clear all
|
|
file='spettrolaserG3';
|
|
str=['load ' file '.txt'];eval(str);
|
|
str=['Ls=1e-3*' file '(:,1);'];eval(str);
|
|
str=['spec=' file '(:,2);'];eval(str);
|
|
|
|
file='caf2_maggio10_1725';
|
|
str=['load ' file '.dat'];eval(str);
|
|
str=['SHGx=' file '(:,1);'];eval(str);
|
|
str=['SHGy=' file '(:,2);'];eval(str);
|
|
t=(-10000:0.1:10000);% fs
|
|
|
|
|
|
|
|
Dt=14.1; % fs
|
|
Dw=0.441/Dt*2*pi;
|
|
|
|
c=0.3; %micron/fs
|
|
lambda0=0.786; %lunghezza d'onda centrale in micron
|
|
w0=2*pi*c/lambda0;%pulsazione centrale in fs^-1
|
|
kk=1;
|
|
|
|
%w=(2.122:5e-5*2*pi:2.75);% fs^-1
|
|
w=(2.122:5e-5*2*pi:2.75);% fs^-1
|
|
|
|
|
|
nn=find(Ls<0.6);spec=spec-mean(spec(nn));spec=spec/max(spec);
|
|
specI=interp1(c./Ls*2*pi,spec,w,'linear',0);
|
|
specI2=exp(-4*log(2)*(w-w0).^2/Dw^2);
|
|
|
|
figure(1)
|
|
plot(w,specI,'.',w,specI2,'.')
|
|
|
|
|
|
L=3300; %micron silica e CaF2
|
|
|
|
% %silica
|
|
% n0=1.453;%indice di rifrazione
|
|
% d1nl=-0.01728;%derivata prima di n in lambda micron^-1
|
|
% d2nl=0.03988; %derivata seconda di n in lambda micron^-2
|
|
% d3nl=-0.2388; %derivata terza di n in lambda micron^-3
|
|
|
|
% % BK7
|
|
% n0=1.511;%indice di rifrazione
|
|
% d1nl=-0.01456;%derivata prima di n in lambda micron^-1
|
|
% d2nl=0.05589; %derivata seconda di n in lambda micron^-2
|
|
% d3nl=-0.2877; %derivata terza di n in lambda micron^-3
|
|
|
|
% % % CaF2
|
|
n0=1.4306;
|
|
d1nl=-0.0104;
|
|
d2nl=0.0304;
|
|
d3nl=-0.1662;
|
|
|
|
% % Calcite ordinario
|
|
% n0=1.6488;
|
|
% d1nl=-0.031048300320746;
|
|
% d2nl=0.081657209660690;
|
|
% d3nl=-0.476683581496218;
|
|
|
|
% % Calcite straordinario
|
|
% n0=1.481916136599520;
|
|
% d1nl=-0.012620442731315;
|
|
% d2nl=0.044786681918652;
|
|
% d3nl=-0.232969865621158;
|
|
%
|
|
% % Benzene
|
|
% n0=1.485267310086479;
|
|
% d1nl=-0.029582350419277;
|
|
% d2nl=0.115024263003249;
|
|
% d3nl=-0.609046368893473;
|
|
|
|
|
|
|
|
|
|
d1nw=-lambda0^2/2/pi/c*d1nl; %derivata prima indice di rifrazione in funzione di w fs^-1
|
|
d2nw=lambda0^3/4/pi^2/c^2*(2*d1nl+lambda0*d2nl); %derivata seconta indice di rifrazione in funzione di w fs^-2
|
|
d3nw=-lambda0^4/8/pi^3/c^3*(6*d1nl+6*lambda0*d2nl+lambda0^2*d3nl); %derivata terza indice di rifrazione in funzione di w fs^-3
|
|
|
|
|
|
phi0=n0*w0*L/c;
|
|
phi1=L/c*(n0+w0*d1nw);
|
|
phi2=L/c*(2*d1nw+w0*d2nw);
|
|
phi3=L/c*(3*d2nw+w0*d3nw);
|
|
|
|
dim=length(w);
|
|
|
|
A=sqrt(specI);
|
|
|
|
y1=t*0;
|
|
phi=w*0;
|
|
|
|
tic
|
|
for i=1:1:dim
|
|
phi(i)=0*phi0+0*phi1*(w(i)-w0)+phi2*(w(i)-w0).^2/2+phi3*(w(i)-w0).^3/6;
|
|
y1=A(i)*cos(w(i)*t-phi(i))+y1;
|
|
i
|
|
end
|
|
toc
|
|
|
|
figure(2)
|
|
plot(t,real(y1))
|
|
% i termini y1^4 sono solo additivi, non si considerano, questo genera
|
|
% l'"artificio" di una funzione risposta negativa.
|
|
shg1=4*xcorr(y1.^2,y1.^2)+1*(4*xcorr(y1.^3,y1)+4*xcorr(y1,y1.^3));
|
|
dimt=length(t)-1;
|
|
SHG1=shg1(dimt/2+1:dimt*3/2+1);
|
|
% filtro
|
|
A=fft(SHG1);
|
|
cut=4000;
|
|
A(cut:end-cut)=SHG1(cut:end-cut)*0;
|
|
SHG1filter=real(ifft(A));
|
|
figure(3)
|
|
% plot(t,SHG1/max(SHG1),t,SHG1filter/max(SHG1filter),SHGx,SHGy)
|
|
% plot(t,SHG1/max(SHG1)*4.5,t,SHG1filter/max(SHG1filter),'k',SHGx-0.1,SHGy,'r');xlim([-400 400])
|
|
plot(t,SHG1filter/max(SHG1filter),'k',t,exp(-4*log(2)*t.^2/(2^0.5*Dt)^2),'b',SHGx,SHGy,'r');xlim([-400 400])
|
|
% plot(t,SHG1/max(SHG1),'r',t,SHG1filter/max(SHG1filter),'k');
|
|
if 0,
|
|
AA=[t' (yy-Ybkg)']; str=['save ' filecommon '.dat AA -ascii;'];eval(str);
|
|
AA=[t' (SHG1/max(SHG1))' (SHG1filter/max(SHG1filter))']; str=['save shg_simul.dat AA -ascii;'];eval(str);
|
|
end;
|