- package mempool
-
- import (
- "fmt"
- "math"
- "sync"
- "time"
-
- gogotypes "github.com/gogo/protobuf/types"
- cfg "github.com/tendermint/tendermint/config"
- "github.com/tendermint/tendermint/libs/clist"
- "github.com/tendermint/tendermint/libs/log"
- "github.com/tendermint/tendermint/p2p"
- "github.com/tendermint/tendermint/types"
- )
-
- const (
- MempoolChannel = byte(0x30)
-
- protoOverheadForTxMessage = 4
-
- peerCatchupSleepIntervalMS = 100 // If peer is behind, sleep this amount
-
- // UnknownPeerID is the peer ID to use when running CheckTx when there is
- // no peer (e.g. RPC)
- UnknownPeerID uint16 = 0
-
- maxActiveIDs = math.MaxUint16
- )
-
- // Reactor handles mempool tx broadcasting amongst peers.
- // It maintains a map from peer ID to counter, to prevent gossiping txs to the
- // peers you received it from.
- type Reactor struct {
- p2p.BaseReactor
- config *cfg.MempoolConfig
- mempool *CListMempool
- ids *mempoolIDs
- }
-
- type mempoolIDs struct {
- mtx sync.RWMutex
- peerMap map[p2p.ID]uint16
- nextID uint16 // assumes that a node will never have over 65536 active peers
- activeIDs map[uint16]struct{} // used to check if a given peerID key is used, the value doesn't matter
- }
-
- // Reserve searches for the next unused ID and assigns it to the
- // peer.
- func (ids *mempoolIDs) ReserveForPeer(peer p2p.Peer) {
- ids.mtx.Lock()
- defer ids.mtx.Unlock()
-
- curID := ids.nextPeerID()
- ids.peerMap[peer.ID()] = curID
- ids.activeIDs[curID] = struct{}{}
- }
-
- // nextPeerID returns the next unused peer ID to use.
- // This assumes that ids's mutex is already locked.
- func (ids *mempoolIDs) nextPeerID() uint16 {
- if len(ids.activeIDs) == maxActiveIDs {
- panic(fmt.Sprintf("node has maximum %d active IDs and wanted to get one more", maxActiveIDs))
- }
-
- _, idExists := ids.activeIDs[ids.nextID]
- for idExists {
- ids.nextID++
- _, idExists = ids.activeIDs[ids.nextID]
- }
- curID := ids.nextID
- ids.nextID++
- return curID
- }
-
- // Reclaim returns the ID reserved for the peer back to unused pool.
- func (ids *mempoolIDs) Reclaim(peer p2p.Peer) {
- ids.mtx.Lock()
- defer ids.mtx.Unlock()
-
- removedID, ok := ids.peerMap[peer.ID()]
- if ok {
- delete(ids.activeIDs, removedID)
- delete(ids.peerMap, peer.ID())
- }
- }
-
- // GetForPeer returns an ID reserved for the peer.
- func (ids *mempoolIDs) GetForPeer(peer p2p.Peer) uint16 {
- ids.mtx.RLock()
- defer ids.mtx.RUnlock()
-
- return ids.peerMap[peer.ID()]
- }
-
- func newMempoolIDs() *mempoolIDs {
- return &mempoolIDs{
- peerMap: make(map[p2p.ID]uint16),
- activeIDs: map[uint16]struct{}{0: {}},
- nextID: 1, // reserve unknownPeerID(0) for mempoolReactor.BroadcastTx
- }
- }
-
- // NewReactor returns a new Reactor with the given config and mempool.
- func NewReactor(config *cfg.MempoolConfig, mempool *CListMempool) *Reactor {
- memR := &Reactor{
- config: config,
- mempool: mempool,
- ids: newMempoolIDs(),
- }
- memR.BaseReactor = *p2p.NewBaseReactor("Mempool", memR)
- return memR
- }
-
- // InitPeer implements Reactor by creating a state for the peer.
- func (memR *Reactor) InitPeer(peer p2p.Peer) p2p.Peer {
- memR.ids.ReserveForPeer(peer)
- return peer
- }
-
- // SetLogger sets the Logger on the reactor and the underlying mempool.
- func (memR *Reactor) SetLogger(l log.Logger) {
- memR.Logger = l
- memR.mempool.SetLogger(l)
- }
-
- // OnStart implements p2p.BaseReactor.
- func (memR *Reactor) OnStart() error {
- if !memR.config.Broadcast {
- memR.Logger.Info("Tx broadcasting is disabled")
- }
- return nil
- }
-
- // GetChannels implements Reactor.
- // It returns the list of channels for this reactor.
- func (memR *Reactor) GetChannels() []*p2p.ChannelDescriptor {
- maxMsgSize := calcMaxMsgSize(memR.config.MaxTxBytes)
- return []*p2p.ChannelDescriptor{
- {
- ID: MempoolChannel,
- Priority: 5,
- RecvMessageCapacity: maxMsgSize,
- },
- }
- }
-
- // AddPeer implements Reactor.
- // It starts a broadcast routine ensuring all txs are forwarded to the given peer.
- func (memR *Reactor) AddPeer(peer p2p.Peer) {
- if memR.config.Broadcast {
- go memR.broadcastTxRoutine(peer)
- }
- }
-
- // RemovePeer implements Reactor.
- func (memR *Reactor) RemovePeer(peer p2p.Peer, reason interface{}) {
- memR.ids.Reclaim(peer)
- // broadcast routine checks if peer is gone and returns
- }
-
- // Receive implements Reactor.
- // It adds any received transactions to the mempool.
- func (memR *Reactor) Receive(chID byte, src p2p.Peer, msgBytes []byte) {
- msg, err := memR.decodeMsg(msgBytes)
- if err != nil {
- memR.Logger.Error("Error decoding message", "src", src, "chId", chID, "msg", msg, "err", err, "bytes", msgBytes)
- memR.Switch.StopPeerForError(src, err)
- return
- }
- memR.Logger.Debug("Receive", "src", src, "chId", chID, "msg", msg)
-
- txInfo := TxInfo{SenderID: memR.ids.GetForPeer(src)}
- if src != nil {
- txInfo.SenderP2PID = src.ID()
- }
- err = memR.mempool.CheckTx(msg.Tx, nil, txInfo)
- if err != nil {
- memR.Logger.Info("Could not check tx", "tx", txID(msg.Tx), "err", err)
- }
- // broadcasting happens from go routines per peer
- }
-
- // PeerState describes the state of a peer.
- type PeerState interface {
- GetHeight() int64
- }
-
- // Send new mempool txs to peer.
- func (memR *Reactor) broadcastTxRoutine(peer p2p.Peer) {
- peerID := memR.ids.GetForPeer(peer)
- var next *clist.CElement
- for {
- // In case of both next.NextWaitChan() and peer.Quit() are variable at the same time
- if !memR.IsRunning() || !peer.IsRunning() {
- return
- }
- // This happens because the CElement we were looking at got garbage
- // collected (removed). That is, .NextWait() returned nil. Go ahead and
- // start from the beginning.
- if next == nil {
- select {
- case <-memR.mempool.TxsWaitChan(): // Wait until a tx is available
- if next = memR.mempool.TxsFront(); next == nil {
- continue
- }
- case <-peer.Quit():
- return
- case <-memR.Quit():
- return
- }
- }
-
- memTx := next.Value.(*mempoolTx)
-
- // make sure the peer is up to date
- peerState, ok := peer.Get(types.PeerStateKey).(PeerState)
- if !ok {
- // Peer does not have a state yet. We set it in the consensus reactor, but
- // when we add peer in Switch, the order we call reactors#AddPeer is
- // different every time due to us using a map. Sometimes other reactors
- // will be initialized before the consensus reactor. We should wait a few
- // milliseconds and retry.
- time.Sleep(peerCatchupSleepIntervalMS * time.Millisecond)
- continue
- }
- if peerState.GetHeight() < memTx.Height()-1 { // Allow for a lag of 1 block
- time.Sleep(peerCatchupSleepIntervalMS * time.Millisecond)
- continue
- }
-
- // ensure peer hasn't already sent us this tx
- if _, ok := memTx.senders.Load(peerID); !ok {
- msg := gogotypes.BytesValue{Value: []byte(memTx.tx)}
- bz, err := msg.Marshal()
- if err != nil {
- panic(err)
- }
- success := peer.Send(MempoolChannel, bz)
- if !success {
- time.Sleep(peerCatchupSleepIntervalMS * time.Millisecond)
- continue
- }
- }
-
- select {
- case <-next.NextWaitChan():
- // see the start of the for loop for nil check
- next = next.Next()
- case <-peer.Quit():
- return
- case <-memR.Quit():
- return
- }
- }
- }
-
- //-----------------------------------------------------------------------------
- // Messages
-
- func (memR *Reactor) decodeMsg(bz []byte) (TxMessage, error) {
- msg := gogotypes.BytesValue{}
- err := msg.Unmarshal(bz)
- if err != nil {
- return TxMessage{}, err
- }
- txMsg := TxMessage{
- Tx: types.Tx(msg.Value),
- }
- return txMsg, err
- }
-
- //-------------------------------------
-
- // TxMessage is a Message containing a transaction.
- type TxMessage struct {
- Tx types.Tx
- }
-
- // String returns a string representation of the TxMessage.
- func (m *TxMessage) String() string {
- return fmt.Sprintf("[TxMessage %v]", m.Tx)
- }
-
- // calcMaxMsgSize returns the max size of TxMessage
- // account for proto overhead of bytesValue
- func calcMaxMsgSize(maxTxSize int) int {
- return maxTxSize + protoOverheadForTxMessage
- }
|