|
|
@ -8,9 +8,9 @@ from pims.base_frames import Frame |
|
|
|
import numpy as np |
|
|
|
|
|
|
|
from nd2reader.common import get_version, read_chunk |
|
|
|
from nd2reader.exceptions import InvalidVersionError |
|
|
|
from nd2reader.label_map import LabelMap |
|
|
|
from nd2reader.raw_metadata import RawMetadata |
|
|
|
from nd2reader import stitched |
|
|
|
|
|
|
|
|
|
|
|
class Parser(object): |
|
|
@ -232,8 +232,7 @@ class Parser(object): |
|
|
|
Returns: |
|
|
|
|
|
|
|
""" |
|
|
|
return (image_group_number - (field_of_view * len(self.metadata["z_levels"]) + z_level)) / ( |
|
|
|
len(self.metadata["fields_of_view"]) * len(self.metadata["z_levels"])) |
|
|
|
return (image_group_number - (field_of_view * len(self.metadata["z_levels"]) + z_level)) / (len(self.metadata["fields_of_view"]) * len(self.metadata["z_levels"])) |
|
|
|
|
|
|
|
@property |
|
|
|
def _channel_offset(self): |
|
|
@ -268,6 +267,7 @@ class Parser(object): |
|
|
|
timestamp = struct.unpack("d", data[:8])[0] |
|
|
|
image_group_data = array.array("H", data) |
|
|
|
image_data_start = 4 + channel_offset |
|
|
|
image_group_data = stitched.remove_parsed_unwanted_bytes(image_group_data, image_data_start, height, width) |
|
|
|
|
|
|
|
# The images for the various channels are interleaved within the same array. For example, the second image |
|
|
|
# of a four image group will be composed of bytes 2, 6, 10, etc. If you understand why someone would design |
|
|
@ -276,7 +276,8 @@ class Parser(object): |
|
|
|
try: |
|
|
|
image_data = np.reshape(image_group_data[image_data_start::number_of_true_channels], (height, width)) |
|
|
|
except ValueError: |
|
|
|
image_data = np.reshape(image_group_data[image_data_start::number_of_true_channels], (height, int(round(len(image_group_data[image_data_start::number_of_true_channels])/height)))) |
|
|
|
new_width = len(image_group_data[image_data_start::number_of_true_channels]) // height |
|
|
|
image_data = np.reshape(image_group_data[image_data_start::number_of_true_channels], (height, new_width)) |
|
|
|
|
|
|
|
# Skip images that are all zeros! This is important, since NIS Elements creates blank "gap" images if you |
|
|
|
# don't have the same number of images each cycle. We discovered this because we only took GFP images every |
|
|
@ -285,11 +286,12 @@ class Parser(object): |
|
|
|
if np.any(image_data): |
|
|
|
return timestamp, image_data |
|
|
|
|
|
|
|
# If a blank "gap" image is encountered, generate an array of corresponding height and width to avoid |
|
|
|
# errors with ND2-files with missing frames. Array is filled with nan to reflect that data is missing. |
|
|
|
# If a blank "gap" image is encountered, generate an array of corresponding height and width to avoid |
|
|
|
# errors with ND2-files with missing frames. Array is filled with nan to reflect that data is missing. |
|
|
|
else: |
|
|
|
empty_frame = np.full((height, width), np.nan) |
|
|
|
warnings.warn('ND2 file contains gap frames which are represented by np.nan-filled arrays; to convert to zeros use e.g. np.nan_to_num(array)') |
|
|
|
warnings.warn( |
|
|
|
"ND2 file contains gap frames which are represented by np.nan-filled arrays; to convert to zeros use e.g. np.nan_to_num(array)") |
|
|
|
return timestamp, image_data |
|
|
|
|
|
|
|
def _get_frame_metadata(self): |
|
|
|