Browse Source

architecting peer

pull/9/head
Jae Kwon 10 years ago
parent
commit
002cfc8f75
14 changed files with 959 additions and 1016 deletions
  1. +8
    -0
      binary/byteslice.go
  2. +7
    -0
      binary/int.go
  3. +0
    -110
      merkle/iavl_node.go
  4. +108
    -0
      merkle/iavl_tree.go
  5. +0
    -80
      peer/addrbook.go
  6. +121
    -105
      peer/client.go
  7. +66
    -36
      peer/connection.go
  8. +37
    -2
      peer/connection_test.go
  9. +16
    -0
      peer/filter.go
  10. +48
    -32
      peer/listener.go
  11. +30
    -0
      peer/msg.go
  12. +118
    -651
      peer/peer.go
  13. +32
    -0
      peer/server.go
  14. +368
    -0
      peer/upnp.go

+ 8
- 0
binary/byteslice.go View File

@ -40,3 +40,11 @@ func ReadByteSlice(r io.Reader) ByteSlice {
if err != nil { panic(err) }
return ByteSlice(bytes)
}
func ReadByteSliceSafe(r io.Reader) (ByteSlice, error) {
length := int(ReadUInt32(r))
bytes := make([]byte, length)
_, err := io.ReadFull(r, bytes)
if err != nil { return nil, err }
return ByteSlice(bytes), nil
}

+ 7
- 0
binary/int.go View File

@ -48,6 +48,13 @@ func ReadByte(r io.Reader) Byte {
return Byte(buf[0])
}
func ReadByteSafe(r io.Reader) (Byte, error) {
buf := [1]byte{0}
_, err := io.ReadFull(r, buf[:])
if err != nil { return Byte(0), err }
return Byte(buf[0]), nil
}
// Int8


merkle/iavl.go → merkle/iavl_node.go View File


+ 108
- 0
merkle/iavl_tree.go View File

@ -0,0 +1,108 @@
package merkle
const HASH_BYTE_SIZE int = 4+32
/*
Immutable AVL Tree (wraps the Node root)
This tree is not concurrency safe.
You must wrap your calls with your own mutex.
*/
type IAVLTree struct {
db Db
root *IAVLNode
}
func NewIAVLTree(db Db) *IAVLTree {
return &IAVLTree{db:db, root:nil}
}
func NewIAVLTreeFromHash(db Db, hash ByteSlice) *IAVLTree {
root := &IAVLNode{
hash: hash,
flags: IAVLNODE_FLAG_PERSISTED | IAVLNODE_FLAG_PLACEHOLDER,
}
root.fill(db)
return &IAVLTree{db:db, root:root}
}
func (t *IAVLTree) Root() Node {
return t.root
}
func (t *IAVLTree) Size() uint64 {
if t.root == nil { return 0 }
return t.root.Size()
}
func (t *IAVLTree) Height() uint8 {
if t.root == nil { return 0 }
return t.root.Height()
}
func (t *IAVLTree) Has(key Key) bool {
if t.root == nil { return false }
return t.root.has(t.db, key)
}
func (t *IAVLTree) Put(key Key, value Value) (updated bool) {
if t.root == nil {
t.root = NewIAVLNode(key, value)
return false
}
t.root, updated = t.root.put(t.db, key, value)
return updated
}
func (t *IAVLTree) Hash() (ByteSlice, uint64) {
if t.root == nil { return nil, 0 }
return t.root.Hash()
}
func (t *IAVLTree) Save() {
if t.root == nil { return }
if t.root.hash == nil {
t.root.Hash()
}
t.root.Save(t.db)
}
func (t *IAVLTree) Get(key Key) (value Value) {
if t.root == nil { return nil }
return t.root.get(t.db, key)
}
func (t *IAVLTree) Remove(key Key) (value Value, err error) {
if t.root == nil { return nil, NotFound(key) }
newRoot, _, value, err := t.root.remove(t.db, key)
if err != nil {
return nil, err
}
t.root = newRoot
return value, nil
}
func (t *IAVLTree) Copy() Tree {
return &IAVLTree{db:t.db, root:t.root}
}
// Traverses all the nodes of the tree in prefix order.
// return true from cb to halt iteration.
// node.Height() == 0 if you just want a value node.
func (t *IAVLTree) Traverse(cb func(Node) bool) {
if t.root == nil { return }
t.root.traverse(t.db, cb)
}
func (t *IAVLTree) Values() <-chan Value {
root := t.root
ch := make(chan Value)
go func() {
root.traverse(t.db, func(n Node) bool {
if n.Height() == 0 { ch <- n.Value() }
return true
})
close(ch)
}()
return ch
}

+ 0
- 80
peer/addrbook.go View File

@ -36,9 +36,6 @@ type AddrBook struct {
quit chan struct{}
nOld int
nNew int
lamtx sync.Mutex
localAddresses map[string]*localAddress
}
const (
@ -474,83 +471,6 @@ func (a *AddrBook) getOldBucket(addr *NetAddress) int {
}
/* Local Address */
// addressPrio is an enum type used to describe the heirarchy of local address
// discovery methods.
type addressPrio int
const (
InterfacePrio addressPrio = iota // address of local interface.
BoundPrio // Address explicitly bound to.
UpnpPrio // External IP discovered from UPnP
HttpPrio // Obtained from internet service.
ManualPrio // provided by --externalip.
)
type localAddress struct {
Addr *NetAddress
Score addressPrio
}
func (a *AddrBook) AddLocalAddress(addr *NetAddress, priority addressPrio) {
a.mtx.Lock(); defer a.mtx.Unlock()
// sanity check.
if !addr.Routable() {
log.Debugf("rejecting address %s:%d due to routability", addr.IP, addr.Port)
return
}
log.Debugf("adding address %s:%d", addr.IP, addr.Port)
key := addr.String()
la, ok := a.localAddresses[key]
if !ok || la.Score < priority {
if ok {
la.Score = priority + 1
} else {
a.localAddresses[key] = &localAddress{
Addr: addr,
Score: priority,
}
}
}
}
// Returns the most appropriate local address that we know
// of to be contacted by rna (remote net address)
func (a *AddrBook) GetBestLocalAddress(rna *NetAddress) *NetAddress {
a.mtx.Lock(); defer a.mtx.Unlock()
bestReach := 0
var bestScore addressPrio
var bestAddr *NetAddress
for _, la := range a.localAddresses {
reach := rna.ReachabilityTo(la.Addr)
if reach > bestReach ||
(reach == bestReach && la.Score > bestScore) {
bestReach = reach
bestScore = la.Score
bestAddr = la.Addr
}
}
if bestAddr != nil {
log.Debugf("Suggesting address %s:%d for %s:%d",
bestAddr.IP, bestAddr.Port, rna.IP, rna.Port)
} else {
log.Debugf("No worthy address for %s:%d",
rna.IP, rna.Port)
// Send something unroutable if nothing suitable.
bestAddr = &NetAddress{
IP: net.IP([]byte{0, 0, 0, 0}),
Port: 0,
}
}
return bestAddr
}
// Return a string representing the network group of this address.
// This is the /16 for IPv6, the /32 (/36 for he.net) for IPv6, the string
// "local" for a local address and the string "unroutable for an unroutable


+ 121
- 105
peer/client.go View File

@ -3,153 +3,169 @@ package peer
import (
. "github.com/tendermint/tendermint/binary"
"github.com/tendermint/tendermint/merkle"
"atomic"
"sync"
"io"
"errors"
)
/* Client */
/* Client
A client is half of a p2p system.
It can reach out to the network and establish connections with servers.
A client doesn't listen for incoming connections -- that's done by the server.
newPeerCb is a factory method for generating new peers from new *Connections.
newPeerCb(nil) must return a prototypical peer that represents the self "peer".
XXX what about peer disconnects?
*/
type Client struct {
listener *Listener
addrBook AddrBook
strategies map[String]*FilterStrategy
targetNumPeers int
newPeerCb func(*Connection) *Peer
self *Peer
inQueues map[String]chan *InboundMsg
peersMtx sync.Mutex
mtx sync.Mutex
peers merkle.Tree // addr -> *Peer
filtersMtx sync.Mutex
filters merkle.Tree // channelName -> Filter (objects that I know of)
quit chan struct{}
stopped uint32
}
func NewClient(protocol string, laddr string) *Client {
// XXX set the handler
listener := NewListener(protocol, laddr, nil)
var (
CLIENT_STOPPED_ERROR = errors.New("Client already stopped")
CLIENT_DUPLICATE_PEER_ERROR = errors.New("Duplicate peer")
)
func NewClient(newPeerCb func(*Connect) *Peer) *Client {
self := newPeerCb(nil)
if self == nil {
Panicf("newPeerCb(nil) must return a prototypical peer for self")
}
inQueues := make(map[String]chan *InboundMsg)
for chName, channel := peer.channels {
inQueues[chName] = make(chan *InboundMsg)
}
c := &Client{
listener: listener,
newPeerCb: newPeerCb,
peers: merkle.NewIAVLTree(nil),
filters: merkle.NewIAVLTree(nil),
self: self,
inQueues: inQueues,
}
return c
}
func (c *Client) Start() (<-chan *IncomingMsg) {
return nil
}
func (c *Client) Stop() {
c.listener.Close()
}
func (c *Client) LocalAddress() *NetAddress {
return c.listener.LocalAddress()
// lock
c.mtx.Lock()
if atomic.CompareAndSwapUint32(&c.stopped, 0, 1) {
close(c.quit)
// stop each peer.
for peerValue := range c.peers.Values() {
peer := peerValue.(*Peer)
peer.Stop()
}
// empty tree.
c.peers = merkle.NewIAVLTree(nil)
}
c.mtx.Unlock()
// unlock
}
func (c *Client) ConnectTo(addr *NetAddress) (*Peer, error) {
func (c *Client) AddPeerWithConnection(conn *Connection, outgoing bool) (*Peer, error) {
if atomic.LoadUint32(&c.stopped) == 1 { return nil, CLIENT_STOPPED_ERROR }
conn, err := addr.Dial()
peer := c.newPeerCb(conn)
peer.outgoing = outgoing
err := c.addPeer(peer)
if err != nil { return nil, err }
peer := NewPeer(conn)
// lock
c.peersMtx.Lock()
c.peers.Put(addr, peer)
c.peersMtx.Unlock()
// unlock
go peer.Start(c.inQueues)
return peer, nil
}
func (c *Client) Broadcast(channel String, msg Binary) {
func (c *Client) Broadcast(chName String, msg Msg) {
if atomic.LoadUint32(&c.stopped) == 1 { return }
for v := range c.peersCopy().Values() {
peer, ok := v.(*Peer)
if !ok { panic("Expected peer but got something else") }
peer.Queue(channel, msg)
peer := v.(*Peer)
success := peer.TryQueueOut(chName , msg)
if !success {
// TODO: notify the peer
}
}
}
// Updates the client's filter for a channel & broadcasts it.
func (c *Client) UpdateFilter(channel String, filter Filter) {
c.filtersMtx.Lock()
c.filters.Put(channel, filter)
c.filtersMtx.Unlock()
c.Broadcast("", &NewFilterMsg{
Channel: channel,
Filter: filter,
})
}
func (c *Client) peersCopy() merkle.Tree {
c.peersMtx.Lock(); defer c.peersMtx.Unlock()
return c.peers.Copy()
}
/* Channel */
type Channel struct {
Name String
Filter Filter
//Stats Stats
}
/* Peer */
type Peer struct {
Conn *Connection
Channels map[String]*Channel
}
func NewPeer(conn *Connection) *Peer {
return &Peer{
Conn: conn,
Channels: nil,
func (c *Client) PopMessage(chName String) *InboundMsg {
if atomic.LoadUint32(&c.stopped) == 1 { return nil }
channel := c.Channel(chName)
q := c.inQueues[chName]
if q == nil { Panicf("Expected inQueues[%f], found none", chName) }
for {
select {
case <-quit:
return nil
case msg := <-q:
// skip if known.
if channel.Filter().Has(msg) {
continue
}
return msg
}
}
}
// Must be quick and nonblocking.
func (p *Peer) Queue(channel String, msg Binary) {}
func (p *Peer) WriteTo(w io.Writer) (n int64, err error) {
return 0, nil // TODO
}
// Updates self's filter for a channel & broadcasts it.
// TODO: maybe don't expose this
func (c *Client) UpdateFilter(chName String, filter Filter) {
if atomic.LoadUint32(&c.stopped) == 1 { return }
c.self.Channel(chName).UpdateFilter(filter)
/* IncomingMsg */
type IncomingMsg struct {
SPeer *Peer
SChan *Channel
Time Time
Msg Binary
c.Broadcast("", &NewFilterMsg{
Channel: chName,
Filter: filter,
})
}
func (c *Client) StopPeer(peer *Peer) {
// lock
c.mtx.Lock()
p, _ := c.peers.Remove(peer.RemoteAddress())
c.mtx.Unlock()
// unlock
/* Filter
A Filter could be a bloom filter for lossy filtering, or could be a lossless filter.
Either way, it's used to keep track of what a peer knows of.
*/
type Filter interface {
Binary
Add(ByteSlice)
Has(ByteSlice) bool
if p != nil {
p.Stop()
}
}
/* FilterStrategy
func (c *Client) addPeer(peer *Peer) error {
addr := peer.RemoteAddress()
Defines how filters are generated per peer, and whether they need to get refreshed occasionally.
*/
type FilterStrategy interface {
LoadFilter(ByteSlice) Filter
}
/* NewFilterMsg */
type NewFilterMsg struct {
Channel String
Filter Filter
// lock & defer
c.mtx.Lock(); defer c.mtx.Unlock()
if c.stopped == 1 { return CLIENT_STOPPED_ERROR }
if !c.peers.Has(addr) {
c.peers.Put(addr, peer)
return nil
} else {
// ignore duplicate peer for addr.
log.Infof("Ignoring duplicate peer for addr %v", addr)
return CLIENT_DUPLICATE_PEER_ERROR
}
// unlock deferred
}
func (m *NewFilterMsg) WriteTo(w io.Writer) (int64, error) {
return 0, nil // TODO
func (c *Client) peersCopy() merkle.Tree {
// lock & defer
c.mtx.Lock(); defer c.mtx.Unlock()
return c.peers.Copy()
// unlock deferred
}

+ 66
- 36
peer/connection.go View File

@ -3,6 +3,7 @@ package peer
import (
. "github.com/tendermint/tendermint/common"
. "github.com/tendermint/tendermint/binary"
"atomic"
"sync"
"net"
"runtime"
@ -20,12 +21,10 @@ const (
type Connection struct {
ioStats IOStats
mtx sync.Mutex
outQueue chan ByteSlice
outQueue chan ByteSlice // never closes.
conn net.Conn
quit chan struct{}
disconnected bool
stopped int32
pingDebouncer *Debouncer
pong chan struct{}
}
@ -46,13 +45,14 @@ func NewConnection(conn net.Conn) *Connection {
}
}
func (c *Connection) QueueMessage(msg ByteSlice) bool {
c.mtx.Lock(); defer c.mtx.Unlock()
if c.disconnected { return false }
// returns true if successfully queued,
// returns false if connection was closed.
// blocks.
func (c *Connection) QueueOut(msg ByteSlice) bool {
select {
case c.outQueue <- msg:
return true
default: // buffer full
case <-c.quit:
return false
}
}
@ -62,13 +62,25 @@ func (c *Connection) Start() {
go c.inHandler()
}
func (c *Connection) Disconnect() {
c.mtx.Lock(); defer c.mtx.Unlock()
close(c.quit)
c.conn.Close()
c.pingDebouncer.Stop()
// do not close c.pong
c.disconnected = true
func (c *Connection) Stop() {
if atomic.SwapAndCompare(&c.stopped, 0, 1) {
close(c.quit)
c.conn.Close()
c.pingDebouncer.Stop()
// We can't close pong safely here because
// inHandler may write to it after we've stopped.
// Though it doesn't need to get closed at all,
// we close it @ inHandler.
// close(c.pong)
}
}
func (c *Connection) LocalAddress() *NetAddress {
return NewNetAddress(c.conn.LocalAddr())
}
func (c *Connection) RemoteAddress() *NetAddress {
return NewNetAddress(c.conn.RemoteAddr())
}
func (c *Connection) flush() {
@ -79,41 +91,42 @@ func (c *Connection) outHandler() {
FOR_LOOP:
for {
var err error
select {
case <-c.pingDebouncer.Ch:
PACKET_TYPE_PING.WriteTo(c.conn)
_, err = PACKET_TYPE_PING.WriteTo(c.conn)
case outMsg := <-c.outQueue:
_, err := outMsg.WriteTo(c.conn)
if err != nil { Panicf("TODO: handle error %v", err) }
_, err = outMsg.WriteTo(c.conn)
case <-c.pong:
PACKET_TYPE_PONG.WriteTo(c.conn)
_, err = PACKET_TYPE_PONG.WriteTo(c.conn)
case <-c.quit:
break FOR_LOOP
}
if err != nil {
log.Infof("Connection %v failed @ outHandler:\n%v", c, err)
c.Stop()
break FOR_LOOP
}
c.flush()
}
// cleanup
for _ = range c.outQueue {
// do nothing but drain.
}
}
func (c *Connection) inHandler() {
defer func() {
if e := recover(); e != nil {
// Get stack trace
buf := make([]byte, 1<<16)
runtime.Stack(buf, false)
// TODO do proper logging
fmt.Printf("Disconnecting due to error:\n\n%v\n", string(buf))
c.Disconnect()
}
}()
//FOR_LOOP:
FOR_LOOP:
for {
msgType := ReadUInt8(c.conn)
msgType, err := ReadUInt8Safe(c.conn)
if err != nil {
if atomic.LoadUint32(&c.stopped) != 1 {
log.Infof("Connection %v failed @ inHandler", c)
c.Stop()
}
break FOR_LOOP
}
switch msgType {
case PACKET_TYPE_PING:
@ -121,12 +134,29 @@ func (c *Connection) inHandler() {
case PACKET_TYPE_PONG:
// do nothing
case PACKET_TYPE_MSG:
ReadByteSlice(c.conn)
msg, err := ReadByteSliceSafe(c.conn)
if err != nil {
if atomic.LoadUint32(&c.stopped) != 1 {
log.Infof("Connection %v failed @ inHandler", c)
c.Stop()
}
break FOR_LOOP
}
// What to do?
// TODO
default:
Panicf("Unknown message type %v", msgType)
}
c.pingDebouncer.Reset()
}
// cleanup
close(c.pong)
for _ = range c.pong {
// drain
}
}


+ 37
- 2
peer/connection_test.go View File

@ -2,15 +2,50 @@ package peer
import (
"testing"
"time"
)
func TestLocalConnection(t *testing.T) {
c1 := NewClient("tcp", ":8080")
c2 := NewClient("tcp", ":8081")
c1 := NewClient(func(conn *Connection) *Peer {
p := &Peer{conn: conn}
ch1 := NewChannel(String("ch1"),
nil,
// XXX these channels should be buffered.
make(chan ByteSlice),
make(chan ByteSlice),
)
ch2 := NewChannel(String("ch2"),
nil,
make(chan ByteSlice),
make(chan ByteSlice),
)
channels := make(map[String]*Channel)
channels[ch1.Name] = ch1
channels[ch2.Name] = ch2
p.channels = channels
return p
})
// XXX make c2 like c1.
c2 := NewClient(func(conn *Connection) *Peer {
return nil
})
// XXX clients don't have "local addresses"
c1.ConnectTo(c2.LocalAddress())
// lets send a message from c1 to c2.
c1.Broadcast(String(""), String("message"))
time.Sleep(500 * time.Millisecond)
inMsg := c2.PopMessage()
c1.Stop()
c2.Stop()
}

+ 16
- 0
peer/filter.go View File

@ -0,0 +1,16 @@
package peer
/* Filter
A Filter could be a bloom filter for lossy filtering, or could be a lossless filter.
Either way, it's used to keep track of what a peer knows of.
*/
type Filter interface {
Binary
Add(Msg)
Has(Msg) bool
// Loads a new filter.
// Convenience factory method
Load(ByteSlice) Filter
}

+ 48
- 32
peer/listener.go View File

@ -1,60 +1,76 @@
package peer
import (
"sync"
"atomic"
"net"
)
/* Listener */
type Listener struct {
type Listener interface {
Connections() <-chan *Connection
LocalAddress() *NetAddress
Stop()
}
/* DefaultListener */
type DefaultListener struct {
listener net.Listener
handler func(net.Conn)
mtx sync.Mutex
closed bool
connections chan *Connection
stopped uint32
}
func NewListener(protocol string, laddr string, handler func(net.Conn)) *Listener {
const (
DEFAULT_BUFFERED_CONNECTIONS = 10
)
func NewListener(protocol string, laddr string) *Listener {
ln, err := net.Listen(protocol, laddr)
if err != nil { panic(err) }
s := &Listener{
listener: ln,
handler: handler,
listener: ln,
connections: make(chan *Connection, DEFAULT_BUFFERED_CONNECTIONS),
}
go s.listen()
go l.listenHandler()
return s
}
func (s *Listener) listen() {
func (l *Listener) listenHandler() {
for {
conn, err := s.listener.Accept()
if err != nil {
// lock & defer
s.mtx.Lock(); defer s.mtx.Unlock()
if s.closed {
return
} else {
panic(err)
}
// unlock (deferred)
}
go s.handler(conn)
conn, err := l.listener.Accept()
if atomic.LoadUint32(&l.stopped) == 1 { return }
// listener wasn't stopped,
// yet we encountered an error.
if err != nil { panic(err) }
c := NewConnection(con)
l.connections <- c
}
// cleanup
close(l.connections)
for _ = range l.connections {
// drain
}
}
func (s *Listener) LocalAddress() *NetAddress {
return NewNetAddress(s.listener.Addr())
func (l *Listener) Connections() <-chan *Connection {
return l.connections
}
func (s *Listener) Close() {
// lock
s.mtx.Lock()
s.closed = true
s.mtx.Unlock()
// unlock
s.listener.Close()
func (l *Listener) LocalAddress() *NetAddress {
return NewNetAddress(l.listener.Addr())
}
func (l *Listener) Stop() {
if atomic.CompareAndSwapUint32(&l.stopped, 0, 1) {
l.listener.Close()
}
}

+ 30
- 0
peer/msg.go View File

@ -0,0 +1,30 @@
package peer
/* Msg */
type Msg struct {
Bytes ByteSlice
Hash ByteSlice
}
/* InboundMsg */
type InboundMsg struct {
Peer *Peer
Channel *Channel
Time Time
Msg
}
/* NewFilterMsg */
type NewFilterMsg struct {
ChName String
Filter Filter
}
func (m *NewFilterMsg) WriteTo(w io.Writer) (int64, error) {
return 0, nil // TODO
}

+ 118
- 651
peer/peer.go View File

@ -1,715 +1,182 @@
package peer
import (
"bytes"
"container/list"
"fmt"
"github.com/davecgh/go-spew/spew"
"github.com/tendermint/btcwire"
"net"
"strconv"
"atomic"
"sync"
"sync/atomic"
"time"
)
const (
// max protocol version the peer supports.
maxProtocolVersion = 70001
/* Peer */
// number of elements the output channels use.
outputBufferSize = 50
type Peer struct {
outgoing bool
conn *Connection
channels map[String]*Channel
// number of seconds of inactivity before we timeout a peer
// that hasn't completed the initial version negotiation.
negotiateTimeoutSeconds = 30
// number of minutes of inactivity before we time out a peer.
idleTimeoutMinutes = 5
// number of minutes since we last sent a message
// requiring a reply before we will ping a host.
pingTimeoutMinutes = 2
)
var (
userAgentName = "tendermintd"
userAgentVersion = fmt.Sprintf("%d.%d.%d", appMajor, appMinor, appPatch)
)
// zeroHash is the zero value hash (all zeros). It is defined as a convenience.
var zeroHash btcwire.ShaHash
// minUint32 is a helper function to return the minimum of two uint32s.
// This avoids a math import and the need to cast to floats.
func minUint32(a, b uint32) uint32 {
if a < b {
return a
}
return b
}
// TODO(davec): Rename and comment this
type outMsg struct {
msg btcwire.Message
doneChan chan bool
}
/*
The overall data flow is split into 2 goroutines.
Inbound messages are read via the inHandler goroutine and generally
dispatched to their own handler.
Outbound messages are queued via QueueMessage.
*/
type peer struct {
server *server
addr *NetAddress
inbound bool
persistent bool
started bool // atomic
quit chan bool
conn net.Conn
connMtx sync.Mutex
disconnected bool // atomic && protected by connMtx
knownAddresses map[string]bool
outputQueue chan outMsg
statMtx sync.Mutex // protects all below here.
protocolVersion uint32
timeConnected time.Time
lastSend time.Time
lastRecv time.Time
bytesReceived uint64
bytesSent uint64
userAgent string
lastPingNonce uint64 // Set to nonce if we have a pending ping.
lastPingTime time.Time // Time we sent last ping.
lastPingMicros int64 // Time for last ping to return.
}
// String returns the peer's address and directionality as a human-readable
// string.
func (p *peer) String() string {
return fmt.Sprintf("%s (%s)", p.addr.String(), directionString(p.inbound))
}
// VersionKnown returns the whether or not the version of a peer is known locally.
// It is safe for concurrent access.
func (p *peer) VersionKnown() bool {
p.statMtx.Lock(); defer p.statMtx.Unlock()
return p.protocolVersion != 0
}
// ProtocolVersion returns the peer protocol version in a manner that is safe
// for concurrent access.
func (p *peer) ProtocolVersion() uint32 {
p.statMtx.Lock(); defer p.statMtx.Unlock()
return p.protocolVersion
}
// pushVersionMsg sends a version message to the connected peer using the
// current state.
func (p *peer) pushVersionMsg() {
_, blockNum, err := p.server.db.NewestSha()
if err != nil { panic(err) }
// Version message.
// TODO: DisableListen -> send zero address
msg := btcwire.NewMsgVersion(
p.server.addrManager.getBestLocalAddress(p.addr), p.addr,
p.server.nonce, int32(blockNum))
msg.AddUserAgent(userAgentName, userAgentVersion)
// Advertise our max supported protocol version.
msg.ProtocolVersion = maxProtocolVersion
p.QueueMessage(msg, nil)
mtx sync.Mutex
quit chan struct{}
stopped uint32
}
// handleVersionMsg is invoked when a peer receives a version bitcoin message
// and is used to negotiate the protocol version details as well as kick start
// the communications.
func (p *peer) handleVersionMsg(msg *btcwire.MsgVersion) {
// Detect self connections.
if msg.Nonce == p.server.nonce {
peerLog.Debugf("Disconnecting peer connected to self %s", p)
p.Disconnect()
return
}
p.statMtx.Lock() // Updating a bunch of stats.
// Limit to one version message per peer.
if p.protocolVersion != 0 {
p.logError("Only one version message per peer is allowed %s.", p)
p.statMtx.Unlock()
p.Disconnect()
return
func (p *Peer) Start(peerInQueues map[String]chan *InboundMsg ) {
for chName, _ := range p.channels {
go p.inHandler(chName, peerInQueues[chName])
go p.outHandler(chName)
}
// Negotiate the protocol version.
p.protocolVersion = minUint32(p.protocolVersion, uint32(msg.ProtocolVersion))
peerLog.Debugf("Negotiated protocol version %d for peer %s", p.protocolVersion, p)
// Set the remote peer's user agent.
p.userAgent = msg.UserAgent
p.statMtx.Unlock()
// Inbound connections.
if p.inbound {
// Send version.
p.pushVersionMsg()
}
// Send verack.
p.QueueMessage(btcwire.NewMsgVerAck(), nil)
if p.inbound {
// A peer might not be advertising the same address that it
// actually connected from. One example of why this can happen
// is with NAT. Only add the address to the address manager if
// the addresses agree.
if msg.AddrMe.String() == p.addr.String() {
p.server.addrManager.AddAddress(p.addr, p.addr)
}
} else {
// Request known addresses from the remote peer.
if !cfg.SimNet && p.server.addrManager.NeedMoreAddresses() {
p.QueueMessage(btcwire.NewMsgGetAddr(), nil)
}
}
// Mark the address as a known good address.
p.server.addrManager.MarkGood(p.addr)
// Signal the block manager this peer is a new sync candidate.
p.server.blockManager.NewPeer(p)
// TODO: Relay alerts.
}
// handleGetAddrMsg is invoked when a peer receives a getaddr bitcoin message
// and is used to provide the peer with known addresses from the address
// manager.
func (p *peer) handleGetAddrMsg(msg *btcwire.MsgGetAddr) {
// Don't return any addresses when running on the simulation test
// network. This helps prevent the network from becoming another
// public test network since it will not be able to learn about other
// peers that have not specifically been provided.
if cfg.SimNet {
return
func (p *Peer) Stop() {
// lock
p.mtx.Lock()
if atomic.CompareAndSwapUint32(&p.stopped, 0, 1) {
close(p.quit)
p.conn.Stop()
}
// Get the current known addresses from the address manager.
addrCache := p.server.addrManager.AddressCache()
// Push the addresses.
p.pushAddrMsg(addrCache)
p.mtx.Unlock()
// unlock
}
// pushAddrMsg sends one, or more, addr message(s) to the connected peer using
// the provided addresses.
func (p *peer) pushAddrMsg(addresses []*NetAddress) {
// Nothing to send.
if len(addresses) == 0 { return }
numAdded := 0
msg := btcwire.NewMsgAddr()
for _, addr := range addresses {
// Filter addresses the peer already knows about.
if p.knownAddresses[addr.String()] {
continue
}
// Add the address to the message.
err := msg.AddAddress(addr)
if err != nil { panic(err) } // XXX remove error condition
numAdded++
// Split into multiple messages as needed.
if numAdded > 0 && numAdded%btcwire.MaxAddrPerMsg == 0 {
p.QueueMessage(msg, nil)
// NOTE: This needs to be a new address message and not
// simply call ClearAddresses since the message is a
// pointer and queueing it does not make a copy.
msg = btcwire.NewMsgAddr()
}
}
// Send message with remaining addresses if needed.
if numAdded%btcwire.MaxAddrPerMsg != 0 {
p.QueueMessage(msg, nil)
}
func (p *Peer) LocalAddress() *NetAddress {
return p.conn.LocalAddress()
}
// handleAddrMsg is invoked when a peer receives an addr bitcoin message and
// is used to notify the server about advertised addresses.
func (p *peer) handleAddrMsg(msg *btcwire.MsgAddr) {
// Ignore addresses when running on the simulation test network. This
// helps prevent the network from becoming another public test network
// since it will not be able to learn about other peers that have not
// specifically been provided.
if cfg.SimNet {
return
}
// A message that has no addresses is invalid.
if len(msg.AddrList) == 0 {
p.logError("Command [%s] from %s does not contain any addresses", msg.Command(), p)
p.Disconnect()
return
}
for _, addr := range msg.AddrList {
// Set the timestamp to 5 days ago if it's more than 24 hours
// in the future so this address is one of the first to be
// removed when space is needed.
now := time.Now()
if addr.Timestamp.After(now.Add(time.Minute * 10)) {
addr.Timestamp = now.Add(-1 * time.Hour * 24 * 5)
}
// Add address to known addresses for this peer.
p.knownAddresses[addr.String()] = true
}
// Add addresses to server address manager. The address manager handles
// the details of things such as preventing duplicate addresses, max
// addresses, and last seen updates.
// XXX bitcoind gives a 2 hour time penalty here, do we want to do the
// same?
p.server.addrManager.AddAddresses(msg.AddrList, p.addr)
func (p *Peer) RemoteAddress() *NetAddress {
return p.conn.RemoteAddress()
}
func (p *peer) handlePingMsg(msg *btcwire.MsgPing) {
// Include nonce from ping so pong can be identified.
p.QueueMessage(btcwire.NewMsgPong(msg.Nonce), nil)
func (p *Peer) Channel(chName String) *Channel {
return p.channels[chName]
}
func (p *peer) handlePongMsg(msg *btcwire.MsgPong) {
p.statMtx.Lock(); defer p.statMtx.Unlock()
// If msg isn't already in the peer's filter, then
// queue the msg for output.
// If the queue is full, just return false.
func (p *Peer) TryQueueOut(chName String, msg Msg) bool {
channel := p.Channel(chName)
outQueue := channel.OutQueue()
// Arguably we could use a buffered channel here sending data
// in a fifo manner whenever we send a ping, or a list keeping track of
// the times of each ping. For now we just make a best effort and
// only record stats if it was for the last ping sent. Any preceding
// and overlapping pings will be ignored. It is unlikely to occur
// without large usage of the ping rpc call since we ping
// infrequently enough that if they overlap we would have timed out
// the peer.
if p.lastPingNonce != 0 && msg.Nonce == p.lastPingNonce {
p.lastPingMicros = time.Now().Sub(p.lastPingTime).Nanoseconds()
p.lastPingMicros /= 1000 // convert to usec.
p.lastPingNonce = 0
// just return if already in filter
if channel.Filter().Has(msg) {
return true
}
}
// readMessage reads the next bitcoin message from the peer with logging.
func (p *peer) readMessage() (btcwire.Message, []byte, error) {
n, msg, buf, err := btcwire.ReadMessageN(p.conn, p.ProtocolVersion())
p.statMtx.Lock()
p.bytesReceived += uint64(n)
p.statMtx.Unlock()
p.server.AddBytesReceived(uint64(n))
if err != nil {
return nil, nil, err
// lock & defer
p.mtx.Lock(); defer p.mtx.Unlock()
if p.stopped == 1 { return false }
select {
case outQueue <- msg:
return true
default: // buffer full
return false
}
// Use closures to log expensive operations so they are only run when
// the logging level requires it.
peerLog.Debugf("%v", newLogClosure(func() string {
// Debug summary of message.
summary := messageSummary(msg)
if len(summary) > 0 {
summary = " (" + summary + ")"
}
return fmt.Sprintf("Received %v%s from %s", msg.Command(), summary, p)
}))
peerLog.Tracef("%v", newLogClosure(func() string {
return spew.Sdump(msg)
}))
peerLog.Tracef("%v", newLogClosure(func() string {
return spew.Sdump(buf)
}))
return msg, buf, nil
// unlock deferred
}
// writeMessage sends a bitcoin Message to the peer with logging.
func (p *peer) writeMessage(msg btcwire.Message) {
if p.Disconnected() { return }
if !p.VersionKnown() {
switch msg.(type) {
case *btcwire.MsgVersion:
// This is OK.
default:
// We drop all messages other than version if we
// haven't done the handshake already.
return
}
}
// Use closures to log expensive operations so they are only run when
// the logging level requires it.
peerLog.Debugf("%v", newLogClosure(func() string {
// Debug summary of message.
summary := messageSummary(msg)
if len(summary) > 0 {
summary = " (" + summary + ")"
}
return fmt.Sprintf("Sending %v%s to %s", msg.Command(), summary, p)
}))
peerLog.Tracef("%v", newLogClosure(func() string {
return spew.Sdump(msg)
}))
peerLog.Tracef("%v", newLogClosure(func() string {
var buf bytes.Buffer
err := btcwire.WriteMessage(&buf, msg, p.ProtocolVersion())
if err != nil {
return err.Error()
}
return spew.Sdump(buf.Bytes())
}))
// Write the message to the peer.
n, err := btcwire.WriteMessageN(p.conn, msg, p.ProtocolVersion())
p.statMtx.Lock()
p.bytesSent += uint64(n)
p.statMtx.Unlock()
p.server.AddBytesSent(uint64(n))
if err != nil {
p.Disconnect()
p.logError("Can't send message to %s: %v", p, err)
return
}
func (p *Peer) WriteTo(w io.Writer) (n int64, err error) {
return p.RemoteAddress().WriteTo(w)
}
func (p *Peer) inHandler(chName String, inboundMsgQueue chan<- *InboundMsg) {
channel := p.channels[chName]
inQueue := channel.InQueue()
// inHandler handles all incoming messages for the peer. It must be run as a
// goroutine.
func (p *peer) inHandler() {
// Peers must complete the initial version negotiation within a shorter
// timeframe than a general idle timeout. The timer is then reset below
// to idleTimeoutMinutes for all future messages.
idleTimer := time.AfterFunc(negotiateTimeoutSeconds*time.Second, func() {
if p.VersionKnown() {
peerLog.Warnf("Peer %s no answer for %d minutes, disconnecting", p, idleTimeoutMinutes)
}
p.Disconnect()
})
out:
for !p.Disconnected() {
rmsg, buf, err := p.readMessage()
// Stop the timer now, if we go around again we will reset it.
idleTimer.Stop()
if err != nil {
if !p.Disconnected() {
p.logError("Can't read message from %s: %v", p, err)
FOR_LOOP:
for {
select {
case <-quit:
break FOR_LOOP
case msg := <-inQueue:
// add to channel filter
channel.Filter().Add(msg)
// send to inboundMsgQueue
inboundMsg := &InboundMsg{
Peer: p,
Channel: channel,
Time: Time(time.Now()),
Msg: msg,
}
break out
}
p.statMtx.Lock()
p.lastRecv = time.Now()
p.statMtx.Unlock()
// Ensure version message comes first.
if _, ok := rmsg.(*btcwire.MsgVersion); !ok && !p.VersionKnown() {
p.logError("A version message must precede all others")
break out
}
// Handle each supported message type.
markGood := false
switch msg := rmsg.(type) {
case *btcwire.MsgVersion:
p.handleVersionMsg(msg)
case *btcwire.MsgVerAck:
// Do nothing.
case *btcwire.MsgGetAddr:
p.handleGetAddrMsg(msg)
case *btcwire.MsgAddr:
p.handleAddrMsg(msg)
markGood = true
case *btcwire.MsgPing:
p.handlePingMsg(msg)
markGood = true
case *btcwire.MsgPong:
p.handlePongMsg(msg)
case *btcwire.MsgAlert:
p.server.BroadcastMessage(msg, p)
case *btcwire.MsgNotFound:
// TODO(davec): Ignore this for now, but ultimately
// it should probably be used to detect when something
// we requested needs to be re-requested from another
// peer.
default:
peerLog.Debugf("Received unhandled message of type %v: Fix Me", rmsg.Command())
}
// Mark the address as currently connected and working as of
// now if one of the messages that trigger it was processed.
if markGood && !p.Disconnected() {
if p.addr == nil {
peerLog.Warnf("we're getting stuff before we got a version message. that's bad")
select {
case <-quit:
break FOR_LOOP
case inboundMsgQueue <- inboundMsg:
continue
}
p.server.addrManager.MarkGood(p.addr)
}
// ok we got a message, reset the timer.
// timer just calls p.Disconnect() after logging.
idleTimer.Reset(idleTimeoutMinutes * time.Minute)
}
idleTimer.Stop()
// Ensure connection is closed and notify the server that the peer is done.
p.Disconnect()
p.server.donePeers <- p
// Only tell block manager we are gone if we ever told it we existed.
if p.VersionKnown() {
p.server.blockManager.DonePeer(p)
}
peerLog.Tracef("Peer input handler done for %s", p)
// cleanup
// (none)
}
// outHandler handles all outgoing messages for the peer. It must be run as a
// goroutine. It uses a buffered channel to serialize output messages while
// allowing the sender to continue running asynchronously.
func (p *peer) outHandler() {
pingTimer := time.AfterFunc(pingTimeoutMinutes*time.Minute, func() {
nonce, err := btcwire.RandomUint64()
if err != nil {
peerLog.Errorf("Not sending ping on timeout to %s: %v",
p, err)
return
}
p.QueueMessage(btcwire.NewMsgPing(nonce), nil)
})
out:
func (p *Peer) outHandler(chName String) {
outQueue := p.channels[chName].OutQueue()
FOR_LOOP:
for {
select {
case msg := <-p.outputQueue:
// If the message is one we should get a reply for
// then reset the timer, we only want to send pings
// when otherwise we would not receive a reply from
// the peer.
peerLog.Tracef("%s: received from outputQueue", p)
reset := true
switch m := msg.msg.(type) {
case *btcwire.MsgVersion:
// should get an ack
case *btcwire.MsgGetAddr:
// should get addresses
case *btcwire.MsgPing:
// expects pong
// Also set up statistics.
p.statMtx.Lock()
p.lastPingNonce = m.Nonce
p.lastPingTime = time.Now()
p.statMtx.Unlock()
default:
// Not one of the above, no sure reply.
// We want to ping if nothing else
// interesting happens.
reset = false
}
if reset {
pingTimer.Reset(pingTimeoutMinutes * time.Minute)
}
p.writeMessage(msg.msg)
p.statMtx.Lock()
p.lastSend = time.Now()
p.statMtx.Unlock()
if msg.doneChan != nil {
msg.doneChan <- true
}
case <-p.quit:
break out
case <-quit:
break FOR_LOOP
case msg := <-outQueue:
// blocks until the connection is Stop'd,
// which happens when this peer is Stop'd.
p.conn.QueueOut(msg.Bytes)
}
}
pingTimer.Stop()
// Drain outputQueue
for msg := range p.outputQueue {
if msg.doneChan != nil {
msg.doneChan <- false
}
}
peerLog.Tracef("Peer output handler done for %s", p)
// cleanup
// (none)
}
// QueueMessage adds the passed bitcoin message to the peer outputQueue. It
// uses a buffered channel to communicate with the output handler goroutine so
// it is automatically rate limited and safe for concurrent access.
func (p *peer) QueueMessage(msg btcwire.Message, doneChan chan bool) {
// Avoid risk of deadlock if goroutine already exited. The goroutine
// we will be sending to hangs around until it knows for a fact that
// it is marked as disconnected. *then* it drains the channels.
if p.Disconnected() {
// avoid deadlock...
if doneChan != nil {
go func() {
doneChan <- false
}()
}
return
}
p.outputQueue <- outMsg{msg: msg, doneChan: doneChan}
}
// True if is (or will become) disconnected.
func (p *peer) Disconnected() bool {
return atomic.LoadInt32(&p.disconnected) == 1
}
/* Channel */
// Disconnects the peer by closing the connection. It also sets
// a flag so the impending shutdown can be detected.
func (p *peer) Disconnect() {
p.connMtx.Lock(); defer p.connMtx.Unlock()
// did we win the race?
if atomic.AddInt32(&p.disconnected, 1) != 1 {
return
}
peerLog.Tracef("disconnecting %s", p)
close(p.quit)
if p.conn != nil {
p.conn.Close()
}
}
// Sets the connection & starts
func (p *peer) StartWithConnection(conn *net.Conn) {
p.connMtx.Lock(); defer p.connMtx.Unlock()
if p.conn != nil { panic("Conn already set") }
if atomic.LoadInt32(&p.disconnected) == 1 { return }
peerLog.Debugf("Connected to %s", conn.RemoteAddr())
p.timeConnected = time.Now()
p.conn = conn
p.Start()
}
type Channel struct {
name String
// Start begins processing input and output messages. It also sends the initial
// version message for outbound connections to start the negotiation process.
func (p *peer) Start() error {
// Already started?
if atomic.AddInt32(&p.started, 1) != 1 {
return nil
}
mtx sync.Mutex
filter Filter
peerLog.Tracef("Starting peer %s", p)
inQueue chan Msg
outQueue chan Msg
//stats Stats
}
// Send an initial version message if this is an outbound connection.
if !p.inbound {
p.pushVersionMsg()
func NewChannel(name String, filter Filter, in, out chan Msg) *Channel {
return &Channel{
name: name,
filter: filter,
inQueue: in,
outQueue: out,
}
// Start processing input and output.
go p.inHandler()
go p.outHandler()
return nil
}
// Shutdown gracefully shuts down the peer by disconnecting it.
func (p *peer) Shutdown() {
peerLog.Tracef("Shutdown peer %s", p)
p.Disconnect()
func (c *Channel) InQueue() <-chan Msg {
return c.inQueue
}
// newPeerBase returns a new base peer for the provided server and inbound flag.
// This is used by the newInboundPeer and newOutboundPeer functions to perform
// base setup needed by both types of peers.
func newPeerBase(s *server, inbound bool) *peer {
p := peer{
server: s,
protocolVersion: maxProtocolVersion,
inbound: inbound,
knownAddresses: make(map[string]bool),
outputQueue: make(chan outMsg, outputBufferSize),
quit: make(chan bool),
}
return &p
func (c *Channel) OutQueue() chan<- Msg {
return c.outQueue
}
// newPeer returns a new inbound bitcoin peer for the provided server and
// connection. Use Start to begin processing incoming and outgoing messages.
func newInboundPeer(s *server, conn net.Conn) *peer {
addr := NewNetAddress(conn.RemoteAddr())
// XXX What if p.addr doesn't match (to be) reported addr due to NAT?
s.addrManager.MarkAttempt(addr)
p := newPeerBase(s, true)
p.conn = conn
p.addr = addr
p.timeConnected = time.Now()
return p
func (c *Channel) Add(msg Msg) {
c.Filter().Add(msg)
}
// newOutbountPeer returns a new outbound bitcoin peer for the provided server and
// address and connects to it asynchronously. If the connection is successful
// then the peer will also be started.
func newOutboundPeer(s *server, addr *NetAddress, persistent bool) *peer {
p := newPeerBase(s, false)
p.addr = addr
p.persistent = persistent
func (c *Channel) Has(msg Msg) bool {
return c.Filter().Has(msg)
}
go func() {
// Mark this as one attempt, regardless of # of reconnects.
s.addrManager.MarkAttempt(p.addr)
retryCount := 0
// Attempt to connect to the peer. If the connection fails and
// this is a persistent connection, retry after the retry
// interval.
for {
peerLog.Debugf("Attempting to connect to %s", addr)
conn, err := addr.Dial()
if err == nil {
p.StartWithConnection(conn)
return
} else {
retryCount++
peerLog.Debugf("Failed to connect to %s: %v", addr, err)
if !persistent {
p.server.donePeers <- p
return
}
scaledInterval := connectionRetryInterval.Nanoseconds() * retryCount / 2
scaledDuration := time.Duration(scaledInterval)
peerLog.Debugf("Retrying connection to %s in %s", addr, scaledDuration)
time.Sleep(scaledDuration)
continue
}
}
}()
return p
// TODO: maybe don't expose this
func (c *Channel) Filter() Filter {
// lock & defer
c.mtx.Lock(); defer c.mtx.Unlock()
return c.filter
// unlock deferred
}
// logError makes sure that we only log errors loudly on user peers.
func (p *peer) logError(fmt string, args ...interface{}) {
if p.persistent {
peerLog.Errorf(fmt, args...)
} else {
peerLog.Debugf(fmt, args...)
}
// TODO: maybe don't expose this
func (c *Channel) UpdateFilter(filter Filter) {
// lock
c.mtx.Lock()
c.filter = filter
c.mtx.Unlock()
// unlock
}

+ 32
- 0
peer/server.go View File

@ -0,0 +1,32 @@
package peer
import (
)
/* Server */
type Server struct {
listener Listener
client *Client
}
func NewServer(l Listener, c *Client) *Server {
s := &Server{
listener: l,
client: c,
}
go s.IncomingConnectionsHandler()
return s
}
// meant to run in a goroutine
func (s *Server) IncomingConnectionHandler() {
for conn := range s.listener.Connections() {
s.client.AddIncomingConnection(conn)
}
}
func (s *Server) Stop() {
s.listener.Stop()
s.client.Stop()
}

+ 368
- 0
peer/upnp.go View File

@ -0,0 +1,368 @@
// from taipei-torrent
package peer
// Just enough UPnP to be able to forward ports
//
import (
"bytes"
"encoding/xml"
"errors"
"io/ioutil"
"net"
"net/http"
"strconv"
"strings"
"time"
)
type upnpNAT struct {
serviceURL string
ourIP string
urnDomain string
}
func Discover() (nat NAT, err error) {
ssdp, err := net.ResolveUDPAddr("udp4", "239.255.255.250:1900")
if err != nil {
return
}
conn, err := net.ListenPacket("udp4", ":0")
if err != nil {
return
}
socket := conn.(*net.UDPConn)
defer socket.Close()
err = socket.SetDeadline(time.Now().Add(3 * time.Second))
if err != nil {
return
}
st := "InternetGatewayDevice:1"
buf := bytes.NewBufferString(
"M-SEARCH * HTTP/1.1\r\n" +
"HOST: 239.255.255.250:1900\r\n" +
"ST: ssdp:all\r\n" +
"MAN: \"ssdp:discover\"\r\n" +
"MX: 2\r\n\r\n")
message := buf.Bytes()
answerBytes := make([]byte, 1024)
for i := 0; i < 3; i++ {
_, err = socket.WriteToUDP(message, ssdp)
if err != nil {
return
}
var n int
n, _, err = socket.ReadFromUDP(answerBytes)
for {
n, _, err = socket.ReadFromUDP(answerBytes)
if err != nil {
break
}
answer := string(answerBytes[0:n])
if strings.Index(answer, st) < 0 {
continue
}
// HTTP header field names are case-insensitive.
// http://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.2
locString := "\r\nlocation:"
answer = strings.ToLower(answer)
locIndex := strings.Index(answer, locString)
if locIndex < 0 {
continue
}
loc := answer[locIndex+len(locString):]
endIndex := strings.Index(loc, "\r\n")
if endIndex < 0 {
continue
}
locURL := strings.TrimSpace(loc[0:endIndex])
var serviceURL, urnDomain string
serviceURL, urnDomain, err = getServiceURL(locURL)
if err != nil {
return
}
var ourIP net.IP
ourIP, err = localIPv4()
if err != nil {
return
}
nat = &upnpNAT{serviceURL: serviceURL, ourIP: ourIP.String(), urnDomain: urnDomain}
return
}
}
err = errors.New("UPnP port discovery failed.")
return
}
type Envelope struct {
XMLName xml.Name `xml:"http://schemas.xmlsoap.org/soap/envelope/ Envelope"`
Soap *SoapBody
}
type SoapBody struct {
XMLName xml.Name `xml:"http://schemas.xmlsoap.org/soap/envelope/ Body"`
ExternalIP *ExternalIPAddressResponse
}
type ExternalIPAddressResponse struct {
XMLName xml.Name `xml:"GetExternalIPAddressResponse"`
IPAddress string `xml:"NewExternalIPAddress"`
}
type ExternalIPAddress struct {
XMLName xml.Name `xml:"NewExternalIPAddress"`
IP string
}
type Service struct {
ServiceType string `xml:"serviceType"`
ControlURL string `xml:"controlURL"`
}
type DeviceList struct {
Device []Device `xml:"device"`
}
type ServiceList struct {
Service []Service `xml:"service"`
}
type Device struct {
XMLName xml.Name `xml:"device"`
DeviceType string `xml:"deviceType"`
DeviceList DeviceList `xml:"deviceList"`
ServiceList ServiceList `xml:"serviceList"`
}
type Root struct {
Device Device
}
func getChildDevice(d *Device, deviceType string) *Device {
dl := d.DeviceList.Device
for i := 0; i < len(dl); i++ {
if strings.Index(dl[i].DeviceType, deviceType) >= 0 {
return &dl[i]
}
}
return nil
}
func getChildService(d *Device, serviceType string) *Service {
sl := d.ServiceList.Service
for i := 0; i < len(sl); i++ {
if strings.Index(sl[i].ServiceType, serviceType) >= 0 {
return &sl[i]
}
}
return nil
}
func localIPv4() (net.IP, error) {
tt, err := net.Interfaces()
if err != nil {
return nil, err
}
for _, t := range tt {
aa, err := t.Addrs()
if err != nil {
return nil, err
}
for _, a := range aa {
ipnet, ok := a.(*net.IPNet)
if !ok {
continue
}
v4 := ipnet.IP.To4()
if v4 == nil || v4[0] == 127 { // loopback address
continue
}
return v4, nil
}
}
return nil, errors.New("cannot find local IP address")
}
func getServiceURL(rootURL string) (url, urnDomain string, err error) {
r, err := http.Get(rootURL)
if err != nil {
return
}
defer r.Body.Close()
if r.StatusCode >= 400 {
err = errors.New(string(r.StatusCode))
return
}
var root Root
err = xml.NewDecoder(r.Body).Decode(&root)
if err != nil {
return
}
a := &root.Device
if strings.Index(a.DeviceType, "InternetGatewayDevice:1") < 0 {
err = errors.New("No InternetGatewayDevice")
return
}
b := getChildDevice(a, "WANDevice:1")
if b == nil {
err = errors.New("No WANDevice")
return
}
c := getChildDevice(b, "WANConnectionDevice:1")
if c == nil {
err = errors.New("No WANConnectionDevice")
return
}
d := getChildService(c, "WANIPConnection:1")
if d == nil {
// Some routers don't follow the UPnP spec, and put WanIPConnection under WanDevice,
// instead of under WanConnectionDevice
d = getChildService(b, "WANIPConnection:1")
if d == nil {
err = errors.New("No WANIPConnection")
return
}
}
// Extract the domain name, which isn't always 'schemas-upnp-org'
urnDomain = strings.Split(d.ServiceType, ":")[1]
url = combineURL(rootURL, d.ControlURL)
return
}
func combineURL(rootURL, subURL string) string {
protocolEnd := "://"
protoEndIndex := strings.Index(rootURL, protocolEnd)
a := rootURL[protoEndIndex+len(protocolEnd):]
rootIndex := strings.Index(a, "/")
return rootURL[0:protoEndIndex+len(protocolEnd)+rootIndex] + subURL
}
func soapRequest(url, function, message, domain string) (r *http.Response, err error) {
fullMessage := "<?xml version=\"1.0\" ?>" +
"<s:Envelope xmlns:s=\"http://schemas.xmlsoap.org/soap/envelope/\" s:encodingStyle=\"http://schemas.xmlsoap.org/soap/encoding/\">\r\n" +
"<s:Body>" + message + "</s:Body></s:Envelope>"
req, err := http.NewRequest("POST", url, strings.NewReader(fullMessage))
if err != nil {
return nil, err
}
req.Header.Set("Content-Type", "text/xml ; charset=\"utf-8\"")
req.Header.Set("User-Agent", "Darwin/10.0.0, UPnP/1.0, MiniUPnPc/1.3")
//req.Header.Set("Transfer-Encoding", "chunked")
req.Header.Set("SOAPAction", "\"urn:"+domain+":service:WANIPConnection:1#"+function+"\"")
req.Header.Set("Connection", "Close")
req.Header.Set("Cache-Control", "no-cache")
req.Header.Set("Pragma", "no-cache")
// log.Stderr("soapRequest ", req)
r, err = http.DefaultClient.Do(req)
if err != nil {
return nil, err
}
/*if r.Body != nil {
defer r.Body.Close()
}*/
if r.StatusCode >= 400 {
// log.Stderr(function, r.StatusCode)
err = errors.New("Error " + strconv.Itoa(r.StatusCode) + " for " + function)
r = nil
return
}
return
}
type statusInfo struct {
externalIpAddress string
}
func (n *upnpNAT) getExternalIPAddress() (info statusInfo, err error) {
message := "<u:GetExternalIPAddress xmlns:u=\"urn:" + n.urnDomain + ":service:WANIPConnection:1\">\r\n" +
"</u:GetExternalIPAddress>"
var response *http.Response
response, err = soapRequest(n.serviceURL, "GetExternalIPAddress", message, n.urnDomain)
if response != nil {
defer response.Body.Close()
}
if err != nil {
return
}
var envelope Envelope
data, err := ioutil.ReadAll(response.Body)
reader := bytes.NewReader(data)
xml.NewDecoder(reader).Decode(&envelope)
info = statusInfo{envelope.Soap.ExternalIP.IPAddress}
if err != nil {
return
}
return
}
func (n *upnpNAT) GetExternalAddress() (addr net.IP, err error) {
info, err := n.getExternalIPAddress()
if err != nil {
return
}
addr = net.ParseIP(info.externalIpAddress)
return
}
func (n *upnpNAT) AddPortMapping(protocol string, externalPort, internalPort int, description string, timeout int) (mappedExternalPort int, err error) {
// A single concatenation would break ARM compilation.
message := "<u:AddPortMapping xmlns:u=\"urn:" + n.urnDomain + ":service:WANIPConnection:1\">\r\n" +
"<NewRemoteHost></NewRemoteHost><NewExternalPort>" + strconv.Itoa(externalPort)
message += "</NewExternalPort><NewProtocol>" + protocol + "</NewProtocol>"
message += "<NewInternalPort>" + strconv.Itoa(internalPort) + "</NewInternalPort>" +
"<NewInternalClient>" + n.ourIP + "</NewInternalClient>" +
"<NewEnabled>1</NewEnabled><NewPortMappingDescription>"
message += description +
"</NewPortMappingDescription><NewLeaseDuration>" + strconv.Itoa(timeout) +
"</NewLeaseDuration></u:AddPortMapping>"
var response *http.Response
response, err = soapRequest(n.serviceURL, "AddPortMapping", message, n.urnDomain)
if response != nil {
defer response.Body.Close()
}
if err != nil {
return
}
// TODO: check response to see if the port was forwarded
// log.Println(message, response)
mappedExternalPort = externalPort
_ = response
return
}
func (n *upnpNAT) DeletePortMapping(protocol string, externalPort, internalPort int) (err error) {
message := "<u:DeletePortMapping xmlns:u=\"urn:" + n.urnDomain + ":service:WANIPConnection:1\">\r\n" +
"<NewRemoteHost></NewRemoteHost><NewExternalPort>" + strconv.Itoa(externalPort) +
"</NewExternalPort><NewProtocol>" + protocol + "</NewProtocol>" +
"</u:DeletePortMapping>"
var response *http.Response
response, err = soapRequest(n.serviceURL, "DeletePortMapping", message, n.urnDomain)
if response != nil {
defer response.Body.Close()
}
if err != nil {
return
}
// TODO: check response to see if the port was deleted
// log.Println(message, response)
_ = response
return
}

Loading…
Cancel
Save