package mempool import ( "context" "errors" "fmt" "runtime/debug" "sync" "time" "github.com/tendermint/tendermint/config" "github.com/tendermint/tendermint/internal/libs/clist" tmsync "github.com/tendermint/tendermint/internal/libs/sync" "github.com/tendermint/tendermint/internal/p2p" "github.com/tendermint/tendermint/libs/log" "github.com/tendermint/tendermint/libs/service" protomem "github.com/tendermint/tendermint/proto/tendermint/mempool" "github.com/tendermint/tendermint/types" ) var ( _ service.Service = (*Reactor)(nil) _ p2p.Wrapper = (*protomem.Message)(nil) ) // PeerManager defines the interface contract required for getting necessary // peer information. This should eventually be replaced with a message-oriented // approach utilizing the p2p stack. type PeerManager interface { GetHeight(types.NodeID) int64 } // Reactor implements a service that contains mempool of txs that are broadcasted // amongst peers. It maintains a map from peer ID to counter, to prevent gossiping // txs to the peers you received it from. type Reactor struct { service.BaseService logger log.Logger cfg *config.MempoolConfig mempool *TxMempool ids *IDs // XXX: Currently, this is the only way to get information about a peer. Ideally, // we rely on message-oriented communication to get necessary peer data. // ref: https://github.com/tendermint/tendermint/issues/5670 peerMgr PeerManager mempoolCh *p2p.Channel peerUpdates *p2p.PeerUpdates // peerWG is used to coordinate graceful termination of all peer broadcasting // goroutines. peerWG sync.WaitGroup // observePanic is a function for observing panics that were recovered in methods on // Reactor. observePanic is called with the recovered value. observePanic func(interface{}) mtx sync.Mutex peerRoutines map[types.NodeID]*tmsync.Closer } // NewReactor returns a reference to a new reactor. func NewReactor( ctx context.Context, logger log.Logger, cfg *config.MempoolConfig, peerMgr PeerManager, txmp *TxMempool, chCreator p2p.ChannelCreator, peerUpdates *p2p.PeerUpdates, ) (*Reactor, error) { ch, err := chCreator(ctx, getChannelDescriptor(cfg)) if err != nil { return nil, err } r := &Reactor{ logger: logger, cfg: cfg, peerMgr: peerMgr, mempool: txmp, ids: NewMempoolIDs(), mempoolCh: ch, peerUpdates: peerUpdates, peerRoutines: make(map[types.NodeID]*tmsync.Closer), observePanic: defaultObservePanic, } r.BaseService = *service.NewBaseService(logger, "Mempool", r) return r, nil } func defaultObservePanic(r interface{}) {} // getChannelDescriptor produces an instance of a descriptor for this // package's required channels. func getChannelDescriptor(cfg *config.MempoolConfig) *p2p.ChannelDescriptor { largestTx := make([]byte, cfg.MaxTxBytes) batchMsg := protomem.Message{ Sum: &protomem.Message_Txs{ Txs: &protomem.Txs{Txs: [][]byte{largestTx}}, }, } return &p2p.ChannelDescriptor{ ID: MempoolChannel, MessageType: new(protomem.Message), Priority: 5, RecvMessageCapacity: batchMsg.Size(), RecvBufferCapacity: 128, } } // OnStart starts separate go routines for each p2p Channel and listens for // envelopes on each. In addition, it also listens for peer updates and handles // messages on that p2p channel accordingly. The caller must be sure to execute // OnStop to ensure the outbound p2p Channels are closed. func (r *Reactor) OnStart(ctx context.Context) error { if !r.cfg.Broadcast { r.logger.Info("tx broadcasting is disabled") } go r.processMempoolCh(ctx) go r.processPeerUpdates(ctx) return nil } // OnStop stops the reactor by signaling to all spawned goroutines to exit and // blocking until they all exit. func (r *Reactor) OnStop() { r.mtx.Lock() for _, c := range r.peerRoutines { c.Close() } r.mtx.Unlock() // wait for all spawned peer tx broadcasting goroutines to gracefully exit r.peerWG.Wait() } // handleMempoolMessage handles envelopes sent from peers on the MempoolChannel. // For every tx in the message, we execute CheckTx. It returns an error if an // empty set of txs are sent in an envelope or if we receive an unexpected // message type. func (r *Reactor) handleMempoolMessage(ctx context.Context, envelope *p2p.Envelope) error { logger := r.logger.With("peer", envelope.From) switch msg := envelope.Message.(type) { case *protomem.Txs: protoTxs := msg.GetTxs() if len(protoTxs) == 0 { return errors.New("empty txs received from peer") } txInfo := TxInfo{SenderID: r.ids.GetForPeer(envelope.From)} if len(envelope.From) != 0 { txInfo.SenderNodeID = envelope.From } for _, tx := range protoTxs { if err := r.mempool.CheckTx(ctx, types.Tx(tx), nil, txInfo); err != nil { logger.Error("checktx failed for tx", "tx", fmt.Sprintf("%X", types.Tx(tx).Hash()), "err", err) } } default: return fmt.Errorf("received unknown message: %T", msg) } return nil } // handleMessage handles an Envelope sent from a peer on a specific p2p Channel. // It will handle errors and any possible panics gracefully. A caller can handle // any error returned by sending a PeerError on the respective channel. func (r *Reactor) handleMessage(ctx context.Context, chID p2p.ChannelID, envelope *p2p.Envelope) (err error) { defer func() { if e := recover(); e != nil { r.observePanic(e) err = fmt.Errorf("panic in processing message: %v", e) r.logger.Error( "recovering from processing message panic", "err", err, "stack", string(debug.Stack()), ) } }() r.logger.Debug("received message", "peer", envelope.From) switch chID { case MempoolChannel: err = r.handleMempoolMessage(ctx, envelope) default: err = fmt.Errorf("unknown channel ID (%d) for envelope (%T)", chID, envelope.Message) } return err } // processMempoolCh implements a blocking event loop where we listen for p2p // Envelope messages from the mempoolCh. func (r *Reactor) processMempoolCh(ctx context.Context) { iter := r.mempoolCh.Receive(ctx) for iter.Next(ctx) { envelope := iter.Envelope() if err := r.handleMessage(ctx, r.mempoolCh.ID, envelope); err != nil { r.logger.Error("failed to process message", "ch_id", r.mempoolCh.ID, "envelope", envelope, "err", err) if serr := r.mempoolCh.SendError(ctx, p2p.PeerError{ NodeID: envelope.From, Err: err, }); serr != nil { return } } } } // processPeerUpdate processes a PeerUpdate. For added peers, PeerStatusUp, we // check if the reactor is running and if we've already started a tx broadcasting // goroutine or not. If not, we start one for the newly added peer. For down or // removed peers, we remove the peer from the mempool peer ID set and signal to // stop the tx broadcasting goroutine. func (r *Reactor) processPeerUpdate(ctx context.Context, peerUpdate p2p.PeerUpdate) { r.logger.Debug("received peer update", "peer", peerUpdate.NodeID, "status", peerUpdate.Status) r.mtx.Lock() defer r.mtx.Unlock() switch peerUpdate.Status { case p2p.PeerStatusUp: // Do not allow starting new tx broadcast loops after reactor shutdown // has been initiated. This can happen after we've manually closed all // peer broadcast, but the router still sends in-flight peer updates. if !r.IsRunning() { return } if r.cfg.Broadcast { // Check if we've already started a goroutine for this peer, if not we create // a new done channel so we can explicitly close the goroutine if the peer // is later removed, we increment the waitgroup so the reactor can stop // safely, and finally start the goroutine to broadcast txs to that peer. _, ok := r.peerRoutines[peerUpdate.NodeID] if !ok { closer := tmsync.NewCloser() r.peerRoutines[peerUpdate.NodeID] = closer r.peerWG.Add(1) r.ids.ReserveForPeer(peerUpdate.NodeID) // start a broadcast routine ensuring all txs are forwarded to the peer go r.broadcastTxRoutine(ctx, peerUpdate.NodeID, closer) } } case p2p.PeerStatusDown: r.ids.Reclaim(peerUpdate.NodeID) // Check if we've started a tx broadcasting goroutine for this peer. // If we have, we signal to terminate the goroutine via the channel's closure. // This will internally decrement the peer waitgroup and remove the peer // from the map of peer tx broadcasting goroutines. closer, ok := r.peerRoutines[peerUpdate.NodeID] if ok { closer.Close() } } } // processPeerUpdates initiates a blocking process where we listen for and handle // PeerUpdate messages. When the reactor is stopped, we will catch the signal and // close the p2p PeerUpdatesCh gracefully. func (r *Reactor) processPeerUpdates(ctx context.Context) { for { select { case <-ctx.Done(): r.logger.Debug("stopped listening on peer updates channel; closing...") return case peerUpdate := <-r.peerUpdates.Updates(): r.processPeerUpdate(ctx, peerUpdate) } } } func (r *Reactor) broadcastTxRoutine(ctx context.Context, peerID types.NodeID, closer *tmsync.Closer) { peerMempoolID := r.ids.GetForPeer(peerID) var nextGossipTx *clist.CElement // remove the peer ID from the map of routines and mark the waitgroup as done defer func() { r.mtx.Lock() delete(r.peerRoutines, peerID) r.mtx.Unlock() r.peerWG.Done() if e := recover(); e != nil { r.observePanic(e) r.logger.Error( "recovering from broadcasting mempool loop", "err", e, "stack", string(debug.Stack()), ) } }() for { if !r.IsRunning() || ctx.Err() != nil { return } // This happens because the CElement we were looking at got garbage // collected (removed). That is, .NextWait() returned nil. Go ahead and // start from the beginning. if nextGossipTx == nil { select { case <-ctx.Done(): return case <-r.mempool.WaitForNextTx(): // wait until a tx is available if nextGossipTx = r.mempool.NextGossipTx(); nextGossipTx == nil { continue } case <-closer.Done(): // The peer is marked for removal via a PeerUpdate as the doneCh was // explicitly closed to signal we should exit. return } } memTx := nextGossipTx.Value.(*WrappedTx) if r.peerMgr != nil { height := r.peerMgr.GetHeight(peerID) if height > 0 && height < memTx.height-1 { // allow for a lag of one block time.Sleep(PeerCatchupSleepIntervalMS * time.Millisecond) continue } } // NOTE: Transaction batching was disabled due to: // https://github.com/tendermint/tendermint/issues/5796 if ok := r.mempool.txStore.TxHasPeer(memTx.hash, peerMempoolID); !ok { // Send the mempool tx to the corresponding peer. Note, the peer may be // behind and thus would not be able to process the mempool tx correctly. if err := r.mempoolCh.Send(ctx, p2p.Envelope{ To: peerID, Message: &protomem.Txs{ Txs: [][]byte{memTx.tx}, }, }); err != nil { return } r.logger.Debug( "gossiped tx to peer", "tx", fmt.Sprintf("%X", memTx.tx.Hash()), "peer", peerID, ) } select { case <-nextGossipTx.NextWaitChan(): nextGossipTx = nextGossipTx.Next() case <-closer.Done(): // The peer is marked for removal via a PeerUpdate as the doneCh was // explicitly closed to signal we should exit. return case <-ctx.Done(): return } } }