package main import ( "fmt" "math/rand" "sort" "strings" e2e "github.com/tendermint/tendermint/test/e2e/pkg" "github.com/tendermint/tendermint/types" ) var ( // testnetCombinations defines global testnet options, where we generate a // separate testnet for each combination (Cartesian product) of options. testnetCombinations = map[string][]interface{}{ "topology": {"single", "quad", "large"}, "queueType": {"priority"}, // "fifo", "wdrr" "initialHeight": {0, 1000}, "initialState": { map[string]string{}, map[string]string{"initial01": "a", "initial02": "b", "initial03": "c"}, }, "validators": {"genesis", "initchain"}, } // The following specify randomly chosen values for testnet nodes. nodeDatabases = weightedChoice{ "goleveldb": 35, "badgerdb": 35, "boltdb": 15, "rocksdb": 10, "cleveldb": 5, } nodeABCIProtocols = weightedChoice{ "builtin": 50, "tcp": 20, "grpc": 20, "unix": 10, } nodePrivvalProtocols = weightedChoice{ "file": 50, "grpc": 20, "tcp": 20, "unix": 10, } // FIXME: v2 disabled due to flake nodeBlockSyncs = uniformChoice{"v0"} // "v2" nodeMempools = uniformChoice{"v0", "v1"} nodeStateSyncs = weightedChoice{ e2e.StateSyncDisabled: 10, e2e.StateSyncP2P: 45, e2e.StateSyncRPC: 45, } nodePersistIntervals = uniformChoice{0, 1, 5} nodeSnapshotIntervals = uniformChoice{0, 3} nodeRetainBlocks = uniformChoice{0, 2 * int(e2e.EvidenceAgeHeight), 4 * int(e2e.EvidenceAgeHeight)} nodePerturbations = probSetChoice{ "disconnect": 0.1, "pause": 0.1, "kill": 0.1, "restart": 0.1, } evidence = uniformChoice{0, 1, 10} txSize = uniformChoice{1024, 4096} // either 1kb or 4kb ipv6 = uniformChoice{false, true} keyType = uniformChoice{types.ABCIPubKeyTypeEd25519, types.ABCIPubKeyTypeSecp256k1} ) // Generate generates random testnets using the given RNG. func Generate(r *rand.Rand, opts Options) ([]e2e.Manifest, error) { manifests := []e2e.Manifest{} for _, opt := range combinations(testnetCombinations) { manifest, err := generateTestnet(r, opt) if err != nil { return nil, err } if len(manifest.Nodes) < opts.MinNetworkSize { continue } if opts.MaxNetworkSize > 0 && len(manifest.Nodes) >= opts.MaxNetworkSize { continue } manifests = append(manifests, manifest) } return manifests, nil } type Options struct { MinNetworkSize int MaxNetworkSize int NumGroups int Directory string Reverse bool } // generateTestnet generates a single testnet with the given options. func generateTestnet(r *rand.Rand, opt map[string]interface{}) (e2e.Manifest, error) { manifest := e2e.Manifest{ IPv6: ipv6.Choose(r).(bool), InitialHeight: int64(opt["initialHeight"].(int)), InitialState: opt["initialState"].(map[string]string), Validators: &map[string]int64{}, ValidatorUpdates: map[string]map[string]int64{}, Nodes: map[string]*e2e.ManifestNode{}, KeyType: keyType.Choose(r).(string), Evidence: evidence.Choose(r).(int), QueueType: opt["queueType"].(string), TxSize: int64(txSize.Choose(r).(int)), } var numSeeds, numValidators, numFulls, numLightClients int switch opt["topology"].(string) { case "single": numValidators = 1 case "quad": numValidators = 4 case "large": // FIXME Networks are kept small since large ones use too much CPU. numSeeds = r.Intn(1) numLightClients = r.Intn(2) numValidators = 4 + r.Intn(4) numFulls = r.Intn(4) default: return manifest, fmt.Errorf("unknown topology %q", opt["topology"]) } // First we generate seed nodes, starting at the initial height. for i := 1; i <= numSeeds; i++ { node := generateNode(r, manifest, e2e.ModeSeed, 0, false) manifest.Nodes[fmt.Sprintf("seed%02d", i)] = node } var numSyncingNodes = 0 // Next, we generate validators. We make sure a BFT quorum of validators start // at the initial height, and that we have two archive nodes. We also set up // the initial validator set, and validator set updates for delayed nodes. nextStartAt := manifest.InitialHeight + 5 quorum := numValidators*2/3 + 1 for i := 1; i <= numValidators; i++ { startAt := int64(0) if i > quorum && numSyncingNodes < 2 && r.Float64() >= 0.25 { numSyncingNodes++ startAt = nextStartAt nextStartAt += 5 } name := fmt.Sprintf("validator%02d", i) node := generateNode(r, manifest, e2e.ModeValidator, startAt, i <= 2) manifest.Nodes[name] = node if startAt == 0 { (*manifest.Validators)[name] = int64(30 + r.Intn(71)) } else { manifest.ValidatorUpdates[fmt.Sprint(startAt+5)] = map[string]int64{ name: int64(30 + r.Intn(71)), } } } // Move validators to InitChain if specified. switch opt["validators"].(string) { case "genesis": case "initchain": manifest.ValidatorUpdates["0"] = *manifest.Validators manifest.Validators = &map[string]int64{} default: return manifest, fmt.Errorf("invalid validators option %q", opt["validators"]) } // Finally, we generate random full nodes. for i := 1; i <= numFulls; i++ { startAt := int64(0) if numSyncingNodes < 2 && r.Float64() >= 0.5 { numSyncingNodes++ startAt = nextStartAt nextStartAt += 5 } node := generateNode(r, manifest, e2e.ModeFull, startAt, false) manifest.Nodes[fmt.Sprintf("full%02d", i)] = node } // We now set up peer discovery for nodes. Seed nodes are fully meshed with // each other, while non-seed nodes either use a set of random seeds or a // set of random peers that start before themselves. var seedNames, peerNames, lightProviders []string for name, node := range manifest.Nodes { if node.Mode == string(e2e.ModeSeed) { seedNames = append(seedNames, name) } else { // if the full node or validator is an ideal candidate, it is added as a light provider. // There are at least two archive nodes so there should be at least two ideal candidates if (node.StartAt == 0 || node.StartAt == manifest.InitialHeight) && node.RetainBlocks == 0 { lightProviders = append(lightProviders, name) } peerNames = append(peerNames, name) } } for _, name := range seedNames { for _, otherName := range seedNames { if name != otherName { manifest.Nodes[name].Seeds = append(manifest.Nodes[name].Seeds, otherName) } } } sort.Slice(peerNames, func(i, j int) bool { iName, jName := peerNames[i], peerNames[j] switch { case manifest.Nodes[iName].StartAt < manifest.Nodes[jName].StartAt: return true case manifest.Nodes[iName].StartAt > manifest.Nodes[jName].StartAt: return false default: return strings.Compare(iName, jName) == -1 } }) for i, name := range peerNames { // there are seeds, statesync is disabled, and it's // either the first peer by the sort order, and // (randomly half of the remaining peers use a seed // node; otherwise, choose some remaining set of the // peers. if len(seedNames) > 0 && manifest.Nodes[name].StateSync == e2e.StateSyncDisabled && (i == 0 || r.Float64() >= 0.5) { // choose one of the seeds manifest.Nodes[name].Seeds = uniformSetChoice(seedNames).Choose(r) } else if i > 0 { peers := uniformSetChoice(peerNames[:i]) if manifest.Nodes[name].StateSync == e2e.StateSyncP2P { manifest.Nodes[name].PersistentPeers = peers.ChooseAtLeast(r, 2) } else { manifest.Nodes[name].PersistentPeers = peers.Choose(r) } } } // lastly, set up the light clients for i := 1; i <= numLightClients; i++ { startAt := manifest.InitialHeight + 5 node := generateLightNode( r, startAt+(5*int64(i)), lightProviders, ) manifest.Nodes[fmt.Sprintf("light%02d", i)] = node } return manifest, nil } // generateNode randomly generates a node, with some constraints to avoid // generating invalid configurations. We do not set Seeds or PersistentPeers // here, since we need to know the overall network topology and startup // sequencing. func generateNode( r *rand.Rand, manifest e2e.Manifest, mode e2e.Mode, startAt int64, forceArchive bool, ) *e2e.ManifestNode { node := e2e.ManifestNode{ Mode: string(mode), StartAt: startAt, Database: nodeDatabases.Choose(r), ABCIProtocol: nodeABCIProtocols.Choose(r), PrivvalProtocol: nodePrivvalProtocols.Choose(r), BlockSync: nodeBlockSyncs.Choose(r).(string), Mempool: nodeMempools.Choose(r).(string), StateSync: e2e.StateSyncDisabled, PersistInterval: ptrUint64(uint64(nodePersistIntervals.Choose(r).(int))), SnapshotInterval: uint64(nodeSnapshotIntervals.Choose(r).(int)), RetainBlocks: uint64(nodeRetainBlocks.Choose(r).(int)), Perturb: nodePerturbations.Choose(r), } if startAt > 0 { node.StateSync = nodeStateSyncs.Choose(r) if manifest.InitialHeight-startAt <= 5 && node.StateSync == e2e.StateSyncDisabled { // avoid needing to blocsync more than five total blocks. node.StateSync = uniformSetChoice([]string{ e2e.StateSyncP2P, e2e.StateSyncRPC, }).Choose(r)[0] } } // If this node is forced to be an archive node, retain all blocks and // enable state sync snapshotting. if forceArchive { node.RetainBlocks = 0 node.SnapshotInterval = 3 } // If a node which does not persist state also does not retain blocks, randomly // choose to either persist state or retain all blocks. if node.PersistInterval != nil && *node.PersistInterval == 0 && node.RetainBlocks > 0 { if r.Float64() > 0.5 { node.RetainBlocks = 0 } else { node.PersistInterval = ptrUint64(node.RetainBlocks) } } // If either PersistInterval or SnapshotInterval are greater than RetainBlocks, // expand the block retention time. if node.RetainBlocks > 0 { if node.PersistInterval != nil && node.RetainBlocks < *node.PersistInterval { node.RetainBlocks = *node.PersistInterval } if node.RetainBlocks < node.SnapshotInterval { node.RetainBlocks = node.SnapshotInterval } } if node.StateSync != e2e.StateSyncDisabled { node.BlockSync = "v0" } return &node } func generateLightNode(r *rand.Rand, startAt int64, providers []string) *e2e.ManifestNode { return &e2e.ManifestNode{ Mode: string(e2e.ModeLight), StartAt: startAt, Database: nodeDatabases.Choose(r), ABCIProtocol: "builtin", PersistInterval: ptrUint64(0), PersistentPeers: providers, } } func ptrUint64(i uint64) *uint64 { return &i }