package evidence import ( "context" "fmt" "runtime/debug" "sync" "time" clist "github.com/tendermint/tendermint/internal/libs/clist" "github.com/tendermint/tendermint/internal/p2p" "github.com/tendermint/tendermint/libs/log" "github.com/tendermint/tendermint/libs/service" tmproto "github.com/tendermint/tendermint/proto/tendermint/types" "github.com/tendermint/tendermint/types" ) var _ service.Service = (*Reactor)(nil) const ( EvidenceChannel = p2p.ChannelID(0x38) maxMsgSize = 1048576 // 1MB TODO make it configurable // broadcast all uncommitted evidence this often. This sets when the reactor // goes back to the start of the list and begins sending the evidence again. // Most evidence should be committed in the very next block that is why we wait // just over the block production rate before sending evidence again. broadcastEvidenceIntervalS = 10 ) // GetChannelDescriptor produces an instance of a descriptor for this // package's required channels. func GetChannelDescriptor() *p2p.ChannelDescriptor { return &p2p.ChannelDescriptor{ ID: EvidenceChannel, MessageType: new(tmproto.Evidence), Priority: 6, RecvMessageCapacity: maxMsgSize, RecvBufferCapacity: 32, } } // Reactor handles evpool evidence broadcasting amongst peers. type Reactor struct { service.BaseService logger log.Logger evpool *Pool evidenceCh *p2p.Channel peerUpdates *p2p.PeerUpdates mtx sync.Mutex peerRoutines map[types.NodeID]context.CancelFunc } // NewReactor returns a reference to a new evidence reactor, which implements the // service.Service interface. It accepts a p2p Channel dedicated for handling // envelopes with EvidenceList messages. func NewReactor( ctx context.Context, logger log.Logger, chCreator p2p.ChannelCreator, peerUpdates *p2p.PeerUpdates, evpool *Pool, ) (*Reactor, error) { evidenceCh, err := chCreator(ctx, GetChannelDescriptor()) if err != nil { return nil, err } r := &Reactor{ logger: logger, evpool: evpool, evidenceCh: evidenceCh, peerUpdates: peerUpdates, peerRoutines: make(map[types.NodeID]context.CancelFunc), } r.BaseService = *service.NewBaseService(logger, "Evidence", r) return r, err } // OnStart starts separate go routines for each p2p Channel and listens for // envelopes on each. In addition, it also listens for peer updates and handles // messages on that p2p channel accordingly. The caller must be sure to execute // OnStop to ensure the outbound p2p Channels are closed. No error is returned. func (r *Reactor) OnStart(ctx context.Context) error { go r.processEvidenceCh(ctx) go r.processPeerUpdates(ctx) return nil } // OnStop stops the reactor by signaling to all spawned goroutines to exit and // blocking until they all exit. func (r *Reactor) OnStop() { // Close the evidence db r.evpool.Close() } // handleEvidenceMessage handles envelopes sent from peers on the EvidenceChannel. // It returns an error only if the Envelope.Message is unknown for this channel // or if the given evidence is invalid. This should never be called outside of // handleMessage. func (r *Reactor) handleEvidenceMessage(envelope *p2p.Envelope) error { logger := r.logger.With("peer", envelope.From) switch msg := envelope.Message.(type) { case *tmproto.Evidence: // Process the evidence received from a peer // Evidence is sent and received one by one ev, err := types.EvidenceFromProto(msg) if err != nil { logger.Error("failed to convert evidence", "err", err) return err } if err := r.evpool.AddEvidence(ev); err != nil { // If we're given invalid evidence by the peer, notify the router that // we should remove this peer by returning an error. if _, ok := err.(*types.ErrInvalidEvidence); ok { return err } } default: return fmt.Errorf("received unknown message: %T", msg) } return nil } // handleMessage handles an Envelope sent from a peer on a specific p2p Channel. // It will handle errors and any possible panics gracefully. A caller can handle // any error returned by sending a PeerError on the respective channel. func (r *Reactor) handleMessage(chID p2p.ChannelID, envelope *p2p.Envelope) (err error) { defer func() { if e := recover(); e != nil { err = fmt.Errorf("panic in processing message: %v", e) r.logger.Error( "recovering from processing message panic", "err", err, "stack", string(debug.Stack()), ) } }() r.logger.Debug("received message", "message", envelope.Message, "peer", envelope.From) switch chID { case EvidenceChannel: err = r.handleEvidenceMessage(envelope) default: err = fmt.Errorf("unknown channel ID (%d) for envelope (%v)", chID, envelope) } return err } // processEvidenceCh implements a blocking event loop where we listen for p2p // Envelope messages from the evidenceCh. func (r *Reactor) processEvidenceCh(ctx context.Context) { iter := r.evidenceCh.Receive(ctx) for iter.Next(ctx) { envelope := iter.Envelope() if err := r.handleMessage(r.evidenceCh.ID, envelope); err != nil { r.logger.Error("failed to process message", "ch_id", r.evidenceCh.ID, "envelope", envelope, "err", err) if serr := r.evidenceCh.SendError(ctx, p2p.PeerError{ NodeID: envelope.From, Err: err, }); serr != nil { return } } } } // processPeerUpdate processes a PeerUpdate. For new or live peers it will check // if an evidence broadcasting goroutine needs to be started. For down or // removed peers, it will check if an evidence broadcasting goroutine // exists and signal that it should exit. // // FIXME: The peer may be behind in which case it would simply ignore the // evidence and treat it as invalid. This would cause the peer to disconnect. // The peer may also receive the same piece of evidence multiple times if it // connects/disconnects frequently from the broadcasting peer(s). // // REF: https://github.com/tendermint/tendermint/issues/4727 func (r *Reactor) processPeerUpdate(ctx context.Context, peerUpdate p2p.PeerUpdate) { r.logger.Debug("received peer update", "peer", peerUpdate.NodeID, "status", peerUpdate.Status) r.mtx.Lock() defer r.mtx.Unlock() switch peerUpdate.Status { case p2p.PeerStatusUp: // Do not allow starting new evidence broadcast loops after reactor shutdown // has been initiated. This can happen after we've manually closed all // peer broadcast loops, but the router still sends in-flight peer updates. if !r.IsRunning() { return } // Check if we've already started a goroutine for this peer, if not we create // a new done channel so we can explicitly close the goroutine if the peer // is later removed, we increment the waitgroup so the reactor can stop // safely, and finally start the goroutine to broadcast evidence to that peer. _, ok := r.peerRoutines[peerUpdate.NodeID] if !ok { pctx, pcancel := context.WithCancel(ctx) r.peerRoutines[peerUpdate.NodeID] = pcancel go r.broadcastEvidenceLoop(pctx, peerUpdate.NodeID) } case p2p.PeerStatusDown: // Check if we've started an evidence broadcasting goroutine for this peer. // If we have, we signal to terminate the goroutine via the channel's closure. // This will internally decrement the peer waitgroup and remove the peer // from the map of peer evidence broadcasting goroutines. closer, ok := r.peerRoutines[peerUpdate.NodeID] if ok { closer() } } } // processPeerUpdates initiates a blocking process where we listen for and handle // PeerUpdate messages. When the reactor is stopped, we will catch the signal and // close the p2p PeerUpdatesCh gracefully. func (r *Reactor) processPeerUpdates(ctx context.Context) { for { select { case peerUpdate := <-r.peerUpdates.Updates(): r.processPeerUpdate(ctx, peerUpdate) case <-ctx.Done(): return } } } // broadcastEvidenceLoop starts a blocking process that continuously reads pieces // of evidence off of a linked-list and sends the evidence in a p2p Envelope to // the given peer by ID. This should be invoked in a goroutine per unique peer // ID via an appropriate PeerUpdate. The goroutine can be signaled to gracefully // exit by either explicitly closing the provided doneCh or by the reactor // signaling to stop. // // TODO: This should be refactored so that we do not blindly gossip evidence // that the peer has already received or may not be ready for. // // REF: https://github.com/tendermint/tendermint/issues/4727 func (r *Reactor) broadcastEvidenceLoop(ctx context.Context, peerID types.NodeID) { var next *clist.CElement defer func() { r.mtx.Lock() delete(r.peerRoutines, peerID) r.mtx.Unlock() if e := recover(); e != nil { r.logger.Error( "recovering from broadcasting evidence loop", "err", e, "stack", string(debug.Stack()), ) } }() timer := time.NewTimer(0) defer timer.Stop() for { // This happens because the CElement we were looking at got garbage // collected (removed). That is, .NextWaitChan() returned nil. So we can go // ahead and start from the beginning. if next == nil { select { case <-r.evpool.EvidenceWaitChan(): // wait until next evidence is available if next = r.evpool.EvidenceFront(); next == nil { continue } case <-ctx.Done(): return } } ev := next.Value.(types.Evidence) evProto, err := types.EvidenceToProto(ev) if err != nil { panic(fmt.Errorf("failed to convert evidence: %w", err)) } // Send the evidence to the corresponding peer. Note, the peer may be behind // and thus would not be able to process the evidence correctly. Also, the // peer may receive this piece of evidence multiple times if it added and // removed frequently from the broadcasting peer. if err := r.evidenceCh.Send(ctx, p2p.Envelope{ To: peerID, Message: evProto, }); err != nil { return } r.logger.Debug("gossiped evidence to peer", "evidence", ev, "peer", peerID) select { case <-timer.C: // start from the beginning after broadcastEvidenceIntervalS seconds timer.Reset(time.Second * broadcastEvidenceIntervalS) next = nil case <-next.NextWaitChan(): next = next.Next() case <-ctx.Done(): return } } }