package p2p import ( "net" "strings" "sync" ) // IPeerSet has a (immutable) subset of the methods of PeerSet. type IPeerSet interface { Has(key string) bool Get(key string) *Peer List() []*Peer Size() int } //----------------------------------------------------------------------------- var ( maxPeersPerIPRange = [4]int{11, 7, 5, 3} // ... ) // PeerSet is a special structure for keeping a table of peers. // Iteration over the peers is super fast and thread-safe. // We also track how many peers per ip range and avoid too many type PeerSet struct { mtx sync.Mutex lookup map[string]*peerSetItem list []*Peer connectedIPs *nestedCounter } type peerSetItem struct { peer *Peer index int } func NewPeerSet() *PeerSet { return &PeerSet{ lookup: make(map[string]*peerSetItem), list: make([]*Peer, 0, 256), connectedIPs: NewNestedCounter(), } } // Returns false if peer with key (uuid) is already in set // or if we have too many peers from the peer's ip range func (ps *PeerSet) Add(peer *Peer) error { ps.mtx.Lock() defer ps.mtx.Unlock() if ps.lookup[peer.Key] != nil { return ErrSwitchDuplicatePeer } // ensure we havent maxed out connections for the peer's ip range yet // and update the ip range counters if !ps.updateIPRangeCounts(peer.Host) { return ErrSwitchMaxPeersPerIPRange } index := len(ps.list) // Appending is safe even with other goroutines // iterating over the ps.list slice. ps.list = append(ps.list, peer) ps.lookup[peer.Key] = &peerSetItem{peer, index} return nil } func (ps *PeerSet) Has(peerKey string) bool { ps.mtx.Lock() defer ps.mtx.Unlock() _, ok := ps.lookup[peerKey] return ok } func (ps *PeerSet) Get(peerKey string) *Peer { ps.mtx.Lock() defer ps.mtx.Unlock() item, ok := ps.lookup[peerKey] if ok { return item.peer } else { return nil } } func (ps *PeerSet) Remove(peer *Peer) { ps.mtx.Lock() defer ps.mtx.Unlock() item := ps.lookup[peer.Key] if item == nil { return } index := item.index // Copy the list but without the last element. // (we must copy because we're mutating the list) newList := make([]*Peer, len(ps.list)-1) copy(newList, ps.list) // If it's the last peer, that's an easy special case. if index == len(ps.list)-1 { ps.list = newList delete(ps.lookup, peer.Key) return } // Move the last item from ps.list to "index" in list. lastPeer := ps.list[len(ps.list)-1] lastPeerKey := lastPeer.Key lastPeerItem := ps.lookup[lastPeerKey] newList[index] = lastPeer lastPeerItem.index = index ps.list = newList delete(ps.lookup, peer.Key) } func (ps *PeerSet) Size() int { ps.mtx.Lock() defer ps.mtx.Unlock() return len(ps.list) } // threadsafe list of peers. func (ps *PeerSet) List() []*Peer { ps.mtx.Lock() defer ps.mtx.Unlock() return ps.list } //----------------------------------------------------------------------------- // track the number of ips we're connected to for each ip address range // forms an ip address hierarchy tree with counts // the struct itself is not thread safe and should always only be accessed with the ps.mtx locked type nestedCounter struct { count int children map[string]*nestedCounter } func NewNestedCounter() *nestedCounter { nc := new(nestedCounter) nc.children = make(map[string]*nestedCounter) return nc } // Check if we have too many ips in the ip range of the incoming connection // Thread safe func (ps *PeerSet) HasMaxForIPRange(conn net.Conn) (ok bool) { ps.mtx.Lock() defer ps.mtx.Unlock() ip, _, _ := net.SplitHostPort(conn.RemoteAddr().String()) spl := strings.Split(ip, ".") c := ps.connectedIPs for i, ipByte := range spl { if c, ok = c.children[ipByte]; !ok { return false } if c.count == maxPeersPerIPRange[i] { return true } } return false } // Update counts for this address' ip range // Returns false if we already have enough connections // Not thread safe (only called by ps.Add()) func (ps *PeerSet) updateIPRangeCounts(address string) bool { spl := strings.Split(address, ".") c := ps.connectedIPs return updateNestedCountRecursive(c, spl, 0) } // recursively descend the ip hierarchy, checking if we have // max peers for each range and updating if not func updateNestedCountRecursive(c *nestedCounter, ipBytes []string, index int) bool { if index == len(ipBytes) { return true } ipByte := ipBytes[index] if c2, ok := c.children[ipByte]; !ok { c2 = NewNestedCounter() c.children[ipByte] = c2 c = c2 } else { c = c2 if c.count == maxPeersPerIPRange[index] { return false } } if !updateNestedCountRecursive(c, ipBytes, index+1) { return false } c.count += 1 return true }