- package p2p
-
- import (
- "context"
- "errors"
- "fmt"
- "io"
- "net"
- "sync"
- "time"
-
- "github.com/gogo/protobuf/proto"
-
- "github.com/tendermint/tendermint/crypto"
- "github.com/tendermint/tendermint/libs/log"
- "github.com/tendermint/tendermint/libs/service"
- )
-
- const queueBufferDefault = 4096
-
- // ChannelID is an arbitrary channel ID.
- type ChannelID uint16
-
- // Envelope contains a message with sender/receiver routing info.
- type Envelope struct {
- From NodeID // sender (empty if outbound)
- To NodeID // receiver (empty if inbound)
- Broadcast bool // send to all connected peers (ignores To)
- Message proto.Message // message payload
-
- // channelID is for internal Router use, set on outbound messages to inform
- // the sendPeer() goroutine which transport channel to use.
- //
- // FIXME: If we migrate the Transport API to a byte-oriented multi-stream
- // API, this will no longer be necessary since each channel will be mapped
- // onto a stream during channel/peer setup. See:
- // https://github.com/tendermint/spec/pull/227
- channelID ChannelID
- }
-
- // PeerError is a peer error reported via Channel.Error.
- //
- // FIXME: This currently just disconnects the peer, which is too simplistic.
- // For example, some errors should be logged, some should cause disconnects,
- // and some should ban the peer.
- //
- // FIXME: This should probably be replaced by a more general PeerBehavior
- // concept that can mark good and bad behavior and contributes to peer scoring.
- // It should possibly also allow reactors to request explicit actions, e.g.
- // disconnection or banning, in addition to doing this based on aggregates.
- type PeerError struct {
- NodeID NodeID
- Err error
- }
-
- // Channel is a bidirectional channel to exchange Protobuf messages with peers,
- // wrapped in Envelope to specify routing info (i.e. sender/receiver).
- type Channel struct {
- ID ChannelID
- In <-chan Envelope // inbound messages (peers to reactors)
- Out chan<- Envelope // outbound messages (reactors to peers)
- Error chan<- PeerError // peer error reporting
-
- messageType proto.Message // the channel's message type, used for unmarshaling
- closeCh chan struct{}
- closeOnce sync.Once
- }
-
- // NewChannel creates a new channel. It is primarily for internal and test
- // use, reactors should use Router.OpenChannel().
- func NewChannel(
- id ChannelID,
- messageType proto.Message,
- inCh <-chan Envelope,
- outCh chan<- Envelope,
- errCh chan<- PeerError,
- ) *Channel {
- return &Channel{
- ID: id,
- messageType: messageType,
- In: inCh,
- Out: outCh,
- Error: errCh,
- closeCh: make(chan struct{}),
- }
- }
-
- // Close closes the channel. Future sends on Out and Error will panic. The In
- // channel remains open to avoid having to synchronize Router senders, which
- // should use Done() to detect channel closure instead.
- func (c *Channel) Close() {
- c.closeOnce.Do(func() {
- close(c.closeCh)
- close(c.Out)
- close(c.Error)
- })
- }
-
- // Done returns a channel that's closed when Channel.Close() is called.
- func (c *Channel) Done() <-chan struct{} {
- return c.closeCh
- }
-
- // Wrapper is a Protobuf message that can contain a variety of inner messages
- // (e.g. via oneof fields). If a Channel's message type implements Wrapper, the
- // Router will automatically wrap outbound messages and unwrap inbound messages,
- // such that reactors do not have to do this themselves.
- type Wrapper interface {
- proto.Message
-
- // Wrap will take a message and wrap it in this one if possible.
- Wrap(proto.Message) error
-
- // Unwrap will unwrap the inner message contained in this message.
- Unwrap() (proto.Message, error)
- }
-
- // RouterOptions specifies options for a Router.
- type RouterOptions struct {
- // ResolveTimeout is the timeout for resolving NodeAddress URLs.
- // 0 means no timeout.
- ResolveTimeout time.Duration
-
- // DialTimeout is the timeout for dialing a peer. 0 means no timeout.
- DialTimeout time.Duration
-
- // HandshakeTimeout is the timeout for handshaking with a peer. 0 means
- // no timeout.
- HandshakeTimeout time.Duration
-
- // QueueType must be "wdrr" (Weighed Deficit Round Robin), "priority", or
- // "fifo". Defaults to "fifo".
- QueueType string
-
- // MaxIncomingConnectionAttempts rate limits the number of incoming connection
- // attempts per IP address. Defaults to 100.
- MaxIncomingConnectionAttempts uint
-
- // IncomingConnectionWindow describes how often an IP address
- // can attempt to create a new connection. Defaults to 10
- // milliseconds, and cannot be less than 1 millisecond.
- IncomingConnectionWindow time.Duration
-
- // FilterPeerByIP is used by the router to inject filtering
- // behavior for new incoming connections. The router passes
- // the remote IP of the incoming connection the port number as
- // arguments. Functions should return an error to reject the
- // peer.
- FilterPeerByIP func(context.Context, net.IP, uint16) error
-
- // FilterPeerByID is used by the router to inject filtering
- // behavior for new incoming connections. The router passes
- // the NodeID of the node before completing the connection,
- // but this occurs after the handshake is complete. Filter by
- // IP address to filter before the handshake. Functions should
- // return an error to reject the peer.
- FilterPeerByID func(context.Context, NodeID) error
- }
-
- const (
- queueTypeFifo = "fifo"
- queueTypePriority = "priority"
- queueTypeWDRR = "wdrr"
- )
-
- // Validate validates router options.
- func (o *RouterOptions) Validate() error {
- switch o.QueueType {
- case "":
- o.QueueType = queueTypeFifo
- case queueTypeFifo, queueTypeWDRR, queueTypePriority:
- // pass
- default:
- return fmt.Errorf("queue type %q is not supported", o.QueueType)
- }
-
- switch {
- case o.IncomingConnectionWindow == 0:
- o.IncomingConnectionWindow = 100 * time.Millisecond
- case o.IncomingConnectionWindow < time.Millisecond:
- return fmt.Errorf("incomming connection window must be grater than 1m [%s]",
- o.IncomingConnectionWindow)
- }
-
- if o.MaxIncomingConnectionAttempts == 0 {
- o.MaxIncomingConnectionAttempts = 100
- }
-
- return nil
- }
-
- // Router manages peer connections and routes messages between peers and reactor
- // channels. It takes a PeerManager for peer lifecycle management (e.g. which
- // peers to dial and when) and a set of Transports for connecting and
- // communicating with peers.
- //
- // On startup, three main goroutines are spawned to maintain peer connections:
- //
- // dialPeers(): in a loop, calls PeerManager.DialNext() to get the next peer
- // address to dial and spawns a goroutine that dials the peer, handshakes
- // with it, and begins to route messages if successful.
- //
- // acceptPeers(): in a loop, waits for an inbound connection via
- // Transport.Accept() and spawns a goroutine that handshakes with it and
- // begins to route messages if successful.
- //
- // evictPeers(): in a loop, calls PeerManager.EvictNext() to get the next
- // peer to evict, and disconnects it by closing its message queue.
- //
- // When a peer is connected, an outbound peer message queue is registered in
- // peerQueues, and routePeer() is called to spawn off two additional goroutines:
- //
- // sendPeer(): waits for an outbound message from the peerQueues queue,
- // marshals it, and passes it to the peer transport which delivers it.
- //
- // receivePeer(): waits for an inbound message from the peer transport,
- // unmarshals it, and passes it to the appropriate inbound channel queue
- // in channelQueues.
- //
- // When a reactor opens a channel via OpenChannel, an inbound channel message
- // queue is registered in channelQueues, and a channel goroutine is spawned:
- //
- // routeChannel(): waits for an outbound message from the channel, looks
- // up the recipient peer's outbound message queue in peerQueues, and submits
- // the message to it.
- //
- // All channel sends in the router are blocking. It is the responsibility of the
- // queue interface in peerQueues and channelQueues to prioritize and drop
- // messages as appropriate during contention to prevent stalls and ensure good
- // quality of service.
- type Router struct {
- *service.BaseService
-
- logger log.Logger
- metrics *Metrics
- options RouterOptions
- nodeInfo NodeInfo
- privKey crypto.PrivKey
- peerManager *PeerManager
- chDescs []ChannelDescriptor
- transports []Transport
- connTracker connectionTracker
- protocolTransports map[Protocol]Transport
- stopCh chan struct{} // signals Router shutdown
-
- peerMtx sync.RWMutex
- peerQueues map[NodeID]queue // outbound messages per peer for all channels
- queueFactory func(int) queue
-
- // FIXME: We don't strictly need to use a mutex for this if we seal the
- // channels on router start. This depends on whether we want to allow
- // dynamic channels in the future.
- channelMtx sync.RWMutex
- channelQueues map[ChannelID]queue // inbound messages from all peers to a single channel
- channelMessages map[ChannelID]proto.Message
- }
-
- // NewRouter creates a new Router. The given Transports must already be
- // listening on appropriate interfaces, and will be closed by the Router when it
- // stops.
- func NewRouter(
- logger log.Logger,
- metrics *Metrics,
- nodeInfo NodeInfo,
- privKey crypto.PrivKey,
- peerManager *PeerManager,
- transports []Transport,
- options RouterOptions,
- ) (*Router, error) {
-
- if err := options.Validate(); err != nil {
- return nil, err
- }
-
- router := &Router{
- logger: logger,
- metrics: metrics,
- nodeInfo: nodeInfo,
- privKey: privKey,
- connTracker: newConnTracker(
- options.MaxIncomingConnectionAttempts,
- options.IncomingConnectionWindow,
- ),
- chDescs: make([]ChannelDescriptor, 0),
- transports: transports,
- protocolTransports: map[Protocol]Transport{},
- peerManager: peerManager,
- options: options,
- stopCh: make(chan struct{}),
- channelQueues: map[ChannelID]queue{},
- channelMessages: map[ChannelID]proto.Message{},
- peerQueues: map[NodeID]queue{},
- }
-
- router.BaseService = service.NewBaseService(logger, "router", router)
-
- qf, err := router.createQueueFactory()
- if err != nil {
- return nil, err
- }
-
- router.queueFactory = qf
-
- for _, transport := range transports {
- for _, protocol := range transport.Protocols() {
- if _, ok := router.protocolTransports[protocol]; !ok {
- router.protocolTransports[protocol] = transport
- }
- }
- }
-
- return router, nil
- }
-
- func (r *Router) createQueueFactory() (func(int) queue, error) {
- switch r.options.QueueType {
- case queueTypeFifo:
- return newFIFOQueue, nil
-
- case queueTypePriority:
- return func(size int) queue {
- if size%2 != 0 {
- size++
- }
-
- q := newPQScheduler(r.logger, r.metrics, r.chDescs, uint(size)/2, uint(size)/2, defaultCapacity)
- q.start()
- return q
- }, nil
-
- case queueTypeWDRR:
- return func(size int) queue {
- if size%2 != 0 {
- size++
- }
-
- q := newWDRRScheduler(r.logger, r.metrics, r.chDescs, uint(size)/2, uint(size)/2, defaultCapacity)
- q.start()
- return q
- }, nil
-
- default:
- return nil, fmt.Errorf("cannot construct queue of type %q", r.options.QueueType)
- }
- }
-
- // OpenChannel opens a new channel for the given message type. The caller must
- // close the channel when done, before stopping the Router. messageType is the
- // type of message passed through the channel (used for unmarshaling), which can
- // implement Wrapper to automatically (un)wrap multiple message types in a
- // wrapper message. The caller may provide a size to make the channel buffered,
- // which internally makes the inbound, outbound, and error channel buffered.
- func (r *Router) OpenChannel(chDesc ChannelDescriptor, messageType proto.Message, size int) (*Channel, error) {
- if size == 0 {
- size = queueBufferDefault
- }
-
- r.channelMtx.Lock()
- defer r.channelMtx.Unlock()
-
- id := ChannelID(chDesc.ID)
- if _, ok := r.channelQueues[id]; ok {
- return nil, fmt.Errorf("channel %v already exists", id)
- }
- r.chDescs = append(r.chDescs, chDesc)
-
- queue := r.queueFactory(size)
- outCh := make(chan Envelope, size)
- errCh := make(chan PeerError, size)
- channel := NewChannel(id, messageType, queue.dequeue(), outCh, errCh)
-
- var wrapper Wrapper
- if w, ok := messageType.(Wrapper); ok {
- wrapper = w
- }
-
- r.channelQueues[id] = queue
- r.channelMessages[id] = messageType
-
- go func() {
- defer func() {
- r.channelMtx.Lock()
- delete(r.channelQueues, id)
- delete(r.channelMessages, id)
- r.channelMtx.Unlock()
- queue.close()
- }()
-
- r.routeChannel(id, outCh, errCh, wrapper)
- }()
-
- return channel, nil
- }
-
- // routeChannel receives outbound channel messages and routes them to the
- // appropriate peer. It also receives peer errors and reports them to the peer
- // manager. It returns when either the outbound channel or error channel is
- // closed, or the Router is stopped. wrapper is an optional message wrapper
- // for messages, see Wrapper for details.
- func (r *Router) routeChannel(
- chID ChannelID,
- outCh <-chan Envelope,
- errCh <-chan PeerError,
- wrapper Wrapper,
- ) {
- for {
- select {
- case envelope, ok := <-outCh:
- if !ok {
- return
- }
-
- // Mark the envelope with the channel ID to allow sendPeer() to pass
- // it on to Transport.SendMessage().
- envelope.channelID = chID
-
- // wrap the message in a wrapper message, if requested
- if wrapper != nil {
- msg := proto.Clone(wrapper)
- if err := msg.(Wrapper).Wrap(envelope.Message); err != nil {
- r.Logger.Error("failed to wrap message", "channel", chID, "err", err)
- continue
- }
-
- envelope.Message = msg
- }
-
- // collect peer queues to pass the message via
- var queues []queue
- if envelope.Broadcast {
- r.peerMtx.RLock()
-
- queues = make([]queue, 0, len(r.peerQueues))
- for _, q := range r.peerQueues {
- queues = append(queues, q)
- }
-
- r.peerMtx.RUnlock()
- } else {
- r.peerMtx.RLock()
- q, ok := r.peerQueues[envelope.To]
- r.peerMtx.RUnlock()
-
- if !ok {
- r.logger.Debug("dropping message for unconnected peer", "peer", envelope.To, "channel", chID)
- continue
- }
-
- queues = []queue{q}
- }
-
- // send message to peers
- for _, q := range queues {
- start := time.Now().UTC()
-
- select {
- case q.enqueue() <- envelope:
- r.metrics.RouterPeerQueueSend.Observe(time.Since(start).Seconds())
-
- case <-q.closed():
- r.logger.Debug("dropping message for unconnected peer", "peer", envelope.To, "channel", chID)
-
- case <-r.stopCh:
- return
- }
- }
-
- case peerError, ok := <-errCh:
- if !ok {
- return
- }
-
- r.logger.Error("peer error, evicting", "peer", peerError.NodeID, "err", peerError.Err)
-
- r.peerManager.Errored(peerError.NodeID, peerError.Err)
-
- case <-r.stopCh:
- return
- }
- }
- }
-
- func (r *Router) filterPeersIP(ctx context.Context, ip net.IP, port uint16) error {
- if r.options.FilterPeerByIP == nil {
- return nil
- }
-
- return r.options.FilterPeerByIP(ctx, ip, port)
- }
-
- func (r *Router) filterPeersID(ctx context.Context, id NodeID) error {
- if r.options.FilterPeerByID == nil {
- return nil
- }
-
- return r.options.FilterPeerByID(ctx, id)
- }
-
- // acceptPeers accepts inbound connections from peers on the given transport,
- // and spawns goroutines that route messages to/from them.
- func (r *Router) acceptPeers(transport Transport) {
- r.logger.Debug("starting accept routine", "transport", transport)
- ctx := r.stopCtx()
- for {
- conn, err := transport.Accept()
- switch err {
- case nil:
- case io.EOF:
- r.logger.Debug("stopping accept routine", "transport", transport)
- return
- default:
- r.logger.Error("failed to accept connection", "transport", transport, "err", err)
- return
- }
-
- incomingIP := conn.RemoteEndpoint().IP
- if err := r.connTracker.AddConn(incomingIP); err != nil {
- closeErr := conn.Close()
- r.logger.Debug("rate limiting incoming peer",
- "err", err,
- "ip", incomingIP.String(),
- "close_err", closeErr,
- )
-
- return
- }
-
- // Spawn a goroutine for the handshake, to avoid head-of-line blocking.
- go r.openConnection(ctx, conn)
-
- }
- }
-
- func (r *Router) openConnection(ctx context.Context, conn Connection) {
- defer conn.Close()
- defer r.connTracker.RemoveConn(conn.RemoteEndpoint().IP)
-
- re := conn.RemoteEndpoint()
- incomingIP := re.IP
-
- if err := r.filterPeersIP(ctx, incomingIP, re.Port); err != nil {
- r.logger.Debug("peer filtered by IP", "ip", incomingIP.String(), "err", err)
- return
- }
-
- // FIXME: The peer manager may reject the peer during Accepted()
- // after we've handshaked with the peer (to find out which peer it
- // is). However, because the handshake has no ack, the remote peer
- // will think the handshake was successful and start sending us
- // messages.
- //
- // This can cause problems in tests, where a disconnection can cause
- // the local node to immediately redial, while the remote node may
- // not have completed the disconnection yet and therefore reject the
- // reconnection attempt (since it thinks we're still connected from
- // before).
- //
- // The Router should do the handshake and have a final ack/fail
- // message to make sure both ends have accepted the connection, such
- // that it can be coordinated with the peer manager.
- peerInfo, _, err := r.handshakePeer(ctx, conn, "")
- switch {
- case errors.Is(err, context.Canceled):
- return
- case err != nil:
- r.logger.Error("peer handshake failed", "endpoint", conn, "err", err)
- return
- }
-
- if err := r.filterPeersID(ctx, peerInfo.NodeID); err != nil {
- r.logger.Debug("peer filtered by node ID", "node", peerInfo.NodeID, "err", err)
- return
- }
-
- if err := r.runWithPeerMutex(func() error { return r.peerManager.Accepted(peerInfo.NodeID) }); err != nil {
- r.logger.Error("failed to accept connection",
- "op", "incoming/accepted", "peer", peerInfo.NodeID, "err", err)
- return
- }
-
- r.routePeer(peerInfo.NodeID, conn)
- }
-
- // dialPeers maintains outbound connections to peers by dialing them.
- func (r *Router) dialPeers() {
- r.logger.Debug("starting dial routine")
- ctx := r.stopCtx()
- for {
- address, err := r.peerManager.DialNext(ctx)
- switch {
- case errors.Is(err, context.Canceled):
- r.logger.Debug("stopping dial routine")
- return
- case err != nil:
- r.logger.Error("failed to find next peer to dial", "err", err)
- return
- }
-
- // Spawn off a goroutine to actually dial the peer, so that we can
- // dial multiple peers in parallel.
- go func() {
- conn, err := r.dialPeer(ctx, address)
- switch {
- case errors.Is(err, context.Canceled):
- return
- case err != nil:
- r.logger.Error("failed to dial peer", "peer", address, "err", err)
- if err = r.peerManager.DialFailed(address); err != nil {
- r.logger.Error("failed to report dial failure", "peer", address, "err", err)
- }
- return
- }
- defer conn.Close()
-
- peerID := address.NodeID
- _, _, err = r.handshakePeer(ctx, conn, peerID)
- switch {
- case errors.Is(err, context.Canceled):
- return
- case err != nil:
- r.logger.Error("failed to handshake with peer", "peer", address, "err", err)
- if err = r.peerManager.DialFailed(address); err != nil {
- r.logger.Error("failed to report dial failure", "peer", address, "err", err)
- }
- return
- }
-
- if err := r.runWithPeerMutex(func() error { return r.peerManager.Dialed(address) }); err != nil {
- r.logger.Error("failed to accept connection",
- "op", "outgoing/dialing", "peer", address.NodeID, "err", err)
- return
- }
-
- r.routePeer(peerID, conn)
- }()
- }
- }
-
- func (r *Router) getOrMakeQueue(peerID NodeID) queue {
- r.peerMtx.Lock()
- defer r.peerMtx.Unlock()
-
- if peerQueue, ok := r.peerQueues[peerID]; ok {
- return peerQueue
- }
-
- peerQueue := r.queueFactory(queueBufferDefault)
- r.peerQueues[peerID] = peerQueue
- return peerQueue
- }
-
- // dialPeer connects to a peer by dialing it.
- func (r *Router) dialPeer(ctx context.Context, address NodeAddress) (Connection, error) {
- resolveCtx := ctx
- if r.options.ResolveTimeout > 0 {
- var cancel context.CancelFunc
- resolveCtx, cancel = context.WithTimeout(resolveCtx, r.options.ResolveTimeout)
- defer cancel()
- }
-
- r.logger.Debug("resolving peer address", "peer", address)
- endpoints, err := address.Resolve(resolveCtx)
- switch {
- case err != nil:
- return nil, fmt.Errorf("failed to resolve address %q: %w", address, err)
- case len(endpoints) == 0:
- return nil, fmt.Errorf("address %q did not resolve to any endpoints", address)
- }
-
- for _, endpoint := range endpoints {
- transport, ok := r.protocolTransports[endpoint.Protocol]
- if !ok {
- r.logger.Error("no transport found for protocol", "endpoint", endpoint)
- continue
- }
-
- dialCtx := ctx
- if r.options.DialTimeout > 0 {
- var cancel context.CancelFunc
- dialCtx, cancel = context.WithTimeout(dialCtx, r.options.DialTimeout)
- defer cancel()
- }
-
- // FIXME: When we dial and handshake the peer, we should pass it
- // appropriate address(es) it can use to dial us back. It can't use our
- // remote endpoint, since TCP uses different port numbers for outbound
- // connections than it does for inbound. Also, we may need to vary this
- // by the peer's endpoint, since e.g. a peer on 192.168.0.0 can reach us
- // on a private address on this endpoint, but a peer on the public
- // Internet can't and needs a different public address.
- conn, err := transport.Dial(dialCtx, endpoint)
- if err != nil {
- r.logger.Error("failed to dial endpoint", "peer", address.NodeID, "endpoint", endpoint, "err", err)
- } else {
- r.logger.Debug("dialed peer", "peer", address.NodeID, "endpoint", endpoint)
- return conn, nil
- }
- }
- return nil, errors.New("all endpoints failed")
- }
-
- // handshakePeer handshakes with a peer, validating the peer's information. If
- // expectID is given, we check that the peer's info matches it.
- func (r *Router) handshakePeer(ctx context.Context, conn Connection, expectID NodeID) (NodeInfo, crypto.PubKey, error) {
- if r.options.HandshakeTimeout > 0 {
- var cancel context.CancelFunc
- ctx, cancel = context.WithTimeout(ctx, r.options.HandshakeTimeout)
- defer cancel()
- }
-
- peerInfo, peerKey, err := conn.Handshake(ctx, r.nodeInfo, r.privKey)
- if err != nil {
- return peerInfo, peerKey, err
- }
-
- if err = peerInfo.Validate(); err != nil {
- return peerInfo, peerKey, fmt.Errorf("invalid handshake NodeInfo: %w", err)
- }
- if NodeIDFromPubKey(peerKey) != peerInfo.NodeID {
- return peerInfo, peerKey, fmt.Errorf("peer's public key did not match its node ID %q (expected %q)",
- peerInfo.NodeID, NodeIDFromPubKey(peerKey))
- }
- if expectID != "" && expectID != peerInfo.NodeID {
- return peerInfo, peerKey, fmt.Errorf("expected to connect with peer %q, got %q",
- expectID, peerInfo.NodeID)
- }
- return peerInfo, peerKey, nil
- }
-
- func (r *Router) runWithPeerMutex(fn func() error) error {
- r.peerMtx.Lock()
- defer r.peerMtx.Unlock()
- return fn()
- }
-
- // routePeer routes inbound and outbound messages between a peer and the reactor
- // channels. It will close the given connection and send queue when done, or if
- // they are closed elsewhere it will cause this method to shut down and return.
- func (r *Router) routePeer(peerID NodeID, conn Connection) {
- r.metrics.Peers.Add(1)
- r.peerManager.Ready(peerID)
-
- sendQueue := r.getOrMakeQueue(peerID)
- defer func() {
- r.peerMtx.Lock()
- delete(r.peerQueues, peerID)
- r.peerMtx.Unlock()
-
- sendQueue.close()
-
- r.peerManager.Disconnected(peerID)
- r.metrics.Peers.Add(-1)
- }()
-
- r.logger.Info("peer connected", "peer", peerID, "endpoint", conn)
-
- errCh := make(chan error, 2)
-
- go func() {
- errCh <- r.receivePeer(peerID, conn)
- }()
-
- go func() {
- errCh <- r.sendPeer(peerID, conn, sendQueue)
- }()
-
- err := <-errCh
- _ = conn.Close()
- sendQueue.close()
-
- if e := <-errCh; err == nil {
- // The first err was nil, so we update it with the second err, which may
- // or may not be nil.
- err = e
- }
-
- switch err {
- case nil, io.EOF:
- r.logger.Info("peer disconnected", "peer", peerID, "endpoint", conn)
-
- default:
- r.logger.Error("peer failure", "peer", peerID, "endpoint", conn, "err", err)
- }
- }
-
- // receivePeer receives inbound messages from a peer, deserializes them and
- // passes them on to the appropriate channel.
- func (r *Router) receivePeer(peerID NodeID, conn Connection) error {
- for {
- chID, bz, err := conn.ReceiveMessage()
- if err != nil {
- return err
- }
-
- r.channelMtx.RLock()
- queue, ok := r.channelQueues[chID]
- messageType := r.channelMessages[chID]
- r.channelMtx.RUnlock()
-
- if !ok {
- r.logger.Debug("dropping message for unknown channel", "peer", peerID, "channel", chID)
- continue
- }
-
- msg := proto.Clone(messageType)
- if err := proto.Unmarshal(bz, msg); err != nil {
- r.logger.Error("message decoding failed, dropping message", "peer", peerID, "err", err)
- continue
- }
-
- if wrapper, ok := msg.(Wrapper); ok {
- msg, err = wrapper.Unwrap()
- if err != nil {
- r.logger.Error("failed to unwrap message", "err", err)
- continue
- }
- }
-
- start := time.Now().UTC()
-
- select {
- case queue.enqueue() <- Envelope{From: peerID, Message: msg}:
- r.metrics.PeerReceiveBytesTotal.With(
- "chID", fmt.Sprint(chID),
- "peer_id", string(peerID)).Add(float64(proto.Size(msg)))
- r.metrics.RouterChannelQueueSend.Observe(time.Since(start).Seconds())
- r.logger.Debug("received message", "peer", peerID, "message", msg)
-
- case <-queue.closed():
- r.logger.Debug("channel closed, dropping message", "peer", peerID, "channel", chID)
-
- case <-r.stopCh:
- return nil
- }
- }
- }
-
- // sendPeer sends queued messages to a peer.
- func (r *Router) sendPeer(peerID NodeID, conn Connection, peerQueue queue) error {
- for {
- start := time.Now().UTC()
-
- select {
- case envelope := <-peerQueue.dequeue():
- r.metrics.RouterPeerQueueRecv.Observe(time.Since(start).Seconds())
- if envelope.Message == nil {
- r.logger.Error("dropping nil message", "peer", peerID)
- continue
- }
-
- bz, err := proto.Marshal(envelope.Message)
- if err != nil {
- r.logger.Error("failed to marshal message", "peer", peerID, "err", err)
- continue
- }
-
- _, err = conn.SendMessage(envelope.channelID, bz)
- if err != nil {
- return err
- }
-
- r.logger.Debug("sent message", "peer", envelope.To, "message", envelope.Message)
-
- case <-peerQueue.closed():
- return nil
-
- case <-r.stopCh:
- return nil
- }
- }
- }
-
- // evictPeers evicts connected peers as requested by the peer manager.
- func (r *Router) evictPeers() {
- r.logger.Debug("starting evict routine")
- ctx := r.stopCtx()
-
- for {
- peerID, err := r.peerManager.EvictNext(ctx)
-
- switch {
- case errors.Is(err, context.Canceled):
- r.logger.Debug("stopping evict routine")
- return
-
- case err != nil:
- r.logger.Error("failed to find next peer to evict", "err", err)
- return
- }
-
- r.logger.Info("evicting peer", "peer", peerID)
-
- r.peerMtx.RLock()
- queue, ok := r.peerQueues[peerID]
- r.peerMtx.RUnlock()
-
- if ok {
- queue.close()
- }
- }
- }
-
- // OnStart implements service.Service.
- func (r *Router) OnStart() error {
- go r.dialPeers()
- go r.evictPeers()
-
- for _, transport := range r.transports {
- go r.acceptPeers(transport)
- }
-
- return nil
- }
-
- // OnStop implements service.Service.
- //
- // All channels must be closed by OpenChannel() callers before stopping the
- // router, to prevent blocked channel sends in reactors. Channels are not closed
- // here, since that would cause any reactor senders to panic, so it is the
- // sender's responsibility.
- func (r *Router) OnStop() {
- // Signal router shutdown.
- close(r.stopCh)
-
- // Close transport listeners (unblocks Accept calls).
- for _, transport := range r.transports {
- if err := transport.Close(); err != nil {
- r.logger.Error("failed to close transport", "transport", transport, "err", err)
- }
- }
-
- // Collect all remaining queues, and wait for them to close.
- queues := []queue{}
-
- r.channelMtx.RLock()
- for _, q := range r.channelQueues {
- queues = append(queues, q)
- }
- r.channelMtx.RUnlock()
-
- r.peerMtx.RLock()
- for _, q := range r.peerQueues {
- queues = append(queues, q)
- }
- r.peerMtx.RUnlock()
-
- for _, q := range queues {
- <-q.closed()
- }
- }
-
- // stopCtx returns a new context that is canceled when the router stops.
- func (r *Router) stopCtx() context.Context {
- ctx, cancel := context.WithCancel(context.Background())
-
- go func() {
- <-r.stopCh
- cancel()
- }()
-
- return ctx
- }
|