Browse Source

initial commit

pull/456/head
Jae Kwon 9 years ago
commit
abc3a2cc3c
23 changed files with 4874 additions and 0 deletions
  1. +206
    -0
      LICENSE.md
  2. +77
    -0
      README.md
  3. +813
    -0
      addrbook.go
  4. +161
    -0
      addrbook_test.go
  5. +640
    -0
      connection.go
  6. +213
    -0
      listener.go
  7. +7
    -0
      log.go
  8. +213
    -0
      netaddress.go
  9. +133
    -0
      peer.go
  10. +227
    -0
      peer_set.go
  11. +168
    -0
      peer_set_test.go
  12. +255
    -0
      pex_reactor.go
  13. +346
    -0
      secret_connection.go
  14. +202
    -0
      secret_connection_test.go
  15. +384
    -0
      switch.go
  16. +234
    -0
      switch_test.go
  17. +74
    -0
      types.go
  18. +5
    -0
      upnp/README.md
  19. +7
    -0
      upnp/log.go
  20. +111
    -0
      upnp/probe.go
  21. +380
    -0
      upnp/upnp.go
  22. +15
    -0
      util.go
  23. +3
    -0
      version.go

+ 206
- 0
LICENSE.md View File

@ -0,0 +1,206 @@
Tendermint P2P
Copyright (C) 2015 Tendermint
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
//--------------------------------------------------------------------------------
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for software and other kinds of works.
The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too.
When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.
Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions.
Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and modification follow.
TERMS AND CONDITIONS
0. Definitions.
“This License” refers to version 3 of the GNU General Public License.
“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.
“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.
To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a “modified version” of the earlier work or a work “based on” the earlier work.
A “covered work” means either the unmodified Program or a work based on the Program.
To “propagate” a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well.
To “convey” a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion.
1. Source Code.
The “source code” for a work means the preferred form of the work for making modifications to it. “Object code” means any non-source form of a work.
A “Standard Interface” means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language.
The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A “Major Component”, in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it.
The “Corresponding Source” for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to “keep intact all notices”.
c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so.
A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways:
a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b.
d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.
A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work.
A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, “normally used” refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product.
“Installation Information” for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM).
The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying.
7. Additional Terms.
“Additional permissions” are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors.
All other non-permissive additional terms are considered “further restrictions” within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License.
An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.
11. Patents.
A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's “contributor version”.
A contributor's “essential patent claims” are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, “control” includes the right to grant patent sublicenses in a manner consistent with the requirements of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version.
In the following three paragraphs, a “patent license” is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To “grant” such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. “Knowingly relying” means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it.
A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License “or any later version” applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program.
Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

+ 77
- 0
README.md View File

@ -0,0 +1,77 @@
# `tendermint/go-p2p`
`tendermint/go-p2p` provides an abstraction around peer-to-peer communication.<br/>
## Peer/MConnection/Channel
Each peer has one `MConnection` (multiplex connection) instance.
__multiplex__ *noun* a system or signal involving simultaneous transmission of
several messages along a single channel of communication.
Each `MConnection` handles message transmission on multiple abstract communication
`Channel`s. Each channel has a globally unique byte id.
The byte id and the relative priorities of each `Channel` are configured upon
initialization of the connection.
There are two methods for sending messages:
```go
func (m MConnection) Send(chID byte, msg interface{}) bool {}
func (m MConnection) TrySend(chID byte, msg interface{}) bool {}
```
`Send(chID, msg)` is a blocking call that waits until `msg` is successfully queued
for the channel with the given id byte `chID`. The message `msg` is serialized
using the `tendermint/wire` submodule's `WriteBinary()` reflection routine.
`TrySend(chID, msg)` is a nonblocking call that returns false if the channel's
queue is full.
`Send()` and `TrySend()` are also exposed for each `Peer`.
## Switch/Reactor
The `Switch` handles peer connections and exposes an API to receive incoming messages
on `Reactors`. Each `Reactor` is responsible for handling incoming messages of one
or more `Channels`. So while sending outgoing messages is typically performed on the peer,
incoming messages are received on the reactor.
```go
// Declare a MyReactor reactor that handles messages on MyChannelID.
type MyReactor struct{}
func (reactor MyReactor) GetChannels() []*ChannelDescriptor {
return []*ChannelDescriptor{ChannelDescriptor{ID:MyChannelID, Priority: 1}}
}
func (reactor MyReactor) Receive(chID byte, peer *Peer, msgBytes []byte) {
r, n, err := bytes.NewBuffer(msgBytes), new(int64), new(error)
msgString := ReadString(r, n, err)
fmt.Println(msgString)
}
// Other Reactor methods omitted for brevity
...
switch := NewSwitch([]Reactor{MyReactor{}})
...
// Send a random message to all outbound connections
for _, peer := range switch.Peers().List() {
if peer.IsOutbound() {
peer.Send(MyChannelID, "Here's a random message")
}
}
```
### PexReactor/AddrBook
A `PEXReactor` reactor implementation is provided to automate peer discovery.
```go
book := p2p.NewAddrBook(addrBookFilePath)
pexReactor := p2p.NewPEXReactor(book)
...
switch := NewSwitch([]Reactor{pexReactor, myReactor, ...})
```

+ 813
- 0
addrbook.go View File

@ -0,0 +1,813 @@
// Modified for Tendermint
// Originally Copyright (c) 2013-2014 Conformal Systems LLC.
// https://github.com/conformal/btcd/blob/master/LICENSE
package p2p
import (
"encoding/binary"
"encoding/json"
"math"
"math/rand"
"net"
"os"
"sync"
"time"
. "github.com/tendermint/go-common"
)
const (
// addresses under which the address manager will claim to need more addresses.
needAddressThreshold = 1000
// interval used to dump the address cache to disk for future use.
dumpAddressInterval = time.Minute * 2
// max addresses in each old address bucket.
oldBucketSize = 64
// buckets we split old addresses over.
oldBucketCount = 64
// max addresses in each new address bucket.
newBucketSize = 64
// buckets that we spread new addresses over.
newBucketCount = 256
// old buckets over which an address group will be spread.
oldBucketsPerGroup = 4
// new buckets over which an source address group will be spread.
newBucketsPerGroup = 32
// buckets a frequently seen new address may end up in.
maxNewBucketsPerAddress = 4
// days before which we assume an address has vanished
// if we have not seen it announced in that long.
numMissingDays = 30
// tries without a single success before we assume an address is bad.
numRetries = 3
// max failures we will accept without a success before considering an address bad.
maxFailures = 10
// days since the last success before we will consider evicting an address.
minBadDays = 7
// % of total addresses known returned by GetSelection.
getSelectionPercent = 23
// min addresses that must be returned by GetSelection. Useful for bootstrapping.
minGetSelection = 32
// max addresses returned by GetSelection
maxGetSelection = 2500
// current version of the on-disk format.
serializationVersion = 1
)
/* AddrBook - concurrency safe peer address manager */
type AddrBook struct {
QuitService
mtx sync.Mutex
filePath string
rand *rand.Rand
key string
ourAddrs map[string]*NetAddress
addrLookup map[string]*knownAddress // new & old
addrNew []map[string]*knownAddress
addrOld []map[string]*knownAddress
wg sync.WaitGroup
nOld int
nNew int
}
const (
bucketTypeNew = 0x01
bucketTypeOld = 0x02
)
// Use Start to begin processing asynchronous address updates.
func NewAddrBook(filePath string) *AddrBook {
am := &AddrBook{
rand: rand.New(rand.NewSource(time.Now().UnixNano())),
ourAddrs: make(map[string]*NetAddress),
addrLookup: make(map[string]*knownAddress),
filePath: filePath,
}
am.init()
am.QuitService = *NewQuitService(log, "AddrBook", am)
return am
}
// When modifying this, don't forget to update loadFromFile()
func (a *AddrBook) init() {
a.key = CRandHex(24) // 24/2 * 8 = 96 bits
// New addr buckets
a.addrNew = make([]map[string]*knownAddress, newBucketCount)
for i := range a.addrNew {
a.addrNew[i] = make(map[string]*knownAddress)
}
// Old addr buckets
a.addrOld = make([]map[string]*knownAddress, oldBucketCount)
for i := range a.addrOld {
a.addrOld[i] = make(map[string]*knownAddress)
}
}
func (a *AddrBook) OnStart() error {
a.QuitService.OnStart()
a.loadFromFile(a.filePath)
a.wg.Add(1)
go a.saveRoutine()
return nil
}
func (a *AddrBook) OnStop() {
a.QuitService.OnStop()
a.wg.Wait()
}
func (a *AddrBook) AddOurAddress(addr *NetAddress) {
a.mtx.Lock()
defer a.mtx.Unlock()
log.Info("Add our address to book", "addr", addr)
a.ourAddrs[addr.String()] = addr
}
func (a *AddrBook) OurAddresses() []*NetAddress {
addrs := []*NetAddress{}
for _, addr := range a.ourAddrs {
addrs = append(addrs, addr)
}
return addrs
}
func (a *AddrBook) AddAddress(addr *NetAddress, src *NetAddress) {
a.mtx.Lock()
defer a.mtx.Unlock()
log.Info("Add address to book", "addr", addr, "src", src)
a.addAddress(addr, src)
}
func (a *AddrBook) NeedMoreAddrs() bool {
return a.Size() < needAddressThreshold
}
func (a *AddrBook) Size() int {
a.mtx.Lock()
defer a.mtx.Unlock()
return a.size()
}
func (a *AddrBook) size() int {
return a.nNew + a.nOld
}
// Pick an address to connect to with new/old bias.
func (a *AddrBook) PickAddress(newBias int) *NetAddress {
a.mtx.Lock()
defer a.mtx.Unlock()
if a.size() == 0 {
return nil
}
if newBias > 100 {
newBias = 100
}
if newBias < 0 {
newBias = 0
}
// Bias between new and old addresses.
oldCorrelation := math.Sqrt(float64(a.nOld)) * (100.0 - float64(newBias))
newCorrelation := math.Sqrt(float64(a.nNew)) * float64(newBias)
if (newCorrelation+oldCorrelation)*a.rand.Float64() < oldCorrelation {
// pick random Old bucket.
var bucket map[string]*knownAddress = nil
for len(bucket) == 0 {
bucket = a.addrOld[a.rand.Intn(len(a.addrOld))]
}
// pick a random ka from bucket.
randIndex := a.rand.Intn(len(bucket))
for _, ka := range bucket {
if randIndex == 0 {
return ka.Addr
}
randIndex--
}
PanicSanity("Should not happen")
} else {
// pick random New bucket.
var bucket map[string]*knownAddress = nil
for len(bucket) == 0 {
bucket = a.addrNew[a.rand.Intn(len(a.addrNew))]
}
// pick a random ka from bucket.
randIndex := a.rand.Intn(len(bucket))
for _, ka := range bucket {
if randIndex == 0 {
return ka.Addr
}
randIndex--
}
PanicSanity("Should not happen")
}
return nil
}
func (a *AddrBook) MarkGood(addr *NetAddress) {
a.mtx.Lock()
defer a.mtx.Unlock()
ka := a.addrLookup[addr.String()]
if ka == nil {
return
}
ka.markGood()
if ka.isNew() {
a.moveToOld(ka)
}
}
func (a *AddrBook) MarkAttempt(addr *NetAddress) {
a.mtx.Lock()
defer a.mtx.Unlock()
ka := a.addrLookup[addr.String()]
if ka == nil {
return
}
ka.markAttempt()
}
func (a *AddrBook) MarkBad(addr *NetAddress) {
a.mtx.Lock()
defer a.mtx.Unlock()
ka := a.addrLookup[addr.String()]
if ka == nil {
return
}
// We currently just eject the address.
// In the future, consider blacklisting.
a.removeFromAllBuckets(ka)
}
/* Peer exchange */
// GetSelection randomly selects some addresses (old & new). Suitable for peer-exchange protocols.
func (a *AddrBook) GetSelection() []*NetAddress {
a.mtx.Lock()
defer a.mtx.Unlock()
if a.size() == 0 {
return nil
}
allAddr := make([]*NetAddress, a.size())
i := 0
for _, v := range a.addrLookup {
allAddr[i] = v.Addr
i++
}
numAddresses := MaxInt(
MinInt(minGetSelection, len(allAddr)),
len(allAddr)*getSelectionPercent/100)
numAddresses = MinInt(maxGetSelection, numAddresses)
// Fisher-Yates shuffle the array. We only need to do the first
// `numAddresses' since we are throwing the rest.
for i := 0; i < numAddresses; i++ {
// pick a number between current index and the end
j := rand.Intn(len(allAddr)-i) + i
allAddr[i], allAddr[j] = allAddr[j], allAddr[i]
}
// slice off the limit we are willing to share.
return allAddr[:numAddresses]
}
/* Loading & Saving */
type addrBookJSON struct {
Key string
Addrs []*knownAddress
}
func (a *AddrBook) saveToFile(filePath string) {
// Compile Addrs
addrs := []*knownAddress{}
for _, ka := range a.addrLookup {
addrs = append(addrs, ka)
}
aJSON := &addrBookJSON{
Key: a.key,
Addrs: addrs,
}
jsonBytes, err := json.MarshalIndent(aJSON, "", "\t")
if err != nil {
log.Error("Failed to save AddrBook to file", "err", err)
return
}
err = WriteFileAtomic(filePath, jsonBytes)
if err != nil {
log.Error("Failed to save AddrBook to file", "file", filePath, "error", err)
}
}
// Returns false if file does not exist.
// Panics if file is corrupt.
func (a *AddrBook) loadFromFile(filePath string) bool {
// If doesn't exist, do nothing.
_, err := os.Stat(filePath)
if os.IsNotExist(err) {
return false
}
// Load addrBookJSON{}
r, err := os.Open(filePath)
if err != nil {
PanicCrisis(Fmt("Error opening file %s: %v", filePath, err))
}
defer r.Close()
aJSON := &addrBookJSON{}
dec := json.NewDecoder(r)
err = dec.Decode(aJSON)
if err != nil {
PanicCrisis(Fmt("Error reading file %s: %v", filePath, err))
}
// Restore all the fields...
// Restore the key
a.key = aJSON.Key
// Restore .addrNew & .addrOld
for _, ka := range aJSON.Addrs {
for _, bucketIndex := range ka.Buckets {
bucket := a.getBucket(ka.BucketType, bucketIndex)
bucket[ka.Addr.String()] = ka
}
a.addrLookup[ka.Addr.String()] = ka
if ka.BucketType == bucketTypeNew {
a.nNew++
} else {
a.nOld++
}
}
return true
}
/* Private methods */
func (a *AddrBook) saveRoutine() {
dumpAddressTicker := time.NewTicker(dumpAddressInterval)
out:
for {
select {
case <-dumpAddressTicker.C:
log.Info("Saving AddrBook to file", "size", a.Size())
a.saveToFile(a.filePath)
case <-a.Quit:
break out
}
}
dumpAddressTicker.Stop()
a.saveToFile(a.filePath)
a.wg.Done()
log.Notice("Address handler done")
}
func (a *AddrBook) getBucket(bucketType byte, bucketIdx int) map[string]*knownAddress {
switch bucketType {
case bucketTypeNew:
return a.addrNew[bucketIdx]
case bucketTypeOld:
return a.addrOld[bucketIdx]
default:
PanicSanity("Should not happen")
return nil
}
}
// Adds ka to new bucket. Returns false if it couldn't do it cuz buckets full.
// NOTE: currently it always returns true.
func (a *AddrBook) addToNewBucket(ka *knownAddress, bucketIdx int) bool {
// Sanity check
if ka.isOld() {
log.Warn(Fmt("Cannot add address already in old bucket to a new bucket: %v", ka))
return false
}
addrStr := ka.Addr.String()
bucket := a.getBucket(bucketTypeNew, bucketIdx)
// Already exists?
if _, ok := bucket[addrStr]; ok {
return true
}
// Enforce max addresses.
if len(bucket) > newBucketSize {
log.Notice("new bucket is full, expiring old ")
a.expireNew(bucketIdx)
}
// Add to bucket.
bucket[addrStr] = ka
if ka.addBucketRef(bucketIdx) == 1 {
a.nNew++
}
// Ensure in addrLookup
a.addrLookup[addrStr] = ka
return true
}
// Adds ka to old bucket. Returns false if it couldn't do it cuz buckets full.
func (a *AddrBook) addToOldBucket(ka *knownAddress, bucketIdx int) bool {
// Sanity check
if ka.isNew() {
log.Warn(Fmt("Cannot add new address to old bucket: %v", ka))
return false
}
if len(ka.Buckets) != 0 {
log.Warn(Fmt("Cannot add already old address to another old bucket: %v", ka))
return false
}
addrStr := ka.Addr.String()
bucket := a.getBucket(bucketTypeNew, bucketIdx)
// Already exists?
if _, ok := bucket[addrStr]; ok {
return true
}
// Enforce max addresses.
if len(bucket) > oldBucketSize {
return false
}
// Add to bucket.
bucket[addrStr] = ka
if ka.addBucketRef(bucketIdx) == 1 {
a.nOld++
}
// Ensure in addrLookup
a.addrLookup[addrStr] = ka
return true
}
func (a *AddrBook) removeFromBucket(ka *knownAddress, bucketType byte, bucketIdx int) {
if ka.BucketType != bucketType {
log.Warn(Fmt("Bucket type mismatch: %v", ka))
return
}
bucket := a.getBucket(bucketType, bucketIdx)
delete(bucket, ka.Addr.String())
if ka.removeBucketRef(bucketIdx) == 0 {
if bucketType == bucketTypeNew {
a.nNew--
} else {
a.nOld--
}
delete(a.addrLookup, ka.Addr.String())
}
}
func (a *AddrBook) removeFromAllBuckets(ka *knownAddress) {
for _, bucketIdx := range ka.Buckets {
bucket := a.getBucket(ka.BucketType, bucketIdx)
delete(bucket, ka.Addr.String())
}
ka.Buckets = nil
if ka.BucketType == bucketTypeNew {
a.nNew--
} else {
a.nOld--
}
delete(a.addrLookup, ka.Addr.String())
}
func (a *AddrBook) pickOldest(bucketType byte, bucketIdx int) *knownAddress {
bucket := a.getBucket(bucketType, bucketIdx)
var oldest *knownAddress
for _, ka := range bucket {
if oldest == nil || ka.LastAttempt.Before(oldest.LastAttempt) {
oldest = ka
}
}
return oldest
}
func (a *AddrBook) addAddress(addr, src *NetAddress) {
if !addr.Routable() {
log.Warn(Fmt("Cannot add non-routable address %v", addr))
return
}
if _, ok := a.ourAddrs[addr.String()]; ok {
// Ignore our own listener address.
return
}
ka := a.addrLookup[addr.String()]
if ka != nil {
// Already old.
if ka.isOld() {
return
}
// Already in max new buckets.
if len(ka.Buckets) == maxNewBucketsPerAddress {
return
}
// The more entries we have, the less likely we are to add more.
factor := int32(2 * len(ka.Buckets))
if a.rand.Int31n(factor) != 0 {
return
}
} else {
ka = newKnownAddress(addr, src)
}
bucket := a.calcNewBucket(addr, src)
a.addToNewBucket(ka, bucket)
log.Notice("Added new address", "address", addr, "total", a.size())
}
// Make space in the new buckets by expiring the really bad entries.
// If no bad entries are available we remove the oldest.
func (a *AddrBook) expireNew(bucketIdx int) {
for addrStr, ka := range a.addrNew[bucketIdx] {
// If an entry is bad, throw it away
if ka.isBad() {
log.Notice(Fmt("expiring bad address %v", addrStr))
a.removeFromBucket(ka, bucketTypeNew, bucketIdx)
return
}
}
// If we haven't thrown out a bad entry, throw out the oldest entry
oldest := a.pickOldest(bucketTypeNew, bucketIdx)
a.removeFromBucket(oldest, bucketTypeNew, bucketIdx)
}
// Promotes an address from new to old.
// TODO: Move to old probabilistically.
// The better a node is, the less likely it should be evicted from an old bucket.
func (a *AddrBook) moveToOld(ka *knownAddress) {
// Sanity check
if ka.isOld() {
log.Warn(Fmt("Cannot promote address that is already old %v", ka))
return
}
if len(ka.Buckets) == 0 {
log.Warn(Fmt("Cannot promote address that isn't in any new buckets %v", ka))
return
}
// Remember one of the buckets in which ka is in.
freedBucket := ka.Buckets[0]
// Remove from all (new) buckets.
a.removeFromAllBuckets(ka)
// It's officially old now.
ka.BucketType = bucketTypeOld
// Try to add it to its oldBucket destination.
oldBucketIdx := a.calcOldBucket(ka.Addr)
added := a.addToOldBucket(ka, oldBucketIdx)
if !added {
// No room, must evict something
oldest := a.pickOldest(bucketTypeOld, oldBucketIdx)
a.removeFromBucket(oldest, bucketTypeOld, oldBucketIdx)
// Find new bucket to put oldest in
newBucketIdx := a.calcNewBucket(oldest.Addr, oldest.Src)
added := a.addToNewBucket(oldest, newBucketIdx)
// No space in newBucket either, just put it in freedBucket from above.
if !added {
added := a.addToNewBucket(oldest, freedBucket)
if !added {
log.Warn(Fmt("Could not migrate oldest %v to freedBucket %v", oldest, freedBucket))
}
}
// Finally, add to bucket again.
added = a.addToOldBucket(ka, oldBucketIdx)
if !added {
log.Warn(Fmt("Could not re-add ka %v to oldBucketIdx %v", ka, oldBucketIdx))
}
}
}
// doublesha256( key + sourcegroup +
// int64(doublesha256(key + group + sourcegroup))%bucket_per_group ) % num_new_buckets
func (a *AddrBook) calcNewBucket(addr, src *NetAddress) int {
data1 := []byte{}
data1 = append(data1, []byte(a.key)...)
data1 = append(data1, []byte(groupKey(addr))...)
data1 = append(data1, []byte(groupKey(src))...)
hash1 := doubleSha256(data1)
hash64 := binary.BigEndian.Uint64(hash1)
hash64 %= newBucketsPerGroup
var hashbuf [8]byte
binary.BigEndian.PutUint64(hashbuf[:], hash64)
data2 := []byte{}
data2 = append(data2, []byte(a.key)...)
data2 = append(data2, groupKey(src)...)
data2 = append(data2, hashbuf[:]...)
hash2 := doubleSha256(data2)
return int(binary.BigEndian.Uint64(hash2) % newBucketCount)
}
// doublesha256( key + group +
// int64(doublesha256(key + addr))%buckets_per_group ) % num_old_buckets
func (a *AddrBook) calcOldBucket(addr *NetAddress) int {
data1 := []byte{}
data1 = append(data1, []byte(a.key)...)
data1 = append(data1, []byte(addr.String())...)
hash1 := doubleSha256(data1)
hash64 := binary.BigEndian.Uint64(hash1)
hash64 %= oldBucketsPerGroup
var hashbuf [8]byte
binary.BigEndian.PutUint64(hashbuf[:], hash64)
data2 := []byte{}
data2 = append(data2, []byte(a.key)...)
data2 = append(data2, groupKey(addr)...)
data2 = append(data2, hashbuf[:]...)
hash2 := doubleSha256(data2)
return int(binary.BigEndian.Uint64(hash2) % oldBucketCount)
}
// Return a string representing the network group of this address.
// This is the /16 for IPv6, the /32 (/36 for he.net) for IPv6, the string
// "local" for a local address and the string "unroutable for an unroutable
// address.
func groupKey(na *NetAddress) string {
if na.Local() {
return "local"
}
if !na.Routable() {
return "unroutable"
}
if ipv4 := na.IP.To4(); ipv4 != nil {
return (&net.IPNet{IP: na.IP, Mask: net.CIDRMask(16, 32)}).String()
}
if na.RFC6145() || na.RFC6052() {
// last four bytes are the ip address
ip := net.IP(na.IP[12:16])
return (&net.IPNet{IP: ip, Mask: net.CIDRMask(16, 32)}).String()
}
if na.RFC3964() {
ip := net.IP(na.IP[2:7])
return (&net.IPNet{IP: ip, Mask: net.CIDRMask(16, 32)}).String()
}
if na.RFC4380() {
// teredo tunnels have the last 4 bytes as the v4 address XOR
// 0xff.
ip := net.IP(make([]byte, 4))
for i, byte := range na.IP[12:16] {
ip[i] = byte ^ 0xff
}
return (&net.IPNet{IP: ip, Mask: net.CIDRMask(16, 32)}).String()
}
// OK, so now we know ourselves to be a IPv6 address.
// bitcoind uses /32 for everything, except for Hurricane Electric's
// (he.net) IP range, which it uses /36 for.
bits := 32
heNet := &net.IPNet{IP: net.ParseIP("2001:470::"),
Mask: net.CIDRMask(32, 128)}
if heNet.Contains(na.IP) {
bits = 36
}
return (&net.IPNet{IP: na.IP, Mask: net.CIDRMask(bits, 128)}).String()
}
//-----------------------------------------------------------------------------
/*
knownAddress
tracks information about a known network address that is used
to determine how viable an address is.
*/
type knownAddress struct {
Addr *NetAddress
Src *NetAddress
Attempts int32
LastAttempt time.Time
LastSuccess time.Time
BucketType byte
Buckets []int
}
func newKnownAddress(addr *NetAddress, src *NetAddress) *knownAddress {
return &knownAddress{
Addr: addr,
Src: src,
Attempts: 0,
LastAttempt: time.Now(),
BucketType: bucketTypeNew,
Buckets: nil,
}
}
func (ka *knownAddress) isOld() bool {
return ka.BucketType == bucketTypeOld
}
func (ka *knownAddress) isNew() bool {
return ka.BucketType == bucketTypeNew
}
func (ka *knownAddress) markAttempt() {
now := time.Now()
ka.LastAttempt = now
ka.Attempts += 1
}
func (ka *knownAddress) markGood() {
now := time.Now()
ka.LastAttempt = now
ka.Attempts = 0
ka.LastSuccess = now
}
func (ka *knownAddress) addBucketRef(bucketIdx int) int {
for _, bucket := range ka.Buckets {
if bucket == bucketIdx {
log.Warn(Fmt("Bucket already exists in ka.Buckets: %v", ka))
return -1
}
}
ka.Buckets = append(ka.Buckets, bucketIdx)
return len(ka.Buckets)
}
func (ka *knownAddress) removeBucketRef(bucketIdx int) int {
buckets := []int{}
for _, bucket := range ka.Buckets {
if bucket != bucketIdx {
buckets = append(buckets, bucket)
}
}
if len(buckets) != len(ka.Buckets)-1 {
log.Warn(Fmt("bucketIdx not found in ka.Buckets: %v", ka))
return -1
}
ka.Buckets = buckets
return len(ka.Buckets)
}
/*
An address is bad if the address in question has not been tried in the last
minute and meets one of the following criteria:
1) It claims to be from the future
2) It hasn't been seen in over a month
3) It has failed at least three times and never succeeded
4) It has failed ten times in the last week
All addresses that meet these criteria are assumed to be worthless and not
worth keeping hold of.
*/
func (ka *knownAddress) isBad() bool {
// Has been attempted in the last minute --> good
if ka.LastAttempt.Before(time.Now().Add(-1 * time.Minute)) {
return false
}
// Over a month old?
if ka.LastAttempt.After(time.Now().Add(-1 * numMissingDays * time.Hour * 24)) {
return true
}
// Never succeeded?
if ka.LastSuccess.IsZero() && ka.Attempts >= numRetries {
return true
}
// Hasn't succeeded in too long?
if ka.LastSuccess.Before(time.Now().Add(-1*minBadDays*time.Hour*24)) &&
ka.Attempts >= maxFailures {
return true
}
return false
}

+ 161
- 0
addrbook_test.go View File

@ -0,0 +1,161 @@
package p2p
import (
"fmt"
"io/ioutil"
"math/rand"
"testing"
)
func createTempFileName(prefix string) string {
f, err := ioutil.TempFile("", prefix)
if err != nil {
panic(err)
}
fname := f.Name()
err = f.Close()
if err != nil {
panic(err)
}
return fname
}
func TestEmpty(t *testing.T) {
fname := createTempFileName("addrbook_test")
// t.Logf("New tempfile name: %v", fname)
// Save an empty book & load it
book := NewAddrBook(fname)
book.saveToFile(fname)
book = NewAddrBook(fname)
book.loadFromFile(fname)
if book.Size() != 0 {
t.Errorf("Expected 0 addresses, found %v", book.Size())
}
}
func randIPv4Address() *NetAddress {
for {
ip := fmt.Sprintf("%v.%v.%v.%v",
rand.Intn(254)+1,
rand.Intn(255),
rand.Intn(255),
rand.Intn(255),
)
port := rand.Intn(65535-1) + 1
addr := NewNetAddressString(fmt.Sprintf("%v:%v", ip, port))
if addr.Routable() {
return addr
}
}
}
func TestSaveAddresses(t *testing.T) {
fname := createTempFileName("addrbook_test")
//t.Logf("New tempfile name: %v", fname)
// Create some random addresses
randAddrs := []struct {
addr *NetAddress
src *NetAddress
}{}
for i := 0; i < 100; i++ {
addr := randIPv4Address()
src := randIPv4Address()
randAddrs = append(randAddrs, struct {
addr *NetAddress
src *NetAddress
}{
addr: addr,
src: src,
})
}
// Create the book & populate & save
book := NewAddrBook(fname)
for _, addrSrc := range randAddrs {
book.AddAddress(addrSrc.addr, addrSrc.src)
}
if book.Size() != 100 {
t.Errorf("Expected 100 addresses, found %v", book.Size())
}
book.saveToFile(fname)
// Reload the book
book = NewAddrBook(fname)
book.loadFromFile(fname)
// Test ...
if book.Size() != 100 {
t.Errorf("Expected 100 addresses, found %v", book.Size())
}
for _, addrSrc := range randAddrs {
addr := addrSrc.addr
src := addrSrc.src
ka := book.addrLookup[addr.String()]
if ka == nil {
t.Fatalf("Expected to find KnownAddress %v but wasn't there.", addr)
}
if !(ka.Addr.Equals(addr) && ka.Src.Equals(src)) {
t.Fatalf("KnownAddress doesn't match addr & src")
}
}
}
func TestPromoteToOld(t *testing.T) {
fname := createTempFileName("addrbook_test")
t.Logf("New tempfile name: %v", fname)
// Create some random addresses
randAddrs := []struct {
addr *NetAddress
src *NetAddress
}{}
for i := 0; i < 100; i++ {
addr := randIPv4Address()
src := randIPv4Address()
randAddrs = append(randAddrs, struct {
addr *NetAddress
src *NetAddress
}{
addr: addr,
src: src,
})
}
// Create the book & populate & save
book := NewAddrBook(fname)
for _, addrSrc := range randAddrs {
book.AddAddress(addrSrc.addr, addrSrc.src)
}
// Attempt all addresses.
for _, addrSrc := range randAddrs {
book.MarkAttempt(addrSrc.addr)
}
// Promote half of them
for i, addrSrc := range randAddrs {
if i%2 == 0 {
book.MarkGood(addrSrc.addr)
}
}
book.saveToFile(fname)
// Reload the book
book = NewAddrBook(fname)
book.loadFromFile(fname)
// Test ...
if book.Size() != 100 {
t.Errorf("Expected 100 addresses, found %v", book.Size())
}
// TODO: do more testing :)
selection := book.GetSelection()
t.Logf("selection: %v", selection)
}

+ 640
- 0
connection.go View File

@ -0,0 +1,640 @@
package p2p
import (
"bufio"
"fmt"
"io"
"math"
"net"
"runtime/debug"
"sync/atomic"
"time"
flow "github.com/tendermint/flowcontrol"
. "github.com/tendermint/go-common"
"github.com/tendermint/go-wire" //"github.com/tendermint/log15"
)
const (
numBatchMsgPackets = 10
minReadBufferSize = 1024
minWriteBufferSize = 1024
idleTimeoutMinutes = 5
updateStatsSeconds = 2
pingTimeoutSeconds = 40
defaultSendRate = 51200 // 50Kb/s
defaultRecvRate = 51200 // 50Kb/s
flushThrottleMS = 100
defaultSendQueueCapacity = 1
defaultRecvBufferCapacity = 4096
defaultSendTimeoutSeconds = 10
)
type receiveCbFunc func(chID byte, msgBytes []byte)
type errorCbFunc func(interface{})
/*
Each peer has one `MConnection` (multiplex connection) instance.
__multiplex__ *noun* a system or signal involving simultaneous transmission of
several messages along a single channel of communication.
Each `MConnection` handles message transmission on multiple abstract communication
`Channel`s. Each channel has a globally unique byte id.
The byte id and the relative priorities of each `Channel` are configured upon
initialization of the connection.
There are two methods for sending messages:
func (m MConnection) Send(chID byte, msg interface{}) bool {}
func (m MConnection) TrySend(chID byte, msg interface{}) bool {}
`Send(chID, msg)` is a blocking call that waits until `msg` is successfully queued
for the channel with the given id byte `chID`, or until the request times out.
The message `msg` is serialized using the `tendermint/wire` submodule's
`WriteBinary()` reflection routine.
`TrySend(chID, msg)` is a nonblocking call that returns false if the channel's
queue is full.
Inbound message bytes are handled with an onReceive callback function.
*/
type MConnection struct {
BaseService
conn net.Conn
bufReader *bufio.Reader
bufWriter *bufio.Writer
sendMonitor *flow.Monitor
recvMonitor *flow.Monitor
sendRate int64
recvRate int64
send chan struct{}
pong chan struct{}
channels []*Channel
channelsIdx map[byte]*Channel
onReceive receiveCbFunc
onError errorCbFunc
errored uint32
quit chan struct{}
flushTimer *ThrottleTimer // flush writes as necessary but throttled.
pingTimer *RepeatTimer // send pings periodically
chStatsTimer *RepeatTimer // update channel stats periodically
LocalAddress *NetAddress
RemoteAddress *NetAddress
}
func NewMConnection(conn net.Conn, chDescs []*ChannelDescriptor, onReceive receiveCbFunc, onError errorCbFunc) *MConnection {
mconn := &MConnection{
conn: conn,
bufReader: bufio.NewReaderSize(conn, minReadBufferSize),
bufWriter: bufio.NewWriterSize(conn, minWriteBufferSize),
sendMonitor: flow.New(0, 0),
recvMonitor: flow.New(0, 0),
sendRate: defaultSendRate,
recvRate: defaultRecvRate,
send: make(chan struct{}, 1),
pong: make(chan struct{}),
onReceive: onReceive,
onError: onError,
// Initialized in Start()
quit: nil,
flushTimer: nil,
pingTimer: nil,
chStatsTimer: nil,
LocalAddress: NewNetAddress(conn.LocalAddr()),
RemoteAddress: NewNetAddress(conn.RemoteAddr()),
}
// Create channels
var channelsIdx = map[byte]*Channel{}
var channels = []*Channel{}
for _, desc := range chDescs {
channel := newChannel(mconn, desc)
channelsIdx[channel.id] = channel
channels = append(channels, channel)
}
mconn.channels = channels
mconn.channelsIdx = channelsIdx
mconn.BaseService = *NewBaseService(log, "MConnection", mconn)
return mconn
}
func (c *MConnection) OnStart() error {
c.BaseService.OnStart()
c.quit = make(chan struct{})
c.flushTimer = NewThrottleTimer("flush", flushThrottleMS*time.Millisecond)
c.pingTimer = NewRepeatTimer("ping", pingTimeoutSeconds*time.Second)
c.chStatsTimer = NewRepeatTimer("chStats", updateStatsSeconds*time.Second)
go c.sendRoutine()
go c.recvRoutine()
return nil
}
func (c *MConnection) OnStop() {
c.BaseService.OnStop()
c.flushTimer.Stop()
c.pingTimer.Stop()
c.chStatsTimer.Stop()
if c.quit != nil {
close(c.quit)
}
c.conn.Close()
// We can't close pong safely here because
// recvRoutine may write to it after we've stopped.
// Though it doesn't need to get closed at all,
// we close it @ recvRoutine.
// close(c.pong)
}
func (c *MConnection) String() string {
return fmt.Sprintf("MConn{%v}", c.conn.RemoteAddr())
}
func (c *MConnection) flush() {
log.Debug("Flush", "conn", c)
err := c.bufWriter.Flush()
if err != nil {
log.Warn("MConnection flush failed", "error", err)
}
}
// Catch panics, usually caused by remote disconnects.
func (c *MConnection) _recover() {
if r := recover(); r != nil {
stack := debug.Stack()
err := StackError{r, stack}
c.stopForError(err)
}
}
func (c *MConnection) stopForError(r interface{}) {
c.Stop()
if atomic.CompareAndSwapUint32(&c.errored, 0, 1) {
if c.onError != nil {
c.onError(r)
}
}
}
// Queues a message to be sent to channel.
func (c *MConnection) Send(chID byte, msg interface{}) bool {
if !c.IsRunning() {
return false
}
log.Info("Send", "channel", chID, "conn", c, "msg", msg) //, "bytes", wire.BinaryBytes(msg))
// Send message to channel.
channel, ok := c.channelsIdx[chID]
if !ok {
log.Error(Fmt("Cannot send bytes, unknown channel %X", chID))
return false
}
success := channel.sendBytes(wire.BinaryBytes(msg))
if success {
// Wake up sendRoutine if necessary
select {
case c.send <- struct{}{}:
default:
}
} else {
log.Warn("Send failed", "channel", chID, "conn", c, "msg", msg)
}
return success
}
// Queues a message to be sent to channel.
// Nonblocking, returns true if successful.
func (c *MConnection) TrySend(chID byte, msg interface{}) bool {
if !c.IsRunning() {
return false
}
log.Info("TrySend", "channel", chID, "conn", c, "msg", msg)
// Send message to channel.
channel, ok := c.channelsIdx[chID]
if !ok {
log.Error(Fmt("Cannot send bytes, unknown channel %X", chID))
return false
}
ok = channel.trySendBytes(wire.BinaryBytes(msg))
if ok {
// Wake up sendRoutine if necessary
select {
case c.send <- struct{}{}:
default:
}
}
return ok
}
func (c *MConnection) CanSend(chID byte) bool {
if !c.IsRunning() {
return false
}
channel, ok := c.channelsIdx[chID]
if !ok {
log.Error(Fmt("Unknown channel %X", chID))
return false
}
return channel.canSend()
}
// sendRoutine polls for packets to send from channels.
func (c *MConnection) sendRoutine() {
defer c._recover()
FOR_LOOP:
for {
var n int64
var err error
select {
case <-c.flushTimer.Ch:
// NOTE: flushTimer.Set() must be called every time
// something is written to .bufWriter.
c.flush()
case <-c.chStatsTimer.Ch:
for _, channel := range c.channels {
channel.updateStats()
}
case <-c.pingTimer.Ch:
log.Info("Send Ping")
wire.WriteByte(packetTypePing, c.bufWriter, &n, &err)
c.sendMonitor.Update(int(n))
c.flush()
case <-c.pong:
log.Info("Send Pong")
wire.WriteByte(packetTypePong, c.bufWriter, &n, &err)
c.sendMonitor.Update(int(n))
c.flush()
case <-c.quit:
break FOR_LOOP
case <-c.send:
// Send some msgPackets
eof := c.sendSomeMsgPackets()
if !eof {
// Keep sendRoutine awake.
select {
case c.send <- struct{}{}:
default:
}
}
}
if !c.IsRunning() {
break FOR_LOOP
}
if err != nil {
log.Warn("Connection failed @ sendRoutine", "conn", c, "error", err)
c.stopForError(err)
break FOR_LOOP
}
}
// Cleanup
}
// Returns true if messages from channels were exhausted.
// Blocks in accordance to .sendMonitor throttling.
func (c *MConnection) sendSomeMsgPackets() bool {
// Block until .sendMonitor says we can write.
// Once we're ready we send more than we asked for,
// but amortized it should even out.
c.sendMonitor.Limit(maxMsgPacketSize, atomic.LoadInt64(&c.sendRate), true)
// Now send some msgPackets.
for i := 0; i < numBatchMsgPackets; i++ {
if c.sendMsgPacket() {
return true
}
}
return false
}
// Returns true if messages from channels were exhausted.
func (c *MConnection) sendMsgPacket() bool {
// Choose a channel to create a msgPacket from.
// The chosen channel will be the one whose recentlySent/priority is the least.
var leastRatio float32 = math.MaxFloat32
var leastChannel *Channel
for _, channel := range c.channels {
// If nothing to send, skip this channel
if !channel.isSendPending() {
continue
}
// Get ratio, and keep track of lowest ratio.
ratio := float32(channel.recentlySent) / float32(channel.priority)
if ratio < leastRatio {
leastRatio = ratio
leastChannel = channel
}
}
// Nothing to send?
if leastChannel == nil {
return true
} else {
// log.Info("Found a msgPacket to send")
}
// Make & send a msgPacket from this channel
n, err := leastChannel.writeMsgPacketTo(c.bufWriter)
if err != nil {
log.Warn("Failed to write msgPacket", "error", err)
c.stopForError(err)
return true
}
c.sendMonitor.Update(int(n))
c.flushTimer.Set()
return false
}
// recvRoutine reads msgPackets and reconstructs the message using the channels' "recving" buffer.
// After a whole message has been assembled, it's pushed to onReceive().
// Blocks depending on how the connection is throttled.
func (c *MConnection) recvRoutine() {
defer c._recover()
FOR_LOOP:
for {
// Block until .recvMonitor says we can read.
c.recvMonitor.Limit(maxMsgPacketSize, atomic.LoadInt64(&c.recvRate), true)
/*
// Peek into bufReader for debugging
if numBytes := c.bufReader.Buffered(); numBytes > 0 {
log.Info("Peek connection buffer", "numBytes", numBytes, "bytes", log15.Lazy{func() []byte {
bytes, err := c.bufReader.Peek(MinInt(numBytes, 100))
if err == nil {
return bytes
} else {
log.Warn("Error peeking connection buffer", "error", err)
return nil
}
}})
}
*/
// Read packet type
var n int64
var err error
pktType := wire.ReadByte(c.bufReader, &n, &err)
c.recvMonitor.Update(int(n))
if err != nil {
if c.IsRunning() {
log.Warn("Connection failed @ recvRoutine (reading byte)", "conn", c, "error", err)
c.stopForError(err)
}
break FOR_LOOP
}
// Read more depending on packet type.
switch pktType {
case packetTypePing:
// TODO: prevent abuse, as they cause flush()'s.
log.Info("Receive Ping")
c.pong <- struct{}{}
case packetTypePong:
// do nothing
log.Info("Receive Pong")
case packetTypeMsg:
pkt, n, err := msgPacket{}, int64(0), error(nil)
wire.ReadBinaryPtr(&pkt, c.bufReader, &n, &err)
c.recvMonitor.Update(int(n))
if err != nil {
if c.IsRunning() {
log.Warn("Connection failed @ recvRoutine", "conn", c, "error", err)
c.stopForError(err)
}
break FOR_LOOP
}
channel, ok := c.channelsIdx[pkt.ChannelID]
if !ok || channel == nil {
PanicQ(Fmt("Unknown channel %X", pkt.ChannelID))
}
msgBytes, err := channel.recvMsgPacket(pkt)
if err != nil {
if c.IsRunning() {
log.Warn("Connection failed @ recvRoutine", "conn", c, "error", err)
c.stopForError(err)
}
break FOR_LOOP
}
if msgBytes != nil {
log.Debug("Received bytes", "chID", pkt.ChannelID, "msgBytes", msgBytes)
c.onReceive(pkt.ChannelID, msgBytes)
}
default:
PanicSanity(Fmt("Unknown message type %X", pktType))
}
// TODO: shouldn't this go in the sendRoutine?
// Better to send a ping packet when *we* haven't sent anything for a while.
c.pingTimer.Reset()
}
// Cleanup
close(c.pong)
for _ = range c.pong {
// Drain
}
}
//-----------------------------------------------------------------------------
type ChannelDescriptor struct {
ID byte
Priority int
SendQueueCapacity int
RecvBufferCapacity int
}
func (chDesc *ChannelDescriptor) FillDefaults() {
if chDesc.SendQueueCapacity == 0 {
chDesc.SendQueueCapacity = defaultSendQueueCapacity
}
if chDesc.RecvBufferCapacity == 0 {
chDesc.RecvBufferCapacity = defaultRecvBufferCapacity
}
}
// TODO: lowercase.
// NOTE: not goroutine-safe.
type Channel struct {
conn *MConnection
desc *ChannelDescriptor
id byte
sendQueue chan []byte
sendQueueSize int32 // atomic.
recving []byte
sending []byte
priority int
recentlySent int64 // exponential moving average
}
func newChannel(conn *MConnection, desc *ChannelDescriptor) *Channel {
desc.FillDefaults()
if desc.Priority <= 0 {
PanicSanity("Channel default priority must be a postive integer")
}
return &Channel{
conn: conn,
desc: desc,
id: desc.ID,
sendQueue: make(chan []byte, desc.SendQueueCapacity),
recving: make([]byte, 0, desc.RecvBufferCapacity),
priority: desc.Priority,
}
}
// Queues message to send to this channel.
// Goroutine-safe
// Times out (and returns false) after defaultSendTimeoutSeconds
func (ch *Channel) sendBytes(bytes []byte) bool {
timeout := time.NewTimer(defaultSendTimeoutSeconds * time.Second)
select {
case <-timeout.C:
// timeout
return false
case ch.sendQueue <- bytes:
atomic.AddInt32(&ch.sendQueueSize, 1)
return true
}
}
// Queues message to send to this channel.
// Nonblocking, returns true if successful.
// Goroutine-safe
func (ch *Channel) trySendBytes(bytes []byte) bool {
select {
case ch.sendQueue <- bytes:
atomic.AddInt32(&ch.sendQueueSize, 1)
return true
default:
return false
}
}
// Goroutine-safe
func (ch *Channel) loadSendQueueSize() (size int) {
return int(atomic.LoadInt32(&ch.sendQueueSize))
}
// Goroutine-safe
// Use only as a heuristic.
func (ch *Channel) canSend() bool {
return ch.loadSendQueueSize() < defaultSendQueueCapacity
}
// Returns true if any msgPackets are pending to be sent.
// Call before calling nextMsgPacket()
// Goroutine-safe
func (ch *Channel) isSendPending() bool {
if len(ch.sending) == 0 {
if len(ch.sendQueue) == 0 {
return false
}
ch.sending = <-ch.sendQueue
}
return true
}
// Creates a new msgPacket to send.
// Not goroutine-safe
func (ch *Channel) nextMsgPacket() msgPacket {
packet := msgPacket{}
packet.ChannelID = byte(ch.id)
packet.Bytes = ch.sending[:MinInt(maxMsgPacketSize, len(ch.sending))]
if len(ch.sending) <= maxMsgPacketSize {
packet.EOF = byte(0x01)
ch.sending = nil
atomic.AddInt32(&ch.sendQueueSize, -1) // decrement sendQueueSize
} else {
packet.EOF = byte(0x00)
ch.sending = ch.sending[MinInt(maxMsgPacketSize, len(ch.sending)):]
}
return packet
}
// Writes next msgPacket to w.
// Not goroutine-safe
func (ch *Channel) writeMsgPacketTo(w io.Writer) (n int64, err error) {
packet := ch.nextMsgPacket()
log.Debug("Write Msg Packet", "conn", ch.conn, "packet", packet)
wire.WriteByte(packetTypeMsg, w, &n, &err)
wire.WriteBinary(packet, w, &n, &err)
if err != nil {
ch.recentlySent += n
}
return
}
// Handles incoming msgPackets. Returns a msg bytes if msg is complete.
// Not goroutine-safe
func (ch *Channel) recvMsgPacket(packet msgPacket) ([]byte, error) {
// log.Debug("Read Msg Packet", "conn", ch.conn, "packet", packet)
if wire.MaxBinaryReadSize < len(ch.recving)+len(packet.Bytes) {
return nil, wire.ErrBinaryReadSizeOverflow
}
ch.recving = append(ch.recving, packet.Bytes...)
if packet.EOF == byte(0x01) {
msgBytes := ch.recving
ch.recving = make([]byte, 0, defaultRecvBufferCapacity)
return msgBytes, nil
}
return nil, nil
}
// Call this periodically to update stats for throttling purposes.
// Not goroutine-safe
func (ch *Channel) updateStats() {
// Exponential decay of stats.
// TODO: optimize.
ch.recentlySent = int64(float64(ch.recentlySent) * 0.5)
}
//-----------------------------------------------------------------------------
const (
maxMsgPacketSize = 1024
packetTypePing = byte(0x01)
packetTypePong = byte(0x02)
packetTypeMsg = byte(0x03)
)
// Messages in channels are chopped into smaller msgPackets for multiplexing.
type msgPacket struct {
ChannelID byte
EOF byte // 1 means message ends here.
Bytes []byte
}
func (p msgPacket) String() string {
return fmt.Sprintf("MsgPacket{%X:%X T:%X}", p.ChannelID, p.Bytes, p.EOF)
}
//-----------------------------------------------------------------------------
// Convenience struct for writing typed messages.
// Reading requires a custom decoder that switches on the first type byte of a byteslice.
type TypedMessage struct {
Type byte
Msg interface{}
}
func (tm TypedMessage) String() string {
return fmt.Sprintf("TMsg{%X:%v}", tm.Type, tm.Msg)
}

+ 213
- 0
listener.go View File

@ -0,0 +1,213 @@
package p2p
import (
"fmt"
"net"
"strconv"
"time"
. "github.com/tendermint/go-common"
"github.com/tendermint/go-p2p/upnp"
)
type Listener interface {
Connections() <-chan net.Conn
InternalAddress() *NetAddress
ExternalAddress() *NetAddress
String() string
Stop() bool
}
// Implements Listener
type DefaultListener struct {
BaseService
listener net.Listener
intAddr *NetAddress
extAddr *NetAddress
connections chan net.Conn
}
const (
numBufferedConnections = 10
defaultExternalPort = 8770
tryListenSeconds = 5
)
func splitHostPort(addr string) (host string, port int) {
host, portStr, err := net.SplitHostPort(addr)
if err != nil {
PanicSanity(err)
}
port, err = strconv.Atoi(portStr)
if err != nil {
PanicSanity(err)
}
return host, port
}
// skipUPNP: If true, does not try getUPNPExternalAddress()
func NewDefaultListener(protocol string, lAddr string, skipUPNP bool) Listener {
// Local listen IP & port
lAddrIP, lAddrPort := splitHostPort(lAddr)
// Create listener
var listener net.Listener
var err error
for i := 0; i < tryListenSeconds; i++ {
listener, err = net.Listen(protocol, lAddr)
if err == nil {
break
} else if i < tryListenSeconds-1 {
time.Sleep(time.Second * 1)
}
}
if err != nil {
PanicCrisis(err)
}
// Actual listener local IP & port
listenerIP, listenerPort := splitHostPort(listener.Addr().String())
log.Info("Local listener", "ip", listenerIP, "port", listenerPort)
// Determine internal address...
var intAddr *NetAddress = NewNetAddressString(lAddr)
// Determine external address...
var extAddr *NetAddress
if !skipUPNP {
// If the lAddrIP is INADDR_ANY, try UPnP
if lAddrIP == "" || lAddrIP == "0.0.0.0" {
extAddr = getUPNPExternalAddress(lAddrPort, listenerPort)
}
}
// Otherwise just use the local address...
if extAddr == nil {
extAddr = getNaiveExternalAddress(listenerPort)
}
if extAddr == nil {
PanicCrisis("Could not determine external address!")
}
dl := &DefaultListener{
listener: listener,
intAddr: intAddr,
extAddr: extAddr,
connections: make(chan net.Conn, numBufferedConnections),
}
dl.BaseService = *NewBaseService(log, "DefaultListener", dl)
dl.Start() // Started upon construction
return dl
}
func (l *DefaultListener) OnStart() error {
l.BaseService.OnStart()
go l.listenRoutine()
return nil
}
func (l *DefaultListener) OnStop() {
l.BaseService.OnStop()
l.listener.Close()
}
// Accept connections and pass on the channel
func (l *DefaultListener) listenRoutine() {
for {
conn, err := l.listener.Accept()
if !l.IsRunning() {
break // Go to cleanup
}
// listener wasn't stopped,
// yet we encountered an error.
if err != nil {
PanicCrisis(err)
}
l.connections <- conn
}
// Cleanup
close(l.connections)
for _ = range l.connections {
// Drain
}
}
// A channel of inbound connections.
// It gets closed when the listener closes.
func (l *DefaultListener) Connections() <-chan net.Conn {
return l.connections
}
func (l *DefaultListener) InternalAddress() *NetAddress {
return l.intAddr
}
func (l *DefaultListener) ExternalAddress() *NetAddress {
return l.extAddr
}
// NOTE: The returned listener is already Accept()'ing.
// So it's not suitable to pass into http.Serve().
func (l *DefaultListener) NetListener() net.Listener {
return l.listener
}
func (l *DefaultListener) String() string {
return fmt.Sprintf("Listener(@%v)", l.extAddr)
}
/* external address helpers */
// UPNP external address discovery & port mapping
func getUPNPExternalAddress(externalPort, internalPort int) *NetAddress {
log.Info("Getting UPNP external address")
nat, err := upnp.Discover()
if err != nil {
log.Info("Could not perform UPNP discover", "error", err)
return nil
}
ext, err := nat.GetExternalAddress()
if err != nil {
log.Info("Could not get UPNP external address", "error", err)
return nil
}
// UPnP can't seem to get the external port, so let's just be explicit.
if externalPort == 0 {
externalPort = defaultExternalPort
}
externalPort, err = nat.AddPortMapping("tcp", externalPort, internalPort, "tendermint", 0)
if err != nil {
log.Info("Could not add UPNP port mapping", "error", err)
return nil
}
log.Info("Got UPNP external address", "address", ext)
return NewNetAddressIPPort(ext, uint16(externalPort))
}
// TODO: use syscalls: http://pastebin.com/9exZG4rh
func getNaiveExternalAddress(port int) *NetAddress {
addrs, err := net.InterfaceAddrs()
if err != nil {
PanicCrisis(Fmt("Could not fetch interface addresses: %v", err))
}
for _, a := range addrs {
ipnet, ok := a.(*net.IPNet)
if !ok {
continue
}
v4 := ipnet.IP.To4()
if v4 == nil || v4[0] == 127 {
continue
} // loopback
return NewNetAddressIPPort(ipnet.IP, uint16(port))
}
return nil
}

+ 7
- 0
log.go View File

@ -0,0 +1,7 @@
package p2p
import (
"github.com/tendermint/go-logger"
)
var log = logger.New("module", "p2p")

+ 213
- 0
netaddress.go View File

@ -0,0 +1,213 @@
// Modified for Tendermint
// Originally Copyright (c) 2013-2014 Conformal Systems LLC.
// https://github.com/conformal/btcd/blob/master/LICENSE
package p2p
import (
"fmt"
"net"
"strconv"
"time"
. "github.com/tendermint/go-common"
)
type NetAddress struct {
IP net.IP
Port uint16
str string
}
// TODO: socks proxies?
func NewNetAddress(addr net.Addr) *NetAddress {
tcpAddr, ok := addr.(*net.TCPAddr)
if !ok {
PanicSanity(fmt.Sprintf("Only TCPAddrs are supported. Got: %v", addr))
}
ip := tcpAddr.IP
port := uint16(tcpAddr.Port)
return NewNetAddressIPPort(ip, port)
}
// Also resolves the host if host is not an IP.
func NewNetAddressString(addr string) *NetAddress {
host, portStr, err := net.SplitHostPort(addr)
if err != nil {
PanicSanity(err)
}
ip := net.ParseIP(host)
if ip == nil {
if len(host) > 0 {
ips, err := net.LookupIP(host)
if err != nil {
PanicSanity(err)
}
ip = ips[0]
}
}
port, err := strconv.ParseUint(portStr, 10, 16)
if err != nil {
PanicSanity(err)
}
na := NewNetAddressIPPort(ip, uint16(port))
return na
}
func NewNetAddressIPPort(ip net.IP, port uint16) *NetAddress {
na := &NetAddress{
IP: ip,
Port: port,
str: net.JoinHostPort(
ip.String(),
strconv.FormatUint(uint64(port), 10),
),
}
return na
}
func (na *NetAddress) Equals(other interface{}) bool {
if o, ok := other.(*NetAddress); ok {
return na.String() == o.String()
} else {
return false
}
}
func (na *NetAddress) Less(other interface{}) bool {
if o, ok := other.(*NetAddress); ok {
return na.String() < o.String()
} else {
PanicSanity("Cannot compare unequal types")
return false
}
}
func (na *NetAddress) String() string {
if na.str == "" {
na.str = net.JoinHostPort(
na.IP.String(),
strconv.FormatUint(uint64(na.Port), 10),
)
}
return na.str
}
func (na *NetAddress) Dial() (net.Conn, error) {
conn, err := net.Dial("tcp", na.String())
if err != nil {
return nil, err
}
return conn, nil
}
func (na *NetAddress) DialTimeout(timeout time.Duration) (net.Conn, error) {
conn, err := net.DialTimeout("tcp", na.String(), timeout)
if err != nil {
return nil, err
}
return conn, nil
}
func (na *NetAddress) Routable() bool {
// TODO(oga) bitcoind doesn't include RFC3849 here, but should we?
return na.Valid() && !(na.RFC1918() || na.RFC3927() || na.RFC4862() ||
na.RFC4193() || na.RFC4843() || na.Local())
}
// For IPv4 these are either a 0 or all bits set address. For IPv6 a zero
// address or one that matches the RFC3849 documentation address format.
func (na *NetAddress) Valid() bool {
return na.IP != nil && !(na.IP.IsUnspecified() || na.RFC3849() ||
na.IP.Equal(net.IPv4bcast))
}
func (na *NetAddress) Local() bool {
return na.IP.IsLoopback() || zero4.Contains(na.IP)
}
func (na *NetAddress) ReachabilityTo(o *NetAddress) int {
const (
Unreachable = 0
Default = iota
Teredo
Ipv6_weak
Ipv4
Ipv6_strong
Private
)
if !na.Routable() {
return Unreachable
} else if na.RFC4380() {
if !o.Routable() {
return Default
} else if o.RFC4380() {
return Teredo
} else if o.IP.To4() != nil {
return Ipv4
} else { // ipv6
return Ipv6_weak
}
} else if na.IP.To4() != nil {
if o.Routable() && o.IP.To4() != nil {
return Ipv4
}
return Default
} else /* ipv6 */ {
var tunnelled bool
// Is our v6 is tunnelled?
if o.RFC3964() || o.RFC6052() || o.RFC6145() {
tunnelled = true
}
if !o.Routable() {
return Default
} else if o.RFC4380() {
return Teredo
} else if o.IP.To4() != nil {
return Ipv4
} else if tunnelled {
// only prioritise ipv6 if we aren't tunnelling it.
return Ipv6_weak
}
return Ipv6_strong
}
}
// RFC1918: IPv4 Private networks (10.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12)
// RFC3849: IPv6 Documentation address (2001:0DB8::/32)
// RFC3927: IPv4 Autoconfig (169.254.0.0/16)
// RFC3964: IPv6 6to4 (2002::/16)
// RFC4193: IPv6 unique local (FC00::/7)
// RFC4380: IPv6 Teredo tunneling (2001::/32)
// RFC4843: IPv6 ORCHID: (2001:10::/28)
// RFC4862: IPv6 Autoconfig (FE80::/64)
// RFC6052: IPv6 well known prefix (64:FF9B::/96)
// RFC6145: IPv6 IPv4 translated address ::FFFF:0:0:0/96
var rfc1918_10 = net.IPNet{IP: net.ParseIP("10.0.0.0"), Mask: net.CIDRMask(8, 32)}
var rfc1918_192 = net.IPNet{IP: net.ParseIP("192.168.0.0"), Mask: net.CIDRMask(16, 32)}
var rfc1918_172 = net.IPNet{IP: net.ParseIP("172.16.0.0"), Mask: net.CIDRMask(12, 32)}
var rfc3849 = net.IPNet{IP: net.ParseIP("2001:0DB8::"), Mask: net.CIDRMask(32, 128)}
var rfc3927 = net.IPNet{IP: net.ParseIP("169.254.0.0"), Mask: net.CIDRMask(16, 32)}
var rfc3964 = net.IPNet{IP: net.ParseIP("2002::"), Mask: net.CIDRMask(16, 128)}
var rfc4193 = net.IPNet{IP: net.ParseIP("FC00::"), Mask: net.CIDRMask(7, 128)}
var rfc4380 = net.IPNet{IP: net.ParseIP("2001::"), Mask: net.CIDRMask(32, 128)}
var rfc4843 = net.IPNet{IP: net.ParseIP("2001:10::"), Mask: net.CIDRMask(28, 128)}
var rfc4862 = net.IPNet{IP: net.ParseIP("FE80::"), Mask: net.CIDRMask(64, 128)}
var rfc6052 = net.IPNet{IP: net.ParseIP("64:FF9B::"), Mask: net.CIDRMask(96, 128)}
var rfc6145 = net.IPNet{IP: net.ParseIP("::FFFF:0:0:0"), Mask: net.CIDRMask(96, 128)}
var zero4 = net.IPNet{IP: net.ParseIP("0.0.0.0"), Mask: net.CIDRMask(8, 32)}
func (na *NetAddress) RFC1918() bool {
return rfc1918_10.Contains(na.IP) ||
rfc1918_192.Contains(na.IP) ||
rfc1918_172.Contains(na.IP)
}
func (na *NetAddress) RFC3849() bool { return rfc3849.Contains(na.IP) }
func (na *NetAddress) RFC3927() bool { return rfc3927.Contains(na.IP) }
func (na *NetAddress) RFC3964() bool { return rfc3964.Contains(na.IP) }
func (na *NetAddress) RFC4193() bool { return rfc4193.Contains(na.IP) }
func (na *NetAddress) RFC4380() bool { return rfc4380.Contains(na.IP) }
func (na *NetAddress) RFC4843() bool { return rfc4843.Contains(na.IP) }
func (na *NetAddress) RFC4862() bool { return rfc4862.Contains(na.IP) }
func (na *NetAddress) RFC6052() bool { return rfc6052.Contains(na.IP) }
func (na *NetAddress) RFC6145() bool { return rfc6145.Contains(na.IP) }

+ 133
- 0
peer.go View File

@ -0,0 +1,133 @@
package p2p
import (
"fmt"
"io"
"net"
. "github.com/tendermint/go-common"
"github.com/tendermint/go-wire"
)
type Peer struct {
BaseService
outbound bool
mconn *MConnection
*NodeInfo
Key string
Data *CMap // User data.
}
// NOTE: blocking
// Before creating a peer with newPeer(), perform a handshake on connection.
func peerHandshake(conn net.Conn, ourNodeInfo *NodeInfo) (*NodeInfo, error) {
var peerNodeInfo = new(NodeInfo)
var err1 error
var err2 error
Parallel(
func() {
var n int64
wire.WriteBinary(ourNodeInfo, conn, &n, &err1)
},
func() {
var n int64
wire.ReadBinary(peerNodeInfo, conn, &n, &err2)
log.Notice("Peer handshake", "peerNodeInfo", peerNodeInfo)
})
if err1 != nil {
return nil, err1
}
if err2 != nil {
return nil, err2
}
return peerNodeInfo, nil
}
// NOTE: call peerHandshake on conn before calling newPeer().
func newPeer(conn net.Conn, peerNodeInfo *NodeInfo, outbound bool, reactorsByCh map[byte]Reactor, chDescs []*ChannelDescriptor, onPeerError func(*Peer, interface{})) *Peer {
var p *Peer
onReceive := func(chID byte, msgBytes []byte) {
reactor := reactorsByCh[chID]
if reactor == nil {
PanicSanity(Fmt("Unknown channel %X", chID))
}
reactor.Receive(chID, p, msgBytes)
}
onError := func(r interface{}) {
p.Stop()
onPeerError(p, r)
}
mconn := NewMConnection(conn, chDescs, onReceive, onError)
p = &Peer{
outbound: outbound,
mconn: mconn,
NodeInfo: peerNodeInfo,
Key: peerNodeInfo.PubKey.KeyString(),
Data: NewCMap(),
}
p.BaseService = *NewBaseService(log, "Peer", p)
return p
}
func (p *Peer) OnStart() error {
p.BaseService.OnStart()
_, err := p.mconn.Start()
return err
}
func (p *Peer) OnStop() {
p.BaseService.OnStop()
p.mconn.Stop()
}
func (p *Peer) Connection() *MConnection {
return p.mconn
}
func (p *Peer) IsOutbound() bool {
return p.outbound
}
func (p *Peer) Send(chID byte, msg interface{}) bool {
if !p.IsRunning() {
return false
}
return p.mconn.Send(chID, msg)
}
func (p *Peer) TrySend(chID byte, msg interface{}) bool {
if !p.IsRunning() {
return false
}
return p.mconn.TrySend(chID, msg)
}
func (p *Peer) CanSend(chID byte) bool {
if !p.IsRunning() {
return false
}
return p.mconn.CanSend(chID)
}
func (p *Peer) WriteTo(w io.Writer) (n int64, err error) {
wire.WriteString(p.Key, w, &n, &err)
return
}
func (p *Peer) String() string {
if p.outbound {
return fmt.Sprintf("Peer{%v %v out}", p.mconn, p.Key[:12])
} else {
return fmt.Sprintf("Peer{%v %v in}", p.mconn, p.Key[:12])
}
}
func (p *Peer) Equals(other *Peer) bool {
return p.Key == other.Key
}
func (p *Peer) Get(key string) interface{} {
return p.Data.Get(key)
}

+ 227
- 0
peer_set.go View File

@ -0,0 +1,227 @@
package p2p
import (
"net"
"strings"
"sync"
)
// IPeerSet has a (immutable) subset of the methods of PeerSet.
type IPeerSet interface {
Has(key string) bool
Get(key string) *Peer
List() []*Peer
Size() int
}
//-----------------------------------------------------------------------------
var (
maxPeersPerIPRange = [4]int{11, 7, 5, 3} // ...
)
// PeerSet is a special structure for keeping a table of peers.
// Iteration over the peers is super fast and thread-safe.
// We also track how many peers per IP range and avoid too many
type PeerSet struct {
mtx sync.Mutex
lookup map[string]*peerSetItem
list []*Peer
connectedIPs *nestedCounter
}
type peerSetItem struct {
peer *Peer
index int
}
func NewPeerSet() *PeerSet {
return &PeerSet{
lookup: make(map[string]*peerSetItem),
list: make([]*Peer, 0, 256),
connectedIPs: NewNestedCounter(),
}
}
// Returns false if peer with key (PubKeyEd25519) is already in set
// or if we have too many peers from the peer's IP range
func (ps *PeerSet) Add(peer *Peer) error {
ps.mtx.Lock()
defer ps.mtx.Unlock()
if ps.lookup[peer.Key] != nil {
return ErrSwitchDuplicatePeer
}
// ensure we havent maxed out connections for the peer's IP range yet
// and update the IP range counters
if !ps.incrIPRangeCounts(peer.Host()) {
return ErrSwitchMaxPeersPerIPRange
}
index := len(ps.list)
// Appending is safe even with other goroutines
// iterating over the ps.list slice.
ps.list = append(ps.list, peer)
ps.lookup[peer.Key] = &peerSetItem{peer, index}
return nil
}
func (ps *PeerSet) Has(peerKey string) bool {
ps.mtx.Lock()
defer ps.mtx.Unlock()
_, ok := ps.lookup[peerKey]
return ok
}
func (ps *PeerSet) Get(peerKey string) *Peer {
ps.mtx.Lock()
defer ps.mtx.Unlock()
item, ok := ps.lookup[peerKey]
if ok {
return item.peer
} else {
return nil
}
}
func (ps *PeerSet) Remove(peer *Peer) {
ps.mtx.Lock()
defer ps.mtx.Unlock()
item := ps.lookup[peer.Key]
if item == nil {
return
}
// update the IP range counters
ps.decrIPRangeCounts(peer.Host())
index := item.index
// Copy the list but without the last element.
// (we must copy because we're mutating the list)
newList := make([]*Peer, len(ps.list)-1)
copy(newList, ps.list)
// If it's the last peer, that's an easy special case.
if index == len(ps.list)-1 {
ps.list = newList
delete(ps.lookup, peer.Key)
return
}
// Move the last item from ps.list to "index" in list.
lastPeer := ps.list[len(ps.list)-1]
lastPeerKey := lastPeer.Key
lastPeerItem := ps.lookup[lastPeerKey]
newList[index] = lastPeer
lastPeerItem.index = index
ps.list = newList
delete(ps.lookup, peer.Key)
}
func (ps *PeerSet) Size() int {
ps.mtx.Lock()
defer ps.mtx.Unlock()
return len(ps.list)
}
// threadsafe list of peers.
func (ps *PeerSet) List() []*Peer {
ps.mtx.Lock()
defer ps.mtx.Unlock()
return ps.list
}
//-----------------------------------------------------------------------------
// track the number of IPs we're connected to for each IP address range
// forms an IP address hierarchy tree with counts
// the struct itself is not thread safe and should always only be accessed with the ps.mtx locked
type nestedCounter struct {
count int
children map[string]*nestedCounter
}
func NewNestedCounter() *nestedCounter {
nc := new(nestedCounter)
nc.children = make(map[string]*nestedCounter)
return nc
}
// Check if we have too many IPs in the IP range of the incoming connection
// Thread safe
func (ps *PeerSet) HasMaxForIPRange(conn net.Conn) (ok bool) {
ps.mtx.Lock()
defer ps.mtx.Unlock()
ip, _, _ := net.SplitHostPort(conn.RemoteAddr().String())
ipBytes := strings.Split(ip, ".")
c := ps.connectedIPs
for i, ipByte := range ipBytes {
if c, ok = c.children[ipByte]; !ok {
return false
}
if maxPeersPerIPRange[i] <= c.count {
return true
}
}
return false
}
// Increments counts for this address' IP range
// Returns false if we already have enough connections
// Not thread safe (only called by ps.Add())
func (ps *PeerSet) incrIPRangeCounts(address string) bool {
addrParts := strings.Split(address, ".")
c := ps.connectedIPs
return incrNestedCounters(c, addrParts, 0)
}
// Recursively descend the IP hierarchy, checking if we have
// max peers for each range and incrementing if not.
// Returns false if incr failed because max peers reached for some range counter.
func incrNestedCounters(c *nestedCounter, ipBytes []string, index int) bool {
ipByte := ipBytes[index]
child := c.children[ipByte]
if child == nil {
child = NewNestedCounter()
c.children[ipByte] = child
}
if index+1 < len(ipBytes) {
if !incrNestedCounters(child, ipBytes, index+1) {
return false
}
}
if maxPeersPerIPRange[index] <= child.count {
return false
} else {
child.count += 1
return true
}
}
// Decrement counts for this address' IP range
func (ps *PeerSet) decrIPRangeCounts(address string) {
addrParts := strings.Split(address, ".")
c := ps.connectedIPs
decrNestedCounters(c, addrParts, 0)
}
// Recursively descend the IP hierarchy, decrementing by one.
// If the counter is zero, deletes the child.
func decrNestedCounters(c *nestedCounter, ipBytes []string, index int) {
ipByte := ipBytes[index]
child := c.children[ipByte]
if child == nil {
log.Error("p2p/peer_set decrNestedCounters encountered a missing child counter")
return
}
if index+1 < len(ipBytes) {
decrNestedCounters(child, ipBytes, index+1)
}
child.count -= 1
if child.count <= 0 {
delete(c.children, ipByte)
}
}

+ 168
- 0
peer_set_test.go View File

@ -0,0 +1,168 @@
package p2p
import (
"math/rand"
"strings"
"testing"
. "github.com/tendermint/go-common"
)
// Returns an empty dummy peer
func randPeer() *Peer {
return &Peer{
Key: RandStr(12),
NodeInfo: &NodeInfo{
Address: Fmt("%v.%v.%v.%v:46656", rand.Int()%256, rand.Int()%256, rand.Int()%256, rand.Int()%256),
},
}
}
func TestAddRemoveOne(t *testing.T) {
peerSet := NewPeerSet()
peer := randPeer()
err := peerSet.Add(peer)
if err != nil {
t.Errorf("Failed to add new peer")
}
if peerSet.Size() != 1 {
t.Errorf("Failed to add new peer and increment size")
}
peerSet.Remove(peer)
if peerSet.Has(peer.Key) {
t.Errorf("Failed to remove peer")
}
if peerSet.Size() != 0 {
t.Errorf("Failed to remove peer and decrement size")
}
}
func TestAddRemoveMany(t *testing.T) {
peerSet := NewPeerSet()
peers := []*Peer{}
N := 100
maxPeersPerIPRange = [4]int{N, N, N, N}
for i := 0; i < N; i++ {
peer := randPeer()
if err := peerSet.Add(peer); err != nil {
t.Errorf("Failed to add new peer")
}
if peerSet.Size() != i+1 {
t.Errorf("Failed to add new peer and increment size")
}
peers = append(peers, peer)
}
for i, peer := range peers {
peerSet.Remove(peer)
if peerSet.Has(peer.Key) {
t.Errorf("Failed to remove peer")
}
if peerSet.Size() != len(peers)-i-1 {
t.Errorf("Failed to remove peer and decrement size")
}
}
}
func newPeerInIPRange(ipBytes ...string) *Peer {
ips := make([]string, 4)
for i, ipByte := range ipBytes {
ips[i] = ipByte
}
for i := len(ipBytes); i < 4; i++ {
ips[i] = Fmt("%v", rand.Int()%256)
}
ipS := strings.Join(ips, ".")
return &Peer{
Key: RandStr(12),
NodeInfo: &NodeInfo{
Address: ipS + ":46656",
},
}
}
func TestIPRanges(t *testing.T) {
peerSet := NewPeerSet()
// test /8
maxPeersPerIPRange = [4]int{2, 2, 2, 2}
peer := newPeerInIPRange("54", "1")
if err := peerSet.Add(peer); err != nil {
t.Errorf("Failed to add new peer")
}
peer = newPeerInIPRange("54", "2")
if err := peerSet.Add(peer); err != nil {
t.Errorf("Failed to add new peer")
}
peer = newPeerInIPRange("54", "3")
if err := peerSet.Add(peer); err == nil {
t.Errorf("Added peer when we shouldn't have")
}
peer = newPeerInIPRange("55", "1")
if err := peerSet.Add(peer); err != nil {
t.Errorf("Failed to add new peer")
}
// test /16
peerSet = NewPeerSet()
maxPeersPerIPRange = [4]int{3, 2, 1, 1}
peer = newPeerInIPRange("54", "112", "1")
if err := peerSet.Add(peer); err != nil {
t.Errorf("Failed to add new peer")
}
peer = newPeerInIPRange("54", "112", "2")
if err := peerSet.Add(peer); err != nil {
t.Errorf("Failed to add new peer")
}
peer = newPeerInIPRange("54", "112", "3")
if err := peerSet.Add(peer); err == nil {
t.Errorf("Added peer when we shouldn't have")
}
peer = newPeerInIPRange("54", "113", "1")
if err := peerSet.Add(peer); err != nil {
t.Errorf("Failed to add new peer")
}
// test /24
peerSet = NewPeerSet()
maxPeersPerIPRange = [4]int{5, 3, 2, 1}
peer = newPeerInIPRange("54", "112", "11", "1")
if err := peerSet.Add(peer); err != nil {
t.Errorf("Failed to add new peer")
}
peer = newPeerInIPRange("54", "112", "11", "2")
if err := peerSet.Add(peer); err != nil {
t.Errorf("Failed to add new peer")
}
peer = newPeerInIPRange("54", "112", "11", "3")
if err := peerSet.Add(peer); err == nil {
t.Errorf("Added peer when we shouldn't have")
}
peer = newPeerInIPRange("54", "112", "12", "1")
if err := peerSet.Add(peer); err != nil {
t.Errorf("Failed to add new peer")
}
// test /32
peerSet = NewPeerSet()
maxPeersPerIPRange = [4]int{11, 7, 5, 2}
peer = newPeerInIPRange("54", "112", "11", "10")
if err := peerSet.Add(peer); err != nil {
t.Errorf("Failed to add new peer")
}
peer = newPeerInIPRange("54", "112", "11", "10")
if err := peerSet.Add(peer); err != nil {
t.Errorf("Failed to add new peer")
}
peer = newPeerInIPRange("54", "112", "11", "10")
if err := peerSet.Add(peer); err == nil {
t.Errorf("Added peer when we shouldn't have")
}
peer = newPeerInIPRange("54", "112", "11", "11")
if err := peerSet.Add(peer); err != nil {
t.Errorf("Failed to add new peer")
}
}

+ 255
- 0
pex_reactor.go View File

@ -0,0 +1,255 @@
package p2p
import (
"bytes"
"errors"
"fmt"
"math/rand"
"reflect"
"time"
. "github.com/tendermint/go-common"
"github.com/tendermint/go-wire"
)
var pexErrInvalidMessage = errors.New("Invalid PEX message")
const (
PexChannel = byte(0x00)
ensurePeersPeriodSeconds = 30
minNumOutboundPeers = 10
)
/*
PEXReactor handles PEX (peer exchange) and ensures that an
adequate number of peers are connected to the switch.
*/
type PEXReactor struct {
BaseReactor
sw *Switch
book *AddrBook
}
func NewPEXReactor(book *AddrBook) *PEXReactor {
pexR := &PEXReactor{
book: book,
}
pexR.BaseReactor = *NewBaseReactor(log, "PEXReactor", pexR)
return pexR
}
func (pexR *PEXReactor) OnStart() error {
pexR.BaseReactor.OnStart()
go pexR.ensurePeersRoutine()
return nil
}
func (pexR *PEXReactor) OnStop() {
pexR.BaseReactor.OnStop()
}
// Implements Reactor
func (pexR *PEXReactor) GetChannels() []*ChannelDescriptor {
return []*ChannelDescriptor{
&ChannelDescriptor{
ID: PexChannel,
Priority: 1,
SendQueueCapacity: 10,
},
}
}
// Implements Reactor
func (pexR *PEXReactor) AddPeer(peer *Peer) {
// Add the peer to the address book
netAddr := NewNetAddressString(peer.Address)
if peer.IsOutbound() {
if pexR.book.NeedMoreAddrs() {
pexR.RequestPEX(peer)
}
} else {
// For inbound connections, the peer is its own source
// (For outbound peers, the address is already in the books)
pexR.book.AddAddress(netAddr, netAddr)
}
}
// Implements Reactor
func (pexR *PEXReactor) RemovePeer(peer *Peer, reason interface{}) {
// TODO
}
// Implements Reactor
// Handles incoming PEX messages.
func (pexR *PEXReactor) Receive(chID byte, src *Peer, msgBytes []byte) {
// decode message
_, msg, err := DecodeMessage(msgBytes)
if err != nil {
log.Warn("Error decoding message", "error", err)
return
}
log.Notice("Received message", "msg", msg)
switch msg := msg.(type) {
case *pexRequestMessage:
// src requested some peers.
// TODO: prevent abuse.
pexR.SendAddrs(src, pexR.book.GetSelection())
case *pexAddrsMessage:
// We received some peer addresses from src.
// TODO: prevent abuse.
// (We don't want to get spammed with bad peers)
srcAddr := src.Connection().RemoteAddress
for _, addr := range msg.Addrs {
pexR.book.AddAddress(addr, srcAddr)
}
default:
log.Warn(Fmt("Unknown message type %v", reflect.TypeOf(msg)))
}
}
// Asks peer for more addresses.
func (pexR *PEXReactor) RequestPEX(peer *Peer) {
peer.Send(PexChannel, &pexRequestMessage{})
}
func (pexR *PEXReactor) SendAddrs(peer *Peer, addrs []*NetAddress) {
peer.Send(PexChannel, &pexAddrsMessage{Addrs: addrs})
}
// Ensures that sufficient peers are connected. (continuous)
func (pexR *PEXReactor) ensurePeersRoutine() {
// Randomize when routine starts
time.Sleep(time.Duration(rand.Int63n(500*ensurePeersPeriodSeconds)) * time.Millisecond)
// fire once immediately.
pexR.ensurePeers()
// fire periodically
timer := NewRepeatTimer("pex", ensurePeersPeriodSeconds*time.Second)
FOR_LOOP:
for {
select {
case <-timer.Ch:
pexR.ensurePeers()
case <-pexR.Quit:
break FOR_LOOP
}
}
// Cleanup
timer.Stop()
}
// Ensures that sufficient peers are connected. (once)
func (pexR *PEXReactor) ensurePeers() {
numOutPeers, _, numDialing := pexR.Switch.NumPeers()
numToDial := minNumOutboundPeers - (numOutPeers + numDialing)
log.Info("Ensure peers", "numOutPeers", numOutPeers, "numDialing", numDialing, "numToDial", numToDial)
if numToDial <= 0 {
return
}
toDial := NewCMap()
// Try to pick numToDial addresses to dial.
// TODO: improve logic.
for i := 0; i < numToDial; i++ {
newBias := MinInt(numOutPeers, 8)*10 + 10
var picked *NetAddress
// Try to fetch a new peer 3 times.
// This caps the maximum number of tries to 3 * numToDial.
for j := 0; j < 3; j++ {
try := pexR.book.PickAddress(newBias)
if try == nil {
break
}
alreadySelected := toDial.Has(try.IP.String())
alreadyDialing := pexR.Switch.IsDialing(try)
alreadyConnected := pexR.Switch.Peers().Has(try.IP.String())
if alreadySelected || alreadyDialing || alreadyConnected {
/*
log.Info("Cannot dial address", "addr", try,
"alreadySelected", alreadySelected,
"alreadyDialing", alreadyDialing,
"alreadyConnected", alreadyConnected)
*/
continue
} else {
log.Info("Will dial address", "addr", try)
picked = try
break
}
}
if picked == nil {
continue
}
toDial.Set(picked.IP.String(), picked)
}
// Dial picked addresses
for _, item := range toDial.Values() {
go func(picked *NetAddress) {
_, err := pexR.Switch.DialPeerWithAddress(picked)
if err != nil {
pexR.book.MarkAttempt(picked)
}
}(item.(*NetAddress))
}
// If we need more addresses, pick a random peer and ask for more.
if pexR.book.NeedMoreAddrs() {
if peers := pexR.Switch.Peers().List(); len(peers) > 0 {
i := rand.Int() % len(peers)
peer := peers[i]
log.Info("No addresses to dial. Sending pexRequest to random peer", "peer", peer)
pexR.RequestPEX(peer)
}
}
}
//-----------------------------------------------------------------------------
// Messages
const (
msgTypeRequest = byte(0x01)
msgTypeAddrs = byte(0x02)
)
type PexMessage interface{}
var _ = wire.RegisterInterface(
struct{ PexMessage }{},
wire.ConcreteType{&pexRequestMessage{}, msgTypeRequest},
wire.ConcreteType{&pexAddrsMessage{}, msgTypeAddrs},
)
func DecodeMessage(bz []byte) (msgType byte, msg PexMessage, err error) {
msgType = bz[0]
n := new(int64)
r := bytes.NewReader(bz)
msg = wire.ReadBinary(struct{ PexMessage }{}, r, n, &err).(struct{ PexMessage }).PexMessage
return
}
/*
A pexRequestMessage requests additional peer addresses.
*/
type pexRequestMessage struct {
}
func (m *pexRequestMessage) String() string {
return "[pexRequest]"
}
/*
A message with announced peer addresses.
*/
type pexAddrsMessage struct {
Addrs []*NetAddress
}
func (m *pexAddrsMessage) String() string {
return fmt.Sprintf("[pexAddrs %v]", m.Addrs)
}

+ 346
- 0
secret_connection.go View File

@ -0,0 +1,346 @@
// Uses nacl's secret_box to encrypt a net.Conn.
// It is (meant to be) an implementation of the STS protocol.
// Note we do not (yet) assume that a remote peer's pubkey
// is known ahead of time, and thus we are technically
// still vulnerable to MITM. (TODO!)
// See docs/sts-final.pdf for more info
package p2p
import (
"bytes"
crand "crypto/rand"
"crypto/sha256"
"encoding/binary"
"errors"
"io"
"net"
"time"
"golang.org/x/crypto/nacl/box"
"golang.org/x/crypto/nacl/secretbox"
"golang.org/x/crypto/ripemd160"
. "github.com/tendermint/go-common"
"github.com/tendermint/go-crypto"
"github.com/tendermint/go-wire"
)
// 2 + 1024 == 1026 total frame size
const dataLenSize = 2 // uint16 to describe the length, is <= dataMaxSize
const dataMaxSize = 1024
const totalFrameSize = dataMaxSize + dataLenSize
const sealedFrameSize = totalFrameSize + secretbox.Overhead
const authSigMsgSize = (32 + 1) + (64 + 1) // fixed size (length prefixed) byte arrays
// Implements net.Conn
type SecretConnection struct {
conn io.ReadWriteCloser
recvBuffer []byte
recvNonce *[24]byte
sendNonce *[24]byte
remPubKey crypto.PubKeyEd25519
shrSecret *[32]byte // shared secret
}
// Performs handshake and returns a new authenticated SecretConnection.
// Returns nil if error in handshake.
// Caller should call conn.Close()
// See docs/sts-final.pdf for more information.
func MakeSecretConnection(conn io.ReadWriteCloser, locPrivKey crypto.PrivKeyEd25519) (*SecretConnection, error) {
locPubKey := locPrivKey.PubKey().(crypto.PubKeyEd25519)
// Generate ephemeral keys for perfect forward secrecy.
locEphPub, locEphPriv := genEphKeys()
// Write local ephemeral pubkey and receive one too.
// NOTE: every 32-byte string is accepted as a Curve25519 public key
// (see DJB's Curve25519 paper: http://cr.yp.to/ecdh/curve25519-20060209.pdf)
remEphPub, err := shareEphPubKey(conn, locEphPub)
if err != nil {
return nil, err
}
// Compute common shared secret.
shrSecret := computeSharedSecret(remEphPub, locEphPriv)
// Sort by lexical order.
loEphPub, hiEphPub := sort32(locEphPub, remEphPub)
// Generate nonces to use for secretbox.
recvNonce, sendNonce := genNonces(loEphPub, hiEphPub, locEphPub == loEphPub)
// Generate common challenge to sign.
challenge := genChallenge(loEphPub, hiEphPub)
// Construct SecretConnection.
sc := &SecretConnection{
conn: conn,
recvBuffer: nil,
recvNonce: recvNonce,
sendNonce: sendNonce,
shrSecret: shrSecret,
}
// Sign the challenge bytes for authentication.
locSignature := signChallenge(challenge, locPrivKey)
// Share (in secret) each other's pubkey & challenge signature
authSigMsg, err := shareAuthSignature(sc, locPubKey, locSignature)
if err != nil {
return nil, err
}
remPubKey, remSignature := authSigMsg.Key, authSigMsg.Sig
if !remPubKey.VerifyBytes(challenge[:], remSignature) {
return nil, errors.New("Challenge verification failed")
}
// We've authorized.
sc.remPubKey = remPubKey
return sc, nil
}
// Returns authenticated remote pubkey
func (sc *SecretConnection) RemotePubKey() crypto.PubKeyEd25519 {
return sc.remPubKey
}
// Writes encrypted frames of `sealedFrameSize`
// CONTRACT: data smaller than dataMaxSize is read atomically.
func (sc *SecretConnection) Write(data []byte) (n int, err error) {
for 0 < len(data) {
var frame []byte = make([]byte, totalFrameSize)
var chunk []byte
if dataMaxSize < len(data) {
chunk = data[:dataMaxSize]
data = data[dataMaxSize:]
} else {
chunk = data
data = nil
}
chunkLength := len(chunk)
binary.BigEndian.PutUint16(frame, uint16(chunkLength))
copy(frame[dataLenSize:], chunk)
// encrypt the frame
var sealedFrame = make([]byte, sealedFrameSize)
secretbox.Seal(sealedFrame[:0], frame, sc.sendNonce, sc.shrSecret)
// fmt.Printf("secretbox.Seal(sealed:%X,sendNonce:%X,shrSecret:%X\n", sealedFrame, sc.sendNonce, sc.shrSecret)
incr2Nonce(sc.sendNonce)
// end encryption
_, err := sc.conn.Write(sealedFrame)
if err != nil {
return n, err
} else {
n += len(chunk)
}
}
return
}
// CONTRACT: data smaller than dataMaxSize is read atomically.
func (sc *SecretConnection) Read(data []byte) (n int, err error) {
if 0 < len(sc.recvBuffer) {
n_ := copy(data, sc.recvBuffer)
sc.recvBuffer = sc.recvBuffer[n_:]
return
}
sealedFrame := make([]byte, sealedFrameSize)
_, err = io.ReadFull(sc.conn, sealedFrame)
if err != nil {
return
}
// decrypt the frame
var frame = make([]byte, totalFrameSize)
// fmt.Printf("secretbox.Open(sealed:%X,recvNonce:%X,shrSecret:%X\n", sealedFrame, sc.recvNonce, sc.shrSecret)
_, ok := secretbox.Open(frame[:0], sealedFrame, sc.recvNonce, sc.shrSecret)
if !ok {
return n, errors.New("Failed to decrypt SecretConnection")
}
incr2Nonce(sc.recvNonce)
// end decryption
var chunkLength = binary.BigEndian.Uint16(frame) // read the first two bytes
if chunkLength > dataMaxSize {
return 0, errors.New("chunkLength is greater than dataMaxSize")
}
var chunk = frame[dataLenSize : dataLenSize+chunkLength]
n = copy(data, chunk)
sc.recvBuffer = chunk[n:]
return
}
// Implements net.Conn
func (sc *SecretConnection) Close() error { return sc.conn.Close() }
func (sc *SecretConnection) LocalAddr() net.Addr { return sc.conn.(net.Conn).LocalAddr() }
func (sc *SecretConnection) RemoteAddr() net.Addr { return sc.conn.(net.Conn).RemoteAddr() }
func (sc *SecretConnection) SetDeadline(t time.Time) error { return sc.conn.(net.Conn).SetDeadline(t) }
func (sc *SecretConnection) SetReadDeadline(t time.Time) error {
return sc.conn.(net.Conn).SetReadDeadline(t)
}
func (sc *SecretConnection) SetWriteDeadline(t time.Time) error {
return sc.conn.(net.Conn).SetWriteDeadline(t)
}
func genEphKeys() (ephPub, ephPriv *[32]byte) {
var err error
ephPub, ephPriv, err = box.GenerateKey(crand.Reader)
if err != nil {
PanicCrisis("Could not generate ephemeral keypairs")
}
return
}
func shareEphPubKey(conn io.ReadWriteCloser, locEphPub *[32]byte) (remEphPub *[32]byte, err error) {
var err1, err2 error
Parallel(
func() {
_, err1 = conn.Write(locEphPub[:])
},
func() {
remEphPub = new([32]byte)
_, err2 = io.ReadFull(conn, remEphPub[:])
},
)
if err1 != nil {
return nil, err1
}
if err2 != nil {
return nil, err2
}
return remEphPub, nil
}
func computeSharedSecret(remPubKey, locPrivKey *[32]byte) (shrSecret *[32]byte) {
shrSecret = new([32]byte)
box.Precompute(shrSecret, remPubKey, locPrivKey)
return
}
func sort32(foo, bar *[32]byte) (lo, hi *[32]byte) {
if bytes.Compare(foo[:], bar[:]) < 0 {
lo = foo
hi = bar
} else {
lo = bar
hi = foo
}
return
}
func genNonces(loPubKey, hiPubKey *[32]byte, locIsLo bool) (recvNonce, sendNonce *[24]byte) {
nonce1 := hash24(append(loPubKey[:], hiPubKey[:]...))
nonce2 := new([24]byte)
copy(nonce2[:], nonce1[:])
nonce2[len(nonce2)-1] ^= 0x01
if locIsLo {
recvNonce = nonce1
sendNonce = nonce2
} else {
recvNonce = nonce2
sendNonce = nonce1
}
return
}
func genChallenge(loPubKey, hiPubKey *[32]byte) (challenge *[32]byte) {
return hash32(append(loPubKey[:], hiPubKey[:]...))
}
func signChallenge(challenge *[32]byte, locPrivKey crypto.PrivKeyEd25519) (signature crypto.SignatureEd25519) {
signature = locPrivKey.Sign(challenge[:]).(crypto.SignatureEd25519)
return
}
type authSigMessage struct {
Key crypto.PubKeyEd25519
Sig crypto.SignatureEd25519
}
func shareAuthSignature(sc *SecretConnection, pubKey crypto.PubKeyEd25519, signature crypto.SignatureEd25519) (*authSigMessage, error) {
var recvMsg authSigMessage
var err1, err2 error
Parallel(
func() {
msgBytes := wire.BinaryBytes(authSigMessage{pubKey, signature})
_, err1 = sc.Write(msgBytes)
},
func() {
readBuffer := make([]byte, authSigMsgSize)
_, err2 = io.ReadFull(sc, readBuffer)
if err2 != nil {
return
}
n := int64(0) // not used.
recvMsg = wire.ReadBinary(authSigMessage{}, bytes.NewBuffer(readBuffer), &n, &err2).(authSigMessage)
})
if err1 != nil {
return nil, err1
}
if err2 != nil {
return nil, err2
}
return &recvMsg, nil
}
func verifyChallengeSignature(challenge *[32]byte, remPubKey crypto.PubKeyEd25519, remSignature crypto.SignatureEd25519) bool {
return remPubKey.VerifyBytes(challenge[:], remSignature)
}
//--------------------------------------------------------------------------------
// sha256
func hash32(input []byte) (res *[32]byte) {
hasher := sha256.New()
hasher.Write(input) // does not error
resSlice := hasher.Sum(nil)
res = new([32]byte)
copy(res[:], resSlice)
return
}
// We only fill in the first 20 bytes with ripemd160
func hash24(input []byte) (res *[24]byte) {
hasher := ripemd160.New()
hasher.Write(input) // does not error
resSlice := hasher.Sum(nil)
res = new([24]byte)
copy(res[:], resSlice)
return
}
// ripemd160
func hash20(input []byte) (res *[20]byte) {
hasher := ripemd160.New()
hasher.Write(input) // does not error
resSlice := hasher.Sum(nil)
res = new([20]byte)
copy(res[:], resSlice)
return
}
// increment nonce big-endian by 2 with wraparound.
func incr2Nonce(nonce *[24]byte) {
incrNonce(nonce)
incrNonce(nonce)
}
// increment nonce big-endian by 1 with wraparound.
func incrNonce(nonce *[24]byte) {
for i := 23; 0 <= i; i-- {
nonce[i] += 1
if nonce[i] != 0 {
return
}
}
}

+ 202
- 0
secret_connection_test.go View File

@ -0,0 +1,202 @@
package p2p
import (
"bytes"
"io"
"testing"
. "github.com/tendermint/go-common"
"github.com/tendermint/go-crypto"
)
type dummyConn struct {
*io.PipeReader
*io.PipeWriter
}
func (drw dummyConn) Close() (err error) {
err2 := drw.PipeWriter.CloseWithError(io.EOF)
err1 := drw.PipeReader.Close()
if err2 != nil {
return err
}
return err1
}
// Each returned ReadWriteCloser is akin to a net.Connection
func makeDummyConnPair() (fooConn, barConn dummyConn) {
barReader, fooWriter := io.Pipe()
fooReader, barWriter := io.Pipe()
return dummyConn{fooReader, fooWriter}, dummyConn{barReader, barWriter}
}
func makeSecretConnPair(tb testing.TB) (fooSecConn, barSecConn *SecretConnection) {
fooConn, barConn := makeDummyConnPair()
fooPrvKey := crypto.GenPrivKeyEd25519()
fooPubKey := fooPrvKey.PubKey().(crypto.PubKeyEd25519)
barPrvKey := crypto.GenPrivKeyEd25519()
barPubKey := barPrvKey.PubKey().(crypto.PubKeyEd25519)
Parallel(
func() {
var err error
fooSecConn, err = MakeSecretConnection(fooConn, fooPrvKey)
if err != nil {
tb.Errorf("Failed to establish SecretConnection for foo: %v", err)
return
}
remotePubBytes := fooSecConn.RemotePubKey()
if !bytes.Equal(remotePubBytes[:], barPubKey[:]) {
tb.Errorf("Unexpected fooSecConn.RemotePubKey. Expected %v, got %v",
barPubKey, fooSecConn.RemotePubKey())
}
},
func() {
var err error
barSecConn, err = MakeSecretConnection(barConn, barPrvKey)
if barSecConn == nil {
tb.Errorf("Failed to establish SecretConnection for bar: %v", err)
return
}
remotePubBytes := barSecConn.RemotePubKey()
if !bytes.Equal(remotePubBytes[:], fooPubKey[:]) {
tb.Errorf("Unexpected barSecConn.RemotePubKey. Expected %v, got %v",
fooPubKey, barSecConn.RemotePubKey())
}
})
return
}
func TestSecretConnectionHandshake(t *testing.T) {
fooSecConn, barSecConn := makeSecretConnPair(t)
fooSecConn.Close()
barSecConn.Close()
}
func TestSecretConnectionReadWrite(t *testing.T) {
fooConn, barConn := makeDummyConnPair()
fooWrites, barWrites := []string{}, []string{}
fooReads, barReads := []string{}, []string{}
// Pre-generate the things to write (for foo & bar)
for i := 0; i < 100; i++ {
fooWrites = append(fooWrites, RandStr((RandInt()%(dataMaxSize*5))+1))
barWrites = append(barWrites, RandStr((RandInt()%(dataMaxSize*5))+1))
}
// A helper that will run with (fooConn, fooWrites, fooReads) and vice versa
genNodeRunner := func(nodeConn dummyConn, nodeWrites []string, nodeReads *[]string) func() {
return func() {
// Node handskae
nodePrvKey := crypto.GenPrivKeyEd25519()
nodeSecretConn, err := MakeSecretConnection(nodeConn, nodePrvKey)
if err != nil {
t.Errorf("Failed to establish SecretConnection for node: %v", err)
return
}
// In parallel, handle reads and writes
Parallel(
func() {
// Node writes
for _, nodeWrite := range nodeWrites {
n, err := nodeSecretConn.Write([]byte(nodeWrite))
if err != nil {
t.Errorf("Failed to write to nodeSecretConn: %v", err)
return
}
if n != len(nodeWrite) {
t.Errorf("Failed to write all bytes. Expected %v, wrote %v", len(nodeWrite), n)
return
}
}
nodeConn.PipeWriter.Close()
},
func() {
// Node reads
readBuffer := make([]byte, dataMaxSize)
for {
n, err := nodeSecretConn.Read(readBuffer)
if err == io.EOF {
return
} else if err != nil {
t.Errorf("Failed to read from nodeSecretConn: %v", err)
return
}
*nodeReads = append(*nodeReads, string(readBuffer[:n]))
}
nodeConn.PipeReader.Close()
})
}
}
// Run foo & bar in parallel
Parallel(
genNodeRunner(fooConn, fooWrites, &fooReads),
genNodeRunner(barConn, barWrites, &barReads),
)
// A helper to ensure that the writes and reads match.
// Additionally, small writes (<= dataMaxSize) must be atomically read.
compareWritesReads := func(writes []string, reads []string) {
for {
// Pop next write & corresponding reads
var read, write string = "", writes[0]
var readCount = 0
for _, readChunk := range reads {
read += readChunk
readCount += 1
if len(write) <= len(read) {
break
}
if len(write) <= dataMaxSize {
break // atomicity of small writes
}
}
// Compare
if write != read {
t.Errorf("Expected to read %X, got %X", write, read)
}
// Iterate
writes = writes[1:]
reads = reads[readCount:]
if len(writes) == 0 {
break
}
}
}
compareWritesReads(fooWrites, barReads)
compareWritesReads(barWrites, fooReads)
}
func BenchmarkSecretConnection(b *testing.B) {
b.StopTimer()
fooSecConn, barSecConn := makeSecretConnPair(b)
fooWriteText := RandStr(dataMaxSize)
// Consume reads from bar's reader
go func() {
readBuffer := make([]byte, dataMaxSize)
for {
_, err := barSecConn.Read(readBuffer)
if err == io.EOF {
return
} else if err != nil {
b.Fatalf("Failed to read from barSecConn: %v", err)
}
}
}()
b.StartTimer()
for i := 0; i < b.N; i++ {
_, err := fooSecConn.Write([]byte(fooWriteText))
if err != nil {
b.Fatalf("Failed to write to fooSecConn: %v", err)
}
}
b.StopTimer()
fooSecConn.Close()
//barSecConn.Close() race condition
}

+ 384
- 0
switch.go View File

@ -0,0 +1,384 @@
package p2p
import (
"errors"
"fmt"
"net"
"time"
. "github.com/tendermint/go-common"
"github.com/tendermint/go-crypto"
"github.com/tendermint/log15"
)
type Reactor interface {
Service // Start, Stop
SetSwitch(*Switch)
GetChannels() []*ChannelDescriptor
AddPeer(peer *Peer)
RemovePeer(peer *Peer, reason interface{})
Receive(chID byte, peer *Peer, msgBytes []byte)
}
//--------------------------------------
type BaseReactor struct {
QuitService // Provides Start, Stop, .Quit
Switch *Switch
}
func NewBaseReactor(log log15.Logger, name string, impl Reactor) *BaseReactor {
return &BaseReactor{
QuitService: *NewQuitService(log, name, impl),
Switch: nil,
}
}
func (br *BaseReactor) SetSwitch(sw *Switch) {
br.Switch = sw
}
func (_ *BaseReactor) GetChannels() []*ChannelDescriptor { return nil }
func (_ *BaseReactor) AddPeer(peer *Peer) {}
func (_ *BaseReactor) RemovePeer(peer *Peer, reason interface{}) {}
func (_ *BaseReactor) Receive(chID byte, peer *Peer, msgBytes []byte) {}
//-----------------------------------------------------------------------------
/*
The `Switch` handles peer connections and exposes an API to receive incoming messages
on `Reactors`. Each `Reactor` is responsible for handling incoming messages of one
or more `Channels`. So while sending outgoing messages is typically performed on the peer,
incoming messages are received on the reactor.
*/
type Switch struct {
BaseService
listeners []Listener
reactors map[string]Reactor
chDescs []*ChannelDescriptor
reactorsByCh map[byte]Reactor
peers *PeerSet
dialing *CMap
nodeInfo *NodeInfo // our node info
nodePrivKey crypto.PrivKeyEd25519 // our node privkey
}
var (
ErrSwitchDuplicatePeer = errors.New("Duplicate peer")
ErrSwitchMaxPeersPerIPRange = errors.New("IP range has too many peers")
)
const (
peerDialTimeoutSeconds = 3 // TODO make this configurable
handshakeTimeoutSeconds = 20 // TODO make this configurable
maxNumPeers = 50 // TODO make this configurable
)
func NewSwitch() *Switch {
sw := &Switch{
reactors: make(map[string]Reactor),
chDescs: make([]*ChannelDescriptor, 0),
reactorsByCh: make(map[byte]Reactor),
peers: NewPeerSet(),
dialing: NewCMap(),
nodeInfo: nil,
}
sw.BaseService = *NewBaseService(log, "P2P Switch", sw)
return sw
}
// Not goroutine safe.
func (sw *Switch) AddReactor(name string, reactor Reactor) Reactor {
// Validate the reactor.
// No two reactors can share the same channel.
reactorChannels := reactor.GetChannels()
for _, chDesc := range reactorChannels {
chID := chDesc.ID
if sw.reactorsByCh[chID] != nil {
PanicSanity(fmt.Sprintf("Channel %X has multiple reactors %v & %v", chID, sw.reactorsByCh[chID], reactor))
}
sw.chDescs = append(sw.chDescs, chDesc)
sw.reactorsByCh[chID] = reactor
}
sw.reactors[name] = reactor
reactor.SetSwitch(sw)
return reactor
}
// Not goroutine safe.
func (sw *Switch) Reactors() map[string]Reactor {
return sw.reactors
}
// Not goroutine safe.
func (sw *Switch) Reactor(name string) Reactor {
return sw.reactors[name]
}
// Not goroutine safe.
func (sw *Switch) AddListener(l Listener) {
sw.listeners = append(sw.listeners, l)
}
// Not goroutine safe.
func (sw *Switch) Listeners() []Listener {
return sw.listeners
}
// Not goroutine safe.
func (sw *Switch) IsListening() bool {
return len(sw.listeners) > 0
}
// Not goroutine safe.
func (sw *Switch) SetNodeInfo(nodeInfo *NodeInfo) {
sw.nodeInfo = nodeInfo
}
// Not goroutine safe.
func (sw *Switch) NodeInfo() *NodeInfo {
return sw.nodeInfo
}
// Not goroutine safe.
// NOTE: Overwrites sw.nodeInfo.PubKey
func (sw *Switch) SetNodePrivKey(nodePrivKey crypto.PrivKeyEd25519) {
sw.nodePrivKey = nodePrivKey
if sw.nodeInfo != nil {
sw.nodeInfo.PubKey = nodePrivKey.PubKey().(crypto.PubKeyEd25519)
}
}
// Switch.Start() starts all the reactors, peers, and listeners.
func (sw *Switch) OnStart() error {
sw.BaseService.OnStart()
// Start reactors
for _, reactor := range sw.reactors {
_, err := reactor.Start()
if err != nil {
return err
}
}
// Start peers
for _, peer := range sw.peers.List() {
sw.startInitPeer(peer)
}
// Start listeners
for _, listener := range sw.listeners {
go sw.listenerRoutine(listener)
}
return nil
}
func (sw *Switch) OnStop() {
sw.BaseService.OnStop()
// Stop listeners
for _, listener := range sw.listeners {
listener.Stop()
}
sw.listeners = nil
// Stop peers
for _, peer := range sw.peers.List() {
peer.Stop()
}
sw.peers = NewPeerSet()
// Stop reactors
for _, reactor := range sw.reactors {
reactor.Stop()
}
}
// NOTE: This performs a blocking handshake before the peer is added.
// CONTRACT: Iff error is returned, peer is nil, and conn is immediately closed.
func (sw *Switch) AddPeerWithConnection(conn net.Conn, outbound bool) (*Peer, error) {
// Set deadline for handshake so we don't block forever on conn.ReadFull
conn.SetDeadline(time.Now().Add(handshakeTimeoutSeconds * time.Second))
// First, encrypt the connection.
sconn, err := MakeSecretConnection(conn, sw.nodePrivKey)
if err != nil {
conn.Close()
return nil, err
}
// Then, perform node handshake
peerNodeInfo, err := peerHandshake(sconn, sw.nodeInfo)
if err != nil {
sconn.Close()
return nil, err
}
// Check that the professed PubKey matches the sconn's.
if !peerNodeInfo.PubKey.Equals(sconn.RemotePubKey()) {
sconn.Close()
return nil, fmt.Errorf("Ignoring connection with unmatching pubkey: %v vs %v",
peerNodeInfo.PubKey, sconn.RemotePubKey())
}
// Avoid self
if peerNodeInfo.PubKey.Equals(sw.nodeInfo.PubKey) {
sconn.Close()
return nil, fmt.Errorf("Ignoring connection from self")
}
// Check version, chain id
if err := sw.nodeInfo.CompatibleWith(peerNodeInfo); err != nil {
sconn.Close()
return nil, err
}
// The peerNodeInfo is not verified, so overwrite
// the IP, and the port too if we dialed out
// Everything else we just have to trust
peerNodeInfo.Address = sconn.RemoteAddr().String()
peer := newPeer(sconn, peerNodeInfo, outbound, sw.reactorsByCh, sw.chDescs, sw.StopPeerForError)
// Add the peer to .peers
// ignore if duplicate or if we already have too many for that IP range
if err := sw.peers.Add(peer); err != nil {
log.Notice("Ignoring peer", "error", err, "peer", peer)
peer.Stop()
return nil, err
}
// remove deadline and start peer
conn.SetDeadline(time.Time{})
if sw.IsRunning() {
sw.startInitPeer(peer)
}
log.Notice("Added peer", "peer", peer)
return peer, nil
}
func (sw *Switch) startInitPeer(peer *Peer) {
peer.Start() // spawn send/recv routines
sw.addPeerToReactors(peer) // run AddPeer on each reactor
}
func (sw *Switch) DialPeerWithAddress(addr *NetAddress) (*Peer, error) {
log.Info("Dialing address", "address", addr)
sw.dialing.Set(addr.IP.String(), addr)
conn, err := addr.DialTimeout(peerDialTimeoutSeconds * time.Second)
sw.dialing.Delete(addr.IP.String())
if err != nil {
log.Info("Failed dialing address", "address", addr, "error", err)
return nil, err
}
peer, err := sw.AddPeerWithConnection(conn, true)
if err != nil {
log.Info("Failed adding peer", "address", addr, "conn", conn, "error", err)
return nil, err
}
log.Notice("Dialed and added peer", "address", addr, "peer", peer)
return peer, nil
}
func (sw *Switch) IsDialing(addr *NetAddress) bool {
return sw.dialing.Has(addr.IP.String())
}
// Broadcast runs a go routine for each attempted send, which will block
// trying to send for defaultSendTimeoutSeconds. Returns a channel
// which receives success values for each attempted send (false if times out)
func (sw *Switch) Broadcast(chID byte, msg interface{}) chan bool {
successChan := make(chan bool, len(sw.peers.List()))
log.Info("Broadcast", "channel", chID, "msg", msg)
for _, peer := range sw.peers.List() {
go func(peer *Peer) {
success := peer.Send(chID, msg)
successChan <- success
}(peer)
}
return successChan
}
// Returns the count of outbound/inbound and outbound-dialing peers.
func (sw *Switch) NumPeers() (outbound, inbound, dialing int) {
peers := sw.peers.List()
for _, peer := range peers {
if peer.outbound {
outbound++
} else {
inbound++
}
}
dialing = sw.dialing.Size()
return
}
func (sw *Switch) Peers() IPeerSet {
return sw.peers
}
// Disconnect from a peer due to external error.
// TODO: make record depending on reason.
func (sw *Switch) StopPeerForError(peer *Peer, reason interface{}) {
log.Notice("Stopping peer for error", "peer", peer, "error", reason)
sw.peers.Remove(peer)
peer.Stop()
sw.removePeerFromReactors(peer, reason)
}
// Disconnect from a peer gracefully.
// TODO: handle graceful disconnects.
func (sw *Switch) StopPeerGracefully(peer *Peer) {
log.Notice("Stopping peer gracefully")
sw.peers.Remove(peer)
peer.Stop()
sw.removePeerFromReactors(peer, nil)
}
func (sw *Switch) addPeerToReactors(peer *Peer) {
for _, reactor := range sw.reactors {
reactor.AddPeer(peer)
}
}
func (sw *Switch) removePeerFromReactors(peer *Peer, reason interface{}) {
for _, reactor := range sw.reactors {
reactor.RemovePeer(peer, reason)
}
}
func (sw *Switch) listenerRoutine(l Listener) {
for {
inConn, ok := <-l.Connections()
if !ok {
break
}
// ignore connection if we already have enough
if maxNumPeers <= sw.peers.Size() {
log.Info("Ignoring inbound connection: already have enough peers", "address", inConn.RemoteAddr().String(), "numPeers", sw.peers.Size(), "max", maxNumPeers)
continue
}
// Ignore connections from IP ranges for which we have too many
if sw.peers.HasMaxForIPRange(inConn) {
log.Info("Ignoring inbound connection: already have enough peers for that IP range", "address", inConn.RemoteAddr().String())
continue
}
// New inbound connection!
_, err := sw.AddPeerWithConnection(inConn, false)
if err != nil {
log.Notice("Ignoring inbound connection: error on AddPeerWithConnection", "address", inConn.RemoteAddr().String(), "error", err)
continue
}
// NOTE: We don't yet have the listening port of the
// remote (if they have a listener at all).
// The peerHandshake will handle that
}
// cleanup
}
//-----------------------------------------------------------------------------
type SwitchEventNewPeer struct {
Peer *Peer
}
type SwitchEventDonePeer struct {
Peer *Peer
Error interface{}
}

+ 234
- 0
switch_test.go View File

@ -0,0 +1,234 @@
package p2p
import (
"bytes"
"sync"
"testing"
"time"
. "github.com/tendermint/go-common"
"github.com/tendermint/go-crypto"
"github.com/tendermint/go-wire"
)
type PeerMessage struct {
PeerKey string
Bytes []byte
Counter int
}
type TestReactor struct {
BaseReactor
mtx sync.Mutex
channels []*ChannelDescriptor
peersAdded []*Peer
peersRemoved []*Peer
logMessages bool
msgsCounter int
msgsReceived map[byte][]PeerMessage
}
func NewTestReactor(channels []*ChannelDescriptor, logMessages bool) *TestReactor {
tr := &TestReactor{
channels: channels,
logMessages: logMessages,
msgsReceived: make(map[byte][]PeerMessage),
}
tr.BaseReactor = *NewBaseReactor(log, "TestReactor", tr)
return tr
}
func (tr *TestReactor) GetChannels() []*ChannelDescriptor {
return tr.channels
}
func (tr *TestReactor) AddPeer(peer *Peer) {
tr.mtx.Lock()
defer tr.mtx.Unlock()
tr.peersAdded = append(tr.peersAdded, peer)
}
func (tr *TestReactor) RemovePeer(peer *Peer, reason interface{}) {
tr.mtx.Lock()
defer tr.mtx.Unlock()
tr.peersRemoved = append(tr.peersRemoved, peer)
}
func (tr *TestReactor) Receive(chID byte, peer *Peer, msgBytes []byte) {
if tr.logMessages {
tr.mtx.Lock()
defer tr.mtx.Unlock()
//fmt.Printf("Received: %X, %X\n", chID, msgBytes)
tr.msgsReceived[chID] = append(tr.msgsReceived[chID], PeerMessage{peer.Key, msgBytes, tr.msgsCounter})
tr.msgsCounter++
}
}
//-----------------------------------------------------------------------------
// convenience method for creating two switches connected to each other.
func makeSwitchPair(t testing.TB, initSwitch func(*Switch) *Switch) (*Switch, *Switch) {
s1PrivKey := crypto.GenPrivKeyEd25519()
s2PrivKey := crypto.GenPrivKeyEd25519()
// Create two switches that will be interconnected.
s1 := initSwitch(NewSwitch())
s1.SetNodeInfo(&NodeInfo{
PubKey: s1PrivKey.PubKey().(crypto.PubKeyEd25519),
Moniker: "switch1",
Network: "testing",
Version: "123.123.123",
})
s1.SetNodePrivKey(s1PrivKey)
s2 := initSwitch(NewSwitch())
s2.SetNodeInfo(&NodeInfo{
PubKey: s2PrivKey.PubKey().(crypto.PubKeyEd25519),
Moniker: "switch2",
Network: "testing",
Version: "123.123.123",
})
s2.SetNodePrivKey(s2PrivKey)
// Start switches and reactors
s1.Start()
s2.Start()
// Create a listener for s1
l := NewDefaultListener("tcp", ":8001", true)
// Dial the listener & add the connection to s2.
lAddr := l.ExternalAddress()
connOut, err := lAddr.Dial()
if err != nil {
t.Fatalf("Could not connect to listener address %v", lAddr)
} else {
t.Logf("Created a connection to listener address %v", lAddr)
}
connIn, ok := <-l.Connections()
if !ok {
t.Fatalf("Could not get inbound connection from listener")
}
go s1.AddPeerWithConnection(connIn, false) // AddPeer is blocking, requires handshake.
s2.AddPeerWithConnection(connOut, true)
// Wait for things to happen, peers to get added...
time.Sleep(100 * time.Millisecond)
// Close the server, no longer needed.
l.Stop()
return s1, s2
}
func TestSwitches(t *testing.T) {
s1, s2 := makeSwitchPair(t, func(sw *Switch) *Switch {
// Make two reactors of two channels each
sw.AddReactor("foo", NewTestReactor([]*ChannelDescriptor{
&ChannelDescriptor{ID: byte(0x00), Priority: 10},
&ChannelDescriptor{ID: byte(0x01), Priority: 10},
}, true))
sw.AddReactor("bar", NewTestReactor([]*ChannelDescriptor{
&ChannelDescriptor{ID: byte(0x02), Priority: 10},
&ChannelDescriptor{ID: byte(0x03), Priority: 10},
}, true))
return sw
})
defer s1.Stop()
defer s2.Stop()
// Lets send a message from s1 to s2.
if s1.Peers().Size() != 1 {
t.Errorf("Expected exactly 1 peer in s1, got %v", s1.Peers().Size())
}
if s2.Peers().Size() != 1 {
t.Errorf("Expected exactly 1 peer in s2, got %v", s2.Peers().Size())
}
ch0Msg := "channel zero"
ch1Msg := "channel foo"
ch2Msg := "channel bar"
s1.Broadcast(byte(0x00), ch0Msg)
s1.Broadcast(byte(0x01), ch1Msg)
s1.Broadcast(byte(0x02), ch2Msg)
// Wait for things to settle...
time.Sleep(5000 * time.Millisecond)
// Check message on ch0
ch0Msgs := s2.Reactor("foo").(*TestReactor).msgsReceived[byte(0x00)]
if len(ch0Msgs) != 1 {
t.Errorf("Expected to have received 1 message in ch0")
}
if !bytes.Equal(ch0Msgs[0].Bytes, wire.BinaryBytes(ch0Msg)) {
t.Errorf("Unexpected message bytes. Wanted: %X, Got: %X", wire.BinaryBytes(ch0Msg), ch0Msgs[0].Bytes)
}
// Check message on ch1
ch1Msgs := s2.Reactor("foo").(*TestReactor).msgsReceived[byte(0x01)]
if len(ch1Msgs) != 1 {
t.Errorf("Expected to have received 1 message in ch1")
}
if !bytes.Equal(ch1Msgs[0].Bytes, wire.BinaryBytes(ch1Msg)) {
t.Errorf("Unexpected message bytes. Wanted: %X, Got: %X", wire.BinaryBytes(ch1Msg), ch1Msgs[0].Bytes)
}
// Check message on ch2
ch2Msgs := s2.Reactor("bar").(*TestReactor).msgsReceived[byte(0x02)]
if len(ch2Msgs) != 1 {
t.Errorf("Expected to have received 1 message in ch2")
}
if !bytes.Equal(ch2Msgs[0].Bytes, wire.BinaryBytes(ch2Msg)) {
t.Errorf("Unexpected message bytes. Wanted: %X, Got: %X", wire.BinaryBytes(ch2Msg), ch2Msgs[0].Bytes)
}
}
func BenchmarkSwitches(b *testing.B) {
b.StopTimer()
s1, s2 := makeSwitchPair(b, func(sw *Switch) *Switch {
// Make bar reactors of bar channels each
sw.AddReactor("foo", NewTestReactor([]*ChannelDescriptor{
&ChannelDescriptor{ID: byte(0x00), Priority: 10},
&ChannelDescriptor{ID: byte(0x01), Priority: 10},
}, false))
sw.AddReactor("bar", NewTestReactor([]*ChannelDescriptor{
&ChannelDescriptor{ID: byte(0x02), Priority: 10},
&ChannelDescriptor{ID: byte(0x03), Priority: 10},
}, false))
return sw
})
defer s1.Stop()
defer s2.Stop()
// Allow time for goroutines to boot up
time.Sleep(1000 * time.Millisecond)
b.StartTimer()
numSuccess, numFailure := 0, 0
// Send random message from foo channel to another
for i := 0; i < b.N; i++ {
chID := byte(i % 4)
successChan := s1.Broadcast(chID, "test data")
for s := range successChan {
if s {
numSuccess += 1
} else {
numFailure += 1
}
}
}
log.Warn(Fmt("success: %v, failure: %v", numSuccess, numFailure))
// Allow everything to flush before stopping switches & closing connections.
b.StopTimer()
time.Sleep(1000 * time.Millisecond)
}

+ 74
- 0
types.go View File

@ -0,0 +1,74 @@
package p2p
import (
"fmt"
"net"
"strconv"
"strings"
"github.com/tendermint/go-crypto"
)
type NodeInfo struct {
PubKey crypto.PubKeyEd25519 `json:"pub_key"`
Moniker string `json:"moniker"`
Network string `json:"network"`
Address string `json:"address"`
Version string `json:"version"` // major.minor.revision
Other []string `json:"other"` // other application specific data
}
// CONTRACT: two nodes are compactible if the major/minor versions match and network match
func (info *NodeInfo) CompatibleWith(other *NodeInfo) error {
iMajor, iMinor, _, iErr := splitVersion(info.Version)
oMajor, oMinor, _, oErr := splitVersion(other.Version)
// if our own version number is not formatted right, we messed up
if iErr != nil {
return iErr
}
// version number must be formatted correctly ("x.x.x")
if oErr != nil {
return oErr
}
// major version must match
if iMajor != oMajor {
return fmt.Errorf("Peer is on a different major version. Got %v, expected %v", oMajor, iMajor)
}
// minor version must match
if iMinor != oMinor {
return fmt.Errorf("Peer is on a different minor version. Got %v, expected %v", oMinor, iMinor)
}
// nodes must be on the same network
if info.Network != other.Network {
return fmt.Errorf("Peer is on a different network. Got %v, expected %v", other.Network, info.Network)
}
return nil
}
func (info *NodeInfo) Host() string {
host, _, _ := net.SplitHostPort(info.Address)
return host
}
func (info *NodeInfo) Port() int {
_, port, _ := net.SplitHostPort(info.Address)
port_i, err := strconv.Atoi(port)
if err != nil {
return -1
}
return port_i
}
func splitVersion(version string) (string, string, string, error) {
spl := strings.Split(version, ".")
if len(spl) != 3 {
return "", "", "", fmt.Errorf("Invalid version format %v", version)
}
return spl[0], spl[1], spl[2], nil
}

+ 5
- 0
upnp/README.md View File

@ -0,0 +1,5 @@
# `tendermint/p2p/upnp`
## Resources
* http://www.upnp-hacks.org/upnp.html

+ 7
- 0
upnp/log.go View File

@ -0,0 +1,7 @@
package upnp
import (
"github.com/tendermint/go-logger"
)
var log = logger.New("module", "upnp")

+ 111
- 0
upnp/probe.go View File

@ -0,0 +1,111 @@
package upnp
import (
"errors"
"fmt"
"net"
"time"
. "github.com/tendermint/go-common"
)
type UPNPCapabilities struct {
PortMapping bool
Hairpin bool
}
func makeUPNPListener(intPort int, extPort int) (NAT, net.Listener, net.IP, error) {
nat, err := Discover()
if err != nil {
return nil, nil, nil, errors.New(fmt.Sprintf("NAT upnp could not be discovered: %v", err))
}
log.Info(Fmt("ourIP: %v", nat.(*upnpNAT).ourIP))
ext, err := nat.GetExternalAddress()
if err != nil {
return nat, nil, nil, errors.New(fmt.Sprintf("External address error: %v", err))
}
log.Info(Fmt("External address: %v", ext))
port, err := nat.AddPortMapping("tcp", extPort, intPort, "Tendermint UPnP Probe", 0)
if err != nil {
return nat, nil, ext, errors.New(fmt.Sprintf("Port mapping error: %v", err))
}
log.Info(Fmt("Port mapping mapped: %v", port))
// also run the listener, open for all remote addresses.
listener, err := net.Listen("tcp", fmt.Sprintf(":%v", intPort))
if err != nil {
return nat, nil, ext, errors.New(fmt.Sprintf("Error establishing listener: %v", err))
}
return nat, listener, ext, nil
}
func testHairpin(listener net.Listener, extAddr string) (supportsHairpin bool) {
// Listener
go func() {
inConn, err := listener.Accept()
if err != nil {
log.Notice(Fmt("Listener.Accept() error: %v", err))
return
}
log.Info(Fmt("Accepted incoming connection: %v -> %v", inConn.LocalAddr(), inConn.RemoteAddr()))
buf := make([]byte, 1024)
n, err := inConn.Read(buf)
if err != nil {
log.Notice(Fmt("Incoming connection read error: %v", err))
return
}
log.Info(Fmt("Incoming connection read %v bytes: %X", n, buf))
if string(buf) == "test data" {
supportsHairpin = true
return
}
}()
// Establish outgoing
outConn, err := net.Dial("tcp", extAddr)
if err != nil {
log.Notice(Fmt("Outgoing connection dial error: %v", err))
return
}
n, err := outConn.Write([]byte("test data"))
if err != nil {
log.Notice(Fmt("Outgoing connection write error: %v", err))
return
}
log.Info(Fmt("Outgoing connection wrote %v bytes", n))
// Wait for data receipt
time.Sleep(1 * time.Second)
return
}
func Probe() (caps UPNPCapabilities, err error) {
log.Info("Probing for UPnP!")
intPort, extPort := 8001, 8001
nat, listener, ext, err := makeUPNPListener(intPort, extPort)
if err != nil {
return
}
caps.PortMapping = true
// Deferred cleanup
defer func() {
err = nat.DeletePortMapping("tcp", intPort, extPort)
if err != nil {
log.Warn(Fmt("Port mapping delete error: %v", err))
}
listener.Close()
}()
supportsHairpin := testHairpin(listener, fmt.Sprintf("%v:%v", ext, extPort))
if supportsHairpin {
caps.Hairpin = true
}
return
}

+ 380
- 0
upnp/upnp.go View File

@ -0,0 +1,380 @@
/*
Taken from taipei-torrent
Just enough UPnP to be able to forward ports
*/
package upnp
// BUG(jae): TODO: use syscalls to get actual ourIP. http://pastebin.com/9exZG4rh
import (
"bytes"
"encoding/xml"
"errors"
"io/ioutil"
"net"
"net/http"
"strconv"
"strings"
"time"
)
type upnpNAT struct {
serviceURL string
ourIP string
urnDomain string
}
// protocol is either "udp" or "tcp"
type NAT interface {
GetExternalAddress() (addr net.IP, err error)
AddPortMapping(protocol string, externalPort, internalPort int, description string, timeout int) (mappedExternalPort int, err error)
DeletePortMapping(protocol string, externalPort, internalPort int) (err error)
}
func Discover() (nat NAT, err error) {
ssdp, err := net.ResolveUDPAddr("udp4", "239.255.255.250:1900")
if err != nil {
return
}
conn, err := net.ListenPacket("udp4", ":0")
if err != nil {
return
}
socket := conn.(*net.UDPConn)
defer socket.Close()
err = socket.SetDeadline(time.Now().Add(3 * time.Second))
if err != nil {
return
}
st := "InternetGatewayDevice:1"
buf := bytes.NewBufferString(
"M-SEARCH * HTTP/1.1\r\n" +
"HOST: 239.255.255.250:1900\r\n" +
"ST: ssdp:all\r\n" +
"MAN: \"ssdp:discover\"\r\n" +
"MX: 2\r\n\r\n")
message := buf.Bytes()
answerBytes := make([]byte, 1024)
for i := 0; i < 3; i++ {
_, err = socket.WriteToUDP(message, ssdp)
if err != nil {
return
}
var n int
n, _, err = socket.ReadFromUDP(answerBytes)
for {
n, _, err = socket.ReadFromUDP(answerBytes)
if err != nil {
break
}
answer := string(answerBytes[0:n])
if strings.Index(answer, st) < 0 {
continue
}
// HTTP header field names are case-insensitive.
// http://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.2
locString := "\r\nlocation:"
answer = strings.ToLower(answer)
locIndex := strings.Index(answer, locString)
if locIndex < 0 {
continue
}
loc := answer[locIndex+len(locString):]
endIndex := strings.Index(loc, "\r\n")
if endIndex < 0 {
continue
}
locURL := strings.TrimSpace(loc[0:endIndex])
var serviceURL, urnDomain string
serviceURL, urnDomain, err = getServiceURL(locURL)
if err != nil {
return
}
var ourIP net.IP
ourIP, err = localIPv4()
if err != nil {
return
}
nat = &upnpNAT{serviceURL: serviceURL, ourIP: ourIP.String(), urnDomain: urnDomain}
return
}
}
err = errors.New("UPnP port discovery failed.")
return
}
type Envelope struct {
XMLName xml.Name `xml:"http://schemas.xmlsoap.org/soap/envelope/ Envelope"`
Soap *SoapBody
}
type SoapBody struct {
XMLName xml.Name `xml:"http://schemas.xmlsoap.org/soap/envelope/ Body"`
ExternalIP *ExternalIPAddressResponse
}
type ExternalIPAddressResponse struct {
XMLName xml.Name `xml:"GetExternalIPAddressResponse"`
IPAddress string `xml:"NewExternalIPAddress"`
}
type ExternalIPAddress struct {
XMLName xml.Name `xml:"NewExternalIPAddress"`
IP string
}
type UPNPService struct {
ServiceType string `xml:"serviceType"`
ControlURL string `xml:"controlURL"`
}
type DeviceList struct {
Device []Device `xml:"device"`
}
type ServiceList struct {
Service []UPNPService `xml:"service"`
}
type Device struct {
XMLName xml.Name `xml:"device"`
DeviceType string `xml:"deviceType"`
DeviceList DeviceList `xml:"deviceList"`
ServiceList ServiceList `xml:"serviceList"`
}
type Root struct {
Device Device
}
func getChildDevice(d *Device, deviceType string) *Device {
dl := d.DeviceList.Device
for i := 0; i < len(dl); i++ {
if strings.Index(dl[i].DeviceType, deviceType) >= 0 {
return &dl[i]
}
}
return nil
}
func getChildService(d *Device, serviceType string) *UPNPService {
sl := d.ServiceList.Service
for i := 0; i < len(sl); i++ {
if strings.Index(sl[i].ServiceType, serviceType) >= 0 {
return &sl[i]
}
}
return nil
}
func localIPv4() (net.IP, error) {
tt, err := net.Interfaces()
if err != nil {
return nil, err
}
for _, t := range tt {
aa, err := t.Addrs()
if err != nil {
return nil, err
}
for _, a := range aa {
ipnet, ok := a.(*net.IPNet)
if !ok {
continue
}
v4 := ipnet.IP.To4()
if v4 == nil || v4[0] == 127 { // loopback address
continue
}
return v4, nil
}
}
return nil, errors.New("cannot find local IP address")
}
func getServiceURL(rootURL string) (url, urnDomain string, err error) {
r, err := http.Get(rootURL)
if err != nil {
return
}
defer r.Body.Close()
if r.StatusCode >= 400 {
err = errors.New(string(r.StatusCode))
return
}
var root Root
err = xml.NewDecoder(r.Body).Decode(&root)
if err != nil {
return
}
a := &root.Device
if strings.Index(a.DeviceType, "InternetGatewayDevice:1") < 0 {
err = errors.New("No InternetGatewayDevice")
return
}
b := getChildDevice(a, "WANDevice:1")
if b == nil {
err = errors.New("No WANDevice")
return
}
c := getChildDevice(b, "WANConnectionDevice:1")
if c == nil {
err = errors.New("No WANConnectionDevice")
return
}
d := getChildService(c, "WANIPConnection:1")
if d == nil {
// Some routers don't follow the UPnP spec, and put WanIPConnection under WanDevice,
// instead of under WanConnectionDevice
d = getChildService(b, "WANIPConnection:1")
if d == nil {
err = errors.New("No WANIPConnection")
return
}
}
// Extract the domain name, which isn't always 'schemas-upnp-org'
urnDomain = strings.Split(d.ServiceType, ":")[1]
url = combineURL(rootURL, d.ControlURL)
return
}
func combineURL(rootURL, subURL string) string {
protocolEnd := "://"
protoEndIndex := strings.Index(rootURL, protocolEnd)
a := rootURL[protoEndIndex+len(protocolEnd):]
rootIndex := strings.Index(a, "/")
return rootURL[0:protoEndIndex+len(protocolEnd)+rootIndex] + subURL
}
func soapRequest(url, function, message, domain string) (r *http.Response, err error) {
fullMessage := "<?xml version=\"1.0\" ?>" +
"<s:Envelope xmlns:s=\"http://schemas.xmlsoap.org/soap/envelope/\" s:encodingStyle=\"http://schemas.xmlsoap.org/soap/encoding/\">\r\n" +
"<s:Body>" + message + "</s:Body></s:Envelope>"
req, err := http.NewRequest("POST", url, strings.NewReader(fullMessage))
if err != nil {
return nil, err
}
req.Header.Set("Content-Type", "text/xml ; charset=\"utf-8\"")
req.Header.Set("User-Agent", "Darwin/10.0.0, UPnP/1.0, MiniUPnPc/1.3")
//req.Header.Set("Transfer-Encoding", "chunked")
req.Header.Set("SOAPAction", "\"urn:"+domain+":service:WANIPConnection:1#"+function+"\"")
req.Header.Set("Connection", "Close")
req.Header.Set("Cache-Control", "no-cache")
req.Header.Set("Pragma", "no-cache")
// log.Stderr("soapRequest ", req)
r, err = http.DefaultClient.Do(req)
if err != nil {
return nil, err
}
/*if r.Body != nil {
defer r.Body.Close()
}*/
if r.StatusCode >= 400 {
// log.Stderr(function, r.StatusCode)
err = errors.New("Error " + strconv.Itoa(r.StatusCode) + " for " + function)
r = nil
return
}
return
}
type statusInfo struct {
externalIpAddress string
}
func (n *upnpNAT) getExternalIPAddress() (info statusInfo, err error) {
message := "<u:GetExternalIPAddress xmlns:u=\"urn:" + n.urnDomain + ":service:WANIPConnection:1\">\r\n" +
"</u:GetExternalIPAddress>"
var response *http.Response
response, err = soapRequest(n.serviceURL, "GetExternalIPAddress", message, n.urnDomain)
if response != nil {
defer response.Body.Close()
}
if err != nil {
return
}
var envelope Envelope
data, err := ioutil.ReadAll(response.Body)
reader := bytes.NewReader(data)
xml.NewDecoder(reader).Decode(&envelope)
info = statusInfo{envelope.Soap.ExternalIP.IPAddress}
if err != nil {
return
}
return
}
func (n *upnpNAT) GetExternalAddress() (addr net.IP, err error) {
info, err := n.getExternalIPAddress()
if err != nil {
return
}
addr = net.ParseIP(info.externalIpAddress)
return
}
func (n *upnpNAT) AddPortMapping(protocol string, externalPort, internalPort int, description string, timeout int) (mappedExternalPort int, err error) {
// A single concatenation would break ARM compilation.
message := "<u:AddPortMapping xmlns:u=\"urn:" + n.urnDomain + ":service:WANIPConnection:1\">\r\n" +
"<NewRemoteHost></NewRemoteHost><NewExternalPort>" + strconv.Itoa(externalPort)
message += "</NewExternalPort><NewProtocol>" + protocol + "</NewProtocol>"
message += "<NewInternalPort>" + strconv.Itoa(internalPort) + "</NewInternalPort>" +
"<NewInternalClient>" + n.ourIP + "</NewInternalClient>" +
"<NewEnabled>1</NewEnabled><NewPortMappingDescription>"
message += description +
"</NewPortMappingDescription><NewLeaseDuration>" + strconv.Itoa(timeout) +
"</NewLeaseDuration></u:AddPortMapping>"
var response *http.Response
response, err = soapRequest(n.serviceURL, "AddPortMapping", message, n.urnDomain)
if response != nil {
defer response.Body.Close()
}
if err != nil {
return
}
// TODO: check response to see if the port was forwarded
// log.Println(message, response)
// JAE:
// body, err := ioutil.ReadAll(response.Body)
// fmt.Println(string(body), err)
mappedExternalPort = externalPort
_ = response
return
}
func (n *upnpNAT) DeletePortMapping(protocol string, externalPort, internalPort int) (err error) {
message := "<u:DeletePortMapping xmlns:u=\"urn:" + n.urnDomain + ":service:WANIPConnection:1\">\r\n" +
"<NewRemoteHost></NewRemoteHost><NewExternalPort>" + strconv.Itoa(externalPort) +
"</NewExternalPort><NewProtocol>" + protocol + "</NewProtocol>" +
"</u:DeletePortMapping>"
var response *http.Response
response, err = soapRequest(n.serviceURL, "DeletePortMapping", message, n.urnDomain)
if response != nil {
defer response.Body.Close()
}
if err != nil {
return
}
// TODO: check response to see if the port was deleted
// log.Println(message, response)
_ = response
return
}

+ 15
- 0
util.go View File

@ -0,0 +1,15 @@
package p2p
import (
"crypto/sha256"
)
// doubleSha256 calculates sha256(sha256(b)) and returns the resulting bytes.
func doubleSha256(b []byte) []byte {
hasher := sha256.New()
hasher.Write(b)
sum := hasher.Sum(nil)
hasher.Reset()
hasher.Write(sum)
return hasher.Sum(nil)
}

+ 3
- 0
version.go View File

@ -0,0 +1,3 @@
package p2p
const Version = "0.3.0"

Loading…
Cancel
Save