package types import ( "bytes" "context" "encoding/binary" "encoding/json" "errors" "fmt" "sort" "strings" "time" abci "github.com/tendermint/tendermint/abci/types" "github.com/tendermint/tendermint/crypto/merkle" "github.com/tendermint/tendermint/crypto/tmhash" "github.com/tendermint/tendermint/internal/jsontypes" tmmath "github.com/tendermint/tendermint/libs/math" tmrand "github.com/tendermint/tendermint/libs/rand" tmproto "github.com/tendermint/tendermint/proto/tendermint/types" ) // Evidence represents any provable malicious activity by a validator. // Verification logic for each evidence is part of the evidence module. type Evidence interface { ABCI() []abci.Evidence // forms individual evidence to be sent to the application Bytes() []byte // bytes which comprise the evidence Hash() []byte // hash of the evidence Height() int64 // height of the infraction String() string // string format of the evidence Time() time.Time // time of the infraction ValidateBasic() error // basic consistency check // Implementations must support tagged encoding in JSON. jsontypes.Tagged } //-------------------------------------------------------------------------------------- // DuplicateVoteEvidence contains evidence of a single validator signing two conflicting votes. type DuplicateVoteEvidence struct { VoteA *Vote `json:"vote_a"` VoteB *Vote `json:"vote_b"` // abci specific information TotalVotingPower int64 `json:",string"` ValidatorPower int64 `json:",string"` Timestamp time.Time } // TypeTag implements the jsontypes.Tagged interface. func (*DuplicateVoteEvidence) TypeTag() string { return "tendermint/DuplicateVoteEvidence" } var _ Evidence = &DuplicateVoteEvidence{} // NewDuplicateVoteEvidence creates DuplicateVoteEvidence with right ordering given // two conflicting votes. If either of the votes is nil, the val set is nil or the voter is // not in the val set, an error is returned func NewDuplicateVoteEvidence(vote1, vote2 *Vote, blockTime time.Time, valSet *ValidatorSet, ) (*DuplicateVoteEvidence, error) { var voteA, voteB *Vote if vote1 == nil || vote2 == nil { return nil, errors.New("missing vote") } if valSet == nil { return nil, errors.New("missing validator set") } idx, val := valSet.GetByAddress(vote1.ValidatorAddress) if idx == -1 { return nil, errors.New("validator not in validator set") } if strings.Compare(vote1.BlockID.Key(), vote2.BlockID.Key()) == -1 { voteA = vote1 voteB = vote2 } else { voteA = vote2 voteB = vote1 } return &DuplicateVoteEvidence{ VoteA: voteA, VoteB: voteB, TotalVotingPower: valSet.TotalVotingPower(), ValidatorPower: val.VotingPower, Timestamp: blockTime, }, nil } // ABCI returns the application relevant representation of the evidence func (dve *DuplicateVoteEvidence) ABCI() []abci.Evidence { return []abci.Evidence{{ Type: abci.EvidenceType_DUPLICATE_VOTE, Validator: abci.Validator{ Address: dve.VoteA.ValidatorAddress, Power: dve.ValidatorPower, }, Height: dve.VoteA.Height, Time: dve.Timestamp, TotalVotingPower: dve.TotalVotingPower, }} } // Bytes returns the proto-encoded evidence as a byte array. func (dve *DuplicateVoteEvidence) Bytes() []byte { pbe := dve.ToProto() bz, err := pbe.Marshal() if err != nil { panic("marshaling duplicate vote evidence to bytes: " + err.Error()) } return bz } // Hash returns the hash of the evidence. func (dve *DuplicateVoteEvidence) Hash() []byte { return tmhash.Sum(dve.Bytes()) } // Height returns the height of the infraction func (dve *DuplicateVoteEvidence) Height() int64 { return dve.VoteA.Height } // String returns a string representation of the evidence. func (dve *DuplicateVoteEvidence) String() string { return fmt.Sprintf("DuplicateVoteEvidence{VoteA: %v, VoteB: %v}", dve.VoteA, dve.VoteB) } // Time returns the time of the infraction func (dve *DuplicateVoteEvidence) Time() time.Time { return dve.Timestamp } // ValidateBasic performs basic validation. func (dve *DuplicateVoteEvidence) ValidateBasic() error { if dve == nil { return errors.New("empty duplicate vote evidence") } if dve.VoteA == nil || dve.VoteB == nil { return fmt.Errorf("one or both of the votes are empty %v, %v", dve.VoteA, dve.VoteB) } if err := dve.VoteA.ValidateBasic(); err != nil { return fmt.Errorf("invalid VoteA: %w", err) } if err := dve.VoteB.ValidateBasic(); err != nil { return fmt.Errorf("invalid VoteB: %w", err) } // Enforce Votes are lexicographically sorted on blockID if strings.Compare(dve.VoteA.BlockID.Key(), dve.VoteB.BlockID.Key()) >= 0 { return errors.New("duplicate votes in invalid order") } return nil } // ValidateABCI validates the ABCI component of the evidence by checking the // timestamp, validator power and total voting power. func (dve *DuplicateVoteEvidence) ValidateABCI( val *Validator, valSet *ValidatorSet, evidenceTime time.Time, ) error { if dve.Timestamp != evidenceTime { return fmt.Errorf( "evidence has a different time to the block it is associated with (%v != %v)", dve.Timestamp, evidenceTime) } if val.VotingPower != dve.ValidatorPower { return fmt.Errorf("validator power from evidence and our validator set does not match (%d != %d)", dve.ValidatorPower, val.VotingPower) } if valSet.TotalVotingPower() != dve.TotalVotingPower { return fmt.Errorf("total voting power from the evidence and our validator set does not match (%d != %d)", dve.TotalVotingPower, valSet.TotalVotingPower()) } return nil } // GenerateABCI populates the ABCI component of the evidence. This includes the // validator power, timestamp and total voting power. func (dve *DuplicateVoteEvidence) GenerateABCI( val *Validator, valSet *ValidatorSet, evidenceTime time.Time, ) { dve.ValidatorPower = val.VotingPower dve.TotalVotingPower = valSet.TotalVotingPower() dve.Timestamp = evidenceTime } // ToProto encodes DuplicateVoteEvidence to protobuf func (dve *DuplicateVoteEvidence) ToProto() *tmproto.DuplicateVoteEvidence { voteB := dve.VoteB.ToProto() voteA := dve.VoteA.ToProto() tp := tmproto.DuplicateVoteEvidence{ VoteA: voteA, VoteB: voteB, TotalVotingPower: dve.TotalVotingPower, ValidatorPower: dve.ValidatorPower, Timestamp: dve.Timestamp, } return &tp } // DuplicateVoteEvidenceFromProto decodes protobuf into DuplicateVoteEvidence func DuplicateVoteEvidenceFromProto(pb *tmproto.DuplicateVoteEvidence) (*DuplicateVoteEvidence, error) { if pb == nil { return nil, errors.New("nil duplicate vote evidence") } vA, err := VoteFromProto(pb.VoteA) if err != nil { return nil, err } vB, err := VoteFromProto(pb.VoteB) if err != nil { return nil, err } dve := &DuplicateVoteEvidence{ VoteA: vA, VoteB: vB, TotalVotingPower: pb.TotalVotingPower, ValidatorPower: pb.ValidatorPower, Timestamp: pb.Timestamp, } return dve, dve.ValidateBasic() } //------------------------------------ LIGHT EVIDENCE -------------------------------------- // LightClientAttackEvidence is a generalized evidence that captures all forms of known attacks on // a light client such that a full node can verify, propose and commit the evidence on-chain for // punishment of the malicious validators. There are three forms of attacks: Lunatic, Equivocation // and Amnesia. These attacks are exhaustive. You can find a more detailed overview of this at // tendermint/docs/architecture/adr-047-handling-evidence-from-light-client.md // // CommonHeight is used to indicate the type of attack. If the height is different to the conflicting block // height, then nodes will treat this as of the Lunatic form, else it is of the Equivocation form. type LightClientAttackEvidence struct { ConflictingBlock *LightBlock CommonHeight int64 `json:",string"` // abci specific information ByzantineValidators []*Validator // validators in the validator set that misbehaved in creating the conflicting block TotalVotingPower int64 `json:",string"` // total voting power of the validator set at the common height Timestamp time.Time // timestamp of the block at the common height } // TypeTag implements the jsontypes.Tagged interface. func (*LightClientAttackEvidence) TypeTag() string { return "tendermint/LightClientAttackEvidence" } var _ Evidence = &LightClientAttackEvidence{} // ABCI forms an array of abci evidence for each byzantine validator func (l *LightClientAttackEvidence) ABCI() []abci.Evidence { abciEv := make([]abci.Evidence, len(l.ByzantineValidators)) for idx, val := range l.ByzantineValidators { abciEv[idx] = abci.Evidence{ Type: abci.EvidenceType_LIGHT_CLIENT_ATTACK, Validator: TM2PB.Validator(val), Height: l.Height(), Time: l.Timestamp, TotalVotingPower: l.TotalVotingPower, } } return abciEv } // Bytes returns the proto-encoded evidence as a byte array func (l *LightClientAttackEvidence) Bytes() []byte { pbe, err := l.ToProto() if err != nil { panic("converting light client attack evidence to proto: " + err.Error()) } bz, err := pbe.Marshal() if err != nil { panic("marshaling light client attack evidence to bytes: " + err.Error()) } return bz } // GetByzantineValidators finds out what style of attack LightClientAttackEvidence was and then works out who // the malicious validators were and returns them. This is used both for forming the ByzantineValidators // field and for validating that it is correct. Validators are ordered based on validator power func (l *LightClientAttackEvidence) GetByzantineValidators(commonVals *ValidatorSet, trusted *SignedHeader) []*Validator { var validators []*Validator // First check if the header is invalid. This means that it is a lunatic attack and therefore we take the // validators who are in the commonVals and voted for the lunatic header if l.ConflictingHeaderIsInvalid(trusted.Header) { for _, commitSig := range l.ConflictingBlock.Commit.Signatures { if !commitSig.ForBlock() { continue } _, val := commonVals.GetByAddress(commitSig.ValidatorAddress) if val == nil { // validator wasn't in the common validator set continue } validators = append(validators, val) } sort.Sort(ValidatorsByVotingPower(validators)) return validators } else if trusted.Commit.Round == l.ConflictingBlock.Commit.Round { // This is an equivocation attack as both commits are in the same round. We then find the validators // from the conflicting light block validator set that voted in both headers. // Validator hashes are the same therefore the indexing order of validators are the same and thus we // only need a single loop to find the validators that voted twice. for i := 0; i < len(l.ConflictingBlock.Commit.Signatures); i++ { sigA := l.ConflictingBlock.Commit.Signatures[i] if !sigA.ForBlock() { continue } sigB := trusted.Commit.Signatures[i] if !sigB.ForBlock() { continue } _, val := l.ConflictingBlock.ValidatorSet.GetByAddress(sigA.ValidatorAddress) validators = append(validators, val) } sort.Sort(ValidatorsByVotingPower(validators)) return validators } // if the rounds are different then this is an amnesia attack. Unfortunately, given the nature of the attack, // we aren't able yet to deduce which are malicious validators and which are not hence we return an // empty validator set. return validators } // ConflictingHeaderIsInvalid takes a trusted header and matches it againt a conflicting header // to determine whether the conflicting header was the product of a valid state transition // or not. If it is then all the deterministic fields of the header should be the same. // If not, it is an invalid header and constitutes a lunatic attack. func (l *LightClientAttackEvidence) ConflictingHeaderIsInvalid(trustedHeader *Header) bool { return !bytes.Equal(trustedHeader.ValidatorsHash, l.ConflictingBlock.ValidatorsHash) || !bytes.Equal(trustedHeader.NextValidatorsHash, l.ConflictingBlock.NextValidatorsHash) || !bytes.Equal(trustedHeader.ConsensusHash, l.ConflictingBlock.ConsensusHash) || !bytes.Equal(trustedHeader.AppHash, l.ConflictingBlock.AppHash) || !bytes.Equal(trustedHeader.LastResultsHash, l.ConflictingBlock.LastResultsHash) } // Hash returns the hash of the header and the commonHeight. This is designed to cause hash collisions // with evidence that have the same conflicting header and common height but different permutations // of validator commit signatures. The reason for this is that we don't want to allow several // permutations of the same evidence to be committed on chain. Ideally we commit the header with the // most commit signatures (captures the most byzantine validators) but anything greater than 1/3 is // sufficient. // TODO: We should change the hash to include the commit, header, total voting power, byzantine // validators and timestamp func (l *LightClientAttackEvidence) Hash() []byte { buf := make([]byte, binary.MaxVarintLen64) n := binary.PutVarint(buf, l.CommonHeight) bz := make([]byte, tmhash.Size+n) copy(bz[:tmhash.Size-1], l.ConflictingBlock.Hash().Bytes()) copy(bz[tmhash.Size:], buf) return tmhash.Sum(bz) } // Height returns the last height at which the primary provider and witness provider had the same header. // We use this as the height of the infraction rather than the actual conflicting header because we know // that the malicious validators were bonded at this height which is important for evidence expiry func (l *LightClientAttackEvidence) Height() int64 { return l.CommonHeight } // String returns a string representation of LightClientAttackEvidence func (l *LightClientAttackEvidence) String() string { return fmt.Sprintf(`LightClientAttackEvidence{ ConflictingBlock: %v, CommonHeight: %d, ByzatineValidators: %v, TotalVotingPower: %d, Timestamp: %v}#%X`, l.ConflictingBlock.String(), l.CommonHeight, l.ByzantineValidators, l.TotalVotingPower, l.Timestamp, l.Hash()) } // Time returns the time of the common block where the infraction leveraged off. func (l *LightClientAttackEvidence) Time() time.Time { return l.Timestamp } // ValidateBasic performs basic validation such that the evidence is consistent and can now be used for verification. func (l *LightClientAttackEvidence) ValidateBasic() error { if l.ConflictingBlock == nil { return errors.New("conflicting block is nil") } // this check needs to be done before we can run validate basic if l.ConflictingBlock.Header == nil { return errors.New("conflicting block missing header") } if l.TotalVotingPower <= 0 { return errors.New("negative or zero total voting power") } if l.CommonHeight <= 0 { return errors.New("negative or zero common height") } // check that common height isn't ahead of the height of the conflicting block. It // is possible that they are the same height if the light node witnesses either an // amnesia or a equivocation attack. if l.CommonHeight > l.ConflictingBlock.Height { return fmt.Errorf("common height is ahead of the conflicting block height (%d > %d)", l.CommonHeight, l.ConflictingBlock.Height) } if err := l.ConflictingBlock.ValidateBasic(l.ConflictingBlock.ChainID); err != nil { return fmt.Errorf("invalid conflicting light block: %w", err) } return nil } // ValidateABCI validates the ABCI component of the evidence by checking the // timestamp, byzantine validators and total voting power all match. ABCI // components are validated separately because they can be re generated if // invalid. func (l *LightClientAttackEvidence) ValidateABCI( commonVals *ValidatorSet, trustedHeader *SignedHeader, evidenceTime time.Time, ) error { if evTotal, valsTotal := l.TotalVotingPower, commonVals.TotalVotingPower(); evTotal != valsTotal { return fmt.Errorf("total voting power from the evidence and our validator set does not match (%d != %d)", evTotal, valsTotal) } if l.Timestamp != evidenceTime { return fmt.Errorf( "evidence has a different time to the block it is associated with (%v != %v)", l.Timestamp, evidenceTime) } // Find out what type of attack this was and thus extract the malicious // validators. Note, in the case of an Amnesia attack we don't have any // malicious validators. validators := l.GetByzantineValidators(commonVals, trustedHeader) // Ensure this matches the validators that are listed in the evidence. They // should be ordered based on power. if validators == nil && l.ByzantineValidators != nil { return fmt.Errorf( "expected nil validators from an amnesia light client attack but got %d", len(l.ByzantineValidators), ) } if exp, got := len(validators), len(l.ByzantineValidators); exp != got { return fmt.Errorf("expected %d byzantine validators from evidence but got %d", exp, got) } for idx, val := range validators { if !bytes.Equal(l.ByzantineValidators[idx].Address, val.Address) { return fmt.Errorf( "evidence contained an unexpected byzantine validator address; expected: %v, got: %v", val.Address, l.ByzantineValidators[idx].Address, ) } if l.ByzantineValidators[idx].VotingPower != val.VotingPower { return fmt.Errorf( "evidence contained unexpected byzantine validator power; expected %d, got %d", val.VotingPower, l.ByzantineValidators[idx].VotingPower, ) } } return nil } // GenerateABCI populates the ABCI component of the evidence: the timestamp, // total voting power and byantine validators func (l *LightClientAttackEvidence) GenerateABCI( commonVals *ValidatorSet, trustedHeader *SignedHeader, evidenceTime time.Time, ) { l.Timestamp = evidenceTime l.TotalVotingPower = commonVals.TotalVotingPower() l.ByzantineValidators = l.GetByzantineValidators(commonVals, trustedHeader) } // ToProto encodes LightClientAttackEvidence to protobuf func (l *LightClientAttackEvidence) ToProto() (*tmproto.LightClientAttackEvidence, error) { conflictingBlock, err := l.ConflictingBlock.ToProto() if err != nil { return nil, err } byzVals := make([]*tmproto.Validator, len(l.ByzantineValidators)) for idx, val := range l.ByzantineValidators { valpb, err := val.ToProto() if err != nil { return nil, err } byzVals[idx] = valpb } return &tmproto.LightClientAttackEvidence{ ConflictingBlock: conflictingBlock, CommonHeight: l.CommonHeight, ByzantineValidators: byzVals, TotalVotingPower: l.TotalVotingPower, Timestamp: l.Timestamp, }, nil } // LightClientAttackEvidenceFromProto decodes protobuf func LightClientAttackEvidenceFromProto(lpb *tmproto.LightClientAttackEvidence) (*LightClientAttackEvidence, error) { if lpb == nil { return nil, errors.New("empty light client attack evidence") } conflictingBlock, err := LightBlockFromProto(lpb.ConflictingBlock) if err != nil { return nil, err } byzVals := make([]*Validator, len(lpb.ByzantineValidators)) for idx, valpb := range lpb.ByzantineValidators { val, err := ValidatorFromProto(valpb) if err != nil { return nil, err } byzVals[idx] = val } l := &LightClientAttackEvidence{ ConflictingBlock: conflictingBlock, CommonHeight: lpb.CommonHeight, ByzantineValidators: byzVals, TotalVotingPower: lpb.TotalVotingPower, Timestamp: lpb.Timestamp, } return l, l.ValidateBasic() } //------------------------------------------------------------------------------------------ // EvidenceList is a list of Evidence. Evidences is not a word. type EvidenceList []Evidence // StringIndented returns a string representation of the evidence. func (evl EvidenceList) StringIndented(indent string) string { if evl == nil { return "nil-Evidence" } evStrings := make([]string, tmmath.MinInt(len(evl), 21)) for i, ev := range evl { if i == 20 { evStrings[i] = fmt.Sprintf("... (%v total)", len(evl)) break } evStrings[i] = fmt.Sprintf("Evidence:%v", ev) } return fmt.Sprintf(`EvidenceList{ %s %v %s}#%v`, indent, strings.Join(evStrings, "\n"+indent+" "), indent, evl.Hash()) } // ByteSize returns the total byte size of all the evidence func (evl EvidenceList) ByteSize() int64 { if len(evl) != 0 { pb, err := evl.ToProto() if err != nil { panic(err) } return int64(pb.Size()) } return 0 } // FromProto sets a protobuf EvidenceList to the given pointer. func (evl *EvidenceList) FromProto(eviList *tmproto.EvidenceList) error { if eviList == nil { return errors.New("nil evidence list") } eviBzs := make(EvidenceList, len(eviList.Evidence)) for i := range eviList.Evidence { evi, err := EvidenceFromProto(&eviList.Evidence[i]) if err != nil { return err } eviBzs[i] = evi } *evl = eviBzs return nil } // ToProto converts EvidenceList to protobuf func (evl *EvidenceList) ToProto() (*tmproto.EvidenceList, error) { if evl == nil { return nil, errors.New("nil evidence list") } eviBzs := make([]tmproto.Evidence, len(*evl)) for i, v := range *evl { protoEvi, err := EvidenceToProto(v) if err != nil { return nil, err } eviBzs[i] = *protoEvi } return &tmproto.EvidenceList{Evidence: eviBzs}, nil } func (evl EvidenceList) MarshalJSON() ([]byte, error) { lst := make([]json.RawMessage, len(evl)) for i, ev := range evl { bits, err := jsontypes.Marshal(ev) if err != nil { return nil, err } lst[i] = bits } return json.Marshal(lst) } func (evl *EvidenceList) UnmarshalJSON(data []byte) error { var lst []json.RawMessage if err := json.Unmarshal(data, &lst); err != nil { return err } out := make([]Evidence, len(lst)) for i, elt := range lst { if err := jsontypes.Unmarshal(elt, &out[i]); err != nil { return err } } *evl = EvidenceList(out) return nil } // Hash returns the simple merkle root hash of the EvidenceList. func (evl EvidenceList) Hash() []byte { // These allocations are required because Evidence is not of type Bytes, and // golang slices can't be typed cast. This shouldn't be a performance problem since // the Evidence size is capped. evidenceBzs := make([][]byte, len(evl)) for i := 0; i < len(evl); i++ { // TODO: We should change this to the hash. Using bytes contains some unexported data that // may cause different hashes evidenceBzs[i] = evl[i].Bytes() } return merkle.HashFromByteSlices(evidenceBzs) } func (evl EvidenceList) String() string { s := "" for _, e := range evl { s += fmt.Sprintf("%s\t\t", e) } return s } // Has returns true if the evidence is in the EvidenceList. func (evl EvidenceList) Has(evidence Evidence) bool { for _, ev := range evl { if bytes.Equal(evidence.Hash(), ev.Hash()) { return true } } return false } //------------------------------------------ PROTO -------------------------------------- // EvidenceToProto is a generalized function for encoding evidence that conforms to the // evidence interface to protobuf func EvidenceToProto(evidence Evidence) (*tmproto.Evidence, error) { if evidence == nil { return nil, errors.New("nil evidence") } switch evi := evidence.(type) { case *DuplicateVoteEvidence: pbev := evi.ToProto() return &tmproto.Evidence{ Sum: &tmproto.Evidence_DuplicateVoteEvidence{ DuplicateVoteEvidence: pbev, }, }, nil case *LightClientAttackEvidence: pbev, err := evi.ToProto() if err != nil { return nil, err } return &tmproto.Evidence{ Sum: &tmproto.Evidence_LightClientAttackEvidence{ LightClientAttackEvidence: pbev, }, }, nil default: return nil, fmt.Errorf("toproto: evidence is not recognized: %T", evi) } } // EvidenceFromProto is a generalized function for decoding protobuf into the // evidence interface func EvidenceFromProto(evidence *tmproto.Evidence) (Evidence, error) { if evidence == nil { return nil, errors.New("nil evidence") } switch evi := evidence.Sum.(type) { case *tmproto.Evidence_DuplicateVoteEvidence: return DuplicateVoteEvidenceFromProto(evi.DuplicateVoteEvidence) case *tmproto.Evidence_LightClientAttackEvidence: return LightClientAttackEvidenceFromProto(evi.LightClientAttackEvidence) default: return nil, errors.New("evidence is not recognized") } } func init() { jsontypes.MustRegister((*DuplicateVoteEvidence)(nil)) jsontypes.MustRegister((*LightClientAttackEvidence)(nil)) } //-------------------------------------------- ERRORS -------------------------------------- // ErrInvalidEvidence wraps a piece of evidence and the error denoting how or why it is invalid. type ErrInvalidEvidence struct { Evidence Evidence Reason error } // NewErrInvalidEvidence returns a new EvidenceInvalid with the given err. func NewErrInvalidEvidence(ev Evidence, err error) *ErrInvalidEvidence { return &ErrInvalidEvidence{ev, err} } // Error returns a string representation of the error. func (err *ErrInvalidEvidence) Error() string { return fmt.Sprintf("Invalid evidence: %v. Evidence: %v", err.Reason, err.Evidence) } // ErrEvidenceOverflow is for when there the amount of evidence exceeds the max bytes. type ErrEvidenceOverflow struct { Max int64 Got int64 } // NewErrEvidenceOverflow returns a new ErrEvidenceOverflow where got > max. func NewErrEvidenceOverflow(max, got int64) *ErrEvidenceOverflow { return &ErrEvidenceOverflow{max, got} } // Error returns a string representation of the error. func (err *ErrEvidenceOverflow) Error() string { return fmt.Sprintf("Too much evidence: Max %d, got %d", err.Max, err.Got) } //-------------------------------------------- MOCKING -------------------------------------- // unstable - use only for testing // assumes the round to be 0 and the validator index to be 0 func NewMockDuplicateVoteEvidence(ctx context.Context, height int64, time time.Time, chainID string) (*DuplicateVoteEvidence, error) { val := NewMockPV() return NewMockDuplicateVoteEvidenceWithValidator(ctx, height, time, val, chainID) } // assumes voting power to be 10 and validator to be the only one in the set func NewMockDuplicateVoteEvidenceWithValidator(ctx context.Context, height int64, time time.Time, pv PrivValidator, chainID string) (*DuplicateVoteEvidence, error) { pubKey, err := pv.GetPubKey(ctx) if err != nil { return nil, err } val := NewValidator(pubKey, 10) voteA := makeMockVote(height, 0, 0, pubKey.Address(), randBlockID(), time) vA := voteA.ToProto() _ = pv.SignVote(ctx, chainID, vA) voteA.Signature = vA.Signature voteB := makeMockVote(height, 0, 0, pubKey.Address(), randBlockID(), time) vB := voteB.ToProto() _ = pv.SignVote(ctx, chainID, vB) voteB.Signature = vB.Signature ev, err := NewDuplicateVoteEvidence(voteA, voteB, time, NewValidatorSet([]*Validator{val})) if err != nil { return nil, fmt.Errorf("constructing mock duplicate vote evidence: %w", err) } return ev, nil } func makeMockVote(height int64, round, index int32, addr Address, blockID BlockID, time time.Time) *Vote { return &Vote{ Type: tmproto.SignedMsgType(2), Height: height, Round: round, BlockID: blockID, Timestamp: time, ValidatorAddress: addr, ValidatorIndex: index, } } func randBlockID() BlockID { return BlockID{ Hash: tmrand.Bytes(tmhash.Size), PartSetHeader: PartSetHeader{ Total: 1, Hash: tmrand.Bytes(tmhash.Size), }, } }