Browse Source

Import flowcontrol package from Google Code

pull/1842/head
Maxim Khitrov 11 years ago
commit
bec34fc8d7
4 changed files with 613 additions and 0 deletions
  1. +267
    -0
      flowcontrol/flowcontrol.go
  2. +133
    -0
      flowcontrol/io.go
  3. +146
    -0
      flowcontrol/io_test.go
  4. +67
    -0
      flowcontrol/util.go

+ 267
- 0
flowcontrol/flowcontrol.go View File

@ -0,0 +1,267 @@
//
// Written by Maxim Khitrov (November 2012)
//
// Package flowcontrol provides the tools for monitoring and limiting the
// transfer rate of an arbitrary data stream.
package flowcontrol
import (
"math"
"sync"
"time"
)
// Monitor monitors and limits the transfer rate of a data stream.
type Monitor struct {
mu sync.Mutex // Mutex guarding access to all internal fields
active bool // Flag indicating an active transfer
start time.Duration // Transfer start time (clock() value)
bytes int64 // Total number of bytes transferred
samples int64 // Total number of samples taken
rSample float64 // Most recent transfer rate sample (bytes per second)
rEMA float64 // Exponential moving average of rSample
rPeak float64 // Peak transfer rate (max of all rSamples)
rWindow float64 // rEMA window (seconds)
sBytes int64 // Number of bytes transferred since sLast
sLast time.Duration // Most recent sample time (stop time when inactive)
sRate time.Duration // Sampling rate
tBytes int64 // Number of bytes expected in the current transfer
tLast time.Duration // Time of the most recent transfer of at least 1 byte
}
// New creates a new flow control monitor. Instantaneous transfer rate is
// measured and updated for each sampleRate interval. windowSize determines the
// weight of each sample in the exponential moving average (EMA) calculation.
// The exact formulas are:
//
// sampleTime = currentTime - prevSampleTime
// sampleRate = byteCount / sampleTime
// weight = 1 - exp(-sampleTime/windowSize)
// newRate = weight*sampleRate + (1-weight)*oldRate
//
// The default values for sampleRate and windowSize (if <= 0) are 100ms and 1s,
// respectively.
func New(sampleRate, windowSize time.Duration) *Monitor {
if sampleRate = clockRound(sampleRate); sampleRate <= 0 {
sampleRate = 5 * clockRate
}
if windowSize <= 0 {
windowSize = 1 * time.Second
}
now := clock()
return &Monitor{
active: true,
start: now,
rWindow: windowSize.Seconds(),
sLast: now,
sRate: sampleRate,
tLast: now,
}
}
// Update records the transfer of n bytes and returns n. It should be called
// after each Read/Write operation, even if n is 0.
func (m *Monitor) Update(n int) int {
m.mu.Lock()
m.update(n)
m.mu.Unlock()
return n
}
// IO is a convenience method intended to wrap io.Reader and io.Writer method
// execution. It calls m.Update(n) and then returns (n, err) unmodified.
func (m *Monitor) IO(n int, err error) (int, error) {
return m.Update(n), err
}
// Done marks the transfer as finished and prevents any further updates or
// limiting. Instantaneous and current transfer rates drop to 0. Update, IO, and
// Limit methods become NOOPs. It returns the total number of bytes transferred.
func (m *Monitor) Done() int64 {
m.mu.Lock()
if now := m.update(0); m.sBytes > 0 {
m.reset(now)
}
m.active = false
m.tLast = 0
n := m.bytes
m.mu.Unlock()
return n
}
// timeRemLimit is the maximum Status.TimeRem value.
const timeRemLimit = 999*time.Hour + 59*time.Minute + 59*time.Second
// Status represents the current Monitor status. All transfer rates are in bytes
// per second rounded to the nearest byte.
type Status struct {
Active bool // Flag indicating an active transfer
Start time.Time // Transfer start time
Duration time.Duration // Time period covered by the statistics
Idle time.Duration // Time since the last transfer of at least 1 byte
Bytes int64 // Total number of bytes transferred
Samples int64 // Total number of samples taken
InstRate int64 // Instantaneous transfer rate
CurRate int64 // Current transfer rate (EMA of InstRate)
AvgRate int64 // Average transfer rate (Bytes / Duration)
PeakRate int64 // Maximum instantaneous transfer rate
BytesRem int64 // Number of bytes remaining in the transfer
TimeRem time.Duration // Estimated time to completion
Progress Percent // Overall transfer progress
}
// Status returns current transfer status information. The returned value
// becomes static after a call to Done.
func (m *Monitor) Status() Status {
m.mu.Lock()
now := m.update(0)
s := Status{
Active: m.active,
Start: clockToTime(m.start),
Duration: m.sLast - m.start,
Idle: now - m.tLast,
Bytes: m.bytes,
Samples: m.samples,
PeakRate: round(m.rPeak),
BytesRem: m.tBytes - m.bytes,
Progress: percentOf(float64(m.bytes), float64(m.tBytes)),
}
if s.BytesRem < 0 {
s.BytesRem = 0
}
if s.Duration > 0 {
rAvg := float64(s.Bytes) / s.Duration.Seconds()
s.AvgRate = round(rAvg)
if s.Active {
s.InstRate = round(m.rSample)
s.CurRate = round(m.rEMA)
if s.BytesRem > 0 {
if tRate := 0.8*m.rEMA + 0.2*rAvg; tRate > 0 {
ns := float64(s.BytesRem) / tRate * 1e9
if ns > float64(timeRemLimit) {
ns = float64(timeRemLimit)
}
s.TimeRem = clockRound(time.Duration(ns))
}
}
}
}
m.mu.Unlock()
return s
}
// Limit restricts the instantaneous (per-sample) data flow to rate bytes per
// second. It returns the maximum number of bytes (0 <= n <= want) that may be
// transferred immediately without exceeding the limit. If block == true, the
// call blocks until n > 0. want is returned unmodified if want < 1, rate < 1,
// or the transfer is inactive (after a call to Done).
//
// At least one byte is always allowed to be transferred in any given sampling
// period. Thus, if the sampling rate is 100ms, the lowest achievable flow rate
// is 10 bytes per second.
//
// For usage examples, see the implementation of Reader and Writer in io.go.
func (m *Monitor) Limit(want int, rate int64, block bool) (n int) {
if want < 1 || rate < 1 {
return want
}
m.mu.Lock()
// Determine the maximum number of bytes that can be sent in one sample
limit := round(float64(rate) * m.sRate.Seconds())
if limit <= 0 {
limit = 1
}
// If block == true, wait until m.sBytes < limit
if now := m.update(0); block {
for m.sBytes >= limit && m.active {
now = m.waitNextSample(now)
}
}
// Make limit <= want (unlimited if the transfer is no longer active)
if limit -= m.sBytes; limit > int64(want) || !m.active {
limit = int64(want)
}
m.mu.Unlock()
if limit < 0 {
limit = 0
}
return int(limit)
}
// SetTransferSize specifies the total size of the data transfer, which allows
// the Monitor to calculate the overall progress and time to completion.
func (m *Monitor) SetTransferSize(bytes int64) {
if bytes < 0 {
bytes = 0
}
m.mu.Lock()
m.tBytes = bytes
m.mu.Unlock()
}
// update accumulates the transferred byte count for the current sample until
// clock() - m.sLast >= m.sRate. The monitor status is updated once the current
// sample is done.
func (m *Monitor) update(n int) (now time.Duration) {
if !m.active {
return
}
if now = clock(); n > 0 {
m.tLast = now
}
m.sBytes += int64(n)
if sTime := now - m.sLast; sTime >= m.sRate {
t := sTime.Seconds()
if m.rSample = float64(m.sBytes) / t; m.rSample > m.rPeak {
m.rPeak = m.rSample
}
// Exponential moving average using a method similar to *nix load
// average calculation. Longer sampling periods carry greater weight.
if m.samples > 0 {
w := math.Exp(-t / m.rWindow)
m.rEMA = m.rSample + w*(m.rEMA-m.rSample)
} else {
m.rEMA = m.rSample
}
m.reset(now)
}
return
}
// reset clears the current sample state in preparation for the next sample.
func (m *Monitor) reset(sampleTime time.Duration) {
m.bytes += m.sBytes
m.samples++
m.sBytes = 0
m.sLast = sampleTime
}
// waitNextSample sleeps for the remainder of the current sample. The lock is
// released and reacquired during the actual sleep period, so it's possible for
// the transfer to be inactive when this method returns.
func (m *Monitor) waitNextSample(now time.Duration) time.Duration {
const minWait = 5 * time.Millisecond
current := m.sLast
// sleep until the last sample time changes (ideally, just one iteration)
for m.sLast == current && m.active {
d := current + m.sRate - now
m.mu.Unlock()
if d < minWait {
d = minWait
}
time.Sleep(d)
m.mu.Lock()
now = m.update(0)
}
return now
}

+ 133
- 0
flowcontrol/io.go View File

@ -0,0 +1,133 @@
//
// Written by Maxim Khitrov (November 2012)
//
package flowcontrol
import (
"errors"
"io"
)
// ErrLimit is returned by the Writer when a non-blocking write is short due to
// the transfer rate limit.
var ErrLimit = errors.New("flowcontrol: transfer rate limit exceeded")
// Limiter is implemented by the Reader and Writer to provide a consistent
// interface for monitoring and controlling data transfer.
type Limiter interface {
Done() int64
Status() Status
SetTransferSize(bytes int64)
SetLimit(new int64) (old int64)
SetBlocking(new bool) (old bool)
}
// Reader implements io.ReadCloser with a restriction on the rate of data
// transfer.
type Reader struct {
io.Reader // Data source
*Monitor // Flow control monitor
limit int64 // Rate limit in bytes per second (unlimited when <= 0)
block bool // What to do when no new bytes can be read due to the limit
}
// NewReader restricts all Read operations on r to limit bytes per second.
func NewReader(r io.Reader, limit int64) *Reader {
return &Reader{r, New(0, 0), limit, true}
}
// Read reads up to len(p) bytes into p without exceeding the current transfer
// rate limit. It returns (0, nil) immediately if r is non-blocking and no new
// bytes can be read at this time.
func (r *Reader) Read(p []byte) (n int, err error) {
p = p[:r.Limit(len(p), r.limit, r.block)]
if len(p) > 0 {
n, err = r.IO(r.Reader.Read(p))
}
return
}
// SetLimit changes the transfer rate limit to new bytes per second and returns
// the previous setting.
func (r *Reader) SetLimit(new int64) (old int64) {
old, r.limit = r.limit, new
return
}
// SetBlocking changes the blocking behavior and returns the previous setting. A
// Read call on a non-blocking reader returns immediately if no additional bytes
// may be read at this time due to the rate limit.
func (r *Reader) SetBlocking(new bool) (old bool) {
old, r.block = r.block, new
return
}
// Close closes the underlying reader if it implements the io.Closer interface.
func (r *Reader) Close() error {
defer r.Done()
if c, ok := r.Reader.(io.Closer); ok {
return c.Close()
}
return nil
}
// Writer implements io.WriteCloser with a restriction on the rate of data
// transfer.
type Writer struct {
io.Writer // Data destination
*Monitor // Flow control monitor
limit int64 // Rate limit in bytes per second (unlimited when <= 0)
block bool // What to do when no new bytes can be written due to the limit
}
// NewWriter restricts all Write operations on w to limit bytes per second. The
// transfer rate and the default blocking behavior (true) can be changed
// directly on the returned *Writer.
func NewWriter(w io.Writer, limit int64) *Writer {
return &Writer{w, New(0, 0), limit, true}
}
// Write writes len(p) bytes from p to the underlying data stream without
// exceeding the current transfer rate limit. It returns (n, ErrLimit) if w is
// non-blocking and no additional bytes can be written at this time.
func (w *Writer) Write(p []byte) (n int, err error) {
var c int
for len(p) > 0 && err == nil {
s := p[:w.Limit(len(p), w.limit, w.block)]
if len(s) > 0 {
c, err = w.IO(w.Writer.Write(s))
} else {
return n, ErrLimit
}
p = p[c:]
n += c
}
return
}
// SetLimit changes the transfer rate limit to new bytes per second and returns
// the previous setting.
func (w *Writer) SetLimit(new int64) (old int64) {
old, w.limit = w.limit, new
return
}
// SetBlocking changes the blocking behavior and returns the previous setting. A
// Write call on a non-blocking writer returns as soon as no additional bytes
// may be written at this time due to the rate limit.
func (w *Writer) SetBlocking(new bool) (old bool) {
old, w.block = w.block, new
return
}
// Close closes the underlying writer if it implements the io.Closer interface.
func (w *Writer) Close() error {
defer w.Done()
if c, ok := w.Writer.(io.Closer); ok {
return c.Close()
}
return nil
}

+ 146
- 0
flowcontrol/io_test.go View File

@ -0,0 +1,146 @@
//
// Written by Maxim Khitrov (November 2012)
//
package flowcontrol
import (
"bytes"
"reflect"
"testing"
"time"
)
const (
_50ms = 50 * time.Millisecond
_100ms = 100 * time.Millisecond
_200ms = 200 * time.Millisecond
_300ms = 300 * time.Millisecond
_400ms = 400 * time.Millisecond
_500ms = 500 * time.Millisecond
)
func nextStatus(m *Monitor) Status {
samples := m.samples
for i := 0; i < 30; i++ {
if s := m.Status(); s.Samples != samples {
return s
}
time.Sleep(5 * time.Millisecond)
}
return m.Status()
}
func TestReader(t *testing.T) {
in := make([]byte, 100)
for i := range in {
in[i] = byte(i)
}
b := make([]byte, 100)
r := NewReader(bytes.NewReader(in), 100)
start := time.Now()
// Make sure r implements Limiter
_ = Limiter(r)
// 1st read of 10 bytes is performed immediately
if n, err := r.Read(b); n != 10 || err != nil {
t.Fatalf("r.Read(b) expected 10 (<nil>); got %v (%v)", n, err)
} else if rt := time.Since(start); rt > _50ms {
t.Fatalf("r.Read(b) took too long (%v)", rt)
}
// No new Reads allowed in the current sample
r.SetBlocking(false)
if n, err := r.Read(b); n != 0 || err != nil {
t.Fatalf("r.Read(b) expected 0 (<nil>); got %v (%v)", n, err)
} else if rt := time.Since(start); rt > _50ms {
t.Fatalf("r.Read(b) took too long (%v)", rt)
}
status := [6]Status{0: r.Status()} // No samples in the first status
// 2nd read of 10 bytes blocks until the next sample
r.SetBlocking(true)
if n, err := r.Read(b[10:]); n != 10 || err != nil {
t.Fatalf("r.Read(b[10:]) expected 10 (<nil>); got %v (%v)", n, err)
} else if rt := time.Since(start); rt < _100ms {
t.Fatalf("r.Read(b[10:]) returned ahead of time (%v)", rt)
}
status[1] = r.Status() // 1st sample
status[2] = nextStatus(r.Monitor) // 2nd sample
status[3] = nextStatus(r.Monitor) // No activity for the 3rd sample
if n := r.Done(); n != 20 {
t.Fatalf("r.Done() expected 20; got %v", n)
}
status[4] = r.Status()
status[5] = nextStatus(r.Monitor) // Timeout
start = status[0].Start
// Active, Start, Duration, Idle, Bytes, Samples, InstRate, CurRate, AvgRate, PeakRate, BytesRem, TimeRem, Progress
want := []Status{
Status{true, start, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
Status{true, start, _100ms, 0, 10, 1, 100, 100, 100, 100, 0, 0, 0},
Status{true, start, _200ms, _100ms, 20, 2, 100, 100, 100, 100, 0, 0, 0},
Status{true, start, _300ms, _200ms, 20, 3, 0, 90, 67, 100, 0, 0, 0},
Status{false, start, _300ms, 0, 20, 3, 0, 0, 67, 100, 0, 0, 0},
Status{false, start, _300ms, 0, 20, 3, 0, 0, 67, 100, 0, 0, 0},
}
for i, s := range status {
if !reflect.DeepEqual(&s, &want[i]) {
t.Errorf("r.Status(%v) expected %v; got %v", i, want[i], s)
}
}
if !bytes.Equal(b[:20], in[:20]) {
t.Errorf("r.Read() input doesn't match output")
}
}
func TestWriter(t *testing.T) {
b := make([]byte, 100)
for i := range b {
b[i] = byte(i)
}
w := NewWriter(&bytes.Buffer{}, 200)
start := time.Now()
// Make sure w implements Limiter
_ = Limiter(w)
// Non-blocking 20-byte write for the first sample returns ErrLimit
w.SetBlocking(false)
if n, err := w.Write(b); n != 20 || err != ErrLimit {
t.Fatalf("w.Write(b) expected 20 (ErrLimit); got %v (%v)", n, err)
} else if rt := time.Since(start); rt > _50ms {
t.Fatalf("w.Write(b) took too long (%v)", rt)
}
// Blocking 80-byte write
w.SetBlocking(true)
if n, err := w.Write(b[20:]); n != 80 || err != nil {
t.Fatalf("w.Write(b[20:]) expected 80 (<nil>); got %v (%v)", n, err)
} else if rt := time.Since(start); rt < _400ms {
t.Fatalf("w.Write(b[20:]) returned ahead of time (%v)", rt)
}
w.SetTransferSize(100)
status := []Status{w.Status(), nextStatus(w.Monitor)}
start = status[0].Start
// Active, Start, Duration, Idle, Bytes, Samples, InstRate, CurRate, AvgRate, PeakRate, BytesRem, TimeRem, Progress
want := []Status{
Status{true, start, _400ms, 0, 80, 4, 200, 200, 200, 200, 20, _100ms, 80000},
Status{true, start, _500ms, _100ms, 100, 5, 200, 200, 200, 200, 0, 0, 100000},
}
for i, s := range status {
if !reflect.DeepEqual(&s, &want[i]) {
t.Errorf("w.Status(%v) expected %v; got %v", i, want[i], s)
}
}
if !bytes.Equal(b, w.Writer.(*bytes.Buffer).Bytes()) {
t.Errorf("w.Write() input doesn't match output")
}
}

+ 67
- 0
flowcontrol/util.go View File

@ -0,0 +1,67 @@
//
// Written by Maxim Khitrov (November 2012)
//
package flowcontrol
import (
"math"
"strconv"
"time"
)
// clockRate is the resolution and precision of clock().
const clockRate = 20 * time.Millisecond
// czero is the process start time rounded down to the nearest clockRate
// increment.
var czero = time.Duration(time.Now().UnixNano()) / clockRate * clockRate
// clock returns a low resolution timestamp relative to the process start time.
func clock() time.Duration {
return time.Duration(time.Now().UnixNano())/clockRate*clockRate - czero
}
// clockToTime converts a clock() timestamp to an absolute time.Time value.
func clockToTime(c time.Duration) time.Time {
return time.Unix(0, int64(czero+c))
}
// clockRound returns d rounded to the nearest clockRate increment.
func clockRound(d time.Duration) time.Duration {
return (d + clockRate>>1) / clockRate * clockRate
}
// round returns x rounded to the nearest int64 (non-negative values only).
func round(x float64) int64 {
if _, frac := math.Modf(x); frac >= 0.5 {
return int64(math.Ceil(x))
}
return int64(math.Floor(x))
}
// Percent represents a percentage in increments of 1/1000th of a percent.
type Percent uint32
// percentOf calculates what percent of the total is x.
func percentOf(x, total float64) Percent {
if x < 0 || total <= 0 {
return 0
} else if p := round(x / total * 1e5); p <= math.MaxUint32 {
return Percent(p)
}
return Percent(math.MaxUint32)
}
func (p Percent) Float() float64 {
return float64(p) * 1e-3
}
func (p Percent) String() string {
var buf [12]byte
b := strconv.AppendUint(buf[:0], uint64(p)/1000, 10)
n := len(b)
b = strconv.AppendUint(b, 1000+uint64(p)%1000, 10)
b[n] = '.'
return string(append(b, '%'))
}

Loading…
Cancel
Save