@ -0,0 +1,22 @@ | |||
secp256k1-go | |||
======= | |||
golang secp256k1 library | |||
Implements cryptographic operations for the secp256k1 ECDSA curve used by Bitcoin. | |||
Installing | |||
=== | |||
``` | |||
sudo apt-get install gmp-dev | |||
``` | |||
Now compiles with cgo! | |||
Test | |||
=== | |||
To run tests do | |||
``` | |||
go tests | |||
``` |
@ -0,0 +1,192 @@ | |||
package secp256k1 | |||
/* | |||
<HaltingState> sipa, int secp256k1_ecdsa_pubkey_create(unsigned char *pubkey, int *pubkeylen, const unsigned char *seckey, int compressed); | |||
<HaltingState> is that how i generate private/public keys? | |||
<sipa> HaltingState: you pass in a random 32-byte string as seckey | |||
<sipa> HaltingState: if it is valid, the corresponding pubkey is put in pubkey | |||
<sipa> and true is returned | |||
<sipa> otherwise, false is returned | |||
<sipa> around 1 in 2^128 32-byte strings are invalid, so the odds of even ever seeing one is extremely rare | |||
<sipa> private keys are mathematically numbers | |||
<sipa> each has a corresponding point on the curve as public key | |||
<sipa> a private key is just a number | |||
<sipa> a public key is a point with x/y coordinates | |||
<sipa> almost every 256-bit number is a valid private key (one with a point on the curve corresponding to it) | |||
<sipa> HaltingState: ok? | |||
<sipa> more than half of random points are not on the curve | |||
<sipa> and actually, it is less than the square root, not less than half, sorry :) | |||
!!! | |||
<sipa> a private key is a NUMBER | |||
<sipa> a public key is a POINT | |||
<gmaxwell> half the x,y values in the field are not on the curve, a private key is an integer. | |||
<sipa> HaltingState: yes, n,q = private keys; N,Q = corresponding public keys (N=n*G, Q=q*G); then it follows that n*Q = n*q*G = q*n*G = q*N | |||
<sipa> that's the reason ECDH works | |||
<sipa> multiplication is associative and commutativ | |||
*/ | |||
/* | |||
<HaltingState> sipa, ok; i am doing compact signatures and I want to know; can someone change the signature to get another valid signature for same message without the private key | |||
<HaltingState> because i know they can do that for the normal 72 byte signatures that openssl was putting out | |||
<sipa> HaltingState: if you don't enforce non-malleability, yes | |||
<sipa> HaltingState: if you force the highest bit of t | |||
<sipa> it _creates_ signatures that already satisfy that condition | |||
<sipa> but it will accept ones that don't | |||
<sipa> maybe i should change that, and be strict | |||
<HaltingState> yes; i want some way to know signature is valid but fails malleability | |||
<sipa> well if the highest bit of S is 1, you can take its complement | |||
<sipa> and end up with a valid signature | |||
<sipa> that is canonical | |||
*/ | |||
/* | |||
<HaltingState> sipa, I am signing messages and highest bit of the compact signature is 1!!! | |||
<HaltingState> if (b & 0x80) == 0x80 { | |||
<HaltingState> log.Panic("b= %v b2= %v \n", b, b&0x80) | |||
<HaltingState> } | |||
<sipa> what bit? | |||
* Pengoo has quit (Ping timeout: 272 seconds) | |||
<HaltingState> the highest bit of the first byte of signature | |||
<sipa> it's the highest bit of S | |||
<sipa> so the 32nd byte | |||
<HaltingState> wtf | |||
*/ | |||
/* | |||
For instance, nonces are used in HTTP digest access authentication to calculate an MD5 digest | |||
of the password. The nonces are different each time the 401 authentication challenge | |||
response code is presented, thus making replay attacks virtually impossible. | |||
can verify client/server match without sending password over network | |||
*/ | |||
/* | |||
<hanihani> one thing I dont get about armory for instance, | |||
is how the hot-wallet can generate new addresses without | |||
knowing the master key | |||
*/ | |||
/* | |||
<HaltingState> i am yelling at the telehash people for using secp256r1 | |||
instead of secp256k1; they thing r1 is "more secure" despite fact that | |||
there is no implementation that works and wrapping it is now taking | |||
up massive time, lol | |||
<gmaxwell> ... | |||
<gmaxwell> You know that the *r curves are selected via an undisclosed | |||
secret process, right? | |||
<gmaxwell> HaltingState: telehash is offtopic for this channel. | |||
*/ | |||
/* | |||
For instance, nonces are used in HTTP digest access authentication to calculate an MD5 digest | |||
of the password. The nonces are different each time the 401 authentication challenge | |||
response code is presented, thus making replay attacks virtually impossible. | |||
can verify client/server match without sending password over network | |||
*/ | |||
/* | |||
void secp256k1_start(void); | |||
void secp256k1_stop(void); | |||
* Verify an ECDSA signature. | |||
* Returns: 1: correct signature | |||
* 0: incorrect signature | |||
* -1: invalid public key | |||
* -2: invalid signature | |||
* | |||
int secp256k1_ecdsa_verify(const unsigned char *msg, int msglen, | |||
const unsigned char *sig, int siglen, | |||
const unsigned char *pubkey, int pubkeylen); | |||
http://www.nilsschneider.net/2013/01/28/recovering-bitcoin-private-keys.html | |||
Why did this work? ECDSA requires a random number for each signature. If this random | |||
number is ever used twice with the same private key it can be recovered. | |||
This transaction was generated by a hardware bitcoin wallet using a pseudo-random number | |||
generator that was returning the same “random” number every time. | |||
Nonce is 32 bytes? | |||
* Create an ECDSA signature. | |||
* Returns: 1: signature created | |||
* 0: nonce invalid, try another one | |||
* In: msg: the message being signed | |||
* msglen: the length of the message being signed | |||
* seckey: pointer to a 32-byte secret key (assumed to be valid) | |||
* nonce: pointer to a 32-byte nonce (generated with a cryptographic PRNG) | |||
* Out: sig: pointer to a 72-byte array where the signature will be placed. | |||
* siglen: pointer to an int, which will be updated to the signature length (<=72). | |||
* | |||
int secp256k1_ecdsa_sign(const unsigned char *msg, int msglen, | |||
unsigned char *sig, int *siglen, | |||
const unsigned char *seckey, | |||
const unsigned char *nonce); | |||
* Create a compact ECDSA signature (64 byte + recovery id). | |||
* Returns: 1: signature created | |||
* 0: nonce invalid, try another one | |||
* In: msg: the message being signed | |||
* msglen: the length of the message being signed | |||
* seckey: pointer to a 32-byte secret key (assumed to be valid) | |||
* nonce: pointer to a 32-byte nonce (generated with a cryptographic PRNG) | |||
* Out: sig: pointer to a 64-byte array where the signature will be placed. | |||
* recid: pointer to an int, which will be updated to contain the recovery id. | |||
* | |||
int secp256k1_ecdsa_sign_compact(const unsigned char *msg, int msglen, | |||
unsigned char *sig64, | |||
const unsigned char *seckey, | |||
const unsigned char *nonce, | |||
int *recid); | |||
* Recover an ECDSA public key from a compact signature. | |||
* Returns: 1: public key succesfully recovered (which guarantees a correct signature). | |||
* 0: otherwise. | |||
* In: msg: the message assumed to be signed | |||
* msglen: the length of the message | |||
* compressed: whether to recover a compressed or uncompressed pubkey | |||
* recid: the recovery id (as returned by ecdsa_sign_compact) | |||
* Out: pubkey: pointer to a 33 or 65 byte array to put the pubkey. | |||
* pubkeylen: pointer to an int that will contain the pubkey length. | |||
* | |||
recovery id is between 0 and 3 | |||
int secp256k1_ecdsa_recover_compact(const unsigned char *msg, int msglen, | |||
const unsigned char *sig64, | |||
unsigned char *pubkey, int *pubkeylen, | |||
int compressed, int recid); | |||
* Verify an ECDSA secret key. | |||
* Returns: 1: secret key is valid | |||
* 0: secret key is invalid | |||
* In: seckey: pointer to a 32-byte secret key | |||
* | |||
int secp256k1_ecdsa_seckey_verify(const unsigned char *seckey); | |||
** Just validate a public key. | |||
* Returns: 1: valid public key | |||
* 0: invalid public key | |||
* | |||
int secp256k1_ecdsa_pubkey_verify(const unsigned char *pubkey, int pubkeylen); | |||
** Compute the public key for a secret key. | |||
* In: compressed: whether the computed public key should be compressed | |||
* seckey: pointer to a 32-byte private key. | |||
* Out: pubkey: pointer to a 33-byte (if compressed) or 65-byte (if uncompressed) | |||
* area to store the public key. | |||
* pubkeylen: pointer to int that will be updated to contains the pubkey's | |||
* length. | |||
* Returns: 1: secret was valid, public key stores | |||
* 0: secret was invalid, try again. | |||
* | |||
int secp256k1_ecdsa_pubkey_create(unsigned char *pubkey, int *pubkeylen, const unsigned char *seckey, int compressed); | |||
*/ |
@ -0,0 +1,306 @@ | |||
package secp256k1 | |||
/* | |||
#cgo CFLAGS: -std=gnu99 -Wno-error | |||
#cgo darwin CFLAGS: -I/usr/local/include | |||
#cgo LDFLAGS: -lgmp | |||
#cgo darwin LDFLAGS: -L/usr/local/lib | |||
#define USE_FIELD_10X26 | |||
#define USE_NUM_GMP | |||
#define USE_FIELD_INV_BUILTIN | |||
#include "./secp256k1/src/secp256k1.c" | |||
*/ | |||
import "C" | |||
import ( | |||
"bytes" | |||
"errors" | |||
"unsafe" | |||
"github.com/ethereum/go-ethereum/crypto/randentropy" | |||
) | |||
//#define USE_FIELD_5X64 | |||
/* | |||
Todo: | |||
> Centralize key management in module | |||
> add pubkey/private key struct | |||
> Dont let keys leave module; address keys as ints | |||
> store private keys in buffer and shuffle (deters persistance on swap disc) | |||
> Byte permutation (changing) | |||
> xor with chaning random block (to deter scanning memory for 0x63) (stream cipher?) | |||
On Disk | |||
> Store keys in wallets | |||
> use slow key derivation function for wallet encryption key (2 seconds) | |||
*/ | |||
func init() { | |||
C.secp256k1_start() //takes 10ms to 100ms | |||
} | |||
func Stop() { | |||
C.secp256k1_stop() | |||
} | |||
/* | |||
int secp256k1_ecdsa_pubkey_create( | |||
unsigned char *pubkey, int *pubkeylen, | |||
const unsigned char *seckey, int compressed); | |||
*/ | |||
/** Compute the public key for a secret key. | |||
* In: compressed: whether the computed public key should be compressed | |||
* seckey: pointer to a 32-byte private key. | |||
* Out: pubkey: pointer to a 33-byte (if compressed) or 65-byte (if uncompressed) | |||
* area to store the public key. | |||
* pubkeylen: pointer to int that will be updated to contains the pubkey's | |||
* length. | |||
* Returns: 1: secret was valid, public key stores | |||
* 0: secret was invalid, try again. | |||
*/ | |||
//pubkey, seckey | |||
func GenerateKeyPair() ([]byte, []byte) { | |||
pubkey_len := C.int(65) | |||
const seckey_len = 32 | |||
var pubkey []byte = make([]byte, pubkey_len) | |||
var seckey []byte = randentropy.GetEntropyMixed(seckey_len) | |||
var pubkey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&pubkey[0])) | |||
var seckey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&seckey[0])) | |||
ret := C.secp256k1_ecdsa_pubkey_create( | |||
pubkey_ptr, &pubkey_len, | |||
seckey_ptr, 0) | |||
if ret != C.int(1) { | |||
return GenerateKeyPair() //invalid secret, try again | |||
} | |||
return pubkey, seckey | |||
} | |||
func GeneratePubKey(seckey []byte) ([]byte, error) { | |||
if err := VerifySeckeyValidity(seckey); err != nil { | |||
return nil, err | |||
} | |||
pubkey_len := C.int(65) | |||
const seckey_len = 32 | |||
var pubkey []byte = make([]byte, pubkey_len) | |||
var pubkey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&pubkey[0])) | |||
var seckey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&seckey[0])) | |||
ret := C.secp256k1_ecdsa_pubkey_create( | |||
pubkey_ptr, &pubkey_len, | |||
seckey_ptr, 0) | |||
if ret != C.int(1) { | |||
return nil, errors.New("Unable to generate pubkey from seckey") | |||
} | |||
return pubkey, nil | |||
} | |||
/* | |||
* Create a compact ECDSA signature (64 byte + recovery id). | |||
* Returns: 1: signature created | |||
* 0: nonce invalid, try another one | |||
* In: msg: the message being signed | |||
* msglen: the length of the message being signed | |||
* seckey: pointer to a 32-byte secret key (assumed to be valid) | |||
* nonce: pointer to a 32-byte nonce (generated with a cryptographic PRNG) | |||
* Out: sig: pointer to a 64-byte array where the signature will be placed. | |||
* recid: pointer to an int, which will be updated to contain the recovery id. | |||
*/ | |||
/* | |||
int secp256k1_ecdsa_sign_compact(const unsigned char *msg, int msglen, | |||
unsigned char *sig64, | |||
const unsigned char *seckey, | |||
const unsigned char *nonce, | |||
int *recid); | |||
*/ | |||
func Sign(msg []byte, seckey []byte) ([]byte, error) { | |||
nonce := randentropy.GetEntropyMixed(32) | |||
var sig []byte = make([]byte, 65) | |||
var recid C.int | |||
var msg_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&msg[0])) | |||
var seckey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&seckey[0])) | |||
var nonce_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&nonce[0])) | |||
var sig_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&sig[0])) | |||
if C.secp256k1_ecdsa_seckey_verify(seckey_ptr) != C.int(1) { | |||
return nil, errors.New("Invalid secret key") | |||
} | |||
ret := C.secp256k1_ecdsa_sign_compact( | |||
msg_ptr, C.int(len(msg)), | |||
sig_ptr, | |||
seckey_ptr, | |||
nonce_ptr, | |||
&recid) | |||
sig[64] = byte(int(recid)) | |||
if ret != C.int(1) { | |||
// nonce invalid, retry | |||
return Sign(msg, seckey) | |||
} | |||
return sig, nil | |||
} | |||
/* | |||
* Verify an ECDSA secret key. | |||
* Returns: 1: secret key is valid | |||
* 0: secret key is invalid | |||
* In: seckey: pointer to a 32-byte secret key | |||
*/ | |||
func VerifySeckeyValidity(seckey []byte) error { | |||
if len(seckey) != 32 { | |||
return errors.New("priv key is not 32 bytes") | |||
} | |||
var seckey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&seckey[0])) | |||
ret := C.secp256k1_ecdsa_seckey_verify(seckey_ptr) | |||
if int(ret) != 1 { | |||
return errors.New("invalid seckey") | |||
} | |||
return nil | |||
} | |||
/* | |||
* Validate a public key. | |||
* Returns: 1: valid public key | |||
* 0: invalid public key | |||
*/ | |||
func VerifyPubkeyValidity(pubkey []byte) error { | |||
if len(pubkey) != 65 { | |||
return errors.New("pub key is not 65 bytes") | |||
} | |||
var pubkey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&pubkey[0])) | |||
ret := C.secp256k1_ecdsa_pubkey_verify(pubkey_ptr, 65) | |||
if int(ret) != 1 { | |||
return errors.New("invalid pubkey") | |||
} | |||
return nil | |||
} | |||
func VerifySignatureValidity(sig []byte) bool { | |||
//64+1 | |||
if len(sig) != 65 { | |||
return false | |||
} | |||
//malleability check, highest bit must be 1 | |||
if (sig[32] & 0x80) == 0x80 { | |||
return false | |||
} | |||
//recovery id check | |||
if sig[64] >= 4 { | |||
return false | |||
} | |||
return true | |||
} | |||
//for compressed signatures, does not need pubkey | |||
func VerifySignature(msg []byte, sig []byte, pubkey1 []byte) error { | |||
if msg == nil || sig == nil || pubkey1 == nil { | |||
return errors.New("inputs must be non-nil") | |||
} | |||
if len(sig) != 65 { | |||
return errors.New("invalid signature length") | |||
} | |||
if len(pubkey1) != 65 { | |||
return errors.New("Invalid public key length") | |||
} | |||
//to enforce malleability, highest bit of S must be 0 | |||
//S starts at 32nd byte | |||
if (sig[32] & 0x80) == 0x80 { //highest bit must be 1 | |||
return errors.New("Signature not malleable") | |||
} | |||
if sig[64] >= 4 { | |||
return errors.New("Recover byte invalid") | |||
} | |||
// if pubkey recovered, signature valid | |||
pubkey2, err := RecoverPubkey(msg, sig) | |||
if err != nil { | |||
return err | |||
} | |||
if len(pubkey2) != 65 { | |||
return errors.New("Invalid recovered public key length") | |||
} | |||
if !bytes.Equal(pubkey1, pubkey2) { | |||
return errors.New("Public key does not match recovered public key") | |||
} | |||
return nil | |||
} | |||
/* | |||
int secp256k1_ecdsa_recover_compact(const unsigned char *msg, int msglen, | |||
const unsigned char *sig64, | |||
unsigned char *pubkey, int *pubkeylen, | |||
int compressed, int recid); | |||
*/ | |||
/* | |||
* Recover an ECDSA public key from a compact signature. | |||
* Returns: 1: public key succesfully recovered (which guarantees a correct signature). | |||
* 0: otherwise. | |||
* In: msg: the message assumed to be signed | |||
* msglen: the length of the message | |||
* compressed: whether to recover a compressed or uncompressed pubkey | |||
* recid: the recovery id (as returned by ecdsa_sign_compact) | |||
* Out: pubkey: pointer to a 33 or 65 byte array to put the pubkey. | |||
* pubkeylen: pointer to an int that will contain the pubkey length. | |||
*/ | |||
//recovers the public key from the signature | |||
//recovery of pubkey means correct signature | |||
func RecoverPubkey(msg []byte, sig []byte) ([]byte, error) { | |||
if len(sig) != 65 { | |||
return nil, errors.New("Invalid signature length") | |||
} | |||
var pubkey []byte = make([]byte, 65) | |||
var msg_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&msg[0])) | |||
var sig_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&sig[0])) | |||
var pubkey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&pubkey[0])) | |||
var pubkeylen C.int | |||
ret := C.secp256k1_ecdsa_recover_compact( | |||
msg_ptr, C.int(len(msg)), | |||
sig_ptr, | |||
pubkey_ptr, &pubkeylen, | |||
C.int(0), C.int(sig[64]), | |||
) | |||
if ret == C.int(0) { | |||
return nil, errors.New("Failed to recover public key") | |||
} else if pubkeylen != C.int(65) { | |||
return nil, errors.New("Impossible Error: Invalid recovered public key length") | |||
} else { | |||
return pubkey, nil | |||
} | |||
return nil, errors.New("Impossible Error: func RecoverPubkey has reached an unreachable state") | |||
} |
@ -0,0 +1,238 @@ | |||
package secp256k1 | |||
import ( | |||
"bytes" | |||
"fmt" | |||
"log" | |||
"testing" | |||
"github.com/ethereum/go-ethereum/crypto/randentropy" | |||
) | |||
const TESTS = 10000 // how many tests | |||
const SigSize = 65 //64+1 | |||
func Test_Secp256_00(t *testing.T) { | |||
var nonce []byte = randentropy.GetEntropyMixed(32) //going to get bitcoins stolen! | |||
if len(nonce) != 32 { | |||
t.Fatal() | |||
} | |||
} | |||
//tests for Malleability | |||
//highest bit of S must be 0; 32nd byte | |||
func CompactSigTest(sig []byte) { | |||
var b int = int(sig[32]) | |||
if b < 0 { | |||
log.Panic() | |||
} | |||
if ((b >> 7) == 1) != ((b & 0x80) == 0x80) { | |||
log.Panic("b= %v b2= %v \n", b, b>>7) | |||
} | |||
if (b & 0x80) == 0x80 { | |||
log.Panic("b= %v b2= %v \n", b, b&0x80) | |||
} | |||
} | |||
//test pubkey/private generation | |||
func Test_Secp256_01(t *testing.T) { | |||
pubkey, seckey := GenerateKeyPair() | |||
if err := VerifySeckeyValidity(seckey); err != nil { | |||
t.Fatal() | |||
} | |||
if err := VerifyPubkeyValidity(pubkey); err != nil { | |||
t.Fatal() | |||
} | |||
} | |||
//test size of messages | |||
func Test_Secp256_02s(t *testing.T) { | |||
pubkey, seckey := GenerateKeyPair() | |||
msg := randentropy.GetEntropyMixed(32) | |||
sig, _ := Sign(msg, seckey) | |||
CompactSigTest(sig) | |||
if sig == nil { | |||
t.Fatal("Signature nil") | |||
} | |||
if len(pubkey) != 65 { | |||
t.Fail() | |||
} | |||
if len(seckey) != 32 { | |||
t.Fail() | |||
} | |||
if len(sig) != 64+1 { | |||
t.Fail() | |||
} | |||
if int(sig[64]) > 4 { | |||
t.Fail() | |||
} //should be 0 to 4 | |||
} | |||
//test signing message | |||
func Test_Secp256_02(t *testing.T) { | |||
pubkey1, seckey := GenerateKeyPair() | |||
msg := randentropy.GetEntropyMixed(32) | |||
sig, _ := Sign(msg, seckey) | |||
if sig == nil { | |||
t.Fatal("Signature nil") | |||
} | |||
pubkey2, _ := RecoverPubkey(msg, sig) | |||
if pubkey2 == nil { | |||
t.Fatal("Recovered pubkey invalid") | |||
} | |||
if bytes.Equal(pubkey1, pubkey2) == false { | |||
t.Fatal("Recovered pubkey does not match") | |||
} | |||
err := VerifySignature(msg, sig, pubkey1) | |||
if err != nil { | |||
t.Fatal("Signature invalid") | |||
} | |||
} | |||
//test pubkey recovery | |||
func Test_Secp256_02a(t *testing.T) { | |||
pubkey1, seckey1 := GenerateKeyPair() | |||
msg := randentropy.GetEntropyMixed(32) | |||
sig, _ := Sign(msg, seckey1) | |||
if sig == nil { | |||
t.Fatal("Signature nil") | |||
} | |||
err := VerifySignature(msg, sig, pubkey1) | |||
if err != nil { | |||
t.Fatal("Signature invalid") | |||
} | |||
pubkey2, _ := RecoverPubkey(msg, sig) | |||
if len(pubkey1) != len(pubkey2) { | |||
t.Fatal() | |||
} | |||
for i, _ := range pubkey1 { | |||
if pubkey1[i] != pubkey2[i] { | |||
t.Fatal() | |||
} | |||
} | |||
if bytes.Equal(pubkey1, pubkey2) == false { | |||
t.Fatal() | |||
} | |||
} | |||
//test random messages for the same pub/private key | |||
func Test_Secp256_03(t *testing.T) { | |||
_, seckey := GenerateKeyPair() | |||
for i := 0; i < TESTS; i++ { | |||
msg := randentropy.GetEntropyMixed(32) | |||
sig, _ := Sign(msg, seckey) | |||
CompactSigTest(sig) | |||
sig[len(sig)-1] %= 4 | |||
pubkey2, _ := RecoverPubkey(msg, sig) | |||
if pubkey2 == nil { | |||
t.Fail() | |||
} | |||
} | |||
} | |||
//test random messages for different pub/private keys | |||
func Test_Secp256_04(t *testing.T) { | |||
for i := 0; i < TESTS; i++ { | |||
pubkey1, seckey := GenerateKeyPair() | |||
msg := randentropy.GetEntropyMixed(32) | |||
sig, _ := Sign(msg, seckey) | |||
CompactSigTest(sig) | |||
if sig[len(sig)-1] >= 4 { | |||
t.Fail() | |||
} | |||
pubkey2, _ := RecoverPubkey(msg, sig) | |||
if pubkey2 == nil { | |||
t.Fail() | |||
} | |||
if bytes.Equal(pubkey1, pubkey2) == false { | |||
t.Fail() | |||
} | |||
} | |||
} | |||
//test random signatures against fixed messages; should fail | |||
//crashes: | |||
// -SIPA look at this | |||
func randSig() []byte { | |||
sig := randentropy.GetEntropyMixed(65) | |||
sig[32] &= 0x70 | |||
sig[64] %= 4 | |||
return sig | |||
} | |||
func Test_Secp256_06a_alt0(t *testing.T) { | |||
pubkey1, seckey := GenerateKeyPair() | |||
msg := randentropy.GetEntropyMixed(32) | |||
sig, _ := Sign(msg, seckey) | |||
if sig == nil { | |||
t.Fail() | |||
} | |||
if len(sig) != 65 { | |||
t.Fail() | |||
} | |||
for i := 0; i < TESTS; i++ { | |||
sig = randSig() | |||
pubkey2, _ := RecoverPubkey(msg, sig) | |||
if bytes.Equal(pubkey1, pubkey2) == true { | |||
t.Fail() | |||
} | |||
if pubkey2 != nil && VerifySignature(msg, sig, pubkey2) != nil { | |||
t.Fail() | |||
} | |||
if VerifySignature(msg, sig, pubkey1) == nil { | |||
t.Fail() | |||
} | |||
} | |||
} | |||
//test random messages against valid signature: should fail | |||
func Test_Secp256_06b(t *testing.T) { | |||
pubkey1, seckey := GenerateKeyPair() | |||
msg := randentropy.GetEntropyMixed(32) | |||
sig, _ := Sign(msg, seckey) | |||
fail_count := 0 | |||
for i := 0; i < TESTS; i++ { | |||
msg = randentropy.GetEntropyMixed(32) | |||
pubkey2, _ := RecoverPubkey(msg, sig) | |||
if bytes.Equal(pubkey1, pubkey2) == true { | |||
t.Fail() | |||
} | |||
if pubkey2 != nil && VerifySignature(msg, sig, pubkey2) != nil { | |||
t.Fail() | |||
} | |||
if VerifySignature(msg, sig, pubkey1) == nil { | |||
t.Fail() | |||
} | |||
} | |||
if fail_count != 0 { | |||
fmt.Printf("ERROR: Accepted signature for %v of %v random messages\n", fail_count, TESTS) | |||
} | |||
} | |||
func TestInvalidKey(t *testing.T) { | |||
p1 := make([]byte, 32) | |||
err := VerifySeckeyValidity(p1) | |||
if err == nil { | |||
t.Errorf("pvk %x varify sec key should have returned error", p1) | |||
} | |||
} |
@ -0,0 +1,19 @@ | |||
Copyright (c) 2013 Pieter Wuille | |||
Permission is hereby granted, free of charge, to any person obtaining a copy | |||
of this software and associated documentation files (the "Software"), to deal | |||
in the Software without restriction, including without limitation the rights | |||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |||
copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in | |||
all copies or substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |||
THE SOFTWARE. |
@ -0,0 +1,55 @@ | |||
$(shell CC=$(CC) YASM=$(YASM) ./configure) | |||
include config.mk | |||
FILES := src/*.h src/impl/*.h | |||
JAVA_FILES := src/java/org_bitcoin_NativeSecp256k1.h src/java/org_bitcoin_NativeSecp256k1.c | |||
OBJS := | |||
ifeq ($(USE_ASM), 1) | |||
OBJS := $(OBJS) obj/field_5x$(HAVE_LIMB)_asm.o | |||
endif | |||
STD="gnu99" | |||
default: tests libsecp256k1.a libsecp256k1.so | |||
clean: | |||
rm -rf obj/*.o bench tests *.a *.so config.mk | |||
obj/field_5x52_asm.o: src/field_5x52_asm.asm | |||
$(YASM) -f elf64 -o obj/field_5x52_asm.o src/field_5x52_asm.asm | |||
obj/field_5x64_asm.o: src/field_5x64_asm.asm | |||
$(YASM) -f elf64 -o obj/field_5x64_asm.o src/field_5x64_asm.asm | |||
obj/secp256k1.o: $(FILES) src/secp256k1.c include/secp256k1.h | |||
$(CC) -fPIC -std=$(STD) $(CFLAGS) $(CFLAGS_EXTRA) -DNDEBUG -$(OPTLEVEL) src/secp256k1.c -c -o obj/secp256k1.o | |||
bench: $(FILES) src/bench.c $(OBJS) | |||
$(CC) -fPIC -std=$(STD) $(CFLAGS) $(CFLAGS_EXTRA) $(CFLAGS_TEST_EXTRA) -DNDEBUG -$(OPTLEVEL) src/bench.c $(OBJS) $(LDFLAGS_EXTRA) $(LDFLAGS_TEST_EXTRA) -o bench | |||
tests: $(FILES) src/tests.c $(OBJS) | |||
$(CC) -std=$(STD) $(CFLAGS) $(CFLAGS_EXTRA) $(CFLAGS_TEST_EXTRA) -DVERIFY -fstack-protector-all -$(OPTLEVEL) -ggdb3 src/tests.c $(OBJS) $(LDFLAGS_EXTRA) $(LDFLAGS_TEST_EXTRA) -o tests | |||
tests_fuzzer: $(FILES) src/tests_fuzzer.c obj/secp256k1.o $(OBJS) | |||
$(CC) -std=$(STD) $(CFLAGS) $(CFLAGS_EXTRA) $(CFLAGS_TEST_EXTRA) -DVERIFY -fstack-protector-all -$(OPTLEVEL) -ggdb3 src/tests_fuzzer.c $(OBJS) obj/secp256k1.o $(LDFLAGS_EXTRA) $(LDFLAGS_TEST_EXTRA) -o tests_fuzzer | |||
coverage: $(FILES) src/tests.c $(OBJS) | |||
rm -rf tests.gcno tests.gcda tests_cov | |||
$(CC) -std=$(STD) $(CFLAGS) $(CFLAGS_EXTRA) $(CFLAGS_TEST_EXTRA) -DVERIFY --coverage -$(OPTLEVEL) -g src/tests.c $(OBJS) $(LDFLAGS_EXTRA) $(LDFLAGS_TEST_EXTRA) -o tests_cov | |||
rm -rf lcov | |||
mkdir -p lcov | |||
cd lcov; lcov --directory ../ --zerocounters | |||
cd lcov; ../tests_cov | |||
cd lcov; lcov --directory ../ --capture --output-file secp256k1.info | |||
cd lcov; genhtml -o . secp256k1.info | |||
libsecp256k1.a: obj/secp256k1.o $(OBJS) | |||
$(AR) -rs $@ $(OBJS) obj/secp256k1.o | |||
libsecp256k1.so: obj/secp256k1.o $(OBJS) | |||
$(CC) -std=$(STD) $(LDFLAGS_EXTRA) $(OBJS) obj/secp256k1.o -shared -o libsecp256k1.so | |||
libjavasecp256k1.so: $(OBJS) obj/secp256k1.o $(JAVA_FILES) | |||
$(CC) -fPIC -std=$(STD) $(CFLAGS) $(CFLAGS_EXTRA) -DNDEBUG -$(OPTLEVEL) -I. src/java/org_bitcoin_NativeSecp256k1.c $(LDFLAGS_EXTRA) $(OBJS) obj/secp256k1.o -shared -o libjavasecp256k1.so |
@ -0,0 +1,3 @@ | |||
* Unit tests for fieldelem/groupelem, including ones intended to | |||
trigger fieldelem's boundary cases. | |||
* Complete constant-time operations for signing/keygen |
@ -0,0 +1,9 @@ | |||
CC=cc | |||
YASM=yasm | |||
CFLAGS_EXTRA=-DUSE_FIELD_5X52 -DUSE_FIELD_5X52_ASM -DUSE_NUM_GMP -DUSE_FIELD_INV_NUM | |||
CFLAGS_TEST_EXTRA=-DENABLE_OPENSSL_TESTS | |||
LDFLAGS_EXTRA=-lgmp | |||
LDFLAGS_TEST_EXTRA=-lcrypto | |||
USE_ASM=1 | |||
HAVE_LIMB=52 | |||
OPTLEVEL=O2 |
@ -0,0 +1,175 @@ | |||
#!/bin/sh | |||
if test -f config.mk; then | |||
exit 0 | |||
fi | |||
if test -z "$CC"; then | |||
CC=cc | |||
fi | |||
if test -z "$YASM"; then | |||
YASM=yasm | |||
fi | |||
# test yasm | |||
$YASM -f elf64 -o /tmp/secp256k1-$$.o - <<EOF | |||
BITS 64 | |||
GLOBAL testyasm | |||
ALIGN 32 | |||
testyasm: | |||
xor r9,r9 | |||
EOF | |||
if [ "$?" = 0 ]; then | |||
$CC $CFLAGS -std=c99 -x c -c - -o /tmp/secp256k1-$$-2.o 2>/dev/null <<EOF | |||
void __attribute__ ((sysv_abi)) testyasm(void); | |||
int main() { | |||
testyasm(); | |||
return 0; | |||
} | |||
EOF | |||
$CC $CFLAGS -std=c99 /tmp/secp256k1-$$-2.o /tmp/secp256k1-$$.o -o /dev/null 2>/dev/null | |||
if [ "$?" = 0 ]; then | |||
HAVE_YASM=1 | |||
fi | |||
rm -rf /tmp/secp256k1-$$-2.o /tmp/secp256k1-$$.o | |||
fi | |||
# test openssl | |||
HAVE_OPENSSL=0 | |||
$CC $CFLAGS -std=c99 -x c - -o /dev/null -lcrypto 2>/dev/null <<EOF | |||
#include <openssl/bn.h> | |||
int main() { | |||
BN_CTX *ctx = BN_CTX_new(); | |||
BN_CTX_free(ctx); | |||
return 0; | |||
} | |||
EOF | |||
if [ "$?" = 0 ]; then | |||
HAVE_OPENSSL=1 | |||
fi | |||
# test openssl/EC | |||
HAVE_OPENSSL_EC=0 | |||
if [ "$HAVE_OPENSSL" = "1" ]; then | |||
$CC $CFLAGS -std=c99 -x c - -o /dev/null -lcrypto 2>/dev/null <<EOF | |||
#include <openssl/ec.h> | |||
#include <openssl/ecdsa.h> | |||
#include <openssl/obj_mac.h> | |||
int main() { | |||
EC_KEY *eckey = EC_KEY_new_by_curve_name(NID_secp256k1); | |||
ECDSA_sign(0, NULL, 0, NULL, NULL, eckey); | |||
ECDSA_verify(0, NULL, 0, NULL, 0, eckey); | |||
EC_KEY_free(eckey); | |||
return 0; | |||
} | |||
EOF | |||
if [ "$?" = 0 ]; then | |||
HAVE_OPENSSL_EC=1 | |||
fi | |||
fi | |||
# test gmp | |||
HAVE_GMP=0 | |||
$CC $CFLAGS -std=c99 -x c - -o /dev/null -lgmp 2>/dev/null <<EOF | |||
#include <gmp.h> | |||
int main() { | |||
mpz_t n; | |||
mpz_init(n); | |||
mpz_clear(n); | |||
return 0; | |||
} | |||
EOF | |||
if [ "$?" = 0 ]; then | |||
HAVE_GMP=1 | |||
fi | |||
# test __int128 | |||
HAVE_INT128=0 | |||
$CC $CFLAGS -std=c99 -x c - -o /dev/null 2>/dev/null <<EOF | |||
#include <stdint.h> | |||
int main() { | |||
__int128 x = 0; | |||
return 0; | |||
} | |||
EOF | |||
if [ "$?" = 0 ]; then | |||
HAVE_INT128=1 | |||
fi | |||
#default limb size | |||
HAVE_LIMB=52 | |||
for arg in "$@"; do | |||
case "$arg" in | |||
--no-yasm) | |||
HAVE_YASM=0 | |||
;; | |||
--no-gmp) | |||
HAVE_GMP=0 | |||
;; | |||
--no-openssl) | |||
HAVE_OPENSSL=0 | |||
;; | |||
--use-5x64) | |||
HAVE_LIMB=64 | |||
;; | |||
esac | |||
done | |||
LINK_OPENSSL=0 | |||
LINK_GMP=0 | |||
USE_ASM=0 | |||
# select field implementation | |||
if [ "$HAVE_YASM" = "1" ]; then | |||
CFLAGS_FIELD="-DUSE_FIELD_5X$HAVE_LIMB -DUSE_FIELD_5X${HAVE_LIMB}_ASM" | |||
USE_ASM=1 | |||
elif [ "$HAVE_INT128" = "1" ]; then | |||
CFLAGS_FIELD="-DUSE_FIELD_5X$HAVE_LIMB -DUSE_FIELD_5X${HAVE_LIMB}_INT128" | |||
elif [ "$HAVE_GMP" = "1" ]; then | |||
CFLAGS_FIELD="-DUSE_FIELD_GMP" | |||
LINK_GMP=1 | |||
else | |||
CFLAGS_FIELD="-DUSE_FIELD_10X26" | |||
fi | |||
# select num implementation | |||
if [ "$HAVE_GMP" = "1" ]; then | |||
CFLAGS_NUM="-DUSE_NUM_GMP -DUSE_FIELD_INV_NUM" | |||
LINK_GMP=1 | |||
elif [ "$HAVE_OPENSSL" = "1" ]; then | |||
CFLAGS_NUM="-DUSE_NUM_OPENSSL -DUSE_FIELD_INV_BUILTIN" | |||
LINK_OPENSSL=1 | |||
else | |||
echo "No usable num implementation found" >&2 | |||
exit 1 | |||
fi | |||
CFLAGS_EXTRA="$CFLAGS_FIELD $CFLAGS_NUM" | |||
LDFLAGS_EXTRA="" | |||
if [ "$LINK_GMP" = "1" ]; then | |||
LDFLAGS_EXTRA="-lgmp" | |||
fi | |||
if [ "$LINK_OPENSSL" = "1" ]; then | |||
LDFLAGS_EXTRA="-lcrypto" | |||
else | |||
if [ "$HAVE_OPENSSL_EC" = "1" ]; then | |||
LDFLAGS_TEST_EXTRA="-lcrypto" | |||
fi | |||
fi | |||
CFLAGS_TEST_EXTRA="" | |||
if [ "$HAVE_OPENSSL_EC" = "1" ]; then | |||
CFLAGS_TEST_EXTRA="-DENABLE_OPENSSL_TESTS" | |||
fi | |||
echo "CC=$CC" > config.mk | |||
echo "YASM=$YASM" >>config.mk | |||
echo "CFLAGS_EXTRA=$CFLAGS_EXTRA" >> config.mk | |||
echo "CFLAGS_TEST_EXTRA=$CFLAGS_TEST_EXTRA" >> config.mk | |||
echo "LDFLAGS_EXTRA=$LDFLAGS_EXTRA" >> config.mk | |||
echo "LDFLAGS_TEST_EXTRA=$LDFLAGS_TEST_EXTRA" >> config.mk | |||
echo "USE_ASM=$USE_ASM" >>config.mk | |||
echo "HAVE_LIMB=$HAVE_LIMB" >>config.mk | |||
echo "OPTLEVEL=O2" >>config.mk |
@ -0,0 +1,121 @@ | |||
#ifndef _SECP256K1_ | |||
#define _SECP256K1_ | |||
#ifdef __cplusplus | |||
extern "C" { | |||
#endif | |||
/** Initialize the library. This may take some time (10-100 ms). | |||
* You need to call this before calling any other function. | |||
* It cannot run in parallel with any other functions, but once | |||
* secp256k1_start() returns, all other functions are thread-safe. | |||
*/ | |||
void secp256k1_start(void); | |||
/** Free all memory associated with this library. After this, no | |||
* functions can be called anymore, except secp256k1_start() | |||
*/ | |||
void secp256k1_stop(void); | |||
/** Verify an ECDSA signature. | |||
* Returns: 1: correct signature | |||
* 0: incorrect signature | |||
* -1: invalid public key | |||
* -2: invalid signature | |||
*/ | |||
int secp256k1_ecdsa_verify(const unsigned char *msg, int msglen, | |||
const unsigned char *sig, int siglen, | |||
const unsigned char *pubkey, int pubkeylen); | |||
/** Create an ECDSA signature. | |||
* Returns: 1: signature created | |||
* 0: nonce invalid, try another one | |||
* In: msg: the message being signed | |||
* msglen: the length of the message being signed | |||
* seckey: pointer to a 32-byte secret key (assumed to be valid) | |||
* nonce: pointer to a 32-byte nonce (generated with a cryptographic PRNG) | |||
* Out: sig: pointer to a 72-byte array where the signature will be placed. | |||
* siglen: pointer to an int, which will be updated to the signature length (<=72). | |||
*/ | |||
int secp256k1_ecdsa_sign(const unsigned char *msg, int msglen, | |||
unsigned char *sig, int *siglen, | |||
const unsigned char *seckey, | |||
const unsigned char *nonce); | |||
/** Create a compact ECDSA signature (64 byte + recovery id). | |||
* Returns: 1: signature created | |||
* 0: nonce invalid, try another one | |||
* In: msg: the message being signed | |||
* msglen: the length of the message being signed | |||
* seckey: pointer to a 32-byte secret key (assumed to be valid) | |||
* nonce: pointer to a 32-byte nonce (generated with a cryptographic PRNG) | |||
* Out: sig: pointer to a 64-byte array where the signature will be placed. | |||
* recid: pointer to an int, which will be updated to contain the recovery id. | |||
*/ | |||
int secp256k1_ecdsa_sign_compact(const unsigned char *msg, int msglen, | |||
unsigned char *sig64, | |||
const unsigned char *seckey, | |||
const unsigned char *nonce, | |||
int *recid); | |||
/** Recover an ECDSA public key from a compact signature. | |||
* Returns: 1: public key succesfully recovered (which guarantees a correct signature). | |||
* 0: otherwise. | |||
* In: msg: the message assumed to be signed | |||
* msglen: the length of the message | |||
* sig64: signature as 64 byte array | |||
* compressed: whether to recover a compressed or uncompressed pubkey | |||
* recid: the recovery id (as returned by ecdsa_sign_compact) | |||
* Out: pubkey: pointer to a 33 or 65 byte array to put the pubkey. | |||
* pubkeylen: pointer to an int that will contain the pubkey length. | |||
*/ | |||
int secp256k1_ecdsa_recover_compact(const unsigned char *msg, int msglen, | |||
const unsigned char *sig64, | |||
unsigned char *pubkey, int *pubkeylen, | |||
int compressed, int recid); | |||
/** Verify an ECDSA secret key. | |||
* Returns: 1: secret key is valid | |||
* 0: secret key is invalid | |||
* In: seckey: pointer to a 32-byte secret key | |||
*/ | |||
int secp256k1_ecdsa_seckey_verify(const unsigned char *seckey); | |||
/** Just validate a public key. | |||
* Returns: 1: valid public key | |||
* 0: invalid public key | |||
*/ | |||
int secp256k1_ecdsa_pubkey_verify(const unsigned char *pubkey, int pubkeylen); | |||
/** Compute the public key for a secret key. | |||
* In: compressed: whether the computed public key should be compressed | |||
* seckey: pointer to a 32-byte private key. | |||
* Out: pubkey: pointer to a 33-byte (if compressed) or 65-byte (if uncompressed) | |||
* area to store the public key. | |||
* pubkeylen: pointer to int that will be updated to contains the pubkey's | |||
* length. | |||
* Returns: 1: secret was valid, public key stores | |||
* 0: secret was invalid, try again. | |||
*/ | |||
int secp256k1_ecdsa_pubkey_create(unsigned char *pubkey, int *pubkeylen, const unsigned char *seckey, int compressed); | |||
int secp256k1_ecdsa_pubkey_decompress(unsigned char *pubkey, int *pubkeylen); | |||
int secp256k1_ecdsa_privkey_export(const unsigned char *seckey, | |||
unsigned char *privkey, int *privkeylen, | |||
int compressed); | |||
int secp256k1_ecdsa_privkey_import(unsigned char *seckey, | |||
const unsigned char *privkey, int privkeylen); | |||
int secp256k1_ecdsa_privkey_tweak_add(unsigned char *seckey, const unsigned char *tweak); | |||
int secp256k1_ecdsa_pubkey_tweak_add(unsigned char *pubkey, int pubkeylen, const unsigned char *tweak); | |||
int secp256k1_ecdsa_privkey_tweak_mul(unsigned char *seckey, const unsigned char *tweak); | |||
int secp256k1_ecdsa_pubkey_tweak_mul(unsigned char *pubkey, int pubkeylen, const unsigned char *tweak); | |||
#ifdef __cplusplus | |||
} | |||
#endif | |||
#endif |
@ -0,0 +1,64 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#include <stdio.h> | |||
#include "impl/num.h" | |||
#include "impl/field.h" | |||
#include "impl/group.h" | |||
#include "impl/ecmult.h" | |||
#include "impl/ecdsa.h" | |||
#include "impl/util.h" | |||
void random_num_order(secp256k1_num_t *num) { | |||
do { | |||
unsigned char b32[32]; | |||
secp256k1_rand256(b32); | |||
secp256k1_num_set_bin(num, b32, 32); | |||
if (secp256k1_num_is_zero(num)) | |||
continue; | |||
if (secp256k1_num_cmp(num, &secp256k1_ge_consts->order) >= 0) | |||
continue; | |||
break; | |||
} while(1); | |||
} | |||
int main() { | |||
secp256k1_fe_start(); | |||
secp256k1_ge_start(); | |||
secp256k1_ecmult_start(); | |||
secp256k1_fe_t x; | |||
const secp256k1_num_t *order = &secp256k1_ge_consts->order; | |||
secp256k1_num_t r, s, m; | |||
secp256k1_num_init(&r); | |||
secp256k1_num_init(&s); | |||
secp256k1_num_init(&m); | |||
secp256k1_ecdsa_sig_t sig; | |||
secp256k1_ecdsa_sig_init(&sig); | |||
secp256k1_fe_set_hex(&x, "a357ae915c4a65281309edf20504740f0eb3343990216b4f81063cb65f2f7e0f", 64); | |||
int cnt = 0; | |||
int good = 0; | |||
for (int i=0; i<1000000; i++) { | |||
random_num_order(&r); | |||
random_num_order(&s); | |||
random_num_order(&m); | |||
secp256k1_ecdsa_sig_set_rs(&sig, &r, &s); | |||
secp256k1_ge_t pubkey; secp256k1_ge_set_xo(&pubkey, &x, 1); | |||
if (secp256k1_ge_is_valid(&pubkey)) { | |||
cnt++; | |||
good += secp256k1_ecdsa_sig_verify(&sig, &pubkey, &m); | |||
} | |||
} | |||
printf("%i/%i\n", good, cnt); | |||
secp256k1_num_free(&r); | |||
secp256k1_num_free(&s); | |||
secp256k1_num_free(&m); | |||
secp256k1_ecdsa_sig_free(&sig); | |||
secp256k1_ecmult_stop(); | |||
secp256k1_ge_stop(); | |||
secp256k1_fe_stop(); | |||
return 0; | |||
} |
@ -0,0 +1,28 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_ECDSA_ | |||
#define _SECP256K1_ECDSA_ | |||
#include "num.h" | |||
typedef struct { | |||
secp256k1_num_t r, s; | |||
} secp256k1_ecdsa_sig_t; | |||
void static secp256k1_ecdsa_sig_init(secp256k1_ecdsa_sig_t *r); | |||
void static secp256k1_ecdsa_sig_free(secp256k1_ecdsa_sig_t *r); | |||
int static secp256k1_ecdsa_pubkey_parse(secp256k1_ge_t *elem, const unsigned char *pub, int size); | |||
void static secp256k1_ecdsa_pubkey_serialize(secp256k1_ge_t *elem, unsigned char *pub, int *size, int compressed); | |||
int static secp256k1_ecdsa_sig_parse(secp256k1_ecdsa_sig_t *r, const unsigned char *sig, int size); | |||
int static secp256k1_ecdsa_sig_serialize(unsigned char *sig, int *size, const secp256k1_ecdsa_sig_t *a); | |||
int static secp256k1_ecdsa_sig_verify(const secp256k1_ecdsa_sig_t *sig, const secp256k1_ge_t *pubkey, const secp256k1_num_t *message); | |||
int static secp256k1_ecdsa_sig_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_num_t *seckey, const secp256k1_num_t *message, const secp256k1_num_t *nonce, int *recid); | |||
int static secp256k1_ecdsa_sig_recover(const secp256k1_ecdsa_sig_t *sig, secp256k1_ge_t *pubkey, const secp256k1_num_t *message, int recid); | |||
void static secp256k1_ecdsa_sig_set_rs(secp256k1_ecdsa_sig_t *sig, const secp256k1_num_t *r, const secp256k1_num_t *s); | |||
int static secp256k1_ecdsa_privkey_parse(secp256k1_num_t *key, const unsigned char *privkey, int privkeylen); | |||
int static secp256k1_ecdsa_privkey_serialize(unsigned char *privkey, int *privkeylen, const secp256k1_num_t *key, int compressed); | |||
#endif |
@ -0,0 +1,19 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_ECMULT_ | |||
#define _SECP256K1_ECMULT_ | |||
#include "num.h" | |||
#include "group.h" | |||
static void secp256k1_ecmult_start(void); | |||
static void secp256k1_ecmult_stop(void); | |||
/** Multiply with the generator: R = a*G */ | |||
static void secp256k1_ecmult_gen(secp256k1_gej_t *r, const secp256k1_num_t *a); | |||
/** Double multiply: R = na*A + ng*G */ | |||
static void secp256k1_ecmult(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_num_t *na, const secp256k1_num_t *ng); | |||
#endif |
@ -0,0 +1,101 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_FIELD_ | |||
#define _SECP256K1_FIELD_ | |||
/** Field element module. | |||
* | |||
* Field elements can be represented in several ways, but code accessing | |||
* it (and implementations) need to take certain properaties into account: | |||
* - Each field element can be normalized or not. | |||
* - Each field element has a magnitude, which represents how far away | |||
* its representation is away from normalization. Normalized elements | |||
* always have a magnitude of 1, but a magnitude of 1 doesn't imply | |||
* normality. | |||
*/ | |||
#if defined(USE_FIELD_GMP) | |||
#include "field_gmp.h" | |||
#elif defined(USE_FIELD_10X26) | |||
#include "field_10x26.h" | |||
#elif defined(USE_FIELD_5X52) | |||
#include "field_5x52.h" | |||
#elif defined(USE_FIELD_5X64) | |||
#include "field_5x64.h" | |||
#else | |||
#error "Please select field implementation" | |||
#endif | |||
typedef struct { | |||
secp256k1_num_t p; | |||
} secp256k1_fe_consts_t; | |||
static const secp256k1_fe_consts_t *secp256k1_fe_consts = NULL; | |||
/** Initialize field element precomputation data. */ | |||
void static secp256k1_fe_start(void); | |||
/** Unload field element precomputation data. */ | |||
void static secp256k1_fe_stop(void); | |||
/** Normalize a field element. */ | |||
void static secp256k1_fe_normalize(secp256k1_fe_t *r); | |||
/** Set a field element equal to a small integer. Resulting field element is normalized. */ | |||
void static secp256k1_fe_set_int(secp256k1_fe_t *r, int a); | |||
/** Verify whether a field element is zero. Requires the input to be normalized. */ | |||
int static secp256k1_fe_is_zero(const secp256k1_fe_t *a); | |||
/** Check the "oddness" of a field element. Requires the input to be normalized. */ | |||
int static secp256k1_fe_is_odd(const secp256k1_fe_t *a); | |||
/** Compare two field elements. Requires both inputs to be normalized */ | |||
int static secp256k1_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b); | |||
/** Set a field element equal to 32-byte big endian value. Resulting field element is normalized. */ | |||
void static secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a); | |||
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */ | |||
void static secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a); | |||
/** Set a field element equal to the additive inverse of another. Takes a maximum magnitude of the input | |||
* as an argument. The magnitude of the output is one higher. */ | |||
void static secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m); | |||
/** Multiplies the passed field element with a small integer constant. Multiplies the magnitude by that | |||
* small integer. */ | |||
void static secp256k1_fe_mul_int(secp256k1_fe_t *r, int a); | |||
/** Adds a field element to another. The result has the sum of the inputs' magnitudes as magnitude. */ | |||
void static secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a); | |||
/** Sets a field element to be the product of two others. Requires the inputs' magnitudes to be at most 8. | |||
* The output magnitude is 1 (but not guaranteed to be normalized). */ | |||
void static secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t *b); | |||
/** Sets a field element to be the square of another. Requires the input's magnitude to be at most 8. | |||
* The output magnitude is 1 (but not guaranteed to be normalized). */ | |||
void static secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a); | |||
/** Sets a field element to be the (modular) square root of another. Requires the inputs' magnitude to | |||
* be at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */ | |||
void static secp256k1_fe_sqrt(secp256k1_fe_t *r, const secp256k1_fe_t *a); | |||
/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be | |||
* at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */ | |||
void static secp256k1_fe_inv(secp256k1_fe_t *r, const secp256k1_fe_t *a); | |||
/** Potentially faster version of secp256k1_fe_inv, without constant-time guarantee. */ | |||
void static secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a); | |||
/** Convert a field element to a hexadecimal string. */ | |||
void static secp256k1_fe_get_hex(char *r, int *rlen, const secp256k1_fe_t *a); | |||
/** Convert a hexadecimal string to a field element. */ | |||
void static secp256k1_fe_set_hex(secp256k1_fe_t *r, const char *a, int alen); | |||
#endif |
@ -0,0 +1,19 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_FIELD_REPR_ | |||
#define _SECP256K1_FIELD_REPR_ | |||
#include <stdint.h> | |||
typedef struct { | |||
// X = sum(i=0..9, elem[i]*2^26) mod n | |||
uint32_t n[10]; | |||
#ifdef VERIFY | |||
int magnitude; | |||
int normalized; | |||
#endif | |||
} secp256k1_fe_t; | |||
#endif |
@ -0,0 +1,19 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_FIELD_REPR_ | |||
#define _SECP256K1_FIELD_REPR_ | |||
#include <stdint.h> | |||
typedef struct { | |||
// X = sum(i=0..4, elem[i]*2^52) mod n | |||
uint64_t n[5]; | |||
#ifdef VERIFY | |||
int magnitude; | |||
int normalized; | |||
#endif | |||
} secp256k1_fe_t; | |||
#endif |
@ -0,0 +1,463 @@ | |||
;; Added by Diederik Huys, March 2013 | |||
;; | |||
;; Provided public procedures: | |||
;; secp256k1_fe_mul_inner | |||
;; secp256k1_fe_sqr_inner | |||
;; | |||
;; Needed tools: YASM (http://yasm.tortall.net) | |||
;; | |||
;; | |||
BITS 64 | |||
;; Procedure ExSetMult | |||
;; Register Layout: | |||
;; INPUT: rdi = a->n | |||
;; rsi = b->n | |||
;; rdx = r->a | |||
;; | |||
;; INTERNAL: rdx:rax = multiplication accumulator | |||
;; r9:r8 = c | |||
;; r10-r13 = t0-t3 | |||
;; r14 = b.n[0] / t4 | |||
;; r15 = b.n[1] / t5 | |||
;; rbx = b.n[2] / t6 | |||
;; rcx = b.n[3] / t7 | |||
;; rbp = Constant 0FFFFFFFFFFFFFh / t8 | |||
;; rsi = b.n / b.n[4] / t9 | |||
GLOBAL secp256k1_fe_mul_inner | |||
ALIGN 32 | |||
secp256k1_fe_mul_inner: | |||
push rbp | |||
push rbx | |||
push r12 | |||
push r13 | |||
push r14 | |||
push r15 | |||
push rdx | |||
mov r14,[rsi+8*0] ; preload b.n[0]. This will be the case until | |||
; b.n[0] is no longer needed, then we reassign | |||
; r14 to t4 | |||
;; c=a.n[0] * b.n[0] | |||
mov rax,[rdi+0*8] ; load a.n[0] | |||
mov rbp,0FFFFFFFFFFFFFh | |||
mul r14 ; rdx:rax=a.n[0]*b.n[0] | |||
mov r15,[rsi+1*8] | |||
mov r10,rbp ; load modulus into target register for t0 | |||
mov r8,rax | |||
and r10,rax ; only need lower qword of c | |||
shrd r8,rdx,52 | |||
xor r9,r9 ; c < 2^64, so we ditch the HO part | |||
;; c+=a.n[0] * b.n[1] + a.n[1] * b.n[0] | |||
mov rax,[rdi+0*8] | |||
mul r15 | |||
add r8,rax | |||
adc r9,rdx | |||
mov rax,[rdi+1*8] | |||
mul r14 | |||
mov r11,rbp | |||
mov rbx,[rsi+2*8] | |||
add r8,rax | |||
adc r9,rdx | |||
and r11,r8 | |||
shrd r8,r9,52 | |||
xor r9,r9 | |||
;; c+=a.n[0 1 2] * b.n[2 1 0] | |||
mov rax,[rdi+0*8] | |||
mul rbx | |||
add r8,rax | |||
adc r9,rdx | |||
mov rax,[rdi+1*8] | |||
mul r15 | |||
add r8,rax | |||
adc r9,rdx | |||
mov rax,[rdi+2*8] | |||
mul r14 | |||
mov r12,rbp | |||
mov rcx,[rsi+3*8] | |||
add r8,rax | |||
adc r9,rdx | |||
and r12,r8 | |||
shrd r8,r9,52 | |||
xor r9,r9 | |||
;; c+=a.n[0 1 2 3] * b.n[3 2 1 0] | |||
mov rax,[rdi+0*8] | |||
mul rcx | |||
add r8,rax | |||
adc r9,rdx | |||
mov rax,[rdi+1*8] | |||
mul rbx | |||
add r8,rax | |||
adc r9,rdx | |||
mov rax,[rdi+2*8] | |||
mul r15 | |||
add r8,rax | |||
adc r9,rdx | |||
mov rax,[rdi+3*8] | |||
mul r14 | |||
mov r13,rbp | |||
mov rsi,[rsi+4*8] ; load b.n[4] and destroy pointer | |||
add r8,rax | |||
adc r9,rdx | |||
and r13,r8 | |||
shrd r8,r9,52 | |||
xor r9,r9 | |||
;; c+=a.n[0 1 2 3 4] * b.n[4 3 2 1 0] | |||
mov rax,[rdi+0*8] | |||
mul rsi | |||
add r8,rax | |||
adc r9,rdx | |||
mov rax,[rdi+1*8] | |||
mul rcx | |||
add r8,rax | |||
adc r9,rdx | |||
mov rax,[rdi+2*8] | |||
mul rbx | |||
add r8,rax | |||
adc r9,rdx | |||
mov rax,[rdi+3*8] | |||
mul r15 | |||
add r8,rax | |||
adc r9,rdx | |||
mov rax,[rdi+4*8] | |||
mul r14 | |||
mov r14,rbp ; load modulus into t4 and destroy a.n[0] | |||
add r8,rax | |||
adc r9,rdx | |||
and r14,r8 | |||
shrd r8,r9,52 | |||
xor r9,r9 | |||
;; c+=a.n[1 2 3 4] * b.n[4 3 2 1] | |||
mov rax,[rdi+1*8] | |||
mul rsi | |||
add r8,rax | |||
adc r9,rdx | |||
mov rax,[rdi+2*8] | |||
mul rcx | |||
add r8,rax | |||
adc r9,rdx | |||
mov rax,[rdi+3*8] | |||
mul rbx | |||
add r8,rax | |||
adc r9,rdx | |||
mov rax,[rdi+4*8] | |||
mul r15 | |||
mov r15,rbp | |||
add r8,rax | |||
adc r9,rdx | |||
and r15,r8 | |||
shrd r8,r9,52 | |||
xor r9,r9 | |||
;; c+=a.n[2 3 4] * b.n[4 3 2] | |||
mov rax,[rdi+2*8] | |||
mul rsi | |||
add r8,rax | |||
adc r9,rdx | |||
mov rax,[rdi+3*8] | |||
mul rcx | |||
add r8,rax | |||
adc r9,rdx | |||
mov rax,[rdi+4*8] | |||
mul rbx | |||
mov rbx,rbp | |||
add r8,rax | |||
adc r9,rdx | |||
and rbx,r8 | |||
shrd r8,r9,52 | |||
xor r9,r9 | |||
;; c+=a.n[3 4] * b.n[4 3] | |||
mov rax,[rdi+3*8] | |||
mul rsi | |||
add r8,rax | |||
adc r9,rdx | |||
mov rax,[rdi+4*8] | |||
mul rcx | |||
mov rcx,rbp | |||
add r8,rax | |||
adc r9,rdx | |||
and rcx,r8 | |||
shrd r8,r9,52 | |||
xor r9,r9 | |||
;; c+=a.n[4] * b.n[4] | |||
mov rax,[rdi+4*8] | |||
mul rsi | |||
;; mov rbp,rbp ; modulus already there! | |||
add r8,rax | |||
adc r9,rdx | |||
and rbp,r8 | |||
shrd r8,r9,52 | |||
xor r9,r9 | |||
mov rsi,r8 ; load c into t9 and destroy b.n[4] | |||
;; ******************************************************* | |||
common_exit_norm: | |||
mov rdi,01000003D10h ; load constant | |||
mov rax,r15 ; get t5 | |||
mul rdi | |||
add rax,r10 ; +t0 | |||
adc rdx,0 | |||
mov r10,0FFFFFFFFFFFFFh ; modulus. Sadly, we ran out of registers! | |||
mov r8,rax ; +c | |||
and r10,rax | |||
shrd r8,rdx,52 | |||
xor r9,r9 | |||
mov rax,rbx ; get t6 | |||
mul rdi | |||
add rax,r11 ; +t1 | |||
adc rdx,0 | |||
mov r11,0FFFFFFFFFFFFFh ; modulus | |||
add r8,rax ; +c | |||
adc r9,rdx | |||
and r11,r8 | |||
shrd r8,r9,52 | |||
xor r9,r9 | |||
mov rax,rcx ; get t7 | |||
mul rdi | |||
add rax,r12 ; +t2 | |||
adc rdx,0 | |||
pop rbx ; retrieve pointer to this.n | |||
mov r12,0FFFFFFFFFFFFFh ; modulus | |||
add r8,rax ; +c | |||
adc r9,rdx | |||
and r12,r8 | |||
mov [rbx+2*8],r12 ; mov into this.n[2] | |||
shrd r8,r9,52 | |||
xor r9,r9 | |||
mov rax,rbp ; get t8 | |||
mul rdi | |||
add rax,r13 ; +t3 | |||
adc rdx,0 | |||
mov r13,0FFFFFFFFFFFFFh ; modulus | |||
add r8,rax ; +c | |||
adc r9,rdx | |||
and r13,r8 | |||
mov [rbx+3*8],r13 ; -> this.n[3] | |||
shrd r8,r9,52 | |||
xor r9,r9 | |||
mov rax,rsi ; get t9 | |||
mul rdi | |||
add rax,r14 ; +t4 | |||
adc rdx,0 | |||
mov r14,0FFFFFFFFFFFFh ; !!! | |||
add r8,rax ; +c | |||
adc r9,rdx | |||
and r14,r8 | |||
mov [rbx+4*8],r14 ; -> this.n[4] | |||
shrd r8,r9,48 ; !!! | |||
xor r9,r9 | |||
mov rax,01000003D1h | |||
mul r8 | |||
add rax,r10 | |||
adc rdx,0 | |||
mov r10,0FFFFFFFFFFFFFh ; modulus | |||
mov r8,rax | |||
and rax,r10 | |||
shrd r8,rdx,52 | |||
mov [rbx+0*8],rax ; -> this.n[0] | |||
add r8,r11 | |||
mov [rbx+1*8],r8 ; -> this.n[1] | |||
pop r15 | |||
pop r14 | |||
pop r13 | |||
pop r12 | |||
pop rbx | |||
pop rbp | |||
ret | |||
;; PROC ExSetSquare | |||
;; Register Layout: | |||
;; INPUT: rdi = a.n | |||
;; rsi = this.a | |||
;; INTERNAL: rdx:rax = multiplication accumulator | |||
;; r9:r8 = c | |||
;; r10-r13 = t0-t3 | |||
;; r14 = a.n[0] / t4 | |||
;; r15 = a.n[1] / t5 | |||
;; rbx = a.n[2] / t6 | |||
;; rcx = a.n[3] / t7 | |||
;; rbp = 0FFFFFFFFFFFFFh / t8 | |||
;; rsi = a.n[4] / t9 | |||
GLOBAL secp256k1_fe_sqr_inner | |||
ALIGN 32 | |||
secp256k1_fe_sqr_inner: | |||
push rbp | |||
push rbx | |||
push r12 | |||
push r13 | |||
push r14 | |||
push r15 | |||
push rsi | |||
mov rbp,0FFFFFFFFFFFFFh | |||
;; c=a.n[0] * a.n[0] | |||
mov r14,[rdi+0*8] ; r14=a.n[0] | |||
mov r10,rbp ; modulus | |||
mov rax,r14 | |||
mul rax | |||
mov r15,[rdi+1*8] ; a.n[1] | |||
add r14,r14 ; r14=2*a.n[0] | |||
mov r8,rax | |||
and r10,rax ; only need lower qword | |||
shrd r8,rdx,52 | |||
xor r9,r9 | |||
;; c+=2*a.n[0] * a.n[1] | |||
mov rax,r14 ; r14=2*a.n[0] | |||
mul r15 | |||
mov rbx,[rdi+2*8] ; rbx=a.n[2] | |||
mov r11,rbp ; modulus | |||
add r8,rax | |||
adc r9,rdx | |||
and r11,r8 | |||
shrd r8,r9,52 | |||
xor r9,r9 | |||
;; c+=2*a.n[0]*a.n[2]+a.n[1]*a.n[1] | |||
mov rax,r14 | |||
mul rbx | |||
add r8,rax | |||
adc r9,rdx | |||
mov rax,r15 | |||
mov r12,rbp ; modulus | |||
mul rax | |||
mov rcx,[rdi+3*8] ; rcx=a.n[3] | |||
add r15,r15 ; r15=a.n[1]*2 | |||
add r8,rax | |||
adc r9,rdx | |||
and r12,r8 ; only need lower dword | |||
shrd r8,r9,52 | |||
xor r9,r9 | |||
;; c+=2*a.n[0]*a.n[3]+2*a.n[1]*a.n[2] | |||
mov rax,r14 | |||
mul rcx | |||
add r8,rax | |||
adc r9,rdx | |||
mov rax,r15 ; rax=2*a.n[1] | |||
mov r13,rbp ; modulus | |||
mul rbx | |||
mov rsi,[rdi+4*8] ; rsi=a.n[4] | |||
add r8,rax | |||
adc r9,rdx | |||
and r13,r8 | |||
shrd r8,r9,52 | |||
xor r9,r9 | |||
;; c+=2*a.n[0]*a.n[4]+2*a.n[1]*a.n[3]+a.n[2]*a.n[2] | |||
mov rax,r14 ; last time we need 2*a.n[0] | |||
mul rsi | |||
add r8,rax | |||
adc r9,rdx | |||
mov rax,r15 | |||
mul rcx | |||
mov r14,rbp ; modulus | |||
add r8,rax | |||
adc r9,rdx | |||
mov rax,rbx | |||
mul rax | |||
add rbx,rbx ; rcx=2*a.n[2] | |||
add r8,rax | |||
adc r9,rdx | |||
and r14,r8 | |||
shrd r8,r9,52 | |||
xor r9,r9 | |||
;; c+=2*a.n[1]*a.n[4]+2*a.n[2]*a.n[3] | |||
mov rax,r15 ; last time we need 2*a.n[1] | |||
mul rsi | |||
add r8,rax | |||
adc r9,rdx | |||
mov rax,rbx | |||
mul rcx | |||
mov r15,rbp ; modulus | |||
add r8,rax | |||
adc r9,rdx | |||
and r15,r8 | |||
shrd r8,r9,52 | |||
xor r9,r9 | |||
;; c+=2*a.n[2]*a.n[4]+a.n[3]*a.n[3] | |||
mov rax,rbx ; last time we need 2*a.n[2] | |||
mul rsi | |||
add r8,rax | |||
adc r9,rdx | |||
mov rax,rcx ; a.n[3] | |||
mul rax | |||
mov rbx,rbp ; modulus | |||
add r8,rax | |||
adc r9,rdx | |||
and rbx,r8 ; only need lower dword | |||
lea rax,[2*rcx] | |||
shrd r8,r9,52 | |||
xor r9,r9 | |||
;; c+=2*a.n[3]*a.n[4] | |||
mul rsi | |||
mov rcx,rbp ; modulus | |||
add r8,rax | |||
adc r9,rdx | |||
and rcx,r8 ; only need lower dword | |||
shrd r8,r9,52 | |||
xor r9,r9 | |||
;; c+=a.n[4]*a.n[4] | |||
mov rax,rsi | |||
mul rax | |||
;; mov rbp,rbp ; modulus is already there! | |||
add r8,rax | |||
adc r9,rdx | |||
and rbp,r8 | |||
shrd r8,r9,52 | |||
xor r9,r9 | |||
mov rsi,r8 | |||
;; ******************************************************* | |||
jmp common_exit_norm | |||
end | |||
@ -0,0 +1,19 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_FIELD_REPR_ | |||
#define _SECP256K1_FIELD_REPR_ | |||
#include <stdint.h> | |||
typedef struct { | |||
// X = sum(i=0..4, elem[i]*2^64) mod n | |||
uint64_t n[5]; | |||
#ifdef VERIFY | |||
int reduced; // n[4] == 0 | |||
int normalized; // reduced and X < 2^256 - 0x100003D1 | |||
#endif | |||
} secp256k1_fe_t; | |||
#endif |
@ -0,0 +1,332 @@ | |||
;; Added by Diederik Huys, March 2013 | |||
;; | |||
;; Provided public procedures: | |||
;; secp256k1_fe_mul_inner | |||
;; secp256k1_fe_sqr_inner | |||
;; | |||
;; Needed tools: YASM (http://yasm.tortall.net) | |||
;; | |||
;; | |||
BITS 64 | |||
COMP_LIMB EQU 000000001000003D1h | |||
;; Procedure ExSetMult | |||
;; Register Layout: | |||
;; INPUT: rdi = a->n | |||
;; rsi = b->n | |||
;; rdx = r->a | |||
;; | |||
;; INTERNAL: rdx:rax = multiplication accumulator | |||
;; r8-r10 = c0-c2 | |||
;; r11-r15 = b.n[0]-b.n[4] / r3 - r7 | |||
;; rbx = r0 | |||
;; rcx = r1 | |||
;; rbp = r2 | |||
;; | |||
GLOBAL secp256k1_fe_mul_inner | |||
ALIGN 32 | |||
secp256k1_fe_mul_inner: | |||
push rbp | |||
push rbx | |||
push r12 | |||
push r13 | |||
push r14 | |||
push r15 | |||
push rdx | |||
mov r11,[rsi+8*0] ; preload b.n[0] | |||
;; step 1: mul_c2 | |||
mov rax,[rdi+0*8] ; load a.n[0] | |||
mul r11 ; rdx:rax=a.n[0]*b.n[0] | |||
mov r12,[rsi+1*8] ; preload b.n[1] | |||
mov rbx,rax ; retire LO qword (r[0]) | |||
mov r8,rdx ; save overflow | |||
xor r9,r9 ; overflow HO qwords | |||
xor r10,r10 | |||
;; c+=a.n[0] * b.n[1] + a.n[1] * b.n[0] | |||
mov rax,[rdi+0*8] | |||
mul r12 | |||
mov r13,[rsi+2*8] ; preload b.n[2] | |||
add r8,rax ; still the same :-) | |||
adc r9,rdx ; | |||
adc r10,0 ; mmm... | |||
mov rax,[rdi+1*8] | |||
mul r11 | |||
add r8,rax | |||
adc r9,rdx | |||
adc r10,0 | |||
mov rcx,r8 ; retire r[1] | |||
xor r8,r8 | |||
;; c+=a.n[0 1 2] * b.n[2 1 0] | |||
mov rax,[rdi+0*8] | |||
mul r13 | |||
mov r14,[rsi+3*8] ; preload b.n[3] | |||
add r9,rax | |||
adc r10,rdx | |||
adc r8,0 | |||
mov rax,[rdi+1*8] | |||
mul r12 | |||
add r9,rax | |||
adc r10,rdx | |||
adc r8,0 | |||
mov rax,[rdi+2*8] | |||
mul r11 | |||
add r9,rax | |||
adc r10,rdx | |||
adc r8,0 | |||
mov rbp,r9 ; retire r[2] | |||
xor r9,r9 | |||
;; c+=a.n[0 1 2 3] * b.n[3 2 1 0] | |||
mov rax,[rdi+0*8] | |||
mul r14 | |||
add r10,rax | |||
adc r8,rdx | |||
adc r9,0 | |||
mov rax,[rdi+1*8] | |||
mul r13 | |||
add r10,rax | |||
adc r8,rdx | |||
adc r9,0 | |||
mov rax,[rdi+2*8] | |||
mul r12 | |||
add r10,rax | |||
adc r8,rdx | |||
adc r9,0 | |||
mov rax,[rdi+3*8] | |||
mul r11 | |||
add r10,rax | |||
adc r8,rdx | |||
adc r9,0 | |||
mov r11,r10 ; retire r[3] | |||
xor r10,r10 | |||
;; c+=a.n[1 2 3] * b.n[3 2 1] | |||
mov rax,[rdi+1*8] | |||
mul r14 | |||
add r8,rax | |||
adc r9,rdx | |||
adc r10,0 | |||
mov rax,[rdi+2*8] | |||
mul r13 | |||
add r8,rax | |||
adc r9,rdx | |||
adc r10,0 | |||
mov rax,[rdi+3*8] | |||
mul r12 | |||
add r8,rax | |||
adc r9,rdx | |||
adc r10,0 | |||
mov r12,r8 ; retire r[4] | |||
xor r8,r8 | |||
;; c+=a.n[2 3] * b.n[3 2] | |||
mov rax,[rdi+2*8] | |||
mul r14 | |||
add r9,rax ; still the same :-) | |||
adc r10,rdx ; | |||
adc r8,0 ; mmm... | |||
mov rax,[rdi+3*8] | |||
mul r13 | |||
add r9,rax | |||
adc r10,rdx | |||
adc r8,0 | |||
mov r13,r9 ; retire r[5] | |||
xor r9,r9 | |||
;; c+=a.n[3] * b.n[3] | |||
mov rax,[rdi+3*8] | |||
mul r14 | |||
add r10,rax | |||
adc r8,rdx | |||
mov r14,r10 | |||
mov r15,r8 | |||
;; ******************************************************* | |||
common_exit_norm: | |||
mov rdi,COMP_LIMB | |||
mov rax,r12 | |||
mul rdi | |||
add rax,rbx | |||
adc rcx,rdx | |||
pop rbx | |||
mov [rbx],rax | |||
mov rax,r13 ; get r5 | |||
mul rdi | |||
add rax,rcx ; +r1 | |||
adc rbp,rdx | |||
mov [rbx+1*8],rax | |||
mov rax,r14 ; get r6 | |||
mul rdi | |||
add rax,rbp ; +r2 | |||
adc r11,rdx | |||
mov [rbx+2*8],rax | |||
mov rax,r15 ; get r7 | |||
mul rdi | |||
add rax,r11 ; +r3 | |||
adc rdx,0 | |||
mov [rbx+3*8],rax | |||
mov [rbx+4*8],rdx | |||
pop r15 | |||
pop r14 | |||
pop r13 | |||
pop r12 | |||
pop rbx | |||
pop rbp | |||
ret | |||
;; PROC ExSetSquare | |||
;; Register Layout: | |||
;; INPUT: rdi = a.n | |||
;; rsi = this.a | |||
;; INTERNAL: rdx:rax = multiplication accumulator | |||
;; r8-r10 = c | |||
;; r11-r15 = a.n[0]-a.n[4] / r3-r7 | |||
;; rbx = r0 | |||
;; rcx = r1 | |||
;; rbp = r2 | |||
GLOBAL secp256k1_fe_sqr_inner | |||
ALIGN 32 | |||
secp256k1_fe_sqr_inner: | |||
push rbp | |||
push rbx | |||
push r12 | |||
push r13 | |||
push r14 | |||
push r15 | |||
push rsi | |||
mov r11,[rdi+8*0] ; preload a.n[0] | |||
;; step 1: mul_c2 | |||
mov rax,r11 ; load a.n[0] | |||
mul rax ; rdx:rax=a.n[0]² | |||
mov r12,[rdi+1*8] ; preload a.n[1] | |||
mov rbx,rax ; retire LO qword (r[0]) | |||
mov r8,rdx ; save overflow | |||
xor r9,r9 ; overflow HO qwords | |||
xor r10,r10 | |||
;; c+=2*a.n[0] * a.n[1] | |||
mov rax,r11 ; load a.n[0] | |||
mul r12 ; rdx:rax=a.n[0] * a.n[1] | |||
mov r13,[rdi+2*8] ; preload a.n[2] | |||
add rax,rax ; rdx:rax*=2 | |||
adc rdx,rdx | |||
adc r10,0 | |||
add r8,rax ; still the same :-) | |||
adc r9,rdx | |||
adc r10,0 ; mmm... | |||
mov rcx,r8 ; retire r[1] | |||
xor r8,r8 | |||
;; c+=2*a.n[0]*a.n[2]+a.n[1]*a.n[1] | |||
mov rax,r11 ; load a.n[0] | |||
mul r13 ; * a.n[2] | |||
mov r14,[rdi+3*8] ; preload a.n[3] | |||
add rax,rax ; rdx:rax*=2 | |||
adc rdx,rdx | |||
adc r8,0 | |||
add r9,rax | |||
adc r10,rdx | |||
adc r8,0 | |||
mov rax,r12 | |||
mul rax | |||
add r9,rax | |||
adc r10,rdx | |||
adc r8,0 | |||
mov rbp,r9 | |||
xor r9,r9 | |||
;; c+=2*a.n[0]*a.n[3]+2*a.n[1]*a.n[2] | |||
mov rax,r11 ; load a.n[0] | |||
mul r14 ; * a.n[3] | |||
add rax,rax ; rdx:rax*=2 | |||
adc rdx,rdx | |||
adc r9,0 | |||
add r10,rax | |||
adc r8,rdx | |||
adc r9,0 | |||
mov rax,r12 ; load a.n[1] | |||
mul r13 ; * a.n[2] | |||
add rax,rax | |||
adc rdx,rdx | |||
adc r9,0 | |||
add r10,rax | |||
adc r8,rdx | |||
adc r9,0 | |||
mov r11,r10 | |||
xor r10,r10 | |||
;; c+=2*a.n[1]*a.n[3]+a.n[2]*a.n[2] | |||
mov rax,r12 ; load a.n[1] | |||
mul r14 ; * a.n[3] | |||
add rax,rax ; rdx:rax*=2 | |||
adc rdx,rdx | |||
adc r10,0 | |||
add r8,rax | |||
adc r9,rdx | |||
adc r10,0 | |||
mov rax,r13 | |||
mul rax | |||
add r8,rax | |||
adc r9,rdx | |||
adc r10,0 | |||
mov r12,r8 | |||
xor r8,r8 | |||
;; c+=2*a.n[2]*a.n[3] | |||
mov rax,r13 ; load a.n[2] | |||
mul r14 ; * a.n[3] | |||
add rax,rax ; rdx:rax*=2 | |||
adc rdx,rdx | |||
adc r8,0 | |||
add r9,rax | |||
adc r10,rdx | |||
adc r8,0 | |||
mov r13,r9 | |||
xor r9,r9 | |||
;; c+=a.n[3]² | |||
mov rax,r14 | |||
mul rax | |||
add r10,rax | |||
adc r8,rdx | |||
mov r14,r10 | |||
mov r15,r8 | |||
jmp common_exit_norm | |||
end | |||
@ -0,0 +1,16 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_FIELD_REPR_ | |||
#define _SECP256K1_FIELD_REPR_ | |||
#include <gmp.h> | |||
#define FIELD_LIMBS ((256 + GMP_NUMB_BITS - 1) / GMP_NUMB_BITS) | |||
typedef struct { | |||
mp_limb_t n[FIELD_LIMBS+1]; | |||
} secp256k1_fe_t; | |||
#endif |
@ -0,0 +1,108 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_GROUP_ | |||
#define _SECP256K1_GROUP_ | |||
#include "num.h" | |||
#include "field.h" | |||
/** A group element of the secp256k1 curve, in affine coordinates. */ | |||
typedef struct { | |||
secp256k1_fe_t x; | |||
secp256k1_fe_t y; | |||
int infinity; // whether this represents the point at infinity | |||
} secp256k1_ge_t; | |||
/** A group element of the secp256k1 curve, in jacobian coordinates. */ | |||
typedef struct { | |||
secp256k1_fe_t x; // actual X: x/z^2 | |||
secp256k1_fe_t y; // actual Y: y/z^3 | |||
secp256k1_fe_t z; | |||
int infinity; // whether this represents the point at infinity | |||
} secp256k1_gej_t; | |||
/** Global constants related to the group */ | |||
typedef struct { | |||
secp256k1_num_t order; // the order of the curve (= order of its generator) | |||
secp256k1_num_t half_order; // half the order of the curve (= order of its generator) | |||
secp256k1_ge_t g; // the generator point | |||
// constants related to secp256k1's efficiently computable endomorphism | |||
secp256k1_fe_t beta; | |||
secp256k1_num_t lambda, a1b2, b1, a2; | |||
} secp256k1_ge_consts_t; | |||
static const secp256k1_ge_consts_t *secp256k1_ge_consts = NULL; | |||
/** Initialize the group module. */ | |||
void static secp256k1_ge_start(void); | |||
/** De-initialize the group module. */ | |||
void static secp256k1_ge_stop(void); | |||
/** Set a group element equal to the point at infinity */ | |||
void static secp256k1_ge_set_infinity(secp256k1_ge_t *r); | |||
/** Set a group element equal to the point with given X and Y coordinates */ | |||
void static secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y); | |||
/** Set a group element (jacobian) equal to the point with given X coordinate, and given oddness for Y. | |||
The result is not guaranteed to be valid. */ | |||
void static secp256k1_ge_set_xo(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd); | |||
/** Check whether a group element is the point at infinity. */ | |||
int static secp256k1_ge_is_infinity(const secp256k1_ge_t *a); | |||
/** Check whether a group element is valid (i.e., on the curve). */ | |||
int static secp256k1_ge_is_valid(const secp256k1_ge_t *a); | |||
void static secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a); | |||
/** Get a hex representation of a point. *rlen will be overwritten with the real length. */ | |||
void static secp256k1_ge_get_hex(char *r, int *rlen, const secp256k1_ge_t *a); | |||
/** Set a group element equal to another which is given in jacobian coordinates */ | |||
void static secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a); | |||
/** Set a group element (jacobian) equal to the point at infinity. */ | |||
void static secp256k1_gej_set_infinity(secp256k1_gej_t *r); | |||
/** Set a group element (jacobian) equal to the point with given X and Y coordinates. */ | |||
void static secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y); | |||
/** Set a group element (jacobian) equal to another which is given in affine coordinates. */ | |||
void static secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a); | |||
/** Get the X coordinate of a group element (jacobian). */ | |||
void static secp256k1_gej_get_x(secp256k1_fe_t *r, const secp256k1_gej_t *a); | |||
/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */ | |||
void static secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a); | |||
/** Check whether a group element is the point at infinity. */ | |||
int static secp256k1_gej_is_infinity(const secp256k1_gej_t *a); | |||
/** Set r equal to the double of a. */ | |||
void static secp256k1_gej_double(secp256k1_gej_t *r, const secp256k1_gej_t *a); | |||
/** Set r equal to the sum of a and b. */ | |||
void static secp256k1_gej_add(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b); | |||
/** Set r equal to the sum of a and b (with b given in jacobian coordinates). This is more efficient | |||
than secp256k1_gej_add. */ | |||
void static secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b); | |||
/** Get a hex representation of a point. *rlen will be overwritten with the real length. */ | |||
void static secp256k1_gej_get_hex(char *r, int *rlen, const secp256k1_gej_t *a); | |||
/** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */ | |||
void static secp256k1_gej_mul_lambda(secp256k1_gej_t *r, const secp256k1_gej_t *a); | |||
/** Find r1 and r2 such that r1+r2*lambda = a, and r1 and r2 are maximum 128 bits long (given that a is | |||
not more than 256 bits). */ | |||
void static secp256k1_gej_split_exp(secp256k1_num_t *r1, secp256k1_num_t *r2, const secp256k1_num_t *a); | |||
#endif |
@ -0,0 +1,309 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_ECDSA_IMPL_H_ | |||
#define _SECP256K1_ECDSA_IMPL_H_ | |||
#include "../num.h" | |||
#include "../field.h" | |||
#include "../group.h" | |||
#include "../ecmult.h" | |||
#include "../ecdsa.h" | |||
void static secp256k1_ecdsa_sig_init(secp256k1_ecdsa_sig_t *r) { | |||
secp256k1_num_init(&r->r); | |||
secp256k1_num_init(&r->s); | |||
} | |||
void static secp256k1_ecdsa_sig_free(secp256k1_ecdsa_sig_t *r) { | |||
secp256k1_num_free(&r->r); | |||
secp256k1_num_free(&r->s); | |||
} | |||
int static secp256k1_ecdsa_pubkey_parse(secp256k1_ge_t *elem, const unsigned char *pub, int size) { | |||
if (size == 33 && (pub[0] == 0x02 || pub[0] == 0x03)) { | |||
secp256k1_fe_t x; | |||
secp256k1_fe_set_b32(&x, pub+1); | |||
secp256k1_ge_set_xo(elem, &x, pub[0] == 0x03); | |||
} else if (size == 65 && (pub[0] == 0x04 || pub[0] == 0x06 || pub[0] == 0x07)) { | |||
secp256k1_fe_t x, y; | |||
secp256k1_fe_set_b32(&x, pub+1); | |||
secp256k1_fe_set_b32(&y, pub+33); | |||
secp256k1_ge_set_xy(elem, &x, &y); | |||
if ((pub[0] == 0x06 || pub[0] == 0x07) && secp256k1_fe_is_odd(&y) != (pub[0] == 0x07)) | |||
return 0; | |||
} else { | |||
return 0; | |||
} | |||
return secp256k1_ge_is_valid(elem); | |||
} | |||
int static secp256k1_ecdsa_sig_parse(secp256k1_ecdsa_sig_t *r, const unsigned char *sig, int size) { | |||
if (sig[0] != 0x30) return 0; | |||
int lenr = sig[3]; | |||
if (5+lenr >= size) return 0; | |||
int lens = sig[lenr+5]; | |||
if (sig[1] != lenr+lens+4) return 0; | |||
if (lenr+lens+6 > size) return 0; | |||
if (sig[2] != 0x02) return 0; | |||
if (lenr == 0) return 0; | |||
if (sig[lenr+4] != 0x02) return 0; | |||
if (lens == 0) return 0; | |||
secp256k1_num_set_bin(&r->r, sig+4, lenr); | |||
secp256k1_num_set_bin(&r->s, sig+6+lenr, lens); | |||
return 1; | |||
} | |||
int static secp256k1_ecdsa_sig_serialize(unsigned char *sig, int *size, const secp256k1_ecdsa_sig_t *a) { | |||
int lenR = (secp256k1_num_bits(&a->r) + 7)/8; | |||
if (lenR == 0 || secp256k1_num_get_bit(&a->r, lenR*8-1)) | |||
lenR++; | |||
int lenS = (secp256k1_num_bits(&a->s) + 7)/8; | |||
if (lenS == 0 || secp256k1_num_get_bit(&a->s, lenS*8-1)) | |||
lenS++; | |||
if (*size < 6+lenS+lenR) | |||
return 0; | |||
*size = 6 + lenS + lenR; | |||
sig[0] = 0x30; | |||
sig[1] = 4 + lenS + lenR; | |||
sig[2] = 0x02; | |||
sig[3] = lenR; | |||
secp256k1_num_get_bin(sig+4, lenR, &a->r); | |||
sig[4+lenR] = 0x02; | |||
sig[5+lenR] = lenS; | |||
secp256k1_num_get_bin(sig+lenR+6, lenS, &a->s); | |||
return 1; | |||
} | |||
int static secp256k1_ecdsa_sig_recompute(secp256k1_num_t *r2, const secp256k1_ecdsa_sig_t *sig, const secp256k1_ge_t *pubkey, const secp256k1_num_t *message) { | |||
const secp256k1_ge_consts_t *c = secp256k1_ge_consts; | |||
if (secp256k1_num_is_neg(&sig->r) || secp256k1_num_is_neg(&sig->s)) | |||
return 0; | |||
if (secp256k1_num_is_zero(&sig->r) || secp256k1_num_is_zero(&sig->s)) | |||
return 0; | |||
if (secp256k1_num_cmp(&sig->r, &c->order) >= 0 || secp256k1_num_cmp(&sig->s, &c->order) >= 0) | |||
return 0; | |||
int ret = 0; | |||
secp256k1_num_t sn, u1, u2; | |||
secp256k1_num_init(&sn); | |||
secp256k1_num_init(&u1); | |||
secp256k1_num_init(&u2); | |||
secp256k1_num_mod_inverse(&sn, &sig->s, &c->order); | |||
secp256k1_num_mod_mul(&u1, &sn, message, &c->order); | |||
secp256k1_num_mod_mul(&u2, &sn, &sig->r, &c->order); | |||
secp256k1_gej_t pubkeyj; secp256k1_gej_set_ge(&pubkeyj, pubkey); | |||
secp256k1_gej_t pr; secp256k1_ecmult(&pr, &pubkeyj, &u2, &u1); | |||
if (!secp256k1_gej_is_infinity(&pr)) { | |||
secp256k1_fe_t xr; secp256k1_gej_get_x(&xr, &pr); | |||
secp256k1_fe_normalize(&xr); | |||
unsigned char xrb[32]; secp256k1_fe_get_b32(xrb, &xr); | |||
secp256k1_num_set_bin(r2, xrb, 32); | |||
secp256k1_num_mod(r2, &c->order); | |||
ret = 1; | |||
} | |||
secp256k1_num_free(&sn); | |||
secp256k1_num_free(&u1); | |||
secp256k1_num_free(&u2); | |||
return ret; | |||
} | |||
int static secp256k1_ecdsa_sig_recover(const secp256k1_ecdsa_sig_t *sig, secp256k1_ge_t *pubkey, const secp256k1_num_t *message, int recid) { | |||
const secp256k1_ge_consts_t *c = secp256k1_ge_consts; | |||
if (secp256k1_num_is_neg(&sig->r) || secp256k1_num_is_neg(&sig->s)) | |||
return 0; | |||
if (secp256k1_num_is_zero(&sig->r) || secp256k1_num_is_zero(&sig->s)) | |||
return 0; | |||
if (secp256k1_num_cmp(&sig->r, &c->order) >= 0 || secp256k1_num_cmp(&sig->s, &c->order) >= 0) | |||
return 0; | |||
secp256k1_num_t rx; | |||
secp256k1_num_init(&rx); | |||
secp256k1_num_copy(&rx, &sig->r); | |||
if (recid & 2) { | |||
secp256k1_num_add(&rx, &rx, &c->order); | |||
if (secp256k1_num_cmp(&rx, &secp256k1_fe_consts->p) >= 0) | |||
return 0; | |||
} | |||
unsigned char brx[32]; | |||
secp256k1_num_get_bin(brx, 32, &rx); | |||
secp256k1_num_free(&rx); | |||
secp256k1_fe_t fx; | |||
secp256k1_fe_set_b32(&fx, brx); | |||
secp256k1_ge_t x; | |||
secp256k1_ge_set_xo(&x, &fx, recid & 1); | |||
if (!secp256k1_ge_is_valid(&x)) | |||
return 0; | |||
secp256k1_gej_t xj; | |||
secp256k1_gej_set_ge(&xj, &x); | |||
secp256k1_num_t rn, u1, u2; | |||
secp256k1_num_init(&rn); | |||
secp256k1_num_init(&u1); | |||
secp256k1_num_init(&u2); | |||
secp256k1_num_mod_inverse(&rn, &sig->r, &c->order); | |||
secp256k1_num_mod_mul(&u1, &rn, message, &c->order); | |||
secp256k1_num_sub(&u1, &c->order, &u1); | |||
secp256k1_num_mod_mul(&u2, &rn, &sig->s, &c->order); | |||
secp256k1_gej_t qj; | |||
secp256k1_ecmult(&qj, &xj, &u2, &u1); | |||
if (secp256k1_gej_is_infinity(&qj)) | |||
return 0; | |||
secp256k1_ge_set_gej(pubkey, &qj); | |||
secp256k1_num_free(&rn); | |||
secp256k1_num_free(&u1); | |||
secp256k1_num_free(&u2); | |||
return 1; | |||
} | |||
int static secp256k1_ecdsa_sig_verify(const secp256k1_ecdsa_sig_t *sig, const secp256k1_ge_t *pubkey, const secp256k1_num_t *message) { | |||
secp256k1_num_t r2; | |||
secp256k1_num_init(&r2); | |||
int ret = 0; | |||
ret = secp256k1_ecdsa_sig_recompute(&r2, sig, pubkey, message) && secp256k1_num_cmp(&sig->r, &r2) == 0; | |||
secp256k1_num_free(&r2); | |||
return ret; | |||
} | |||
int static secp256k1_ecdsa_sig_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_num_t *seckey, const secp256k1_num_t *message, const secp256k1_num_t *nonce, int *recid) { | |||
const secp256k1_ge_consts_t *c = secp256k1_ge_consts; | |||
secp256k1_gej_t rp; | |||
secp256k1_ecmult_gen(&rp, nonce); | |||
secp256k1_ge_t r; | |||
secp256k1_ge_set_gej(&r, &rp); | |||
unsigned char b[32]; | |||
secp256k1_fe_normalize(&r.x); | |||
secp256k1_fe_normalize(&r.y); | |||
secp256k1_fe_get_b32(b, &r.x); | |||
secp256k1_num_set_bin(&sig->r, b, 32); | |||
if (recid) | |||
*recid = (secp256k1_num_cmp(&sig->r, &c->order) >= 0 ? 2 : 0) | (secp256k1_fe_is_odd(&r.y) ? 1 : 0); | |||
secp256k1_num_mod(&sig->r, &c->order); | |||
secp256k1_num_t n; | |||
secp256k1_num_init(&n); | |||
secp256k1_num_mod_mul(&n, &sig->r, seckey, &c->order); | |||
secp256k1_num_add(&n, &n, message); | |||
secp256k1_num_mod(&n, &c->order); | |||
secp256k1_num_mod_inverse(&sig->s, nonce, &c->order); | |||
secp256k1_num_mod_mul(&sig->s, &sig->s, &n, &c->order); | |||
secp256k1_num_free(&n); | |||
if (secp256k1_num_is_zero(&sig->s)) | |||
return 0; | |||
if (secp256k1_num_cmp(&sig->s, &c->half_order) > 0) { | |||
secp256k1_num_sub(&sig->s, &c->order, &sig->s); | |||
if (recid) | |||
*recid ^= 1; | |||
} | |||
return 1; | |||
} | |||
void static secp256k1_ecdsa_sig_set_rs(secp256k1_ecdsa_sig_t *sig, const secp256k1_num_t *r, const secp256k1_num_t *s) { | |||
secp256k1_num_copy(&sig->r, r); | |||
secp256k1_num_copy(&sig->s, s); | |||
} | |||
void static secp256k1_ecdsa_pubkey_serialize(secp256k1_ge_t *elem, unsigned char *pub, int *size, int compressed) { | |||
secp256k1_fe_normalize(&elem->x); | |||
secp256k1_fe_normalize(&elem->y); | |||
secp256k1_fe_get_b32(&pub[1], &elem->x); | |||
if (compressed) { | |||
*size = 33; | |||
pub[0] = 0x02 | (secp256k1_fe_is_odd(&elem->y) ? 0x01 : 0x00); | |||
} else { | |||
*size = 65; | |||
pub[0] = 0x04; | |||
secp256k1_fe_get_b32(&pub[33], &elem->y); | |||
} | |||
} | |||
int static secp256k1_ecdsa_privkey_parse(secp256k1_num_t *key, const unsigned char *privkey, int privkeylen) { | |||
const unsigned char *end = privkey + privkeylen; | |||
// sequence header | |||
if (end < privkey+1 || *privkey != 0x30) | |||
return 0; | |||
privkey++; | |||
// sequence length constructor | |||
int lenb = 0; | |||
if (end < privkey+1 || !(*privkey & 0x80)) | |||
return 0; | |||
lenb = *privkey & ~0x80; privkey++; | |||
if (lenb < 1 || lenb > 2) | |||
return 0; | |||
if (end < privkey+lenb) | |||
return 0; | |||
// sequence length | |||
int len = 0; | |||
len = privkey[lenb-1] | (lenb > 1 ? privkey[lenb-2] << 8 : 0); | |||
privkey += lenb; | |||
if (end < privkey+len) | |||
return 0; | |||
// sequence element 0: version number (=1) | |||
if (end < privkey+3 || privkey[0] != 0x02 || privkey[1] != 0x01 || privkey[2] != 0x01) | |||
return 0; | |||
privkey += 3; | |||
// sequence element 1: octet string, up to 32 bytes | |||
if (end < privkey+2 || privkey[0] != 0x04 || privkey[1] > 0x20 || end < privkey+2+privkey[1]) | |||
return 0; | |||
secp256k1_num_set_bin(key, privkey+2, privkey[1]); | |||
return 1; | |||
} | |||
int static secp256k1_ecdsa_privkey_serialize(unsigned char *privkey, int *privkeylen, const secp256k1_num_t *key, int compressed) { | |||
secp256k1_gej_t rp; | |||
secp256k1_ecmult_gen(&rp, key); | |||
secp256k1_ge_t r; | |||
secp256k1_ge_set_gej(&r, &rp); | |||
if (compressed) { | |||
static const unsigned char begin[] = { | |||
0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20 | |||
}; | |||
static const unsigned char middle[] = { | |||
0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48, | |||
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | |||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | |||
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04, | |||
0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87, | |||
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8, | |||
0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | |||
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E, | |||
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00 | |||
}; | |||
unsigned char *ptr = privkey; | |||
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin); | |||
secp256k1_num_get_bin(ptr, 32, key); ptr += 32; | |||
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle); | |||
int pubkeylen = 0; | |||
secp256k1_ecdsa_pubkey_serialize(&r, ptr, &pubkeylen, 1); ptr += pubkeylen; | |||
*privkeylen = ptr - privkey; | |||
} else { | |||
static const unsigned char begin[] = { | |||
0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20 | |||
}; | |||
static const unsigned char middle[] = { | |||
0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48, | |||
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | |||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | |||
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04, | |||
0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87, | |||
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8, | |||
0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11, | |||
0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10, | |||
0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | |||
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E, | |||
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00 | |||
}; | |||
unsigned char *ptr = privkey; | |||
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin); | |||
secp256k1_num_get_bin(ptr, 32, key); ptr += 32; | |||
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle); | |||
int pubkeylen = 0; | |||
secp256k1_ecdsa_pubkey_serialize(&r, ptr, &pubkeylen, 0); ptr += pubkeylen; | |||
*privkeylen = ptr - privkey; | |||
} | |||
return 1; | |||
} | |||
#endif |
@ -0,0 +1,238 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_ECMULT_IMPL_H_ | |||
#define _SECP256K1_ECMULT_IMPL_H_ | |||
#include "../num.h" | |||
#include "../group.h" | |||
#include "../ecmult.h" | |||
// optimal for 128-bit and 256-bit exponents. | |||
#define WINDOW_A 5 | |||
// larger numbers may result in slightly better performance, at the cost of | |||
// exponentially larger precomputed tables. WINDOW_G == 14 results in 640 KiB. | |||
#define WINDOW_G 14 | |||
/** Fill a table 'pre' with precomputed odd multiples of a. W determines the size of the table. | |||
* pre will contains the values [1*a,3*a,5*a,...,(2^(w-1)-1)*a], so it needs place for | |||
* 2^(w-2) entries. | |||
* | |||
* There are two versions of this function: | |||
* - secp256k1_ecmult_precomp_wnaf_gej, which operates on group elements in jacobian notation, | |||
* fast to precompute, but slower to use in later additions. | |||
* - secp256k1_ecmult_precomp_wnaf_ge, which operates on group elements in affine notations, | |||
* (much) slower to precompute, but a bit faster to use in later additions. | |||
* To compute a*P + b*G, we use the jacobian version for P, and the affine version for G, as | |||
* G is constant, so it only needs to be done once in advance. | |||
*/ | |||
void static secp256k1_ecmult_table_precomp_gej(secp256k1_gej_t *pre, const secp256k1_gej_t *a, int w) { | |||
pre[0] = *a; | |||
secp256k1_gej_t d; secp256k1_gej_double(&d, &pre[0]); | |||
for (int i=1; i<(1 << (w-2)); i++) | |||
secp256k1_gej_add(&pre[i], &d, &pre[i-1]); | |||
} | |||
void static secp256k1_ecmult_table_precomp_ge(secp256k1_ge_t *pre, const secp256k1_ge_t *a, int w) { | |||
pre[0] = *a; | |||
secp256k1_gej_t x; secp256k1_gej_set_ge(&x, a); | |||
secp256k1_gej_t d; secp256k1_gej_double(&d, &x); | |||
for (int i=1; i<(1 << (w-2)); i++) { | |||
secp256k1_gej_add_ge(&x, &d, &pre[i-1]); | |||
secp256k1_ge_set_gej(&pre[i], &x); | |||
} | |||
} | |||
/** The number of entries a table with precomputed multiples needs to have. */ | |||
#define ECMULT_TABLE_SIZE(w) (1 << ((w)-2)) | |||
/** The following two macro retrieves a particular odd multiple from a table | |||
* of precomputed multiples. */ | |||
#define ECMULT_TABLE_GET(r,pre,n,w,neg) do { \ | |||
assert(((n) & 1) == 1); \ | |||
assert((n) >= -((1 << ((w)-1)) - 1)); \ | |||
assert((n) <= ((1 << ((w)-1)) - 1)); \ | |||
if ((n) > 0) \ | |||
*(r) = (pre)[((n)-1)/2]; \ | |||
else \ | |||
(neg)((r), &(pre)[(-(n)-1)/2]); \ | |||
} while(0) | |||
#define ECMULT_TABLE_GET_GEJ(r,pre,n,w) ECMULT_TABLE_GET((r),(pre),(n),(w),secp256k1_gej_neg) | |||
#define ECMULT_TABLE_GET_GE(r,pre,n,w) ECMULT_TABLE_GET((r),(pre),(n),(w),secp256k1_ge_neg) | |||
typedef struct { | |||
secp256k1_ge_t pre_g[ECMULT_TABLE_SIZE(WINDOW_G)]; // odd multiples of the generator | |||
secp256k1_ge_t pre_g_128[ECMULT_TABLE_SIZE(WINDOW_G)]; // odd multiples of 2^128*generator | |||
secp256k1_ge_t prec[64][16]; // prec[j][i] = 16^j * (i+1) * G | |||
secp256k1_ge_t fin; // -(sum(prec[j][0], j=0..63)) | |||
} secp256k1_ecmult_consts_t; | |||
static const secp256k1_ecmult_consts_t *secp256k1_ecmult_consts = NULL; | |||
static void secp256k1_ecmult_start(void) { | |||
if (secp256k1_ecmult_consts != NULL) | |||
return; | |||
secp256k1_ecmult_consts_t *ret = (secp256k1_ecmult_consts_t*)malloc(sizeof(secp256k1_ecmult_consts_t)); | |||
secp256k1_ecmult_consts = ret; | |||
// get the generator | |||
const secp256k1_ge_t *g = &secp256k1_ge_consts->g; | |||
// calculate 2^128*generator | |||
secp256k1_gej_t g_128j; secp256k1_gej_set_ge(&g_128j, g); | |||
for (int i=0; i<128; i++) | |||
secp256k1_gej_double(&g_128j, &g_128j); | |||
secp256k1_ge_t g_128; secp256k1_ge_set_gej(&g_128, &g_128j); | |||
// precompute the tables with odd multiples | |||
secp256k1_ecmult_table_precomp_ge(ret->pre_g, g, WINDOW_G); | |||
secp256k1_ecmult_table_precomp_ge(ret->pre_g_128, &g_128, WINDOW_G); | |||
// compute prec and fin | |||
secp256k1_gej_t gg; secp256k1_gej_set_ge(&gg, g); | |||
secp256k1_ge_t ad = *g; | |||
secp256k1_gej_t fn; secp256k1_gej_set_infinity(&fn); | |||
for (int j=0; j<64; j++) { | |||
secp256k1_ge_set_gej(&ret->prec[j][0], &gg); | |||
secp256k1_gej_add(&fn, &fn, &gg); | |||
for (int i=1; i<16; i++) { | |||
secp256k1_gej_add_ge(&gg, &gg, &ad); | |||
secp256k1_ge_set_gej(&ret->prec[j][i], &gg); | |||
} | |||
ad = ret->prec[j][15]; | |||
} | |||
secp256k1_ge_set_gej(&ret->fin, &fn); | |||
secp256k1_ge_neg(&ret->fin, &ret->fin); | |||
} | |||
static void secp256k1_ecmult_stop(void) { | |||
if (secp256k1_ecmult_consts == NULL) | |||
return; | |||
secp256k1_ecmult_consts_t *c = (secp256k1_ecmult_consts_t*)secp256k1_ecmult_consts; | |||
free(c); | |||
secp256k1_ecmult_consts = NULL; | |||
} | |||
/** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits), | |||
* with the following guarantees: | |||
* - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1) | |||
* - two non-zero entries in wnaf are separated by at least w-1 zeroes. | |||
* - the index of the highest non-zero entry in wnaf (=return value-1) is at most bits, where | |||
* bits is the number of bits necessary to represent the absolute value of the input. | |||
*/ | |||
static int secp256k1_ecmult_wnaf(int *wnaf, const secp256k1_num_t *a, int w) { | |||
int ret = 0; | |||
int zeroes = 0; | |||
secp256k1_num_t x; | |||
secp256k1_num_init(&x); | |||
secp256k1_num_copy(&x, a); | |||
int sign = 1; | |||
if (secp256k1_num_is_neg(&x)) { | |||
sign = -1; | |||
secp256k1_num_negate(&x); | |||
} | |||
while (!secp256k1_num_is_zero(&x)) { | |||
while (!secp256k1_num_is_odd(&x)) { | |||
zeroes++; | |||
secp256k1_num_shift(&x, 1); | |||
} | |||
int word = secp256k1_num_shift(&x, w); | |||
while (zeroes) { | |||
wnaf[ret++] = 0; | |||
zeroes--; | |||
} | |||
if (word & (1 << (w-1))) { | |||
secp256k1_num_inc(&x); | |||
wnaf[ret++] = sign * (word - (1 << w)); | |||
} else { | |||
wnaf[ret++] = sign * word; | |||
} | |||
zeroes = w-1; | |||
} | |||
secp256k1_num_free(&x); | |||
return ret; | |||
} | |||
void static secp256k1_ecmult_gen(secp256k1_gej_t *r, const secp256k1_num_t *gn) { | |||
secp256k1_num_t n; | |||
secp256k1_num_init(&n); | |||
secp256k1_num_copy(&n, gn); | |||
const secp256k1_ecmult_consts_t *c = secp256k1_ecmult_consts; | |||
secp256k1_gej_set_ge(r, &c->prec[0][secp256k1_num_shift(&n, 4)]); | |||
for (int j=1; j<64; j++) | |||
secp256k1_gej_add_ge(r, r, &c->prec[j][secp256k1_num_shift(&n, 4)]); | |||
secp256k1_num_free(&n); | |||
secp256k1_gej_add_ge(r, r, &c->fin); | |||
} | |||
void static secp256k1_ecmult(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_num_t *na, const secp256k1_num_t *ng) { | |||
const secp256k1_ecmult_consts_t *c = secp256k1_ecmult_consts; | |||
secp256k1_num_t na_1, na_lam; | |||
secp256k1_num_t ng_1, ng_128; | |||
secp256k1_num_init(&na_1); | |||
secp256k1_num_init(&na_lam); | |||
secp256k1_num_init(&ng_1); | |||
secp256k1_num_init(&ng_128); | |||
// split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) | |||
secp256k1_gej_split_exp(&na_1, &na_lam, na); | |||
// split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) | |||
secp256k1_num_split(&ng_1, &ng_128, ng, 128); | |||
// build wnaf representation for na_1, na_lam, ng_1, ng_128 | |||
int wnaf_na_1[129]; int bits_na_1 = secp256k1_ecmult_wnaf(wnaf_na_1, &na_1, WINDOW_A); | |||
int wnaf_na_lam[129]; int bits_na_lam = secp256k1_ecmult_wnaf(wnaf_na_lam, &na_lam, WINDOW_A); | |||
int wnaf_ng_1[129]; int bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, &ng_1, WINDOW_G); | |||
int wnaf_ng_128[129]; int bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, &ng_128, WINDOW_G); | |||
// calculate a_lam = a*lambda | |||
secp256k1_gej_t a_lam; secp256k1_gej_mul_lambda(&a_lam, a); | |||
// calculate odd multiples of a and a_lam | |||
secp256k1_gej_t pre_a_1[ECMULT_TABLE_SIZE(WINDOW_A)], pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)]; | |||
secp256k1_ecmult_table_precomp_gej(pre_a_1, a, WINDOW_A); | |||
secp256k1_ecmult_table_precomp_gej(pre_a_lam, &a_lam, WINDOW_A); | |||
int bits = bits_na_1; | |||
if (bits_na_lam > bits) bits = bits_na_lam; | |||
if (bits_ng_1 > bits) bits = bits_ng_1; | |||
if (bits_ng_128 > bits) bits = bits_ng_128; | |||
secp256k1_gej_set_infinity(r); | |||
secp256k1_gej_t tmpj; | |||
secp256k1_ge_t tmpa; | |||
for (int i=bits-1; i>=0; i--) { | |||
secp256k1_gej_double(r, r); | |||
int n; | |||
if (i < bits_na_1 && (n = wnaf_na_1[i])) { | |||
ECMULT_TABLE_GET_GEJ(&tmpj, pre_a_1, n, WINDOW_A); | |||
secp256k1_gej_add(r, r, &tmpj); | |||
} | |||
if (i < bits_na_lam && (n = wnaf_na_lam[i])) { | |||
ECMULT_TABLE_GET_GEJ(&tmpj, pre_a_lam, n, WINDOW_A); | |||
secp256k1_gej_add(r, r, &tmpj); | |||
} | |||
if (i < bits_ng_1 && (n = wnaf_ng_1[i])) { | |||
ECMULT_TABLE_GET_GE(&tmpa, c->pre_g, n, WINDOW_G); | |||
secp256k1_gej_add_ge(r, r, &tmpa); | |||
} | |||
if (i < bits_ng_128 && (n = wnaf_ng_128[i])) { | |||
ECMULT_TABLE_GET_GE(&tmpa, c->pre_g_128, n, WINDOW_G); | |||
secp256k1_gej_add_ge(r, r, &tmpa); | |||
} | |||
} | |||
secp256k1_num_free(&na_1); | |||
secp256k1_num_free(&na_lam); | |||
secp256k1_num_free(&ng_1); | |||
secp256k1_num_free(&ng_128); | |||
} | |||
#endif |
@ -0,0 +1,175 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_FIELD_IMPL_H_ | |||
#define _SECP256K1_FIELD_IMPL_H_ | |||
#if defined(USE_FIELD_GMP) | |||
#include "field_gmp.h" | |||
#elif defined(USE_FIELD_10X26) | |||
#include "field_10x26.h" | |||
#elif defined(USE_FIELD_5X52) | |||
#include "field_5x52.h" | |||
#elif defined(USE_FIELD_5X64) | |||
#include "field_5x64.h" | |||
#else | |||
#error "Please select field implementation" | |||
#endif | |||
void static secp256k1_fe_get_hex(char *r, int *rlen, const secp256k1_fe_t *a) { | |||
if (*rlen < 65) { | |||
*rlen = 65; | |||
return; | |||
} | |||
*rlen = 65; | |||
unsigned char tmp[32]; | |||
secp256k1_fe_t b = *a; | |||
secp256k1_fe_normalize(&b); | |||
secp256k1_fe_get_b32(tmp, &b); | |||
for (int i=0; i<32; i++) { | |||
static const char *c = "0123456789ABCDEF"; | |||
r[2*i] = c[(tmp[i] >> 4) & 0xF]; | |||
r[2*i+1] = c[(tmp[i]) & 0xF]; | |||
} | |||
r[64] = 0x00; | |||
} | |||
void static secp256k1_fe_set_hex(secp256k1_fe_t *r, const char *a, int alen) { | |||
unsigned char tmp[32] = {}; | |||
static const int cvt[256] = {0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, | |||
0, 1, 2, 3, 4, 5, 6,7,8,9,0,0,0,0,0,0, | |||
0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0, | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, | |||
0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0, | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0}; | |||
for (int i=0; i<32; i++) { | |||
if (alen > i*2) | |||
tmp[32 - alen/2 + i] = (cvt[(unsigned char)a[2*i]] << 4) + cvt[(unsigned char)a[2*i+1]]; | |||
} | |||
secp256k1_fe_set_b32(r, tmp); | |||
} | |||
void static secp256k1_fe_sqrt(secp256k1_fe_t *r, const secp256k1_fe_t *a) { | |||
// calculate a^p, with p={15,780,1022,1023} | |||
secp256k1_fe_t a2; secp256k1_fe_sqr(&a2, a); | |||
secp256k1_fe_t a3; secp256k1_fe_mul(&a3, &a2, a); | |||
secp256k1_fe_t a6; secp256k1_fe_sqr(&a6, &a3); | |||
secp256k1_fe_t a12; secp256k1_fe_sqr(&a12, &a6); | |||
secp256k1_fe_t a15; secp256k1_fe_mul(&a15, &a12, &a3); | |||
secp256k1_fe_t a30; secp256k1_fe_sqr(&a30, &a15); | |||
secp256k1_fe_t a60; secp256k1_fe_sqr(&a60, &a30); | |||
secp256k1_fe_t a120; secp256k1_fe_sqr(&a120, &a60); | |||
secp256k1_fe_t a240; secp256k1_fe_sqr(&a240, &a120); | |||
secp256k1_fe_t a255; secp256k1_fe_mul(&a255, &a240, &a15); | |||
secp256k1_fe_t a510; secp256k1_fe_sqr(&a510, &a255); | |||
secp256k1_fe_t a750; secp256k1_fe_mul(&a750, &a510, &a240); | |||
secp256k1_fe_t a780; secp256k1_fe_mul(&a780, &a750, &a30); | |||
secp256k1_fe_t a1020; secp256k1_fe_sqr(&a1020, &a510); | |||
secp256k1_fe_t a1022; secp256k1_fe_mul(&a1022, &a1020, &a2); | |||
secp256k1_fe_t a1023; secp256k1_fe_mul(&a1023, &a1022, a); | |||
secp256k1_fe_t x = a15; | |||
for (int i=0; i<21; i++) { | |||
for (int j=0; j<10; j++) secp256k1_fe_sqr(&x, &x); | |||
secp256k1_fe_mul(&x, &x, &a1023); | |||
} | |||
for (int j=0; j<10; j++) secp256k1_fe_sqr(&x, &x); | |||
secp256k1_fe_mul(&x, &x, &a1022); | |||
for (int i=0; i<2; i++) { | |||
for (int j=0; j<10; j++) secp256k1_fe_sqr(&x, &x); | |||
secp256k1_fe_mul(&x, &x, &a1023); | |||
} | |||
for (int j=0; j<10; j++) secp256k1_fe_sqr(&x, &x); | |||
secp256k1_fe_mul(r, &x, &a780); | |||
} | |||
void static secp256k1_fe_inv(secp256k1_fe_t *r, const secp256k1_fe_t *a) { | |||
// calculate a^p, with p={45,63,1019,1023} | |||
secp256k1_fe_t a2; secp256k1_fe_sqr(&a2, a); | |||
secp256k1_fe_t a3; secp256k1_fe_mul(&a3, &a2, a); | |||
secp256k1_fe_t a4; secp256k1_fe_sqr(&a4, &a2); | |||
secp256k1_fe_t a5; secp256k1_fe_mul(&a5, &a4, a); | |||
secp256k1_fe_t a10; secp256k1_fe_sqr(&a10, &a5); | |||
secp256k1_fe_t a11; secp256k1_fe_mul(&a11, &a10, a); | |||
secp256k1_fe_t a21; secp256k1_fe_mul(&a21, &a11, &a10); | |||
secp256k1_fe_t a42; secp256k1_fe_sqr(&a42, &a21); | |||
secp256k1_fe_t a45; secp256k1_fe_mul(&a45, &a42, &a3); | |||
secp256k1_fe_t a63; secp256k1_fe_mul(&a63, &a42, &a21); | |||
secp256k1_fe_t a126; secp256k1_fe_sqr(&a126, &a63); | |||
secp256k1_fe_t a252; secp256k1_fe_sqr(&a252, &a126); | |||
secp256k1_fe_t a504; secp256k1_fe_sqr(&a504, &a252); | |||
secp256k1_fe_t a1008; secp256k1_fe_sqr(&a1008, &a504); | |||
secp256k1_fe_t a1019; secp256k1_fe_mul(&a1019, &a1008, &a11); | |||
secp256k1_fe_t a1023; secp256k1_fe_mul(&a1023, &a1019, &a4); | |||
secp256k1_fe_t x = a63; | |||
for (int i=0; i<21; i++) { | |||
for (int j=0; j<10; j++) secp256k1_fe_sqr(&x, &x); | |||
secp256k1_fe_mul(&x, &x, &a1023); | |||
} | |||
for (int j=0; j<10; j++) secp256k1_fe_sqr(&x, &x); | |||
secp256k1_fe_mul(&x, &x, &a1019); | |||
for (int i=0; i<2; i++) { | |||
for (int j=0; j<10; j++) secp256k1_fe_sqr(&x, &x); | |||
secp256k1_fe_mul(&x, &x, &a1023); | |||
} | |||
for (int j=0; j<10; j++) secp256k1_fe_sqr(&x, &x); | |||
secp256k1_fe_mul(r, &x, &a45); | |||
} | |||
void static secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) { | |||
#if defined(USE_FIELD_INV_BUILTIN) | |||
secp256k1_fe_inv(r, a); | |||
#elif defined(USE_FIELD_INV_NUM) | |||
unsigned char b[32]; | |||
secp256k1_fe_t c = *a; | |||
secp256k1_fe_normalize(&c); | |||
secp256k1_fe_get_b32(b, &c); | |||
secp256k1_num_t n; | |||
secp256k1_num_init(&n); | |||
secp256k1_num_set_bin(&n, b, 32); | |||
secp256k1_num_mod_inverse(&n, &n, &secp256k1_fe_consts->p); | |||
secp256k1_num_get_bin(b, 32, &n); | |||
secp256k1_num_free(&n); | |||
secp256k1_fe_set_b32(r, b); | |||
#else | |||
#error "Please select field inverse implementation" | |||
#endif | |||
} | |||
void static secp256k1_fe_start(void) { | |||
static const unsigned char secp256k1_fe_consts_p[] = { | |||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | |||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | |||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | |||
0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F | |||
}; | |||
if (secp256k1_fe_consts == NULL) { | |||
secp256k1_fe_inner_start(); | |||
secp256k1_fe_consts_t *ret = (secp256k1_fe_consts_t*)malloc(sizeof(secp256k1_fe_consts_t)); | |||
secp256k1_num_init(&ret->p); | |||
secp256k1_num_set_bin(&ret->p, secp256k1_fe_consts_p, sizeof(secp256k1_fe_consts_p)); | |||
secp256k1_fe_consts = ret; | |||
} | |||
} | |||
void static secp256k1_fe_stop(void) { | |||
if (secp256k1_fe_consts != NULL) { | |||
secp256k1_fe_consts_t *c = (secp256k1_fe_consts_t*)secp256k1_fe_consts; | |||
secp256k1_num_free(&c->p); | |||
free((void*)c); | |||
secp256k1_fe_consts = NULL; | |||
secp256k1_fe_inner_stop(); | |||
} | |||
} | |||
#endif |
@ -0,0 +1,487 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_FIELD_REPR_IMPL_H_ | |||
#define _SECP256K1_FIELD_REPR_IMPL_H_ | |||
#include <stdio.h> | |||
#include <assert.h> | |||
#include <string.h> | |||
#include "../num.h" | |||
#include "../field.h" | |||
void static secp256k1_fe_inner_start(void) {} | |||
void static secp256k1_fe_inner_stop(void) {} | |||
void static secp256k1_fe_normalize(secp256k1_fe_t *r) { | |||
// fog("normalize in: ", r); | |||
uint32_t c; | |||
c = r->n[0]; | |||
uint32_t t0 = c & 0x3FFFFFFUL; | |||
c = (c >> 26) + r->n[1]; | |||
uint32_t t1 = c & 0x3FFFFFFUL; | |||
c = (c >> 26) + r->n[2]; | |||
uint32_t t2 = c & 0x3FFFFFFUL; | |||
c = (c >> 26) + r->n[3]; | |||
uint32_t t3 = c & 0x3FFFFFFUL; | |||
c = (c >> 26) + r->n[4]; | |||
uint32_t t4 = c & 0x3FFFFFFUL; | |||
c = (c >> 26) + r->n[5]; | |||
uint32_t t5 = c & 0x3FFFFFFUL; | |||
c = (c >> 26) + r->n[6]; | |||
uint32_t t6 = c & 0x3FFFFFFUL; | |||
c = (c >> 26) + r->n[7]; | |||
uint32_t t7 = c & 0x3FFFFFFUL; | |||
c = (c >> 26) + r->n[8]; | |||
uint32_t t8 = c & 0x3FFFFFFUL; | |||
c = (c >> 26) + r->n[9]; | |||
uint32_t t9 = c & 0x03FFFFFUL; | |||
c >>= 22; | |||
/* r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4; | |||
r->n[5] = t5; r->n[6] = t6; r->n[7] = t7; r->n[8] = t8; r->n[9] = t9; | |||
fog(" tm1: ", r); | |||
fprintf(stderr, "out c= %08lx\n", (unsigned long)c);*/ | |||
// The following code will not modify the t's if c is initially 0. | |||
uint32_t d = c * 0x3D1UL + t0; | |||
t0 = d & 0x3FFFFFFULL; | |||
d = (d >> 26) + t1 + c*0x40; | |||
t1 = d & 0x3FFFFFFULL; | |||
d = (d >> 26) + t2; | |||
t2 = d & 0x3FFFFFFULL; | |||
d = (d >> 26) + t3; | |||
t3 = d & 0x3FFFFFFULL; | |||
d = (d >> 26) + t4; | |||
t4 = d & 0x3FFFFFFULL; | |||
d = (d >> 26) + t5; | |||
t5 = d & 0x3FFFFFFULL; | |||
d = (d >> 26) + t6; | |||
t6 = d & 0x3FFFFFFULL; | |||
d = (d >> 26) + t7; | |||
t7 = d & 0x3FFFFFFULL; | |||
d = (d >> 26) + t8; | |||
t8 = d & 0x3FFFFFFULL; | |||
d = (d >> 26) + t9; | |||
t9 = d & 0x03FFFFFULL; | |||
assert((d >> 22) == 0); | |||
/* r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4; | |||
r->n[5] = t5; r->n[6] = t6; r->n[7] = t7; r->n[8] = t8; r->n[9] = t9; | |||
fog(" tm2: ", r); */ | |||
// Subtract p if result >= p | |||
uint64_t low = ((uint64_t)t1 << 26) | t0; | |||
uint64_t mask = -(int64_t)((t9 < 0x03FFFFFUL) | (t8 < 0x3FFFFFFUL) | (t7 < 0x3FFFFFFUL) | (t6 < 0x3FFFFFFUL) | (t5 < 0x3FFFFFFUL) | (t4 < 0x3FFFFFFUL) | (t3 < 0x3FFFFFFUL) | (t2 < 0x3FFFFFFUL) | (low < 0xFFFFEFFFFFC2FULL)); | |||
t9 &= mask; | |||
t8 &= mask; | |||
t7 &= mask; | |||
t6 &= mask; | |||
t5 &= mask; | |||
t4 &= mask; | |||
t3 &= mask; | |||
t2 &= mask; | |||
low -= (~mask & 0xFFFFEFFFFFC2FULL); | |||
// push internal variables back | |||
r->n[0] = low & 0x3FFFFFFUL; r->n[1] = (low >> 26) & 0x3FFFFFFUL; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4; | |||
r->n[5] = t5; r->n[6] = t6; r->n[7] = t7; r->n[8] = t8; r->n[9] = t9; | |||
/* fog(" out: ", r);*/ | |||
#ifdef VERIFY | |||
r->magnitude = 1; | |||
r->normalized = 1; | |||
#endif | |||
} | |||
void static inline secp256k1_fe_set_int(secp256k1_fe_t *r, int a) { | |||
r->n[0] = a; | |||
r->n[1] = r->n[2] = r->n[3] = r->n[4] = r->n[5] = r->n[6] = r->n[7] = r->n[8] = r->n[9] = 0; | |||
#ifdef VERIFY | |||
r->magnitude = 1; | |||
r->normalized = 1; | |||
#endif | |||
} | |||
// TODO: not constant time! | |||
int static inline secp256k1_fe_is_zero(const secp256k1_fe_t *a) { | |||
#ifdef VERIFY | |||
assert(a->normalized); | |||
#endif | |||
return (a->n[0] == 0 && a->n[1] == 0 && a->n[2] == 0 && a->n[3] == 0 && a->n[4] == 0 && a->n[5] == 0 && a->n[6] == 0 && a->n[7] == 0 && a->n[8] == 0 && a->n[9] == 0); | |||
} | |||
int static inline secp256k1_fe_is_odd(const secp256k1_fe_t *a) { | |||
#ifdef VERIFY | |||
assert(a->normalized); | |||
#endif | |||
return a->n[0] & 1; | |||
} | |||
// TODO: not constant time! | |||
int static inline secp256k1_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) { | |||
#ifdef VERIFY | |||
assert(a->normalized); | |||
assert(b->normalized); | |||
#endif | |||
return (a->n[0] == b->n[0] && a->n[1] == b->n[1] && a->n[2] == b->n[2] && a->n[3] == b->n[3] && a->n[4] == b->n[4] && | |||
a->n[5] == b->n[5] && a->n[6] == b->n[6] && a->n[7] == b->n[7] && a->n[8] == b->n[8] && a->n[9] == b->n[9]); | |||
} | |||
void static secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) { | |||
r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0; | |||
r->n[5] = r->n[6] = r->n[7] = r->n[8] = r->n[9] = 0; | |||
for (int i=0; i<32; i++) { | |||
for (int j=0; j<4; j++) { | |||
int limb = (8*i+2*j)/26; | |||
int shift = (8*i+2*j)%26; | |||
r->n[limb] |= (uint32_t)((a[31-i] >> (2*j)) & 0x3) << shift; | |||
} | |||
} | |||
#ifdef VERIFY | |||
r->magnitude = 1; | |||
r->normalized = 1; | |||
#endif | |||
} | |||
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */ | |||
void static secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) { | |||
#ifdef VERIFY | |||
assert(a->normalized); | |||
#endif | |||
for (int i=0; i<32; i++) { | |||
int c = 0; | |||
for (int j=0; j<4; j++) { | |||
int limb = (8*i+2*j)/26; | |||
int shift = (8*i+2*j)%26; | |||
c |= ((a->n[limb] >> shift) & 0x3) << (2 * j); | |||
} | |||
r[31-i] = c; | |||
} | |||
} | |||
void static inline secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m) { | |||
#ifdef VERIFY | |||
assert(a->magnitude <= m); | |||
r->magnitude = m + 1; | |||
r->normalized = 0; | |||
#endif | |||
r->n[0] = 0x3FFFC2FUL * (m + 1) - a->n[0]; | |||
r->n[1] = 0x3FFFFBFUL * (m + 1) - a->n[1]; | |||
r->n[2] = 0x3FFFFFFUL * (m + 1) - a->n[2]; | |||
r->n[3] = 0x3FFFFFFUL * (m + 1) - a->n[3]; | |||
r->n[4] = 0x3FFFFFFUL * (m + 1) - a->n[4]; | |||
r->n[5] = 0x3FFFFFFUL * (m + 1) - a->n[5]; | |||
r->n[6] = 0x3FFFFFFUL * (m + 1) - a->n[6]; | |||
r->n[7] = 0x3FFFFFFUL * (m + 1) - a->n[7]; | |||
r->n[8] = 0x3FFFFFFUL * (m + 1) - a->n[8]; | |||
r->n[9] = 0x03FFFFFUL * (m + 1) - a->n[9]; | |||
} | |||
void static inline secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) { | |||
#ifdef VERIFY | |||
r->magnitude *= a; | |||
r->normalized = 0; | |||
#endif | |||
r->n[0] *= a; | |||
r->n[1] *= a; | |||
r->n[2] *= a; | |||
r->n[3] *= a; | |||
r->n[4] *= a; | |||
r->n[5] *= a; | |||
r->n[6] *= a; | |||
r->n[7] *= a; | |||
r->n[8] *= a; | |||
r->n[9] *= a; | |||
} | |||
void static inline secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a) { | |||
#ifdef VERIFY | |||
r->magnitude += a->magnitude; | |||
r->normalized = 0; | |||
#endif | |||
r->n[0] += a->n[0]; | |||
r->n[1] += a->n[1]; | |||
r->n[2] += a->n[2]; | |||
r->n[3] += a->n[3]; | |||
r->n[4] += a->n[4]; | |||
r->n[5] += a->n[5]; | |||
r->n[6] += a->n[6]; | |||
r->n[7] += a->n[7]; | |||
r->n[8] += a->n[8]; | |||
r->n[9] += a->n[9]; | |||
} | |||
void static inline secp256k1_fe_mul_inner(const uint32_t *a, const uint32_t *b, uint32_t *r) { | |||
uint64_t c = (uint64_t)a[0] * b[0]; | |||
uint32_t t0 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)a[0] * b[1] + | |||
(uint64_t)a[1] * b[0]; | |||
uint32_t t1 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)a[0] * b[2] + | |||
(uint64_t)a[1] * b[1] + | |||
(uint64_t)a[2] * b[0]; | |||
uint32_t t2 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)a[0] * b[3] + | |||
(uint64_t)a[1] * b[2] + | |||
(uint64_t)a[2] * b[1] + | |||
(uint64_t)a[3] * b[0]; | |||
uint32_t t3 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)a[0] * b[4] + | |||
(uint64_t)a[1] * b[3] + | |||
(uint64_t)a[2] * b[2] + | |||
(uint64_t)a[3] * b[1] + | |||
(uint64_t)a[4] * b[0]; | |||
uint32_t t4 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)a[0] * b[5] + | |||
(uint64_t)a[1] * b[4] + | |||
(uint64_t)a[2] * b[3] + | |||
(uint64_t)a[3] * b[2] + | |||
(uint64_t)a[4] * b[1] + | |||
(uint64_t)a[5] * b[0]; | |||
uint32_t t5 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)a[0] * b[6] + | |||
(uint64_t)a[1] * b[5] + | |||
(uint64_t)a[2] * b[4] + | |||
(uint64_t)a[3] * b[3] + | |||
(uint64_t)a[4] * b[2] + | |||
(uint64_t)a[5] * b[1] + | |||
(uint64_t)a[6] * b[0]; | |||
uint32_t t6 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)a[0] * b[7] + | |||
(uint64_t)a[1] * b[6] + | |||
(uint64_t)a[2] * b[5] + | |||
(uint64_t)a[3] * b[4] + | |||
(uint64_t)a[4] * b[3] + | |||
(uint64_t)a[5] * b[2] + | |||
(uint64_t)a[6] * b[1] + | |||
(uint64_t)a[7] * b[0]; | |||
uint32_t t7 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)a[0] * b[8] + | |||
(uint64_t)a[1] * b[7] + | |||
(uint64_t)a[2] * b[6] + | |||
(uint64_t)a[3] * b[5] + | |||
(uint64_t)a[4] * b[4] + | |||
(uint64_t)a[5] * b[3] + | |||
(uint64_t)a[6] * b[2] + | |||
(uint64_t)a[7] * b[1] + | |||
(uint64_t)a[8] * b[0]; | |||
uint32_t t8 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)a[0] * b[9] + | |||
(uint64_t)a[1] * b[8] + | |||
(uint64_t)a[2] * b[7] + | |||
(uint64_t)a[3] * b[6] + | |||
(uint64_t)a[4] * b[5] + | |||
(uint64_t)a[5] * b[4] + | |||
(uint64_t)a[6] * b[3] + | |||
(uint64_t)a[7] * b[2] + | |||
(uint64_t)a[8] * b[1] + | |||
(uint64_t)a[9] * b[0]; | |||
uint32_t t9 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)a[1] * b[9] + | |||
(uint64_t)a[2] * b[8] + | |||
(uint64_t)a[3] * b[7] + | |||
(uint64_t)a[4] * b[6] + | |||
(uint64_t)a[5] * b[5] + | |||
(uint64_t)a[6] * b[4] + | |||
(uint64_t)a[7] * b[3] + | |||
(uint64_t)a[8] * b[2] + | |||
(uint64_t)a[9] * b[1]; | |||
uint32_t t10 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)a[2] * b[9] + | |||
(uint64_t)a[3] * b[8] + | |||
(uint64_t)a[4] * b[7] + | |||
(uint64_t)a[5] * b[6] + | |||
(uint64_t)a[6] * b[5] + | |||
(uint64_t)a[7] * b[4] + | |||
(uint64_t)a[8] * b[3] + | |||
(uint64_t)a[9] * b[2]; | |||
uint32_t t11 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)a[3] * b[9] + | |||
(uint64_t)a[4] * b[8] + | |||
(uint64_t)a[5] * b[7] + | |||
(uint64_t)a[6] * b[6] + | |||
(uint64_t)a[7] * b[5] + | |||
(uint64_t)a[8] * b[4] + | |||
(uint64_t)a[9] * b[3]; | |||
uint32_t t12 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)a[4] * b[9] + | |||
(uint64_t)a[5] * b[8] + | |||
(uint64_t)a[6] * b[7] + | |||
(uint64_t)a[7] * b[6] + | |||
(uint64_t)a[8] * b[5] + | |||
(uint64_t)a[9] * b[4]; | |||
uint32_t t13 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)a[5] * b[9] + | |||
(uint64_t)a[6] * b[8] + | |||
(uint64_t)a[7] * b[7] + | |||
(uint64_t)a[8] * b[6] + | |||
(uint64_t)a[9] * b[5]; | |||
uint32_t t14 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)a[6] * b[9] + | |||
(uint64_t)a[7] * b[8] + | |||
(uint64_t)a[8] * b[7] + | |||
(uint64_t)a[9] * b[6]; | |||
uint32_t t15 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)a[7] * b[9] + | |||
(uint64_t)a[8] * b[8] + | |||
(uint64_t)a[9] * b[7]; | |||
uint32_t t16 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)a[8] * b[9] + | |||
(uint64_t)a[9] * b[8]; | |||
uint32_t t17 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)a[9] * b[9]; | |||
uint32_t t18 = c & 0x3FFFFFFUL; c = c >> 26; | |||
uint32_t t19 = c; | |||
c = t0 + (uint64_t)t10 * 0x3D10UL; | |||
t0 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + t1 + (uint64_t)t10*0x400UL + (uint64_t)t11 * 0x3D10UL; | |||
t1 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + t2 + (uint64_t)t11*0x400UL + (uint64_t)t12 * 0x3D10UL; | |||
t2 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + t3 + (uint64_t)t12*0x400UL + (uint64_t)t13 * 0x3D10UL; | |||
r[3] = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + t4 + (uint64_t)t13*0x400UL + (uint64_t)t14 * 0x3D10UL; | |||
r[4] = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + t5 + (uint64_t)t14*0x400UL + (uint64_t)t15 * 0x3D10UL; | |||
r[5] = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + t6 + (uint64_t)t15*0x400UL + (uint64_t)t16 * 0x3D10UL; | |||
r[6] = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + t7 + (uint64_t)t16*0x400UL + (uint64_t)t17 * 0x3D10UL; | |||
r[7] = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + t8 + (uint64_t)t17*0x400UL + (uint64_t)t18 * 0x3D10UL; | |||
r[8] = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + t9 + (uint64_t)t18*0x400UL + (uint64_t)t19 * 0x1000003D10ULL; | |||
r[9] = c & 0x03FFFFFUL; c = c >> 22; | |||
uint64_t d = t0 + c * 0x3D1UL; | |||
r[0] = d & 0x3FFFFFFUL; d = d >> 26; | |||
d = d + t1 + c*0x40; | |||
r[1] = d & 0x3FFFFFFUL; d = d >> 26; | |||
r[2] = t2 + d; | |||
} | |||
void static inline secp256k1_fe_sqr_inner(const uint32_t *a, uint32_t *r) { | |||
uint64_t c = (uint64_t)a[0] * a[0]; | |||
uint32_t t0 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)(a[0]*2) * a[1]; | |||
uint32_t t1 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)(a[0]*2) * a[2] + | |||
(uint64_t)a[1] * a[1]; | |||
uint32_t t2 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)(a[0]*2) * a[3] + | |||
(uint64_t)(a[1]*2) * a[2]; | |||
uint32_t t3 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)(a[0]*2) * a[4] + | |||
(uint64_t)(a[1]*2) * a[3] + | |||
(uint64_t)a[2] * a[2]; | |||
uint32_t t4 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)(a[0]*2) * a[5] + | |||
(uint64_t)(a[1]*2) * a[4] + | |||
(uint64_t)(a[2]*2) * a[3]; | |||
uint32_t t5 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)(a[0]*2) * a[6] + | |||
(uint64_t)(a[1]*2) * a[5] + | |||
(uint64_t)(a[2]*2) * a[4] + | |||
(uint64_t)a[3] * a[3]; | |||
uint32_t t6 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)(a[0]*2) * a[7] + | |||
(uint64_t)(a[1]*2) * a[6] + | |||
(uint64_t)(a[2]*2) * a[5] + | |||
(uint64_t)(a[3]*2) * a[4]; | |||
uint32_t t7 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)(a[0]*2) * a[8] + | |||
(uint64_t)(a[1]*2) * a[7] + | |||
(uint64_t)(a[2]*2) * a[6] + | |||
(uint64_t)(a[3]*2) * a[5] + | |||
(uint64_t)a[4] * a[4]; | |||
uint32_t t8 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)(a[0]*2) * a[9] + | |||
(uint64_t)(a[1]*2) * a[8] + | |||
(uint64_t)(a[2]*2) * a[7] + | |||
(uint64_t)(a[3]*2) * a[6] + | |||
(uint64_t)(a[4]*2) * a[5]; | |||
uint32_t t9 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)(a[1]*2) * a[9] + | |||
(uint64_t)(a[2]*2) * a[8] + | |||
(uint64_t)(a[3]*2) * a[7] + | |||
(uint64_t)(a[4]*2) * a[6] + | |||
(uint64_t)a[5] * a[5]; | |||
uint32_t t10 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)(a[2]*2) * a[9] + | |||
(uint64_t)(a[3]*2) * a[8] + | |||
(uint64_t)(a[4]*2) * a[7] + | |||
(uint64_t)(a[5]*2) * a[6]; | |||
uint32_t t11 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)(a[3]*2) * a[9] + | |||
(uint64_t)(a[4]*2) * a[8] + | |||
(uint64_t)(a[5]*2) * a[7] + | |||
(uint64_t)a[6] * a[6]; | |||
uint32_t t12 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)(a[4]*2) * a[9] + | |||
(uint64_t)(a[5]*2) * a[8] + | |||
(uint64_t)(a[6]*2) * a[7]; | |||
uint32_t t13 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)(a[5]*2) * a[9] + | |||
(uint64_t)(a[6]*2) * a[8] + | |||
(uint64_t)a[7] * a[7]; | |||
uint32_t t14 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)(a[6]*2) * a[9] + | |||
(uint64_t)(a[7]*2) * a[8]; | |||
uint32_t t15 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)(a[7]*2) * a[9] + | |||
(uint64_t)a[8] * a[8]; | |||
uint32_t t16 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)(a[8]*2) * a[9]; | |||
uint32_t t17 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + (uint64_t)a[9] * a[9]; | |||
uint32_t t18 = c & 0x3FFFFFFUL; c = c >> 26; | |||
uint32_t t19 = c; | |||
c = t0 + (uint64_t)t10 * 0x3D10UL; | |||
t0 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + t1 + (uint64_t)t10*0x400UL + (uint64_t)t11 * 0x3D10UL; | |||
t1 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + t2 + (uint64_t)t11*0x400UL + (uint64_t)t12 * 0x3D10UL; | |||
t2 = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + t3 + (uint64_t)t12*0x400UL + (uint64_t)t13 * 0x3D10UL; | |||
r[3] = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + t4 + (uint64_t)t13*0x400UL + (uint64_t)t14 * 0x3D10UL; | |||
r[4] = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + t5 + (uint64_t)t14*0x400UL + (uint64_t)t15 * 0x3D10UL; | |||
r[5] = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + t6 + (uint64_t)t15*0x400UL + (uint64_t)t16 * 0x3D10UL; | |||
r[6] = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + t7 + (uint64_t)t16*0x400UL + (uint64_t)t17 * 0x3D10UL; | |||
r[7] = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + t8 + (uint64_t)t17*0x400UL + (uint64_t)t18 * 0x3D10UL; | |||
r[8] = c & 0x3FFFFFFUL; c = c >> 26; | |||
c = c + t9 + (uint64_t)t18*0x400UL + (uint64_t)t19 * 0x1000003D10ULL; | |||
r[9] = c & 0x03FFFFFUL; c = c >> 22; | |||
uint64_t d = t0 + c * 0x3D1UL; | |||
r[0] = d & 0x3FFFFFFUL; d = d >> 26; | |||
d = d + t1 + c*0x40; | |||
r[1] = d & 0x3FFFFFFUL; d = d >> 26; | |||
r[2] = t2 + d; | |||
} | |||
void static secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t *b) { | |||
#ifdef VERIFY | |||
assert(a->magnitude <= 8); | |||
assert(b->magnitude <= 8); | |||
r->magnitude = 1; | |||
r->normalized = 0; | |||
#endif | |||
secp256k1_fe_mul_inner(a->n, b->n, r->n); | |||
} | |||
void static secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) { | |||
#ifdef VERIFY | |||
assert(a->magnitude <= 8); | |||
r->magnitude = 1; | |||
r->normalized = 0; | |||
#endif | |||
secp256k1_fe_sqr_inner(a->n, r->n); | |||
} | |||
#endif |
@ -0,0 +1,196 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_FIELD_REPR_IMPL_H_ | |||
#define _SECP256K1_FIELD_REPR_IMPL_H_ | |||
#include <assert.h> | |||
#include <string.h> | |||
#include "../num.h" | |||
#include "../field.h" | |||
#if defined(USE_FIELD_5X52_ASM) | |||
#include "field_5x52_asm.h" | |||
#elif defined(USE_FIELD_5X52_INT128) | |||
#include "field_5x52_int128.h" | |||
#else | |||
#error "Please select field_5x52 implementation" | |||
#endif | |||
/** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F, | |||
* represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular, | |||
* each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element | |||
* is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations | |||
* accept any input with magnitude at most M, and have different rules for propagating magnitude to their | |||
* output. | |||
*/ | |||
void static secp256k1_fe_inner_start(void) {} | |||
void static secp256k1_fe_inner_stop(void) {} | |||
void static secp256k1_fe_normalize(secp256k1_fe_t *r) { | |||
uint64_t c; | |||
c = r->n[0]; | |||
uint64_t t0 = c & 0xFFFFFFFFFFFFFULL; | |||
c = (c >> 52) + r->n[1]; | |||
uint64_t t1 = c & 0xFFFFFFFFFFFFFULL; | |||
c = (c >> 52) + r->n[2]; | |||
uint64_t t2 = c & 0xFFFFFFFFFFFFFULL; | |||
c = (c >> 52) + r->n[3]; | |||
uint64_t t3 = c & 0xFFFFFFFFFFFFFULL; | |||
c = (c >> 52) + r->n[4]; | |||
uint64_t t4 = c & 0x0FFFFFFFFFFFFULL; | |||
c >>= 48; | |||
// The following code will not modify the t's if c is initially 0. | |||
c = c * 0x1000003D1ULL + t0; | |||
t0 = c & 0xFFFFFFFFFFFFFULL; | |||
c = (c >> 52) + t1; | |||
t1 = c & 0xFFFFFFFFFFFFFULL; | |||
c = (c >> 52) + t2; | |||
t2 = c & 0xFFFFFFFFFFFFFULL; | |||
c = (c >> 52) + t3; | |||
t3 = c & 0xFFFFFFFFFFFFFULL; | |||
c = (c >> 52) + t4; | |||
t4 = c & 0x0FFFFFFFFFFFFULL; | |||
assert((c >> 48) == 0); | |||
// Subtract p if result >= p | |||
uint64_t mask = -(int64_t)((t4 < 0xFFFFFFFFFFFFULL) | (t3 < 0xFFFFFFFFFFFFFULL) | (t2 < 0xFFFFFFFFFFFFFULL) | (t1 < 0xFFFFFFFFFFFFFULL) | (t0 < 0xFFFFEFFFFFC2FULL)); | |||
t4 &= mask; | |||
t3 &= mask; | |||
t2 &= mask; | |||
t1 &= mask; | |||
t0 -= (~mask & 0xFFFFEFFFFFC2FULL); | |||
// push internal variables back | |||
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4; | |||
#ifdef VERIFY | |||
r->magnitude = 1; | |||
r->normalized = 1; | |||
#endif | |||
} | |||
void static inline secp256k1_fe_set_int(secp256k1_fe_t *r, int a) { | |||
r->n[0] = a; | |||
r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0; | |||
#ifdef VERIFY | |||
r->magnitude = 1; | |||
r->normalized = 1; | |||
#endif | |||
} | |||
// TODO: not constant time! | |||
int static inline secp256k1_fe_is_zero(const secp256k1_fe_t *a) { | |||
#ifdef VERIFY | |||
assert(a->normalized); | |||
#endif | |||
return (a->n[0] == 0 && a->n[1] == 0 && a->n[2] == 0 && a->n[3] == 0 && a->n[4] == 0); | |||
} | |||
int static inline secp256k1_fe_is_odd(const secp256k1_fe_t *a) { | |||
#ifdef VERIFY | |||
assert(a->normalized); | |||
#endif | |||
return a->n[0] & 1; | |||
} | |||
// TODO: not constant time! | |||
int static inline secp256k1_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) { | |||
#ifdef VERIFY | |||
assert(a->normalized); | |||
assert(b->normalized); | |||
#endif | |||
return (a->n[0] == b->n[0] && a->n[1] == b->n[1] && a->n[2] == b->n[2] && a->n[3] == b->n[3] && a->n[4] == b->n[4]); | |||
} | |||
void static secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) { | |||
r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0; | |||
for (int i=0; i<32; i++) { | |||
for (int j=0; j<2; j++) { | |||
int limb = (8*i+4*j)/52; | |||
int shift = (8*i+4*j)%52; | |||
r->n[limb] |= (uint64_t)((a[31-i] >> (4*j)) & 0xF) << shift; | |||
} | |||
} | |||
#ifdef VERIFY | |||
r->magnitude = 1; | |||
r->normalized = 1; | |||
#endif | |||
} | |||
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */ | |||
void static secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) { | |||
#ifdef VERIFY | |||
assert(a->normalized); | |||
#endif | |||
for (int i=0; i<32; i++) { | |||
int c = 0; | |||
for (int j=0; j<2; j++) { | |||
int limb = (8*i+4*j)/52; | |||
int shift = (8*i+4*j)%52; | |||
c |= ((a->n[limb] >> shift) & 0xF) << (4 * j); | |||
} | |||
r[31-i] = c; | |||
} | |||
} | |||
void static inline secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m) { | |||
#ifdef VERIFY | |||
assert(a->magnitude <= m); | |||
r->magnitude = m + 1; | |||
r->normalized = 0; | |||
#endif | |||
r->n[0] = 0xFFFFEFFFFFC2FULL * (m + 1) - a->n[0]; | |||
r->n[1] = 0xFFFFFFFFFFFFFULL * (m + 1) - a->n[1]; | |||
r->n[2] = 0xFFFFFFFFFFFFFULL * (m + 1) - a->n[2]; | |||
r->n[3] = 0xFFFFFFFFFFFFFULL * (m + 1) - a->n[3]; | |||
r->n[4] = 0x0FFFFFFFFFFFFULL * (m + 1) - a->n[4]; | |||
} | |||
void static inline secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) { | |||
#ifdef VERIFY | |||
r->magnitude *= a; | |||
r->normalized = 0; | |||
#endif | |||
r->n[0] *= a; | |||
r->n[1] *= a; | |||
r->n[2] *= a; | |||
r->n[3] *= a; | |||
r->n[4] *= a; | |||
} | |||
void static inline secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a) { | |||
#ifdef VERIFY | |||
r->magnitude += a->magnitude; | |||
r->normalized = 0; | |||
#endif | |||
r->n[0] += a->n[0]; | |||
r->n[1] += a->n[1]; | |||
r->n[2] += a->n[2]; | |||
r->n[3] += a->n[3]; | |||
r->n[4] += a->n[4]; | |||
} | |||
void static secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t *b) { | |||
#ifdef VERIFY | |||
assert(a->magnitude <= 8); | |||
assert(b->magnitude <= 8); | |||
r->magnitude = 1; | |||
r->normalized = 0; | |||
#endif | |||
secp256k1_fe_mul_inner(a->n, b->n, r->n); | |||
} | |||
void static secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) { | |||
#ifdef VERIFY | |||
assert(a->magnitude <= 8); | |||
r->magnitude = 1; | |||
r->normalized = 0; | |||
#endif | |||
secp256k1_fe_sqr_inner(a->n, r->n); | |||
} | |||
#endif |
@ -0,0 +1,11 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_FIELD_INNER5X52_IMPL_H_ | |||
#define _SECP256K1_FIELD_INNER5X52_IMPL_H_ | |||
void __attribute__ ((sysv_abi)) secp256k1_fe_mul_inner(const uint64_t *a, const uint64_t *b, uint64_t *r); | |||
void __attribute__ ((sysv_abi)) secp256k1_fe_sqr_inner(const uint64_t *a, uint64_t *r); | |||
#endif |
@ -0,0 +1,105 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_FIELD_INNER5X52_IMPL_H_ | |||
#define _SECP256K1_FIELD_INNER5X52_IMPL_H_ | |||
#include <stdint.h> | |||
void static inline secp256k1_fe_mul_inner(const uint64_t *a, const uint64_t *b, uint64_t *r) { | |||
__int128 c = (__int128)a[0] * b[0]; | |||
uint64_t t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0FFFFFFFFFFFFFE0 | |||
c = c + (__int128)a[0] * b[1] + | |||
(__int128)a[1] * b[0]; | |||
uint64_t t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 20000000000000BF | |||
c = c + (__int128)a[0] * b[2] + | |||
(__int128)a[1] * b[1] + | |||
(__int128)a[2] * b[0]; | |||
uint64_t t2 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 30000000000001A0 | |||
c = c + (__int128)a[0] * b[3] + | |||
(__int128)a[1] * b[2] + | |||
(__int128)a[2] * b[1] + | |||
(__int128)a[3] * b[0]; | |||
uint64_t t3 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 4000000000000280 | |||
c = c + (__int128)a[0] * b[4] + | |||
(__int128)a[1] * b[3] + | |||
(__int128)a[2] * b[2] + | |||
(__int128)a[3] * b[1] + | |||
(__int128)a[4] * b[0]; | |||
uint64_t t4 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 320000000000037E | |||
c = c + (__int128)a[1] * b[4] + | |||
(__int128)a[2] * b[3] + | |||
(__int128)a[3] * b[2] + | |||
(__int128)a[4] * b[1]; | |||
uint64_t t5 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 22000000000002BE | |||
c = c + (__int128)a[2] * b[4] + | |||
(__int128)a[3] * b[3] + | |||
(__int128)a[4] * b[2]; | |||
uint64_t t6 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 12000000000001DE | |||
c = c + (__int128)a[3] * b[4] + | |||
(__int128)a[4] * b[3]; | |||
uint64_t t7 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 02000000000000FE | |||
c = c + (__int128)a[4] * b[4]; | |||
uint64_t t8 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 001000000000001E | |||
uint64_t t9 = c; | |||
c = t0 + (__int128)t5 * 0x1000003D10ULL; | |||
t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 | |||
c = c + t1 + (__int128)t6 * 0x1000003D10ULL; | |||
t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 | |||
c = c + t2 + (__int128)t7 * 0x1000003D10ULL; | |||
r[2] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 | |||
c = c + t3 + (__int128)t8 * 0x1000003D10ULL; | |||
r[3] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 | |||
c = c + t4 + (__int128)t9 * 0x1000003D10ULL; | |||
r[4] = c & 0x0FFFFFFFFFFFFULL; c = c >> 48; // c max 000001000003D110 | |||
c = t0 + (__int128)c * 0x1000003D1ULL; | |||
r[0] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 1000008 | |||
r[1] = t1 + c; | |||
} | |||
void static inline secp256k1_fe_sqr_inner(const uint64_t *a, uint64_t *r) { | |||
__int128 c = (__int128)a[0] * a[0]; | |||
uint64_t t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0FFFFFFFFFFFFFE0 | |||
c = c + (__int128)(a[0]*2) * a[1]; | |||
uint64_t t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 20000000000000BF | |||
c = c + (__int128)(a[0]*2) * a[2] + | |||
(__int128)a[1] * a[1]; | |||
uint64_t t2 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 30000000000001A0 | |||
c = c + (__int128)(a[0]*2) * a[3] + | |||
(__int128)(a[1]*2) * a[2]; | |||
uint64_t t3 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 4000000000000280 | |||
c = c + (__int128)(a[0]*2) * a[4] + | |||
(__int128)(a[1]*2) * a[3] + | |||
(__int128)a[2] * a[2]; | |||
uint64_t t4 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 320000000000037E | |||
c = c + (__int128)(a[1]*2) * a[4] + | |||
(__int128)(a[2]*2) * a[3]; | |||
uint64_t t5 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 22000000000002BE | |||
c = c + (__int128)(a[2]*2) * a[4] + | |||
(__int128)a[3] * a[3]; | |||
uint64_t t6 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 12000000000001DE | |||
c = c + (__int128)(a[3]*2) * a[4]; | |||
uint64_t t7 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 02000000000000FE | |||
c = c + (__int128)a[4] * a[4]; | |||
uint64_t t8 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 001000000000001E | |||
uint64_t t9 = c; | |||
c = t0 + (__int128)t5 * 0x1000003D10ULL; | |||
t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 | |||
c = c + t1 + (__int128)t6 * 0x1000003D10ULL; | |||
t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 | |||
c = c + t2 + (__int128)t7 * 0x1000003D10ULL; | |||
r[2] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 | |||
c = c + t3 + (__int128)t8 * 0x1000003D10ULL; | |||
r[3] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 | |||
c = c + t4 + (__int128)t9 * 0x1000003D10ULL; | |||
r[4] = c & 0x0FFFFFFFFFFFFULL; c = c >> 48; // c max 000001000003D110 | |||
c = t0 + (__int128)c * 0x1000003D1ULL; | |||
r[0] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 1000008 | |||
r[1] = t1 + c; | |||
} | |||
#endif |
@ -0,0 +1,371 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_FIELD_REPR_IMPL_H_ | |||
#define _SECP256K1_FIELD_REPR_IMPL_H_ | |||
#include <assert.h> | |||
#include <string.h> | |||
#include "../num.h" | |||
#include "../field.h" | |||
#include <stdio.h> | |||
#include "field_5x64_asm.h" | |||
/** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F, | |||
* represented as 4 uint64_t's in base 2^64, and one overflow uint64_t. | |||
*/ | |||
#define FULL_LIMB (0xFFFFFFFFFFFFFFFFULL) | |||
#define LAST_LIMB (0xFFFFFFFEFFFFFC2FULL) | |||
#define COMP_LIMB (0x00000001000003D1ULL) | |||
void static secp256k1_fe_inner_start(void) {} | |||
void static secp256k1_fe_inner_stop(void) {} | |||
void static secp256k1_fe_reduce(secp256k1_fe_t *r) { | |||
unsigned __int128 c = (unsigned __int128)r->n[4] * COMP_LIMB + r->n[0]; | |||
uint64_t n0 = c; | |||
c = (c >> 64) + r->n[1]; | |||
uint64_t n1 = c; | |||
c = (c >> 64) + r->n[2]; | |||
r->n[2] = c; | |||
c = (c >> 64) + r->n[3]; | |||
r->n[3] = c; | |||
c = (c >> 64) * COMP_LIMB + n0; | |||
r->n[0] = c; | |||
r->n[1] = n1 + (c >> 64); | |||
assert(r->n[1] >= n1); | |||
r->n[4] = 0; | |||
#ifdef VERIFY | |||
r->reduced = 1; | |||
#endif | |||
} | |||
void static secp256k1_fe_normalize(secp256k1_fe_t *r) { | |||
secp256k1_fe_reduce(r); | |||
// Subtract p if result >= p | |||
uint64_t mask = -(int64_t)((r->n[0] < LAST_LIMB) | (r->n[1] != ~0ULL) | (r->n[2] != ~0ULL) | (r->n[3] != ~0ULL)); | |||
r->n[0] -= (~mask & LAST_LIMB); | |||
r->n[1] &= mask; | |||
r->n[2] &= mask; | |||
r->n[3] &= mask; | |||
assert(r->n[4] == 0); | |||
#ifdef VERIFY | |||
r->normalized = 1; | |||
#endif | |||
} | |||
void static inline secp256k1_fe_set_int(secp256k1_fe_t *r, int a) { | |||
r->n[0] = a; | |||
r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0; | |||
#ifdef VERIFY | |||
r->reduced = 1; | |||
r->normalized = 1; | |||
#endif | |||
} | |||
// TODO: not constant time! | |||
int static inline secp256k1_fe_is_zero(const secp256k1_fe_t *a) { | |||
#ifdef VERIFY | |||
assert(a->normalized); | |||
#endif | |||
return (a->n[0] == 0 && a->n[1] == 0 && a->n[2] == 0 && a->n[3] == 0); | |||
} | |||
int static inline secp256k1_fe_is_odd(const secp256k1_fe_t *a) { | |||
#ifdef VERIFY | |||
assert(a->normalized); | |||
#endif | |||
return a->n[0] & 1; | |||
} | |||
// TODO: not constant time! | |||
int static inline secp256k1_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) { | |||
#ifdef VERIFY | |||
assert(a->normalized); | |||
assert(b->normalized); | |||
#endif | |||
return (a->n[0] == b->n[0] && a->n[1] == b->n[1] && a->n[2] == b->n[2] && a->n[3] == b->n[3]); | |||
} | |||
void static secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) { | |||
r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0; | |||
for (int i=0; i<32; i++) { | |||
r->n[i/8] |= (uint64_t)a[31-i] << (i&7)*8; | |||
} | |||
#ifdef VERIFY | |||
r->reduced = 1; | |||
r->normalized = 0; | |||
#endif | |||
} | |||
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */ | |||
void static secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) { | |||
#ifdef VERIFY | |||
assert(a->normalized); | |||
#endif | |||
for (int i=0; i<32; i++) { | |||
r[31-i] = a->n[i/8] >> ((i&7)*8); | |||
} | |||
} | |||
void static inline secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *ac, int m) { | |||
secp256k1_fe_t a = *ac; | |||
secp256k1_fe_reduce(&a); | |||
unsigned __int128 c = (unsigned __int128)(~a.n[0]) + LAST_LIMB + 1; | |||
r->n[0] = c; | |||
c = (c >> 64) + (~a.n[1]) + FULL_LIMB; | |||
r->n[1] = c; | |||
c = (c >> 64) + (~a.n[2]) + FULL_LIMB; | |||
r->n[2] = c; | |||
c = (c >> 64) + (~a.n[3]) + FULL_LIMB; | |||
r->n[3] = c; | |||
r->n[4] = 0; | |||
#ifdef VERIFY | |||
r->reduced = 1; | |||
r->normalized = 0; | |||
#endif | |||
} | |||
void static inline secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) { | |||
#ifdef VERIFY | |||
r->reduced = 0; | |||
r->normalized = 0; | |||
#endif | |||
unsigned __int128 c = (unsigned __int128)r->n[0] * a; | |||
r->n[0] = c; | |||
c = (c >> 64) + (unsigned __int128)r->n[1] * a; | |||
r->n[1] = c; | |||
c = (c >> 64) + (unsigned __int128)r->n[2] * a; | |||
r->n[2] = c; | |||
c = (c >> 64) + (unsigned __int128)r->n[3] * a; | |||
r->n[3] = c; | |||
c = (c >> 64) + (unsigned __int128)r->n[4] * a; | |||
r->n[4] = c; | |||
} | |||
void static inline secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a) { | |||
#ifdef VERIFY | |||
r->reduced = 0; | |||
r->normalized = 0; | |||
#endif | |||
unsigned __int128 c = (unsigned __int128)r->n[0] + a->n[0]; | |||
r->n[0] = c; | |||
c = (unsigned __int128)r->n[1] + a->n[1] + (c >> 64); | |||
r->n[1] = c; | |||
c = (unsigned __int128)r->n[2] + a->n[2] + (c >> 64); | |||
r->n[2] = c; | |||
c = (unsigned __int128)r->n[3] + a->n[3] + (c >> 64); | |||
r->n[3] = c; | |||
c = (unsigned __int128)r->n[4] + a->n[4] + (c >> 64); | |||
r->n[4] = c; | |||
assert((c >> 64) == 0); | |||
} | |||
#if 0 | |||
#define muladd_c3(a,b,c0,c1,c2) { \ | |||
unsigned __int128 q1 = ((unsigned __int128)(a)) * (b) + (c0); \ | |||
(c0) = q1; \ | |||
unsigned __int128 q2 = (q1 >> 64) + (c1) + (((unsigned __int128)(c2)) << 64); \ | |||
(c1) = q2; \ | |||
(c2) = q2 >> 64; \ | |||
} | |||
#define sqradd_c3(a,c0,c1,c2) muladd_c3(a,a,c0,c1,c2) | |||
/*#define muladd_c3(a,b,c0,c1,c2) { \ | |||
unsigned __int128 q = (unsigned __int128)(a) * (b) + (c0); \ | |||
(c0) = q; \ | |||
(c1) += (q >> 64); \ | |||
(c2) += ((c1) < (q >> 64))?1:0; \ | |||
}*/ | |||
#define muladd2_c3(a,b,c0,c1,c2) { \ | |||
unsigned __int128 q = (unsigned __int128)(a) * (b); \ | |||
uint64_t t1 = (q >> 64); \ | |||
uint64_t t0 = q; \ | |||
uint64_t t2 = t1+t1; (c2) += (t2<t1)?1:0; \ | |||
t1 = t0+t0; t2 += (t1<t0)?1:0; \ | |||
(c0) += t1; t2 += ((c0)<t1)?1:0; \ | |||
(c1) += t2; (c2) += ((c1)<t2)?1:0; \ | |||
} | |||
/*#define muladd2_c3(a,b,c0,c1,c2) { \ | |||
muladd_c3(a,b,c0,c1,c2); \ | |||
muladd_c3(a,b,c0,c1,c2); \ | |||
}*/ | |||
#else | |||
#define muladd_c3(a,b,c0,c1,c2) { \ | |||
register uint64_t t1, t2; \ | |||
asm ("mulq %3" \ | |||
: "=a"(t1),"=d"(t2) \ | |||
: "a"(a),"m"(b) \ | |||
: "cc"); \ | |||
asm ("addq %2,%0; adcq %3,%1" \ | |||
: "+r"(c0),"+d"(t2) \ | |||
: "a"(t1),"g"(0) \ | |||
: "cc"); \ | |||
asm ("addq %2,%0; adcq %3,%1" \ | |||
: "+r"(c1),"+r"(c2) \ | |||
: "d"(t2),"g"(0) \ | |||
: "cc"); \ | |||
} | |||
#define sqradd_c3(a,c0,c1,c2) { \ | |||
register uint64_t t1, t2; \ | |||
asm ("mulq %2" \ | |||
: "=a"(t1),"=d"(t2) \ | |||
: "a"(a) \ | |||
: "cc"); \ | |||
asm ("addq %2,%0; adcq %3,%1" \ | |||
: "+r"(c0),"+d"(t2) \ | |||
: "a"(t1),"g"(0) \ | |||
: "cc"); \ | |||
asm ("addq %2,%0; adcq %3,%1" \ | |||
: "+r"(c1),"+r"(c2) \ | |||
: "d"(t2),"g"(0) \ | |||
: "cc"); \ | |||
} | |||
#define muladd2_c3(a,b,c0,c1,c2) { \ | |||
register uint64_t t1, t2; \ | |||
asm ("mulq %3" \ | |||
: "=a"(t1),"=d"(t2) \ | |||
: "a"(a),"m"(b) \ | |||
: "cc"); \ | |||
asm ("addq %0,%0; adcq %2,%1" \ | |||
: "+d"(t2),"+r"(c2) \ | |||
: "g"(0) \ | |||
: "cc"); \ | |||
asm ("addq %0,%0; adcq %2,%1" \ | |||
: "+a"(t1),"+d"(t2) \ | |||
: "g"(0) \ | |||
: "cc"); \ | |||
asm ("addq %2,%0; adcq %3,%1" \ | |||
: "+r"(c0),"+d"(t2) \ | |||
: "a"(t1),"g"(0) \ | |||
: "cc"); \ | |||
asm ("addq %2,%0; adcq %3,%1" \ | |||
: "+r"(c1),"+r"(c2) \ | |||
: "d"(t2),"g"(0) \ | |||
: "cc"); \ | |||
} | |||
#endif | |||
#define mul_c2(a,b,c0,c1) { \ | |||
unsigned __int128 q = (unsigned __int128)(a) * (b); \ | |||
(c0) = q; \ | |||
(c1) = (q >> 64); \ | |||
} | |||
void static secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *ac, const secp256k1_fe_t *bc) { | |||
secp256k1_fe_t a = *ac, b = *bc; | |||
secp256k1_fe_reduce(&a); | |||
secp256k1_fe_reduce(&b); | |||
#ifdef USE_FIELD_5X64_ASM | |||
secp256k1_fe_mul_inner((&a)->n,(&b)->n,r->n); | |||
#else | |||
uint64_t c1,c2,c3; | |||
c3=0; | |||
mul_c2(a.n[0], b.n[0], c1, c2); | |||
uint64_t r0 = c1; c1 = 0; | |||
muladd_c3(a.n[0], b.n[1], c2, c3, c1); | |||
muladd_c3(a.n[1], b.n[0], c2, c3, c1); | |||
uint64_t r1 = c2; c2 = 0; | |||
muladd_c3(a.n[2], b.n[0], c3, c1, c2); | |||
muladd_c3(a.n[1], b.n[1], c3, c1, c2); | |||
muladd_c3(a.n[0], b.n[2], c3, c1, c2); | |||
uint64_t r2 = c3; c3 = 0; | |||
muladd_c3(a.n[0], b.n[3], c1, c2, c3); | |||
muladd_c3(a.n[1], b.n[2], c1, c2, c3); | |||
muladd_c3(a.n[2], b.n[1], c1, c2, c3); | |||
muladd_c3(a.n[3], b.n[0], c1, c2, c3); | |||
uint64_t r3 = c1; c1 = 0; | |||
muladd_c3(a.n[3], b.n[1], c2, c3, c1); | |||
muladd_c3(a.n[2], b.n[2], c2, c3, c1); | |||
muladd_c3(a.n[1], b.n[3], c2, c3, c1); | |||
uint64_t r4 = c2; c2 = 0; | |||
muladd_c3(a.n[2], b.n[3], c3, c1, c2); | |||
muladd_c3(a.n[3], b.n[2], c3, c1, c2); | |||
uint64_t r5 = c3; c3 = 0; | |||
muladd_c3(a.n[3], b.n[3], c1, c2, c3); | |||
uint64_t r6 = c1; | |||
uint64_t r7 = c2; | |||
assert(c3 == 0); | |||
unsigned __int128 c = (unsigned __int128)r4 * COMP_LIMB + r0; | |||
r->n[0] = c; | |||
c = (unsigned __int128)r5 * COMP_LIMB + r1 + (c >> 64); | |||
r->n[1] = c; | |||
c = (unsigned __int128)r6 * COMP_LIMB + r2 + (c >> 64); | |||
r->n[2] = c; | |||
c = (unsigned __int128)r7 * COMP_LIMB + r3 + (c >> 64); | |||
r->n[3] = c; | |||
r->n[4] = c >> 64; | |||
#endif | |||
#ifdef VERIFY | |||
r->normalized = 0; | |||
r->reduced = 0; | |||
#endif | |||
secp256k1_fe_reduce(r); | |||
} | |||
/*void static secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) { | |||
secp256k1_fe_mul(r, a, a); | |||
}*/ | |||
void static secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *ac) { | |||
secp256k1_fe_t a = *ac; | |||
secp256k1_fe_reduce(&a); | |||
#ifdef USE_FIELD_5X64_ASM | |||
secp256k1_fe_sqr_inner((&a)->n,r->n); | |||
#else | |||
uint64_t c1,c2,c3; | |||
c3=0; | |||
mul_c2(a.n[0], a.n[0], c1, c2); | |||
uint64_t r0 = c1; c1 = 0; | |||
muladd2_c3(a.n[0], a.n[1], c2, c3, c1); | |||
uint64_t r1 = c2; c2 = 0; | |||
muladd2_c3(a.n[2], a.n[0], c3, c1, c2); | |||
sqradd_c3(a.n[1], c3, c1, c2); | |||
uint64_t r2 = c3; c3 = 0; | |||
muladd2_c3(a.n[0], a.n[3], c1, c2, c3); | |||
muladd2_c3(a.n[1], a.n[2], c1, c2, c3); | |||
uint64_t r3 = c1; c1 = 0; | |||
muladd2_c3(a.n[3], a.n[1], c2, c3, c1); | |||
sqradd_c3(a.n[2], c2, c3, c1); | |||
uint64_t r4 = c2; c2 = 0; | |||
muladd2_c3(a.n[2], a.n[3], c3, c1, c2); | |||
uint64_t r5 = c3; c3 = 0; | |||
sqradd_c3(a.n[3], c1, c2, c3); | |||
uint64_t r6 = c1; | |||
uint64_t r7 = c2; | |||
assert(c3 == 0); | |||
unsigned __int128 c = (unsigned __int128)r4 * COMP_LIMB + r0; | |||
r->n[0] = c; | |||
c = (unsigned __int128)r5 * COMP_LIMB + r1 + (c >> 64); | |||
r->n[1] = c; | |||
c = (unsigned __int128)r6 * COMP_LIMB + r2 + (c >> 64); | |||
r->n[2] = c; | |||
c = (unsigned __int128)r7 * COMP_LIMB + r3 + (c >> 64); | |||
r->n[3] = c; | |||
r->n[4] = c >> 64; | |||
#endif | |||
#ifdef VERIFY | |||
r->normalized = 0; | |||
r->reduced = 0; | |||
#endif | |||
secp256k1_fe_reduce(r); | |||
} | |||
#endif |
@ -0,0 +1,11 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_FIELD_INNER5X52_IMPL_H_ | |||
#define _SECP256K1_FIELD_INNER5X52_IMPL_H_ | |||
void __attribute__ ((sysv_abi)) secp256k1_fe_mul_inner(const uint64_t *a, const uint64_t *b, uint64_t *r); | |||
void __attribute__ ((sysv_abi)) secp256k1_fe_sqr_inner(const uint64_t *a, uint64_t *r); | |||
#endif |
@ -0,0 +1,155 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_FIELD_REPR_IMPL_H_ | |||
#define _SECP256K1_FIELD_REPR_IMPL_H_ | |||
#include <stdio.h> | |||
#include <assert.h> | |||
#include <string.h> | |||
#include "../num.h" | |||
#include "../field.h" | |||
static mp_limb_t secp256k1_field_p[FIELD_LIMBS]; | |||
static mp_limb_t secp256k1_field_pc[(33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS]; | |||
void static secp256k1_fe_inner_start(void) { | |||
for (int i=0; i<(33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS; i++) | |||
secp256k1_field_pc[i] = 0; | |||
secp256k1_field_pc[0] += 0x3D1UL; | |||
secp256k1_field_pc[32/GMP_NUMB_BITS] += (1UL << (32 % GMP_NUMB_BITS)); | |||
for (int i=0; i<FIELD_LIMBS; i++) { | |||
secp256k1_field_p[i] = 0; | |||
} | |||
mpn_sub(secp256k1_field_p, secp256k1_field_p, FIELD_LIMBS, secp256k1_field_pc, (33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS); | |||
} | |||
void static secp256k1_fe_inner_stop(void) { | |||
} | |||
void static secp256k1_fe_normalize(secp256k1_fe_t *r) { | |||
if (r->n[FIELD_LIMBS] != 0) { | |||
#if (GMP_NUMB_BITS >= 40) | |||
mp_limb_t carry = mpn_add_1(r->n, r->n, FIELD_LIMBS, 0x1000003D1ULL * r->n[FIELD_LIMBS]); | |||
mpn_add_1(r->n, r->n, FIELD_LIMBS, 0x1000003D1ULL * carry); | |||
#else | |||
mp_limb_t carry = mpn_add_1(r->n, r->n, FIELD_LIMBS, 0x3D1UL * r->n[FIELD_LIMBS]) + | |||
mpn_add_1(r->n+(32/GMP_NUMB_BITS), r->n+(32/GMP_NUMB_BITS), FIELD_LIMBS-(32/GMP_NUMB_BITS), r->n[FIELD_LIMBS] << (32 % GMP_NUMB_BITS)); | |||
mpn_add_1(r->n, r->n, FIELD_LIMBS, 0x3D1UL * carry); | |||
mpn_add_1(r->n+(32/GMP_NUMB_BITS), r->n+(32/GMP_NUMB_BITS), FIELD_LIMBS-(32/GMP_NUMB_BITS), carry << (32%GMP_NUMB_BITS)); | |||
#endif | |||
r->n[FIELD_LIMBS] = 0; | |||
} | |||
if (mpn_cmp(r->n, secp256k1_field_p, FIELD_LIMBS) >= 0) | |||
mpn_sub(r->n, r->n, FIELD_LIMBS, secp256k1_field_p, FIELD_LIMBS); | |||
} | |||
void static inline secp256k1_fe_set_int(secp256k1_fe_t *r, int a) { | |||
r->n[0] = a; | |||
for (int i=1; i<FIELD_LIMBS+1; i++) | |||
r->n[i] = 0; | |||
} | |||
int static inline secp256k1_fe_is_zero(const secp256k1_fe_t *a) { | |||
int ret = 1; | |||
for (int i=0; i<FIELD_LIMBS+1; i++) | |||
ret &= (a->n[i] == 0); | |||
return ret; | |||
} | |||
int static inline secp256k1_fe_is_odd(const secp256k1_fe_t *a) { | |||
return a->n[0] & 1; | |||
} | |||
int static inline secp256k1_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) { | |||
int ret = 1; | |||
for (int i=0; i<FIELD_LIMBS+1; i++) | |||
ret &= (a->n[i] == b->n[i]); | |||
return ret; | |||
} | |||
void static secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) { | |||
for (int i=0; i<FIELD_LIMBS+1; i++) | |||
r->n[i] = 0; | |||
for (int i=0; i<256; i++) { | |||
int limb = i/GMP_NUMB_BITS; | |||
int shift = i%GMP_NUMB_BITS; | |||
r->n[limb] |= (mp_limb_t)((a[31-i/8] >> (i%8)) & 0x1) << shift; | |||
} | |||
} | |||
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */ | |||
void static secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) { | |||
for (int i=0; i<32; i++) { | |||
int c = 0; | |||
for (int j=0; j<8; j++) { | |||
int limb = (8*i+j)/GMP_NUMB_BITS; | |||
int shift = (8*i+j)%GMP_NUMB_BITS; | |||
c |= ((a->n[limb] >> shift) & 0x1) << j; | |||
} | |||
r[31-i] = c; | |||
} | |||
} | |||
void static inline secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m) { | |||
*r = *a; | |||
secp256k1_fe_normalize(r); | |||
for (int i=0; i<FIELD_LIMBS; i++) | |||
r->n[i] = ~(r->n[i]); | |||
#if (GMP_NUMB_BITS >= 33) | |||
mpn_sub_1(r->n, r->n, FIELD_LIMBS, 0x1000003D0ULL); | |||
#else | |||
mpn_sub_1(r->n, r->n, FIELD_LIMBS, 0x3D0UL); | |||
mpn_sub_1(r->n+(32/GMP_NUMB_BITS), r->n+(32/GMP_NUMB_BITS), FIELD_LIMBS-(32/GMP_NUMB_BITS), 0x1UL << (32%GMP_NUMB_BITS)); | |||
#endif | |||
} | |||
void static inline secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) { | |||
mpn_mul_1(r->n, r->n, FIELD_LIMBS+1, a); | |||
} | |||
void static inline secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a) { | |||
mpn_add(r->n, r->n, FIELD_LIMBS+1, a->n, FIELD_LIMBS+1); | |||
} | |||
void static secp256k1_fe_reduce(secp256k1_fe_t *r, mp_limb_t *tmp) { | |||
// <A1 A2 A3 A4> <B1 B2 B3 B4> | |||
// B1 B2 B3 B4 | |||
// + C * A1 A2 A3 A4 | |||
// + A1 A2 A3 A4 | |||
#if (GMP_NUMB_BITS >= 33) | |||
mp_limb_t o = mpn_addmul_1(tmp, tmp+FIELD_LIMBS, FIELD_LIMBS, 0x1000003D1ULL); | |||
#else | |||
mp_limb_t o = mpn_addmul_1(tmp, tmp+FIELD_LIMBS, FIELD_LIMBS, 0x3D1UL) + | |||
mpn_addmul_1(tmp+(32/GMP_NUMB_BITS), tmp+FIELD_LIMBS, FIELD_LIMBS-(32/GMP_NUMB_BITS), 0x1UL << (32%GMP_NUMB_BITS)); | |||
#endif | |||
mp_limb_t q[1+(33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS]; | |||
q[(33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS] = mpn_mul_1(q, secp256k1_field_pc, (33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS, o); | |||
#if (GMP_NUMB_BITS <= 32) | |||
mp_limb_t o2 = tmp[2*FIELD_LIMBS-(32/GMP_NUMB_BITS)] << (32%GMP_NUMB_BITS); | |||
q[(33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS] += mpn_addmul_1(q, secp256k1_field_pc, (33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS, o2); | |||
#endif | |||
r->n[FIELD_LIMBS] = mpn_add(r->n, tmp, FIELD_LIMBS, q, 1+(33+GMP_NUMB_BITS-1)/GMP_NUMB_BITS); | |||
} | |||
void static secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t *b) { | |||
secp256k1_fe_t ac = *a; | |||
secp256k1_fe_t bc = *b; | |||
secp256k1_fe_normalize(&ac); | |||
secp256k1_fe_normalize(&bc); | |||
mp_limb_t tmp[2*FIELD_LIMBS]; | |||
mpn_mul_n(tmp, ac.n, bc.n, FIELD_LIMBS); | |||
secp256k1_fe_reduce(r, tmp); | |||
} | |||
void static secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) { | |||
secp256k1_fe_t ac = *a; | |||
secp256k1_fe_normalize(&ac); | |||
mp_limb_t tmp[2*FIELD_LIMBS]; | |||
mpn_sqr(tmp, ac.n, FIELD_LIMBS); | |||
secp256k1_fe_reduce(r, tmp); | |||
} | |||
#endif |
@ -0,0 +1,397 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_GROUP_IMPL_H_ | |||
#define _SECP256K1_GROUP_IMPL_H_ | |||
#include <string.h> | |||
#include "../num.h" | |||
#include "../field.h" | |||
#include "../group.h" | |||
void static secp256k1_ge_set_infinity(secp256k1_ge_t *r) { | |||
r->infinity = 1; | |||
} | |||
void static secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) { | |||
r->infinity = 0; | |||
r->x = *x; | |||
r->y = *y; | |||
} | |||
int static secp256k1_ge_is_infinity(const secp256k1_ge_t *a) { | |||
return a->infinity; | |||
} | |||
void static secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a) { | |||
r->infinity = a->infinity; | |||
r->x = a->x; | |||
r->y = a->y; | |||
secp256k1_fe_normalize(&r->y); | |||
secp256k1_fe_negate(&r->y, &r->y, 1); | |||
} | |||
void static secp256k1_ge_get_hex(char *r, int *rlen, const secp256k1_ge_t *a) { | |||
char cx[65]; int lx=65; | |||
char cy[65]; int ly=65; | |||
secp256k1_fe_get_hex(cx, &lx, &a->x); | |||
secp256k1_fe_get_hex(cy, &ly, &a->y); | |||
lx = strlen(cx); | |||
ly = strlen(cy); | |||
int len = lx + ly + 3 + 1; | |||
if (*rlen < len) { | |||
*rlen = len; | |||
return; | |||
} | |||
*rlen = len; | |||
r[0] = '('; | |||
memcpy(r+1, cx, lx); | |||
r[1+lx] = ','; | |||
memcpy(r+2+lx, cy, ly); | |||
r[2+lx+ly] = ')'; | |||
r[3+lx+ly] = 0; | |||
} | |||
void static secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a) { | |||
secp256k1_fe_inv_var(&a->z, &a->z); | |||
secp256k1_fe_t z2; secp256k1_fe_sqr(&z2, &a->z); | |||
secp256k1_fe_t z3; secp256k1_fe_mul(&z3, &a->z, &z2); | |||
secp256k1_fe_mul(&a->x, &a->x, &z2); | |||
secp256k1_fe_mul(&a->y, &a->y, &z3); | |||
secp256k1_fe_set_int(&a->z, 1); | |||
r->infinity = a->infinity; | |||
r->x = a->x; | |||
r->y = a->y; | |||
} | |||
void static secp256k1_gej_set_infinity(secp256k1_gej_t *r) { | |||
r->infinity = 1; | |||
} | |||
void static secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) { | |||
r->infinity = 0; | |||
r->x = *x; | |||
r->y = *y; | |||
secp256k1_fe_set_int(&r->z, 1); | |||
} | |||
void static secp256k1_ge_set_xo(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd) { | |||
r->x = *x; | |||
secp256k1_fe_t x2; secp256k1_fe_sqr(&x2, x); | |||
secp256k1_fe_t x3; secp256k1_fe_mul(&x3, x, &x2); | |||
r->infinity = 0; | |||
secp256k1_fe_t c; secp256k1_fe_set_int(&c, 7); | |||
secp256k1_fe_add(&c, &x3); | |||
secp256k1_fe_sqrt(&r->y, &c); | |||
secp256k1_fe_normalize(&r->y); | |||
if (secp256k1_fe_is_odd(&r->y) != odd) | |||
secp256k1_fe_negate(&r->y, &r->y, 1); | |||
} | |||
void static secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a) { | |||
r->infinity = a->infinity; | |||
r->x = a->x; | |||
r->y = a->y; | |||
secp256k1_fe_set_int(&r->z, 1); | |||
} | |||
void static secp256k1_gej_get_x(secp256k1_fe_t *r, const secp256k1_gej_t *a) { | |||
secp256k1_fe_t zi2; secp256k1_fe_inv_var(&zi2, &a->z); secp256k1_fe_sqr(&zi2, &zi2); | |||
secp256k1_fe_mul(r, &a->x, &zi2); | |||
} | |||
void static secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a) { | |||
r->infinity = a->infinity; | |||
r->x = a->x; | |||
r->y = a->y; | |||
r->z = a->z; | |||
secp256k1_fe_normalize(&r->y); | |||
secp256k1_fe_negate(&r->y, &r->y, 1); | |||
} | |||
int static secp256k1_gej_is_infinity(const secp256k1_gej_t *a) { | |||
return a->infinity; | |||
} | |||
int static secp256k1_gej_is_valid(const secp256k1_gej_t *a) { | |||
if (a->infinity) | |||
return 0; | |||
// y^2 = x^3 + 7 | |||
// (Y/Z^3)^2 = (X/Z^2)^3 + 7 | |||
// Y^2 / Z^6 = X^3 / Z^6 + 7 | |||
// Y^2 = X^3 + 7*Z^6 | |||
secp256k1_fe_t y2; secp256k1_fe_sqr(&y2, &a->y); | |||
secp256k1_fe_t x3; secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); | |||
secp256k1_fe_t z2; secp256k1_fe_sqr(&z2, &a->z); | |||
secp256k1_fe_t z6; secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2); | |||
secp256k1_fe_mul_int(&z6, 7); | |||
secp256k1_fe_add(&x3, &z6); | |||
secp256k1_fe_normalize(&y2); | |||
secp256k1_fe_normalize(&x3); | |||
return secp256k1_fe_equal(&y2, &x3); | |||
} | |||
int static secp256k1_ge_is_valid(const secp256k1_ge_t *a) { | |||
if (a->infinity) | |||
return 0; | |||
// y^2 = x^3 + 7 | |||
secp256k1_fe_t y2; secp256k1_fe_sqr(&y2, &a->y); | |||
secp256k1_fe_t x3; secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); | |||
secp256k1_fe_t c; secp256k1_fe_set_int(&c, 7); | |||
secp256k1_fe_add(&x3, &c); | |||
secp256k1_fe_normalize(&y2); | |||
secp256k1_fe_normalize(&x3); | |||
return secp256k1_fe_equal(&y2, &x3); | |||
} | |||
void static secp256k1_gej_double(secp256k1_gej_t *r, const secp256k1_gej_t *a) { | |||
secp256k1_fe_t t5 = a->y; | |||
secp256k1_fe_normalize(&t5); | |||
if (a->infinity || secp256k1_fe_is_zero(&t5)) { | |||
r->infinity = 1; | |||
return; | |||
} | |||
secp256k1_fe_t t1,t2,t3,t4; | |||
secp256k1_fe_mul(&r->z, &t5, &a->z); | |||
secp256k1_fe_mul_int(&r->z, 2); // Z' = 2*Y*Z (2) | |||
secp256k1_fe_sqr(&t1, &a->x); | |||
secp256k1_fe_mul_int(&t1, 3); // T1 = 3*X^2 (3) | |||
secp256k1_fe_sqr(&t2, &t1); // T2 = 9*X^4 (1) | |||
secp256k1_fe_sqr(&t3, &t5); | |||
secp256k1_fe_mul_int(&t3, 2); // T3 = 2*Y^2 (2) | |||
secp256k1_fe_sqr(&t4, &t3); | |||
secp256k1_fe_mul_int(&t4, 2); // T4 = 8*Y^4 (2) | |||
secp256k1_fe_mul(&t3, &a->x, &t3); // T3 = 2*X*Y^2 (1) | |||
r->x = t3; | |||
secp256k1_fe_mul_int(&r->x, 4); // X' = 8*X*Y^2 (4) | |||
secp256k1_fe_negate(&r->x, &r->x, 4); // X' = -8*X*Y^2 (5) | |||
secp256k1_fe_add(&r->x, &t2); // X' = 9*X^4 - 8*X*Y^2 (6) | |||
secp256k1_fe_negate(&t2, &t2, 1); // T2 = -9*X^4 (2) | |||
secp256k1_fe_mul_int(&t3, 6); // T3 = 12*X*Y^2 (6) | |||
secp256k1_fe_add(&t3, &t2); // T3 = 12*X*Y^2 - 9*X^4 (8) | |||
secp256k1_fe_mul(&r->y, &t1, &t3); // Y' = 36*X^3*Y^2 - 27*X^6 (1) | |||
secp256k1_fe_negate(&t2, &t4, 2); // T2 = -8*Y^4 (3) | |||
secp256k1_fe_add(&r->y, &t2); // Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) | |||
r->infinity = 0; | |||
} | |||
void static secp256k1_gej_add(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b) { | |||
if (a->infinity) { | |||
*r = *b; | |||
return; | |||
} | |||
if (b->infinity) { | |||
*r = *a; | |||
return; | |||
} | |||
r->infinity = 0; | |||
secp256k1_fe_t z22; secp256k1_fe_sqr(&z22, &b->z); | |||
secp256k1_fe_t z12; secp256k1_fe_sqr(&z12, &a->z); | |||
secp256k1_fe_t u1; secp256k1_fe_mul(&u1, &a->x, &z22); | |||
secp256k1_fe_t u2; secp256k1_fe_mul(&u2, &b->x, &z12); | |||
secp256k1_fe_t s1; secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z); | |||
secp256k1_fe_t s2; secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); | |||
secp256k1_fe_normalize(&u1); | |||
secp256k1_fe_normalize(&u2); | |||
if (secp256k1_fe_equal(&u1, &u2)) { | |||
secp256k1_fe_normalize(&s1); | |||
secp256k1_fe_normalize(&s2); | |||
if (secp256k1_fe_equal(&s1, &s2)) { | |||
secp256k1_gej_double(r, a); | |||
} else { | |||
r->infinity = 1; | |||
} | |||
return; | |||
} | |||
secp256k1_fe_t h; secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); | |||
secp256k1_fe_t i; secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); | |||
secp256k1_fe_t i2; secp256k1_fe_sqr(&i2, &i); | |||
secp256k1_fe_t h2; secp256k1_fe_sqr(&h2, &h); | |||
secp256k1_fe_t h3; secp256k1_fe_mul(&h3, &h, &h2); | |||
secp256k1_fe_mul(&r->z, &a->z, &b->z); secp256k1_fe_mul(&r->z, &r->z, &h); | |||
secp256k1_fe_t t; secp256k1_fe_mul(&t, &u1, &h2); | |||
r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); | |||
secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); | |||
secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); | |||
secp256k1_fe_add(&r->y, &h3); | |||
} | |||
void static secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b) { | |||
if (a->infinity) { | |||
r->infinity = b->infinity; | |||
r->x = b->x; | |||
r->y = b->y; | |||
secp256k1_fe_set_int(&r->z, 1); | |||
return; | |||
} | |||
if (b->infinity) { | |||
*r = *a; | |||
return; | |||
} | |||
r->infinity = 0; | |||
secp256k1_fe_t z12; secp256k1_fe_sqr(&z12, &a->z); | |||
secp256k1_fe_t u1 = a->x; secp256k1_fe_normalize(&u1); | |||
secp256k1_fe_t u2; secp256k1_fe_mul(&u2, &b->x, &z12); | |||
secp256k1_fe_t s1 = a->y; secp256k1_fe_normalize(&s1); | |||
secp256k1_fe_t s2; secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); | |||
secp256k1_fe_normalize(&u1); | |||
secp256k1_fe_normalize(&u2); | |||
if (secp256k1_fe_equal(&u1, &u2)) { | |||
secp256k1_fe_normalize(&s1); | |||
secp256k1_fe_normalize(&s2); | |||
if (secp256k1_fe_equal(&s1, &s2)) { | |||
secp256k1_gej_double(r, a); | |||
} else { | |||
r->infinity = 1; | |||
} | |||
return; | |||
} | |||
secp256k1_fe_t h; secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); | |||
secp256k1_fe_t i; secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); | |||
secp256k1_fe_t i2; secp256k1_fe_sqr(&i2, &i); | |||
secp256k1_fe_t h2; secp256k1_fe_sqr(&h2, &h); | |||
secp256k1_fe_t h3; secp256k1_fe_mul(&h3, &h, &h2); | |||
r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h); | |||
secp256k1_fe_t t; secp256k1_fe_mul(&t, &u1, &h2); | |||
r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); | |||
secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); | |||
secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); | |||
secp256k1_fe_add(&r->y, &h3); | |||
} | |||
void static secp256k1_gej_get_hex(char *r, int *rlen, const secp256k1_gej_t *a) { | |||
secp256k1_gej_t c = *a; | |||
secp256k1_ge_t t; secp256k1_ge_set_gej(&t, &c); | |||
secp256k1_ge_get_hex(r, rlen, &t); | |||
} | |||
void static secp256k1_gej_mul_lambda(secp256k1_gej_t *r, const secp256k1_gej_t *a) { | |||
const secp256k1_fe_t *beta = &secp256k1_ge_consts->beta; | |||
*r = *a; | |||
secp256k1_fe_mul(&r->x, &r->x, beta); | |||
} | |||
void static secp256k1_gej_split_exp(secp256k1_num_t *r1, secp256k1_num_t *r2, const secp256k1_num_t *a) { | |||
const secp256k1_ge_consts_t *c = secp256k1_ge_consts; | |||
secp256k1_num_t bnc1, bnc2, bnt1, bnt2, bnn2; | |||
secp256k1_num_init(&bnc1); | |||
secp256k1_num_init(&bnc2); | |||
secp256k1_num_init(&bnt1); | |||
secp256k1_num_init(&bnt2); | |||
secp256k1_num_init(&bnn2); | |||
secp256k1_num_copy(&bnn2, &c->order); | |||
secp256k1_num_shift(&bnn2, 1); | |||
secp256k1_num_mul(&bnc1, a, &c->a1b2); | |||
secp256k1_num_add(&bnc1, &bnc1, &bnn2); | |||
secp256k1_num_div(&bnc1, &bnc1, &c->order); | |||
secp256k1_num_mul(&bnc2, a, &c->b1); | |||
secp256k1_num_add(&bnc2, &bnc2, &bnn2); | |||
secp256k1_num_div(&bnc2, &bnc2, &c->order); | |||
secp256k1_num_mul(&bnt1, &bnc1, &c->a1b2); | |||
secp256k1_num_mul(&bnt2, &bnc2, &c->a2); | |||
secp256k1_num_add(&bnt1, &bnt1, &bnt2); | |||
secp256k1_num_sub(r1, a, &bnt1); | |||
secp256k1_num_mul(&bnt1, &bnc1, &c->b1); | |||
secp256k1_num_mul(&bnt2, &bnc2, &c->a1b2); | |||
secp256k1_num_sub(r2, &bnt1, &bnt2); | |||
secp256k1_num_free(&bnc1); | |||
secp256k1_num_free(&bnc2); | |||
secp256k1_num_free(&bnt1); | |||
secp256k1_num_free(&bnt2); | |||
secp256k1_num_free(&bnn2); | |||
} | |||
void static secp256k1_ge_start(void) { | |||
static const unsigned char secp256k1_ge_consts_order[] = { | |||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | |||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, | |||
0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, | |||
0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41 | |||
}; | |||
static const unsigned char secp256k1_ge_consts_g_x[] = { | |||
0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC, | |||
0x55,0xA0,0x62,0x95,0xCE,0x87,0x0B,0x07, | |||
0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9, | |||
0x59,0xF2,0x81,0x5B,0x16,0xF8,0x17,0x98 | |||
}; | |||
static const unsigned char secp256k1_ge_consts_g_y[] = { | |||
0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65, | |||
0x5D,0xA4,0xFB,0xFC,0x0E,0x11,0x08,0xA8, | |||
0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19, | |||
0x9C,0x47,0xD0,0x8F,0xFB,0x10,0xD4,0xB8 | |||
}; | |||
// properties of secp256k1's efficiently computable endomorphism | |||
static const unsigned char secp256k1_ge_consts_lambda[] = { | |||
0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0, | |||
0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a, | |||
0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78, | |||
0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72 | |||
}; | |||
static const unsigned char secp256k1_ge_consts_beta[] = { | |||
0x7a,0xe9,0x6a,0x2b,0x65,0x7c,0x07,0x10, | |||
0x6e,0x64,0x47,0x9e,0xac,0x34,0x34,0xe9, | |||
0x9c,0xf0,0x49,0x75,0x12,0xf5,0x89,0x95, | |||
0xc1,0x39,0x6c,0x28,0x71,0x95,0x01,0xee | |||
}; | |||
static const unsigned char secp256k1_ge_consts_a1b2[] = { | |||
0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd, | |||
0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15 | |||
}; | |||
static const unsigned char secp256k1_ge_consts_b1[] = { | |||
0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28, | |||
0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3 | |||
}; | |||
static const unsigned char secp256k1_ge_consts_a2[] = { | |||
0x01, | |||
0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6, | |||
0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8 | |||
}; | |||
if (secp256k1_ge_consts == NULL) { | |||
secp256k1_ge_consts_t *ret = (secp256k1_ge_consts_t*)malloc(sizeof(secp256k1_ge_consts_t)); | |||
secp256k1_num_init(&ret->order); | |||
secp256k1_num_init(&ret->half_order); | |||
secp256k1_num_init(&ret->lambda); | |||
secp256k1_num_init(&ret->a1b2); | |||
secp256k1_num_init(&ret->a2); | |||
secp256k1_num_init(&ret->b1); | |||
secp256k1_num_set_bin(&ret->order, secp256k1_ge_consts_order, sizeof(secp256k1_ge_consts_order)); | |||
secp256k1_num_set_bin(&ret->lambda, secp256k1_ge_consts_lambda, sizeof(secp256k1_ge_consts_lambda)); | |||
secp256k1_num_set_bin(&ret->a1b2, secp256k1_ge_consts_a1b2, sizeof(secp256k1_ge_consts_a1b2)); | |||
secp256k1_num_set_bin(&ret->a2, secp256k1_ge_consts_a2, sizeof(secp256k1_ge_consts_a2)); | |||
secp256k1_num_set_bin(&ret->b1, secp256k1_ge_consts_b1, sizeof(secp256k1_ge_consts_b1)); | |||
secp256k1_num_copy(&ret->half_order, &ret->order); | |||
secp256k1_num_shift(&ret->half_order, 1); | |||
secp256k1_fe_set_b32(&ret->beta, secp256k1_ge_consts_beta); | |||
secp256k1_fe_t g_x, g_y; | |||
secp256k1_fe_set_b32(&g_x, secp256k1_ge_consts_g_x); | |||
secp256k1_fe_set_b32(&g_y, secp256k1_ge_consts_g_y); | |||
secp256k1_ge_set_xy(&ret->g, &g_x, &g_y); | |||
secp256k1_ge_consts = ret; | |||
} | |||
} | |||
void static secp256k1_ge_stop(void) { | |||
if (secp256k1_ge_consts != NULL) { | |||
secp256k1_ge_consts_t *c = (secp256k1_ge_consts_t*)secp256k1_ge_consts; | |||
secp256k1_num_free(&c->order); | |||
secp256k1_num_free(&c->half_order); | |||
secp256k1_num_free(&c->lambda); | |||
secp256k1_num_free(&c->a1b2); | |||
secp256k1_num_free(&c->a2); | |||
secp256k1_num_free(&c->b1); | |||
free((void*)c); | |||
secp256k1_ge_consts = NULL; | |||
} | |||
} | |||
#endif |
@ -0,0 +1,18 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_NUM_IMPL_H_ | |||
#define _SECP256K1_NUM_IMPL_H_ | |||
#include "../num.h" | |||
#if defined(USE_NUM_GMP) | |||
#include "num_gmp.h" | |||
#elif defined(USE_NUM_OPENSSL) | |||
#include "num_openssl.h" | |||
#else | |||
#error "Please select num implementation" | |||
#endif | |||
#endif |
@ -0,0 +1,346 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_NUM_REPR_IMPL_H_ | |||
#define _SECP256K1_NUM_REPR_IMPL_H_ | |||
#include <assert.h> | |||
#include <string.h> | |||
#include <stdlib.h> | |||
#include <gmp.h> | |||
#include "num.h" | |||
#ifdef VERIFY | |||
void static secp256k1_num_sanity(const secp256k1_num_t *a) { | |||
assert(a->limbs == 1 || (a->limbs > 1 && a->data[a->limbs-1] != 0)); | |||
} | |||
#else | |||
#define secp256k1_num_sanity(a) do { } while(0) | |||
#endif | |||
void static secp256k1_num_init(secp256k1_num_t *r) { | |||
r->neg = 0; | |||
r->limbs = 1; | |||
r->data[0] = 0; | |||
} | |||
void static secp256k1_num_free(secp256k1_num_t *r) { | |||
} | |||
void static secp256k1_num_copy(secp256k1_num_t *r, const secp256k1_num_t *a) { | |||
*r = *a; | |||
} | |||
int static secp256k1_num_bits(const secp256k1_num_t *a) { | |||
int ret=(a->limbs-1)*GMP_NUMB_BITS; | |||
mp_limb_t x=a->data[a->limbs-1]; | |||
while (x) { | |||
x >>= 1; | |||
ret++; | |||
} | |||
return ret; | |||
} | |||
void static secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num_t *a) { | |||
unsigned char tmp[65]; | |||
int len = 0; | |||
if (a->limbs>1 || a->data[0] != 0) { | |||
len = mpn_get_str(tmp, 256, (mp_limb_t*)a->data, a->limbs); | |||
} | |||
int shift = 0; | |||
while (shift < len && tmp[shift] == 0) shift++; | |||
assert(len-shift <= rlen); | |||
memset(r, 0, rlen - len + shift); | |||
if (len > shift) | |||
memcpy(r + rlen - len + shift, tmp + shift, len - shift); | |||
} | |||
void static secp256k1_num_set_bin(secp256k1_num_t *r, const unsigned char *a, unsigned int alen) { | |||
assert(alen > 0); | |||
assert(alen <= 64); | |||
int len = mpn_set_str(r->data, a, alen, 256); | |||
assert(len <= NUM_LIMBS*2); | |||
r->limbs = len; | |||
r->neg = 0; | |||
while (r->limbs > 1 && r->data[r->limbs-1]==0) r->limbs--; | |||
} | |||
void static secp256k1_num_set_int(secp256k1_num_t *r, int a) { | |||
r->limbs = 1; | |||
r->neg = (a < 0); | |||
r->data[0] = (a < 0) ? -a : a; | |||
} | |||
void static secp256k1_num_add_abs(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { | |||
mp_limb_t c = mpn_add(r->data, a->data, a->limbs, b->data, b->limbs); | |||
r->limbs = a->limbs; | |||
if (c != 0) { | |||
assert(r->limbs < 2*NUM_LIMBS); | |||
r->data[r->limbs++] = c; | |||
} | |||
} | |||
void static secp256k1_num_sub_abs(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { | |||
mp_limb_t c = mpn_sub(r->data, a->data, a->limbs, b->data, b->limbs); | |||
assert(c == 0); | |||
r->limbs = a->limbs; | |||
while (r->limbs > 1 && r->data[r->limbs-1]==0) r->limbs--; | |||
} | |||
void static secp256k1_num_mod(secp256k1_num_t *r, const secp256k1_num_t *m) { | |||
secp256k1_num_sanity(r); | |||
secp256k1_num_sanity(m); | |||
if (r->limbs >= m->limbs) { | |||
mp_limb_t t[2*NUM_LIMBS]; | |||
mpn_tdiv_qr(t, r->data, 0, r->data, r->limbs, m->data, m->limbs); | |||
r->limbs = m->limbs; | |||
while (r->limbs > 1 && r->data[r->limbs-1]==0) r->limbs--; | |||
} | |||
if (r->neg && (r->limbs > 1 || r->data[0] != 0)) { | |||
secp256k1_num_sub_abs(r, m, r); | |||
r->neg = 0; | |||
} | |||
} | |||
void static secp256k1_num_mod_inverse(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *m) { | |||
secp256k1_num_sanity(a); | |||
secp256k1_num_sanity(m); | |||
// mpn_gcdext computes: (G,S) = gcdext(U,V), where | |||
// * G = gcd(U,V) | |||
// * G = U*S + V*T | |||
// * U has equal or more limbs than V, and V has no padding | |||
// If we set U to be (a padded version of) a, and V = m: | |||
// G = a*S + m*T | |||
// G = a*S mod m | |||
// Assuming G=1: | |||
// S = 1/a mod m | |||
assert(m->limbs <= NUM_LIMBS); | |||
assert(m->data[m->limbs-1] != 0); | |||
mp_limb_t g[NUM_LIMBS+1]; | |||
mp_limb_t u[NUM_LIMBS+1]; | |||
mp_limb_t v[NUM_LIMBS+1]; | |||
for (int i=0; i < m->limbs; i++) { | |||
u[i] = (i < a->limbs) ? a->data[i] : 0; | |||
v[i] = m->data[i]; | |||
} | |||
mp_size_t sn = NUM_LIMBS+1; | |||
mp_size_t gn = mpn_gcdext(g, r->data, &sn, u, m->limbs, v, m->limbs); | |||
assert(gn == 1); | |||
assert(g[0] == 1); | |||
r->neg = a->neg ^ m->neg; | |||
if (sn < 0) { | |||
mpn_sub(r->data, m->data, m->limbs, r->data, -sn); | |||
r->limbs = m->limbs; | |||
while (r->limbs > 1 && r->data[r->limbs-1]==0) r->limbs--; | |||
} else { | |||
r->limbs = sn; | |||
} | |||
} | |||
int static secp256k1_num_is_zero(const secp256k1_num_t *a) { | |||
return (a->limbs == 1 && a->data[0] == 0); | |||
} | |||
int static secp256k1_num_is_odd(const secp256k1_num_t *a) { | |||
return a->data[0] & 1; | |||
} | |||
int static secp256k1_num_is_neg(const secp256k1_num_t *a) { | |||
return (a->limbs > 1 || a->data[0] != 0) && a->neg; | |||
} | |||
int static secp256k1_num_cmp(const secp256k1_num_t *a, const secp256k1_num_t *b) { | |||
if (a->limbs > b->limbs) return 1; | |||
if (a->limbs < b->limbs) return -1; | |||
return mpn_cmp(a->data, b->data, a->limbs); | |||
} | |||
void static secp256k1_num_subadd(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b, int bneg) { | |||
if (!(b->neg ^ bneg ^ a->neg)) { // a and b have the same sign | |||
r->neg = a->neg; | |||
if (a->limbs >= b->limbs) { | |||
secp256k1_num_add_abs(r, a, b); | |||
} else { | |||
secp256k1_num_add_abs(r, b, a); | |||
} | |||
} else { | |||
if (secp256k1_num_cmp(a, b) > 0) { | |||
r->neg = a->neg; | |||
secp256k1_num_sub_abs(r, a, b); | |||
} else { | |||
r->neg = b->neg ^ bneg; | |||
secp256k1_num_sub_abs(r, b, a); | |||
} | |||
} | |||
} | |||
void static secp256k1_num_add(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { | |||
secp256k1_num_sanity(a); | |||
secp256k1_num_sanity(b); | |||
secp256k1_num_subadd(r, a, b, 0); | |||
} | |||
void static secp256k1_num_sub(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { | |||
secp256k1_num_sanity(a); | |||
secp256k1_num_sanity(b); | |||
secp256k1_num_subadd(r, a, b, 1); | |||
} | |||
void static secp256k1_num_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { | |||
secp256k1_num_sanity(a); | |||
secp256k1_num_sanity(b); | |||
mp_limb_t tmp[2*NUM_LIMBS+1]; | |||
assert(a->limbs + b->limbs <= 2*NUM_LIMBS+1); | |||
if ((a->limbs==1 && a->data[0]==0) || (b->limbs==1 && b->data[0]==0)) { | |||
r->limbs = 1; | |||
r->neg = 0; | |||
r->data[0] = 0; | |||
return; | |||
} | |||
if (a->limbs >= b->limbs) | |||
mpn_mul(tmp, a->data, a->limbs, b->data, b->limbs); | |||
else | |||
mpn_mul(tmp, b->data, b->limbs, a->data, a->limbs); | |||
r->limbs = a->limbs + b->limbs; | |||
if (r->limbs > 1 && tmp[r->limbs - 1]==0) r->limbs--; | |||
assert(r->limbs <= 2*NUM_LIMBS); | |||
mpn_copyi(r->data, tmp, r->limbs); | |||
r->neg = a->neg ^ b->neg; | |||
} | |||
void static secp256k1_num_div(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { | |||
secp256k1_num_sanity(a); | |||
secp256k1_num_sanity(b); | |||
if (b->limbs > a->limbs) { | |||
r->limbs = 1; | |||
r->data[0] = 0; | |||
r->neg = 0; | |||
return; | |||
} | |||
mp_limb_t quo[2*NUM_LIMBS+1]; | |||
mp_limb_t rem[2*NUM_LIMBS+1]; | |||
mpn_tdiv_qr(quo, rem, 0, a->data, a->limbs, b->data, b->limbs); | |||
mpn_copyi(r->data, quo, a->limbs - b->limbs + 1); | |||
r->limbs = a->limbs - b->limbs + 1; | |||
while (r->limbs > 1 && r->data[r->limbs - 1]==0) r->limbs--; | |||
r->neg = a->neg ^ b->neg; | |||
} | |||
void static secp256k1_num_mod_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b, const secp256k1_num_t *m) { | |||
secp256k1_num_mul(r, a, b); | |||
secp256k1_num_mod(r, m); | |||
} | |||
int static secp256k1_num_shift(secp256k1_num_t *r, int bits) { | |||
assert(bits <= GMP_NUMB_BITS); | |||
mp_limb_t ret = mpn_rshift(r->data, r->data, r->limbs, bits); | |||
if (r->limbs>1 && r->data[r->limbs-1]==0) r->limbs--; | |||
ret >>= (GMP_NUMB_BITS - bits); | |||
return ret; | |||
} | |||
int static secp256k1_num_get_bit(const secp256k1_num_t *a, int pos) { | |||
return (a->limbs*GMP_NUMB_BITS > pos) && ((a->data[pos/GMP_NUMB_BITS] >> (pos % GMP_NUMB_BITS)) & 1); | |||
} | |||
void static secp256k1_num_inc(secp256k1_num_t *r) { | |||
mp_limb_t ret = mpn_add_1(r->data, r->data, r->limbs, (mp_limb_t)1); | |||
if (ret) { | |||
assert(r->limbs < 2*NUM_LIMBS); | |||
r->data[r->limbs++] = ret; | |||
} | |||
} | |||
void static secp256k1_num_set_hex(secp256k1_num_t *r, const char *a, int alen) { | |||
static const unsigned char cvt[256] = { | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, | |||
0, 1, 2, 3, 4, 5, 6,7,8,9,0,0,0,0,0,0, | |||
0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0, | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, | |||
0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0, | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, | |||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0 | |||
}; | |||
unsigned char num[257] = {}; | |||
for (int i=0; i<alen; i++) { | |||
num[i] = cvt[a[i]]; | |||
} | |||
r->limbs = mpn_set_str(r->data, num, alen, 16); | |||
while (r->limbs > 1 && r->data[r->limbs-1] == 0) r->limbs--; | |||
} | |||
void static secp256k1_num_get_hex(char *r, int rlen, const secp256k1_num_t *a) { | |||
static const unsigned char cvt[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'}; | |||
unsigned char *tmp = malloc(257); | |||
mp_size_t len = mpn_get_str(tmp, 16, (mp_limb_t*)a->data, a->limbs); | |||
assert(len <= rlen); | |||
for (int i=0; i<len; i++) { | |||
assert(rlen-len+i >= 0); | |||
assert(rlen-len+i < rlen); | |||
assert(tmp[i] >= 0); | |||
assert(tmp[i] < 16); | |||
r[rlen-len+i] = cvt[tmp[i]]; | |||
} | |||
for (int i=0; i<rlen-len; i++) { | |||
assert(i >= 0); | |||
assert(i < rlen); | |||
r[i] = cvt[0]; | |||
} | |||
free(tmp); | |||
} | |||
void static secp256k1_num_split(secp256k1_num_t *rl, secp256k1_num_t *rh, const secp256k1_num_t *a, int bits) { | |||
assert(bits > 0); | |||
rh->neg = a->neg; | |||
if (bits >= a->limbs * GMP_NUMB_BITS) { | |||
*rl = *a; | |||
rh->limbs = 1; | |||
rh->data[0] = 0; | |||
return; | |||
} | |||
rl->limbs = 0; | |||
rl->neg = a->neg; | |||
int left = bits; | |||
while (left >= GMP_NUMB_BITS) { | |||
rl->data[rl->limbs] = a->data[rl->limbs]; | |||
rl->limbs++; | |||
left -= GMP_NUMB_BITS; | |||
} | |||
if (left == 0) { | |||
mpn_copyi(rh->data, a->data + rl->limbs, a->limbs - rl->limbs); | |||
rh->limbs = a->limbs - rl->limbs; | |||
} else { | |||
mpn_rshift(rh->data, a->data + rl->limbs, a->limbs - rl->limbs, left); | |||
rh->limbs = a->limbs - rl->limbs; | |||
while (rh->limbs>1 && rh->data[rh->limbs-1]==0) rh->limbs--; | |||
} | |||
if (left > 0) { | |||
rl->data[rl->limbs] = a->data[rl->limbs] & ((((mp_limb_t)1) << left) - 1); | |||
rl->limbs++; | |||
} | |||
while (rl->limbs>1 && rl->data[rl->limbs-1]==0) rl->limbs--; | |||
} | |||
void static secp256k1_num_negate(secp256k1_num_t *r) { | |||
r->neg ^= 1; | |||
} | |||
#endif |
@ -0,0 +1,145 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_NUM_REPR_IMPL_H_ | |||
#define _SECP256K1_NUM_REPR_IMPL_H_ | |||
#include <assert.h> | |||
#include <string.h> | |||
#include <stdlib.h> | |||
#include <openssl/bn.h> | |||
#include <openssl/crypto.h> | |||
#include "../num.h" | |||
void static secp256k1_num_init(secp256k1_num_t *r) { | |||
BN_init(&r->bn); | |||
} | |||
void static secp256k1_num_free(secp256k1_num_t *r) { | |||
BN_free(&r->bn); | |||
} | |||
void static secp256k1_num_copy(secp256k1_num_t *r, const secp256k1_num_t *a) { | |||
BN_copy(&r->bn, &a->bn); | |||
} | |||
void static secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num_t *a) { | |||
unsigned int size = BN_num_bytes(&a->bn); | |||
assert(size <= rlen); | |||
memset(r,0,rlen); | |||
BN_bn2bin(&a->bn, r + rlen - size); | |||
} | |||
void static secp256k1_num_set_bin(secp256k1_num_t *r, const unsigned char *a, unsigned int alen) { | |||
BN_bin2bn(a, alen, &r->bn); | |||
} | |||
void static secp256k1_num_set_int(secp256k1_num_t *r, int a) { | |||
BN_set_word(&r->bn, a < 0 ? -a : a); | |||
BN_set_negative(&r->bn, a < 0); | |||
} | |||
void static secp256k1_num_mod_inverse(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *m) { | |||
BN_CTX *ctx = BN_CTX_new(); | |||
BN_mod_inverse(&r->bn, &a->bn, &m->bn, ctx); | |||
BN_CTX_free(ctx); | |||
} | |||
void static secp256k1_num_mod_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b, const secp256k1_num_t *m) { | |||
BN_CTX *ctx = BN_CTX_new(); | |||
BN_mod_mul(&r->bn, &a->bn, &b->bn, &m->bn, ctx); | |||
BN_CTX_free(ctx); | |||
} | |||
int static secp256k1_num_cmp(const secp256k1_num_t *a, const secp256k1_num_t *b) { | |||
return BN_cmp(&a->bn, &b->bn); | |||
} | |||
void static secp256k1_num_add(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { | |||
BN_add(&r->bn, &a->bn, &b->bn); | |||
} | |||
void static secp256k1_num_sub(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { | |||
BN_sub(&r->bn, &a->bn, &b->bn); | |||
} | |||
void static secp256k1_num_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { | |||
BN_CTX *ctx = BN_CTX_new(); | |||
BN_mul(&r->bn, &a->bn, &b->bn, ctx); | |||
BN_CTX_free(ctx); | |||
} | |||
void static secp256k1_num_div(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b) { | |||
BN_CTX *ctx = BN_CTX_new(); | |||
BN_div(&r->bn, NULL, &a->bn, &b->bn, ctx); | |||
BN_CTX_free(ctx); | |||
} | |||
void static secp256k1_num_mod(secp256k1_num_t *r, const secp256k1_num_t *m) { | |||
BN_CTX *ctx = BN_CTX_new(); | |||
BN_nnmod(&r->bn, &r->bn, &m->bn, ctx); | |||
BN_CTX_free(ctx); | |||
} | |||
int static secp256k1_num_bits(const secp256k1_num_t *a) { | |||
return BN_num_bits(&a->bn); | |||
} | |||
int static secp256k1_num_shift(secp256k1_num_t *r, int bits) { | |||
int ret = BN_is_zero(&r->bn) ? 0 : r->bn.d[0] & ((1 << bits) - 1); | |||
BN_rshift(&r->bn, &r->bn, bits); | |||
return ret; | |||
} | |||
int static secp256k1_num_is_zero(const secp256k1_num_t *a) { | |||
return BN_is_zero(&a->bn); | |||
} | |||
int static secp256k1_num_is_odd(const secp256k1_num_t *a) { | |||
return BN_is_odd(&a->bn); | |||
} | |||
int static secp256k1_num_is_neg(const secp256k1_num_t *a) { | |||
return BN_is_negative(&a->bn); | |||
} | |||
int static secp256k1_num_get_bit(const secp256k1_num_t *a, int pos) { | |||
return BN_is_bit_set(&a->bn, pos); | |||
} | |||
void static secp256k1_num_inc(secp256k1_num_t *r) { | |||
BN_add_word(&r->bn, 1); | |||
} | |||
void static secp256k1_num_set_hex(secp256k1_num_t *r, const char *a, int alen) { | |||
char *str = (char*)malloc(alen+1); | |||
memcpy(str, a, alen); | |||
str[alen] = 0; | |||
BIGNUM *pbn = &r->bn; | |||
BN_hex2bn(&pbn, str); | |||
free(str); | |||
} | |||
void static secp256k1_num_get_hex(char *r, int rlen, const secp256k1_num_t *a) { | |||
char *str = BN_bn2hex(&a->bn); | |||
int len = strlen(str); | |||
assert(rlen >= len); | |||
for (int i=0; i<rlen-len; i++) | |||
r[i] = '0'; | |||
memcpy(r+rlen-len, str, len); | |||
OPENSSL_free(str); | |||
} | |||
void static secp256k1_num_split(secp256k1_num_t *rl, secp256k1_num_t *rh, const secp256k1_num_t *a, int bits) { | |||
BN_copy(&rl->bn, &a->bn); | |||
BN_rshift(&rh->bn, &a->bn, bits); | |||
BN_mask_bits(&rl->bn, bits); | |||
} | |||
void static secp256k1_num_negate(secp256k1_num_t *r) { | |||
BN_set_negative(&r->bn, !BN_is_negative(&r->bn)); | |||
} | |||
#endif |
@ -0,0 +1,45 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_UTIL_IMPL_H_ | |||
#define _SECP256K1_UTIL_IMPL_H_ | |||
#include <stdint.h> | |||
#include <string.h> | |||
#include "../util.h" | |||
static inline uint32_t secp256k1_rand32(void) { | |||
static uint32_t Rz = 11, Rw = 11; | |||
Rz = 36969 * (Rz & 0xFFFF) + (Rz >> 16); | |||
Rw = 18000 * (Rw & 0xFFFF) + (Rw >> 16); | |||
return (Rw << 16) + (Rw >> 16) + Rz; | |||
} | |||
static void secp256k1_rand256(unsigned char *b32) { | |||
for (int i=0; i<8; i++) { | |||
uint32_t r = secp256k1_rand32(); | |||
b32[i*4 + 0] = (r >> 0) & 0xFF; | |||
b32[i*4 + 1] = (r >> 8) & 0xFF; | |||
b32[i*4 + 2] = (r >> 16) & 0xFF; | |||
b32[i*4 + 3] = (r >> 24) & 0xFF; | |||
} | |||
} | |||
static void secp256k1_rand256_test(unsigned char *b32) { | |||
int bits=0; | |||
memset(b32, 0, 32); | |||
while (bits < 256) { | |||
uint32_t ent = secp256k1_rand32(); | |||
int now = 1 + ((ent % 64)*((ent >> 6) % 32)+16)/31; | |||
uint32_t val = 1 & (ent >> 11); | |||
while (now > 0 && bits < 256) { | |||
b32[bits / 8] |= val << (bits % 8); | |||
now--; | |||
bits++; | |||
} | |||
} | |||
} | |||
#endif |
@ -0,0 +1,60 @@ | |||
package org.bitcoin; | |||
import java.nio.ByteBuffer; | |||
import java.nio.ByteOrder; | |||
import com.google.common.base.Preconditions; | |||
/** | |||
* This class holds native methods to handle ECDSA verification. | |||
* You can find an example library that can be used for this at | |||
* https://github.com/sipa/secp256k1 | |||
*/ | |||
public class NativeSecp256k1 { | |||
public static final boolean enabled; | |||
static { | |||
boolean isEnabled = true; | |||
try { | |||
System.loadLibrary("javasecp256k1"); | |||
} catch (UnsatisfiedLinkError e) { | |||
isEnabled = false; | |||
} | |||
enabled = isEnabled; | |||
} | |||
private static ThreadLocal<ByteBuffer> nativeECDSABuffer = new ThreadLocal<ByteBuffer>(); | |||
/** | |||
* Verifies the given secp256k1 signature in native code. | |||
* Calling when enabled == false is undefined (probably library not loaded) | |||
* | |||
* @param data The data which was signed, must be exactly 32 bytes | |||
* @param signature The signature | |||
* @param pub The public key which did the signing | |||
*/ | |||
public static boolean verify(byte[] data, byte[] signature, byte[] pub) { | |||
Preconditions.checkArgument(data.length == 32 && signature.length <= 520 && pub.length <= 520); | |||
ByteBuffer byteBuff = nativeECDSABuffer.get(); | |||
if (byteBuff == null) { | |||
byteBuff = ByteBuffer.allocateDirect(32 + 8 + 520 + 520); | |||
byteBuff.order(ByteOrder.nativeOrder()); | |||
nativeECDSABuffer.set(byteBuff); | |||
} | |||
byteBuff.rewind(); | |||
byteBuff.put(data); | |||
byteBuff.putInt(signature.length); | |||
byteBuff.putInt(pub.length); | |||
byteBuff.put(signature); | |||
byteBuff.put(pub); | |||
return secp256k1_ecdsa_verify(byteBuff) == 1; | |||
} | |||
/** | |||
* @param byteBuff signature format is byte[32] data, | |||
* native-endian int signatureLength, native-endian int pubkeyLength, | |||
* byte[signatureLength] signature, byte[pubkeyLength] pub | |||
* @returns 1 for valid signature, anything else for invalid | |||
*/ | |||
private static native int secp256k1_ecdsa_verify(ByteBuffer byteBuff); | |||
} |
@ -0,0 +1,23 @@ | |||
#include "org_bitcoin_NativeSecp256k1.h" | |||
#include "include/secp256k1.h" | |||
JNIEXPORT jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1verify | |||
(JNIEnv* env, jclass classObject, jobject byteBufferObject) | |||
{ | |||
unsigned char* data = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject); | |||
int sigLen = *((int*)(data + 32)); | |||
int pubLen = *((int*)(data + 32 + 4)); | |||
return secp256k1_ecdsa_verify(data, 32, data+32+8, sigLen, data+32+8+sigLen, pubLen); | |||
} | |||
static void __javasecp256k1_attach(void) __attribute__((constructor)); | |||
static void __javasecp256k1_detach(void) __attribute__((destructor)); | |||
static void __javasecp256k1_attach(void) { | |||
secp256k1_start(); | |||
} | |||
static void __javasecp256k1_detach(void) { | |||
secp256k1_stop(); | |||
} |
@ -0,0 +1,21 @@ | |||
/* DO NOT EDIT THIS FILE - it is machine generated */ | |||
#include <jni.h> | |||
/* Header for class org_bitcoin_NativeSecp256k1 */ | |||
#ifndef _Included_org_bitcoin_NativeSecp256k1 | |||
#define _Included_org_bitcoin_NativeSecp256k1 | |||
#ifdef __cplusplus | |||
extern "C" { | |||
#endif | |||
/* | |||
* Class: org_bitcoin_NativeSecp256k1 | |||
* Method: secp256k1_ecdsa_verify | |||
* Signature: (Ljava/nio/ByteBuffer;)I | |||
*/ | |||
JNIEXPORT jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1verify | |||
(JNIEnv *, jclass, jobject); | |||
#ifdef __cplusplus | |||
} | |||
#endif | |||
#endif |
@ -0,0 +1,93 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_NUM_ | |||
#define _SECP256K1_NUM_ | |||
#if defined(USE_NUM_GMP) | |||
#include "num_gmp.h" | |||
#elif defined(USE_NUM_OPENSSL) | |||
#include "num_openssl.h" | |||
#else | |||
#error "Please select num implementation" | |||
#endif | |||
/** Initialize a number. */ | |||
void static secp256k1_num_init(secp256k1_num_t *r); | |||
/** Free a number. */ | |||
void static secp256k1_num_free(secp256k1_num_t *r); | |||
/** Copy a number. */ | |||
void static secp256k1_num_copy(secp256k1_num_t *r, const secp256k1_num_t *a); | |||
/** Convert a number's absolute value to a binary big-endian string. | |||
* There must be enough place. */ | |||
void static secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num_t *a); | |||
/** Set a number to the value of a binary big-endian string. */ | |||
void static secp256k1_num_set_bin(secp256k1_num_t *r, const unsigned char *a, unsigned int alen); | |||
/** Set a number equal to a (signed) integer. */ | |||
void static secp256k1_num_set_int(secp256k1_num_t *r, int a); | |||
/** Compute a modular inverse. The input must be less than the modulus. */ | |||
void static secp256k1_num_mod_inverse(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *m); | |||
/** Multiply two numbers modulo another. */ | |||
void static secp256k1_num_mod_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b, const secp256k1_num_t *m); | |||
/** Compare the absolute value of two numbers. */ | |||
int static secp256k1_num_cmp(const secp256k1_num_t *a, const secp256k1_num_t *b); | |||
/** Add two (signed) numbers. */ | |||
void static secp256k1_num_add(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b); | |||
/** Subtract two (signed) numbers. */ | |||
void static secp256k1_num_sub(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b); | |||
/** Multiply two (signed) numbers. */ | |||
void static secp256k1_num_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b); | |||
/** Divide two (signed) numbers. */ | |||
void static secp256k1_num_div(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b); | |||
/** Replace a number by its remainder modulo m. M's sign is ignored. The result is a number between 0 and m-1, | |||
even if r was negative. */ | |||
void static secp256k1_num_mod(secp256k1_num_t *r, const secp256k1_num_t *m); | |||
/** Calculate the number of bits in (the absolute value of) a number. */ | |||
int static secp256k1_num_bits(const secp256k1_num_t *a); | |||
/** Right-shift the passed number by bits bits, and return those bits. */ | |||
int static secp256k1_num_shift(secp256k1_num_t *r, int bits); | |||
/** Check whether a number is zero. */ | |||
int static secp256k1_num_is_zero(const secp256k1_num_t *a); | |||
/** Check whether a number is odd. */ | |||
int static secp256k1_num_is_odd(const secp256k1_num_t *a); | |||
/** Check whether a number is strictly negative. */ | |||
int static secp256k1_num_is_neg(const secp256k1_num_t *a); | |||
/** Check whether a particular bit is set in a number. */ | |||
int static secp256k1_num_get_bit(const secp256k1_num_t *a, int pos); | |||
/** Increase a number by 1. */ | |||
void static secp256k1_num_inc(secp256k1_num_t *r); | |||
/** Set a number equal to the value of a hex string (unsigned). */ | |||
void static secp256k1_num_set_hex(secp256k1_num_t *r, const char *a, int alen); | |||
/** Convert (the absolute value of) a number to a hexadecimal string. */ | |||
void static secp256k1_num_get_hex(char *r, int rlen, const secp256k1_num_t *a); | |||
/** Split a number into a low and high part. */ | |||
void static secp256k1_num_split(secp256k1_num_t *rl, secp256k1_num_t *rh, const secp256k1_num_t *a, int bits); | |||
/** Change a number's sign. */ | |||
void static secp256k1_num_negate(secp256k1_num_t *r); | |||
#endif |
@ -0,0 +1,18 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_NUM_REPR_ | |||
#define _SECP256K1_NUM_REPR_ | |||
#include <gmp.h> | |||
#define NUM_LIMBS ((256+GMP_NUMB_BITS-1)/GMP_NUMB_BITS) | |||
typedef struct { | |||
mp_limb_t data[2*NUM_LIMBS]; | |||
int neg; | |||
int limbs; | |||
} secp256k1_num_t; | |||
#endif |
@ -0,0 +1,14 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_NUM_REPR_ | |||
#define _SECP256K1_NUM_REPR_ | |||
#include <openssl/bn.h> | |||
typedef struct { | |||
BIGNUM bn; | |||
} secp256k1_num_t; | |||
#endif |
@ -0,0 +1,269 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#include "impl/num.h" | |||
#include "impl/field.h" | |||
#include "impl/group.h" | |||
#include "impl/ecmult.h" | |||
#include "impl/ecdsa.h" | |||
void secp256k1_start(void) { | |||
secp256k1_fe_start(); | |||
secp256k1_ge_start(); | |||
secp256k1_ecmult_start(); | |||
} | |||
void secp256k1_stop(void) { | |||
secp256k1_ecmult_stop(); | |||
secp256k1_ge_stop(); | |||
secp256k1_fe_stop(); | |||
} | |||
int secp256k1_ecdsa_verify(const unsigned char *msg, int msglen, const unsigned char *sig, int siglen, const unsigned char *pubkey, int pubkeylen) { | |||
int ret = -3; | |||
secp256k1_num_t m; | |||
secp256k1_num_init(&m); | |||
secp256k1_ecdsa_sig_t s; | |||
secp256k1_ecdsa_sig_init(&s); | |||
secp256k1_ge_t q; | |||
secp256k1_num_set_bin(&m, msg, msglen); | |||
if (!secp256k1_ecdsa_pubkey_parse(&q, pubkey, pubkeylen)) { | |||
ret = -1; | |||
goto end; | |||
} | |||
if (!secp256k1_ecdsa_sig_parse(&s, sig, siglen)) { | |||
ret = -2; | |||
goto end; | |||
} | |||
if (!secp256k1_ecdsa_sig_verify(&s, &q, &m)) { | |||
ret = 0; | |||
goto end; | |||
} | |||
ret = 1; | |||
end: | |||
secp256k1_ecdsa_sig_free(&s); | |||
secp256k1_num_free(&m); | |||
return ret; | |||
} | |||
int secp256k1_ecdsa_sign(const unsigned char *message, int messagelen, unsigned char *signature, int *signaturelen, const unsigned char *seckey, const unsigned char *nonce) { | |||
secp256k1_num_t sec, non, msg; | |||
secp256k1_num_init(&sec); | |||
secp256k1_num_init(&non); | |||
secp256k1_num_init(&msg); | |||
secp256k1_num_set_bin(&sec, seckey, 32); | |||
secp256k1_num_set_bin(&non, nonce, 32); | |||
secp256k1_num_set_bin(&msg, message, messagelen); | |||
secp256k1_ecdsa_sig_t sig; | |||
secp256k1_ecdsa_sig_init(&sig); | |||
int ret = secp256k1_ecdsa_sig_sign(&sig, &sec, &msg, &non, NULL); | |||
if (ret) { | |||
secp256k1_ecdsa_sig_serialize(signature, signaturelen, &sig); | |||
} | |||
secp256k1_ecdsa_sig_free(&sig); | |||
secp256k1_num_free(&msg); | |||
secp256k1_num_free(&non); | |||
secp256k1_num_free(&sec); | |||
return ret; | |||
} | |||
int secp256k1_ecdsa_sign_compact(const unsigned char *message, int messagelen, unsigned char *sig64, const unsigned char *seckey, const unsigned char *nonce, int *recid) { | |||
secp256k1_num_t sec, non, msg; | |||
secp256k1_num_init(&sec); | |||
secp256k1_num_init(&non); | |||
secp256k1_num_init(&msg); | |||
secp256k1_num_set_bin(&sec, seckey, 32); | |||
secp256k1_num_set_bin(&non, nonce, 32); | |||
secp256k1_num_set_bin(&msg, message, messagelen); | |||
secp256k1_ecdsa_sig_t sig; | |||
secp256k1_ecdsa_sig_init(&sig); | |||
int ret = secp256k1_ecdsa_sig_sign(&sig, &sec, &msg, &non, recid); | |||
if (ret) { | |||
secp256k1_num_get_bin(sig64, 32, &sig.r); | |||
secp256k1_num_get_bin(sig64 + 32, 32, &sig.s); | |||
} | |||
secp256k1_ecdsa_sig_free(&sig); | |||
secp256k1_num_free(&msg); | |||
secp256k1_num_free(&non); | |||
secp256k1_num_free(&sec); | |||
return ret; | |||
} | |||
int secp256k1_ecdsa_recover_compact(const unsigned char *msg, int msglen, const unsigned char *sig64, unsigned char *pubkey, int *pubkeylen, int compressed, int recid) { | |||
int ret = 0; | |||
secp256k1_num_t m; | |||
secp256k1_num_init(&m); | |||
secp256k1_ecdsa_sig_t sig; | |||
secp256k1_ecdsa_sig_init(&sig); | |||
secp256k1_num_set_bin(&sig.r, sig64, 32); | |||
secp256k1_num_set_bin(&sig.s, sig64 + 32, 32); | |||
secp256k1_num_set_bin(&m, msg, msglen); | |||
secp256k1_ge_t q; | |||
if (secp256k1_ecdsa_sig_recover(&sig, &q, &m, recid)) { | |||
secp256k1_ecdsa_pubkey_serialize(&q, pubkey, pubkeylen, compressed); | |||
ret = 1; | |||
} | |||
secp256k1_ecdsa_sig_free(&sig); | |||
secp256k1_num_free(&m); | |||
return ret; | |||
} | |||
int secp256k1_ecdsa_seckey_verify(const unsigned char *seckey) { | |||
secp256k1_num_t sec; | |||
secp256k1_num_init(&sec); | |||
secp256k1_num_set_bin(&sec, seckey, 32); | |||
int ret = !secp256k1_num_is_zero(&sec) && | |||
(secp256k1_num_cmp(&sec, &secp256k1_ge_consts->order) < 0); | |||
secp256k1_num_free(&sec); | |||
return ret; | |||
} | |||
int secp256k1_ecdsa_pubkey_verify(const unsigned char *pubkey, int pubkeylen) { | |||
secp256k1_ge_t q; | |||
return secp256k1_ecdsa_pubkey_parse(&q, pubkey, pubkeylen); | |||
} | |||
int secp256k1_ecdsa_pubkey_create(unsigned char *pubkey, int *pubkeylen, const unsigned char *seckey, int compressed) { | |||
secp256k1_num_t sec; | |||
secp256k1_num_init(&sec); | |||
secp256k1_num_set_bin(&sec, seckey, 32); | |||
secp256k1_gej_t pj; | |||
secp256k1_ecmult_gen(&pj, &sec); | |||
secp256k1_ge_t p; | |||
secp256k1_ge_set_gej(&p, &pj); | |||
secp256k1_ecdsa_pubkey_serialize(&p, pubkey, pubkeylen, compressed); | |||
return 1; | |||
} | |||
int secp256k1_ecdsa_pubkey_decompress(unsigned char *pubkey, int *pubkeylen) { | |||
secp256k1_ge_t p; | |||
if (!secp256k1_ecdsa_pubkey_parse(&p, pubkey, *pubkeylen)) | |||
return 0; | |||
secp256k1_ecdsa_pubkey_serialize(&p, pubkey, pubkeylen, 0); | |||
return 1; | |||
} | |||
int secp256k1_ecdsa_privkey_tweak_add(unsigned char *seckey, const unsigned char *tweak) { | |||
int ret = 1; | |||
secp256k1_num_t term; | |||
secp256k1_num_init(&term); | |||
secp256k1_num_set_bin(&term, tweak, 32); | |||
if (secp256k1_num_cmp(&term, &secp256k1_ge_consts->order) >= 0) | |||
ret = 0; | |||
secp256k1_num_t sec; | |||
secp256k1_num_init(&sec); | |||
if (ret) { | |||
secp256k1_num_set_bin(&sec, seckey, 32); | |||
secp256k1_num_add(&sec, &sec, &term); | |||
secp256k1_num_mod(&sec, &secp256k1_ge_consts->order); | |||
if (secp256k1_num_is_zero(&sec)) | |||
ret = 0; | |||
} | |||
if (ret) | |||
secp256k1_num_get_bin(seckey, 32, &sec); | |||
secp256k1_num_free(&sec); | |||
secp256k1_num_free(&term); | |||
return ret; | |||
} | |||
int secp256k1_ecdsa_pubkey_tweak_add(unsigned char *pubkey, int pubkeylen, const unsigned char *tweak) { | |||
int ret = 1; | |||
secp256k1_num_t term; | |||
secp256k1_num_init(&term); | |||
secp256k1_num_set_bin(&term, tweak, 32); | |||
if (secp256k1_num_cmp(&term, &secp256k1_ge_consts->order) >= 0) | |||
ret = 0; | |||
secp256k1_ge_t p; | |||
if (ret) { | |||
if (!secp256k1_ecdsa_pubkey_parse(&p, pubkey, pubkeylen)) | |||
ret = 0; | |||
} | |||
if (ret) { | |||
secp256k1_gej_t pt; | |||
secp256k1_ecmult_gen(&pt, &term); | |||
secp256k1_gej_add_ge(&pt, &pt, &p); | |||
if (secp256k1_gej_is_infinity(&pt)) | |||
ret = 0; | |||
secp256k1_ge_set_gej(&p, &pt); | |||
int oldlen = pubkeylen; | |||
secp256k1_ecdsa_pubkey_serialize(&p, pubkey, &pubkeylen, oldlen <= 33); | |||
assert(pubkeylen == oldlen); | |||
} | |||
secp256k1_num_free(&term); | |||
return ret; | |||
} | |||
int secp256k1_ecdsa_privkey_tweak_mul(unsigned char *seckey, const unsigned char *tweak) { | |||
int ret = 1; | |||
secp256k1_num_t factor; | |||
secp256k1_num_init(&factor); | |||
secp256k1_num_set_bin(&factor, tweak, 32); | |||
if (secp256k1_num_is_zero(&factor)) | |||
ret = 0; | |||
if (secp256k1_num_cmp(&factor, &secp256k1_ge_consts->order) >= 0) | |||
ret = 0; | |||
secp256k1_num_t sec; | |||
secp256k1_num_init(&sec); | |||
if (ret) { | |||
secp256k1_num_set_bin(&sec, seckey, 32); | |||
secp256k1_num_mod_mul(&sec, &sec, &factor, &secp256k1_ge_consts->order); | |||
} | |||
if (ret) | |||
secp256k1_num_get_bin(seckey, 32, &sec); | |||
secp256k1_num_free(&sec); | |||
secp256k1_num_free(&factor); | |||
return ret; | |||
} | |||
int secp256k1_ecdsa_pubkey_tweak_mul(unsigned char *pubkey, int pubkeylen, const unsigned char *tweak) { | |||
int ret = 1; | |||
secp256k1_num_t factor; | |||
secp256k1_num_init(&factor); | |||
secp256k1_num_set_bin(&factor, tweak, 32); | |||
if (secp256k1_num_is_zero(&factor)) | |||
ret = 0; | |||
if (secp256k1_num_cmp(&factor, &secp256k1_ge_consts->order) >= 0) | |||
ret = 0; | |||
secp256k1_ge_t p; | |||
if (ret) { | |||
if (!secp256k1_ecdsa_pubkey_parse(&p, pubkey, pubkeylen)) | |||
ret = 0; | |||
} | |||
if (ret) { | |||
secp256k1_num_t zero; | |||
secp256k1_num_init(&zero); | |||
secp256k1_num_set_int(&zero, 0); | |||
secp256k1_gej_t pt; | |||
secp256k1_gej_set_ge(&pt, &p); | |||
secp256k1_ecmult(&pt, &pt, &factor, &zero); | |||
secp256k1_num_free(&zero); | |||
secp256k1_ge_set_gej(&p, &pt); | |||
int oldlen = pubkeylen; | |||
secp256k1_ecdsa_pubkey_serialize(&p, pubkey, &pubkeylen, oldlen <= 33); | |||
assert(pubkeylen == oldlen); | |||
} | |||
secp256k1_num_free(&factor); | |||
return ret; | |||
} | |||
int secp256k1_ecdsa_privkey_export(const unsigned char *seckey, unsigned char *privkey, int *privkeylen, int compressed) { | |||
secp256k1_num_t key; | |||
secp256k1_num_init(&key); | |||
secp256k1_num_set_bin(&key, seckey, 32); | |||
int ret = secp256k1_ecdsa_privkey_serialize(privkey, privkeylen, &key, compressed); | |||
secp256k1_num_free(&key); | |||
return ret; | |||
} | |||
int secp256k1_ecdsa_privkey_import(unsigned char *seckey, const unsigned char *privkey, int privkeylen) { | |||
secp256k1_num_t key; | |||
secp256k1_num_init(&key); | |||
int ret = secp256k1_ecdsa_privkey_parse(&key, privkey, privkeylen); | |||
if (ret) | |||
secp256k1_num_get_bin(seckey, 32, &key); | |||
secp256k1_num_free(&key); | |||
return ret; | |||
} |
@ -0,0 +1,465 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#include <assert.h> | |||
#include "impl/num.h" | |||
#include "impl/field.h" | |||
#include "impl/group.h" | |||
#include "impl/ecmult.h" | |||
#include "impl/ecdsa.h" | |||
#include "impl/util.h" | |||
#ifdef ENABLE_OPENSSL_TESTS | |||
#include "openssl/bn.h" | |||
#include "openssl/ec.h" | |||
#include "openssl/ecdsa.h" | |||
#include "openssl/obj_mac.h" | |||
#endif | |||
static int count = 100; | |||
/***** NUM TESTS *****/ | |||
void random_num_negate(secp256k1_num_t *num) { | |||
if (secp256k1_rand32() & 1) | |||
secp256k1_num_negate(num); | |||
} | |||
void random_num_order_test(secp256k1_num_t *num) { | |||
do { | |||
unsigned char b32[32]; | |||
secp256k1_rand256_test(b32); | |||
secp256k1_num_set_bin(num, b32, 32); | |||
if (secp256k1_num_is_zero(num)) | |||
continue; | |||
if (secp256k1_num_cmp(num, &secp256k1_ge_consts->order) >= 0) | |||
continue; | |||
break; | |||
} while(1); | |||
} | |||
void random_num_order(secp256k1_num_t *num) { | |||
do { | |||
unsigned char b32[32]; | |||
secp256k1_rand256(b32); | |||
secp256k1_num_set_bin(num, b32, 32); | |||
if (secp256k1_num_is_zero(num)) | |||
continue; | |||
if (secp256k1_num_cmp(num, &secp256k1_ge_consts->order) >= 0) | |||
continue; | |||
break; | |||
} while(1); | |||
} | |||
void test_num_copy_inc_cmp() { | |||
secp256k1_num_t n1,n2; | |||
secp256k1_num_init(&n1); | |||
secp256k1_num_init(&n2); | |||
random_num_order(&n1); | |||
secp256k1_num_copy(&n2, &n1); | |||
assert(secp256k1_num_cmp(&n1, &n2) == 0); | |||
assert(secp256k1_num_cmp(&n2, &n1) == 0); | |||
secp256k1_num_inc(&n2); | |||
assert(secp256k1_num_cmp(&n1, &n2) != 0); | |||
assert(secp256k1_num_cmp(&n2, &n1) != 0); | |||
secp256k1_num_free(&n1); | |||
secp256k1_num_free(&n2); | |||
} | |||
void test_num_get_set_hex() { | |||
secp256k1_num_t n1,n2; | |||
secp256k1_num_init(&n1); | |||
secp256k1_num_init(&n2); | |||
random_num_order_test(&n1); | |||
char c[64]; | |||
secp256k1_num_get_hex(c, 64, &n1); | |||
secp256k1_num_set_hex(&n2, c, 64); | |||
assert(secp256k1_num_cmp(&n1, &n2) == 0); | |||
for (int i=0; i<64; i++) { | |||
// check whether the lower 4 bits correspond to the last hex character | |||
int low1 = secp256k1_num_shift(&n1, 4); | |||
int lowh = c[63]; | |||
int low2 = (lowh>>6)*9+(lowh-'0')&15; | |||
assert(low1 == low2); | |||
// shift bits off the hex representation, and compare | |||
memmove(c+1, c, 63); | |||
c[0] = '0'; | |||
secp256k1_num_set_hex(&n2, c, 64); | |||
assert(secp256k1_num_cmp(&n1, &n2) == 0); | |||
} | |||
secp256k1_num_free(&n2); | |||
secp256k1_num_free(&n1); | |||
} | |||
void test_num_get_set_bin() { | |||
secp256k1_num_t n1,n2; | |||
secp256k1_num_init(&n1); | |||
secp256k1_num_init(&n2); | |||
random_num_order_test(&n1); | |||
unsigned char c[32]; | |||
secp256k1_num_get_bin(c, 32, &n1); | |||
secp256k1_num_set_bin(&n2, c, 32); | |||
assert(secp256k1_num_cmp(&n1, &n2) == 0); | |||
for (int i=0; i<32; i++) { | |||
// check whether the lower 8 bits correspond to the last byte | |||
int low1 = secp256k1_num_shift(&n1, 8); | |||
int low2 = c[31]; | |||
assert(low1 == low2); | |||
// shift bits off the byte representation, and compare | |||
memmove(c+1, c, 31); | |||
c[0] = 0; | |||
secp256k1_num_set_bin(&n2, c, 32); | |||
assert(secp256k1_num_cmp(&n1, &n2) == 0); | |||
} | |||
secp256k1_num_free(&n2); | |||
secp256k1_num_free(&n1); | |||
} | |||
void run_num_int() { | |||
secp256k1_num_t n1; | |||
secp256k1_num_init(&n1); | |||
for (int i=-255; i<256; i++) { | |||
unsigned char c1[3] = {}; | |||
c1[2] = abs(i); | |||
unsigned char c2[3] = {0x11,0x22,0x33}; | |||
secp256k1_num_set_int(&n1, i); | |||
secp256k1_num_get_bin(c2, 3, &n1); | |||
assert(memcmp(c1, c2, 3) == 0); | |||
} | |||
secp256k1_num_free(&n1); | |||
} | |||
void test_num_negate() { | |||
secp256k1_num_t n1; | |||
secp256k1_num_t n2; | |||
secp256k1_num_init(&n1); | |||
secp256k1_num_init(&n2); | |||
random_num_order_test(&n1); // n1 = R | |||
random_num_negate(&n1); | |||
secp256k1_num_copy(&n2, &n1); // n2 = R | |||
secp256k1_num_sub(&n1, &n2, &n1); // n1 = n2-n1 = 0 | |||
assert(secp256k1_num_is_zero(&n1)); | |||
secp256k1_num_copy(&n1, &n2); // n1 = R | |||
secp256k1_num_negate(&n1); // n1 = -R | |||
assert(!secp256k1_num_is_zero(&n1)); | |||
secp256k1_num_add(&n1, &n2, &n1); // n1 = n2+n1 = 0 | |||
assert(secp256k1_num_is_zero(&n1)); | |||
secp256k1_num_copy(&n1, &n2); // n1 = R | |||
secp256k1_num_negate(&n1); // n1 = -R | |||
assert(secp256k1_num_is_neg(&n1) != secp256k1_num_is_neg(&n2)); | |||
secp256k1_num_negate(&n1); // n1 = R | |||
assert(secp256k1_num_cmp(&n1, &n2) == 0); | |||
assert(secp256k1_num_is_neg(&n1) == secp256k1_num_is_neg(&n2)); | |||
secp256k1_num_free(&n2); | |||
secp256k1_num_free(&n1); | |||
} | |||
void test_num_add_sub() { | |||
secp256k1_num_t n1; | |||
secp256k1_num_t n2; | |||
secp256k1_num_init(&n1); | |||
secp256k1_num_init(&n2); | |||
random_num_order_test(&n1); // n1 = R1 | |||
random_num_negate(&n1); | |||
random_num_order_test(&n2); // n2 = R2 | |||
random_num_negate(&n2); | |||
secp256k1_num_t n1p2, n2p1, n1m2, n2m1; | |||
secp256k1_num_init(&n1p2); | |||
secp256k1_num_init(&n2p1); | |||
secp256k1_num_init(&n1m2); | |||
secp256k1_num_init(&n2m1); | |||
secp256k1_num_add(&n1p2, &n1, &n2); // n1p2 = R1 + R2 | |||
secp256k1_num_add(&n2p1, &n2, &n1); // n2p1 = R2 + R1 | |||
secp256k1_num_sub(&n1m2, &n1, &n2); // n1m2 = R1 - R2 | |||
secp256k1_num_sub(&n2m1, &n2, &n1); // n2m1 = R2 - R1 | |||
assert(secp256k1_num_cmp(&n1p2, &n2p1) == 0); | |||
assert(secp256k1_num_cmp(&n1p2, &n1m2) != 0); | |||
secp256k1_num_negate(&n2m1); // n2m1 = -R2 + R1 | |||
assert(secp256k1_num_cmp(&n2m1, &n1m2) == 0); | |||
assert(secp256k1_num_cmp(&n2m1, &n1) != 0); | |||
secp256k1_num_add(&n2m1, &n2m1, &n2); // n2m1 = -R2 + R1 + R2 = R1 | |||
assert(secp256k1_num_cmp(&n2m1, &n1) == 0); | |||
assert(secp256k1_num_cmp(&n2p1, &n1) != 0); | |||
secp256k1_num_sub(&n2p1, &n2p1, &n2); // n2p1 = R2 + R1 - R2 = R1 | |||
assert(secp256k1_num_cmp(&n2p1, &n1) == 0); | |||
secp256k1_num_free(&n2m1); | |||
secp256k1_num_free(&n1m2); | |||
secp256k1_num_free(&n2p1); | |||
secp256k1_num_free(&n1p2); | |||
secp256k1_num_free(&n2); | |||
secp256k1_num_free(&n1); | |||
} | |||
void run_num_smalltests() { | |||
for (int i=0; i<100*count; i++) { | |||
test_num_copy_inc_cmp(); | |||
test_num_get_set_hex(); | |||
test_num_get_set_bin(); | |||
test_num_negate(); | |||
test_num_add_sub(); | |||
} | |||
run_num_int(); | |||
} | |||
void run_ecmult_chain() { | |||
// random starting point A (on the curve) | |||
secp256k1_fe_t ax; secp256k1_fe_set_hex(&ax, "8b30bbe9ae2a990696b22f670709dff3727fd8bc04d3362c6c7bf458e2846004", 64); | |||
secp256k1_fe_t ay; secp256k1_fe_set_hex(&ay, "a357ae915c4a65281309edf20504740f0eb3343990216b4f81063cb65f2f7e0f", 64); | |||
secp256k1_gej_t a; secp256k1_gej_set_xy(&a, &ax, &ay); | |||
// two random initial factors xn and gn | |||
secp256k1_num_t xn; | |||
secp256k1_num_init(&xn); | |||
secp256k1_num_set_hex(&xn, "84cc5452f7fde1edb4d38a8ce9b1b84ccef31f146e569be9705d357a42985407", 64); | |||
secp256k1_num_t gn; | |||
secp256k1_num_init(&gn); | |||
secp256k1_num_set_hex(&gn, "a1e58d22553dcd42b23980625d4c57a96e9323d42b3152e5ca2c3990edc7c9de", 64); | |||
// two small multipliers to be applied to xn and gn in every iteration: | |||
secp256k1_num_t xf; | |||
secp256k1_num_init(&xf); | |||
secp256k1_num_set_hex(&xf, "1337", 4); | |||
secp256k1_num_t gf; | |||
secp256k1_num_init(&gf); | |||
secp256k1_num_set_hex(&gf, "7113", 4); | |||
// accumulators with the resulting coefficients to A and G | |||
secp256k1_num_t ae; | |||
secp256k1_num_init(&ae); | |||
secp256k1_num_set_int(&ae, 1); | |||
secp256k1_num_t ge; | |||
secp256k1_num_init(&ge); | |||
secp256k1_num_set_int(&ge, 0); | |||
// the point being computed | |||
secp256k1_gej_t x = a; | |||
const secp256k1_num_t *order = &secp256k1_ge_consts->order; | |||
for (int i=0; i<200*count; i++) { | |||
// in each iteration, compute X = xn*X + gn*G; | |||
secp256k1_ecmult(&x, &x, &xn, &gn); | |||
// also compute ae and ge: the actual accumulated factors for A and G | |||
// if X was (ae*A+ge*G), xn*X + gn*G results in (xn*ae*A + (xn*ge+gn)*G) | |||
secp256k1_num_mod_mul(&ae, &ae, &xn, order); | |||
secp256k1_num_mod_mul(&ge, &ge, &xn, order); | |||
secp256k1_num_add(&ge, &ge, &gn); | |||
secp256k1_num_mod(&ge, order); | |||
// modify xn and gn | |||
secp256k1_num_mod_mul(&xn, &xn, &xf, order); | |||
secp256k1_num_mod_mul(&gn, &gn, &gf, order); | |||
// verify | |||
if (i == 19999) { | |||
char res[132]; int resl = 132; | |||
secp256k1_gej_get_hex(res, &resl, &x); | |||
assert(strcmp(res, "(D6E96687F9B10D092A6F35439D86CEBEA4535D0D409F53586440BD74B933E830,B95CBCA2C77DA786539BE8FD53354D2D3B4F566AE658045407ED6015EE1B2A88)") == 0); | |||
} | |||
} | |||
// redo the computation, but directly with the resulting ae and ge coefficients: | |||
secp256k1_gej_t x2; secp256k1_ecmult(&x2, &a, &ae, &ge); | |||
char res[132]; int resl = 132; | |||
char res2[132]; int resl2 = 132; | |||
secp256k1_gej_get_hex(res, &resl, &x); | |||
secp256k1_gej_get_hex(res2, &resl2, &x2); | |||
assert(strcmp(res, res2) == 0); | |||
assert(strlen(res) == 131); | |||
secp256k1_num_free(&xn); | |||
secp256k1_num_free(&gn); | |||
secp256k1_num_free(&xf); | |||
secp256k1_num_free(&gf); | |||
secp256k1_num_free(&ae); | |||
secp256k1_num_free(&ge); | |||
} | |||
void test_point_times_order(const secp256k1_gej_t *point) { | |||
// either the point is not on the curve, or multiplying it by the order results in O | |||
if (!secp256k1_gej_is_valid(point)) | |||
return; | |||
const secp256k1_num_t *order = &secp256k1_ge_consts->order; | |||
secp256k1_num_t zero; | |||
secp256k1_num_init(&zero); | |||
secp256k1_num_set_int(&zero, 0); | |||
secp256k1_gej_t res; | |||
secp256k1_ecmult(&res, point, order, order); // calc res = order * point + order * G; | |||
assert(secp256k1_gej_is_infinity(&res)); | |||
secp256k1_num_free(&zero); | |||
} | |||
void run_point_times_order() { | |||
secp256k1_fe_t x; secp256k1_fe_set_hex(&x, "02", 2); | |||
for (int i=0; i<500; i++) { | |||
secp256k1_ge_t p; secp256k1_ge_set_xo(&p, &x, 1); | |||
secp256k1_gej_t j; secp256k1_gej_set_ge(&j, &p); | |||
test_point_times_order(&j); | |||
secp256k1_fe_sqr(&x, &x); | |||
} | |||
char c[65]; int cl=65; | |||
secp256k1_fe_get_hex(c, &cl, &x); | |||
assert(strcmp(c, "7603CB59B0EF6C63FE6084792A0C378CDB3233A80F8A9A09A877DEAD31B38C45") == 0); | |||
} | |||
void test_wnaf(const secp256k1_num_t *number, int w) { | |||
secp256k1_num_t x, two, t; | |||
secp256k1_num_init(&x); | |||
secp256k1_num_init(&two); | |||
secp256k1_num_init(&t); | |||
secp256k1_num_set_int(&x, 0); | |||
secp256k1_num_set_int(&two, 2); | |||
int wnaf[257]; | |||
int bits = secp256k1_ecmult_wnaf(wnaf, number, w); | |||
int zeroes = -1; | |||
for (int i=bits-1; i>=0; i--) { | |||
secp256k1_num_mul(&x, &x, &two); | |||
int v = wnaf[i]; | |||
if (v) { | |||
assert(zeroes == -1 || zeroes >= w-1); // check that distance between non-zero elements is at least w-1 | |||
zeroes=0; | |||
assert((v & 1) == 1); // check non-zero elements are odd | |||
assert(v <= (1 << (w-1)) - 1); // check range below | |||
assert(v >= -(1 << (w-1)) - 1); // check range above | |||
} else { | |||
assert(zeroes != -1); // check that no unnecessary zero padding exists | |||
zeroes++; | |||
} | |||
secp256k1_num_set_int(&t, v); | |||
secp256k1_num_add(&x, &x, &t); | |||
} | |||
assert(secp256k1_num_cmp(&x, number) == 0); // check that wnaf represents number | |||
secp256k1_num_free(&x); | |||
secp256k1_num_free(&two); | |||
secp256k1_num_free(&t); | |||
} | |||
void run_wnaf() { | |||
secp256k1_num_t n; | |||
secp256k1_num_init(&n); | |||
for (int i=0; i<count; i++) { | |||
random_num_order(&n); | |||
if (i % 1) | |||
secp256k1_num_negate(&n); | |||
test_wnaf(&n, 4+(i%10)); | |||
} | |||
secp256k1_num_free(&n); | |||
} | |||
void random_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_num_t *key, const secp256k1_num_t *msg, int *recid) { | |||
secp256k1_num_t nonce; | |||
secp256k1_num_init(&nonce); | |||
do { | |||
random_num_order_test(&nonce); | |||
} while(!secp256k1_ecdsa_sig_sign(sig, key, msg, &nonce, recid)); | |||
secp256k1_num_free(&nonce); | |||
} | |||
void test_ecdsa_sign_verify() { | |||
const secp256k1_ge_consts_t *c = secp256k1_ge_consts; | |||
secp256k1_num_t msg, key; | |||
secp256k1_num_init(&msg); | |||
random_num_order_test(&msg); | |||
secp256k1_num_init(&key); | |||
random_num_order_test(&key); | |||
secp256k1_gej_t pubj; secp256k1_ecmult_gen(&pubj, &key); | |||
secp256k1_ge_t pub; secp256k1_ge_set_gej(&pub, &pubj); | |||
secp256k1_ecdsa_sig_t sig; | |||
secp256k1_ecdsa_sig_init(&sig); | |||
random_sign(&sig, &key, &msg, NULL); | |||
assert(secp256k1_ecdsa_sig_verify(&sig, &pub, &msg)); | |||
secp256k1_num_inc(&msg); | |||
assert(!secp256k1_ecdsa_sig_verify(&sig, &pub, &msg)); | |||
secp256k1_ecdsa_sig_free(&sig); | |||
secp256k1_num_free(&msg); | |||
secp256k1_num_free(&key); | |||
} | |||
void run_ecdsa_sign_verify() { | |||
for (int i=0; i<10*count; i++) { | |||
test_ecdsa_sign_verify(); | |||
} | |||
} | |||
#ifdef ENABLE_OPENSSL_TESTS | |||
EC_KEY *get_openssl_key(const secp256k1_num_t *key) { | |||
unsigned char privkey[300]; | |||
int privkeylen; | |||
int compr = secp256k1_rand32() & 1; | |||
const unsigned char* pbegin = privkey; | |||
EC_KEY *ec_key = EC_KEY_new_by_curve_name(NID_secp256k1); | |||
assert(secp256k1_ecdsa_privkey_serialize(privkey, &privkeylen, key, compr)); | |||
assert(d2i_ECPrivateKey(&ec_key, &pbegin, privkeylen)); | |||
assert(EC_KEY_check_key(ec_key)); | |||
return ec_key; | |||
} | |||
void test_ecdsa_openssl() { | |||
const secp256k1_ge_consts_t *c = secp256k1_ge_consts; | |||
secp256k1_num_t key, msg; | |||
secp256k1_num_init(&msg); | |||
unsigned char message[32]; | |||
secp256k1_rand256_test(message); | |||
secp256k1_num_set_bin(&msg, message, 32); | |||
secp256k1_num_init(&key); | |||
random_num_order_test(&key); | |||
secp256k1_gej_t qj; | |||
secp256k1_ecmult_gen(&qj, &key); | |||
secp256k1_ge_t q; | |||
secp256k1_ge_set_gej(&q, &qj); | |||
EC_KEY *ec_key = get_openssl_key(&key); | |||
assert(ec_key); | |||
unsigned char signature[80]; | |||
int sigsize = 80; | |||
assert(ECDSA_sign(0, message, sizeof(message), signature, &sigsize, ec_key)); | |||
secp256k1_ecdsa_sig_t sig; | |||
secp256k1_ecdsa_sig_init(&sig); | |||
assert(secp256k1_ecdsa_sig_parse(&sig, signature, sigsize)); | |||
assert(secp256k1_ecdsa_sig_verify(&sig, &q, &msg)); | |||
secp256k1_num_inc(&sig.r); | |||
assert(!secp256k1_ecdsa_sig_verify(&sig, &q, &msg)); | |||
random_sign(&sig, &key, &msg, NULL); | |||
sigsize = 80; | |||
assert(secp256k1_ecdsa_sig_serialize(signature, &sigsize, &sig)); | |||
assert(ECDSA_verify(0, message, sizeof(message), signature, sigsize, ec_key) == 1); | |||
secp256k1_ecdsa_sig_free(&sig); | |||
EC_KEY_free(ec_key); | |||
secp256k1_num_free(&key); | |||
secp256k1_num_free(&msg); | |||
} | |||
void run_ecdsa_openssl() { | |||
for (int i=0; i<10*count; i++) { | |||
test_ecdsa_openssl(); | |||
} | |||
} | |||
#endif | |||
int main(int argc, char **argv) { | |||
if (argc > 1) | |||
count = strtol(argv[1], NULL, 0)*47; | |||
printf("test count = %i\n", count); | |||
// initialize | |||
secp256k1_fe_start(); | |||
secp256k1_ge_start(); | |||
secp256k1_ecmult_start(); | |||
// num tests | |||
run_num_smalltests(); | |||
// ecmult tests | |||
run_wnaf(); | |||
run_point_times_order(); | |||
run_ecmult_chain(); | |||
// ecdsa tests | |||
run_ecdsa_sign_verify(); | |||
#ifdef ENABLE_OPENSSL_TESTS | |||
run_ecdsa_openssl(); | |||
#endif | |||
// shutdown | |||
secp256k1_ecmult_stop(); | |||
secp256k1_ge_stop(); | |||
secp256k1_fe_stop(); | |||
return 0; | |||
} |
@ -0,0 +1,19 @@ | |||
// Copyright (c) 2013 Pieter Wuille | |||
// Distributed under the MIT/X11 software license, see the accompanying | |||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | |||
#ifndef _SECP256K1_UTIL_H_ | |||
#define _SECP256K1_UTIL_H_ | |||
/** Generate a pseudorandom 32-bit number. */ | |||
static uint32_t secp256k1_rand32(void); | |||
/** Generate a pseudorandom 32-byte array. */ | |||
static void secp256k1_rand256(unsigned char *b32); | |||
/** Generate a pseudorandom 32-byte array with long sequences of zero and one bits. */ | |||
static void secp256k1_rand256_test(unsigned char *b32); | |||
#include "impl/util.h" | |||
#endif |