package p2p import ( "errors" "fmt" "math/rand" "net" "time" crypto "github.com/tendermint/go-crypto" cfg "github.com/tendermint/tendermint/config" cmn "github.com/tendermint/tmlibs/common" ) const ( reconnectAttempts = 30 reconnectInterval = 3 * time.Second ) type Reactor interface { cmn.Service // Start, Stop SetSwitch(*Switch) GetChannels() []*ChannelDescriptor AddPeer(peer Peer) RemovePeer(peer Peer, reason interface{}) Receive(chID byte, peer Peer, msgBytes []byte) // CONTRACT: msgBytes are not nil } //-------------------------------------- type BaseReactor struct { cmn.BaseService // Provides Start, Stop, .Quit Switch *Switch } func NewBaseReactor(name string, impl Reactor) *BaseReactor { return &BaseReactor{ BaseService: *cmn.NewBaseService(nil, name, impl), Switch: nil, } } func (br *BaseReactor) SetSwitch(sw *Switch) { br.Switch = sw } func (_ *BaseReactor) GetChannels() []*ChannelDescriptor { return nil } func (_ *BaseReactor) AddPeer(peer Peer) {} func (_ *BaseReactor) RemovePeer(peer Peer, reason interface{}) {} func (_ *BaseReactor) Receive(chID byte, peer Peer, msgBytes []byte) {} //----------------------------------------------------------------------------- /* The `Switch` handles peer connections and exposes an API to receive incoming messages on `Reactors`. Each `Reactor` is responsible for handling incoming messages of one or more `Channels`. So while sending outgoing messages is typically performed on the peer, incoming messages are received on the reactor. */ type Switch struct { cmn.BaseService config *cfg.P2PConfig peerConfig *PeerConfig listeners []Listener reactors map[string]Reactor chDescs []*ChannelDescriptor reactorsByCh map[byte]Reactor peers *PeerSet dialing *cmn.CMap nodeInfo *NodeInfo // our node info nodePrivKey crypto.PrivKeyEd25519 // our node privkey filterConnByAddr func(net.Addr) error filterConnByPubKey func(crypto.PubKeyEd25519) error } var ( ErrSwitchDuplicatePeer = errors.New("Duplicate peer") ) func NewSwitch(config *cfg.P2PConfig) *Switch { sw := &Switch{ config: config, peerConfig: DefaultPeerConfig(), reactors: make(map[string]Reactor), chDescs: make([]*ChannelDescriptor, 0), reactorsByCh: make(map[byte]Reactor), peers: NewPeerSet(), dialing: cmn.NewCMap(), nodeInfo: nil, } // TODO: collapse the peerConfig into the config ? sw.peerConfig.MConfig.flushThrottle = time.Duration(config.FlushThrottleTimeout) * time.Millisecond sw.peerConfig.MConfig.SendRate = config.SendRate sw.peerConfig.MConfig.RecvRate = config.RecvRate sw.peerConfig.MConfig.maxMsgPacketPayloadSize = config.MaxMsgPacketPayloadSize sw.BaseService = *cmn.NewBaseService(nil, "P2P Switch", sw) return sw } // AddReactor adds the given reactor to the switch. // NOTE: Not goroutine safe. func (sw *Switch) AddReactor(name string, reactor Reactor) Reactor { // Validate the reactor. // No two reactors can share the same channel. reactorChannels := reactor.GetChannels() for _, chDesc := range reactorChannels { chID := chDesc.ID if sw.reactorsByCh[chID] != nil { cmn.PanicSanity(fmt.Sprintf("Channel %X has multiple reactors %v & %v", chID, sw.reactorsByCh[chID], reactor)) } sw.chDescs = append(sw.chDescs, chDesc) sw.reactorsByCh[chID] = reactor } sw.reactors[name] = reactor reactor.SetSwitch(sw) return reactor } // Reactors returns a map of reactors registered on the switch. // NOTE: Not goroutine safe. func (sw *Switch) Reactors() map[string]Reactor { return sw.reactors } // Reactor returns the reactor with the given name. // NOTE: Not goroutine safe. func (sw *Switch) Reactor(name string) Reactor { return sw.reactors[name] } // AddListener adds the given listener to the switch for listening to incoming peer connections. // NOTE: Not goroutine safe. func (sw *Switch) AddListener(l Listener) { sw.listeners = append(sw.listeners, l) } // Listeners returns the list of listeners the switch listens on. // NOTE: Not goroutine safe. func (sw *Switch) Listeners() []Listener { return sw.listeners } // IsListening returns true if the switch has at least one listener. // NOTE: Not goroutine safe. func (sw *Switch) IsListening() bool { return len(sw.listeners) > 0 } // SetNodeInfo sets the switch's NodeInfo for checking compatibility and handshaking with other nodes. // NOTE: Not goroutine safe. func (sw *Switch) SetNodeInfo(nodeInfo *NodeInfo) { sw.nodeInfo = nodeInfo } // NodeInfo returns the switch's NodeInfo. // NOTE: Not goroutine safe. func (sw *Switch) NodeInfo() *NodeInfo { return sw.nodeInfo } // SetNodePrivKey sets the switch's private key for authenticated encryption. // NOTE: Overwrites sw.nodeInfo.PubKey. // NOTE: Not goroutine safe. func (sw *Switch) SetNodePrivKey(nodePrivKey crypto.PrivKeyEd25519) { sw.nodePrivKey = nodePrivKey if sw.nodeInfo != nil { sw.nodeInfo.PubKey = nodePrivKey.PubKey().Unwrap().(crypto.PubKeyEd25519) } } // OnStart implements BaseService. It starts all the reactors, peers, and listeners. func (sw *Switch) OnStart() error { sw.BaseService.OnStart() // Start reactors for _, reactor := range sw.reactors { _, err := reactor.Start() if err != nil { return err } } // Start listeners for _, listener := range sw.listeners { go sw.listenerRoutine(listener) } return nil } // OnStop implements BaseService. It stops all listeners, peers, and reactors. func (sw *Switch) OnStop() { sw.BaseService.OnStop() // Stop listeners for _, listener := range sw.listeners { listener.Stop() } sw.listeners = nil // Stop peers for _, peer := range sw.peers.List() { peer.Stop() sw.peers.Remove(peer) } // Stop reactors for _, reactor := range sw.reactors { reactor.Stop() } } // addPeer checks the given peer's validity, performs a handshake, and adds the // peer to the switch and to all registered reactors. // NOTE: This performs a blocking handshake before the peer is added. // NOTE: If error is returned, caller is responsible for calling peer.CloseConn() func (sw *Switch) addPeer(peer *peer) error { if err := sw.FilterConnByAddr(peer.Addr()); err != nil { return err } if err := sw.FilterConnByPubKey(peer.PubKey()); err != nil { return err } if err := peer.HandshakeTimeout(sw.nodeInfo, time.Duration(sw.peerConfig.HandshakeTimeout*time.Second)); err != nil { return err } // Avoid self if sw.nodeInfo.PubKey.Equals(peer.PubKey().Wrap()) { return errors.New("Ignoring connection from self") } // Check version, chain id if err := sw.nodeInfo.CompatibleWith(peer.NodeInfo()); err != nil { return err } // Check for duplicate peer if sw.peers.Has(peer.Key()) { return ErrSwitchDuplicatePeer } // Start peer if sw.IsRunning() { sw.startInitPeer(peer) } // Add the peer to .peers. // We start it first so that a peer in the list is safe to Stop. // It should not err since we already checked peers.Has(). if err := sw.peers.Add(peer); err != nil { return err } sw.Logger.Info("Added peer", "peer", peer) return nil } // FilterConnByAddr returns an error if connecting to the given address is forbidden. func (sw *Switch) FilterConnByAddr(addr net.Addr) error { if sw.filterConnByAddr != nil { return sw.filterConnByAddr(addr) } return nil } // FilterConnByPubKey returns an error if connecting to the given public key is forbidden. func (sw *Switch) FilterConnByPubKey(pubkey crypto.PubKeyEd25519) error { if sw.filterConnByPubKey != nil { return sw.filterConnByPubKey(pubkey) } return nil } // SetAddrFilter sets the function for filtering connections by address. func (sw *Switch) SetAddrFilter(f func(net.Addr) error) { sw.filterConnByAddr = f } // SetPubKeyFilter sets the function for filtering connections by public key. func (sw *Switch) SetPubKeyFilter(f func(crypto.PubKeyEd25519) error) { sw.filterConnByPubKey = f } func (sw *Switch) startInitPeer(peer *peer) { peer.Start() // spawn send/recv routines for _, reactor := range sw.reactors { reactor.AddPeer(peer) } } // DialSeeds dials a list of seeds asynchronously in random order. func (sw *Switch) DialSeeds(addrBook *AddrBook, seeds []string) error { netAddrs, err := NewNetAddressStrings(seeds) if err != nil { return err } if addrBook != nil { // add seeds to `addrBook` ourAddrS := sw.nodeInfo.ListenAddr ourAddr, _ := NewNetAddressString(ourAddrS) for _, netAddr := range netAddrs { // do not add ourselves if netAddr.Equals(ourAddr) { continue } addrBook.AddAddress(netAddr, ourAddr) } addrBook.Save() } // Ensure we have a completely undeterministic PRNG. cmd.RandInt64() draws // from a seed that's initialized with OS entropy on process start. rng := rand.New(rand.NewSource(cmn.RandInt64())) // permute the list, dial them in random order. perm := rng.Perm(len(netAddrs)) for i := 0; i < len(perm); i++ { go func(i int) { time.Sleep(time.Duration(rng.Int63n(3000)) * time.Millisecond) j := perm[i] sw.dialSeed(netAddrs[j]) }(i) } return nil } func (sw *Switch) dialSeed(addr *NetAddress) { peer, err := sw.DialPeerWithAddress(addr, true) if err != nil { sw.Logger.Error("Error dialing seed", "err", err) } else { sw.Logger.Info("Connected to seed", "peer", peer) } } // DialPeerWithAddress dials the given peer and runs sw.addPeer if it connects successfully. // If `persistent == true`, the switch will always try to reconnect to this peer if the connection ever fails. func (sw *Switch) DialPeerWithAddress(addr *NetAddress, persistent bool) (Peer, error) { sw.dialing.Set(addr.IP.String(), addr) defer sw.dialing.Delete(addr.IP.String()) sw.Logger.Info("Dialing peer", "address", addr) peer, err := newOutboundPeer(addr, sw.reactorsByCh, sw.chDescs, sw.StopPeerForError, sw.nodePrivKey, sw.peerConfig) if err != nil { sw.Logger.Error("Failed to dial peer", "address", addr, "err", err) return nil, err } peer.SetLogger(sw.Logger.With("peer", addr)) if persistent { peer.makePersistent() } err = sw.addPeer(peer) if err != nil { sw.Logger.Error("Failed to add peer", "address", addr, "err", err) peer.CloseConn() return nil, err } sw.Logger.Info("Dialed and added peer", "address", addr, "peer", peer) return peer, nil } // IsDialing returns true if the switch is currently dialing the given address. func (sw *Switch) IsDialing(addr *NetAddress) bool { return sw.dialing.Has(addr.IP.String()) } // Broadcast runs a go routine for each attempted send, which will block // trying to send for defaultSendTimeoutSeconds. Returns a channel // which receives success values for each attempted send (false if times out). // NOTE: Broadcast uses goroutines, so order of broadcast may not be preserved. // TODO: Something more intelligent. func (sw *Switch) Broadcast(chID byte, msg interface{}) chan bool { successChan := make(chan bool, len(sw.peers.List())) sw.Logger.Debug("Broadcast", "channel", chID, "msg", msg) for _, peer := range sw.peers.List() { go func(peer Peer) { success := peer.Send(chID, msg) successChan <- success }(peer) } return successChan } // NumPeers returns the count of outbound/inbound and outbound-dialing peers. func (sw *Switch) NumPeers() (outbound, inbound, dialing int) { peers := sw.peers.List() for _, peer := range peers { if peer.IsOutbound() { outbound++ } else { inbound++ } } dialing = sw.dialing.Size() return } // Peers returns the set of peers that are connected to the switch. func (sw *Switch) Peers() IPeerSet { return sw.peers } // StopPeerForError disconnects from a peer due to external error. // If the peer is persistent, it will attempt to reconnect. // TODO: make record depending on reason. func (sw *Switch) StopPeerForError(peer Peer, reason interface{}) { addr, _ := NewNetAddressString(peer.NodeInfo().RemoteAddr) sw.Logger.Error("Stopping peer for error", "peer", peer, "err", reason) sw.stopAndRemovePeer(peer, reason) if peer.IsPersistent() { go func() { sw.Logger.Info("Reconnecting to peer", "peer", peer) for i := 1; i < reconnectAttempts; i++ { if !sw.IsRunning() { return } peer, err := sw.DialPeerWithAddress(addr, true) if err != nil { if i == reconnectAttempts { sw.Logger.Info("Error reconnecting to peer. Giving up", "tries", i, "err", err) return } sw.Logger.Info("Error reconnecting to peer. Trying again", "tries", i, "err", err) time.Sleep(reconnectInterval) continue } sw.Logger.Info("Reconnected to peer", "peer", peer) return } }() } } // StopPeerGracefully disconnects from a peer gracefully. // TODO: handle graceful disconnects. func (sw *Switch) StopPeerGracefully(peer Peer) { sw.Logger.Info("Stopping peer gracefully") sw.stopAndRemovePeer(peer, nil) } func (sw *Switch) stopAndRemovePeer(peer Peer, reason interface{}) { sw.peers.Remove(peer) peer.Stop() for _, reactor := range sw.reactors { reactor.RemovePeer(peer, reason) } } func (sw *Switch) listenerRoutine(l Listener) { for { inConn, ok := <-l.Connections() if !ok { break } // ignore connection if we already have enough maxPeers := sw.config.MaxNumPeers if maxPeers <= sw.peers.Size() { sw.Logger.Info("Ignoring inbound connection: already have enough peers", "address", inConn.RemoteAddr().String(), "numPeers", sw.peers.Size(), "max", maxPeers) continue } // New inbound connection! err := sw.addPeerWithConnectionAndConfig(inConn, sw.peerConfig) if err != nil { sw.Logger.Info("Ignoring inbound connection: error while adding peer", "address", inConn.RemoteAddr().String(), "err", err) continue } // NOTE: We don't yet have the listening port of the // remote (if they have a listener at all). // The peerHandshake will handle that. } // cleanup } //------------------------------------------------------------------ // Connects switches via arbitrary net.Conn. Used for testing. // MakeConnectedSwitches returns n switches, connected according to the connect func. // If connect==Connect2Switches, the switches will be fully connected. // initSwitch defines how the i'th switch should be initialized (ie. with what reactors). // NOTE: panics if any switch fails to start. func MakeConnectedSwitches(cfg *cfg.P2PConfig, n int, initSwitch func(int, *Switch) *Switch, connect func([]*Switch, int, int)) []*Switch { switches := make([]*Switch, n) for i := 0; i < n; i++ { switches[i] = makeSwitch(cfg, i, "testing", "123.123.123", initSwitch) } if err := StartSwitches(switches); err != nil { panic(err) } for i := 0; i < n; i++ { for j := i + 1; j < n; j++ { connect(switches, i, j) } } return switches } // Connect2Switches will connect switches i and j via net.Pipe(). // Blocks until a connection is established. // NOTE: caller ensures i and j are within bounds. func Connect2Switches(switches []*Switch, i, j int) { switchI := switches[i] switchJ := switches[j] c1, c2 := netPipe() doneCh := make(chan struct{}) go func() { err := switchI.addPeerWithConnection(c1) if err != nil { panic(err) } doneCh <- struct{}{} }() go func() { err := switchJ.addPeerWithConnection(c2) if err != nil { panic(err) } doneCh <- struct{}{} }() <-doneCh <-doneCh } // StartSwitches calls sw.Start() for each given switch. // It returns the first encountered error. func StartSwitches(switches []*Switch) error { for _, s := range switches { _, err := s.Start() // start switch and reactors if err != nil { return err } } return nil } func makeSwitch(cfg *cfg.P2PConfig, i int, network, version string, initSwitch func(int, *Switch) *Switch) *Switch { privKey := crypto.GenPrivKeyEd25519() // new switch, add reactors // TODO: let the config be passed in? s := initSwitch(i, NewSwitch(cfg)) s.SetNodeInfo(&NodeInfo{ PubKey: privKey.PubKey().Unwrap().(crypto.PubKeyEd25519), Moniker: cmn.Fmt("switch%d", i), Network: network, Version: version, RemoteAddr: cmn.Fmt("%v:%v", network, rand.Intn(64512)+1023), ListenAddr: cmn.Fmt("%v:%v", network, rand.Intn(64512)+1023), }) s.SetNodePrivKey(privKey) return s } func (sw *Switch) addPeerWithConnection(conn net.Conn) error { peer, err := newInboundPeer(conn, sw.reactorsByCh, sw.chDescs, sw.StopPeerForError, sw.nodePrivKey, sw.peerConfig) if err != nil { conn.Close() return err } peer.SetLogger(sw.Logger.With("peer", conn.RemoteAddr())) if err = sw.addPeer(peer); err != nil { peer.CloseConn() return err } return nil } func (sw *Switch) addPeerWithConnectionAndConfig(conn net.Conn, config *PeerConfig) error { peer, err := newInboundPeer(conn, sw.reactorsByCh, sw.chDescs, sw.StopPeerForError, sw.nodePrivKey, config) if err != nil { conn.Close() return err } peer.SetLogger(sw.Logger.With("peer", conn.RemoteAddr())) if err = sw.addPeer(peer); err != nil { peer.CloseConn() return err } return nil }