package p2p import ( "bufio" "fmt" "io" "math" "net" "runtime/debug" "sync/atomic" "time" flow "github.com/tendermint/tendermint/Godeps/_workspace/src/code.google.com/p/mxk/go1/flowcontrol" "github.com/tendermint/tendermint/binary" //"github.com/tendermint/log15" . "github.com/tendermint/tendermint/common" ) const ( numBatchMsgPackets = 10 minReadBufferSize = 1024 minWriteBufferSize = 1024 flushThrottleMS = 50 idleTimeoutMinutes = 5 updateStatsSeconds = 2 pingTimeoutMinutes = 2 defaultSendRate = 51200 // 5Kb/s defaultRecvRate = 51200 // 5Kb/s defaultSendQueueCapacity = 1 defaultRecvBufferCapacity = 4096 defaultSendTimeoutSeconds = 10 ) type receiveCbFunc func(chId byte, msgBytes []byte) type errorCbFunc func(interface{}) /* Each peer has one `MConnection` (multiplex connection) instance. __multiplex__ *noun* a system or signal involving simultaneous transmission of several messages along a single channel of communication. Each `MConnection` handles message transmission on multiple abstract communication `Channel`s. Each channel has a globally unique byte id. The byte id and the relative priorities of each `Channel` are configured upon initialization of the connection. There are two methods for sending messages: func (m MConnection) Send(chId byte, msg interface{}) bool {} func (m MConnection) TrySend(chId byte, msg interface{}) bool {} `Send(chId, msg)` is a blocking call that waits until `msg` is successfully queued for the channel with the given id byte `chId`, or until the request times out. The message `msg` is serialized using the `tendermint/binary` submodule's `WriteBinary()` reflection routine. `TrySend(chId, msg)` is a nonblocking call that returns false if the channel's queue is full. Inbound message bytes are handled with an onReceive callback function. */ type MConnection struct { conn net.Conn bufReader *bufio.Reader bufWriter *bufio.Writer sendMonitor *flow.Monitor recvMonitor *flow.Monitor sendRate int64 recvRate int64 flushTimer *ThrottleTimer // flush writes as necessary but throttled. send chan struct{} quit chan struct{} pingTimer *RepeatTimer // send pings periodically pong chan struct{} chStatsTimer *RepeatTimer // update channel stats periodically channels []*Channel channelsIdx map[byte]*Channel onReceive receiveCbFunc onError errorCbFunc started uint32 stopped uint32 errored uint32 LocalAddress *NetAddress RemoteAddress *NetAddress } func NewMConnection(conn net.Conn, chDescs []*ChannelDescriptor, onReceive receiveCbFunc, onError errorCbFunc) *MConnection { mconn := &MConnection{ conn: conn, bufReader: bufio.NewReaderSize(conn, minReadBufferSize), bufWriter: bufio.NewWriterSize(conn, minWriteBufferSize), sendMonitor: flow.New(0, 0), recvMonitor: flow.New(0, 0), sendRate: defaultSendRate, recvRate: defaultRecvRate, flushTimer: NewThrottleTimer("flush", flushThrottleMS*time.Millisecond), send: make(chan struct{}, 1), quit: make(chan struct{}), pingTimer: NewRepeatTimer("ping", pingTimeoutMinutes*time.Minute), pong: make(chan struct{}), chStatsTimer: NewRepeatTimer("chStats", updateStatsSeconds*time.Second), onReceive: onReceive, onError: onError, LocalAddress: NewNetAddress(conn.LocalAddr()), RemoteAddress: NewNetAddress(conn.RemoteAddr()), } // Create channels var channelsIdx = map[byte]*Channel{} var channels = []*Channel{} for _, desc := range chDescs { channel := newChannel(mconn, desc) channelsIdx[channel.id] = channel channels = append(channels, channel) } mconn.channels = channels mconn.channelsIdx = channelsIdx return mconn } // .Start() begins multiplexing packets to and from "channels". func (c *MConnection) Start() { if atomic.CompareAndSwapUint32(&c.started, 0, 1) { log.Debug("Starting MConnection", "connection", c) go c.sendRoutine() go c.recvRoutine() } } func (c *MConnection) Stop() { if atomic.CompareAndSwapUint32(&c.stopped, 0, 1) { log.Debug("Stopping MConnection", "connection", c) close(c.quit) c.conn.Close() c.flushTimer.Stop() c.chStatsTimer.Stop() c.pingTimer.Stop() // We can't close pong safely here because // recvRoutine may write to it after we've stopped. // Though it doesn't need to get closed at all, // we close it @ recvRoutine. // close(c.pong) } } func (c *MConnection) String() string { return fmt.Sprintf("MConn{%v}", c.conn.RemoteAddr()) } func (c *MConnection) flush() { log.Debug("Flush", "conn", c) err := c.bufWriter.Flush() if err != nil { log.Warn("MConnection flush failed", "error", err) } } // Catch panics, usually caused by remote disconnects. func (c *MConnection) _recover() { if r := recover(); r != nil { stack := debug.Stack() err := StackError{r, stack} c.stopForError(err) } } func (c *MConnection) stopForError(r interface{}) { c.Stop() if atomic.CompareAndSwapUint32(&c.errored, 0, 1) { if c.onError != nil { c.onError(r) } } } // Queues a message to be sent to channel. func (c *MConnection) Send(chId byte, msg interface{}) bool { if atomic.LoadUint32(&c.stopped) == 1 { return false } log.Debug("Send", "channel", chId, "connection", c, "msg", msg) //, "bytes", binary.BinaryBytes(msg)) // Send message to channel. channel, ok := c.channelsIdx[chId] if !ok { log.Error(Fmt("Cannot send bytes, unknown channel %X", chId)) return false } success := channel.sendBytes(binary.BinaryBytes(msg)) if success { // Wake up sendRoutine if necessary select { case c.send <- struct{}{}: default: } } else { log.Warn("Send failed", "channel", chId, "connection", c, "msg", msg) } return success } // Queues a message to be sent to channel. // Nonblocking, returns true if successful. func (c *MConnection) TrySend(chId byte, msg interface{}) bool { if atomic.LoadUint32(&c.stopped) == 1 { return false } log.Debug("TrySend", "channel", chId, "connection", c, "msg", msg) // Send message to channel. channel, ok := c.channelsIdx[chId] if !ok { log.Error(Fmt("Cannot send bytes, unknown channel %X", chId)) return false } ok = channel.trySendBytes(binary.BinaryBytes(msg)) if ok { // Wake up sendRoutine if necessary select { case c.send <- struct{}{}: default: } } return ok } func (c *MConnection) CanSend(chId byte) bool { if atomic.LoadUint32(&c.stopped) == 1 { return false } channel, ok := c.channelsIdx[chId] if !ok { log.Error(Fmt("Unknown channel %X", chId)) return false } return channel.canSend() } // sendRoutine polls for packets to send from channels. func (c *MConnection) sendRoutine() { defer c._recover() FOR_LOOP: for { var n int64 var err error select { case <-c.flushTimer.Ch: // NOTE: flushTimer.Set() must be called every time // something is written to .bufWriter. c.flush() case <-c.chStatsTimer.Ch: for _, channel := range c.channels { channel.updateStats() } case <-c.pingTimer.Ch: log.Debug("Send Ping") binary.WriteByte(packetTypePing, c.bufWriter, &n, &err) c.sendMonitor.Update(int(n)) c.flush() case <-c.pong: log.Debug("Send Pong") binary.WriteByte(packetTypePong, c.bufWriter, &n, &err) c.sendMonitor.Update(int(n)) c.flush() case <-c.quit: break FOR_LOOP case <-c.send: // Send some msgPackets eof := c.sendSomeMsgPackets() if !eof { // Keep sendRoutine awake. select { case c.send <- struct{}{}: default: } } } if atomic.LoadUint32(&c.stopped) == 1 { break FOR_LOOP } if err != nil { log.Warn("Connection failed @ sendRoutine", "connection", c, "error", err) c.stopForError(err) break FOR_LOOP } } // Cleanup } // Returns true if messages from channels were exhausted. // Blocks in accordance to .sendMonitor throttling. func (c *MConnection) sendSomeMsgPackets() bool { // Block until .sendMonitor says we can write. // Once we're ready we send more than we asked for, // but amortized it should even out. c.sendMonitor.Limit(maxMsgPacketSize, atomic.LoadInt64(&c.sendRate), true) // Now send some msgPackets. for i := 0; i < numBatchMsgPackets; i++ { if c.sendMsgPacket() { return true } } return false } // Returns true if messages from channels were exhausted. func (c *MConnection) sendMsgPacket() bool { // Choose a channel to create a msgPacket from. // The chosen channel will be the one whose recentlySent/priority is the least. var leastRatio float32 = math.MaxFloat32 var leastChannel *Channel for _, channel := range c.channels { // If nothing to send, skip this channel if !channel.isSendPending() { continue } // Get ratio, and keep track of lowest ratio. ratio := float32(channel.recentlySent) / float32(channel.priority) if ratio < leastRatio { leastRatio = ratio leastChannel = channel } } // Nothing to send? if leastChannel == nil { return true } else { // log.Debug("Found a msgPacket to send") } // Make & send a msgPacket from this channel n, err := leastChannel.writeMsgPacketTo(c.bufWriter) if err != nil { log.Warn("Failed to write msgPacket", "error", err) c.stopForError(err) return true } c.sendMonitor.Update(int(n)) c.flushTimer.Set() return false } // recvRoutine reads msgPackets and reconstructs the message using the channels' "recving" buffer. // After a whole message has been assembled, it's pushed to onReceive(). // Blocks depending on how the connection is throttled. func (c *MConnection) recvRoutine() { defer c._recover() FOR_LOOP: for { // Block until .recvMonitor says we can read. c.recvMonitor.Limit(maxMsgPacketSize, atomic.LoadInt64(&c.recvRate), true) /* // Peek into bufReader for debugging if numBytes := c.bufReader.Buffered(); numBytes > 0 { log.Debug("Peek connection buffer", "numBytes", numBytes, "bytes", log15.Lazy{func() []byte { bytes, err := c.bufReader.Peek(MinInt(numBytes, 100)) if err == nil { return bytes } else { log.Warn("Error peeking connection buffer", "error", err) return nil } }}) } */ // Read packet type var n int64 var err error pktType := binary.ReadByte(c.bufReader, &n, &err) c.recvMonitor.Update(int(n)) if err != nil { if atomic.LoadUint32(&c.stopped) != 1 { log.Warn("Connection failed @ recvRoutine (reading byte)", "connection", c, "error", err) c.stopForError(err) } break FOR_LOOP } // Read more depending on packet type. switch pktType { case packetTypePing: // TODO: prevent abuse, as they cause flush()'s. log.Debug("Receive Ping") c.pong <- struct{}{} case packetTypePong: // do nothing log.Debug("Receive Pong") case packetTypeMsg: pkt, n, err := msgPacket{}, new(int64), new(error) binary.ReadBinaryPtr(&pkt, c.bufReader, n, err) c.recvMonitor.Update(int(*n)) if *err != nil { if atomic.LoadUint32(&c.stopped) != 1 { log.Warn("Connection failed @ recvRoutine", "connection", c, "error", *err) c.stopForError(*err) } break FOR_LOOP } channel, ok := c.channelsIdx[pkt.ChannelId] if !ok || channel == nil { panic(Fmt("Unknown channel %X", pkt.ChannelId)) } msgBytes := channel.recvMsgPacket(pkt) if msgBytes != nil { log.Debug("Received bytes", "chId", pkt.ChannelId, "msgBytes", msgBytes) c.onReceive(pkt.ChannelId, msgBytes) } default: panic(Fmt("Unknown message type %X", pktType)) } // TODO: shouldn't this go in the sendRoutine? // Better to send a ping packet when *we* haven't sent anything for a while. c.pingTimer.Reset() } // Cleanup close(c.pong) for _ = range c.pong { // Drain } } //----------------------------------------------------------------------------- type ChannelDescriptor struct { Id byte Priority int SendQueueCapacity int RecvBufferCapacity int } func (chDesc *ChannelDescriptor) FillDefaults() { if chDesc.SendQueueCapacity == 0 { chDesc.SendQueueCapacity = defaultSendQueueCapacity } if chDesc.RecvBufferCapacity == 0 { chDesc.RecvBufferCapacity = defaultRecvBufferCapacity } } // TODO: lowercase. // NOTE: not goroutine-safe. type Channel struct { conn *MConnection desc *ChannelDescriptor id byte sendQueue chan []byte sendQueueSize int32 // atomic. recving []byte sending []byte priority int recentlySent int64 // exponential moving average } func newChannel(conn *MConnection, desc *ChannelDescriptor) *Channel { desc.FillDefaults() if desc.Priority <= 0 { panic("Channel default priority must be a postive integer") } return &Channel{ conn: conn, desc: desc, id: desc.Id, sendQueue: make(chan []byte, desc.SendQueueCapacity), recving: make([]byte, 0, desc.RecvBufferCapacity), priority: desc.Priority, } } // Queues message to send to this channel. // Goroutine-safe // Times out (and returns false) after defaultSendTimeoutSeconds func (ch *Channel) sendBytes(bytes []byte) bool { timeout := time.NewTimer(defaultSendTimeoutSeconds * time.Second) select { case <-timeout.C: // timeout return false case ch.sendQueue <- bytes: atomic.AddInt32(&ch.sendQueueSize, 1) return true } } // Queues message to send to this channel. // Nonblocking, returns true if successful. // Goroutine-safe func (ch *Channel) trySendBytes(bytes []byte) bool { select { case ch.sendQueue <- bytes: atomic.AddInt32(&ch.sendQueueSize, 1) return true default: return false } } // Goroutine-safe func (ch *Channel) loadSendQueueSize() (size int) { return int(atomic.LoadInt32(&ch.sendQueueSize)) } // Goroutine-safe // Use only as a heuristic. func (ch *Channel) canSend() bool { return ch.loadSendQueueSize() < defaultSendQueueCapacity } // Returns true if any msgPackets are pending to be sent. // Call before calling nextMsgPacket() // Goroutine-safe func (ch *Channel) isSendPending() bool { if len(ch.sending) == 0 { if len(ch.sendQueue) == 0 { return false } ch.sending = <-ch.sendQueue } return true } // Creates a new msgPacket to send. // Not goroutine-safe func (ch *Channel) nextMsgPacket() msgPacket { packet := msgPacket{} packet.ChannelId = byte(ch.id) packet.Bytes = ch.sending[:MinInt(maxMsgPacketSize, len(ch.sending))] if len(ch.sending) <= maxMsgPacketSize { packet.EOF = byte(0x01) ch.sending = nil atomic.AddInt32(&ch.sendQueueSize, -1) // decrement sendQueueSize } else { packet.EOF = byte(0x00) ch.sending = ch.sending[MinInt(maxMsgPacketSize, len(ch.sending)):] } return packet } // Writes next msgPacket to w. // Not goroutine-safe func (ch *Channel) writeMsgPacketTo(w io.Writer) (n int64, err error) { packet := ch.nextMsgPacket() log.Debug("Write Msg Packet", "conn", ch.conn, "packet", packet) binary.WriteByte(packetTypeMsg, w, &n, &err) binary.WriteBinary(packet, w, &n, &err) if err != nil { ch.recentlySent += n } return } // Handles incoming msgPackets. Returns a msg bytes if msg is complete. // Not goroutine-safe func (ch *Channel) recvMsgPacket(packet msgPacket) []byte { log.Debug("Read Msg Packet", "conn", ch.conn, "packet", packet) ch.recving = append(ch.recving, packet.Bytes...) if packet.EOF == byte(0x01) { msgBytes := ch.recving ch.recving = make([]byte, 0, defaultRecvBufferCapacity) return msgBytes } return nil } // Call this periodically to update stats for throttling purposes. // Not goroutine-safe func (ch *Channel) updateStats() { // Exponential decay of stats. // TODO: optimize. ch.recentlySent = int64(float64(ch.recentlySent) * 0.5) } //----------------------------------------------------------------------------- const ( maxMsgPacketSize = 1024 packetTypePing = byte(0x01) packetTypePong = byte(0x02) packetTypeMsg = byte(0x03) ) // Messages in channels are chopped into smaller msgPackets for multiplexing. type msgPacket struct { ChannelId byte EOF byte // 1 means message ends here. Bytes []byte } func (p msgPacket) String() string { return fmt.Sprintf("MsgPacket{%X:%X T:%X}", p.ChannelId, p.Bytes, p.EOF) } //----------------------------------------------------------------------------- // Convenience struct for writing typed messages. // Reading requires a custom decoder that switches on the first type byte of a byteslice. type TypedMessage struct { Type byte Msg interface{} } func (tm TypedMessage) String() string { return fmt.Sprintf("TMsg{%X:%v}", tm.Type, tm.Msg) }