@ -1,152 +1 @@ | |||
# -*- coding: utf-8 -*- | |||
from nd2reader.model import Image, ImageSet | |||
from nd2reader.parser import Nd2Parser | |||
import six | |||
class Nd2(Nd2Parser): | |||
""" | |||
Allows easy access to NIS Elements .nd2 image files. | |||
""" | |||
def __init__(self, filename): | |||
super(Nd2, self).__init__(filename) | |||
self._filename = filename | |||
def __repr__(self): | |||
return "\n".join(["<ND2 %s>" % self._filename, | |||
"Created: %s" % self.absolute_start.strftime("%Y-%m-%d %H:%M:%S"), | |||
"Image size: %sx%s (HxW)" % (self.height, self.width), | |||
"Image cycles: %s" % len(self.time_indexes), | |||
"Channels: %s" % ", ".join(["'%s'" % str(channel) for channel in self.channels]), | |||
"Fields of View: %s" % len(self.fields_of_view), | |||
"Z-Levels: %s" % len(self.z_levels) | |||
]) | |||
def __len__(self): | |||
""" | |||
This should be the total number of images in the ND2, but it may be inaccurate. If the ND2 contains a | |||
different number of images in a cycle (i.e. there are "gap" images) it will be higher than reality. | |||
:rtype: int | |||
""" | |||
return self._total_images_per_channel * len(self.channels) | |||
def __getitem__(self, item): | |||
""" | |||
Allows slicing ND2s. | |||
>>> nd2 = Nd2("my_images.nd2") | |||
>>> image = nd2[16] # gets 17th frame | |||
>>> for image in nd2[100:200]: # iterate over the 100th to 200th images | |||
>>> do_something(image.data) | |||
>>> for image in nd2[::-1]: # iterate backwards | |||
>>> do_something(image.data) | |||
>>> for image in nd2[37:422:17]: # do something super weird if you really want to | |||
>>> do_something(image.data) | |||
:type item: int or slice | |||
:rtype: nd2reader.model.Image() or generator | |||
""" | |||
if isinstance(item, int): | |||
try: | |||
channel_offset = item % len(self.channels) | |||
fov = self._calculate_field_of_view(item) | |||
channel = self._calculate_channel(item) | |||
z_level = self._calculate_z_level(item) | |||
image_group_number = int(item / len(self.channels)) | |||
frame_number = self._calculate_frame_number(image_group_number, fov, z_level) | |||
timestamp, raw_image_data = self._get_raw_image_data(image_group_number, channel_offset) | |||
image = Image(timestamp, frame_number, raw_image_data, fov, channel, z_level, self.height, self.width) | |||
except (TypeError, ValueError): | |||
return None | |||
except KeyError: | |||
raise IndexError("Invalid frame number.") | |||
else: | |||
return image | |||
elif isinstance(item, slice): | |||
return self._slice(item.start, item.stop, item.step) | |||
raise IndexError | |||
def _slice(self, start, stop, step): | |||
""" | |||
Allows for iteration over a selection of the entire dataset. | |||
:type start: int | |||
:type stop: int | |||
:type step: int | |||
:rtype: nd2reader.model.Image() or None | |||
""" | |||
start = start if start is not None else 0 | |||
step = step if step is not None else 1 | |||
stop = stop if stop is not None else len(self) | |||
# This weird thing with the step allows you to iterate backwards over the images | |||
for i in range(start, stop)[::step]: | |||
yield self[i] | |||
@property | |||
def image_sets(self): | |||
""" | |||
Iterates over groups of related images. This is useful if your ND2 contains multiple fields of view. | |||
A typical use case might be that you have, say, four areas of interest that you're monitoring, and every | |||
minute you take a bright field and GFP image of each one. For each cycle, this method would produce four | |||
ImageSet objects, each containing one bright field and one GFP image. | |||
:return: model.ImageSet() | |||
""" | |||
for time_index in self.time_indexes: | |||
image_set = ImageSet() | |||
for fov in self.fields_of_view: | |||
for channel_name in self.channels: | |||
for z_level in self.z_levels: | |||
image = self.get_image(time_index, fov, channel_name, z_level) | |||
if image is not None: | |||
image_set.add(image) | |||
yield image_set | |||
@property | |||
def height(self): | |||
""" | |||
:return: height of each image, in pixels | |||
:rtype: int | |||
""" | |||
return self.metadata[six.b('ImageAttributes')][six.b('SLxImageAttributes')][six.b('uiHeight')] | |||
@property | |||
def width(self): | |||
""" | |||
:return: width of each image, in pixels | |||
:rtype: int | |||
""" | |||
return self.metadata[six.b('ImageAttributes')][six.b('SLxImageAttributes')][six.b('uiWidth')] | |||
def get_image(self, frame_number, field_of_view, channel_name, z_level): | |||
""" | |||
Returns an Image if data exists for the given parameters, otherwise returns None. In general, you should avoid | |||
using this method unless you're very familiar with the structure of ND2 files. | |||
:type frame_number: int | |||
:param field_of_view: the label for the place in the XY-plane where this image was taken. | |||
:type field_of_view: int | |||
:param channel_name: the name of the color of this image | |||
:type channel_name: str | |||
:param z_level: the label for the location in the Z-plane where this image was taken. | |||
:type z_level: int | |||
:rtype: nd2reader.model.Image() or None | |||
""" | |||
image_group_number = self._calculate_image_group_number(frame_number, field_of_view, z_level) | |||
try: | |||
timestamp, raw_image_data = self._get_raw_image_data(image_group_number, self._channel_offset[channel_name]) | |||
image = Image(timestamp, frame_number, raw_image_data, field_of_view, channel_name, z_level, self.height, self.width) | |||
except TypeError: | |||
return None | |||
else: | |||
return image | |||
from nd2reader.interface import Nd2 |
@ -0,0 +1 @@ | |||
from nd2reader.driver.driver import get_driver |
@ -0,0 +1,11 @@ | |||
def get_driver(filename, version): | |||
""" | |||
Instantiates the correct driver for the ND2, which allows us to parse metadata and access images. | |||
:param filename: the path to the ND2 | |||
:type filename: str | |||
:param version: the version of the ND2. Note that this is different than the version of NIS Elements used to create the ND2. | |||
:type version: tuple | |||
""" | |||
return 1 |
@ -0,0 +1,386 @@ | |||
# -*- coding: utf-8 -*- | |||
import array | |||
from datetime import datetime | |||
import numpy as np | |||
import re | |||
import struct | |||
import six | |||
class Nd2Parser(object): | |||
""" | |||
Reads .nd2 files, provides an interface to the metadata, and generates numpy arrays from the image data. | |||
You should not ever need to instantiate this class manually unless you're a developer. | |||
""" | |||
CHUNK_HEADER = 0xabeceda | |||
CHUNK_MAP_START = six.b("ND2 FILEMAP SIGNATURE NAME 0001!") | |||
CHUNK_MAP_END = six.b("ND2 CHUNK MAP SIGNATURE 0000001!") | |||
def __init__(self, filename): | |||
self._absolute_start = None | |||
self._filename = filename | |||
self._fh = None | |||
self._channels = None | |||
self._channel_count = None | |||
self._chunk_map_start_location = None | |||
self._cursor_position = 0 | |||
self._dimension_text = None | |||
self._fields_of_view = None | |||
self._label_map = {} | |||
self.metadata = {} | |||
self._read_map() | |||
self._time_indexes = None | |||
self._parse_metadata() | |||
self._z_levels = None | |||
@property | |||
def absolute_start(self): | |||
""" | |||
The date and time when acquisition began. | |||
:rtype: datetime.datetime() | |||
""" | |||
if self._absolute_start is None: | |||
for line in self.metadata[six.b('ImageTextInfo')][six.b('SLxImageTextInfo')].values(): | |||
line = line.decode("utf8") | |||
absolute_start_12 = None | |||
absolute_start_24 = None | |||
# ND2s seem to randomly switch between 12- and 24-hour representations. | |||
try: | |||
absolute_start_24 = datetime.strptime(line, "%m/%d/%Y %H:%M:%S") | |||
except (TypeError, ValueError): | |||
pass | |||
try: | |||
absolute_start_12 = datetime.strptime(line, "%m/%d/%Y %I:%M:%S %p") | |||
except (TypeError, ValueError): | |||
pass | |||
if not absolute_start_12 and not absolute_start_24: | |||
continue | |||
return absolute_start_12 if absolute_start_12 else absolute_start_24 | |||
raise ValueError("This ND2 has no recorded start time. This is probably a bug.") | |||
return self._absolute_start | |||
@property | |||
def channels(self): | |||
""" | |||
These are labels created by the NIS Elements user. Typically they may a short description of the filter cube | |||
used (e.g. "bright field", "GFP", etc.) | |||
:rtype: list | |||
""" | |||
if not self._channels: | |||
self._channels = [] | |||
metadata = self.metadata[six.b('ImageMetadataSeq')][six.b('SLxPictureMetadata')][six.b('sPicturePlanes')] | |||
try: | |||
validity = self.metadata[six.b('ImageMetadata')][six.b('SLxExperiment')][six.b('ppNextLevelEx')][six.b('')][0][six.b('ppNextLevelEx')][six.b('')][0][six.b('pItemValid')] | |||
except KeyError: | |||
# If none of the channels have been deleted, there is no validity list, so we just make one | |||
validity = [True for _ in metadata] | |||
# Channel information is contained in dictionaries with the keys a0, a1...an where the number | |||
# indicates the order in which the channel is stored. So by sorting the dicts alphabetically | |||
# we get the correct order. | |||
for (label, chan), valid in zip(sorted(metadata[six.b('sPlaneNew')].items()), validity): | |||
if not valid: | |||
continue | |||
self._channels.append(chan[six.b('sDescription')].decode("utf8")) | |||
return self._channels | |||
@property | |||
def fields_of_view(self): | |||
""" | |||
The metadata contains information about fields of view, but it contains it even if some fields | |||
of view were cropped. We can't find anything that states which fields of view are actually | |||
in the image data, so we have to calculate it. There probably is something somewhere, since | |||
NIS Elements can figure it out, but we haven't found it yet. | |||
:rtype: list | |||
""" | |||
if self._fields_of_view is None: | |||
self._fields_of_view = self._parse_dimension_text(r""".*?XY\((\d+)\).*?""") | |||
return self._fields_of_view | |||
@property | |||
def frames(self): | |||
""" | |||
The number of cycles. | |||
:rtype: list | |||
""" | |||
if self._time_indexes is None: | |||
self._time_indexes = self._parse_dimension_text(r""".*?T'\((\d+)\).*?""") | |||
return self._time_indexes | |||
@property | |||
def z_levels(self): | |||
""" | |||
The different levels in the Z-plane. Just a sequence from 0 to n. | |||
:rtype: list | |||
""" | |||
if self._z_levels is None: | |||
self._z_levels = self._parse_dimension_text(r""".*?Z\((\d+)\).*?""") | |||
return self._z_levels | |||
def _calculate_field_of_view(self, frame_number): | |||
images_per_cycle = len(self.z_levels) * len(self.channels) | |||
return int((frame_number - (frame_number % images_per_cycle)) / images_per_cycle) % len(self.fields_of_view) | |||
def _calculate_channel(self, frame_number): | |||
return self.channels[frame_number % len(self.channels)] | |||
def _calculate_z_level(self, frame_number): | |||
return self.z_levels[int(((frame_number - (frame_number % len(self.channels))) / len(self.channels)) % len(self.z_levels))] | |||
@property | |||
def _file_handle(self): | |||
if self._fh is None: | |||
self._fh = open(self._filename, "rb") | |||
return self._fh | |||
def _get_raw_image_data(self, image_group_number, channel_offset): | |||
""" | |||
Reads the raw bytes and the timestamp of an image. | |||
:param image_group_number: groups are made of images with the same time index, field of view and z-level. | |||
:type image_group_number: int | |||
:param channel_offset: the offset in the array where the bytes for this image are found. | |||
:type channel_offset: int | |||
:return: (int, array.array()) or None | |||
""" | |||
chunk = self._label_map[six.b("ImageDataSeq|%d!" % image_group_number)] | |||
data = self._read_chunk(chunk) | |||
# All images in the same image group share the same timestamp! So if you have complicated image data, | |||
# your timestamps may not be entirely accurate. Practically speaking though, they'll only be off by a few | |||
# seconds unless you're doing something super weird. | |||
timestamp = struct.unpack("d", data[:8])[0] | |||
image_group_data = array.array("H", data) | |||
image_data_start = 4 + channel_offset | |||
# The images for the various channels are interleaved within the same array. For example, the second image | |||
# of a four image group will be composed of bytes 2, 6, 10, etc. If you understand why someone would design | |||
# a data structure that way, please send the author of this library a message. | |||
image_data = image_group_data[image_data_start::len(self.channels)] | |||
# Skip images that are all zeros! This is important, since NIS Elements creates blank "gap" images if you | |||
# don't have the same number of images each cycle. We discovered this because we only took GFP images every | |||
# other cycle to reduce phototoxicity, but NIS Elements still allocated memory as if we were going to take | |||
# them every cycle. | |||
if np.any(image_data): | |||
return timestamp, image_data | |||
return None | |||
@property | |||
def _dimensions(self): | |||
""" | |||
While there are metadata values that represent a lot of what we want to capture, they seem to be unreliable. | |||
Sometimes certain elements don't exist, or change their data type randomly. However, the human-readable text | |||
is always there and in the same exact format, so we just parse that instead. | |||
:rtype: str | |||
""" | |||
if self._dimension_text is None: | |||
for line in self.metadata[six.b('ImageTextInfo')][six.b('SLxImageTextInfo')].values(): | |||
if six.b("Dimensions:") in line: | |||
metadata = line | |||
break | |||
else: | |||
raise ValueError("Could not parse metadata dimensions!") | |||
for line in metadata.split(six.b("\r\n")): | |||
if line.startswith(six.b("Dimensions:")): | |||
self._dimension_text = line | |||
break | |||
else: | |||
raise ValueError("Could not parse metadata dimensions!") | |||
return self._dimension_text | |||
def _calculate_image_group_number(self, time_index, fov, z_level): | |||
""" | |||
Images are grouped together if they share the same time index, field of view, and z-level. | |||
:type time_index: int | |||
:type fov: int | |||
:type z_level: int | |||
:rtype: int | |||
""" | |||
return time_index * len(self.fields_of_view) * len(self.z_levels) + (fov * len(self.z_levels) + z_level) | |||
def _calculate_frame_number(self, image_group_number, fov, z_level): | |||
return (image_group_number - (fov * len(self.z_levels) + z_level)) / (len(self.fields_of_view) * len(self.z_levels)) | |||
@property | |||
def _channel_offset(self): | |||
""" | |||
Image data is interleaved for each image set. That is, if there are four images in a set, the first image | |||
will consist of pixels 1, 5, 9, etc, the second will be pixels 2, 6, 10, and so forth. | |||
:rtype: dict | |||
""" | |||
channel_offset = {} | |||
for n, channel in enumerate(self._channels): | |||
channel_offset[channel] = n | |||
return channel_offset | |||
def _parse_dimension_text(self, pattern): | |||
try: | |||
count = int(re.match(pattern, self._dimensions).group(1)) | |||
except AttributeError: | |||
return [0] | |||
except TypeError: | |||
match = re.match(pattern, self._dimensions.decode("utf8")) | |||
if not match: | |||
return [0] | |||
return list(range(int(match.group(1)))) | |||
else: | |||
return list(range(count)) | |||
@property | |||
def _total_images_per_channel(self): | |||
""" | |||
The total number of images per channel. Warning: this may be inaccurate as it includes "gap" images. | |||
:rtype: int | |||
""" | |||
return self.metadata[six.b('ImageAttributes')][six.b('SLxImageAttributes')][six.b('uiSequenceCount')] | |||
def _parse_metadata(self): | |||
""" | |||
Reads all metadata. | |||
""" | |||
for label in self._label_map.keys(): | |||
if label.endswith(six.b("LV!")) or six.b("LV|") in label: | |||
data = self._read_chunk(self._label_map[label]) | |||
stop = label.index(six.b("LV")) | |||
self.metadata[label[:stop]] = self._read_metadata(data, 1) | |||
def _read_map(self): | |||
""" | |||
Every label ends with an exclamation point, however, we can't directly search for those to find all the labels | |||
as some of the bytes contain the value 33, which is the ASCII code for "!". So we iteratively find each label, | |||
grab the subsequent data (always 16 bytes long), advance to the next label and repeat. | |||
""" | |||
self._file_handle.seek(-8, 2) | |||
chunk_map_start_location = struct.unpack("Q", self._file_handle.read(8))[0] | |||
self._file_handle.seek(chunk_map_start_location) | |||
raw_text = self._file_handle.read(-1) | |||
label_start = raw_text.index(Nd2Parser.CHUNK_MAP_START) + 32 | |||
while True: | |||
data_start = raw_text.index(six.b("!"), label_start) + 1 | |||
key = raw_text[label_start: data_start] | |||
location, length = struct.unpack("QQ", raw_text[data_start: data_start + 16]) | |||
if key == Nd2Parser.CHUNK_MAP_END: | |||
# We've reached the end of the chunk map | |||
break | |||
self._label_map[key] = location | |||
label_start = data_start + 16 | |||
def _read_chunk(self, chunk_location): | |||
""" | |||
Gets the data for a given chunk pointer | |||
""" | |||
self._file_handle.seek(chunk_location) | |||
# The chunk metadata is always 16 bytes long | |||
chunk_metadata = self._file_handle.read(16) | |||
header, relative_offset, data_length = struct.unpack("IIQ", chunk_metadata) | |||
if header != Nd2Parser.CHUNK_HEADER: | |||
raise ValueError("The ND2 file seems to be corrupted.") | |||
# We start at the location of the chunk metadata, skip over the metadata, and then proceed to the | |||
# start of the actual data field, which is at some arbitrary place after the metadata. | |||
self._file_handle.seek(chunk_location + 16 + relative_offset) | |||
return self._file_handle.read(data_length) | |||
def _parse_unsigned_char(self, data): | |||
return struct.unpack("B", data.read(1))[0] | |||
def _parse_unsigned_int(self, data): | |||
return struct.unpack("I", data.read(4))[0] | |||
def _parse_unsigned_long(self, data): | |||
return struct.unpack("Q", data.read(8))[0] | |||
def _parse_double(self, data): | |||
return struct.unpack("d", data.read(8))[0] | |||
def _parse_string(self, data): | |||
value = data.read(2) | |||
while not value.endswith(six.b("\x00\x00")): | |||
# the string ends at the first instance of \x00\x00 | |||
value += data.read(2) | |||
return value.decode("utf16")[:-1].encode("utf8") | |||
def _parse_char_array(self, data): | |||
array_length = struct.unpack("Q", data.read(8))[0] | |||
return array.array("B", data.read(array_length)) | |||
def _parse_metadata_item(self, data): | |||
""" | |||
Reads hierarchical data, analogous to a Python dict. | |||
""" | |||
new_count, length = struct.unpack("<IQ", data.read(12)) | |||
length -= data.tell() - self._cursor_position | |||
next_data_length = data.read(length) | |||
value = self._read_metadata(next_data_length, new_count) | |||
# Skip some offsets | |||
data.read(new_count * 8) | |||
return value | |||
def _get_value(self, data, data_type): | |||
""" | |||
ND2s use various codes to indicate different data types, which we translate here. | |||
""" | |||
parser = {1: self._parse_unsigned_char, | |||
2: self._parse_unsigned_int, | |||
3: self._parse_unsigned_int, | |||
5: self._parse_unsigned_long, | |||
6: self._parse_double, | |||
8: self._parse_string, | |||
9: self._parse_char_array, | |||
11: self._parse_metadata_item} | |||
return parser[data_type](data) | |||
def _read_metadata(self, data, count): | |||
""" | |||
Iterates over each element some section of the metadata and parses it. | |||
""" | |||
data = six.BytesIO(data) | |||
metadata = {} | |||
for _ in range(count): | |||
self._cursor_position = data.tell() | |||
header = data.read(2) | |||
if not header: | |||
# We've reached the end of some hierarchy of data | |||
break | |||
if six.PY3: | |||
header = header.decode("utf8") | |||
data_type, name_length = map(ord, header) | |||
name = data.read(name_length * 2).decode("utf16")[:-1].encode("utf8") | |||
value = self._get_value(data, data_type) | |||
if name not in metadata.keys(): | |||
metadata[name] = value | |||
else: | |||
if not isinstance(metadata[name], list): | |||
# We have encountered this key exactly once before. Since we're seeing it again, we know we | |||
# need to convert it to a list before proceeding. | |||
metadata[name] = [metadata[name]] | |||
# We've encountered this key before so we're guaranteed to be dealing with a list. Thus we append | |||
# the value to the already-existing list. | |||
metadata[name].append(value) | |||
return metadata |
@ -0,0 +1,36 @@ | |||
import re | |||
class InvalidVersionError(Exception): | |||
pass | |||
def get_version(filename): | |||
""" | |||
Determines what version the ND2 is. | |||
:param filename: the path (absolute or relative) to the ND2 | |||
:type filename: str | |||
""" | |||
with open(filename, 'rb') as f: | |||
# the first 16 bytes seem to have no meaning, so we skip them | |||
f.seek(16) | |||
# the next 38 bytes contain the string that we want to parse. Unlike most of the ND2, this is in UTF-8 | |||
data = f.read(38).decode("utf8") | |||
return parse_version(data) | |||
def parse_version(data): | |||
""" | |||
Parses a string with the version data in it. | |||
:param data: the 19th through 54th byte of the ND2, representing the version | |||
:type data: unicode | |||
""" | |||
match = re.search(r"""^ND2 FILE SIGNATURE CHUNK NAME01!Ver(?P<major>\d)\.(?P<minor>\d)$""", data) | |||
if match: | |||
# We haven't seen a lot of ND2s but the ones we have seen conform to this | |||
return int(match.group('major')), int(match.group('minor')) | |||
raise InvalidVersionError("The version of the ND2 you specified is not supported.") |
@ -0,0 +1,154 @@ | |||
# -*- coding: utf-8 -*- | |||
from nd2reader.model import Image, ImageGroup | |||
from nd2reader.driver import get_driver | |||
from nd2reader.driver.version import get_version | |||
import six | |||
class Nd2(object): | |||
""" | |||
Allows easy access to NIS Elements .nd2 image files. | |||
""" | |||
def __init__(self, filename): | |||
version = get_version(filename) | |||
self._driver = get_driver(filename, version) | |||
self._metadata = self._driver.get_metadata() | |||
def __repr__(self): | |||
return "\n".join(["<ND2 %s>" % self._driver._filename, | |||
"Created: %s" % self._driver.absolute_start, | |||
"Image size: %sx%s (HxW)" % (self.height, self.width), | |||
"Frames: %s" % len(self.frames), | |||
"Channels: %s" % ", ".join(["'%s'" % str(channel) for channel in self.channels]), | |||
"Fields of View: %s" % len(self.fields_of_view), | |||
"Z-Levels: %s" % len(self.z_levels) | |||
]) | |||
def __len__(self): | |||
""" | |||
This should be the total number of images in the ND2, but it may be inaccurate. If the ND2 contains a | |||
different number of images in a cycle (i.e. there are "gap" images) it will be higher than reality. | |||
:rtype: int | |||
""" | |||
return self._driver.total_images_per_channel * len(self.channels) | |||
def __getitem__(self, item): | |||
""" | |||
Allows slicing ND2s. | |||
>>> nd2 = Nd2("my_images.nd2") | |||
>>> image = nd2[16] # gets 17th frame | |||
>>> for image in nd2[100:200]: # iterate over the 100th to 200th images | |||
>>> do_something(image.data) | |||
>>> for image in nd2[::-1]: # iterate backwards | |||
>>> do_something(image.data) | |||
>>> for image in nd2[37:422:17]: # do something super weird if you really want to | |||
>>> do_something(image.data) | |||
:type item: int or slice | |||
:rtype: nd2reader.model.Image() or generator | |||
""" | |||
if isinstance(item, int): | |||
try: | |||
channel_offset = item % len(self.channels) | |||
fov = self._calculate_field_of_view(item) | |||
channel = self._calculate_channel(item) | |||
z_level = self._calculate_z_level(item) | |||
image_group_number = int(item / len(self.channels)) | |||
frame_number = self._calculate_frame_number(image_group_number, fov, z_level) | |||
timestamp, raw_image_data = self._get_raw_image_data(image_group_number, channel_offset) | |||
image = Image(timestamp, frame_number, raw_image_data, fov, channel, z_level, self.height, self.width) | |||
except (TypeError, ValueError): | |||
return None | |||
except KeyError: | |||
raise IndexError("Invalid frame number.") | |||
else: | |||
return image | |||
elif isinstance(item, slice): | |||
return self._slice(item.start, item.stop, item.step) | |||
raise IndexError | |||
def _slice(self, start, stop, step): | |||
""" | |||
Allows for iteration over a selection of the entire dataset. | |||
:type start: int | |||
:type stop: int | |||
:type step: int | |||
:rtype: nd2reader.model.Image() or None | |||
""" | |||
start = start if start is not None else 0 | |||
step = step if step is not None else 1 | |||
stop = stop if stop is not None else len(self) | |||
# This weird thing with the step allows you to iterate backwards over the images | |||
for i in range(start, stop)[::step]: | |||
yield self[i] | |||
@property | |||
def image_sets(self): | |||
""" | |||
Iterates over groups of related images. This is useful if your ND2 contains multiple fields of view. | |||
A typical use case might be that you have, say, four areas of interest that you're monitoring, and every | |||
minute you take a bright field and GFP image of each one. For each cycle, this method would produce four | |||
ImageSet objects, each containing one bright field and one GFP image. | |||
:return: model.ImageSet() | |||
""" | |||
for time_index in self.time_indexes: | |||
image_set = ImageGroup() | |||
for fov in self.fields_of_view: | |||
for channel_name in self.channels: | |||
for z_level in self.z_levels: | |||
image = self.get_image(time_index, fov, channel_name, z_level) | |||
if image is not None: | |||
image_set.add(image) | |||
yield image_set | |||
@property | |||
def height(self): | |||
""" | |||
:return: height of each image, in pixels | |||
:rtype: int | |||
""" | |||
return self.metadata[six.b('ImageAttributes')][six.b('SLxImageAttributes')][six.b('uiHeight')] | |||
@property | |||
def width(self): | |||
""" | |||
:return: width of each image, in pixels | |||
:rtype: int | |||
""" | |||
return self.metadata[six.b('ImageAttributes')][six.b('SLxImageAttributes')][six.b('uiWidth')] | |||
def get_image(self, frame_number, field_of_view, channel_name, z_level): | |||
""" | |||
Returns an Image if data exists for the given parameters, otherwise returns None. In general, you should avoid | |||
using this method unless you're very familiar with the structure of ND2 files. | |||
:type frame_number: int | |||
:param field_of_view: the label for the place in the XY-plane where this image was taken. | |||
:type field_of_view: int | |||
:param channel_name: the name of the color of this image | |||
:type channel_name: str | |||
:param z_level: the label for the location in the Z-plane where this image was taken. | |||
:type z_level: int | |||
:rtype: nd2reader.model.Image() or None | |||
""" | |||
image_group_number = self._calculate_image_group_number(frame_number, field_of_view, z_level) | |||
try: | |||
timestamp, raw_image_data = self._get_raw_image_data(image_group_number, self._channel_offset[channel_name]) | |||
image = Image(timestamp, frame_number, raw_image_data, field_of_view, channel_name, z_level, self.height, self.width) | |||
except TypeError: | |||
return None | |||
else: | |||
return image |
@ -1,155 +1,2 @@ | |||
# -*- coding: utf-8 -*- | |||
import collections | |||
import numpy as np | |||
import logging | |||
log = logging.getLogger(__name__) | |||
class Image(object): | |||
def __init__(self, timestamp, frame_number, raw_array, field_of_view, channel, z_level, height, width): | |||
""" | |||
A wrapper around the raw pixel data of an image. | |||
:param timestamp: The frame number relative to the . | |||
:type timestamp: int | |||
:param timestamp: The number of milliseconds after the beginning of the acquisition that this image was taken. | |||
:type timestamp: int | |||
:param raw_array: The raw sequence of bytes that represents the image. | |||
:type raw_array: array.array() | |||
:param field_of_view: The label for the place in the XY-plane where this image was taken. | |||
:type field_of_view: int | |||
:param channel: The name of the color of this image | |||
:type channel: str | |||
:param z_level: The label for the location in the Z-plane where this image was taken. | |||
:type z_level: int | |||
:param height: The height of the image in pixels. | |||
:type height: int | |||
:param width: The width of the image in pixels. | |||
:type width: int | |||
""" | |||
self._timestamp = timestamp | |||
self._frame_number = int(frame_number) | |||
self._raw_data = raw_array | |||
self._field_of_view = field_of_view | |||
self._channel = channel | |||
self._z_level = z_level | |||
self._height = height | |||
self._width = width | |||
self._data = None | |||
def __repr__(self): | |||
return "\n".join(["<ND2 Image>", | |||
"%sx%s (HxW)" % (self._height, self._width), | |||
"Timestamp: %s" % self.timestamp, | |||
"Frame: %s" % self._frame_number, | |||
"Field of View: %s" % self.field_of_view, | |||
"Channel: %s" % self.channel, | |||
"Z-Level: %s" % self.z_level, | |||
]) | |||
@property | |||
def data(self): | |||
""" | |||
The actual image data. | |||
:rtype np.array() | |||
""" | |||
if self._data is None: | |||
# The data is just a 1-dimensional array originally. | |||
# We convert it to a 2D image here. | |||
self._data = np.reshape(self._raw_data, (self._height, self._width)) | |||
return self._data | |||
@property | |||
def field_of_view(self): | |||
""" | |||
Which of the fixed locations this image was taken at. | |||
:rtype int: | |||
""" | |||
return self._field_of_view | |||
@property | |||
def timestamp(self): | |||
""" | |||
The number of seconds after the beginning of the acquisition that the image was taken. Note that for a given | |||
field of view and z-level offset, if you have images of multiple channels, they will all be given the same | |||
timestamp. No, this doesn't make much sense. But that's how ND2s are structured, so if your experiment depends | |||
on millisecond accuracy, you need to find an alternative imaging system. | |||
:rtype float: | |||
""" | |||
return self._timestamp / 1000.0 | |||
@property | |||
def frame_number(self): | |||
return self._frame_number | |||
@property | |||
def channel(self): | |||
""" | |||
The name of the filter used to acquire this image. These are user-supplied in NIS Elements. | |||
:rtype str: | |||
""" | |||
return self._channel | |||
@property | |||
def z_level(self): | |||
""" | |||
The vertical offset of the image. These are simple integers starting from 0, where the 0 is the lowest | |||
z-level and each subsequent level incremented by 1. | |||
For example, if you acquired images at -3 µm, 0 µm, and +3 µm, your z-levels would be: | |||
-3 µm: 0 | |||
0 µm: 1 | |||
+3 µm: 2 | |||
:rtype int: | |||
""" | |||
return self._z_level | |||
class ImageSet(object): | |||
""" | |||
A group of images that were taken at roughly the same time. | |||
""" | |||
def __init__(self): | |||
self._images = collections.defaultdict(dict) | |||
def __len__(self): | |||
""" The number of images in the image set. """ | |||
return sum([len(channel) for channel in self._images.values()]) | |||
def __repr__(self): | |||
return "\n".join(["<ND2 Image Set>", | |||
"Image count: %s" % len(self)]) | |||
def get(self, channel, z_level=0): | |||
""" | |||
Retrieve an image with a given channel and z-level. For most users, z_level will always be 0. | |||
:type channel: str | |||
:type z_level: int | |||
""" | |||
return self._images.get(channel).get(z_level) | |||
def add(self, image): | |||
""" | |||
Stores an image. | |||
:type image: nd2reader.model.Image() | |||
""" | |||
self._images[image.channel][image.z_level] = image | |||
from nd2reader.model.image import Image | |||
from nd2reader.model.group import ImageGroup |
@ -0,0 +1,37 @@ | |||
import collections | |||
class ImageGroup(object): | |||
""" | |||
A group of images that were taken at roughly the same time and in the same field of view. | |||
""" | |||
def __init__(self): | |||
self._images = collections.defaultdict(dict) | |||
def __len__(self): | |||
""" The number of images in the image set. """ | |||
return sum([len(channel) for channel in self._images.values()]) | |||
def __repr__(self): | |||
return "\n".join(["<ND2 Image Group>", | |||
"Image count: %s" % len(self)]) | |||
def get(self, channel, z_level=0): | |||
""" | |||
Retrieve an image with a given channel and z-level. For most users, z_level will always be 0. | |||
:type channel: str | |||
:type z_level: int | |||
""" | |||
return self._images.get(channel).get(z_level) | |||
def add(self, image): | |||
""" | |||
Stores an image. | |||
:type image: nd2reader.model.Image() | |||
""" | |||
self._images[image.channel][image.z_level] = image |
@ -0,0 +1,115 @@ | |||
# -*- coding: utf-8 -*- | |||
import numpy as np | |||
class Image(object): | |||
def __init__(self, timestamp, frame_number, raw_array, field_of_view, channel, z_level, height, width): | |||
""" | |||
A wrapper around the raw pixel data of an image. | |||
:param timestamp: The frame number relative to the . | |||
:type timestamp: int | |||
:param timestamp: The number of milliseconds after the beginning of the acquisition that this image was taken. | |||
:type timestamp: int | |||
:param raw_array: The raw sequence of bytes that represents the image. | |||
:type raw_array: array.array() | |||
:param field_of_view: The label for the place in the XY-plane where this image was taken. | |||
:type field_of_view: int | |||
:param channel: The name of the color of this image | |||
:type channel: str | |||
:param z_level: The label for the location in the Z-plane where this image was taken. | |||
:type z_level: int | |||
:param height: The height of the image in pixels. | |||
:type height: int | |||
:param width: The width of the image in pixels. | |||
:type width: int | |||
""" | |||
self._timestamp = timestamp | |||
self._frame_number = int(frame_number) | |||
self._raw_data = raw_array | |||
self._field_of_view = field_of_view | |||
self._channel = channel | |||
self._z_level = z_level | |||
self._height = height | |||
self._width = width | |||
self._data = None | |||
def __repr__(self): | |||
return "\n".join(["<ND2 Image>", | |||
"%sx%s (HxW)" % (self._height, self._width), | |||
"Timestamp: %s" % self.timestamp, | |||
"Frame: %s" % self._frame_number, | |||
"Field of View: %s" % self.field_of_view, | |||
"Channel: %s" % self.channel, | |||
"Z-Level: %s" % self.z_level, | |||
]) | |||
@property | |||
def data(self): | |||
""" | |||
The actual image data. | |||
:rtype np.array() | |||
""" | |||
if self._data is None: | |||
# The data is just a 1-dimensional array originally. | |||
# We convert it to a 2D image here. | |||
self._data = np.reshape(self._raw_data, (self._height, self._width)) | |||
return self._data | |||
@property | |||
def field_of_view(self): | |||
""" | |||
Which of the fixed locations this image was taken at. | |||
:rtype int: | |||
""" | |||
return self._field_of_view | |||
@property | |||
def timestamp(self): | |||
""" | |||
The number of seconds after the beginning of the acquisition that the image was taken. Note that for a given | |||
field of view and z-level offset, if you have images of multiple channels, they will all be given the same | |||
timestamp. No, this doesn't make much sense. But that's how ND2s are structured, so if your experiment depends | |||
on millisecond accuracy, you need to find an alternative imaging system. | |||
:rtype float: | |||
""" | |||
return self._timestamp / 1000.0 | |||
@property | |||
def frame_number(self): | |||
return self._frame_number | |||
@property | |||
def channel(self): | |||
""" | |||
The name of the filter used to acquire this image. These are user-supplied in NIS Elements. | |||
:rtype str: | |||
""" | |||
return self._channel | |||
@property | |||
def z_level(self): | |||
""" | |||
The vertical offset of the image. These are simple integers starting from 0, where the 0 is the lowest | |||
z-level and each subsequent level incremented by 1. | |||
For example, if you acquired images at -3 µm, 0 µm, and +3 µm, your z-levels would be: | |||
-3 µm: 0 | |||
0 µm: 1 | |||
+3 µm: 2 | |||
:rtype int: | |||
""" | |||
return self._z_level |
@ -1,386 +0,0 @@ | |||
# -*- coding: utf-8 -*- | |||
import array | |||
from datetime import datetime | |||
import numpy as np | |||
import re | |||
import struct | |||
import six | |||
class Nd2Parser(object): | |||
""" | |||
Reads .nd2 files, provides an interface to the metadata, and generates numpy arrays from the image data. | |||
You should not ever need to instantiate this class manually unless you're a developer. | |||
""" | |||
CHUNK_HEADER = 0xabeceda | |||
CHUNK_MAP_START = six.b("ND2 FILEMAP SIGNATURE NAME 0001!") | |||
CHUNK_MAP_END = six.b("ND2 CHUNK MAP SIGNATURE 0000001!") | |||
def __init__(self, filename): | |||
self._absolute_start = None | |||
self._filename = filename | |||
self._fh = None | |||
self._channels = None | |||
self._channel_count = None | |||
self._chunk_map_start_location = None | |||
self._cursor_position = 0 | |||
self._dimension_text = None | |||
self._fields_of_view = None | |||
self._label_map = {} | |||
self.metadata = {} | |||
self._read_map() | |||
self._time_indexes = None | |||
self._parse_metadata() | |||
self._z_levels = None | |||
@property | |||
def absolute_start(self): | |||
""" | |||
The date and time when acquisition began. | |||
:rtype: datetime.datetime() | |||
""" | |||
if self._absolute_start is None: | |||
for line in self.metadata[six.b('ImageTextInfo')][six.b('SLxImageTextInfo')].values(): | |||
line = line.decode("utf8") | |||
absolute_start_12 = None | |||
absolute_start_24 = None | |||
# ND2s seem to randomly switch between 12- and 24-hour representations. | |||
try: | |||
absolute_start_24 = datetime.strptime(line, "%m/%d/%Y %H:%M:%S") | |||
except (TypeError, ValueError): | |||
pass | |||
try: | |||
absolute_start_12 = datetime.strptime(line, "%m/%d/%Y %I:%M:%S %p") | |||
except (TypeError, ValueError): | |||
pass | |||
if not absolute_start_12 and not absolute_start_24: | |||
continue | |||
return absolute_start_12 if absolute_start_12 else absolute_start_24 | |||
raise ValueError("This ND2 has no recorded start time. This is probably a bug.") | |||
return self._absolute_start | |||
@property | |||
def channels(self): | |||
""" | |||
These are labels created by the NIS Elements user. Typically they may a short description of the filter cube | |||
used (e.g. "bright field", "GFP", etc.) | |||
:rtype: list | |||
""" | |||
if not self._channels: | |||
self._channels = [] | |||
metadata = self.metadata[six.b('ImageMetadataSeq')][six.b('SLxPictureMetadata')][six.b('sPicturePlanes')] | |||
try: | |||
validity = self.metadata[six.b('ImageMetadata')][six.b('SLxExperiment')][six.b('ppNextLevelEx')][six.b('')][0][six.b('ppNextLevelEx')][six.b('')][0][six.b('pItemValid')] | |||
except KeyError: | |||
# If none of the channels have been deleted, there is no validity list, so we just make one | |||
validity = [True for _ in metadata] | |||
# Channel information is contained in dictionaries with the keys a0, a1...an where the number | |||
# indicates the order in which the channel is stored. So by sorting the dicts alphabetically | |||
# we get the correct order. | |||
for (label, chan), valid in zip(sorted(metadata[six.b('sPlaneNew')].items()), validity): | |||
if not valid: | |||
continue | |||
self._channels.append(chan[six.b('sDescription')].decode("utf8")) | |||
return self._channels | |||
@property | |||
def fields_of_view(self): | |||
""" | |||
The metadata contains information about fields of view, but it contains it even if some fields | |||
of view were cropped. We can't find anything that states which fields of view are actually | |||
in the image data, so we have to calculate it. There probably is something somewhere, since | |||
NIS Elements can figure it out, but we haven't found it yet. | |||
:rtype: list | |||
""" | |||
if self._fields_of_view is None: | |||
self._fields_of_view = self._parse_dimension_text(r""".*?XY\((\d+)\).*?""") | |||
return self._fields_of_view | |||
@property | |||
def time_indexes(self): | |||
""" | |||
The number of cycles. | |||
:rtype: list | |||
""" | |||
if self._time_indexes is None: | |||
self._time_indexes = self._parse_dimension_text(r""".*?T'\((\d+)\).*?""") | |||
return self._time_indexes | |||
@property | |||
def z_levels(self): | |||
""" | |||
The different levels in the Z-plane. Just a sequence from 0 to n. | |||
:rtype: list | |||
""" | |||
if self._z_levels is None: | |||
self._z_levels = self._parse_dimension_text(r""".*?Z\((\d+)\).*?""") | |||
return self._z_levels | |||
def _calculate_field_of_view(self, frame_number): | |||
images_per_cycle = len(self.z_levels) * len(self.channels) | |||
return int((frame_number - (frame_number % images_per_cycle)) / images_per_cycle) % len(self.fields_of_view) | |||
def _calculate_channel(self, frame_number): | |||
return self.channels[frame_number % len(self.channels)] | |||
def _calculate_z_level(self, frame_number): | |||
return self.z_levels[int(((frame_number - (frame_number % len(self.channels))) / len(self.channels)) % len(self.z_levels))] | |||
@property | |||
def _file_handle(self): | |||
if self._fh is None: | |||
self._fh = open(self._filename, "rb") | |||
return self._fh | |||
def _get_raw_image_data(self, image_group_number, channel_offset): | |||
""" | |||
Reads the raw bytes and the timestamp of an image. | |||
:param image_group_number: groups are made of images with the same time index, field of view and z-level. | |||
:type image_group_number: int | |||
:param channel_offset: the offset in the array where the bytes for this image are found. | |||
:type channel_offset: int | |||
:return: (int, array.array()) or None | |||
""" | |||
chunk = self._label_map[six.b("ImageDataSeq|%d!" % image_group_number)] | |||
data = self._read_chunk(chunk) | |||
# All images in the same image group share the same timestamp! So if you have complicated image data, | |||
# your timestamps may not be entirely accurate. Practically speaking though, they'll only be off by a few | |||
# seconds unless you're doing something super weird. | |||
timestamp = struct.unpack("d", data[:8])[0] | |||
image_group_data = array.array("H", data) | |||
image_data_start = 4 + channel_offset | |||
# The images for the various channels are interleaved within the same array. For example, the second image | |||
# of a four image group will be composed of bytes 2, 6, 10, etc. If you understand why someone would design | |||
# a data structure that way, please send the author of this library a message. | |||
image_data = image_group_data[image_data_start::len(self.channels)] | |||
# Skip images that are all zeros! This is important, since NIS Elements creates blank "gap" images if you | |||
# don't have the same number of images each cycle. We discovered this because we only took GFP images every | |||
# other cycle to reduce phototoxicity, but NIS Elements still allocated memory as if we were going to take | |||
# them every cycle. | |||
if np.any(image_data): | |||
return timestamp, image_data | |||
return None | |||
@property | |||
def _dimensions(self): | |||
""" | |||
While there are metadata values that represent a lot of what we want to capture, they seem to be unreliable. | |||
Sometimes certain elements don't exist, or change their data type randomly. However, the human-readable text | |||
is always there and in the same exact format, so we just parse that instead. | |||
:rtype: str | |||
""" | |||
if self._dimension_text is None: | |||
for line in self.metadata[six.b('ImageTextInfo')][six.b('SLxImageTextInfo')].values(): | |||
if six.b("Dimensions:") in line: | |||
metadata = line | |||
break | |||
else: | |||
raise ValueError("Could not parse metadata dimensions!") | |||
for line in metadata.split(six.b("\r\n")): | |||
if line.startswith(six.b("Dimensions:")): | |||
self._dimension_text = line | |||
break | |||
else: | |||
raise ValueError("Could not parse metadata dimensions!") | |||
return self._dimension_text | |||
def _calculate_image_group_number(self, time_index, fov, z_level): | |||
""" | |||
Images are grouped together if they share the same time index, field of view, and z-level. | |||
:type time_index: int | |||
:type fov: int | |||
:type z_level: int | |||
:rtype: int | |||
""" | |||
return time_index * len(self.fields_of_view) * len(self.z_levels) + (fov * len(self.z_levels) + z_level) | |||
def _calculate_frame_number(self, image_group_number, fov, z_level): | |||
return (image_group_number - (fov * len(self.z_levels) + z_level)) / (len(self.fields_of_view) * len(self.z_levels)) | |||
@property | |||
def _channel_offset(self): | |||
""" | |||
Image data is interleaved for each image set. That is, if there are four images in a set, the first image | |||
will consist of pixels 1, 5, 9, etc, the second will be pixels 2, 6, 10, and so forth. | |||
:rtype: dict | |||
""" | |||
channel_offset = {} | |||
for n, channel in enumerate(self._channels): | |||
channel_offset[channel] = n | |||
return channel_offset | |||
def _parse_dimension_text(self, pattern): | |||
try: | |||
count = int(re.match(pattern, self._dimensions).group(1)) | |||
except AttributeError: | |||
return [0] | |||
except TypeError: | |||
match = re.match(pattern, self._dimensions.decode("utf8")) | |||
if not match: | |||
return [0] | |||
return list(range(int(match.group(1)))) | |||
else: | |||
return list(range(count)) | |||
@property | |||
def _total_images_per_channel(self): | |||
""" | |||
The total number of images per channel. Warning: this may be inaccurate as it includes "gap" images. | |||
:rtype: int | |||
""" | |||
return self.metadata[six.b('ImageAttributes')][six.b('SLxImageAttributes')][six.b('uiSequenceCount')] | |||
def _parse_metadata(self): | |||
""" | |||
Reads all metadata. | |||
""" | |||
for label in self._label_map.keys(): | |||
if label.endswith(six.b("LV!")) or six.b("LV|") in label: | |||
data = self._read_chunk(self._label_map[label]) | |||
stop = label.index(six.b("LV")) | |||
self.metadata[label[:stop]] = self._read_metadata(data, 1) | |||
def _read_map(self): | |||
""" | |||
Every label ends with an exclamation point, however, we can't directly search for those to find all the labels | |||
as some of the bytes contain the value 33, which is the ASCII code for "!". So we iteratively find each label, | |||
grab the subsequent data (always 16 bytes long), advance to the next label and repeat. | |||
""" | |||
self._file_handle.seek(-8, 2) | |||
chunk_map_start_location = struct.unpack("Q", self._file_handle.read(8))[0] | |||
self._file_handle.seek(chunk_map_start_location) | |||
raw_text = self._file_handle.read(-1) | |||
label_start = raw_text.index(Nd2Parser.CHUNK_MAP_START) + 32 | |||
while True: | |||
data_start = raw_text.index(six.b("!"), label_start) + 1 | |||
key = raw_text[label_start: data_start] | |||
location, length = struct.unpack("QQ", raw_text[data_start: data_start + 16]) | |||
if key == Nd2Parser.CHUNK_MAP_END: | |||
# We've reached the end of the chunk map | |||
break | |||
self._label_map[key] = location | |||
label_start = data_start + 16 | |||
def _read_chunk(self, chunk_location): | |||
""" | |||
Gets the data for a given chunk pointer | |||
""" | |||
self._file_handle.seek(chunk_location) | |||
# The chunk metadata is always 16 bytes long | |||
chunk_metadata = self._file_handle.read(16) | |||
header, relative_offset, data_length = struct.unpack("IIQ", chunk_metadata) | |||
if header != Nd2Parser.CHUNK_HEADER: | |||
raise ValueError("The ND2 file seems to be corrupted.") | |||
# We start at the location of the chunk metadata, skip over the metadata, and then proceed to the | |||
# start of the actual data field, which is at some arbitrary place after the metadata. | |||
self._file_handle.seek(chunk_location + 16 + relative_offset) | |||
return self._file_handle.read(data_length) | |||
def _parse_unsigned_char(self, data): | |||
return struct.unpack("B", data.read(1))[0] | |||
def _parse_unsigned_int(self, data): | |||
return struct.unpack("I", data.read(4))[0] | |||
def _parse_unsigned_long(self, data): | |||
return struct.unpack("Q", data.read(8))[0] | |||
def _parse_double(self, data): | |||
return struct.unpack("d", data.read(8))[0] | |||
def _parse_string(self, data): | |||
value = data.read(2) | |||
while not value.endswith(six.b("\x00\x00")): | |||
# the string ends at the first instance of \x00\x00 | |||
value += data.read(2) | |||
return value.decode("utf16")[:-1].encode("utf8") | |||
def _parse_char_array(self, data): | |||
array_length = struct.unpack("Q", data.read(8))[0] | |||
return array.array("B", data.read(array_length)) | |||
def _parse_metadata_item(self, data): | |||
""" | |||
Reads hierarchical data, analogous to a Python dict. | |||
""" | |||
new_count, length = struct.unpack("<IQ", data.read(12)) | |||
length -= data.tell() - self._cursor_position | |||
next_data_length = data.read(length) | |||
value = self._read_metadata(next_data_length, new_count) | |||
# Skip some offsets | |||
data.read(new_count * 8) | |||
return value | |||
def _get_value(self, data, data_type): | |||
""" | |||
ND2s use various codes to indicate different data types, which we translate here. | |||
""" | |||
parser = {1: self._parse_unsigned_char, | |||
2: self._parse_unsigned_int, | |||
3: self._parse_unsigned_int, | |||
5: self._parse_unsigned_long, | |||
6: self._parse_double, | |||
8: self._parse_string, | |||
9: self._parse_char_array, | |||
11: self._parse_metadata_item} | |||
return parser[data_type](data) | |||
def _read_metadata(self, data, count): | |||
""" | |||
Iterates over each element some section of the metadata and parses it. | |||
""" | |||
data = six.BytesIO(data) | |||
metadata = {} | |||
for _ in range(count): | |||
self._cursor_position = data.tell() | |||
header = data.read(2) | |||
if not header: | |||
# We've reached the end of some hierarchy of data | |||
break | |||
if six.PY3: | |||
header = header.decode("utf8") | |||
data_type, name_length = map(ord, header) | |||
name = data.read(name_length * 2).decode("utf16")[:-1].encode("utf8") | |||
value = self._get_value(data, data_type) | |||
if name not in metadata.keys(): | |||
metadata[name] = value | |||
else: | |||
if not isinstance(metadata[name], list): | |||
# We have encountered this key exactly once before. Since we're seeing it again, we know we | |||
# need to convert it to a list before proceeding. | |||
metadata[name] = [metadata[name]] | |||
# We've encountered this key before so we're guaranteed to be dealing with a list. Thus we append | |||
# the value to the already-existing list. | |||
metadata[name].append(value) | |||
return metadata |
@ -1,183 +1,183 @@ | |||
from nd2reader.parser import Nd2Parser | |||
import unittest | |||
class MockNd2Parser(object): | |||
def __init__(self, channels, fields_of_view, z_levels): | |||
self.channels = channels | |||
self.fields_of_view = fields_of_view | |||
self.z_levels = z_levels | |||
class TestNd2Parser(unittest.TestCase): | |||
def test_calculate_field_of_view_simple(self): | |||
""" With a single field of view, the field of view should always be the same number (0). """ | |||
nd2 = MockNd2Parser([''], [0], [0]) | |||
for frame_number in range(1000): | |||
result = Nd2Parser._calculate_field_of_view(nd2, frame_number) | |||
self.assertEqual(result, 0) | |||
def test_calculate_field_of_view_two_channels(self): | |||
nd2 = MockNd2Parser(['', 'GFP'], [0], [0]) | |||
for frame_number in range(1000): | |||
result = Nd2Parser._calculate_field_of_view(nd2, frame_number) | |||
self.assertEqual(result, 0) | |||
def test_calculate_field_of_view_three_channels(self): | |||
nd2 = MockNd2Parser(['', 'GFP', 'dsRed'], [0], [0]) | |||
for frame_number in range(1000): | |||
result = Nd2Parser._calculate_field_of_view(nd2, frame_number) | |||
self.assertEqual(result, 0) | |||
def test_calculate_field_of_view_two_fovs(self): | |||
nd2 = MockNd2Parser([''], [0, 1], [0]) | |||
for frame_number in range(1000): | |||
result = Nd2Parser._calculate_field_of_view(nd2, frame_number) | |||
self.assertEqual(result, frame_number % 2) | |||
def test_calculate_field_of_view_two_fovs_two_zlevels(self): | |||
nd2 = MockNd2Parser([''], [0, 1], [0, 1]) | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 0), 0) | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 1), 0) | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 2), 1) | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 3), 1) | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 4), 0) | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 5), 0) | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 6), 1) | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 7), 1) | |||
def test_calculate_field_of_view_two_everything(self): | |||
nd2 = MockNd2Parser(['', 'GFP'], [0, 1], [0, 1]) | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 0), 0) | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 1), 0) | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 2), 0) | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 3), 0) | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 4), 1) | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 5), 1) | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 6), 1) | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 7), 1) | |||
def test_calculate_field_of_view_7c2f2z(self): | |||
nd2 = MockNd2Parser(['', 'GFP', 'dsRed', 'dTomato', 'lulzBlue', 'jimbotronPurple', 'orange'], [0, 1], [0, 1]) | |||
for i in range(14): | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, i), 0) | |||
for i in range(14, 28): | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, i), 1) | |||
for i in range(28, 42): | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, i), 0) | |||
for i in range(42, 56): | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, i), 1) | |||
for i in range(56, 70): | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, i), 0) | |||
for i in range(70, 84): | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, i), 1) | |||
def test_calculate_field_of_view_2c3f5z(self): | |||
""" All prime numbers to elucidate any errors that won't show up when numbers are multiples of each other """ | |||
nd2 = MockNd2Parser(['', 'GFP'], [0, 1, 2], [0, 1, 2, 3, 4]) | |||
for i in range(10): | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, i), 0) | |||
for i in range(10, 20): | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, i), 1) | |||
for i in range(20, 30): | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, i), 2) | |||
for i in range(30, 40): | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, i), 0) | |||
for i in range(40, 50): | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, i), 1) | |||
for i in range(50, 60): | |||
self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, i), 2) | |||
def test_calculate_channel_simple(self): | |||
nd2 = MockNd2Parser(['GFP'], [0], [0]) | |||
for i in range(1000): | |||
self.assertEqual(Nd2Parser._calculate_channel(nd2, i), 'GFP') | |||
def test_calculate_channel(self): | |||
nd2 = MockNd2Parser(['', 'GFP', 'dsRed', 'dTomato', 'lulzBlue', 'jimbotronPurple', 'orange'], [0], [0]) | |||
for i in range(1000): | |||
for n, channel in enumerate(['', 'GFP', 'dsRed', 'dTomato', 'lulzBlue', 'jimbotronPurple', 'orange'], start=i*7): | |||
self.assertEqual(Nd2Parser._calculate_channel(nd2, n), channel) | |||
def test_calculate_channel_7c2fov1z(self): | |||
nd2 = MockNd2Parser(['', 'GFP', 'dsRed', 'dTomato', 'lulzBlue', 'jimbotronPurple', 'orange'], [0, 1], [0]) | |||
for i in range(1000): | |||
for n, channel in enumerate(['', 'GFP', 'dsRed', 'dTomato', 'lulzBlue', 'jimbotronPurple', 'orange'], start=i*7): | |||
self.assertEqual(Nd2Parser._calculate_channel(nd2, n), channel) | |||
def test_calculate_channel_ludicrous_values(self): | |||
nd2 = MockNd2Parser(['', 'GFP', 'dsRed', 'dTomato', 'lulzBlue', 'jimbotronPurple', 'orange'], list(range(31)), list(range(17))) | |||
for i in range(10000): | |||
for n, channel in enumerate(['', 'GFP', 'dsRed', 'dTomato', 'lulzBlue', 'jimbotronPurple', 'orange'], start=i*7): | |||
self.assertEqual(Nd2Parser._calculate_channel(nd2, n), channel) | |||
def test_calculate_z_level(self): | |||
nd2 = MockNd2Parser([''], [0], [0]) | |||
for frame_number in range(1000): | |||
result = Nd2Parser._calculate_z_level(nd2, frame_number) | |||
self.assertEqual(result, 0) | |||
def test_calculate_z_level_1c1f2z(self): | |||
nd2 = MockNd2Parser([''], [0], [0, 1]) | |||
for frame_number in range(1000): | |||
result = Nd2Parser._calculate_z_level(nd2, frame_number) | |||
self.assertEqual(result, frame_number % 2) | |||
def test_calculate_z_level_31c17f1z(self): | |||
nd2 = MockNd2Parser(list(range(31)), list(range(17)), [0]) | |||
for frame_number in range(1000): | |||
result = Nd2Parser._calculate_z_level(nd2, frame_number) | |||
self.assertEqual(result, 0) | |||
def test_calculate_z_level_2c1f2z(self): | |||
nd2 = MockNd2Parser(['', 'GFP'], [0], [0, 1]) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 0), 0) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 1), 0) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 2), 1) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 3), 1) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 4), 0) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 5), 0) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 6), 1) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 7), 1) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 8), 0) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 9), 0) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 10), 1) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 11), 1) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 12), 0) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 13), 0) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 14), 1) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 15), 1) | |||
def test_calculate_z_level_2c3f5z(self): | |||
nd2 = MockNd2Parser(['', 'GFP'], [0, 1, 2], [0, 1, 2, 3, 4]) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 0), 0) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 1), 0) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 2), 1) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 3), 1) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 4), 2) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 5), 2) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 6), 3) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 7), 3) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 8), 4) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 9), 4) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 10), 0) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 11), 0) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 12), 1) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 13), 1) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 14), 2) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 15), 2) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 16), 3) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 17), 3) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 18), 4) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 19), 4) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 20), 0) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 21), 0) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 22), 1) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 23), 1) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 24), 2) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 25), 2) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 26), 3) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 27), 3) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 28), 4) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 29), 4) | |||
self.assertEqual(Nd2Parser._calculate_z_level(nd2, 30), 0) | |||
# from nd2reader.parser import Nd2Parser | |||
# import unittest | |||
# | |||
# | |||
# class MockNd2Parser(object): | |||
# def __init__(self, channels, fields_of_view, z_levels): | |||
# self.channels = channels | |||
# self.fields_of_view = fields_of_view | |||
# self.z_levels = z_levels | |||
# | |||
# | |||
# class TestNd2Parser(unittest.TestCase): | |||
# def test_calculate_field_of_view_simple(self): | |||
# """ With a single field of view, the field of view should always be the same number (0). """ | |||
# nd2 = MockNd2Parser([''], [0], [0]) | |||
# for frame_number in range(1000): | |||
# result = Nd2Parser._calculate_field_of_view(nd2, frame_number) | |||
# self.assertEqual(result, 0) | |||
# | |||
# def test_calculate_field_of_view_two_channels(self): | |||
# nd2 = MockNd2Parser(['', 'GFP'], [0], [0]) | |||
# for frame_number in range(1000): | |||
# result = Nd2Parser._calculate_field_of_view(nd2, frame_number) | |||
# self.assertEqual(result, 0) | |||
# | |||
# def test_calculate_field_of_view_three_channels(self): | |||
# nd2 = MockNd2Parser(['', 'GFP', 'dsRed'], [0], [0]) | |||
# for frame_number in range(1000): | |||
# result = Nd2Parser._calculate_field_of_view(nd2, frame_number) | |||
# self.assertEqual(result, 0) | |||
# | |||
# def test_calculate_field_of_view_two_fovs(self): | |||
# nd2 = MockNd2Parser([''], [0, 1], [0]) | |||
# for frame_number in range(1000): | |||
# result = Nd2Parser._calculate_field_of_view(nd2, frame_number) | |||
# self.assertEqual(result, frame_number % 2) | |||
# | |||
# def test_calculate_field_of_view_two_fovs_two_zlevels(self): | |||
# nd2 = MockNd2Parser([''], [0, 1], [0, 1]) | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 0), 0) | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 1), 0) | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 2), 1) | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 3), 1) | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 4), 0) | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 5), 0) | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 6), 1) | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 7), 1) | |||
# | |||
# def test_calculate_field_of_view_two_everything(self): | |||
# nd2 = MockNd2Parser(['', 'GFP'], [0, 1], [0, 1]) | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 0), 0) | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 1), 0) | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 2), 0) | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 3), 0) | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 4), 1) | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 5), 1) | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 6), 1) | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, 7), 1) | |||
# | |||
# def test_calculate_field_of_view_7c2f2z(self): | |||
# nd2 = MockNd2Parser(['', 'GFP', 'dsRed', 'dTomato', 'lulzBlue', 'jimbotronPurple', 'orange'], [0, 1], [0, 1]) | |||
# for i in range(14): | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, i), 0) | |||
# for i in range(14, 28): | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, i), 1) | |||
# for i in range(28, 42): | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, i), 0) | |||
# for i in range(42, 56): | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, i), 1) | |||
# for i in range(56, 70): | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, i), 0) | |||
# for i in range(70, 84): | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, i), 1) | |||
# | |||
# def test_calculate_field_of_view_2c3f5z(self): | |||
# """ All prime numbers to elucidate any errors that won't show up when numbers are multiples of each other """ | |||
# nd2 = MockNd2Parser(['', 'GFP'], [0, 1, 2], [0, 1, 2, 3, 4]) | |||
# for i in range(10): | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, i), 0) | |||
# for i in range(10, 20): | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, i), 1) | |||
# for i in range(20, 30): | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, i), 2) | |||
# for i in range(30, 40): | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, i), 0) | |||
# for i in range(40, 50): | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, i), 1) | |||
# for i in range(50, 60): | |||
# self.assertEqual(Nd2Parser._calculate_field_of_view(nd2, i), 2) | |||
# | |||
# def test_calculate_channel_simple(self): | |||
# nd2 = MockNd2Parser(['GFP'], [0], [0]) | |||
# for i in range(1000): | |||
# self.assertEqual(Nd2Parser._calculate_channel(nd2, i), 'GFP') | |||
# | |||
# def test_calculate_channel(self): | |||
# nd2 = MockNd2Parser(['', 'GFP', 'dsRed', 'dTomato', 'lulzBlue', 'jimbotronPurple', 'orange'], [0], [0]) | |||
# for i in range(1000): | |||
# for n, channel in enumerate(['', 'GFP', 'dsRed', 'dTomato', 'lulzBlue', 'jimbotronPurple', 'orange'], start=i*7): | |||
# self.assertEqual(Nd2Parser._calculate_channel(nd2, n), channel) | |||
# | |||
# def test_calculate_channel_7c2fov1z(self): | |||
# nd2 = MockNd2Parser(['', 'GFP', 'dsRed', 'dTomato', 'lulzBlue', 'jimbotronPurple', 'orange'], [0, 1], [0]) | |||
# for i in range(1000): | |||
# for n, channel in enumerate(['', 'GFP', 'dsRed', 'dTomato', 'lulzBlue', 'jimbotronPurple', 'orange'], start=i*7): | |||
# self.assertEqual(Nd2Parser._calculate_channel(nd2, n), channel) | |||
# | |||
# def test_calculate_channel_ludicrous_values(self): | |||
# nd2 = MockNd2Parser(['', 'GFP', 'dsRed', 'dTomato', 'lulzBlue', 'jimbotronPurple', 'orange'], list(range(31)), list(range(17))) | |||
# for i in range(10000): | |||
# for n, channel in enumerate(['', 'GFP', 'dsRed', 'dTomato', 'lulzBlue', 'jimbotronPurple', 'orange'], start=i*7): | |||
# self.assertEqual(Nd2Parser._calculate_channel(nd2, n), channel) | |||
# | |||
# def test_calculate_z_level(self): | |||
# nd2 = MockNd2Parser([''], [0], [0]) | |||
# for frame_number in range(1000): | |||
# result = Nd2Parser._calculate_z_level(nd2, frame_number) | |||
# self.assertEqual(result, 0) | |||
# | |||
# def test_calculate_z_level_1c1f2z(self): | |||
# nd2 = MockNd2Parser([''], [0], [0, 1]) | |||
# for frame_number in range(1000): | |||
# result = Nd2Parser._calculate_z_level(nd2, frame_number) | |||
# self.assertEqual(result, frame_number % 2) | |||
# | |||
# def test_calculate_z_level_31c17f1z(self): | |||
# nd2 = MockNd2Parser(list(range(31)), list(range(17)), [0]) | |||
# for frame_number in range(1000): | |||
# result = Nd2Parser._calculate_z_level(nd2, frame_number) | |||
# self.assertEqual(result, 0) | |||
# | |||
# def test_calculate_z_level_2c1f2z(self): | |||
# nd2 = MockNd2Parser(['', 'GFP'], [0], [0, 1]) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 0), 0) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 1), 0) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 2), 1) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 3), 1) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 4), 0) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 5), 0) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 6), 1) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 7), 1) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 8), 0) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 9), 0) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 10), 1) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 11), 1) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 12), 0) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 13), 0) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 14), 1) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 15), 1) | |||
# | |||
# def test_calculate_z_level_2c3f5z(self): | |||
# nd2 = MockNd2Parser(['', 'GFP'], [0, 1, 2], [0, 1, 2, 3, 4]) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 0), 0) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 1), 0) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 2), 1) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 3), 1) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 4), 2) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 5), 2) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 6), 3) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 7), 3) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 8), 4) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 9), 4) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 10), 0) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 11), 0) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 12), 1) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 13), 1) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 14), 2) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 15), 2) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 16), 3) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 17), 3) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 18), 4) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 19), 4) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 20), 0) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 21), 0) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 22), 1) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 23), 1) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 24), 2) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 25), 2) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 26), 3) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 27), 3) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 28), 4) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 29), 4) | |||
# self.assertEqual(Nd2Parser._calculate_z_level(nd2, 30), 0) |
@ -0,0 +1,7 @@ | |||
import unittest | |||
from nd2reader.driver import get_driver | |||
class TestDriver(unittest.TestCase): | |||
def test_get_driver(self): | |||
pass |
@ -0,0 +1,16 @@ | |||
import unittest | |||
from nd2reader.driver.version import parse_version | |||
class VersionTests(unittest.TestCase): | |||
def test_parse_version_2(self): | |||
data = 'ND2 FILE SIGNATURE CHUNK NAME01!Ver2.2' | |||
actual = parse_version(data) | |||
expected = (2, 2) | |||
self.assertTupleEqual(actual, expected) | |||
def test_parse_version_3(self): | |||
data = 'ND2 FILE SIGNATURE CHUNK NAME01!Ver3.0' | |||
actual = parse_version(data) | |||
expected = (3, 0) | |||
self.assertTupleEqual(actual, expected) |