package conn import ( "bufio" "errors" "fmt" "io" "math" "net" "reflect" "sync/atomic" "time" amino "github.com/tendermint/go-amino" cmn "github.com/tendermint/tendermint/libs/common" flow "github.com/tendermint/tendermint/libs/flowrate" "github.com/tendermint/tendermint/libs/log" ) const ( defaultMaxPacketMsgPayloadSize = 1024 numBatchPacketMsgs = 10 minReadBufferSize = 1024 minWriteBufferSize = 65536 updateStats = 2 * time.Second // some of these defaults are written in the user config // flushThrottle, sendRate, recvRate // TODO: remove values present in config defaultFlushThrottle = 100 * time.Millisecond defaultSendQueueCapacity = 1 defaultRecvBufferCapacity = 4096 defaultRecvMessageCapacity = 22020096 // 21MB defaultSendRate = int64(512000) // 500KB/s defaultRecvRate = int64(512000) // 500KB/s defaultSendTimeout = 10 * time.Second defaultPingInterval = 60 * time.Second defaultPongTimeout = 45 * time.Second ) type receiveCbFunc func(chID byte, msgBytes []byte) type errorCbFunc func(interface{}) /* Each peer has one `MConnection` (multiplex connection) instance. __multiplex__ *noun* a system or signal involving simultaneous transmission of several messages along a single channel of communication. Each `MConnection` handles message transmission on multiple abstract communication `Channel`s. Each channel has a globally unique byte id. The byte id and the relative priorities of each `Channel` are configured upon initialization of the connection. There are two methods for sending messages: func (m MConnection) Send(chID byte, msgBytes []byte) bool {} func (m MConnection) TrySend(chID byte, msgBytes []byte}) bool {} `Send(chID, msgBytes)` is a blocking call that waits until `msg` is successfully queued for the channel with the given id byte `chID`, or until the request times out. The message `msg` is serialized using Go-Amino. `TrySend(chID, msgBytes)` is a nonblocking call that returns false if the channel's queue is full. Inbound message bytes are handled with an onReceive callback function. */ type MConnection struct { cmn.BaseService conn net.Conn bufConnReader *bufio.Reader bufConnWriter *bufio.Writer sendMonitor *flow.Monitor recvMonitor *flow.Monitor send chan struct{} pong chan struct{} channels []*Channel channelsIdx map[byte]*Channel onReceive receiveCbFunc onError errorCbFunc errored uint32 config MConnConfig // Closing quitSendRoutine will cause // doneSendRoutine to close. quitSendRoutine chan struct{} doneSendRoutine chan struct{} flushTimer *cmn.ThrottleTimer // flush writes as necessary but throttled. pingTimer *cmn.RepeatTimer // send pings periodically // close conn if pong is not received in pongTimeout pongTimer *time.Timer pongTimeoutCh chan bool // true - timeout, false - peer sent pong chStatsTimer *cmn.RepeatTimer // update channel stats periodically created time.Time // time of creation _maxPacketMsgSize int } // MConnConfig is a MConnection configuration. type MConnConfig struct { SendRate int64 `mapstructure:"send_rate"` RecvRate int64 `mapstructure:"recv_rate"` // Maximum payload size MaxPacketMsgPayloadSize int `mapstructure:"max_packet_msg_payload_size"` // Interval to flush writes (throttled) FlushThrottle time.Duration `mapstructure:"flush_throttle"` // Interval to send pings PingInterval time.Duration `mapstructure:"ping_interval"` // Maximum wait time for pongs PongTimeout time.Duration `mapstructure:"pong_timeout"` } // DefaultMConnConfig returns the default config. func DefaultMConnConfig() MConnConfig { return MConnConfig{ SendRate: defaultSendRate, RecvRate: defaultRecvRate, MaxPacketMsgPayloadSize: defaultMaxPacketMsgPayloadSize, FlushThrottle: defaultFlushThrottle, PingInterval: defaultPingInterval, PongTimeout: defaultPongTimeout, } } // NewMConnection wraps net.Conn and creates multiplex connection func NewMConnection(conn net.Conn, chDescs []*ChannelDescriptor, onReceive receiveCbFunc, onError errorCbFunc) *MConnection { return NewMConnectionWithConfig( conn, chDescs, onReceive, onError, DefaultMConnConfig()) } // NewMConnectionWithConfig wraps net.Conn and creates multiplex connection with a config func NewMConnectionWithConfig(conn net.Conn, chDescs []*ChannelDescriptor, onReceive receiveCbFunc, onError errorCbFunc, config MConnConfig) *MConnection { if config.PongTimeout >= config.PingInterval { panic("pongTimeout must be less than pingInterval (otherwise, next ping will reset pong timer)") } mconn := &MConnection{ conn: conn, bufConnReader: bufio.NewReaderSize(conn, minReadBufferSize), bufConnWriter: bufio.NewWriterSize(conn, minWriteBufferSize), sendMonitor: flow.New(0, 0), recvMonitor: flow.New(0, 0), send: make(chan struct{}, 1), pong: make(chan struct{}, 1), onReceive: onReceive, onError: onError, config: config, } // Create channels var channelsIdx = map[byte]*Channel{} var channels = []*Channel{} for _, desc := range chDescs { channel := newChannel(mconn, *desc) channelsIdx[channel.desc.ID] = channel channels = append(channels, channel) } mconn.channels = channels mconn.channelsIdx = channelsIdx mconn.BaseService = *cmn.NewBaseService(nil, "MConnection", mconn) // maxPacketMsgSize() is a bit heavy, so call just once mconn._maxPacketMsgSize = mconn.maxPacketMsgSize() return mconn } func (c *MConnection) SetLogger(l log.Logger) { c.BaseService.SetLogger(l) for _, ch := range c.channels { ch.SetLogger(l) } } // OnStart implements BaseService func (c *MConnection) OnStart() error { if err := c.BaseService.OnStart(); err != nil { return err } c.quitSendRoutine = make(chan struct{}) c.doneSendRoutine = make(chan struct{}) c.flushTimer = cmn.NewThrottleTimer("flush", c.config.FlushThrottle) c.pingTimer = cmn.NewRepeatTimer("ping", c.config.PingInterval) c.pongTimeoutCh = make(chan bool, 1) c.chStatsTimer = cmn.NewRepeatTimer("chStats", updateStats) go c.sendRoutine() go c.recvRoutine() return nil } // FlushStop replicates the logic of OnStop. // It additionally ensures that all successful // .Send() calls will get flushed before closing // the connection. // NOTE: it is not safe to call this method more than once. func (c *MConnection) FlushStop() { c.BaseService.OnStop() c.flushTimer.Stop() c.pingTimer.Stop() c.chStatsTimer.Stop() if c.quitSendRoutine != nil { close(c.quitSendRoutine) // wait until the sendRoutine exits // so we dont race on calling sendSomePacketMsgs <-c.doneSendRoutine } // Send and flush all pending msgs. // By now, IsRunning == false, // so any concurrent attempts to send will fail. // Since sendRoutine has exited, we can call this // safely eof := c.sendSomePacketMsgs() for !eof { eof = c.sendSomePacketMsgs() } c.flush() // Now we can close the connection c.conn.Close() // nolint: errcheck // We can't close pong safely here because // recvRoutine may write to it after we've stopped. // Though it doesn't need to get closed at all, // we close it @ recvRoutine. // c.Stop() } // OnStop implements BaseService func (c *MConnection) OnStop() { select { case <-c.quitSendRoutine: // already quit via FlushStop return default: } c.BaseService.OnStop() c.flushTimer.Stop() c.pingTimer.Stop() c.chStatsTimer.Stop() close(c.quitSendRoutine) c.conn.Close() // nolint: errcheck // We can't close pong safely here because // recvRoutine may write to it after we've stopped. // Though it doesn't need to get closed at all, // we close it @ recvRoutine. } func (c *MConnection) String() string { return fmt.Sprintf("MConn{%v}", c.conn.RemoteAddr()) } func (c *MConnection) flush() { c.Logger.Debug("Flush", "conn", c) err := c.bufConnWriter.Flush() if err != nil { c.Logger.Error("MConnection flush failed", "err", err) } } // Catch panics, usually caused by remote disconnects. func (c *MConnection) _recover() { if r := recover(); r != nil { err := cmn.ErrorWrap(r, "recovered panic in MConnection") c.stopForError(err) } } func (c *MConnection) stopForError(r interface{}) { c.Stop() if atomic.CompareAndSwapUint32(&c.errored, 0, 1) { if c.onError != nil { c.onError(r) } } } // Queues a message to be sent to channel. func (c *MConnection) Send(chID byte, msgBytes []byte) bool { if !c.IsRunning() { return false } c.Logger.Debug("Send", "channel", chID, "conn", c, "msgBytes", fmt.Sprintf("%X", msgBytes)) // Send message to channel. channel, ok := c.channelsIdx[chID] if !ok { c.Logger.Error(fmt.Sprintf("Cannot send bytes, unknown channel %X", chID)) return false } success := channel.sendBytes(msgBytes) if success { // Wake up sendRoutine if necessary select { case c.send <- struct{}{}: default: } } else { c.Logger.Debug("Send failed", "channel", chID, "conn", c, "msgBytes", fmt.Sprintf("%X", msgBytes)) } return success } // Queues a message to be sent to channel. // Nonblocking, returns true if successful. func (c *MConnection) TrySend(chID byte, msgBytes []byte) bool { if !c.IsRunning() { return false } c.Logger.Debug("TrySend", "channel", chID, "conn", c, "msgBytes", fmt.Sprintf("%X", msgBytes)) // Send message to channel. channel, ok := c.channelsIdx[chID] if !ok { c.Logger.Error(fmt.Sprintf("Cannot send bytes, unknown channel %X", chID)) return false } ok = channel.trySendBytes(msgBytes) if ok { // Wake up sendRoutine if necessary select { case c.send <- struct{}{}: default: } } return ok } // CanSend returns true if you can send more data onto the chID, false // otherwise. Use only as a heuristic. func (c *MConnection) CanSend(chID byte) bool { if !c.IsRunning() { return false } channel, ok := c.channelsIdx[chID] if !ok { c.Logger.Error(fmt.Sprintf("Unknown channel %X", chID)) return false } return channel.canSend() } // sendRoutine polls for packets to send from channels. func (c *MConnection) sendRoutine() { defer c._recover() FOR_LOOP: for { var _n int64 var err error SELECTION: select { case <-c.flushTimer.Ch: // NOTE: flushTimer.Set() must be called every time // something is written to .bufConnWriter. c.flush() case <-c.chStatsTimer.Chan(): for _, channel := range c.channels { channel.updateStats() } case <-c.pingTimer.Chan(): c.Logger.Debug("Send Ping") _n, err = cdc.MarshalBinaryLengthPrefixedWriter(c.bufConnWriter, PacketPing{}) if err != nil { break SELECTION } c.sendMonitor.Update(int(_n)) c.Logger.Debug("Starting pong timer", "dur", c.config.PongTimeout) c.pongTimer = time.AfterFunc(c.config.PongTimeout, func() { select { case c.pongTimeoutCh <- true: default: } }) c.flush() case timeout := <-c.pongTimeoutCh: if timeout { c.Logger.Debug("Pong timeout") err = errors.New("pong timeout") } else { c.stopPongTimer() } case <-c.pong: c.Logger.Debug("Send Pong") _n, err = cdc.MarshalBinaryLengthPrefixedWriter(c.bufConnWriter, PacketPong{}) if err != nil { break SELECTION } c.sendMonitor.Update(int(_n)) c.flush() case <-c.quitSendRoutine: close(c.doneSendRoutine) break FOR_LOOP case <-c.send: // Send some PacketMsgs eof := c.sendSomePacketMsgs() if !eof { // Keep sendRoutine awake. select { case c.send <- struct{}{}: default: } } } if !c.IsRunning() { break FOR_LOOP } if err != nil { c.Logger.Error("Connection failed @ sendRoutine", "conn", c, "err", err) c.stopForError(err) break FOR_LOOP } } // Cleanup c.stopPongTimer() } // Returns true if messages from channels were exhausted. // Blocks in accordance to .sendMonitor throttling. func (c *MConnection) sendSomePacketMsgs() bool { // Block until .sendMonitor says we can write. // Once we're ready we send more than we asked for, // but amortized it should even out. c.sendMonitor.Limit(c._maxPacketMsgSize, atomic.LoadInt64(&c.config.SendRate), true) // Now send some PacketMsgs. for i := 0; i < numBatchPacketMsgs; i++ { if c.sendPacketMsg() { return true } } return false } // Returns true if messages from channels were exhausted. func (c *MConnection) sendPacketMsg() bool { // Choose a channel to create a PacketMsg from. // The chosen channel will be the one whose recentlySent/priority is the least. var leastRatio float32 = math.MaxFloat32 var leastChannel *Channel for _, channel := range c.channels { // If nothing to send, skip this channel if !channel.isSendPending() { continue } // Get ratio, and keep track of lowest ratio. ratio := float32(channel.recentlySent) / float32(channel.desc.Priority) if ratio < leastRatio { leastRatio = ratio leastChannel = channel } } // Nothing to send? if leastChannel == nil { return true } // c.Logger.Info("Found a msgPacket to send") // Make & send a PacketMsg from this channel _n, err := leastChannel.writePacketMsgTo(c.bufConnWriter) if err != nil { c.Logger.Error("Failed to write PacketMsg", "err", err) c.stopForError(err) return true } c.sendMonitor.Update(int(_n)) c.flushTimer.Set() return false } // recvRoutine reads PacketMsgs and reconstructs the message using the channels' "recving" buffer. // After a whole message has been assembled, it's pushed to onReceive(). // Blocks depending on how the connection is throttled. // Otherwise, it never blocks. func (c *MConnection) recvRoutine() { defer c._recover() FOR_LOOP: for { // Block until .recvMonitor says we can read. c.recvMonitor.Limit(c._maxPacketMsgSize, atomic.LoadInt64(&c.config.RecvRate), true) // Peek into bufConnReader for debugging /* if numBytes := c.bufConnReader.Buffered(); numBytes > 0 { bz, err := c.bufConnReader.Peek(cmn.MinInt(numBytes, 100)) if err == nil { // return } else { c.Logger.Debug("Error peeking connection buffer", "err", err) // return nil } c.Logger.Info("Peek connection buffer", "numBytes", numBytes, "bz", bz) } */ // Read packet type var packet Packet var _n int64 var err error _n, err = cdc.UnmarshalBinaryLengthPrefixedReader(c.bufConnReader, &packet, int64(c._maxPacketMsgSize)) c.recvMonitor.Update(int(_n)) if err != nil { if c.IsRunning() { c.Logger.Error("Connection failed @ recvRoutine (reading byte)", "conn", c, "err", err) c.stopForError(err) } break FOR_LOOP } // Read more depending on packet type. switch pkt := packet.(type) { case PacketPing: // TODO: prevent abuse, as they cause flush()'s. // https://github.com/tendermint/tendermint/issues/1190 c.Logger.Debug("Receive Ping") select { case c.pong <- struct{}{}: default: // never block } case PacketPong: c.Logger.Debug("Receive Pong") select { case c.pongTimeoutCh <- false: default: // never block } case PacketMsg: channel, ok := c.channelsIdx[pkt.ChannelID] if !ok || channel == nil { err := fmt.Errorf("Unknown channel %X", pkt.ChannelID) c.Logger.Error("Connection failed @ recvRoutine", "conn", c, "err", err) c.stopForError(err) break FOR_LOOP } msgBytes, err := channel.recvPacketMsg(pkt) if err != nil { if c.IsRunning() { c.Logger.Error("Connection failed @ recvRoutine", "conn", c, "err", err) c.stopForError(err) } break FOR_LOOP } if msgBytes != nil { c.Logger.Debug("Received bytes", "chID", pkt.ChannelID, "msgBytes", fmt.Sprintf("%X", msgBytes)) // NOTE: This means the reactor.Receive runs in the same thread as the p2p recv routine c.onReceive(pkt.ChannelID, msgBytes) } default: err := fmt.Errorf("Unknown message type %v", reflect.TypeOf(packet)) c.Logger.Error("Connection failed @ recvRoutine", "conn", c, "err", err) c.stopForError(err) break FOR_LOOP } } // Cleanup close(c.pong) for range c.pong { // Drain } } // not goroutine-safe func (c *MConnection) stopPongTimer() { if c.pongTimer != nil { _ = c.pongTimer.Stop() c.pongTimer = nil } } // maxPacketMsgSize returns a maximum size of PacketMsg, including the overhead // of amino encoding. func (c *MConnection) maxPacketMsgSize() int { return len(cdc.MustMarshalBinaryLengthPrefixed(PacketMsg{ ChannelID: 0x01, EOF: 1, Bytes: make([]byte, c.config.MaxPacketMsgPayloadSize), })) + 10 // leave room for changes in amino } type ConnectionStatus struct { Duration time.Duration SendMonitor flow.Status RecvMonitor flow.Status Channels []ChannelStatus } type ChannelStatus struct { ID byte SendQueueCapacity int SendQueueSize int Priority int RecentlySent int64 } func (c *MConnection) Status() ConnectionStatus { var status ConnectionStatus status.Duration = time.Since(c.created) status.SendMonitor = c.sendMonitor.Status() status.RecvMonitor = c.recvMonitor.Status() status.Channels = make([]ChannelStatus, len(c.channels)) for i, channel := range c.channels { status.Channels[i] = ChannelStatus{ ID: channel.desc.ID, SendQueueCapacity: cap(channel.sendQueue), SendQueueSize: int(atomic.LoadInt32(&channel.sendQueueSize)), Priority: channel.desc.Priority, RecentlySent: atomic.LoadInt64(&channel.recentlySent), } } return status } //----------------------------------------------------------------------------- type ChannelDescriptor struct { ID byte Priority int SendQueueCapacity int RecvBufferCapacity int RecvMessageCapacity int } func (chDesc ChannelDescriptor) FillDefaults() (filled ChannelDescriptor) { if chDesc.SendQueueCapacity == 0 { chDesc.SendQueueCapacity = defaultSendQueueCapacity } if chDesc.RecvBufferCapacity == 0 { chDesc.RecvBufferCapacity = defaultRecvBufferCapacity } if chDesc.RecvMessageCapacity == 0 { chDesc.RecvMessageCapacity = defaultRecvMessageCapacity } filled = chDesc return } // TODO: lowercase. // NOTE: not goroutine-safe. type Channel struct { conn *MConnection desc ChannelDescriptor sendQueue chan []byte sendQueueSize int32 // atomic. recving []byte sending []byte recentlySent int64 // exponential moving average maxPacketMsgPayloadSize int Logger log.Logger } func newChannel(conn *MConnection, desc ChannelDescriptor) *Channel { desc = desc.FillDefaults() if desc.Priority <= 0 { cmn.PanicSanity("Channel default priority must be a positive integer") } return &Channel{ conn: conn, desc: desc, sendQueue: make(chan []byte, desc.SendQueueCapacity), recving: make([]byte, 0, desc.RecvBufferCapacity), maxPacketMsgPayloadSize: conn.config.MaxPacketMsgPayloadSize, } } func (ch *Channel) SetLogger(l log.Logger) { ch.Logger = l } // Queues message to send to this channel. // Goroutine-safe // Times out (and returns false) after defaultSendTimeout func (ch *Channel) sendBytes(bytes []byte) bool { select { case ch.sendQueue <- bytes: atomic.AddInt32(&ch.sendQueueSize, 1) return true case <-time.After(defaultSendTimeout): return false } } // Queues message to send to this channel. // Nonblocking, returns true if successful. // Goroutine-safe func (ch *Channel) trySendBytes(bytes []byte) bool { select { case ch.sendQueue <- bytes: atomic.AddInt32(&ch.sendQueueSize, 1) return true default: return false } } // Goroutine-safe func (ch *Channel) loadSendQueueSize() (size int) { return int(atomic.LoadInt32(&ch.sendQueueSize)) } // Goroutine-safe // Use only as a heuristic. func (ch *Channel) canSend() bool { return ch.loadSendQueueSize() < defaultSendQueueCapacity } // Returns true if any PacketMsgs are pending to be sent. // Call before calling nextPacketMsg() // Goroutine-safe func (ch *Channel) isSendPending() bool { if len(ch.sending) == 0 { if len(ch.sendQueue) == 0 { return false } ch.sending = <-ch.sendQueue } return true } // Creates a new PacketMsg to send. // Not goroutine-safe func (ch *Channel) nextPacketMsg() PacketMsg { packet := PacketMsg{} packet.ChannelID = byte(ch.desc.ID) maxSize := ch.maxPacketMsgPayloadSize packet.Bytes = ch.sending[:cmn.MinInt(maxSize, len(ch.sending))] if len(ch.sending) <= maxSize { packet.EOF = byte(0x01) ch.sending = nil atomic.AddInt32(&ch.sendQueueSize, -1) // decrement sendQueueSize } else { packet.EOF = byte(0x00) ch.sending = ch.sending[cmn.MinInt(maxSize, len(ch.sending)):] } return packet } // Writes next PacketMsg to w and updates c.recentlySent. // Not goroutine-safe func (ch *Channel) writePacketMsgTo(w io.Writer) (n int64, err error) { var packet = ch.nextPacketMsg() n, err = cdc.MarshalBinaryLengthPrefixedWriter(w, packet) atomic.AddInt64(&ch.recentlySent, n) return } // Handles incoming PacketMsgs. It returns a message bytes if message is // complete. NOTE message bytes may change on next call to recvPacketMsg. // Not goroutine-safe func (ch *Channel) recvPacketMsg(packet PacketMsg) ([]byte, error) { ch.Logger.Debug("Read PacketMsg", "conn", ch.conn, "packet", packet) var recvCap, recvReceived = ch.desc.RecvMessageCapacity, len(ch.recving) + len(packet.Bytes) if recvCap < recvReceived { return nil, fmt.Errorf("Received message exceeds available capacity: %v < %v", recvCap, recvReceived) } ch.recving = append(ch.recving, packet.Bytes...) if packet.EOF == byte(0x01) { msgBytes := ch.recving // clear the slice without re-allocating. // http://stackoverflow.com/questions/16971741/how-do-you-clear-a-slice-in-go // suggests this could be a memory leak, but we might as well keep the memory for the channel until it closes, // at which point the recving slice stops being used and should be garbage collected ch.recving = ch.recving[:0] // make([]byte, 0, ch.desc.RecvBufferCapacity) return msgBytes, nil } return nil, nil } // Call this periodically to update stats for throttling purposes. // Not goroutine-safe func (ch *Channel) updateStats() { // Exponential decay of stats. // TODO: optimize. atomic.StoreInt64(&ch.recentlySent, int64(float64(atomic.LoadInt64(&ch.recentlySent))*0.8)) } //---------------------------------------- // Packet type Packet interface { AssertIsPacket() } func RegisterPacket(cdc *amino.Codec) { cdc.RegisterInterface((*Packet)(nil), nil) cdc.RegisterConcrete(PacketPing{}, "tendermint/p2p/PacketPing", nil) cdc.RegisterConcrete(PacketPong{}, "tendermint/p2p/PacketPong", nil) cdc.RegisterConcrete(PacketMsg{}, "tendermint/p2p/PacketMsg", nil) } func (_ PacketPing) AssertIsPacket() {} func (_ PacketPong) AssertIsPacket() {} func (_ PacketMsg) AssertIsPacket() {} type PacketPing struct { } type PacketPong struct { } type PacketMsg struct { ChannelID byte EOF byte // 1 means message ends here. Bytes []byte } func (mp PacketMsg) String() string { return fmt.Sprintf("PacketMsg{%X:%X T:%X}", mp.ChannelID, mp.Bytes, mp.EOF) }