// Modified for Tendermint // Originally Copyright (c) 2013-2014 Conformal Systems LLC. // https://github.com/conformal/btcd/blob/master/LICENSE package p2p import ( "errors" "flag" "fmt" "net" "strconv" "strings" "time" tmp2p "github.com/tendermint/tendermint/proto/tendermint/p2p" ) // EmptyNetAddress defines the string representation of an empty NetAddress const EmptyNetAddress = "" // NetAddress defines information about a peer on the network // including its ID, IP address, and port. type NetAddress struct { ID NodeID `json:"id"` IP net.IP `json:"ip"` Port uint16 `json:"port"` } // IDAddressString returns id@hostPort. It strips the leading // protocol from protocolHostPort if it exists. func IDAddressString(id NodeID, protocolHostPort string) string { hostPort := removeProtocolIfDefined(protocolHostPort) return fmt.Sprintf("%s@%s", id, hostPort) } // NewNetAddress returns a new NetAddress using the provided TCP // address. When testing, other net.Addr (except TCP) will result in // using 0.0.0.0:0. When normal run, other net.Addr (except TCP) will // panic. Panics if ID is invalid. // TODO: socks proxies? func NewNetAddress(id NodeID, addr net.Addr) *NetAddress { tcpAddr, ok := addr.(*net.TCPAddr) if !ok { if flag.Lookup("test.v") == nil { // normal run panic(fmt.Sprintf("Only TCPAddrs are supported. Got: %v", addr)) } else { // in testing netAddr := NewNetAddressIPPort(net.IP("127.0.0.1"), 0) netAddr.ID = id return netAddr } } if err := id.Validate(); err != nil { panic(fmt.Sprintf("Invalid ID %v: %v (addr: %v)", id, err, addr)) } ip := tcpAddr.IP port := uint16(tcpAddr.Port) na := NewNetAddressIPPort(ip, port) na.ID = id return na } // NewNetAddressString returns a new NetAddress using the provided address in // the form of "ID@IP:Port". // Also resolves the host if host is not an IP. // Errors are of type ErrNetAddressXxx where Xxx is in (NoID, Invalid, Lookup) func NewNetAddressString(addr string) (*NetAddress, error) { addrWithoutProtocol := removeProtocolIfDefined(addr) spl := strings.Split(addrWithoutProtocol, "@") if len(spl) != 2 { return nil, ErrNetAddressNoID{addr} } id, err := NewNodeID(spl[0]) if err != nil { return nil, ErrNetAddressInvalid{addrWithoutProtocol, err} } if err := id.Validate(); err != nil { return nil, ErrNetAddressInvalid{addrWithoutProtocol, err} } addrWithoutProtocol = spl[1] // get host and port host, portStr, err := net.SplitHostPort(addrWithoutProtocol) if err != nil { return nil, ErrNetAddressInvalid{addrWithoutProtocol, err} } if len(host) == 0 { return nil, ErrNetAddressInvalid{ addrWithoutProtocol, errors.New("host is empty")} } ip := net.ParseIP(host) if ip == nil { ips, err := net.LookupIP(host) if err != nil { return nil, ErrNetAddressLookup{host, err} } ip = ips[0] } port, err := strconv.ParseUint(portStr, 10, 16) if err != nil { return nil, ErrNetAddressInvalid{portStr, err} } na := NewNetAddressIPPort(ip, uint16(port)) na.ID = id return na, nil } // NewNetAddressStrings returns an array of NetAddress'es build using // the provided strings. func NewNetAddressStrings(addrs []string) ([]*NetAddress, []error) { netAddrs := make([]*NetAddress, 0) errs := make([]error, 0) for _, addr := range addrs { netAddr, err := NewNetAddressString(addr) if err != nil { errs = append(errs, err) } else { netAddrs = append(netAddrs, netAddr) } } return netAddrs, errs } // NewNetAddressIPPort returns a new NetAddress using the provided IP // and port number. func NewNetAddressIPPort(ip net.IP, port uint16) *NetAddress { return &NetAddress{ IP: ip, Port: port, } } // NetAddressFromProto converts a Protobuf PexAddress into a native struct. // FIXME: Remove this when legacy PEX reactor is removed. func NetAddressFromProto(pb tmp2p.PexAddress) (*NetAddress, error) { ip := net.ParseIP(pb.IP) if ip == nil { return nil, fmt.Errorf("invalid IP address %v", pb.IP) } if pb.Port >= 1<<16 { return nil, fmt.Errorf("invalid port number %v", pb.Port) } return &NetAddress{ ID: NodeID(pb.ID), IP: ip, Port: uint16(pb.Port), }, nil } // NetAddressesFromProto converts a slice of Protobuf PexAddresses into a native slice. // FIXME: Remove this when legacy PEX reactor is removed. func NetAddressesFromProto(pbs []tmp2p.PexAddress) ([]*NetAddress, error) { nas := make([]*NetAddress, 0, len(pbs)) for _, pb := range pbs { na, err := NetAddressFromProto(pb) if err != nil { return nil, err } nas = append(nas, na) } return nas, nil } // NetAddressesToProto converts a slice of NetAddresses into a Protobuf PexAddress slice. // FIXME: Remove this when legacy PEX reactor is removed. func NetAddressesToProto(nas []*NetAddress) []tmp2p.PexAddress { pbs := make([]tmp2p.PexAddress, 0, len(nas)) for _, na := range nas { if na != nil { pbs = append(pbs, na.ToProto()) } } return pbs } // ToProto converts a NetAddress to a Protobuf PexAddress. // FIXME: Remove this when legacy PEX reactor is removed. func (na *NetAddress) ToProto() tmp2p.PexAddress { return tmp2p.PexAddress{ ID: string(na.ID), IP: na.IP.String(), Port: uint32(na.Port), } } // Equals reports whether na and other are the same addresses, // including their ID, IP, and Port. func (na *NetAddress) Equals(other interface{}) bool { if o, ok := other.(*NetAddress); ok { return na.String() == o.String() } return false } // Same returns true is na has the same non-empty ID or DialString as other. func (na *NetAddress) Same(other interface{}) bool { if o, ok := other.(*NetAddress); ok { if na.DialString() == o.DialString() { return true } if na.ID != "" && na.ID == o.ID { return true } } return false } // String representation: @: func (na *NetAddress) String() string { if na == nil { return EmptyNetAddress } addrStr := na.DialString() if na.ID != "" { addrStr = IDAddressString(na.ID, addrStr) } return addrStr } func (na *NetAddress) DialString() string { if na == nil { return "" } return net.JoinHostPort( na.IP.String(), strconv.FormatUint(uint64(na.Port), 10), ) } // Dial calls net.Dial on the address. func (na *NetAddress) Dial() (net.Conn, error) { conn, err := net.Dial("tcp", na.DialString()) if err != nil { return nil, err } return conn, nil } // DialTimeout calls net.DialTimeout on the address. func (na *NetAddress) DialTimeout(timeout time.Duration) (net.Conn, error) { conn, err := net.DialTimeout("tcp", na.DialString(), timeout) if err != nil { return nil, err } return conn, nil } // Routable returns true if the address is routable. func (na *NetAddress) Routable() bool { if err := na.Valid(); err != nil { return false } // TODO(oga) bitcoind doesn't include RFC3849 here, but should we? return !(na.RFC1918() || na.RFC3927() || na.RFC4862() || na.RFC4193() || na.RFC4843() || na.Local()) } // For IPv4 these are either a 0 or all bits set address. For IPv6 a zero // address or one that matches the RFC3849 documentation address format. func (na *NetAddress) Valid() error { if err := na.ID.Validate(); err != nil { return fmt.Errorf("invalid ID: %w", err) } if na.IP == nil { return errors.New("no IP") } if na.IP.IsUnspecified() || na.RFC3849() || na.IP.Equal(net.IPv4bcast) { return errors.New("invalid IP") } return nil } // HasID returns true if the address has an ID. // NOTE: It does not check whether the ID is valid or not. func (na *NetAddress) HasID() bool { return string(na.ID) != "" } // Endpoint converts the address to an MConnection endpoint. func (na *NetAddress) Endpoint() Endpoint { return Endpoint{ Protocol: MConnProtocol, IP: na.IP, Port: na.Port, } } // Local returns true if it is a local address. func (na *NetAddress) Local() bool { return na.IP.IsLoopback() || zero4.Contains(na.IP) } // ReachabilityTo checks whenever o can be reached from na. func (na *NetAddress) ReachabilityTo(o *NetAddress) int { const ( Unreachable = 0 Default = iota Teredo Ipv6Weak Ipv4 Ipv6Strong ) switch { case !na.Routable(): return Unreachable case na.RFC4380(): switch { case !o.Routable(): return Default case o.RFC4380(): return Teredo case o.IP.To4() != nil: return Ipv4 default: // ipv6 return Ipv6Weak } case na.IP.To4() != nil: if o.Routable() && o.IP.To4() != nil { return Ipv4 } return Default default: /* ipv6 */ var tunneled bool // Is our v6 is tunneled? if o.RFC3964() || o.RFC6052() || o.RFC6145() { tunneled = true } switch { case !o.Routable(): return Default case o.RFC4380(): return Teredo case o.IP.To4() != nil: return Ipv4 case tunneled: // only prioritize ipv6 if we aren't tunneling it. return Ipv6Weak } return Ipv6Strong } } // RFC1918: IPv4 Private networks (10.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12) // RFC3849: IPv6 Documentation address (2001:0DB8::/32) // RFC3927: IPv4 Autoconfig (169.254.0.0/16) // RFC3964: IPv6 6to4 (2002::/16) // RFC4193: IPv6 unique local (FC00::/7) // RFC4380: IPv6 Teredo tunneling (2001::/32) // RFC4843: IPv6 ORCHID: (2001:10::/28) // RFC4862: IPv6 Autoconfig (FE80::/64) // RFC6052: IPv6 well known prefix (64:FF9B::/96) // RFC6145: IPv6 IPv4 translated address ::FFFF:0:0:0/96 var rfc1918_10 = net.IPNet{IP: net.ParseIP("10.0.0.0"), Mask: net.CIDRMask(8, 32)} var rfc1918_192 = net.IPNet{IP: net.ParseIP("192.168.0.0"), Mask: net.CIDRMask(16, 32)} var rfc1918_172 = net.IPNet{IP: net.ParseIP("172.16.0.0"), Mask: net.CIDRMask(12, 32)} var rfc3849 = net.IPNet{IP: net.ParseIP("2001:0DB8::"), Mask: net.CIDRMask(32, 128)} var rfc3927 = net.IPNet{IP: net.ParseIP("169.254.0.0"), Mask: net.CIDRMask(16, 32)} var rfc3964 = net.IPNet{IP: net.ParseIP("2002::"), Mask: net.CIDRMask(16, 128)} var rfc4193 = net.IPNet{IP: net.ParseIP("FC00::"), Mask: net.CIDRMask(7, 128)} var rfc4380 = net.IPNet{IP: net.ParseIP("2001::"), Mask: net.CIDRMask(32, 128)} var rfc4843 = net.IPNet{IP: net.ParseIP("2001:10::"), Mask: net.CIDRMask(28, 128)} var rfc4862 = net.IPNet{IP: net.ParseIP("FE80::"), Mask: net.CIDRMask(64, 128)} var rfc6052 = net.IPNet{IP: net.ParseIP("64:FF9B::"), Mask: net.CIDRMask(96, 128)} var rfc6145 = net.IPNet{IP: net.ParseIP("::FFFF:0:0:0"), Mask: net.CIDRMask(96, 128)} var zero4 = net.IPNet{IP: net.ParseIP("0.0.0.0"), Mask: net.CIDRMask(8, 32)} var ( // onionCatNet defines the IPv6 address block used to support Tor. // bitcoind encodes a .onion address as a 16 byte number by decoding the // address prior to the .onion (i.e. the key hash) base32 into a ten // byte number. It then stores the first 6 bytes of the address as // 0xfd, 0x87, 0xd8, 0x7e, 0xeb, 0x43. // // This is the same range used by OnionCat, which is part part of the // RFC4193 unique local IPv6 range. // // In summary the format is: // { magic 6 bytes, 10 bytes base32 decode of key hash } onionCatNet = ipNet("fd87:d87e:eb43::", 48, 128) ) // ipNet returns a net.IPNet struct given the passed IP address string, number // of one bits to include at the start of the mask, and the total number of bits // for the mask. func ipNet(ip string, ones, bits int) net.IPNet { return net.IPNet{IP: net.ParseIP(ip), Mask: net.CIDRMask(ones, bits)} } func (na *NetAddress) RFC1918() bool { return rfc1918_10.Contains(na.IP) || rfc1918_192.Contains(na.IP) || rfc1918_172.Contains(na.IP) } func (na *NetAddress) RFC3849() bool { return rfc3849.Contains(na.IP) } func (na *NetAddress) RFC3927() bool { return rfc3927.Contains(na.IP) } func (na *NetAddress) RFC3964() bool { return rfc3964.Contains(na.IP) } func (na *NetAddress) RFC4193() bool { return rfc4193.Contains(na.IP) } func (na *NetAddress) RFC4380() bool { return rfc4380.Contains(na.IP) } func (na *NetAddress) RFC4843() bool { return rfc4843.Contains(na.IP) } func (na *NetAddress) RFC4862() bool { return rfc4862.Contains(na.IP) } func (na *NetAddress) RFC6052() bool { return rfc6052.Contains(na.IP) } func (na *NetAddress) RFC6145() bool { return rfc6145.Contains(na.IP) } func (na *NetAddress) OnionCatTor() bool { return onionCatNet.Contains(na.IP) } func removeProtocolIfDefined(addr string) string { if strings.Contains(addr, "://") { return strings.Split(addr, "://")[1] } return addr }