@ -247,27 +247,37 @@ class Parser(object):
"""
return { channel : n for n , channel in enumerate ( self . metadata [ " channels " ] ) }
def _check_unwanted_bytes ( self , image_group_data , image_data_start , height , width ) :
def _get_unwanted_bytes_ids (
self , image_group_data , image_data_start , height , width
) :
# Check if the byte array size conforms to the image axes size. If not, check
# that the number of unexpected (unwanted) bytes is a multiple of the number of
# rows (height), as the same unmber of unwanted bytes is expected to be
# appended at the end of each row. Then, returns the indexes of the unwanted
# bytes.
number_of_true_channels = int ( len ( image_group_data [ 4 : ] ) / ( height * width ) )
n_unwanted_bytes = ( len ( image_group_data [ image_data_start : ] ) ) % ( height * width )
n_unwanted_bytes = ( len ( image_group_data [ image_data_start : ] ) ) % ( height * width )
if not n_unwanted_bytes :
return False
assert 0 == n_unwanted_bytes % height , " An unexpected number of extra bytes was encountered based on the expected frame size, therefore the file could not be parsed. "
byte_ids = range ( image_data_start + height * number_of_true_channels , len ( image_group_data ) - n_unwanted_bytes + 1 , height * number_of_true_channels )
all_zero_bytes = all ( [ 0 == image_group_data [ byte_ids [ i ] + i ] for i in range ( len ( byte_ids ) ) ] )
if not all_zero_bytes :
raise Exception ( f " {n_unwanted_bytes} unexpected non-zero bytes were found in the ND2 file, the file could not be parsed. " )
return all_zero_bytes
def _remove_unwanted_bytes ( self , image_group_data , image_data_start , height , width ) :
# Remove unwanted 0-bytes that can appear in stitched images
number_of_true_channels = int ( len ( image_group_data [ 4 : ] ) / ( height * width ) )
n_unwanted_bytes = ( len ( image_group_data [ image_data_start : ] ) ) % ( height * width )
unwanted_byte_per_step = n_unwanted_bytes / / height
byte_ids = range ( image_data_start + height * number_of_true_channels , len ( image_group_data ) - n_unwanted_bytes + 1 , height * number_of_true_channels )
warnings . warn ( f " {n_unwanted_bytes} ({unwanted_byte_per_step}*{height}) unexpected zero bytes were found in the ND2 file and removed to allow further parsing. " )
return np . arange ( 0 )
assert 0 == n_unwanted_bytes % height , (
" An unexpected number of extra bytes was encountered based on the expected "
+ " frame size, therefore the file could not be parsed. "
)
return np . arange (
image_data_start + height * number_of_true_channels ,
len ( image_group_data ) - n_unwanted_bytes + 1 ,
height * number_of_true_channels ,
)
def _remove_bytes_by_id ( self , byte_ids , image_group_data , height ) :
# Remove bytes by ID.
bytes_per_row = len ( byte_ids ) / / height
warnings . warn (
f " {len(byte_ids)} ({bytes_per_row}*{height}) unexpected zero "
+ " bytes were found in the ND2 file and removed to allow further parsing. "
)
for i in range ( len ( byte_ids ) ) :
del image_group_data [ byte_ids [ i ] : ( byte_ids [ i ] + unwanted_byte_per_step ) ]
del image_group_data [ byte_ids [ i ] : ( byte_ids [ i ] + bytes_per_row ) ]
def _get_raw_image_data ( self , image_group_number , channel_offset , height , width ) :
""" Reads the raw bytes and the timestamp of an image.
@ -291,16 +301,41 @@ class Parser(object):
image_group_data = array . array ( " H " , data )
image_data_start = 4 + channel_offset
# Stitched ND2 files have been reported to contain unexpected (according to
# image shape) zero bytes at the end of each image data row. This hinders
# proper reshaping of the data. Hence, here the unwanted zero bytes are
# identified and removed.
unwanted_byte_ids = self . _get_unwanted_bytes_ids (
image_group_data , image_data_start , height , width
)
if 0 != len ( unwanted_byte_ids ) :
assert np . all (
image_group_data [ unwanted_byte_ids + np . arange ( len ( unwanted_byte_ids ) ) ]
== 0
) , (
f " {len(unwanted_byte_ids)} unexpected non-zero bytes were found "
+ " in the ND2 file, the file could not be parsed. "
)
self . _remove_bytes_by_id ( unwanted_byte_ids , image_group_data , height )
# The images for the various channels are interleaved within the same array. For example, the second image
# of a four image group will be composed of bytes 2, 6, 10, etc. If you understand why someone would design
# a data structure that way, please send the author of this library a message.
number_of_true_channels = int ( len ( image_group_data [ 4 : ] ) / ( height * width ) )
if self . _check_unwanted_bytes ( image_group_data , image_data_start , height , width ) :
self . _remove_unwanted_bytes ( image_group_data , image_data_start , height , width )
try :
image_data = np . reshape ( image_group_data [ image_data_start : : number_of_true_channels ] , ( height , width ) )
image_data = np . reshape (
image_group_data [ image_data_start : : number_of_true_channels ] ,
( height , width ) ,
)
except ValueError :
image_data = np . reshape ( image_group_data [ image_data_start : : number_of_true_channels ] , ( height , int ( round ( len ( image_group_data [ image_data_start : : number_of_true_channels ] ) / height ) ) ) )
image_data = np . reshape (
image_group_data [ image_data_start : : number_of_true_channels ] ,
(
height ,
len ( image_group_data [ image_data_start : : number_of_true_channels ] )
/ / height ,
) ,
)
# Skip images that are all zeros! This is important, since NIS Elements creates blank "gap" images if you
# don't have the same number of images each cycle. We discovered this because we only took GFP images every
@ -309,11 +344,14 @@ class Parser(object):
if np . any ( image_data ) :
return timestamp , image_data
# If a blank "gap" image is encountered, generate an array of corresponding height and width to avoid
# errors with ND2-files with missing frames. Array is filled with nan to reflect that data is missing.
# If a blank "gap" image is encountered, generate an array of corresponding height and width to avoid
# errors with ND2-files with missing frames. Array is filled with nan to reflect that data is missing.
else :
empty_frame = np . full ( ( height , width ) , np . nan )
warnings . warn ( ' ND2 file contains gap frames which are represented by np.nan-filled arrays; to convert to zeros use e.g. np.nan_to_num(array) ' )
warnings . warn (
" ND2 file contains gap frames which are represented by np.nan-filled "
+ " arrays; to convert to zeros use e.g. np.nan_to_num(array) "
)
return timestamp , image_data
def _get_frame_metadata ( self ) :