package evidence import ( "bytes" "errors" "fmt" "time" "github.com/tendermint/tendermint/light" "github.com/tendermint/tendermint/types" ) // verify verifies the evidence fully by checking: // - It has not already been committed // - it is sufficiently recent (MaxAge) // - it is from a key who was a validator at the given height // - it is internally consistent with state // - it was properly signed by the alleged equivocator and meets the individual evidence verification requirements func (evpool *Pool) verify(evidence types.Evidence) (*info, error) { var ( state = evpool.State() height = state.LastBlockHeight evidenceParams = state.ConsensusParams.Evidence ageNumBlocks = height - evidence.Height() ) // check that the evidence isn't already committed if evpool.isCommitted(evidence) { return nil, errors.New("evidence was already committed") } // verify the time of the evidence blockMeta := evpool.blockStore.LoadBlockMeta(evidence.Height()) if blockMeta == nil { return nil, fmt.Errorf("don't have header at height #%d", evidence.Height()) } evTime := blockMeta.Header.Time ageDuration := state.LastBlockTime.Sub(evTime) // check that the evidence hasn't expired if ageDuration > evidenceParams.MaxAgeDuration && ageNumBlocks > evidenceParams.MaxAgeNumBlocks { return nil, fmt.Errorf( "evidence from height %d (created at: %v) is too old; min height is %d and evidence can not be older than %v", evidence.Height(), evTime, height-evidenceParams.MaxAgeNumBlocks, state.LastBlockTime.Add(evidenceParams.MaxAgeDuration), ) } // apply the evidence-specific verification logic switch ev := evidence.(type) { case *types.DuplicateVoteEvidence: valSet, err := evpool.stateDB.LoadValidators(evidence.Height()) if err != nil { return nil, err } err = VerifyDuplicateVote(ev, state.ChainID, valSet) if err != nil { return nil, fmt.Errorf("verifying duplicate vote evidence: %w", err) } _, val := valSet.GetByAddress(ev.VoteA.ValidatorAddress) return &info{ Evidence: evidence, Time: evTime, Validators: []*types.Validator{val}, // just a single validator for duplicate vote evidence TotalVotingPower: valSet.TotalVotingPower(), }, nil case *types.LightClientAttackEvidence: commonHeader, err := getSignedHeader(evpool.blockStore, evidence.Height()) if err != nil { return nil, err } commonVals, err := evpool.stateDB.LoadValidators(evidence.Height()) if err != nil { return nil, err } trustedHeader := commonHeader // in the case of lunatic the trusted header is different to the common header if evidence.Height() != ev.ConflictingBlock.Height { trustedHeader, err = getSignedHeader(evpool.blockStore, ev.ConflictingBlock.Height) if err != nil { return nil, err } } err = VerifyLightClientAttack(ev, commonHeader, trustedHeader, commonVals, state.LastBlockTime, state.ConsensusParams.Evidence.MaxAgeDuration) if err != nil { return nil, err } // find out what type of attack this was and thus extract the malicious validators. Note in the case of an // Amnesia attack we don't have any malicious validators. validators, attackType := getMaliciousValidators(ev, commonVals, trustedHeader) totalVotingPower := ev.ConflictingBlock.ValidatorSet.TotalVotingPower() if attackType == lunaticType { totalVotingPower = commonVals.TotalVotingPower() } return &info{ Evidence: evidence, Time: evTime, Validators: validators, TotalVotingPower: totalVotingPower, }, nil default: return nil, fmt.Errorf("unrecognized evidence type: %T", evidence) } } // VerifyLightClientAttack verifies LightClientAttackEvidence against the state of the full node. This involves // the following checks: // - the common header from the full node has at least 1/3 voting power which is also present in // the conflicting header's commit // - the nodes trusted header at the same height as the conflicting header has a different hash func VerifyLightClientAttack(e *types.LightClientAttackEvidence, commonHeader, trustedHeader *types.SignedHeader, commonVals *types.ValidatorSet, now time.Time, trustPeriod time.Duration) error { // In the case of lunatic attack we need to perform a single verification jump between the // common header and the conflicting one if commonHeader.Height != trustedHeader.Height { err := light.Verify(commonHeader, commonVals, e.ConflictingBlock.SignedHeader, e.ConflictingBlock.ValidatorSet, trustPeriod, now, 0*time.Second, light.DefaultTrustLevel) if err != nil { return fmt.Errorf("skipping verification from common to conflicting header failed: %w", err) } } else { // in the case of equivocation and amnesia we expect some header hashes to be correctly derived if isInvalidHeader(trustedHeader.Header, e.ConflictingBlock.Header) { return errors.New("common height is the same as conflicting block height so expected the conflicting" + " block to be correctly derived yet it wasn't") } // ensure that 2/3 of the validator set did vote for this block if err := e.ConflictingBlock.ValidatorSet.VerifyCommitLight(trustedHeader.ChainID, e.ConflictingBlock.Commit.BlockID, e.ConflictingBlock.Height, e.ConflictingBlock.Commit); err != nil { return fmt.Errorf("invalid commit from conflicting block: %w", err) } } if bytes.Equal(trustedHeader.Hash(), e.ConflictingBlock.Hash()) { return fmt.Errorf("trusted header hash matches the evidence conflicting header hash: %X", trustedHeader.Hash()) } return nil } // VerifyDuplicateVote verifies DuplicateVoteEvidence against the state of full node. This involves the // following checks: // - the validator is in the validator set at the height of the evidence // - the height, round, type and validator address of the votes must be the same // - the block ID's must be different // - The signatures must both be valid func VerifyDuplicateVote(e *types.DuplicateVoteEvidence, chainID string, valSet *types.ValidatorSet) error { _, val := valSet.GetByAddress(e.VoteA.ValidatorAddress) if val == nil { return fmt.Errorf("address %X was not a validator at height %d", e.VoteA.ValidatorAddress, e.Height()) } pubKey := val.PubKey // H/R/S must be the same if e.VoteA.Height != e.VoteB.Height || e.VoteA.Round != e.VoteB.Round || e.VoteA.Type != e.VoteB.Type { return fmt.Errorf("h/r/s does not match: %d/%d/%v vs %d/%d/%v", e.VoteA.Height, e.VoteA.Round, e.VoteA.Type, e.VoteB.Height, e.VoteB.Round, e.VoteB.Type) } // Address must be the same if !bytes.Equal(e.VoteA.ValidatorAddress, e.VoteB.ValidatorAddress) { return fmt.Errorf("validator addresses do not match: %X vs %X", e.VoteA.ValidatorAddress, e.VoteB.ValidatorAddress, ) } // BlockIDs must be different if e.VoteA.BlockID.Equals(e.VoteB.BlockID) { return fmt.Errorf( "block IDs are the same (%v) - not a real duplicate vote", e.VoteA.BlockID, ) } // pubkey must match address (this should already be true, sanity check) addr := e.VoteA.ValidatorAddress if !bytes.Equal(pubKey.Address(), addr) { return fmt.Errorf("address (%X) doesn't match pubkey (%v - %X)", addr, pubKey, pubKey.Address()) } va := e.VoteA.ToProto() vb := e.VoteB.ToProto() // Signatures must be valid if !pubKey.VerifySignature(types.VoteSignBytes(chainID, va), e.VoteA.Signature) { return fmt.Errorf("verifying VoteA: %w", types.ErrVoteInvalidSignature) } if !pubKey.VerifySignature(types.VoteSignBytes(chainID, vb), e.VoteB.Signature) { return fmt.Errorf("verifying VoteB: %w", types.ErrVoteInvalidSignature) } return nil } func getSignedHeader(blockStore BlockStore, height int64) (*types.SignedHeader, error) { blockMeta := blockStore.LoadBlockMeta(height) if blockMeta == nil { return nil, fmt.Errorf("don't have header at height #%d", height) } commit := blockStore.LoadBlockCommit(height) if commit == nil { return nil, fmt.Errorf("don't have commit at height #%d", height) } return &types.SignedHeader{ Header: &blockMeta.Header, Commit: commit, }, nil } // getMaliciousValidators finds out what style of attack LightClientAttackEvidence was and then works out who // the malicious validators were and returns them. func getMaliciousValidators(evidence *types.LightClientAttackEvidence, commonVals *types.ValidatorSet, trusted *types.SignedHeader) ([]*types.Validator, lightClientAttackType) { var validators []*types.Validator // First check if the header is invalid. This means that it is a lunatic attack and therefore we take the // validators who are in the commonVals and voted for the lunatic header if isInvalidHeader(trusted.Header, evidence.ConflictingBlock.Header) { for _, commitSig := range evidence.ConflictingBlock.Commit.Signatures { if !commitSig.ForBlock() { continue } _, val := commonVals.GetByAddress(commitSig.ValidatorAddress) if val == nil { // validator wasn't in the common validator set continue } validators = append(validators, val) } return validators, lunaticType // Next, check to see if it is an equivocation attack and both commits are in the same round. If this is the // case then we take the validators from the conflicting light block validator set that voted in both headers. } else if trusted.Commit.Round == evidence.ConflictingBlock.Commit.Round { // validator hashes are the same therefore the indexing order of validators are the same and thus we // only need a single loop to find the validators that voted twice. for i := 0; i < len(evidence.ConflictingBlock.Commit.Signatures); i++ { sigA := evidence.ConflictingBlock.Commit.Signatures[i] if sigA.Absent() { continue } sigB := trusted.Commit.Signatures[i] if sigB.Absent() { continue } _, val := evidence.ConflictingBlock.ValidatorSet.GetByAddress(sigA.ValidatorAddress) validators = append(validators, val) } return validators, equivocationType } // if the rounds are different then this is an amnesia attack. Unfortunately, given the nature of the attack, // we aren't able yet to deduce which are malicious validators and which are not hence we return an // empty validator set. return validators, amnesiaType } // isInvalidHeader takes a trusted header and matches it againt a conflicting header // to determine whether the conflicting header was the product of a valid state transition // or not. If it is then all the deterministic fields of the header should be the same. // If not, it is an invalid header and constitutes a lunatic attack. func isInvalidHeader(trusted, conflicting *types.Header) bool { return !bytes.Equal(trusted.ValidatorsHash, conflicting.ValidatorsHash) || !bytes.Equal(trusted.NextValidatorsHash, conflicting.NextValidatorsHash) || !bytes.Equal(trusted.ConsensusHash, conflicting.ConsensusHash) || !bytes.Equal(trusted.AppHash, conflicting.AppHash) || !bytes.Equal(trusted.LastResultsHash, conflicting.LastResultsHash) } type lightClientAttackType int const ( lunaticType lightClientAttackType = iota + 1 equivocationType amnesiaType )