReadBufferSize), bufWriter: bufio.NewWriterSize(conn, minWriteBufferSize), sendMonitor: flow.New(0, 0), recvMonitor: flow.New(0, 0), send: make(chan struct{}, 1), pong: make(chan struct{}), onReceive: onReceive, onError: onError, config: config, LocalAddress: NewNetAddress(conn.LocalAddr()), RemoteAddress: NewNetAddress(conn.RemoteAddr()), } // Create channels var channelsIdx = map[byte]*Channel{} var channels = []*Channel{} for _, desc := range chDescs { channel := newChannel(mconn, *desc) channelsIdx[channel.desc.ID] = channel channels = append(channels, channel) } mconn.channels = channels mconn.channelsIdx = channelsIdx mconn.BaseService = *cmn.NewBaseService(nil, "MConnection", mconn) return mconn } func (c *MConnection) SetLogger(l log.Logger) { c.BaseService.SetLogger(l) for _, ch := range c.channels { ch.SetLogger(l) } } // OnStart implements BaseService func (c *MConnection) OnStart() error { if err := c.BaseService.OnStart(); err != nil { return err } c.quit = make(chan struct{}) c.flushTimer = cmn.NewThrottleTimer("flush", c.config.flushThrottle) c.pingTimer = cmn.NewRepeatTimer("ping", pingTimeout) c.chStatsTimer = cmn.NewRepeatTimer("chStats", updateStats) go c.sendRoutine() go c.recvRoutine() return nil } // OnStop implements BaseService func (c *MConnection) OnStop() { c.BaseService.OnStop() c.flushTimer.Stop() c.pingTimer.Stop() c.chStatsTimer.Stop() if c.quit != nil { close(c.quit) } c.conn.Close() // nolint: errcheck // We can't close pong safely here because // recvRoutine may write to it after we've stopped. // Though it doesn't need to get closed at all, // we close it @ recvRoutine. // close(c.pong) } func (c *MConnection) String() string { return fmt.Sprintf("MConn{%v}", c.conn.RemoteAddr()) } func (c *MConnection) flush() { c.Logger.Debug("Flush", "conn", c) err := c.bufWriter.Flush() if err != nil { c.Logger.Error("MConnection flush failed", "err", err) } } // Catch panics, usually caused by remote disconnects. func (c *MConnection) _recover() { if r := recover(); r != nil { stack := debug.Stack() err := cmn.StackError{r, stack} c.stopForError(err) } } func (c *MConnection) stopForError(r interface{}) { c.Stop() if atomic.CompareAndSwapUint32(&c.errored, 0, 1) { if c.onError != nil { c.onError(r) } } } // Queues a message to be sent to channel. func (c *MConnection) Send(chID byte, msg interface{}) bool { if !c.IsRunning() { return false } c.Logger.Debug("Send", "channel", chID, "conn", c, "msg", msg) //, "bytes", wire.BinaryBytes(msg)) // Send message to channel. channel, ok := c.channelsIdx[chID] if !ok { c.Logger.Error(cmn.Fmt("Cannot send bytes, unknown channel %X", chID)) return false } success := channel.sendBytes(wire.BinaryBytes(msg)) if success { // Wake up sendRoutine if necessary select { case c.send <- struct{}{}: default: } } else { c.Logger.Error("Send failed", "channel", chID, "conn", c, "msg", msg) } return success } // Queues a message to be sent to channel. // Nonblocking, returns true if successful. func (c *MConnection) TrySend(chID byte, msg interface{}) bool { if !c.IsRunning() { return false } c.Logger.Debug("TrySend", "channel", chID, "conn", c, "msg", msg) // Send message to channel. channel, ok := c.channelsIdx[chID] if !ok { c.Logger.Error(cmn.Fmt("Cannot send bytes, unknown channel %X", chID)) return false } ok = channel.trySendBytes(wire.BinaryBytes(msg)) if ok { // Wake up sendRoutine if necessary select { case c.send <- struct{}{}: default: } } return ok } // CanSend returns true if you can send more data onto the chID, false // otherwise. Use only as a heuristic. func (c *MConnection) CanSend(chID byte) bool { if !c.IsRunning() { return false } channel, ok := c.channelsIdx[chID] if !ok { c.Logger.Error(cmn.Fmt("Unknown channel %X", chID)) return false } return channel.canSend() } // sendRoutine polls for packets to send from channels. func (c *MConnection) sendRoutine() { defer c._recover() FOR_LOOP: for { var n int var err error select { case <-c.flushTimer.Ch: // NOTE: flushTimer.Set() must be called every time // something is written to .bufWriter. c.flush() case <-c.chStatsTimer.Ch: for _, channel := range c.channels { channel.updateStats() } case <-c.pingTimer.Ch: c.Logger.Debug("Send Ping") legacy.WriteOctet(packetTypePing, c.bufWriter, &n, &err) c.sendMonitor.Update(int(n)) c.flush() case <-c.pong: c.Logger.Debug("Send Pong") legacy.WriteOctet(packetTypePong, c.bufWriter, &n, &err) c.sendMonitor.Update(int(n)) c.flush() case <-c.quit: break FOR_LOOP case <-c.send: // Send some msgPackets eof := c.sendSomeMsgPackets() if !eof { // Keep sendRoutine awake. select { case c.send <- struct{}{}: default: } } } if !c.IsRunning() { break FOR_LOOP } if err != nil { c.Logger.Error("Connection failed @ sendRoutine", "conn", c, "err", err) c.stopForError(err) break FOR_LOOP } } // Cleanup } // Returns true if messages from channels were exhausted. // Blocks in accordance to .sendMonitor throttling. func (c *MConnection) sendSomeMsgPackets() bool { // Block until .sendMonitor says we can write. // Once we're ready we send more than we asked for, // but amortized it should even out. c.sendMonitor.Limit(c.config.maxMsgPacketTotalSize(), atomic.LoadInt64(&c.config.SendRate), true) // Now send some msgPackets. for i := 0; i < numBatchMsgPackets; i++ { if c.sendMsgPacket() { return true } } return false } // Returns true if messages from channels were exhausted. func (c *MConnection) sendMsgPacket() bool { // Choose a channel to create a msgPacket from. // The chosen channel will be the one whose recentlySent/priority is the least. var leastRatio float32 = math.MaxFloat32 var leastChannel *Channel for _, channel := range c.channels { // If nothing to send, skip this channel if !channel.isSendPending() { continue } // Get ratio, and keep track of lowest ratio. ratio := float32(channel.recentlySent) / float32(channel.desc.Priority) if ratio < leastRatio { leastRatio = ratio leastChannel = channel } } // Nothing to send? if leastChannel == nil { return true } else { // c.Logger.Info("Found a msgPacket to send") } // Make & send a msgPacket from this channel n, err := leastChannel.writeMsgPacketTo(c.bufWriter) if err != nil { c.Logger.Error("Failed to write msgPacket", "err", err) c.stopForError(err) return true } c.sendMonitor.Update(int(n)) c.flushTimer.Set() return false } // recvRoutine reads msgPackets and reconstructs the message using the channels' "recving" buffer. // After a whole message has been assembled, it's pushed to onReceive(). // Blocks depending on how the connection is throttled. func (c *MConnection) recvRoutine() { defer c._recover() FOR_LOOP: for { // Block until .recvMonitor says we can read. c.recvMonitor.Limit(c.config.maxMsgPacketTotalSize(), atomic.LoadInt64(&c.config.RecvRate), true) /* // Peek into bufReader for debugging if numBytes := c.bufReader.Buffered(); numBytes > 0 { log.Info("Peek connection buffer", "numBytes", numBytes, "bytes", log15.Lazy{func() []byte { bytes, err := c.bufReader.Peek(cmn.MinInt(numBytes, 100)) if err == nil { return bytes } else { log.Warn("Error peeking connection buffer", "err", err) return nil } }}) } */ // Read packet type var n int var err error pktType := wire.ReadByte(c.bufReader, &n, &err) c.recvMonitor.Update(int(n)) if err != nil { if c.IsRunning() { c.Logger.Error("Connection failed @ recvRoutine (reading byte)", "conn", c, "err", err) c.stopForError(err) } break FOR_LOOP } // Read more depending on packet type. switch pktType { case packetTypePing: // TODO: prevent abuse, as they cause flush()'s. c.Logger.Debug("Receive Ping") c.pong <- struct{}{} case packetTypePong: // do nothing c.Logger.Debug("Receive Pong") case packetTypeMsg: pkt, n, err := msgPacket{}, int(0), error(nil) wire.ReadBinaryPtr(&pkt, c.bufReader, c.config.maxMsgPacketTotalSize(), &n, &err) c.recvMonitor.Update(int(n)) if err != nil { if c.IsRunning() { c.Logger.Error("Connection failed @ recvRoutine", "conn", c, "err", err) c.stopForError(err) } break FOR_LOOP } channel, ok := c.channelsIdx[pkt.ChannelID] if !ok || channel == nil { err := fmt.Errorf("Unknown channel %X", pkt.ChannelID) c.Logger.Error("Connection failed @ recvRoutine", "conn", c, "err", err) c.stopForError(err) } msgBytes, err := channel.recvMsgPacket(pkt) if err != nil { if c.IsRunning() { c.Logger.Error("Connection failed @ recvRoutine", "conn", c, "err", err) c.stopForError(err) } break FOR_LOOP } if msgBytes != nil { c.Logger.Debug("Received bytes", "chID", pkt.ChannelID, "msgBytes", msgBytes) // NOTE: This means the reactor.Receive runs in the same thread as the p2p recv routine c.onReceive(pkt.ChannelID, msgBytes) } default: err := fmt.Errorf("Unknown message type %X", pktType) c.Logger.Error("Connection failed @ recvRoutine", "conn", c, "err", err) c.stopForError(err) } // TODO: shouldn't this go in the sendRoutine? // Better to send a ping packet when *we* haven't sent anything for a while. c.pingTimer.Reset() } // Cleanup close(c.pong) for range c.pong { // Drain } } type ConnectionStatus struct { SendMonitor flow.Status RecvMonitor flow.Status Channels []ChannelStatus } type ChannelStatus struct { ID byte SendQueueCapacity int SendQueueSize int Priority int RecentlySent int64 } func (c *MConnection) Status() ConnectionStatus { var status ConnectionStatus status.SendMonitor = c.sendMonitor.Status() status.RecvMonitor = c.recvMonitor.Status() status.Channels = make([]ChannelStatus, len(c.channels)) for i, channel := range c.channels { status.Channels[i] = ChannelStatus{ ID: channel.desc.ID, SendQueueCapacity: cap(channel.sendQueue), SendQueueSize: int(channel.sendQueueSize), // TODO use atomic Priority: channel.desc.Priority, RecentlySent: channel.recentlySent, } } return status } //----------------------------------------------------------------------------- type ChannelDescriptor struct { ID byte Priority int SendQueueCapacity int RecvBufferCapacity int RecvMessageCapacity int } func (chDesc ChannelDescriptor) FillDefaults() (filled ChannelDescriptor) { if chDesc.SendQueueCapacity == 0 { chDesc.SendQueueCapacity = defaultSendQueueCapacity } if chDesc.RecvBufferCapacity == 0 { chDesc.RecvBufferCapacity = defaultRecvBufferCapacity } if chDesc.RecvMessageCapacity == 0 { chDesc.RecvMessageCapacity = defaultRecvMessageCapacity } filled = chDesc return } // TODO: lowercase. // NOTE: not goroutine-safe. type Channel struct { conn *MConnection desc ChannelDescriptor sendQueue chan []byte sendQueueSize int32 // atomic. recving []byte sending []byte recentlySent int64 // exponential moving average maxMsgPacketPayloadSize int Logger log.Logger } func newChannel(conn *MConnection, desc ChannelDescriptor) *Channel { desc = desc.FillDefaults() if desc.Priority <= 0 { cmn.PanicSanity("Channel default priority must be a positive integer") } return &Channel{ conn: conn, desc: desc, sendQueue: make(chan []byte, desc.SendQueueCapacity), recving: make([]byte, 0, desc.RecvBufferCapacity), maxMsgPacketPayloadSize: conn.config.maxMsgPacketPayloadSize, } } func (ch *Channel) SetLogger(l log.Logger) { ch.Logger = l } // Queues message to send to this channel. // Goroutine-safe // Times out (and returns false) after defaultSendTimeout func (ch *Channel) sendBytes(bytes []byte) bool { select { case ch.sendQueue <- bytes: atomic.AddInt32(&ch.sendQueueSize, 1) return true case <-time.After(defaultSendTimeout): return false } } // Queues message to send to this channel. // Nonblocking, returns true if successful. // Goroutine-safe func (ch *Channel) trySendBytes(bytes []byte) bool { select { case ch.sendQueue <- bytes: atomic.AddInt32(&ch.sendQueueSize, 1) return true default: return false } } // Goroutine-safe func (ch *Channel) loadSendQueueSize() (size int) { return int(atomic.LoadInt32(&ch.sendQueueSize)) } // Goroutine-safe // Use only as a heuristic. func (ch *Channel) canSend() bool { return ch.loadSendQueueSize() < defaultSendQueueCapacity } // Returns true if any msgPackets are pending to be sent. // Call before calling nextMsgPacket() // Goroutine-safe func (ch *Channel) isSendPending() bool { if len(ch.sending) == 0 { if len(ch.sendQueue) == 0 { return false } ch.sending = <-ch.sendQueue } return true } // Creates a new msgPacket to send. // Not goroutine-safe func (ch *Channel) nextMsgPacket() msgPacket { packet := msgPacket{} packet.ChannelID = byte(ch.desc.ID) maxSize := ch.maxMsgPacketPayloadSize packet.Bytes = ch.sending[:cmn.MinInt(maxSize, len(ch.sending))] if len(ch.sending) <= maxSize { packet.EOF = byte(0x01) ch.sending = nil atomic.AddInt32(&ch.sendQueueSize, -1) // decrement sendQueueSize } else { packet.EOF = byte(0x00) ch.sending = ch.sending[cmn.MinInt(maxSize, len(ch.sending)):] } return packet } // Writes next msgPacket to w. // Not goroutine-safe func (ch *Channel) writeMsgPacketTo(w io.Writer) (n int, err error) { packet := ch.nextMsgPacket() ch.Logger.Debug("Write Msg Packet", "conn", ch.conn, "packet", packet) writeMsgPacketTo(packet, w, &n, &err) if err == nil { ch.recentlySent += int64(n) } return } func writeMsgPacketTo(packet msgPacket, w io.Writer, n *int, err *error) { legacy.WriteOctet(packetTypeMsg, w, n, err) wire.WriteBinary(packet, w, n, err) } // Handles incoming msgPackets. Returns a msg bytes if msg is complete. // Not goroutine-safe func (ch *Channel) recvMsgPacket(packet msgPacket) ([]byte, error) { ch.Logger.Debug("Read Msg Packet", "conn", ch.conn, "packet", packet) if ch.desc.RecvMessageCapacity < len(ch.recving)+len(packet.Bytes) { return nil, wire.ErrBinaryReadOverflow } ch.recving = append(ch.recving, packet.Bytes...) if packet.EOF == byte(0x01) { msgBytes := ch.recving // clear the slice without re-allocating. // http://stackoverflow.com/questions/16971741/how-do-you-clear-a-slice-in-go // suggests this could be a memory leak, but we might as well keep the memory for the channel until it closes, // at which point the recving slice stops being used and should be garbage collected ch.recving = ch.recving[:0] // make([]byte, 0, ch.desc.RecvBufferCapacity) return msgBytes, nil } return nil, nil } // Call this periodically to update stats for throttling purposes. // Not goroutine-safe func (ch *Channel) updateStats() { // Exponential decay of stats. // TODO: optimize. ch.recentlySent = int64(float64(ch.recentlySent) * 0.8) } //----------------------------------------------------------------------------- const ( defaultMaxMsgPacketPayloadSize = 1024 maxMsgPacketOverheadSize = 10 // It's actually lower but good enough packetTypePing = byte(0x01) packetTypePong = byte(0x02) packetTypeMsg = byte(0x03) ) // Messages in channels are chopped into smaller msgPackets for multiplexing. type msgPacket struct { ChannelID byte EOF byte // 1 means message ends here. Bytes []byte } func (p msgPacket) String() string { return fmt.Sprintf("MsgPacket{%X:%X T:%X}", p.ChannelID, p.Bytes, p.EOF) }