// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package sha3 implements the SHA3 hash algorithm (formerly called Keccak) chosen by NIST in 2012. // This file provides a SHA3 implementation which implements the standard hash.Hash interface. // Writing input data, including padding, and reading output data are computed in this file. // Note that the current implementation can compute the hash of an integral number of bytes only. // This is a consequence of the hash interface in which a buffer of bytes is passed in. // The internals of the Keccak-f function are computed in keccakf.go. // For the detailed specification, refer to the Keccak web site (http://keccak.noekeon.org/). package sha3 import ( "encoding/binary" "hash" ) // laneSize is the size in bytes of each "lane" of the internal state of SHA3 (5 * 5 * 8). // Note that changing this size would requires using a type other than uint64 to store each lane. const laneSize = 8 // sliceSize represents the dimensions of the internal state, a square matrix of // sliceSize ** 2 lanes. This is the size of both the "rows" and "columns" dimensions in the // terminology of the SHA3 specification. const sliceSize = 5 // numLanes represents the total number of lanes in the state. const numLanes = sliceSize * sliceSize // stateSize is the size in bytes of the internal state of SHA3 (5 * 5 * WSize). const stateSize = laneSize * numLanes // digest represents the partial evaluation of a checksum. // Note that capacity, and not outputSize, is the critical security parameter, as SHA3 can output // an arbitrary number of bytes for any given capacity. The Keccak proposal recommends that // capacity = 2*outputSize to ensure that finding a collision of size outputSize requires // O(2^{outputSize/2}) computations (the birthday lower bound). Future standards may modify the // capacity/outputSize ratio to allow for more output with lower cryptographic security. type digest struct { a [numLanes]uint64 // main state of the hash b [numLanes]uint64 // intermediate states c [sliceSize]uint64 // intermediate states d [sliceSize]uint64 // intermediate states outputSize int // desired output size in bytes capacity int // number of bytes to leave untouched during squeeze/absorb absorbed int // number of bytes absorbed thus far } // minInt returns the lesser of two integer arguments, to simplify the absorption routine. func minInt(v1, v2 int) int { if v1 <= v2 { return v1 } return v2 } // rate returns the number of bytes of the internal state which can be absorbed or squeezed // in between calls to the permutation function. func (d *digest) rate() int { return stateSize - d.capacity } // Reset clears the internal state by zeroing bytes in the state buffer. // This can be skipped for a newly-created hash state; the default zero-allocated state is correct. func (d *digest) Reset() { d.absorbed = 0 for i := range d.a { d.a[i] = 0 } } // BlockSize, required by the hash.Hash interface, does not have a standard intepretation // for a sponge-based construction like SHA3. We return the data rate: the number of bytes which // can be absorbed per invocation of the permutation function. For Merkle-Damgård based hashes // (ie SHA1, SHA2, MD5) the output size of the internal compression function is returned. // We consider this to be roughly equivalent because it represents the number of bytes of output // produced per cryptographic operation. func (d *digest) BlockSize() int { return d.rate() } // Size returns the output size of the hash function in bytes. func (d *digest) Size() int { return d.outputSize } // unalignedAbsorb is a helper function for Write, which absorbs data that isn't aligned with an // 8-byte lane. This requires shifting the individual bytes into position in a uint64. func (d *digest) unalignedAbsorb(p []byte) { var t uint64 for i := len(p) - 1; i >= 0; i-- { t <<= 8 t |= uint64(p[i]) } offset := (d.absorbed) % d.rate() t <<= 8 * uint(offset%laneSize) d.a[offset/laneSize] ^= t d.absorbed += len(p) } // Write "absorbs" bytes into the state of the SHA3 hash, updating as needed when the sponge // "fills up" with rate() bytes. Since lanes are stored internally as type uint64, this requires // converting the incoming bytes into uint64s using a little endian interpretation. This // implementation is optimized for large, aligned writes of multiples of 8 bytes (laneSize). // Non-aligned or uneven numbers of bytes require shifting and are slower. func (d *digest) Write(p []byte) (int, error) { // An initial offset is needed if the we aren't absorbing to the first lane initially. offset := d.absorbed % d.rate() toWrite := len(p) // The first lane may need to absorb unaligned and/or incomplete data. if (offset%laneSize != 0 || len(p) < 8) && len(p) > 0 { toAbsorb := minInt(laneSize-(offset%laneSize), len(p)) d.unalignedAbsorb(p[:toAbsorb]) p = p[toAbsorb:] offset = (d.absorbed) % d.rate() // For every rate() bytes absorbed, the state must be permuted via the F Function. if (d.absorbed)%d.rate() == 0 { d.keccakF() } } // This loop should absorb the bulk of the data into full, aligned lanes. // It will call the update function as necessary. for len(p) > 7 { firstLane := offset / laneSize lastLane := minInt(d.rate()/laneSize, firstLane+len(p)/laneSize) // This inner loop absorbs input bytes into the state in groups of 8, converted to uint64s. for lane := firstLane; lane < lastLane; lane++ { d.a[lane] ^= binary.LittleEndian.Uint64(p[:laneSize]) p = p[laneSize:] } d.absorbed += (lastLane - firstLane) * laneSize // For every rate() bytes absorbed, the state must be permuted via the F Function. if (d.absorbed)%d.rate() == 0 { d.keccakF() } offset = 0 } // If there are insufficient bytes to fill the final lane, an unaligned absorption. // This should always start at a correct lane boundary though, or else it would be caught // by the uneven opening lane case above. if len(p) > 0 { d.unalignedAbsorb(p) } return toWrite, nil } // pad computes the SHA3 padding scheme based on the number of bytes absorbed. // The padding is a 1 bit, followed by an arbitrary number of 0s and then a final 1 bit, such that // the input bits plus padding bits are a multiple of rate(). Adding the padding simply requires // xoring an opening and closing bit into the appropriate lanes. func (d *digest) pad() { offset := d.absorbed % d.rate() // The opening pad bit must be shifted into position based on the number of bytes absorbed padOpenLane := offset / laneSize d.a[padOpenLane] ^= 0x0000000000000001 << uint(8*(offset%laneSize)) // The closing padding bit is always in the last position padCloseLane := (d.rate() / laneSize) - 1 d.a[padCloseLane] ^= 0x8000000000000000 } // finalize prepares the hash to output data by padding and one final permutation of the state. func (d *digest) finalize() { d.pad() d.keccakF() } // squeeze outputs an arbitrary number of bytes from the hash state. // Squeezing can require multiple calls to the F function (one per rate() bytes squeezed), // although this is not the case for standard SHA3 parameters. This implementation only supports // squeezing a single time, subsequent squeezes may lose alignment. Future implementations // may wish to support multiple squeeze calls, for example to support use as a PRNG. func (d *digest) squeeze(in []byte, toSqueeze int) []byte { // Because we read in blocks of laneSize, we need enough room to read // an integral number of lanes needed := toSqueeze + (laneSize-toSqueeze%laneSize)%laneSize if cap(in)-len(in) < needed { newIn := make([]byte, len(in), len(in)+needed) copy(newIn, in) in = newIn } out := in[len(in) : len(in)+needed] for len(out) > 0 { for i := 0; i < d.rate() && len(out) > 0; i += laneSize { binary.LittleEndian.PutUint64(out[:], d.a[i/laneSize]) out = out[laneSize:] } if len(out) > 0 { d.keccakF() } } return in[:len(in)+toSqueeze] // Re-slice in case we wrote extra data. } // Sum applies padding to the hash state and then squeezes out the desired nubmer of output bytes. func (d *digest) Sum(in []byte) []byte { // Make a copy of the original hash so that caller can keep writing and summing. dup := *d dup.finalize() return dup.squeeze(in, dup.outputSize) } // The NewKeccakX constructors enable initializing a hash in any of the four recommend sizes // from the Keccak specification, all of which set capacity=2*outputSize. Note that the final // NIST standard for SHA3 may specify different input/output lengths. // The output size is indicated in bits but converted into bytes internally. func NewKeccak224() hash.Hash { return &digest{outputSize: 224 / 8, capacity: 2 * 224 / 8} } func NewKeccak256() hash.Hash { return &digest{outputSize: 256 / 8, capacity: 2 * 256 / 8} } func NewKeccak384() hash.Hash { return &digest{outputSize: 384 / 8, capacity: 2 * 384 / 8} } func NewKeccak512() hash.Hash { return &digest{outputSize: 512 / 8, capacity: 2 * 512 / 8} } func Sha3(data ...[]byte) []byte { d := NewKeccak256() for _, b := range data { d.Write(b) } return d.Sum(nil) }