//nolint: gosec package e2e import ( "errors" "fmt" "io" "math/rand" "net" "path/filepath" "sort" "strconv" "strings" "time" "github.com/tendermint/tendermint/crypto" "github.com/tendermint/tendermint/crypto/ed25519" "github.com/tendermint/tendermint/crypto/secp256k1" rpchttp "github.com/tendermint/tendermint/rpc/client/http" "github.com/tendermint/tendermint/types" ) const ( randomSeed int64 = 2308084734268 proxyPortFirst uint32 = 5701 networkIPv4 = "10.186.73.0/24" networkIPv6 = "fd80:b10c::/48" ) type Mode string type Protocol string type Perturbation string const ( ModeValidator Mode = "validator" ModeFull Mode = "full" ModeLight Mode = "light" ModeSeed Mode = "seed" ProtocolBuiltin Protocol = "builtin" ProtocolFile Protocol = "file" ProtocolGRPC Protocol = "grpc" ProtocolTCP Protocol = "tcp" ProtocolUNIX Protocol = "unix" PerturbationDisconnect Perturbation = "disconnect" PerturbationKill Perturbation = "kill" PerturbationPause Perturbation = "pause" PerturbationRestart Perturbation = "restart" EvidenceAgeHeight int64 = 7 EvidenceAgeTime time.Duration = 500 * time.Millisecond StateSyncP2P = "p2p" StateSyncRPC = "rpc" StateSyncDisabled = "" ) // Testnet represents a single testnet. type Testnet struct { Name string File string Dir string IP *net.IPNet InitialHeight int64 InitialState map[string]string Validators map[*Node]int64 ValidatorUpdates map[int64]map[*Node]int64 Nodes []*Node KeyType string Evidence int LogLevel string TxSize int64 ABCIProtocol string } // Node represents a Tendermint node in a testnet. type Node struct { Name string Testnet *Testnet Mode Mode PrivvalKey crypto.PrivKey NodeKey crypto.PrivKey IP net.IP ProxyPort uint32 StartAt int64 BlockSync string Mempool string StateSync string Database string ABCIProtocol Protocol PrivvalProtocol Protocol PersistInterval uint64 SnapshotInterval uint64 RetainBlocks uint64 Seeds []*Node PersistentPeers []*Node Perturbations []Perturbation LogLevel string UseLegacyP2P bool QueueType string HasStarted bool } // LoadTestnet loads a testnet from a manifest file, using the filename to // determine the testnet name and directory (from the basename of the file). // The testnet generation must be deterministic, since it is generated // separately by the runner and the test cases. For this reason, testnets use a // random seed to generate e.g. keys. func LoadTestnet(file string) (*Testnet, error) { manifest, err := LoadManifest(file) if err != nil { return nil, err } dir := strings.TrimSuffix(file, filepath.Ext(file)) // Set up resource generators. These must be deterministic. netAddress := networkIPv4 if manifest.IPv6 { netAddress = networkIPv6 } _, ipNet, err := net.ParseCIDR(netAddress) if err != nil { return nil, fmt.Errorf("invalid IP network address %q: %w", netAddress, err) } ipGen := newIPGenerator(ipNet) keyGen := newKeyGenerator(randomSeed) proxyPortGen := newPortGenerator(proxyPortFirst) testnet := &Testnet{ Name: filepath.Base(dir), File: file, Dir: dir, IP: ipGen.Network(), InitialHeight: 1, InitialState: manifest.InitialState, Validators: map[*Node]int64{}, ValidatorUpdates: map[int64]map[*Node]int64{}, Nodes: []*Node{}, Evidence: manifest.Evidence, KeyType: "ed25519", LogLevel: manifest.LogLevel, TxSize: manifest.TxSize, ABCIProtocol: manifest.ABCIProtocol, } if len(manifest.KeyType) != 0 { testnet.KeyType = manifest.KeyType } if testnet.TxSize <= 0 { testnet.TxSize = 1024 } if manifest.InitialHeight > 0 { testnet.InitialHeight = manifest.InitialHeight } if testnet.ABCIProtocol == "" { testnet.ABCIProtocol = string(ProtocolBuiltin) } // Set up nodes, in alphabetical order (IPs and ports get same order). nodeNames := []string{} for name := range manifest.Nodes { nodeNames = append(nodeNames, name) } sort.Strings(nodeNames) for _, name := range nodeNames { nodeManifest := manifest.Nodes[name] node := &Node{ Name: name, Testnet: testnet, PrivvalKey: keyGen.Generate(manifest.KeyType), NodeKey: keyGen.Generate("ed25519"), IP: ipGen.Next(), ProxyPort: proxyPortGen.Next(), Mode: ModeValidator, Database: "goleveldb", ABCIProtocol: Protocol(testnet.ABCIProtocol), PrivvalProtocol: ProtocolFile, StartAt: nodeManifest.StartAt, BlockSync: nodeManifest.BlockSync, Mempool: nodeManifest.Mempool, StateSync: nodeManifest.StateSync, PersistInterval: 1, SnapshotInterval: nodeManifest.SnapshotInterval, RetainBlocks: nodeManifest.RetainBlocks, Perturbations: []Perturbation{}, LogLevel: manifest.LogLevel, QueueType: manifest.QueueType, UseLegacyP2P: nodeManifest.UseLegacyP2P, } if node.StartAt == testnet.InitialHeight { node.StartAt = 0 // normalize to 0 for initial nodes, since code expects this } if nodeManifest.Mode != "" { node.Mode = Mode(nodeManifest.Mode) } if node.Mode == ModeLight { node.ABCIProtocol = ProtocolBuiltin } if nodeManifest.Database != "" { node.Database = nodeManifest.Database } if nodeManifest.PrivvalProtocol != "" { node.PrivvalProtocol = Protocol(nodeManifest.PrivvalProtocol) } if nodeManifest.PersistInterval != nil { node.PersistInterval = *nodeManifest.PersistInterval } for _, p := range nodeManifest.Perturb { node.Perturbations = append(node.Perturbations, Perturbation(p)) } if nodeManifest.LogLevel != "" { node.LogLevel = nodeManifest.LogLevel } testnet.Nodes = append(testnet.Nodes, node) } // We do a second pass to set up seeds and persistent peers, which allows graph cycles. for _, node := range testnet.Nodes { nodeManifest, ok := manifest.Nodes[node.Name] if !ok { return nil, fmt.Errorf("failed to look up manifest for node %q", node.Name) } for _, seedName := range nodeManifest.Seeds { seed := testnet.LookupNode(seedName) if seed == nil { return nil, fmt.Errorf("unknown seed %q for node %q", seedName, node.Name) } node.Seeds = append(node.Seeds, seed) } for _, peerName := range nodeManifest.PersistentPeers { peer := testnet.LookupNode(peerName) if peer == nil { return nil, fmt.Errorf("unknown persistent peer %q for node %q", peerName, node.Name) } if peer.Mode == ModeLight { return nil, fmt.Errorf("can not have a light client as a persistent peer (for %q)", node.Name) } node.PersistentPeers = append(node.PersistentPeers, peer) } // If there are no seeds or persistent peers specified, default to persistent // connections to all other full nodes. if len(node.PersistentPeers) == 0 && len(node.Seeds) == 0 { for _, peer := range testnet.Nodes { if peer.Name == node.Name { continue } if peer.Mode == ModeLight { continue } node.PersistentPeers = append(node.PersistentPeers, peer) } } } // Set up genesis validators. If not specified explicitly, use all validator nodes. if manifest.Validators != nil { for validatorName, power := range *manifest.Validators { validator := testnet.LookupNode(validatorName) if validator == nil { return nil, fmt.Errorf("unknown validator %q", validatorName) } testnet.Validators[validator] = power } } else { for _, node := range testnet.Nodes { if node.Mode == ModeValidator { testnet.Validators[node] = 100 } } } // Set up validator updates. for heightStr, validators := range manifest.ValidatorUpdates { height, err := strconv.Atoi(heightStr) if err != nil { return nil, fmt.Errorf("invalid validator update height %q: %w", height, err) } valUpdate := map[*Node]int64{} for name, power := range validators { node := testnet.LookupNode(name) if node == nil { return nil, fmt.Errorf("unknown validator %q for update at height %v", name, height) } valUpdate[node] = power } testnet.ValidatorUpdates[int64(height)] = valUpdate } return testnet, testnet.Validate() } // Validate validates a testnet. func (t Testnet) Validate() error { if t.Name == "" { return errors.New("network has no name") } if t.IP == nil { return errors.New("network has no IP") } if len(t.Nodes) == 0 { return errors.New("network has no nodes") } switch t.KeyType { case "", types.ABCIPubKeyTypeEd25519, types.ABCIPubKeyTypeSecp256k1: default: return errors.New("unsupported KeyType") } for _, node := range t.Nodes { if err := node.Validate(t); err != nil { return fmt.Errorf("invalid node %q: %w", node.Name, err) } } return nil } // Validate validates a node. func (n Node) Validate(testnet Testnet) error { if n.Name == "" { return errors.New("node has no name") } if n.IP == nil { return errors.New("node has no IP address") } if !testnet.IP.Contains(n.IP) { return fmt.Errorf("node IP %v is not in testnet network %v", n.IP, testnet.IP) } if n.ProxyPort > 0 { if n.ProxyPort <= 1024 { return fmt.Errorf("local port %v must be >1024", n.ProxyPort) } for _, peer := range testnet.Nodes { if peer.Name != n.Name && peer.ProxyPort == n.ProxyPort { return fmt.Errorf("peer %q also has local port %v", peer.Name, n.ProxyPort) } } } switch n.BlockSync { case "", "v0", "v2": default: return fmt.Errorf("invalid block sync setting %q", n.BlockSync) } switch n.StateSync { case StateSyncDisabled, StateSyncP2P, StateSyncRPC: default: return fmt.Errorf("invalid state sync setting %q", n.StateSync) } switch n.Mempool { case "", "v0", "v1": default: return fmt.Errorf("invalid mempool version %q", n.Mempool) } switch n.QueueType { case "", "priority", "wdrr", "fifo": default: return fmt.Errorf("unsupported p2p queue type: %s", n.QueueType) } switch n.Database { case "goleveldb", "cleveldb", "boltdb", "rocksdb", "badgerdb": default: return fmt.Errorf("invalid database setting %q", n.Database) } switch n.ABCIProtocol { case ProtocolBuiltin, ProtocolUNIX, ProtocolTCP, ProtocolGRPC: default: return fmt.Errorf("invalid ABCI protocol setting %q", n.ABCIProtocol) } if n.Mode == ModeLight && n.ABCIProtocol != ProtocolBuiltin { return errors.New("light client must use builtin protocol") } switch n.PrivvalProtocol { case ProtocolFile, ProtocolTCP, ProtocolGRPC, ProtocolUNIX: default: return fmt.Errorf("invalid privval protocol setting %q", n.PrivvalProtocol) } if n.StartAt > 0 && n.StartAt < n.Testnet.InitialHeight { return fmt.Errorf("cannot start at height %v lower than initial height %v", n.StartAt, n.Testnet.InitialHeight) } if n.StateSync != StateSyncDisabled && n.StartAt == 0 { return errors.New("state synced nodes cannot start at the initial height") } if n.RetainBlocks != 0 && n.RetainBlocks < uint64(EvidenceAgeHeight) { return fmt.Errorf("retain_blocks must be greater or equal to max evidence age (%d)", EvidenceAgeHeight) } if n.PersistInterval == 0 && n.RetainBlocks > 0 { return errors.New("persist_interval=0 requires retain_blocks=0") } if n.PersistInterval > 1 && n.RetainBlocks > 0 && n.RetainBlocks < n.PersistInterval { return errors.New("persist_interval must be less than or equal to retain_blocks") } if n.SnapshotInterval > 0 && n.RetainBlocks > 0 && n.RetainBlocks < n.SnapshotInterval { return errors.New("snapshot_interval must be less than er equal to retain_blocks") } for _, perturbation := range n.Perturbations { switch perturbation { case PerturbationDisconnect, PerturbationKill, PerturbationPause, PerturbationRestart: default: return fmt.Errorf("invalid perturbation %q", perturbation) } } return nil } // LookupNode looks up a node by name. For now, simply do a linear search. func (t Testnet) LookupNode(name string) *Node { for _, node := range t.Nodes { if node.Name == name { return node } } return nil } // ArchiveNodes returns a list of archive nodes that start at the initial height // and contain the entire blockchain history. They are used e.g. as light client // RPC servers. func (t Testnet) ArchiveNodes() []*Node { nodes := []*Node{} for _, node := range t.Nodes { if !node.Stateless() && node.StartAt == 0 && node.RetainBlocks == 0 { nodes = append(nodes, node) } } return nodes } // IPv6 returns true if the testnet is an IPv6 network. func (t Testnet) IPv6() bool { return t.IP.IP.To4() == nil } // HasPerturbations returns whether the network has any perturbations. func (t Testnet) HasPerturbations() bool { for _, node := range t.Nodes { if len(node.Perturbations) > 0 { return true } } return false } // Address returns a P2P endpoint address for the node. func (n Node) AddressP2P(withID bool) string { ip := n.IP.String() if n.IP.To4() == nil { // IPv6 addresses must be wrapped in [] to avoid conflict with : port separator ip = fmt.Sprintf("[%v]", ip) } addr := fmt.Sprintf("%v:26656", ip) if withID { addr = fmt.Sprintf("%x@%v", n.NodeKey.PubKey().Address().Bytes(), addr) } return addr } // Address returns an RPC endpoint address for the node. func (n Node) AddressRPC() string { ip := n.IP.String() if n.IP.To4() == nil { // IPv6 addresses must be wrapped in [] to avoid conflict with : port separator ip = fmt.Sprintf("[%v]", ip) } return fmt.Sprintf("%v:26657", ip) } // Client returns an RPC client for a node. func (n Node) Client() (*rpchttp.HTTP, error) { return rpchttp.New(fmt.Sprintf("http://127.0.0.1:%v", n.ProxyPort)) } // Stateless returns true if the node is either a seed node or a light node func (n Node) Stateless() bool { return n.Mode == ModeLight || n.Mode == ModeSeed } // keyGenerator generates pseudorandom Ed25519 keys based on a seed. type keyGenerator struct { random *rand.Rand } func newKeyGenerator(seed int64) *keyGenerator { return &keyGenerator{ random: rand.New(rand.NewSource(seed)), } } func (g *keyGenerator) Generate(keyType string) crypto.PrivKey { seed := make([]byte, ed25519.SeedSize) _, err := io.ReadFull(g.random, seed) if err != nil { panic(err) // this shouldn't happen } switch keyType { case "secp256k1": return secp256k1.GenPrivKeySecp256k1(seed) case "", "ed25519": return ed25519.GenPrivKeyFromSecret(seed) default: panic("KeyType not supported") // should not make it this far } } // portGenerator generates local Docker proxy ports for each node. type portGenerator struct { nextPort uint32 } func newPortGenerator(firstPort uint32) *portGenerator { return &portGenerator{nextPort: firstPort} } func (g *portGenerator) Next() uint32 { port := g.nextPort g.nextPort++ if g.nextPort == 0 { panic("port overflow") } return port } // ipGenerator generates sequential IP addresses for each node, using a random // network address. type ipGenerator struct { network *net.IPNet nextIP net.IP } func newIPGenerator(network *net.IPNet) *ipGenerator { nextIP := make([]byte, len(network.IP)) copy(nextIP, network.IP) gen := &ipGenerator{network: network, nextIP: nextIP} // Skip network and gateway addresses gen.Next() gen.Next() return gen } func (g *ipGenerator) Network() *net.IPNet { n := &net.IPNet{ IP: make([]byte, len(g.network.IP)), Mask: make([]byte, len(g.network.Mask)), } copy(n.IP, g.network.IP) copy(n.Mask, g.network.Mask) return n } func (g *ipGenerator) Next() net.IP { ip := make([]byte, len(g.nextIP)) copy(ip, g.nextIP) for i := len(g.nextIP) - 1; i >= 0; i-- { g.nextIP[i]++ if g.nextIP[i] != 0 { break } } return ip }