Browse Source

A few improvements to the Ivy proof (#288)

* Avoid quantifier alternation cycle

The problematic quantifier alternation cycle arose because the
definition of accountability_violation was unfolded.

This commit also restructures the induction proof for clarity.

* add count_lines.sh

* fix typo and add forgotten complete=fo in comment

Co-authored-by: Giuliano <giuliano@eic-61-11.galois.com>
pull/7804/head
Giuliano 4 years ago
committed by GitHub
parent
commit
292828a01b
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 62 additions and 48 deletions
  1. +3
    -0
      ivy-proofs/abstract_tendermint.ivy
  2. +42
    -44
      ivy-proofs/accountable_safety_1.ivy
  3. +2
    -2
      ivy-proofs/accountable_safety_2.ivy
  4. +1
    -1
      ivy-proofs/check_proofs.sh
  5. +13
    -0
      ivy-proofs/count_lines.sh
  6. +1
    -1
      ivy-proofs/network_shim.ivy

+ 3
- 0
ivy-proofs/abstract_tendermint.ivy View File

@ -43,6 +43,7 @@ module abstract_tendermint = {
relation observed_equivocation(N:node) relation observed_equivocation(N:node)
relation observed_unlawful_prevote(N:node) relation observed_unlawful_prevote(N:node)
relation agreement relation agreement
relation accountability_violation
object defs = { # we hide those definitions and use them only when needed object defs = { # we hide those definitions and use them only when needed
private { private {
@ -54,6 +55,8 @@ module abstract_tendermint = {
& forall Q,R . R1 <= R & R < R2 & nset.is_quorum(Q) -> exists N2 . nset.member(N2,Q) & ~observed_prevoted(N2,R,V2) & forall Q,R . R1 <= R & R < R2 & nset.is_quorum(Q) -> exists N2 . nset.member(N2,Q) & ~observed_prevoted(N2,R,V2)
definition [agreement_def] agreement = forall N1,N2,R1,R2,V1,V2 . well_behaved(N1) & well_behaved(N2) & decided(N1,R1,V1) & decided(N2,R2,V2) -> V1 = V2 definition [agreement_def] agreement = forall N1,N2,R1,R2,V1,V2 . well_behaved(N1) & well_behaved(N2) & decided(N1,R1,V1) & decided(N2,R2,V2) -> V1 = V2
definition [accountability_violation_def] accountability_violation = exists Q1,Q2 . nset.is_quorum(Q1) & nset.is_quorum(Q2) & (forall N . nset.member(N,Q1) & nset.member(N,Q2) -> observed_equivocation(N) | observed_unlawful_prevote(N))
} }
} }


+ 42
- 44
ivy-proofs/accountable_safety_1.ivy View File

@ -35,9 +35,9 @@ isolate abstract_accountable_safety = {
# If there is disagreement, then there is evidence that a third of the nodes # If there is disagreement, then there is evidence that a third of the nodes
# have violated the protocol: # have violated the protocol:
invariant [accountability] agreement | exists Q1,Q2 . nset.is_quorum(Q1) & nset.is_quorum(Q2) & (forall N . nset.member(N,Q1) & nset.member(N,Q2) -> observed_equivocation(N) | observed_unlawful_prevote(N))
invariant [accountability] agreement | accountability_violation
proof { proof {
apply lemma_2.thm # this reduces to goal to three subgoals: p1, p2, and p3 (see their definition below)
apply lemma_1.thm # this reduces to goal to three subgoals: p1, p2, and p3 (see their definition below)
proof [p1] { proof [p1] {
assume invs.inv1 assume invs.inv1
} }
@ -76,52 +76,50 @@ isolate abstract_accountable_safety = {
# For technical reasons, we separate the proof in two steps # For technical reasons, we separate the proof in two steps
isolate lemma_1 = { isolate lemma_1 = {
# complete induction is not built-in, so we introduce it with an axiom. Note that this only holds for a type where 0 is the smallest element
axiom [complete_induction] {
relation p(X:round)
{ # base case
property p(0)
specification {
theorem [thm] {
property [p1] forall N,R,V . well_behaved(N) -> (observed_precommitted(N,R,V) = precommitted(N,R,V))
property [p2] forall R,V . (exists N . well_behaved(N) & precommitted(N,R,V)) & V ~= value.nil -> exists Q . nset.is_quorum(Q) & forall N2 . nset.member(N2,Q) -> observed_prevoted(N2,R,V)
property [p3] forall R,V. (exists N . well_behaved(N) & decided(N,R,V)) -> 0 <= R & V ~= value.nil & exists Q . nset.is_quorum(Q) & forall N2 . nset.member(N2,Q) -> observed_precommitted(N2,R,V)
#-------------------------------------------------------------------------------------------------------------------------------------------
property agreement | accountability_violation
} }
{ # inductive step: show that if the property is true for all X lower or equal to x and y=x+1, then the property is true of y
individual a:round
individual b:round
property (forall X. 0 <= X & X <= a -> p(X)) & round.succ(a,b) -> p(b)
proof {
assume inductive_property # the theorem follows from what we prove by induction below
} }
#--------------------------
property forall X . 0 <= X -> p(X)
} }
# the main lemma: if inv1 and inv2 below hold and a quorum is observed to
# precommit V1 at R1 and another quorum is observed to precommit V2~=V1 at
# R2>=R1, then the intersection of two quorums (i.e. f+1 nodes) is observed to
# violate the protocol
theorem [thm] {
property [p1] forall N,R,V . well_behaved(N) -> (observed_precommitted(N,R,V) = precommitted(N,R,V))
property [p2] forall R,V . (exists N . well_behaved(N) & precommitted(N,R,V)) -> V = value.nil | exists Q . nset.is_quorum(Q) & forall N2 . nset.member(N2,Q) -> observed_prevoted(N2,R,V)
#-----------------------------------------------------------------------------------------------------------------------
property forall R2. 0 <= R2 -> ((exists V2,Q1,R1,V1,Q1 . V1 ~= value.nil & V2 ~= value.nil & V1 ~= V2 & 0 <= R1 & R1 <= R2 & nset.is_quorum(Q1) & (forall N . nset.member(N,Q1) -> observed_precommitted(N,R1,V1)) & (exists Q2 . nset.is_quorum(Q2) & forall N . nset.member(N,Q2) -> observed_prevoted(N,R2,V2))) -> exists Q1,Q2 . nset.is_quorum(Q1) & nset.is_quorum(Q2) & forall N . nset.member(N,Q1) & nset.member(N,Q2) -> observed_equivocation(N) | observed_unlawful_prevote(N))
}
proof {
apply complete_induction # the two subgoals (base case and inductive case) are then discharged automatically
}
} with this, round, nset, accountable_bft.max_2f_byzantine, defs.observed_equivocation_def, defs.observed_unlawful_prevote_def
# Now we put lemma_1 in a form that matches exactly the accountability property
# we want to prove. This is a bit cumbersome and could probably be improved.
isolate lemma_2 = {
theorem [thm] {
property [p1] forall N,R,V . well_behaved(N) -> (observed_precommitted(N,R,V) = precommitted(N,R,V))
property [p2] forall R,V . (exists N . well_behaved(N) & precommitted(N,R,V)) & V ~= value.nil -> exists Q . nset.is_quorum(Q) & forall N2 . nset.member(N2,Q) -> observed_prevoted(N2,R,V)
property [p3] forall R,V. (exists N . well_behaved(N) & decided(N,R,V)) -> 0 <= R & V ~= value.nil & exists Q . nset.is_quorum(Q) & forall N2 . nset.member(N2,Q) -> observed_precommitted(N2,R,V)
#-------------------------------------------------------------------------------------------------------------------------------------------
property agreement | exists Q1,Q2 . nset.is_quorum(Q1) & nset.is_quorum(Q2) & forall N . nset.member(N,Q1) & nset.member(N,Q2) -> observed_equivocation(N) | observed_unlawful_prevote(N)
}
proof {
assume lemma_1.thm
}
implementation {
# complete induction is not built-in, so we introduce it with an axiom. Note that this only holds for a type where 0 is the smallest element
axiom [complete_induction] {
relation p(X:round)
{ # base case
property p(0)
}
{ # inductive step: show that if the property is true for all X lower or equal to x and y=x+1, then the property is true of y
individual a:round
individual b:round
property (forall X. 0 <= X & X <= a -> p(X)) & round.succ(a,b) -> p(b)
}
#--------------------------
property forall X . 0 <= X -> p(X)
}
} with this, round, defs.agreement_def, lemma_1, nset, accountable_bft.max_2f_byzantine
# The main lemma: if inv1 and inv2 below hold and a quorum is observed to
# precommit V1 at R1 and another quorum is observed to precommit V2~=V1 at
# R2>=R1, then the intersection of two quorums (i.e. f+1 nodes) is observed to
# violate the protocol. We prove this by complete induction on R2.
theorem [inductive_property] {
property [p1] forall N,R,V . well_behaved(N) -> (observed_precommitted(N,R,V) = precommitted(N,R,V))
property [p2] forall R,V . (exists N . well_behaved(N) & precommitted(N,R,V)) -> V = value.nil | exists Q . nset.is_quorum(Q) & forall N2 . nset.member(N2,Q) -> observed_prevoted(N2,R,V)
#-----------------------------------------------------------------------------------------------------------------------
property forall R2. 0 <= R2 -> ((exists V2,Q1,R1,V1,Q1 . V1 ~= value.nil & V2 ~= value.nil & V1 ~= V2 & 0 <= R1 & R1 <= R2 & nset.is_quorum(Q1) & (forall N . nset.member(N,Q1) -> observed_precommitted(N,R1,V1)) & (exists Q2 . nset.is_quorum(Q2) & forall N . nset.member(N,Q2) -> observed_prevoted(N,R2,V2))) -> accountability_violation)
}
proof {
apply complete_induction # the two subgoals (base case and inductive case) are then discharged automatically
}
}
} with this, round, nset, accountable_bft.max_2f_byzantine, defs.observed_equivocation_def, defs.observed_unlawful_prevote_def, defs.accountability_violation_def, defs.agreement_def
} with round } with round
@ -139,6 +137,6 @@ isolate accountable_safety_1 = {
invariant abstract_accountable_safety.agreement -> agreement invariant abstract_accountable_safety.agreement -> agreement
invariant [accountability] agreement | exists Q1,Q2 . nset.is_quorum(Q1) & nset.is_quorum(Q2) & forall N . nset.member(N,Q1) & nset.member(N,Q2) -> abstract_accountable_safety.observed_equivocation(N) | abstract_accountable_safety.observed_unlawful_prevote(N)
invariant [accountability] agreement | abstract_accountable_safety.accountability_violation
} with value, round, proposers, shim, abstract_accountable_safety, abstract_accountable_safety.defs.agreement_def, accountable_safety_1.agreement_def } with value, round, proposers, shim, abstract_accountable_safety, abstract_accountable_safety.defs.agreement_def, accountable_safety_1.agreement_def

+ 2
- 2
ivy-proofs/accountable_safety_2.ivy View File

@ -4,7 +4,7 @@ include tendermint
include abstract_tendermint include abstract_tendermint
# Here we prove the second accountability property: no well-behaved node is # Here we prove the second accountability property: no well-behaved node is
# every observed to violate the accountability properties.
# ever observed to violate the accountability properties.
# The proof is done in two steps: first we prove the the abstract specification # The proof is done in two steps: first we prove the the abstract specification
# satisfies the property, and then we show by refinement that this property # satisfies the property, and then we show by refinement that this property
@ -12,7 +12,7 @@ include abstract_tendermint
# To see what is checked in the refinement proof, use `ivy_show isolate=accountable_safety_2 accountable_safety_2.ivy` # To see what is checked in the refinement proof, use `ivy_show isolate=accountable_safety_2 accountable_safety_2.ivy`
# To see what is checked in the abstract correctness proof, use `ivy_show isolate=abstract_accountable_safety_2 accountable_safety_2.ivy` # To see what is checked in the abstract correctness proof, use `ivy_show isolate=abstract_accountable_safety_2 accountable_safety_2.ivy`
# To check the whole proof, use `ivy_check accountable_safety_2.ivy`.
# To check the whole proof, use `ivy_check complete=fo accountable_safety_2.ivy`.
# Proof that the property holds in the abstract specification # Proof that the property holds in the abstract specification
# ============================================================ # ============================================================


+ 1
- 1
ivy-proofs/check_proofs.sh View File

@ -16,7 +16,7 @@ else
fi fi
echo "Checking accountable safety 1:" echo "Checking accountable safety 1:"
res=$(ivy_check complete=fo accountable_safety_1.ivy | tee "output/$log_dir/accountable_safety_1.txt" | tail -n 1)
res=$(ivy_check accountable_safety_1.ivy | tee "output/$log_dir/accountable_safety_1.txt" | tail -n 1)
if [ "$res" = "OK" ]; then if [ "$res" = "OK" ]; then
echo "OK" echo "OK"
else else


+ 13
- 0
ivy-proofs/count_lines.sh View File

@ -0,0 +1,13 @@
#!/bin/bash
r='^\s*$\|^\s*\#\|^\s*\}\s*$\|^\s*{\s*$' # removes comments and blank lines and lines that contain only { or }
N1=`cat tendermint.ivy domain_model.ivy network_shim.ivy | grep -v $r'\|.*invariant.*' | wc -l`
N2=`cat abstract_tendermint.ivy | grep "observed_" | wc -l` # the observed_* variables specify the observations of the nodes
SPEC_LINES=`expr $N1 + $N2`
echo "spec lines: $SPEC_LINES"
N3=`cat abstract_tendermint.ivy | grep -v $r'\|.*observed_.*' | wc -l`
N4=`cat accountable_safety_1.ivy | grep -v $r | wc -l`
PROOF_LINES=`expr $N3 + $N4`
echo "proof lines: $PROOF_LINES"
RATIO=`bc <<< "scale=2;$PROOF_LINES / $SPEC_LINES"`
echo "proof-to-code ratio for the accountable-safety property: $RATIO"

+ 1
- 1
ivy-proofs/network_shim.ivy View File

@ -112,7 +112,7 @@ isolate shim = {
else if m.m_kind = msg_kind.prevote { else if m.m_kind = msg_kind.prevote {
call prevote_handler.handle(dst,m) call prevote_handler.handle(dst,m)
} }
else if m.m_kind = msg_kind.proposal {
else if m.m_kind = msg_kind.precommit {
call precommit_handler.handle(dst,m) call precommit_handler.handle(dst,m)
} }
} }


Loading…
Cancel
Save