package merkle import ( "bytes" "errors" "fmt" "github.com/tendermint/tendermint/crypto/tmhash" ) const ( // MaxAunts is the maximum number of aunts that can be included in a SimpleProof. // This corresponds to a tree of size 2^100, which should be sufficient for all conceivable purposes. // This maximum helps prevent Denial-of-Service attacks by limitting the size of the proofs. MaxAunts = 100 ) // SimpleProof represents a simple Merkle proof. // NOTE: The convention for proofs is to include leaf hashes but to // exclude the root hash. // This convention is implemented across IAVL range proofs as well. // Keep this consistent unless there's a very good reason to change // everything. This also affects the generalized proof system as // well. type SimpleProof struct { Total int `json:"total"` // Total number of items. Index int `json:"index"` // Index of item to prove. LeafHash []byte `json:"leaf_hash"` // Hash of item value. Aunts [][]byte `json:"aunts"` // Hashes from leaf's sibling to a root's child. } // SimpleProofsFromByteSlices computes inclusion proof for given items. // proofs[0] is the proof for items[0]. func SimpleProofsFromByteSlices(items [][]byte) (rootHash []byte, proofs []*SimpleProof) { trails, rootSPN := trailsFromByteSlices(items) rootHash = rootSPN.Hash proofs = make([]*SimpleProof, len(items)) for i, trail := range trails { proofs[i] = &SimpleProof{ Total: len(items), Index: i, LeafHash: trail.Hash, Aunts: trail.FlattenAunts(), } } return } // Verify that the SimpleProof proves the root hash. // Check sp.Index/sp.Total manually if needed func (sp *SimpleProof) Verify(rootHash []byte, leaf []byte) error { leafHash := leafHash(leaf) if sp.Total < 0 { return errors.New("proof total must be positive") } if sp.Index < 0 { return errors.New("proof index cannot be negative") } if !bytes.Equal(sp.LeafHash, leafHash) { return fmt.Errorf("invalid leaf hash: wanted %X got %X", leafHash, sp.LeafHash) } computedHash := sp.ComputeRootHash() if !bytes.Equal(computedHash, rootHash) { return fmt.Errorf("invalid root hash: wanted %X got %X", rootHash, computedHash) } return nil } // Compute the root hash given a leaf hash. Does not verify the result. func (sp *SimpleProof) ComputeRootHash() []byte { return computeHashFromAunts( sp.Index, sp.Total, sp.LeafHash, sp.Aunts, ) } // String implements the stringer interface for SimpleProof. // It is a wrapper around StringIndented. func (sp *SimpleProof) String() string { return sp.StringIndented("") } // StringIndented generates a canonical string representation of a SimpleProof. func (sp *SimpleProof) StringIndented(indent string) string { return fmt.Sprintf(`SimpleProof{ %s Aunts: %X %s}`, indent, sp.Aunts, indent) } // ValidateBasic performs basic validation. // NOTE: it expects the LeafHash and the elements of Aunts to be of size tmhash.Size, // and it expects at most MaxAunts elements in Aunts. func (sp *SimpleProof) ValidateBasic() error { if sp.Total < 0 { return errors.New("negative Total") } if sp.Index < 0 { return errors.New("negative Index") } if len(sp.LeafHash) != tmhash.Size { return fmt.Errorf("expected LeafHash size to be %d, got %d", tmhash.Size, len(sp.LeafHash)) } if len(sp.Aunts) > MaxAunts { return fmt.Errorf("expected no more than %d aunts, got %d", MaxAunts, len(sp.Aunts)) } for i, auntHash := range sp.Aunts { if len(auntHash) != tmhash.Size { return fmt.Errorf("expected Aunts#%d size to be %d, got %d", i, tmhash.Size, len(auntHash)) } } return nil } // Use the leafHash and innerHashes to get the root merkle hash. // If the length of the innerHashes slice isn't exactly correct, the result is nil. // Recursive impl. func computeHashFromAunts(index int, total int, leafHash []byte, innerHashes [][]byte) []byte { if index >= total || index < 0 || total <= 0 { return nil } switch total { case 0: panic("Cannot call computeHashFromAunts() with 0 total") case 1: if len(innerHashes) != 0 { return nil } return leafHash default: if len(innerHashes) == 0 { return nil } numLeft := getSplitPoint(total) if index < numLeft { leftHash := computeHashFromAunts(index, numLeft, leafHash, innerHashes[:len(innerHashes)-1]) if leftHash == nil { return nil } return innerHash(leftHash, innerHashes[len(innerHashes)-1]) } rightHash := computeHashFromAunts(index-numLeft, total-numLeft, leafHash, innerHashes[:len(innerHashes)-1]) if rightHash == nil { return nil } return innerHash(innerHashes[len(innerHashes)-1], rightHash) } } // SimpleProofNode is a helper structure to construct merkle proof. // The node and the tree is thrown away afterwards. // Exactly one of node.Left and node.Right is nil, unless node is the root, in which case both are nil. // node.Parent.Hash = hash(node.Hash, node.Right.Hash) or // hash(node.Left.Hash, node.Hash), depending on whether node is a left/right child. type SimpleProofNode struct { Hash []byte Parent *SimpleProofNode Left *SimpleProofNode // Left sibling (only one of Left,Right is set) Right *SimpleProofNode // Right sibling (only one of Left,Right is set) } // FlattenAunts will return the inner hashes for the item corresponding to the leaf, // starting from a leaf SimpleProofNode. func (spn *SimpleProofNode) FlattenAunts() [][]byte { // Nonrecursive impl. innerHashes := [][]byte{} for spn != nil { switch { case spn.Left != nil: innerHashes = append(innerHashes, spn.Left.Hash) case spn.Right != nil: innerHashes = append(innerHashes, spn.Right.Hash) default: break } spn = spn.Parent } return innerHashes } // trails[0].Hash is the leaf hash for items[0]. // trails[i].Parent.Parent....Parent == root for all i. func trailsFromByteSlices(items [][]byte) (trails []*SimpleProofNode, root *SimpleProofNode) { // Recursive impl. switch len(items) { case 0: return nil, nil case 1: trail := &SimpleProofNode{leafHash(items[0]), nil, nil, nil} return []*SimpleProofNode{trail}, trail default: k := getSplitPoint(len(items)) lefts, leftRoot := trailsFromByteSlices(items[:k]) rights, rightRoot := trailsFromByteSlices(items[k:]) rootHash := innerHash(leftRoot.Hash, rightRoot.Hash) root := &SimpleProofNode{rootHash, nil, nil, nil} leftRoot.Parent = root leftRoot.Right = rightRoot rightRoot.Parent = root rightRoot.Left = leftRoot return append(lefts, rights...), root } }