|
|
- #lang ivy1.7
- # ---
- # layout: page
- # title: Proof of Classic Safety
- # ---
-
- include tendermint
- include abstract_tendermint
-
- # Here we prove the first accountability property: if two well-behaved nodes
- # disagree, then there are two quorums Q1 and Q2 such that all members of the
- # intersection of Q1 and Q2 have violated the accountability properties.
-
- # The proof is done in two steps: first we prove the abstract specification
- # satisfies the property, and then we show by refinement that this property
- # also holds in the concrete specification.
-
- # To see what is checked in the refinement proof, use `ivy_show isolate=accountable_safety_1 accountable_safety_1.ivy`
- # To see what is checked in the abstract correctness proof, use `ivy_show isolate=abstract_accountable_safety_1 accountable_safety_1.ivy`
- # To check the whole proof, use `ivy_check accountable_safety_1.ivy`.
-
-
- # Proof of the accountability property in the abstract specification
- # ==================================================================
-
- # We prove with tactics (see `lemma_1` and `lemma_2`) that, if some basic
- # invariants hold (see `invs` below), then the accountability property holds.
-
- isolate abstract_accountable_safety = {
-
- instantiate abstract_tendermint
-
- # The main property
- # -----------------
-
- # If there is disagreement, then there is evidence that a third of the nodes
- # have violated the protocol:
- invariant [accountability] agreement | exists Q1,Q2 . nset.is_quorum(Q1) & nset.is_quorum(Q2) & (forall N . nset.member(N,Q1) & nset.member(N,Q2) -> observed_equivocation(N) | observed_unlawful_prevote(N))
- proof {
- apply lemma_2.thm # this reduces to goal to three subgoals: p1, p2, and p3 (see their definition below)
- proof [p1] {
- assume invs.inv1
- }
- proof [p2] {
- assume invs.inv2
- }
- proof [p3] {
- assume invs.inv3
- }
- }
-
- # The invariants
- # --------------
-
- isolate invs = {
-
- # well-behaved nodes observe their own actions faithfully:
- invariant [inv1] well_behaved(N) -> (observed_precommitted(N,R,V) = precommitted(N,R,V))
- # if a value is precommitted by a well-behaved node, then a quorum is observed to prevote it:
- invariant [inv2] (exists N . well_behaved(N) & precommitted(N,R,V)) & V ~= value.nil -> exists Q . nset.is_quorum(Q) & forall N2 . nset.member(N2,Q) -> observed_prevoted(N2,R,V)
- # if a value is decided by a well-behaved node, then a quorum is observed to precommit it:
- invariant [inv3] (exists N . well_behaved(N) & decided(N,R,V)) -> 0 <= R & V ~= value.nil & exists Q . nset.is_quorum(Q) & forall N2 . nset.member(N2,Q) -> observed_precommitted(N2,R,V)
- private {
- invariant (precommitted(N,R,V) | prevoted(N,R,V)) -> 0 <= R
- invariant R < 0 -> left_round(N,R)
- }
-
- } with this, nset, round, accountable_bft.max_2f_byzantine
-
- # The theorems proved with tactics
- # --------------------------------
-
- # Using complete induction on rounds, we prove that, assuming that the
- # invariants inv1, inv2, and inv3 hold, the accountability property holds.
-
- # For technical reasons, we separate the proof in two steps
- isolate lemma_1 = {
-
- # complete induction is not built-in, so we introduce it with an axiom. Note that this only holds for a type where 0 is the smallest element
- axiom [complete_induction] {
- relation p(X:round)
- { # base case
- property p(0)
- }
- { # inductive step: show that if the property is true for all X lower or equal to x and y=x+1, then the property is true of y
- individual a:round
- individual b:round
- property (forall X. 0 <= X & X <= a -> p(X)) & round.succ(a,b) -> p(b)
- }
- #--------------------------
- property forall X . 0 <= X -> p(X)
- }
-
- # the main lemma: if inv1 and inv2 below hold and a quorum is observed to
- # precommit V1 at R1 and another quorum is observed to precommit V2~=V1 at
- # R2>=R1, then the intersection of two quorums (i.e. f+1 nodes) is observed to
- # violate the protocol
- theorem [thm] {
- property [p1] forall N,R,V . well_behaved(N) -> (observed_precommitted(N,R,V) = precommitted(N,R,V))
- property [p2] forall R,V . (exists N . well_behaved(N) & precommitted(N,R,V)) -> V = value.nil | exists Q . nset.is_quorum(Q) & forall N2 . nset.member(N2,Q) -> observed_prevoted(N2,R,V)
- #-----------------------------------------------------------------------------------------------------------------------
- property forall R2. 0 <= R2 -> ((exists V2,Q1,R1,V1,Q1 . V1 ~= value.nil & V2 ~= value.nil & V1 ~= V2 & 0 <= R1 & R1 <= R2 & nset.is_quorum(Q1) & (forall N . nset.member(N,Q1) -> observed_precommitted(N,R1,V1)) & (exists Q2 . nset.is_quorum(Q2) & forall N . nset.member(N,Q2) -> observed_prevoted(N,R2,V2))) -> exists Q1,Q2 . nset.is_quorum(Q1) & nset.is_quorum(Q2) & forall N . nset.member(N,Q1) & nset.member(N,Q2) -> observed_equivocation(N) | observed_unlawful_prevote(N))
- }
- proof {
- apply complete_induction # the two subgoals (base case and inductive case) are then discharged automatically
- }
- } with this, round, nset, accountable_bft.max_2f_byzantine, defs.observed_equivocation_def, defs.observed_unlawful_prevote_def
-
- # Now we put lemma_1 in a form that matches exactly the accountability property
- # we want to prove. This is a bit cumbersome and could probably be improved.
- isolate lemma_2 = {
-
- theorem [thm] {
- property [p1] forall N,R,V . well_behaved(N) -> (observed_precommitted(N,R,V) = precommitted(N,R,V))
- property [p2] forall R,V . (exists N . well_behaved(N) & precommitted(N,R,V)) & V ~= value.nil -> exists Q . nset.is_quorum(Q) & forall N2 . nset.member(N2,Q) -> observed_prevoted(N2,R,V)
- property [p3] forall R,V. (exists N . well_behaved(N) & decided(N,R,V)) -> 0 <= R & V ~= value.nil & exists Q . nset.is_quorum(Q) & forall N2 . nset.member(N2,Q) -> observed_precommitted(N2,R,V)
- #-------------------------------------------------------------------------------------------------------------------------------------------
- property agreement | exists Q1,Q2 . nset.is_quorum(Q1) & nset.is_quorum(Q2) & forall N . nset.member(N,Q1) & nset.member(N,Q2) -> observed_equivocation(N) | observed_unlawful_prevote(N)
- }
- proof {
- assume lemma_1.thm
- }
-
- } with this, round, defs.agreement_def, lemma_1, nset, accountable_bft.max_2f_byzantine
-
- } with round
-
- # The final proof
- # ===============
-
- isolate accountable_safety_1 = {
-
- # First we instantiate the concrete protocol:
- instantiate tendermint(abstract_accountable_safety)
-
- # We then define what we mean by agreement
- relation agreement
- definition [agreement_def] agreement = forall N1,N2. well_behaved(N1) & well_behaved(N2) & server.decision(N1) ~= value.nil & server.decision(N2) ~= value.nil -> server.decision(N1) = server.decision(N2)
-
- invariant abstract_accountable_safety.agreement -> agreement
-
- invariant [accountability] agreement | exists Q1,Q2 . nset.is_quorum(Q1) & nset.is_quorum(Q2) & forall N . nset.member(N,Q1) & nset.member(N,Q2) -> abstract_accountable_safety.observed_equivocation(N) | abstract_accountable_safety.observed_unlawful_prevote(N)
-
- } with value, round, proposers, shim, abstract_accountable_safety, abstract_accountable_safety.defs.agreement_def, accountable_safety_1.agreement_def
|