package statesync import ( "bytes" "context" "errors" "fmt" "reflect" "runtime/debug" "sort" "time" abci "github.com/tendermint/tendermint/abci/types" "github.com/tendermint/tendermint/config" tmsync "github.com/tendermint/tendermint/internal/libs/sync" "github.com/tendermint/tendermint/internal/p2p" "github.com/tendermint/tendermint/internal/proxy" sm "github.com/tendermint/tendermint/internal/state" "github.com/tendermint/tendermint/internal/store" "github.com/tendermint/tendermint/libs/log" "github.com/tendermint/tendermint/libs/service" "github.com/tendermint/tendermint/light" "github.com/tendermint/tendermint/light/provider" ssproto "github.com/tendermint/tendermint/proto/tendermint/statesync" "github.com/tendermint/tendermint/types" ) var ( _ service.Service = (*Reactor)(nil) _ p2p.Wrapper = (*ssproto.Message)(nil) ) const ( // SnapshotChannel exchanges snapshot metadata SnapshotChannel = p2p.ChannelID(0x60) // ChunkChannel exchanges chunk contents ChunkChannel = p2p.ChannelID(0x61) // LightBlockChannel exchanges light blocks LightBlockChannel = p2p.ChannelID(0x62) // ParamsChannel exchanges consensus params ParamsChannel = p2p.ChannelID(0x63) // recentSnapshots is the number of recent snapshots to send and receive per peer. recentSnapshots = 10 // snapshotMsgSize is the maximum size of a snapshotResponseMessage snapshotMsgSize = int(4e6) // ~4MB // chunkMsgSize is the maximum size of a chunkResponseMessage chunkMsgSize = int(16e6) // ~16MB // lightBlockMsgSize is the maximum size of a lightBlockResponseMessage lightBlockMsgSize = int(1e7) // ~1MB // paramMsgSize is the maximum size of a paramsResponseMessage paramMsgSize = int(1e5) // ~100kb // lightBlockResponseTimeout is how long the dispatcher waits for a peer to // return a light block lightBlockResponseTimeout = 10 * time.Second // consensusParamsResponseTimeout is the time the p2p state provider waits // before performing a secondary call consensusParamsResponseTimeout = 5 * time.Second // maxLightBlockRequestRetries is the amount of retries acceptable before // the backfill process aborts maxLightBlockRequestRetries = 20 ) func GetChannelDescriptors() []*p2p.ChannelDescriptor { return []*p2p.ChannelDescriptor{ { ID: SnapshotChannel, MessageType: new(ssproto.Message), Priority: 6, SendQueueCapacity: 10, RecvMessageCapacity: snapshotMsgSize, RecvBufferCapacity: 128, }, { ID: ChunkChannel, Priority: 3, MessageType: new(ssproto.Message), SendQueueCapacity: 4, RecvMessageCapacity: chunkMsgSize, RecvBufferCapacity: 128, }, { ID: LightBlockChannel, MessageType: new(ssproto.Message), Priority: 5, SendQueueCapacity: 10, RecvMessageCapacity: lightBlockMsgSize, RecvBufferCapacity: 128, }, { ID: ParamsChannel, MessageType: new(ssproto.Message), Priority: 2, SendQueueCapacity: 10, RecvMessageCapacity: paramMsgSize, RecvBufferCapacity: 128, }, } } // Metricer defines an interface used for the rpc sync info query, please see statesync.metrics // for the details. type Metricer interface { TotalSnapshots() int64 ChunkProcessAvgTime() time.Duration SnapshotHeight() int64 SnapshotChunksCount() int64 SnapshotChunksTotal() int64 BackFilledBlocks() int64 BackFillBlocksTotal() int64 } // Reactor handles state sync, both restoring snapshots for the local node and // serving snapshots for other nodes. type Reactor struct { service.BaseService chainID string initialHeight int64 cfg config.StateSyncConfig stateStore sm.Store blockStore *store.BlockStore conn proxy.AppConnSnapshot connQuery proxy.AppConnQuery tempDir string snapshotCh *p2p.Channel chunkCh *p2p.Channel blockCh *p2p.Channel paramsCh *p2p.Channel peerUpdates *p2p.PeerUpdates closeCh chan struct{} // Dispatcher is used to multiplex light block requests and responses over multiple // peers used by the p2p state provider and in reverse sync. dispatcher *Dispatcher peers *peerList // These will only be set when a state sync is in progress. It is used to feed // received snapshots and chunks into the syncer and manage incoming and outgoing // providers. mtx tmsync.RWMutex syncer *syncer providers map[types.NodeID]*BlockProvider stateProvider StateProvider metrics *Metrics backfillBlockTotal int64 backfilledBlocks int64 } // NewReactor returns a reference to a new state sync reactor, which implements // the service.Service interface. It accepts a logger, connections for snapshots // and querying, references to p2p Channels and a channel to listen for peer // updates on. Note, the reactor will close all p2p Channels when stopping. func NewReactor( chainID string, initialHeight int64, cfg config.StateSyncConfig, logger log.Logger, conn proxy.AppConnSnapshot, connQuery proxy.AppConnQuery, snapshotCh, chunkCh, blockCh, paramsCh *p2p.Channel, peerUpdates *p2p.PeerUpdates, stateStore sm.Store, blockStore *store.BlockStore, tempDir string, ssMetrics *Metrics, ) *Reactor { r := &Reactor{ chainID: chainID, initialHeight: initialHeight, cfg: cfg, conn: conn, connQuery: connQuery, snapshotCh: snapshotCh, chunkCh: chunkCh, blockCh: blockCh, paramsCh: paramsCh, peerUpdates: peerUpdates, closeCh: make(chan struct{}), tempDir: tempDir, stateStore: stateStore, blockStore: blockStore, peers: newPeerList(), dispatcher: NewDispatcher(blockCh.Out), providers: make(map[types.NodeID]*BlockProvider), metrics: ssMetrics, } r.BaseService = *service.NewBaseService(logger, "StateSync", r) return r } // OnStart starts separate go routines for each p2p Channel and listens for // envelopes on each. In addition, it also listens for peer updates and handles // messages on that p2p channel accordingly. Note, we do not launch a go-routine to // handle individual envelopes as to not have to deal with bounding workers or pools. // The caller must be sure to execute OnStop to ensure the outbound p2p Channels are // closed. No error is returned. func (r *Reactor) OnStart(ctx context.Context) error { go r.processCh(r.snapshotCh, "snapshot") go r.processCh(r.chunkCh, "chunk") go r.processCh(r.blockCh, "light block") go r.processCh(r.paramsCh, "consensus params") go r.processPeerUpdates() return nil } // OnStop stops the reactor by signaling to all spawned goroutines to exit and // blocking until they all exit. func (r *Reactor) OnStop() { // tell the dispatcher to stop sending any more requests r.dispatcher.Close() // wait for any remaining requests to complete <-r.dispatcher.Done() // Close closeCh to signal to all spawned goroutines to gracefully exit. All // p2p Channels should execute Close(). close(r.closeCh) // Wait for all p2p Channels to be closed before returning. This ensures we // can easily reason about synchronization of all p2p Channels and ensure no // panics will occur. <-r.peerUpdates.Done() <-r.snapshotCh.Done() <-r.chunkCh.Done() <-r.blockCh.Done() <-r.paramsCh.Done() } // Sync runs a state sync, fetching snapshots and providing chunks to the // application. At the close of the operation, Sync will bootstrap the state // store and persist the commit at that height so that either consensus or // blocksync can commence. It will then proceed to backfill the necessary amount // of historical blocks before participating in consensus func (r *Reactor) Sync(ctx context.Context) (sm.State, error) { // We need at least two peers (for cross-referencing of light blocks) before we can // begin state sync if err := r.waitForEnoughPeers(ctx, 2); err != nil { return sm.State{}, err } r.mtx.Lock() if r.syncer != nil { r.mtx.Unlock() return sm.State{}, errors.New("a state sync is already in progress") } if err := r.initStateProvider(ctx, r.chainID, r.initialHeight); err != nil { r.mtx.Unlock() return sm.State{}, err } r.syncer = newSyncer( r.cfg, r.Logger, r.conn, r.connQuery, r.stateProvider, r.snapshotCh.Out, r.chunkCh.Out, r.snapshotCh.Done(), r.tempDir, r.metrics, ) r.mtx.Unlock() defer func() { r.mtx.Lock() // reset syncing objects at the close of Sync r.syncer = nil r.stateProvider = nil r.mtx.Unlock() }() requestSnapshotsHook := func() { // request snapshots from all currently connected peers msg := p2p.Envelope{ Broadcast: true, Message: &ssproto.SnapshotsRequest{}, } select { case <-ctx.Done(): case <-r.closeCh: case r.snapshotCh.Out <- msg: } } state, commit, err := r.syncer.SyncAny(ctx, r.cfg.DiscoveryTime, requestSnapshotsHook) if err != nil { return sm.State{}, err } err = r.stateStore.Bootstrap(state) if err != nil { return sm.State{}, fmt.Errorf("failed to bootstrap node with new state: %w", err) } err = r.blockStore.SaveSeenCommit(state.LastBlockHeight, commit) if err != nil { return sm.State{}, fmt.Errorf("failed to store last seen commit: %w", err) } err = r.Backfill(ctx, state) if err != nil { r.Logger.Error("backfill failed. Proceeding optimistically...", "err", err) } return state, nil } // Backfill sequentially fetches, verifies and stores light blocks in reverse // order. It does not stop verifying blocks until reaching a block with a height // and time that is less or equal to the stopHeight and stopTime. The // trustedBlockID should be of the header at startHeight. func (r *Reactor) Backfill(ctx context.Context, state sm.State) error { params := state.ConsensusParams.Evidence stopHeight := state.LastBlockHeight - params.MaxAgeNumBlocks stopTime := state.LastBlockTime.Add(-params.MaxAgeDuration) // ensure that stop height doesn't go below the initial height if stopHeight < state.InitialHeight { stopHeight = state.InitialHeight // this essentially makes stop time a void criteria for termination stopTime = state.LastBlockTime } return r.backfill( ctx, state.ChainID, state.LastBlockHeight, stopHeight, state.InitialHeight, state.LastBlockID, stopTime, ) } func (r *Reactor) backfill( ctx context.Context, chainID string, startHeight, stopHeight, initialHeight int64, trustedBlockID types.BlockID, stopTime time.Time, ) error { r.Logger.Info("starting backfill process...", "startHeight", startHeight, "stopHeight", stopHeight, "stopTime", stopTime, "trustedBlockID", trustedBlockID) r.backfillBlockTotal = startHeight - stopHeight + 1 r.metrics.BackFillBlocksTotal.Set(float64(r.backfillBlockTotal)) const sleepTime = 1 * time.Second var ( lastValidatorSet *types.ValidatorSet lastChangeHeight = startHeight ) queue := newBlockQueue(startHeight, stopHeight, initialHeight, stopTime, maxLightBlockRequestRetries) // fetch light blocks across four workers. The aim with deploying concurrent // workers is to equate the network messaging time with the verification // time. Ideally we want the verification process to never have to be // waiting on blocks. If it takes 4s to retrieve a block and 1s to verify // it, then steady state involves four workers. for i := 0; i < int(r.cfg.Fetchers); i++ { ctxWithCancel, cancel := context.WithCancel(ctx) defer cancel() go func() { for { select { case height := <-queue.nextHeight(): // pop the next peer of the list to send a request to peer := r.peers.Pop(ctx) r.Logger.Debug("fetching next block", "height", height, "peer", peer) subCtx, cancel := context.WithTimeout(ctxWithCancel, lightBlockResponseTimeout) defer cancel() lb, err := func() (*types.LightBlock, error) { defer cancel() // request the light block with a timeout return r.dispatcher.LightBlock(subCtx, height, peer) }() // once the peer has returned a value, add it back to the peer list to be used again r.peers.Append(peer) if errors.Is(err, context.Canceled) { return } if err != nil { queue.retry(height) if errors.Is(err, errNoConnectedPeers) { r.Logger.Info("backfill: no connected peers to fetch light blocks from; sleeping...", "sleepTime", sleepTime) time.Sleep(sleepTime) } else { // we don't punish the peer as it might just have not responded in time r.Logger.Info("backfill: error with fetching light block", "height", height, "err", err) } continue } if lb == nil { r.Logger.Info("backfill: peer didn't have block, fetching from another peer", "height", height) queue.retry(height) // As we are fetching blocks backwards, if this node doesn't have the block it likely doesn't // have any prior ones, thus we remove it from the peer list. r.peers.Remove(peer) continue } // run a validate basic. This checks the validator set and commit // hashes line up err = lb.ValidateBasic(chainID) if err != nil || lb.Height != height { r.Logger.Info("backfill: fetched light block failed validate basic, removing peer...", "err", err, "height", height) queue.retry(height) r.blockCh.Error <- p2p.PeerError{ NodeID: peer, Err: fmt.Errorf("received invalid light block: %w", err), } continue } // add block to queue to be verified queue.add(lightBlockResponse{ block: lb, peer: peer, }) r.Logger.Debug("backfill: added light block to processing queue", "height", height) case <-queue.done(): return } } }() } // verify all light blocks for { select { case <-r.closeCh: queue.close() return nil case <-ctx.Done(): queue.close() return nil case resp := <-queue.verifyNext(): // validate the header hash. We take the last block id of the // previous header (i.e. one height above) as the trusted hash which // we equate to. ValidatorsHash and CommitHash have already been // checked in the `ValidateBasic` if w, g := trustedBlockID.Hash, resp.block.Hash(); !bytes.Equal(w, g) { r.Logger.Info("received invalid light block. header hash doesn't match trusted LastBlockID", "trustedHash", w, "receivedHash", g, "height", resp.block.Height) r.blockCh.Error <- p2p.PeerError{ NodeID: resp.peer, Err: fmt.Errorf("received invalid light block. Expected hash %v, got: %v", w, g), } queue.retry(resp.block.Height) continue } // save the signed headers err := r.blockStore.SaveSignedHeader(resp.block.SignedHeader, trustedBlockID) if err != nil { return err } // check if there has been a change in the validator set if lastValidatorSet != nil && !bytes.Equal(resp.block.Header.ValidatorsHash, resp.block.Header.NextValidatorsHash) { // save all the heights that the last validator set was the same err = r.stateStore.SaveValidatorSets(resp.block.Height+1, lastChangeHeight, lastValidatorSet) if err != nil { return err } // update the lastChangeHeight lastChangeHeight = resp.block.Height } trustedBlockID = resp.block.LastBlockID queue.success() r.Logger.Info("backfill: verified and stored light block", "height", resp.block.Height) lastValidatorSet = resp.block.ValidatorSet r.backfilledBlocks++ r.metrics.BackFilledBlocks.Add(1) // The block height might be less than the stopHeight because of the stopTime condition // hasn't been fulfilled. if resp.block.Height < stopHeight { r.backfillBlockTotal++ r.metrics.BackFillBlocksTotal.Set(float64(r.backfillBlockTotal)) } case <-queue.done(): if err := queue.error(); err != nil { return err } // save the final batch of validators if err := r.stateStore.SaveValidatorSets(queue.terminal.Height, lastChangeHeight, lastValidatorSet); err != nil { return err } r.Logger.Info("successfully completed backfill process", "endHeight", queue.terminal.Height) return nil } } } // handleSnapshotMessage handles envelopes sent from peers on the // SnapshotChannel. It returns an error only if the Envelope.Message is unknown // for this channel. This should never be called outside of handleMessage. func (r *Reactor) handleSnapshotMessage(envelope p2p.Envelope) error { logger := r.Logger.With("peer", envelope.From) switch msg := envelope.Message.(type) { case *ssproto.SnapshotsRequest: snapshots, err := r.recentSnapshots(recentSnapshots) if err != nil { logger.Error("failed to fetch snapshots", "err", err) return nil } for _, snapshot := range snapshots { logger.Info( "advertising snapshot", "height", snapshot.Height, "format", snapshot.Format, "peer", envelope.From, ) r.snapshotCh.Out <- p2p.Envelope{ To: envelope.From, Message: &ssproto.SnapshotsResponse{ Height: snapshot.Height, Format: snapshot.Format, Chunks: snapshot.Chunks, Hash: snapshot.Hash, Metadata: snapshot.Metadata, }, } } case *ssproto.SnapshotsResponse: r.mtx.RLock() defer r.mtx.RUnlock() if r.syncer == nil { logger.Debug("received unexpected snapshot; no state sync in progress") return nil } logger.Info("received snapshot", "height", msg.Height, "format", msg.Format) _, err := r.syncer.AddSnapshot(envelope.From, &snapshot{ Height: msg.Height, Format: msg.Format, Chunks: msg.Chunks, Hash: msg.Hash, Metadata: msg.Metadata, }) if err != nil { logger.Error( "failed to add snapshot", "height", msg.Height, "format", msg.Format, "err", err, "channel", r.snapshotCh.ID, ) return nil } logger.Info("added snapshot", "height", msg.Height, "format", msg.Format) default: return fmt.Errorf("received unknown message: %T", msg) } return nil } // handleChunkMessage handles envelopes sent from peers on the ChunkChannel. // It returns an error only if the Envelope.Message is unknown for this channel. // This should never be called outside of handleMessage. func (r *Reactor) handleChunkMessage(envelope p2p.Envelope) error { switch msg := envelope.Message.(type) { case *ssproto.ChunkRequest: r.Logger.Debug( "received chunk request", "height", msg.Height, "format", msg.Format, "chunk", msg.Index, "peer", envelope.From, ) resp, err := r.conn.LoadSnapshotChunkSync(context.TODO(), abci.RequestLoadSnapshotChunk{ Height: msg.Height, Format: msg.Format, Chunk: msg.Index, }) if err != nil { r.Logger.Error( "failed to load chunk", "height", msg.Height, "format", msg.Format, "chunk", msg.Index, "err", err, "peer", envelope.From, ) return nil } r.Logger.Debug( "sending chunk", "height", msg.Height, "format", msg.Format, "chunk", msg.Index, "peer", envelope.From, ) r.chunkCh.Out <- p2p.Envelope{ To: envelope.From, Message: &ssproto.ChunkResponse{ Height: msg.Height, Format: msg.Format, Index: msg.Index, Chunk: resp.Chunk, Missing: resp.Chunk == nil, }, } case *ssproto.ChunkResponse: r.mtx.RLock() defer r.mtx.RUnlock() if r.syncer == nil { r.Logger.Debug("received unexpected chunk; no state sync in progress", "peer", envelope.From) return nil } r.Logger.Debug( "received chunk; adding to sync", "height", msg.Height, "format", msg.Format, "chunk", msg.Index, "peer", envelope.From, ) _, err := r.syncer.AddChunk(&chunk{ Height: msg.Height, Format: msg.Format, Index: msg.Index, Chunk: msg.Chunk, Sender: envelope.From, }) if err != nil { r.Logger.Error( "failed to add chunk", "height", msg.Height, "format", msg.Format, "chunk", msg.Index, "err", err, "peer", envelope.From, ) return nil } default: return fmt.Errorf("received unknown message: %T", msg) } return nil } func (r *Reactor) handleLightBlockMessage(envelope p2p.Envelope) error { switch msg := envelope.Message.(type) { case *ssproto.LightBlockRequest: r.Logger.Info("received light block request", "height", msg.Height) lb, err := r.fetchLightBlock(msg.Height) if err != nil { r.Logger.Error("failed to retrieve light block", "err", err, "height", msg.Height) return err } if lb == nil { r.blockCh.Out <- p2p.Envelope{ To: envelope.From, Message: &ssproto.LightBlockResponse{ LightBlock: nil, }, } return nil } lbproto, err := lb.ToProto() if err != nil { r.Logger.Error("marshaling light block to proto", "err", err) return nil } // NOTE: If we don't have the light block we will send a nil light block // back to the requested node, indicating that we don't have it. r.blockCh.Out <- p2p.Envelope{ To: envelope.From, Message: &ssproto.LightBlockResponse{ LightBlock: lbproto, }, } case *ssproto.LightBlockResponse: var height int64 if msg.LightBlock != nil { height = msg.LightBlock.SignedHeader.Header.Height } r.Logger.Info("received light block response", "peer", envelope.From, "height", height) if err := r.dispatcher.Respond(msg.LightBlock, envelope.From); err != nil { r.Logger.Error("error processing light block response", "err", err, "height", height) } default: return fmt.Errorf("received unknown message: %T", msg) } return nil } func (r *Reactor) handleParamsMessage(envelope p2p.Envelope) error { switch msg := envelope.Message.(type) { case *ssproto.ParamsRequest: r.Logger.Debug("received consensus params request", "height", msg.Height) cp, err := r.stateStore.LoadConsensusParams(int64(msg.Height)) if err != nil { r.Logger.Error("failed to fetch requested consensus params", "err", err, "height", msg.Height) return nil } cpproto := cp.ToProto() r.paramsCh.Out <- p2p.Envelope{ To: envelope.From, Message: &ssproto.ParamsResponse{ Height: msg.Height, ConsensusParams: cpproto, }, } case *ssproto.ParamsResponse: r.mtx.RLock() defer r.mtx.RUnlock() r.Logger.Debug("received consensus params response", "height", msg.Height) cp := types.ConsensusParamsFromProto(msg.ConsensusParams) if sp, ok := r.stateProvider.(*stateProviderP2P); ok { select { case sp.paramsRecvCh <- cp: case <-time.After(time.Second): return errors.New("failed to send consensus params, stateprovider not ready for response") } } else { r.Logger.Debug("received unexpected params response; using RPC state provider", "peer", envelope.From) } default: return fmt.Errorf("received unknown message: %T", msg) } return nil } // handleMessage handles an Envelope sent from a peer on a specific p2p Channel. // It will handle errors and any possible panics gracefully. A caller can handle // any error returned by sending a PeerError on the respective channel. func (r *Reactor) handleMessage(chID p2p.ChannelID, envelope p2p.Envelope) (err error) { defer func() { if e := recover(); e != nil { err = fmt.Errorf("panic in processing message: %v", e) r.Logger.Error( "recovering from processing message panic", "err", err, "stack", string(debug.Stack()), ) } }() r.Logger.Debug("received message", "message", reflect.TypeOf(envelope.Message), "peer", envelope.From) switch chID { case SnapshotChannel: err = r.handleSnapshotMessage(envelope) case ChunkChannel: err = r.handleChunkMessage(envelope) case LightBlockChannel: err = r.handleLightBlockMessage(envelope) case ParamsChannel: err = r.handleParamsMessage(envelope) default: err = fmt.Errorf("unknown channel ID (%d) for envelope (%v)", chID, envelope) } return err } // processCh routes state sync messages to their respective handlers. Any error // encountered during message execution will result in a PeerError being sent on // the respective channel. When the reactor is stopped, we will catch the signal // and close the p2p Channel gracefully. func (r *Reactor) processCh(ch *p2p.Channel, chName string) { defer ch.Close() for { select { case envelope := <-ch.In: if err := r.handleMessage(ch.ID, envelope); err != nil { r.Logger.Error("failed to process message", "err", err, "channel", chName, "ch_id", ch.ID, "envelope", envelope) ch.Error <- p2p.PeerError{ NodeID: envelope.From, Err: err, } } case <-r.closeCh: r.Logger.Debug("channel closed", "channel", chName) return } } } // processPeerUpdate processes a PeerUpdate, returning an error upon failing to // handle the PeerUpdate or if a panic is recovered. func (r *Reactor) processPeerUpdate(peerUpdate p2p.PeerUpdate) { r.Logger.Info("received peer update", "peer", peerUpdate.NodeID, "status", peerUpdate.Status) switch peerUpdate.Status { case p2p.PeerStatusUp: r.peers.Append(peerUpdate.NodeID) case p2p.PeerStatusDown: r.peers.Remove(peerUpdate.NodeID) } r.mtx.Lock() defer r.mtx.Unlock() if r.syncer == nil { return } switch peerUpdate.Status { case p2p.PeerStatusUp: newProvider := NewBlockProvider(peerUpdate.NodeID, r.chainID, r.dispatcher) r.providers[peerUpdate.NodeID] = newProvider err := r.syncer.AddPeer(peerUpdate.NodeID) if err != nil { r.Logger.Error("error adding peer to syncer", "error", err) return } if sp, ok := r.stateProvider.(*stateProviderP2P); ok { // we do this in a separate routine to not block whilst waiting for the light client to finish // whatever call it's currently executing go sp.addProvider(newProvider) } case p2p.PeerStatusDown: delete(r.providers, peerUpdate.NodeID) r.syncer.RemovePeer(peerUpdate.NodeID) } r.Logger.Info("processed peer update", "peer", peerUpdate.NodeID, "status", peerUpdate.Status) } // processPeerUpdates initiates a blocking process where we listen for and handle // PeerUpdate messages. When the reactor is stopped, we will catch the signal and // close the p2p PeerUpdatesCh gracefully. func (r *Reactor) processPeerUpdates() { defer r.peerUpdates.Close() for { select { case peerUpdate := <-r.peerUpdates.Updates(): r.processPeerUpdate(peerUpdate) case <-r.closeCh: r.Logger.Debug("stopped listening on peer updates channel; closing...") return } } } // recentSnapshots fetches the n most recent snapshots from the app func (r *Reactor) recentSnapshots(n uint32) ([]*snapshot, error) { resp, err := r.conn.ListSnapshotsSync(context.TODO(), abci.RequestListSnapshots{}) if err != nil { return nil, err } sort.Slice(resp.Snapshots, func(i, j int) bool { a := resp.Snapshots[i] b := resp.Snapshots[j] switch { case a.Height > b.Height: return true case a.Height == b.Height && a.Format > b.Format: return true default: return false } }) snapshots := make([]*snapshot, 0, n) for i, s := range resp.Snapshots { if i >= recentSnapshots { break } snapshots = append(snapshots, &snapshot{ Height: s.Height, Format: s.Format, Chunks: s.Chunks, Hash: s.Hash, Metadata: s.Metadata, }) } return snapshots, nil } // fetchLightBlock works out whether the node has a light block at a particular // height and if so returns it so it can be gossiped to peers func (r *Reactor) fetchLightBlock(height uint64) (*types.LightBlock, error) { h := int64(height) blockMeta := r.blockStore.LoadBlockMeta(h) if blockMeta == nil { return nil, nil } commit := r.blockStore.LoadBlockCommit(h) if commit == nil { return nil, nil } vals, err := r.stateStore.LoadValidators(h) if err != nil { return nil, err } if vals == nil { return nil, nil } return &types.LightBlock{ SignedHeader: &types.SignedHeader{ Header: &blockMeta.Header, Commit: commit, }, ValidatorSet: vals, }, nil } func (r *Reactor) waitForEnoughPeers(ctx context.Context, numPeers int) error { startAt := time.Now() t := time.NewTicker(100 * time.Millisecond) defer t.Stop() logT := time.NewTicker(time.Minute) defer logT.Stop() var iter int for r.peers.Len() < numPeers { iter++ select { case <-ctx.Done(): return fmt.Errorf("operation canceled while waiting for peers after %.2fs [%d/%d]", time.Since(startAt).Seconds(), r.peers.Len(), numPeers) case <-r.closeCh: return fmt.Errorf("shutdown while waiting for peers after %.2fs [%d/%d]", time.Since(startAt).Seconds(), r.peers.Len(), numPeers) case <-t.C: continue case <-logT.C: r.Logger.Info("waiting for sufficient peers to start statesync", "duration", time.Since(startAt).String(), "target", numPeers, "peers", r.peers.Len(), "iters", iter, ) continue } } return nil } func (r *Reactor) initStateProvider(ctx context.Context, chainID string, initialHeight int64) error { var err error to := light.TrustOptions{ Period: r.cfg.TrustPeriod, Height: r.cfg.TrustHeight, Hash: r.cfg.TrustHashBytes(), } spLogger := r.Logger.With("module", "stateprovider") spLogger.Info("initializing state provider", "trustPeriod", to.Period, "trustHeight", to.Height, "useP2P", r.cfg.UseP2P) if r.cfg.UseP2P { if err := r.waitForEnoughPeers(ctx, 2); err != nil { return err } peers := r.peers.All() providers := make([]provider.Provider, len(peers)) for idx, p := range peers { providers[idx] = NewBlockProvider(p, chainID, r.dispatcher) } r.stateProvider, err = NewP2PStateProvider(ctx, chainID, initialHeight, providers, to, r.paramsCh.Out, spLogger) if err != nil { return fmt.Errorf("failed to initialize P2P state provider: %w", err) } } else { r.stateProvider, err = NewRPCStateProvider(ctx, chainID, initialHeight, r.cfg.RPCServers, to, spLogger) if err != nil { return fmt.Errorf("failed to initialize RPC state provider: %w", err) } } return nil } func (r *Reactor) TotalSnapshots() int64 { r.mtx.RLock() defer r.mtx.RUnlock() if r.syncer != nil && r.syncer.snapshots != nil { return int64(len(r.syncer.snapshots.snapshots)) } return 0 } func (r *Reactor) ChunkProcessAvgTime() time.Duration { r.mtx.RLock() defer r.mtx.RUnlock() if r.syncer != nil { return time.Duration(r.syncer.avgChunkTime) } return time.Duration(0) } func (r *Reactor) SnapshotHeight() int64 { r.mtx.RLock() defer r.mtx.RUnlock() if r.syncer != nil { return r.syncer.lastSyncedSnapshotHeight } return 0 } func (r *Reactor) SnapshotChunksCount() int64 { r.mtx.RLock() defer r.mtx.RUnlock() if r.syncer != nil && r.syncer.chunks != nil { return int64(r.syncer.chunks.numChunksReturned()) } return 0 } func (r *Reactor) SnapshotChunksTotal() int64 { r.mtx.RLock() defer r.mtx.RUnlock() if r.syncer != nil && r.syncer.processingSnapshot != nil { return int64(r.syncer.processingSnapshot.Chunks) } return 0 } func (r *Reactor) BackFilledBlocks() int64 { r.mtx.RLock() defer r.mtx.RUnlock() return r.backfilledBlocks } func (r *Reactor) BackFillBlocksTotal() int64 { r.mtx.RLock() defer r.mtx.RUnlock() return r.backfillBlockTotal }