- package merkle
-
- import (
- "bytes"
- "fmt"
-
- "github.com/pkg/errors"
- )
-
- // SimpleProof represents a simple Merkle proof.
- // NOTE: The convention for proofs is to include leaf hashes but to
- // exclude the root hash.
- // This convention is implemented across IAVL range proofs as well.
- // Keep this consistent unless there's a very good reason to change
- // everything. This also affects the generalized proof system as
- // well.
- type SimpleProof struct {
- Total int `json:"total"` // Total number of items.
- Index int `json:"index"` // Index of item to prove.
- LeafHash []byte `json:"leaf_hash"` // Hash of item value.
- Aunts [][]byte `json:"aunts"` // Hashes from leaf's sibling to a root's child.
- }
-
- // SimpleProofsFromByteSlices computes inclusion proof for given items.
- // proofs[0] is the proof for items[0].
- func SimpleProofsFromByteSlices(items [][]byte) (rootHash []byte, proofs []*SimpleProof) {
- trails, rootSPN := trailsFromByteSlices(items)
- rootHash = rootSPN.Hash
- proofs = make([]*SimpleProof, len(items))
- for i, trail := range trails {
- proofs[i] = &SimpleProof{
- Total: len(items),
- Index: i,
- LeafHash: trail.Hash,
- Aunts: trail.FlattenAunts(),
- }
- }
- return
- }
-
- // SimpleProofsFromMap generates proofs from a map. The keys/values of the map will be used as the keys/values
- // in the underlying key-value pairs.
- // The keys are sorted before the proofs are computed.
- func SimpleProofsFromMap(m map[string][]byte) (rootHash []byte, proofs map[string]*SimpleProof, keys []string) {
- sm := newSimpleMap()
- for k, v := range m {
- sm.Set(k, v)
- }
- sm.Sort()
- kvs := sm.kvs
- kvsBytes := make([][]byte, len(kvs))
- for i, kvp := range kvs {
- kvsBytes[i] = KVPair(kvp).Bytes()
- }
-
- rootHash, proofList := SimpleProofsFromByteSlices(kvsBytes)
- proofs = make(map[string]*SimpleProof)
- keys = make([]string, len(proofList))
- for i, kvp := range kvs {
- proofs[string(kvp.Key)] = proofList[i]
- keys[i] = string(kvp.Key)
- }
- return
- }
-
- // Verify that the SimpleProof proves the root hash.
- // Check sp.Index/sp.Total manually if needed
- func (sp *SimpleProof) Verify(rootHash []byte, leaf []byte) error {
- leafHash := leafHash(leaf)
- if sp.Total < 0 {
- return errors.New("Proof total must be positive")
- }
- if sp.Index < 0 {
- return errors.New("Proof index cannot be negative")
- }
- if !bytes.Equal(sp.LeafHash, leafHash) {
- return errors.Errorf("invalid leaf hash: wanted %X got %X", leafHash, sp.LeafHash)
- }
- computedHash := sp.ComputeRootHash()
- if !bytes.Equal(computedHash, rootHash) {
- return errors.Errorf("invalid root hash: wanted %X got %X", rootHash, computedHash)
- }
- return nil
- }
-
- // Compute the root hash given a leaf hash. Does not verify the result.
- func (sp *SimpleProof) ComputeRootHash() []byte {
- return computeHashFromAunts(
- sp.Index,
- sp.Total,
- sp.LeafHash,
- sp.Aunts,
- )
- }
-
- // String implements the stringer interface for SimpleProof.
- // It is a wrapper around StringIndented.
- func (sp *SimpleProof) String() string {
- return sp.StringIndented("")
- }
-
- // StringIndented generates a canonical string representation of a SimpleProof.
- func (sp *SimpleProof) StringIndented(indent string) string {
- return fmt.Sprintf(`SimpleProof{
- %s Aunts: %X
- %s}`,
- indent, sp.Aunts,
- indent)
- }
-
- // Use the leafHash and innerHashes to get the root merkle hash.
- // If the length of the innerHashes slice isn't exactly correct, the result is nil.
- // Recursive impl.
- func computeHashFromAunts(index int, total int, leafHash []byte, innerHashes [][]byte) []byte {
- if index >= total || index < 0 || total <= 0 {
- return nil
- }
- switch total {
- case 0:
- panic("Cannot call computeHashFromAunts() with 0 total")
- case 1:
- if len(innerHashes) != 0 {
- return nil
- }
- return leafHash
- default:
- if len(innerHashes) == 0 {
- return nil
- }
- numLeft := getSplitPoint(total)
- if index < numLeft {
- leftHash := computeHashFromAunts(index, numLeft, leafHash, innerHashes[:len(innerHashes)-1])
- if leftHash == nil {
- return nil
- }
- return innerHash(leftHash, innerHashes[len(innerHashes)-1])
- }
- rightHash := computeHashFromAunts(index-numLeft, total-numLeft, leafHash, innerHashes[:len(innerHashes)-1])
- if rightHash == nil {
- return nil
- }
- return innerHash(innerHashes[len(innerHashes)-1], rightHash)
- }
- }
-
- // SimpleProofNode is a helper structure to construct merkle proof.
- // The node and the tree is thrown away afterwards.
- // Exactly one of node.Left and node.Right is nil, unless node is the root, in which case both are nil.
- // node.Parent.Hash = hash(node.Hash, node.Right.Hash) or
- // hash(node.Left.Hash, node.Hash), depending on whether node is a left/right child.
- type SimpleProofNode struct {
- Hash []byte
- Parent *SimpleProofNode
- Left *SimpleProofNode // Left sibling (only one of Left,Right is set)
- Right *SimpleProofNode // Right sibling (only one of Left,Right is set)
- }
-
- // FlattenAunts will return the inner hashes for the item corresponding to the leaf,
- // starting from a leaf SimpleProofNode.
- func (spn *SimpleProofNode) FlattenAunts() [][]byte {
- // Nonrecursive impl.
- innerHashes := [][]byte{}
- for spn != nil {
- switch {
- case spn.Left != nil:
- innerHashes = append(innerHashes, spn.Left.Hash)
- case spn.Right != nil:
- innerHashes = append(innerHashes, spn.Right.Hash)
- default:
- break
- }
- spn = spn.Parent
- }
- return innerHashes
- }
-
- // trails[0].Hash is the leaf hash for items[0].
- // trails[i].Parent.Parent....Parent == root for all i.
- func trailsFromByteSlices(items [][]byte) (trails []*SimpleProofNode, root *SimpleProofNode) {
- // Recursive impl.
- switch len(items) {
- case 0:
- return nil, nil
- case 1:
- trail := &SimpleProofNode{leafHash(items[0]), nil, nil, nil}
- return []*SimpleProofNode{trail}, trail
- default:
- k := getSplitPoint(len(items))
- lefts, leftRoot := trailsFromByteSlices(items[:k])
- rights, rightRoot := trailsFromByteSlices(items[k:])
- rootHash := innerHash(leftRoot.Hash, rightRoot.Hash)
- root := &SimpleProofNode{rootHash, nil, nil, nil}
- leftRoot.Parent = root
- leftRoot.Right = rightRoot
- rightRoot.Parent = root
- rightRoot.Left = leftRoot
- return append(lefts, rights...), root
- }
- }
|