|
@ -6,6 +6,7 @@ import six |
|
|
import warnings |
|
|
import warnings |
|
|
from pims.base_frames import Frame |
|
|
from pims.base_frames import Frame |
|
|
import numpy as np |
|
|
import numpy as np |
|
|
|
|
|
from tqdm import tqdm |
|
|
|
|
|
|
|
|
from nd2reader.common import get_version, read_chunk |
|
|
from nd2reader.common import get_version, read_chunk |
|
|
from nd2reader.label_map import LabelMap |
|
|
from nd2reader.label_map import LabelMap |
|
@ -78,6 +79,21 @@ class Parser(object): |
|
|
else: |
|
|
else: |
|
|
return Frame(image, frame_no=frame_number, metadata=self._get_frame_metadata()) |
|
|
return Frame(image, frame_no=frame_number, metadata=self._get_frame_metadata()) |
|
|
|
|
|
|
|
|
|
|
|
def get_roi_by_attributes(self, frame_number, field_of_view, channel, z_level, height, width, xywh): |
|
|
|
|
|
frame_number = 0 if frame_number is None else frame_number |
|
|
|
|
|
field_of_view = 0 if field_of_view is None else field_of_view |
|
|
|
|
|
channel = 0 if channel is None else channel |
|
|
|
|
|
z_level = 0 if z_level is None else z_level |
|
|
|
|
|
|
|
|
|
|
|
image_group_number = self._calculate_image_group_number(frame_number, field_of_view, z_level) |
|
|
|
|
|
try: |
|
|
|
|
|
timestamp, raw_image_data = self._get_raw_image_data_xywh( |
|
|
|
|
|
image_group_number, channel, height, width, xywh) |
|
|
|
|
|
except (TypeError): |
|
|
|
|
|
return Frame([], frame_no=frame_number, metadata=self._get_frame_metadata()) |
|
|
|
|
|
else: |
|
|
|
|
|
return Frame(raw_image_data, frame_no=frame_number, metadata=self._get_frame_metadata()) |
|
|
|
|
|
|
|
|
def get_image_by_attributes(self, frame_number, field_of_view, channel, z_level, height, width): |
|
|
def get_image_by_attributes(self, frame_number, field_of_view, channel, z_level, height, width): |
|
|
"""Gets an image based on its attributes alone |
|
|
"""Gets an image based on its attributes alone |
|
|
|
|
|
|
|
@ -246,6 +262,65 @@ class Parser(object): |
|
|
""" |
|
|
""" |
|
|
return {channel: n for n, channel in enumerate(self.metadata["channels"])} |
|
|
return {channel: n for n, channel in enumerate(self.metadata["channels"])} |
|
|
|
|
|
|
|
|
|
|
|
def _get_raw_image_data_xywh(self, image_group_number, channel, height, width, xywh): |
|
|
|
|
|
|
|
|
|
|
|
size_c = len(self.metadata["channels"]) |
|
|
|
|
|
|
|
|
|
|
|
x0, y0, w, h = xywh |
|
|
|
|
|
chunk_location = self._label_map.get_image_data_location(image_group_number) |
|
|
|
|
|
fh = self._fh |
|
|
|
|
|
|
|
|
|
|
|
if chunk_location is None or fh is None: |
|
|
|
|
|
return None |
|
|
|
|
|
fh.seek(chunk_location) |
|
|
|
|
|
# The chunk metadata is always 16 bytes long |
|
|
|
|
|
chunk_metadata = fh.read(16) |
|
|
|
|
|
header, relative_offset, data_length = struct.unpack("IIQ", chunk_metadata) |
|
|
|
|
|
if header != 0xabeceda: |
|
|
|
|
|
raise ValueError("The ND2 file seems to be corrupted.") |
|
|
|
|
|
# We start at the location of the chunk metadata, skip over the metadata, and then proceed to the |
|
|
|
|
|
# start of the actual data field, which is at some arbitrary place after the metadata. |
|
|
|
|
|
fh.seek(chunk_location + 16 + relative_offset) |
|
|
|
|
|
|
|
|
|
|
|
# Read timestamp |
|
|
|
|
|
timestamp = struct.unpack("d", fh.read(8))[0] |
|
|
|
|
|
|
|
|
|
|
|
# Stitched Images: evaluate number of bytes to strip |
|
|
|
|
|
n_unwanted_bytes = (data_length-8) % (height * width) |
|
|
|
|
|
assert 0 == n_unwanted_bytes % height |
|
|
|
|
|
rowskip = n_unwanted_bytes // height |
|
|
|
|
|
|
|
|
|
|
|
# Read ROI: row-by-row |
|
|
|
|
|
image_start_pos = chunk_location + 16 + relative_offset + 8 |
|
|
|
|
|
|
|
|
|
|
|
line_bytemask = np.zeros(size_c, dtype=np.bool) |
|
|
|
|
|
line_bytemask[channel] = True |
|
|
|
|
|
line_bytemask = np.tile(line_bytemask.repeat(2),w) |
|
|
|
|
|
|
|
|
|
|
|
def get_line(y): |
|
|
|
|
|
fh.seek(image_start_pos + size_c*2*((width)*y+x0) + y*rowskip) |
|
|
|
|
|
return np.frombuffer(fh.read(size_c*2*w), np.byte)[line_bytemask] |
|
|
|
|
|
|
|
|
|
|
|
data = [get_line(y) for y in tqdm(range(y0, y0+h))] |
|
|
|
|
|
data = bytes().join(data) |
|
|
|
|
|
|
|
|
|
|
|
image_group_data = array.array("H", data) |
|
|
|
|
|
true_channels_no = int(len(image_group_data) / (h * w)) |
|
|
|
|
|
|
|
|
|
|
|
image_data = np.reshape(image_group_data, (h, w, true_channels_no)) |
|
|
|
|
|
|
|
|
|
|
|
missing_channels = ~np.any(image_data, axis=(0, 1)) |
|
|
|
|
|
image_data[..., missing_channels] = np.full( |
|
|
|
|
|
(h, w, missing_channels.sum()), np.nan) |
|
|
|
|
|
|
|
|
|
|
|
if np.any(missing_channels): |
|
|
|
|
|
warnings.warn( |
|
|
|
|
|
"ND2 file contains gap frames which are represented by " |
|
|
|
|
|
+ "np.nan-filled arrays; to convert to zeros use e.g. " |
|
|
|
|
|
+ "np.nan_to_num(array)") |
|
|
|
|
|
return timestamp, image_data[...,0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _get_raw_image_data(self, image_group_number, channel_offset, height, width): |
|
|
def _get_raw_image_data(self, image_group_number, channel_offset, height, width): |
|
|
"""Reads the raw bytes and the timestamp of an image. |
|
|
"""Reads the raw bytes and the timestamp of an image. |
|
|
|
|
|
|
|
|