package mempool import ( "bytes" "container/list" "crypto/sha256" "encoding/binary" "fmt" "sync" "sync/atomic" "time" "github.com/pkg/errors" abci "github.com/tendermint/tendermint/abci/types" auto "github.com/tendermint/tendermint/libs/autofile" "github.com/tendermint/tendermint/libs/clist" cmn "github.com/tendermint/tendermint/libs/common" "github.com/tendermint/tendermint/libs/log" cfg "github.com/tendermint/tendermint/config" "github.com/tendermint/tendermint/proxy" "github.com/tendermint/tendermint/types" ) /* The mempool pushes new txs onto the proxyAppConn. It gets a stream of (req, res) tuples from the proxy. The mempool stores good txs in a concurrent linked-list. Multiple concurrent go-routines can traverse this linked-list safely by calling .NextWait() on each element. So we have several go-routines: 1. Consensus calling Update() and Reap() synchronously 2. Many mempool reactor's peer routines calling CheckTx() 3. Many mempool reactor's peer routines traversing the txs linked list 4. Another goroutine calling GarbageCollectTxs() periodically To manage these goroutines, there are three methods of locking. 1. Mutations to the linked-list is protected by an internal mtx (CList is goroutine-safe) 2. Mutations to the linked-list elements are atomic 3. CheckTx() calls can be paused upon Update() and Reap(), protected by .proxyMtx Garbage collection of old elements from mempool.txs is handlde via the DetachPrev() call, which makes old elements not reachable by peer broadcastTxRoutine() automatically garbage collected. TODO: Better handle abci client errors. (make it automatically handle connection errors) */ var ( // ErrTxInCache is returned to the client if we saw tx earlier ErrTxInCache = errors.New("Tx already exists in cache") // ErrMempoolIsFull means Tendermint & an application can't handle that much load ErrMempoolIsFull = errors.New("Mempool is full") ) // TxID is the hex encoded hash of the bytes as a types.Tx. func TxID(tx []byte) string { return fmt.Sprintf("%X", types.Tx(tx).Hash()) } // Mempool is an ordered in-memory pool for transactions before they are proposed in a consensus // round. Transaction validity is checked using the CheckTx abci message before the transaction is // added to the pool. The Mempool uses a concurrent list structure for storing transactions that // can be efficiently accessed by multiple concurrent readers. type Mempool struct { config *cfg.MempoolConfig proxyMtx sync.Mutex proxyAppConn proxy.AppConnMempool txs *clist.CList // concurrent linked-list of good txs counter int64 // simple incrementing counter height int64 // the last block Update()'d to rechecking int32 // for re-checking filtered txs on Update() recheckCursor *clist.CElement // next expected response recheckEnd *clist.CElement // re-checking stops here notifiedTxsAvailable bool txsAvailable chan struct{} // fires once for each height, when the mempool is not empty // Filter mempool to only accept txs for which filter(tx) returns true. filter func(types.Tx) bool // Keep a cache of already-seen txs. // This reduces the pressure on the proxyApp. cache txCache // A log of mempool txs wal *auto.AutoFile logger log.Logger metrics *Metrics } // MempoolOption sets an optional parameter on the Mempool. type MempoolOption func(*Mempool) // NewMempool returns a new Mempool with the given configuration and connection to an application. func NewMempool( config *cfg.MempoolConfig, proxyAppConn proxy.AppConnMempool, height int64, options ...MempoolOption, ) *Mempool { mempool := &Mempool{ config: config, proxyAppConn: proxyAppConn, txs: clist.New(), counter: 0, height: height, rechecking: 0, recheckCursor: nil, recheckEnd: nil, logger: log.NewNopLogger(), metrics: NopMetrics(), } if config.CacheSize > 0 { mempool.cache = newMapTxCache(config.CacheSize) } else { mempool.cache = nopTxCache{} } proxyAppConn.SetResponseCallback(mempool.resCb) for _, option := range options { option(mempool) } return mempool } // EnableTxsAvailable initializes the TxsAvailable channel, // ensuring it will trigger once every height when transactions are available. // NOTE: not thread safe - should only be called once, on startup func (mem *Mempool) EnableTxsAvailable() { mem.txsAvailable = make(chan struct{}, 1) } // SetLogger sets the Logger. func (mem *Mempool) SetLogger(l log.Logger) { mem.logger = l } // WithFilter sets a filter for mempool to only accept txs for which f(tx) // returns true. func WithFilter(f func(types.Tx) bool) MempoolOption { return func(mem *Mempool) { mem.filter = f } } // WithMetrics sets the metrics. func WithMetrics(metrics *Metrics) MempoolOption { return func(mem *Mempool) { mem.metrics = metrics } } // CloseWAL closes and discards the underlying WAL file. // Any further writes will not be relayed to disk. func (mem *Mempool) CloseWAL() bool { if mem == nil { return false } mem.proxyMtx.Lock() defer mem.proxyMtx.Unlock() if mem.wal == nil { return false } if err := mem.wal.Close(); err != nil && mem.logger != nil { mem.logger.Error("Mempool.CloseWAL", "err", err) } mem.wal = nil return true } func (mem *Mempool) InitWAL() { walDir := mem.config.WalDir() if walDir != "" { err := cmn.EnsureDir(walDir, 0700) if err != nil { cmn.PanicSanity(errors.Wrap(err, "Error ensuring Mempool wal dir")) } af, err := auto.OpenAutoFile(walDir + "/wal") if err != nil { cmn.PanicSanity(errors.Wrap(err, "Error opening Mempool wal file")) } mem.wal = af } } // Lock locks the mempool. The consensus must be able to hold lock to safely update. func (mem *Mempool) Lock() { mem.proxyMtx.Lock() } // Unlock unlocks the mempool. func (mem *Mempool) Unlock() { mem.proxyMtx.Unlock() } // Size returns the number of transactions in the mempool. func (mem *Mempool) Size() int { return mem.txs.Len() } // Flushes the mempool connection to ensure async resCb calls are done e.g. // from CheckTx. func (mem *Mempool) FlushAppConn() error { return mem.proxyAppConn.FlushSync() } // Flush removes all transactions from the mempool and cache func (mem *Mempool) Flush() { mem.proxyMtx.Lock() defer mem.proxyMtx.Unlock() mem.cache.Reset() for e := mem.txs.Front(); e != nil; e = e.Next() { mem.txs.Remove(e) e.DetachPrev() } } // TxsFront returns the first transaction in the ordered list for peer // goroutines to call .NextWait() on. func (mem *Mempool) TxsFront() *clist.CElement { return mem.txs.Front() } // TxsWaitChan returns a channel to wait on transactions. It will be closed // once the mempool is not empty (ie. the internal `mem.txs` has at least one // element) func (mem *Mempool) TxsWaitChan() <-chan struct{} { return mem.txs.WaitChan() } // CheckTx executes a new transaction against the application to determine its validity // and whether it should be added to the mempool. // It blocks if we're waiting on Update() or Reap(). // cb: A callback from the CheckTx command. // It gets called from another goroutine. // CONTRACT: Either cb will get called, or err returned. func (mem *Mempool) CheckTx(tx types.Tx, cb func(*abci.Response)) (err error) { mem.proxyMtx.Lock() defer mem.proxyMtx.Unlock() if mem.Size() >= mem.config.Size { return ErrMempoolIsFull } if mem.filter != nil && !mem.filter(tx) { return } // CACHE if !mem.cache.Push(tx) { return ErrTxInCache } // END CACHE // WAL if mem.wal != nil { // TODO: Notify administrators when WAL fails _, err := mem.wal.Write([]byte(tx)) if err != nil { mem.logger.Error("Error writing to WAL", "err", err) } _, err = mem.wal.Write([]byte("\n")) if err != nil { mem.logger.Error("Error writing to WAL", "err", err) } } // END WAL // NOTE: proxyAppConn may error if tx buffer is full if err = mem.proxyAppConn.Error(); err != nil { return err } reqRes := mem.proxyAppConn.CheckTxAsync(tx) if cb != nil { reqRes.SetCallback(cb) } return nil } // ABCI callback function func (mem *Mempool) resCb(req *abci.Request, res *abci.Response) { if mem.recheckCursor == nil { mem.resCbNormal(req, res) } else { mem.resCbRecheck(req, res) } mem.metrics.Size.Set(float64(mem.Size())) } func (mem *Mempool) resCbNormal(req *abci.Request, res *abci.Response) { switch r := res.Value.(type) { case *abci.Response_CheckTx: tx := req.GetCheckTx().Tx if r.CheckTx.Code == abci.CodeTypeOK { mem.counter++ memTx := &mempoolTx{ counter: mem.counter, height: mem.height, gasWanted: r.CheckTx.GasWanted, tx: tx, } mem.txs.PushBack(memTx) mem.logger.Info("Added good transaction", "tx", TxID(tx), "res", r, "total", mem.Size()) mem.notifyTxsAvailable() } else { // ignore bad transaction mem.logger.Info("Rejected bad transaction", "tx", TxID(tx), "res", r) // remove from cache (it might be good later) mem.cache.Remove(tx) } default: // ignore other messages } } func (mem *Mempool) resCbRecheck(req *abci.Request, res *abci.Response) { switch r := res.Value.(type) { case *abci.Response_CheckTx: memTx := mem.recheckCursor.Value.(*mempoolTx) if !bytes.Equal(req.GetCheckTx().Tx, memTx.tx) { cmn.PanicSanity(fmt.Sprintf("Unexpected tx response from proxy during recheck\n"+ "Expected %X, got %X", r.CheckTx.Data, memTx.tx)) } if r.CheckTx.Code == abci.CodeTypeOK { // Good, nothing to do. } else { // Tx became invalidated due to newly committed block. mem.txs.Remove(mem.recheckCursor) mem.recheckCursor.DetachPrev() // remove from cache (it might be good later) mem.cache.Remove(req.GetCheckTx().Tx) } if mem.recheckCursor == mem.recheckEnd { mem.recheckCursor = nil } else { mem.recheckCursor = mem.recheckCursor.Next() } if mem.recheckCursor == nil { // Done! atomic.StoreInt32(&mem.rechecking, 0) mem.logger.Info("Done rechecking txs") // incase the recheck removed all txs if mem.Size() > 0 { mem.notifyTxsAvailable() } } default: // ignore other messages } } // TxsAvailable returns a channel which fires once for every height, // and only when transactions are available in the mempool. // NOTE: the returned channel may be nil if EnableTxsAvailable was not called. func (mem *Mempool) TxsAvailable() <-chan struct{} { return mem.txsAvailable } func (mem *Mempool) notifyTxsAvailable() { if mem.Size() == 0 { panic("notified txs available but mempool is empty!") } if mem.txsAvailable != nil && !mem.notifiedTxsAvailable { // channel cap is 1, so this will send once mem.notifiedTxsAvailable = true select { case mem.txsAvailable <- struct{}{}: default: } } } // ReapMaxBytesMaxGas reaps transactions from the mempool up to maxBytes bytes total // with the condition that the total gasWanted must be less than maxGas. // If both maxes are negative, there is no cap on the size of all returned // transactions (~ all available transactions). func (mem *Mempool) ReapMaxBytesMaxGas(maxBytes int, maxGas int64) types.Txs { var buf [binary.MaxVarintLen64]byte mem.proxyMtx.Lock() defer mem.proxyMtx.Unlock() for atomic.LoadInt32(&mem.rechecking) > 0 { // TODO: Something better? time.Sleep(time.Millisecond * 10) } var totalBytes int var totalGas int64 // TODO: we will get a performance boost if we have a good estimate of avg // size per tx, and set the initial capacity based off of that. // txs := make([]types.Tx, 0, cmn.MinInt(mem.txs.Len(), max/mem.avgTxSize)) txs := make([]types.Tx, 0, mem.txs.Len()) for e := mem.txs.Front(); e != nil; e = e.Next() { memTx := e.Value.(*mempoolTx) // Check total size requirement // amino.UvarintSize is not used here because it won't be possible to reuse buf aminoOverhead := binary.PutUvarint(buf[:], uint64(len(memTx.tx))) if maxBytes > -1 && totalBytes+len(memTx.tx)+aminoOverhead > maxBytes { return txs } totalBytes += len(memTx.tx) + aminoOverhead // Check total gas requirement if maxGas > -1 && totalGas+memTx.gasWanted > maxGas { return txs } totalGas += memTx.gasWanted txs = append(txs, memTx.tx) } return txs } // ReapMaxTxs reaps up to max transactions from the mempool. // If max is negative, there is no cap on the size of all returned // transactions (~ all available transactions). func (mem *Mempool) ReapMaxTxs(max int) types.Txs { mem.proxyMtx.Lock() defer mem.proxyMtx.Unlock() if max < 0 { max = mem.txs.Len() } for atomic.LoadInt32(&mem.rechecking) > 0 { // TODO: Something better? time.Sleep(time.Millisecond * 10) } txs := make([]types.Tx, 0, cmn.MinInt(mem.txs.Len(), max)) for e := mem.txs.Front(); e != nil && len(txs) <= max; e = e.Next() { memTx := e.Value.(*mempoolTx) txs = append(txs, memTx.tx) } return txs } // Update informs the mempool that the given txs were committed and can be discarded. // NOTE: this should be called *after* block is committed by consensus. // NOTE: unsafe; Lock/Unlock must be managed by caller func (mem *Mempool) Update(height int64, txs types.Txs, filter func(types.Tx) bool) error { // First, create a lookup map of txns in new txs. txsMap := make(map[string]struct{}, len(txs)) for _, tx := range txs { txsMap[string(tx)] = struct{}{} } // Set height mem.height = height mem.notifiedTxsAvailable = false if filter != nil { mem.filter = filter } // Remove transactions that are already in txs. goodTxs := mem.filterTxs(txsMap) // Recheck mempool txs if any txs were committed in the block // NOTE/XXX: in some apps a tx could be invalidated due to EndBlock, // so we really still do need to recheck, but this is for debugging if mem.config.Recheck && (mem.config.RecheckEmpty || len(goodTxs) > 0) { mem.logger.Info("Recheck txs", "numtxs", len(goodTxs), "height", height) mem.recheckTxs(goodTxs) // At this point, mem.txs are being rechecked. // mem.recheckCursor re-scans mem.txs and possibly removes some txs. // Before mem.Reap(), we should wait for mem.recheckCursor to be nil. } // Update metrics mem.metrics.Size.Set(float64(mem.Size())) return nil } func (mem *Mempool) filterTxs(blockTxsMap map[string]struct{}) []types.Tx { goodTxs := make([]types.Tx, 0, mem.txs.Len()) for e := mem.txs.Front(); e != nil; e = e.Next() { memTx := e.Value.(*mempoolTx) // Remove the tx if it's alredy in a block. if _, ok := blockTxsMap[string(memTx.tx)]; ok { // remove from clist mem.txs.Remove(e) e.DetachPrev() // NOTE: we don't remove committed txs from the cache. continue } // Good tx! goodTxs = append(goodTxs, memTx.tx) } return goodTxs } // NOTE: pass in goodTxs because mem.txs can mutate concurrently. func (mem *Mempool) recheckTxs(goodTxs []types.Tx) { if len(goodTxs) == 0 { return } atomic.StoreInt32(&mem.rechecking, 1) mem.recheckCursor = mem.txs.Front() mem.recheckEnd = mem.txs.Back() // Push txs to proxyAppConn // NOTE: resCb() may be called concurrently. for _, tx := range goodTxs { mem.proxyAppConn.CheckTxAsync(tx) } mem.proxyAppConn.FlushAsync() } //-------------------------------------------------------------------------------- // mempoolTx is a transaction that successfully ran type mempoolTx struct { counter int64 // a simple incrementing counter height int64 // height that this tx had been validated in gasWanted int64 // amount of gas this tx states it will require tx types.Tx // } // Height returns the height for this transaction func (memTx *mempoolTx) Height() int64 { return atomic.LoadInt64(&memTx.height) } //-------------------------------------------------------------------------------- type txCache interface { Reset() Push(tx types.Tx) bool Remove(tx types.Tx) } // mapTxCache maintains a cache of transactions. This only stores // the hash of the tx, due to memory concerns. type mapTxCache struct { mtx sync.Mutex size int map_ map[[sha256.Size]byte]*list.Element list *list.List // to remove oldest tx when cache gets too big } var _ txCache = (*mapTxCache)(nil) // newMapTxCache returns a new mapTxCache. func newMapTxCache(cacheSize int) *mapTxCache { return &mapTxCache{ size: cacheSize, map_: make(map[[sha256.Size]byte]*list.Element, cacheSize), list: list.New(), } } // Reset resets the cache to an empty state. func (cache *mapTxCache) Reset() { cache.mtx.Lock() cache.map_ = make(map[[sha256.Size]byte]*list.Element, cache.size) cache.list.Init() cache.mtx.Unlock() } // Push adds the given tx to the cache and returns true. It returns false if tx // is already in the cache. func (cache *mapTxCache) Push(tx types.Tx) bool { cache.mtx.Lock() defer cache.mtx.Unlock() // Use the tx hash in the cache txHash := sha256.Sum256(tx) if _, exists := cache.map_[txHash]; exists { return false } if cache.list.Len() >= cache.size { popped := cache.list.Front() poppedTxHash := popped.Value.([sha256.Size]byte) delete(cache.map_, poppedTxHash) if popped != nil { cache.list.Remove(popped) } } cache.list.PushBack(txHash) cache.map_[txHash] = cache.list.Back() return true } // Remove removes the given tx from the cache. func (cache *mapTxCache) Remove(tx types.Tx) { cache.mtx.Lock() txHash := sha256.Sum256(tx) popped := cache.map_[txHash] delete(cache.map_, txHash) if popped != nil { cache.list.Remove(popped) } cache.mtx.Unlock() } type nopTxCache struct{} var _ txCache = (*nopTxCache)(nil) func (nopTxCache) Reset() {} func (nopTxCache) Push(types.Tx) bool { return true } func (nopTxCache) Remove(types.Tx) {}