®

—
—
—

MARVELL®

88F6180, 88F6190,
88F6192, and 88F6281

Integrated Controller

Functional Specifications

Marvell. Moving Forward Faster

Doc. No. MV-S104860-U0, Rev. C
December 2, 2008, Preliminary

Document Classification: Proprietary Information

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Document Conventions

|§ | | Note: Provides related information or information of special importance.

' Caution: Indicates potential damage to hardware or software, or loss of data.
)

Warning: Indicates a risk of personal injury.

Document Status

Doc Status: Preliminary Technical Publication: 0.xx

For more information, visit our website at: www.marvell.com

Disclaimer

No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose,
without the express written permission of Marvell. Marvell retains the right to make changes to this document at any time, without notice. Marvell makes no warranty of any
kind, expressed or implied, with regard to any information contained in this document, including, but not limited to, the implied warranties of merchantability or fithess for any
particular purpose. Further, Marvell does not warrant the accuracy or completeness of the information, text, graphics, or other items contained within this document.
Marvell products are not designed for use in life-support equipment or applications that would cause a life-threatening situation if any such products failed. Do not use
Marvell products in these types of equipment or applications.

With respect to the products described herein, the user or recipient, in the absence of appropriate U.S. government authorization, agrees:

1) Not to re-export or release any such information consisting of technology, software or source code controlled for national security reasons by the U.S. Export Control
Regulations ("EAR"), to a national of EAR Country Groups D:1 or E:2;

2) Not to export the direct product of such technology or such software, to EAR Country Groups D:1 or E:2, if such technology or software and direct products thereof are
controlled for national security reasons by the EAR; and,

3) In the case of technology controlled for national security reasons under the EAR where the direct product of the technology is a complete plant or component of a plant,
not to export to EAR Country Groups D:1 or E:2 the direct product of the plant or major component thereof, if such direct product is controlled for national security reasons
by the EAR, or is subject to controls under the U.S. Munitions List ("USML").

At all times hereunder, the recipient of any such information agrees that they shall be deemed to have manually signed this document in connection with their receipt of any
such information.

Copyright © 2008. Marvell International Ltd. All rights reserved. Marvell, the Marvell logo, Moving Forward Faster, Alaska, Fastwriter, Datacom Systems on Silicon, Libertas,
Link Street, NetGX, PHYAdvantage, Prestera, Raising The Technology Bar, The Technology Within, Virtual Cable Tester, and Yukon are registered trademarks of Marvell.
Ants, AnyVoltage, Discovery, DSP Switcher, Feroceon, GalNet, GalTis, Horizon, Marvell Makes It All Possible, RADLAN, UniMAC, and VCT are trademarks of Marvell. All
other trademarks are the property of their respective owners.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 2 Document Classification: Proprietary Information December 2, 2008, Preliminary

http://www.marvell.com
http://www.marvell.com

Table of Contents

Table of Contents

L (] =T = RSP PPP PR 17
ADOULE tiS DOCUMIEBNT.......eiiiiiiieiiee ettt b e e b e e e s e e st e s b a e e s re e e s at e e e anne e e nenes 17
REIEVANT DEVICES ...ttt sttt etttk eh e sh et e et et e e bt e e ek b e e e ah b et e na et e e ket e e abe e e s ne e e e abb e e e anbe e e nnnes 17
Related DOCUMENTALION.cciitiiiitie ittt s e et e s e e s e e s et e e arn s e n e e e e ser e e e enne e e nanes 17
DOCUMENT CONVENTIONS ...ttt ettt ettt ettt b ekt e e st e e e s ab et e s b et e ek et e e sb e e e sa b e e e et e e e sbn e e e anbe e e nnnes 19

1 OV BIVIBW 1.ttt ettt ettt et e e oot e e e ottt e e e et e et e e e e s E et e e e e aeR e e e e e e s annne e e e e nnre e e s nnnrneeeenn 20

11 (21 (oTod [DI T= o = Ty £ 1T PP OO PPPTPPPPRRTN 21

1.2 Overview Of FUNCHONS ANA INTEITACESciuiiiiiiieiie ettt e e s e nae 25

1.3 Differences Between the 88F6180, 88F6190, 88F6192, and 88F6281 DEVICES.........ceeevivviieiiiiiiieeiiiee e, 31

2 F o o [T SR - T LT PTT T OUP PP

2.1 Sheeva™ CPU Core AJAreSS DECOAINGuteiieieiitiee ettt ettt ettt e e st e e aneeeesreeeasneeenaee

2.2 TDM (SLIC/Codec) Address Map (88F6192/88F6281 Only)

2.3 PCl EXPress AddreSS DECOTINGcueiiurieeiiiiteiiieeiie ettt ettt ettt et a bt sb e e abb e e s asne e ene e e abb e e e anneeenanes

2.4 SATA Address Decoding (88FBLIX/BBFBG28L).......cccuuuieieiiieiieeeaiiiiiee ettt ettt e e e e e s ainer e e e e e aeeeeannnes 39

25 Gigabit Ethernet AddreSS DECOMINGcceiuuuiiiiieieiiii ettt ettt et e et e et e e s b e st e e s enne e s nneeeanneeenaes 39

2.6 (OS] =N [0 £ IS B =Tod o o [o To [TP PPPTTPPPRRRN 39

2.7 Security Accelerator AJAreSS DECOUINGcoiuuieiiiieeiii ettt e bt e st e e ste e s nnneeesineeenaes 39

2.8 XOR ENQINE AdAreSS DECOMINGuueiieiiitiite ettt ettt e e et e e e e s bbbt e e e e s bt be e e e e e nbaeeeeeeabeeeeeeannbeeeaeeaan 40

29 TWSI AQUIrESS DECOTINGeeeeeitiie ittt ettt ettt e e bt e e e bttt e sa bt e sk e e e sttt e sab s e e ettt e enneeennneeean 40

2.10 Audio Interface Address Map (88F6180/88F6192/88F6281 ONIY)......ccccuuueiieiiiiiiiieiiiieie e 40

2.11 SDIO AGUIESS IMBP ..ttt ettt ettt ra e e s sttt e et e e be e e ek b e e sttt e sa b et e ek bt e ebee e e saeanbe e e e nneeennneeeanbreenan

2.12 Transport Stream (TS) Address Map (88F6192/88F6281 Only)

2.13 DEfaUIt AQAIESS IMBPco ittt ettt e e b et e e s bt e e sab e e e s st et et e s be e e e abb e e e anteeennnn s

3 SNEEVA™ CPU COT..ciiiiiiiiiiie ittt ettt et e et e e et e e e s aE et e e e a et e e e s s n e e e e e s anrneeeeesannneennnn 43

4 DDR SDRAM CONTIOIEL .ottt e e e e enns 44

4.1 SDRAM Controller IMPIemMENTALIONuiii ettt e et e e e s s bee e e e e e e e e e e sebeeeeeeaanees 44

4.2 DDR SDRAM AGAIESSING. +...ttteiutteeeittte ettt stee st e ettt et e e sa s et sst et e asbe e e st e e e e asbe e e asb e e e s be e e aabe e e e be e e e abbeeeanbeeenanes 45

4.3 SDRAM TiMING PAIAMELEIScoiitiiie ettt e e ettt e e oot ee e e et b et e e e e ek bee e e e e e s bbeeeeeaseeeeeaanbbeeeeeeanres 47

4.4 DIRAM BUISE ..ttt sttt ettt ettt sttt h etttk e s h bt ekt eeh bt e bt ek b e ek e e bt e eh ke e e bt e eb bt ekt ebeeeh b e e sbeeenbeenbeeanneenbeean 48

45 SDRAM BanK INEIIEAVINGcoueeieeei ittt ettt ettt e e e e e bb et e e e e e abbb e e e e e anbbeeeeesanbeeeeeennres 48

4.6 SDRAM OPEN PAJES ...cciiiieiie ettt e e s et e e e e s e et e e e sttt e s e s b e et e e e e s e et e e e e e re e e e e e e e nnrn e e e e e nnne 49

4.7 SDRAM RETTESN ...ttt et e st a et e st e s n e e st e e e e e e e 49

4.8 SDRAM INITIAHIZATIONeeieiieee ittt sh e et e e et e e be e e e st b e e e eab et e st e st et e e nne e e snneeeanbreenan

4.9 SDRAM Operation Register

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 3

®
I% 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

4.10 SDRAM Self REIESN IMOE ...ttt ettt e e e ettt e e e e e ente e e e eteeee e e e anbeeeaeeannes
4.11 Heavy Load Support

4.12 ST Y [T 24 o SO EPTUPUPRSR
4.13 SDRAM AAAreSS/DAtA DIVcoiieieiiiieiiie ettt e sttt sbe e e bt e e e sab e e e eate e e sabb e e s abbeesbteesnnneeeasbeeenne 52
4.14 SDRAM ReEad DAta SAMPIEeeeieiieiiiie ettt ettt e e e ettt e e e e e bee e e e e e e amteeeaeeaanneeaeeeanbeeeaeeaannes 53
4.15 DDR2 On Die Termination (ODT) ...cuuuiiiieiiiiietee e ittt e e s eeiteeeessstataeeaeasataeeaeessasbasaaesaasssaaaessassseeesesssseeeeessnnses 53
5 Time Division Multiplexing (TDM) Unit (88F6192 and 88F6281 ONly).........ccoovviiiiiiiiiiiiiennnn. 56
5.1 FUNCLONAI DESCIIPIION.......eeeeees ittt ettt oo e ettt e e e e ettt e e e e e asbte e e e e e anebeeeeeaanteaesannbseeaeeaannsneeeeeaannes 56
5.2 I DY B o o) (o Tolo] IS o T=Tol 1 Tor=1 (o] o SO SPRTPR 59
5.3 TDM (SLIC/Codec) RegIStErS ACCESS VIA SPl......coiiiiiiiiie ittt e e e e s e e e e s eneeeeaeeann 71
6 e O I o q o T TS [0T - o] - PP 74
6.1 FUNCHONAI DESCIIPIIONtiiiii ettt e ettt e e et e e e e st et e e e e e e tb et e e e e easstbeeaeeanateeseassssaeaeessssneeeeeannses 74
6.2 [T 01 S LT F= 1[4 Vi o] o RO PEPTUPUPRRN
6.3 Master Memory Transactions

6.4 [TS (T g 1@ B = 14 E57= Tod 1T LU PRPURUPRRRN
6.5 Master Configuration TrANSACHONSuviiieeiiiiiie e i e e s et e e e e e e e et e e e e e e s satbeeaeeesasbeeeaesaaseaeeassbaeeeessnnse 77
6.6 Target MemMOrY TFANSACLIONSceiiieiiiee it ie e ettt e e e ettt e e e e aabe e e e e e e aaaeeeeaeaaaseeeeaeaaanneseeaeeansaeanneseaeeeannsseeaaeaan 78
6.7 Target 1/O TIANSACHONSuviiiiei it e ettt e e et e e e e e e e e e et e e e e e s s tb e e e e e e s aabaaeeeesasaaaaeaeeateaesasaasseeeessntrnneaenan 78
6.8 Target Configuration TrANSACHIONScouuieiiiieiiri et et e e e s e e st e e sne e e st e sn s nnneeenneeeas 78
6.9 TANQEE SPECIAI CASESeiieiiiiiiiie ettt e et e et e e e s et e e e e e e et ta e e e e e e et b eeeeeeeaatbeeeereeeeeasatreeeeesantraneaeaan 79
6.10 IVIEBSSATES ..ottt ettt e et e e e oo e e e et e e e e e e e e e e E e e e e e e e s e et e e e e e e e n e e e e e e e nnneeeeaaan 79
6.11 Message Signaled Interrupts (MSI)

6.12 Locked Transactions

6.13 WY g o1 = Lo g I= Vg Lo I @ o[- £ 1o To TSP SPTTT PR
6.14 PCl EXPIreSS REQISIET ACCESSveeeitiieiitiii et s e et e et e st a et st e s a b e e e as et e ns et e st e e e s abn e e nne e e s anr e e e anne e e nanes 82
6.15 [(010 (ST P PP O PP PPPPRPPPPPRRIN 83
6.16 [T Q1O I T F= o] = PR UPUPRRRN 83
6.17 LRl o NN T Y F= g F=To [T o 1= o PO PP PPPPPPPPRN 83
6.18 S g (o1 g o Fo T [o [T oo T TP OP PP PPRPPTPRP 84
6.19 (o To] o] o F= Ted 1Y/ [To [RSP 86
6.20 PEEI-10-PEEI TTaffiC. ... ittt e e e et e e e e s n et e e eteeeeeeasnbeeeaeeaanneeeeeeeanees 88
7 Serial-ATA (SATA) Il Interface (88F619x and 88F6281 ONlY)........uvvvuviiiiiiiiiiieiee e, 89
7.1 Serial ATA 11 HOSt CoNtroller (SATAHC)cii ittt ettt e e e e st e e e e e et e e e e e sabaeeeesssbaeeeeeenees
7.2 SATAHC Block Diagram

7.3 SATAHC INILAIZALION ...ttt be e e as b e e sabe e e s abb e e anbe e e enteeesnbeeeanbreenaes
7.4 Host Direct Control Over the Hard DISK DIVoiiiiiiiiiiiae et e e e ee e e s sneeeee e e enees 90
7.5 [=10 I o (o= Vi o] o L O O PRSP SPOTPR 91
7.6 (=11 PN @] o<1 - o] [PPSR 91
7.7 2] 1 PRSP PPTRPTRIN 111
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 4

Document Classification: Proprietary Information December 2, 2008, Preliminary

Table of Contents

7.8 RV /=TT (o] g0 o T [0TSR

7.9 Protocol Based Port Select

8 Gigabit Ethernet CONtIrOIIEr ...t ea e s 113
8.1 POIT FRALUIES ...ttt ettt et e e e e e e e e e ea e e e e s e e a s ababebe s te e e e e s e e b sb e e b en e e e eeeeeeeeeas 113
8.2 FUNCHONAI OVEIVIEW. ...ttt ettt ettt et e e s at et e e b bt e ek bt e e sbe e e sabe b b e e e anbeeesnneeeanbneennn 114
8.3 (1Y AN U] Lol o] F= 11 PR OPUPRRPN 116
8.4 RECEIVE Fram@ PrOCESSING . ..cciiiiiiiie i ittt ettt e ettt e e e et e e e e et e e e e ea st e eeeeessataaeeeesstbe et atseaeeesntaeeaeesanses 134
8.5 LV O o ToT= To (=T S U] o] oo o S PP ERPURUPIRPN 136
8.6 Distributed Switching Architecture (DSA) Tag SUPPOIT.......iiiiiiiiiiiie et e e s s e e e st r e e e asraeeesenens 139
8.7 L (gL T A) (=T U o €U ERT ORISR

8.8 Transmit Weighted Round-Robin Arbitration

8.9 Token Rate Configurationcccceeeiiieeiniii s

8.10 Transmit Queues Egress Jitter Pacing (EJP) Arbitration

8.11 Network Interface (10/100/1000 MBPS)ccuuitiiiriiiiieeitiee ettt st e e st sie e s e e snreee e
8.12 WU (o B N\ T=To [0] 1T L1 o] o APPSR
8.13 (D= L= 0 =1 10 To (= S TSP EROUPRRPN
8.14 1) =T 0T ot 2] 7= 1 o PP PUPR
8.15 1= T U T 1T PP PP PUPR
8.16 BACKPIESSUINE IMOOE ..ottt ettt ettt sttt e ekt e e st e e sh b e e eab b e e s bt e e e s abeeebbeeeanteeesnbeeeanbeeennns
8.17 L[0T @ 1 (o | PP ER R PUPRRPN
8.18 Serial Management INtErfaCe (SMI)eiiiiii ettt e st e e e nte e s b e e anteeesneeeesnneeean
8.19 Link Detection and Link Detection Bypass (ForceLinkPass*)

8.20 Precise Time ProtOCO! (PTP) ... ittt ettt e ettt e ettt e e s e bbb e e estb e e e e e e aanbneeeeeanens
8.21 Network Management INtErface COUNTEIS.oiiiiiiiiie ettt e e e e e
8.22 POIT IMIB COUNTEIS ...ttt ettt e et e e e e e e e e e e e s o e e bbb bbb e b e s et e et e e e bbb bbbt e s e e e et e e e eeeeeeas

9 Universal Serial Bus (USB 2.0) INterface........cooiiiiiiiiiiiiicece et 173
10 Cryptographic Engines and Security Accelerator (CESA) ...cccceuiiiiiiiieiieee e 174
10.1 CryptographiC ENQINE FEALUIEScoii it ee ettt e ettt e e e ettt e e e e anbee e e e s aanneeeaantbeeeeeansneeaaaan 175
10.2 SECUILY ACCEIEIAION FRALUINES ... viiiii ettt e e e et e e e e et e e e s et et e e e s s tbaee e e s eatbeaeaantbeeaeesnntbaneeenan 175
10.3 Cryptographic Engines Operational DeSCHPLIONeiiii ittt e e e e e et e e e s eneaeeaa s 175
104 Security Accelerator Operational DESCIPLION.iiiiiiiiiie e ee e e e s e e e e e s s e e e e srtraeaee s 189
105 I DY AN ©Zo] 11 (o] | = TSP 200
11 D@ T B = T 11 1=
11.1 LI LTo) VA oY@ o 1T - o] o N R PEPR
11.2 Descriptor Chainccccceeviivieeenen.

11.3 PN (o] (XIS D T=To o Lo 1 oo [PR PEPRS
114 F N4 o] 1= L1 T o PSR UUPRRRNE
115 XOR Engine Programming

Copyright © 2008 Marvell Doc. No. MV-S104860-UO Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 5

®
I;% 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

11.6 L0 o N o 1 PRSP 219
11.7 (o] E3= TaTo I 101 1= T4 U] o] £SO PEPPOUPPRPN 220
12 Two-Wire Serial INterface (TWSH) ...t e e e e e e ennaeees 221
12.1 BTS2 U@ o 1= = 1o o RS PEPR 221
12.2 AT S B 011 SO o= =i [o] o O TP PP PPPRP 222
12.3 TWSI Serial ROM INITALZALIONoeiiiiieeie ettt e e ettt e e e e e e be e e e e e e nneeeaeeaannbneeaesannneeas 227
13 L0 g I] =T = Lo =P PPPPPRTPPPPRR 228
131 FRATUIES ...ttt et e oottt e ookt e e e R et e e e e h et e e e b et e e e e e e et e e e e e e e e e e e 228
13.2 UART Interface Pin ASSIGNIMENTeiiii ittt e e ettt e e e e astae e e e e s e aaseeeeaeaantbeeeesanneeeaasaannes 228
13.3 (©]07=] = L1 [o [PPSR 228
134 Programmable Baud-Rate GENETALONuiiiiiiiiiiie et ie e et ee e e ettt e e e e et eeaesasaeseeaeaaneaeeeeesanreeeaesaanees 229
14 8-Dit NAND FIash INTEIrfaCE ...coueeiiiiiiiieie et enenee s 231
14.1 NAND Flash Interface Pin ASSIGNMENTciiiiiiiie ittt e e e e e e e e s bbr e e e e e abereesntaeeaessnees 231
14.2 NAND FIASN TYPES i iieiiee ettt ettt ettt oottt e e e e ettt et e e e e e a e b et ee e e et b et e e e e asbeeeaaeaannneeaannaseeeeeanteeeaaeaannes 231
14.3 SOftWAre RESPONSIDIITIESveiiiiiiiiie et e e st e e e e st b e e e e e sataeeeeaantbeeaeesnntbaeeaeean 231
14.4 NAND Flash Interface Read TimiNg ParamMetersoiiiiiiiiiiieiiiieie et e e e e e e e e naee e e eneee 232
145 NAND Flash Interface Write TimiNgG ParameterS..........uuiiiiiiiiiiiieiiiiie ettt e e st e e e e s st e e e e ssreeaessnnees 234
14.6 BOOt from NAND FIASH. ...ttt e ettt e e e et e e e e e e e anaeeeanete e e e e e aanteeeaeeaanees 234
15 Serial Peripheral INtErface (SPI) ... ittt e e e r e e e aeee e 236
15.1 Y o I a1 0= T = (ot TS (o [F= LSS UPTPPRP 236
15.2 [o TTg=Tot ALY, (o To [USSP 237
15.3 D1 (=T 1Y oo [PP PUPPSTPPTPR 237
16 Audio (IZS / SIPDIF) Interface (88F6180, 88F6192, and 88F6281 ONly)ccoeiiviiviiiiiieeeenn. 240
16.1 LR CTolo] (o [TqTo l B 2=\ 7= W o (o PRSP 242
16.2 PIAYDACK FIOWeviiiiiiiieeie ettt e e e e et e e e e e s a b e e e e s e tbae e e e e esbaaeaaeebeaaeeassstbeeeeesnntbaraaesanne 246
16.3 =g (o] g F= T To |11V TR PP ERPPUPRRPN 251
16.4 AUAIO UNIt MEMOTY STIUCTUIEeieiiitiie e ettt e ettt e e e ettt e e e e st e e e e e s st b e e e e e e e asabaaeeeesseaeeesasbaeeaessssaees 252
17 Secure Digital Input/Output (SDIO) INtErfaCEeuviiiiiiiiiiie e 256
17.1 T LU | €TSS TP TSP P POPPPPPPPPPPRP 257
17.2 SDMem, MMC, and SDIO Arbitration SCREMEc.coiiiiiiiiiiie ettt 257
17.3 Difference Between SD Cards and MMC Cardscooiuuiiiieaiiiiiiieee et e e siieee e e eeteeee e e s nteeeae e s anneeeeseanees 259
17.4 SDIO / SDMem / MMC Host Controller INtaliZationc..cooueieiiiieieieeiece e 259
175 SDIO / SDMem / MMC CommMAaNd EXECULION.uiiiiiiiiiiie ettt e ettt ettt e e e e b e e e e e st e eeesaeeeaeaan 259
17.6 SDIO / SDMEM / MMC INTEITUPLSvtiie ettt e e s ettt e e ettt e e e e sttt e e e e st e e e e st e e e e e e atbeeeaeeeasssaeeestbeeaeesnnsbaneaesan 261
18 Transport Stream (TS) Interface (88F6192 and 88F6281 ONIY)covcvviiieiiiiiiiieeiiiieee e, 262
18.1 ST e A e 41 (Tl (0 RSP 263
18.2 ST LT = 1o T TSP PO PRPPPR 263
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 6 Document Classification: Proprietary Information December 2, 2008, Preliminary

Table of Contents

18.3 (4o Tod 2SRRI
18.4 TS Input Data Flow

185 TS OULPUL DALA FIOW.....cieieiee ettt ettt e ettt e e e e ettt e e e e e nbe e e e e e e amneeeenntee e e e e amnbneeeeeannneeas
18.6 [1Y AN g Vo 11 T PP EPPOPPPRPN
18.7 TS TIMEStAMP MECRANISIT.......eiiiiiiiiie ettt e e e ettt e e e e ettt e e e e e neeee e e e e e naeeeeaeeaeeeeannbneeaesannneeas
18.8 BRI 1o G Yo [o | (=T T= L1 (o) o I PRSPPI
18.9 TS POIT INEEITUPES .. e ettt ettt e e e e e e e e e e e e e s bbbt bt b et ettt e e e e eeeeaeeaeaaaaa e e eeaaeeeaeeasasaaaannnnnnnnnnns
18.10 LOOPDACK MOUE......ccii ittt e et e e e e et e e e e e sttt e e e e e e s bbb eeeeesaabaaeeaeeateeesassssbeeaeesnntaaeeeesanes

19 General-Purpose I/O (GPIO) POrt INtErfacec.uuueiiiiiiiiiaaii e 277
19.1 (1o (@ N Ote] a1 o] =T oIS (] £ TSR PRRR 277
19.2 GPIO BliNK ENADIE REQISTEIciiiiiiiiiii ettt e st e e e e et e e e e e s bt e e e e e e s abaeeeeeessteaansbeeaeesnnsbaneeenan 277
19.3 GPIO Interrupts

20 Real-Time CIOCK (RTC) UNIt.....uuuiiiiiiiiiiieeee et s e s e e e e e e s s s st ae e e e e e e e e e e e e s s e nnnnnnnnrenaeeeen s 278
20.1 Features

20.2 Functionality

21 Ta N =T 0T o @0 o 4 o] | 1T SRR 280
21.1 Local Interrupt Cause and Mask REQISIEISccciiuiiiii ittt e e st a e e st e e e e sstaeeeeeennees 280
21.2 Main Interrupt Cause and MasK REQISTEIScuii ittt e e et e e e e et et e e e e eatb e e e e e sneeeeaeeaannes 281
21.3 (Do o 14 o 1=]| I L a1 0=T4 U] o SRS EPPOUPPRPN 281
214 Device Interrupt CoNtroller SCREME ...t e e et e e e e s e e e e e eneee 282
22 TIMEIS ANU COUNTEIS ..ottt ettt s sttt e e s et e e e s ettt e e e s e bbb e e e e annbbe e e e e enbneeeennrbeas 283
22.1 32-Dit GENEIAI-PUIPOSE TIMEIS . .utiiiiiiiiitiee e ettt e e e et e e e e e sttt e e e s et b e e e e e esbeeeaaeessstaeeaeeassbeeaeesnnsbaeeaesan 283
22.2 LAV = 1ed o (oo T I T =Y PRSPPI
22.3 L O Y- T 4 RO PR OUPP PP
22.4 SYSRSTn Duration Counter

23 L] U ST PPPPPPPPPPPPPIN
23.1 Typical eFuse Applications

23.2 EFUSE POWET SUPPIY .ttt et e e oottt e e e e ea ettt e e e oo abee e e e e e nneeeeeeeanseeeeeeaeeeeaantbeeaeeaansnneeaanan
23.3 EFUSE Program @nd LOCKciiiiiiiiiiie ittt et e e ettt e e e e et a e e e e e abb e e e e e sae e e ntb e e e e e s nntbaeeeenan
23.4 (RN ES S = =T To PRI

24 YA =T 0 I O] 0] 1o 1=T =1 4 o Y o 1= SR 288
24.1 Big and Little ENGIAN SUPPOIT.......cciiiiiie e e ettt ee ettt e e sttt e e e e s st e e e e e et e e e e s stb e e e eaesasssseaaesssssbseaeessnntaeeaeesanses 288
24.2 BOOTROM FIFIMWAEIE ... ittt ettt e e e oottt e e e e e a e et e e e e e bbbt e e e e e anseeeeeeeenneeaamstseeeeeantnneaaeaannes 290
24.3 o] Y F= T T= o =T 0 0= o | TSP PPPPPP 303
24.4 Error Handling FUNCLIONAI DESCIIPIION.eiiiiee ettt e et e e e s e et e e e e e e et e e e e e snteeeaeeaanees 309
Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 7

®
I% 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

25 INtErNal ArCRITECIUIE L.ouvieei e a e a e e e e e s eaeaaeas 312
25.1 Mbus-L—Sheeva™ CPU COre LOCAI BUS.........cooouiiiiiiiiiiiiiie ettt e ettt e e e e ettt e e e s e saatae s e e s ssatbesaeeasnbeeaassnnees 312
25.2 MDBUS—DEVICE INTEINAI BUS......ccc ittt e e e e e e et e e e e e eeeaaaeaeaeaaeaesss s sesaneberansneeeeeaaaeens 315
25.3 Lo TU ES I (o T\ 1 o TU S =TT [[TP PRSP 317
25.4 TrANSACHON OFOEIING +.eeteteiteie ettt ettt e bt e et e e e e st e e s bt e eat bt e e sttt e sa s et e e b s eb et e e nr e e e s nbe e e enbeeeennees 317
A 88F6180/88F619X/88F6281 REQISIEr SEl ...cciieieeeiiiiiiiiiiie i e e e e e e e 352
Al REGISIEIS OVEIVIEWeeeeeee ettt ettt ettt oo ettt e e e 4kttt e e e e s s bbb et e e e e ab b et e e e e e b be et e e e e aanbe e e anbbbeeeeeanbnneeeeeannns 352
A.2 Internal REQISTErS AQAIESS MBIcciuiiieiiiii ettt ettt e et e st e e e ss e e ssne e e neneeeanbeeenaee 354
B REVISION HISTOIY eiuiiiiiiii i e e e e e et et e et e e et a e e s e s e e e aaeaaaaeaaaaaaens 786
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 8 Document Classification: Proprietary Information December 2, 2008, Preliminary

List of Tables

List of Tables

[(=] = (o T TP PP T PP PPPPPPPPP 17
N O 1Y 2= VPP PPT R 20
Table 1: 88F6180, 88F619x, and 88F6281 Device Differences and SimilaritieS...........ccceeveiiviieiiiiveieeeiiinns 31
A Ao Lo [ST 1V =T o PP TP 34
Table 2: UnitS IDS and AHMDULES—CPUccoiiiiiiiie ittt st e et e e naneas 35
Table 3: Unit IDS and AHDULES—PCI EXPIESScoeiiiiiiiiieiiiiieee ettt et e e e s e e 38
Table 4: Device Default Address Map
3 SNEEVA™ CPU GOl ..eiiiiiiiiiiie ittt ettt e e e ettt e s s et et e e s e s bttt e e s enb b et e e e ebbbe e e e e aneeeeennrees 43
4 DDR SDRAM CONIOIEI ...ttt e e e e e e e e e e ee e e e e e e nnaes
Table 5: DDR2 DRAM AGAIESSINGveeeitieeiitie ittt ettt st st s et e e st ess e e et n e e nbne e e snbeeeanbeeennnees
Table 6: Address Multiplex for 16b Interface, AdArSel = 0vvviiiiiiiieii e
Table 7: Address Multiplex for 16b Interface, AdArSel = 1oooiiiiiiiiie e
Table 8: SDRAM TiMiNG PArAMELETSccuviiiiiiiieiiiie ittt ettt e e e e et sbe e e s abb e e e anse e e sneesanreeeanee
Table 9: M_STARTBURST Output Assertion Point Configuration
5 Time Division Multiplexing (TDM) Unit (88F6192 and 88F6281 ONIY)cccccevevviieieiiiiiiiieeeeeeiiieinns 56
Table 10: Time Division Multiplexing (TDM) Interface SignalScoocueeiiiiiiiiiieneee e 58
I = O I o q oY =TT [) (=1 - Lo = PSS 74
Table 11: Supported Message Groups—RO00t COMPIEX MOEoeiiiiiiiiiiiiiiiie e 79
Table 12: Supported Message Groups—ENdpPOiNt MOAEcoooiiiiiiiiiiiie e 80
Table 13: Physical Layer Error List..........cccceeeunes
Table 14: Data LiNK LAYEr EFTOT LISciiiiiiiiiiiiiie ettt ettt e et e e st e e st e e satee e stbeeenneeeennneas
Table 15: Transaction Layer Error List
7 Serial-ATA (SATA) Il Interface (88F619x and 88F6281 ONIY)cccovceiiiriiiiiiirieee e 89
Table 16: DiSC StatuS LED State SEINGSceueiiuuiiiiieiiiiiiie ettt ettt e e et e e e e e s abbee e s sanereeeeeas 91
Table 17: EDMA CRQB Data StrUCIUIE IMaPuuiiiieiiiiiieeeeiiiiee e sttt e e ettt e e e e sittee e e s e snntaeeaesssntbneeaeeansneeeaaans
Table 18: CRQB DWO—cPRD Descriptor Table Base LOW AdAressScc.uveveeiiiiiiieeeeiiiieee e ciieie e ssiieeea s
Table 19: CRQB DW1—cPRD Descriptor Table Base High AdAressccoovviiiiiiiiieee e
Table 20: CRQB DW2—CoNntrol FIagsccceeiiuiiiiiiiiiiieisie e
Table 21: CRQB DW3—Data Region Byte Count
Table 22: CRQB DW4—ATA Command
Table 23: CRQB DW5—ATA Command
Table 24: CRQB DW6—ATA Command
Table 25: CRQB DW7—ATA Command
Table 26: ePRD Table Data SIrUCIUIE MEPc.ueiiiiiieiiiie et e et e e e
Table 27: EPRD DWORD Ocoooiiiiiiiicittt ettt ettt e e e e e e e e e e e e et a e e e e e e e eeeeeaeeeeeessesesasaababsbsrsaeeeeeeaessanannnns
Table 28: EPRD DWORD Luiiiiiiiiiiiiee ettt stee e et et e sttt e e sttt e e smteeesnaeeeaaseeeeasseeesnseeeanteeeanneeanneneansenennns
Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 9

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

Table 29: €PRD DWORD 2 ..ottt ettt ettt bt it bbbt et e b e h bt e abe e sh bt e sbeeenbe e st e sbeeenneenneean 109
Table 30: EPRD DWORD 3 ...ttt sttt ettt ettt b e bt bbbttt e bbbt e abe e sh b e e sbeeeabe e st e s beeanneenbeean 109
Table 31: EDMA CRPB Data StrUCIUIE APocuviiiieeiiiiiiie ettt e sttt e sttt e e e s st ar e e e s esaaae e e e e snntreaeessaeaaeaas 110
Table 32: CRPB ID REQISIENceieiiiiiiie ettt e e ettt e e e e ettt e e e e e aatb et e e e e abeeeeee e e naseeeantbeeaeeaansaeeeaaan 110
Table 33: CRPB ReSpONSe FIags REGISIENccoiiiiiiiiiiiiiie ettt e st 110
Table 34: CRPB Time StamP REGISIENcoiuiiiiiiiieiie ettt ne e 111
8 Gigabit EtherNet CONTIOIIET et a e e e e r e 113
Table 35: Transmit Descriptor COMMANT/STATUSooiuiiiiiiie ittt e e 123
Table 36: Transmit Descriptor Byte Count
Table 37: Transmit Descriptor Buffer Pointer
Table 38: Transmit Descriptor Next DeSCHPLOr POINTELcoiiiiiiiiiiiieie et 125
Table 39: Receive Descriptor Command/Status
Table 40: Receive Descriptor Byte Count.............
Table 41: Receive Descriptor BUfEr POINTETc.ciiiiiiiie et
Table 42: Receive Descriptor Next DESCIIPIOr POINTETciiiiiiiiiieiiiee et see e e e e e 134
Table 43: Marvell HEAdEr FIEIUSuviiiiii ettt e et e e e e e 137
Table 44: DSA Tag Fields (TO_CPU FOIMAL)coouiiiiiieiiiee et e s e 140
Table 45: DSA Tag Fields (FORWARD FOIMMAL)ueiiiiiiiiiiie ittt ettt et snse e ssne e smeeaesneeeseennee 141
Table 46: Token Rate Configuration EXAMPIESc.uueiiiiiiiiiiiee ettt e st e e e sineee e 147
Table 47: SMI Bit STFEAM FOMMALccoiiiiiiii ettt st n e e atn e st e s e e s e e naes 157
Table 48: Definitions fOr MAC MIB COUNETScccuiiiiiitiiirieiiee sttt ettt seeeneenee e 168
9 Universal Serial Bus (USB 2.0) INtEITACEuuuiiiiiiiiieiiiieeeee e 173
10 Cryptographic Engines and Security Accelerator (CESA) ..o
Table 49: Acronyms, Abbreviations, and Definitionsccccoeciieeene
Table 50: Security Accelerator Data Structure Dword 0—Configuration
Table 51: Security Accelerator Data Structure Dword 1—Encryption POINENSccoiveeiiiieeiiiieiniee e 197
Table 52: Security Accelerator Data Structure Dword 2—Encryption Data Length...........cccccoeveieiiiiiniinnnns 198
Table 53: Security Accelerator Data Structure Dword 3—Encryption Keys Pointerccccoeiieiiiiineenn. 198
Table 54: Security Accelerator Data Structure Dword 4—Encryption Initial Values Pointer.............cccccoovene 198
Table 55: Security Accelerator Data Structure Dword 5—MAC Source POINtEr..........cooveeviieiiiiieeiee e 199
Table 56: Security Accelerator Data Structure DWord 6—MAC DiIgesStoeeiiiiiiiiiieeiiiiei e 199
Table 57: Security Accelerator Data Structure Dword 7—MAC Initial Values Pointers...........ccococceeeviieeenn. 199
Table 58: TDMA DeSCrPtOr DEfINILIONSeeiiiiiiiiiiiiiie ittt ettt et e st e e e sabeeesnbeeesnbeeennes 201
(@] = = o Vo 1 o = PP PP PP
Table 59: Descriptor Status Word DefiNitiON............ooiiiiiiiie i
Table 60: Descriptor CRC-32 Result Word Definition
Table 61: Descriptor Command Word Definitioncoooiiiiiiiiii e
Table 62: Descriptor Next Descriptor AAAreSS WOIeviiiiieiiiieiiee et
Table 63: DeSCriptor Byt€ COUNE WOIMcooiuiiiiiieeeiiieeiiie ettt s et e st e e st e e s beeeestaee e sneeeesnneeeaneeennns
Table 64: Descriptor Destination Address Word...
Table 65: Descriptor Source AdAreSs N WOITSuuiiiiiiiiiiiie et e et a e e enraaeea e
Table 66: EOC/EOD INtEIPIELALIONeeiiiiieiiiieiieeesieie e etee e stee e sttt e e st e st e e snteeesseeessneeeessteeesnnaeesnneeesseeennns
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 10 Document Classification: Proprietary Information December 2, 2008, Preliminary

List of Tables

12 Two-Wire Serial INterface (TWSI) ..ot s e e e e e e e e e e e e e e e eeaeeaeanraeanes 221
Table 67: TWSI CoNtrol REGISIEr BitS.........ueiiiiiiiiiiiie ettt e ettt e e e e e e e e e e e aae e e e aennaeeeaaan 223
Table 68: TWSI STAtUS COUESooiuveiiiiiieiiiie ettt ettt ettt sa e e s bt e et e s ebte e e sab e e e anbe e e seeesabeeeanbneenans 224

13 U ART INEEITACE ettt ettt e oottt e e e e e e e e e s s bbb e e b ettt e e e e e e e s s anbneneaeaaaeaaans 228
Table 69: Typical Baud Rates where TCLK = 166 MHZcooiiiiiiiiiiiiiie e 230

14 8-bit NAND FIash INTEIfACEeeiiiiiiiiiiiei e e 231
Table 70: Device Controller Pin ASSIGNIMENEScoiuuiiiiiiiiiiiiie ettt s e e e e st e e e e e stbeeea e 231

15 Serial Peripheral INterface (SPI) ...t e e ee e e e 236
Table 71: SPIINEIMACE SIGNAISociiiiiiiiiiii et e e e e st e e e e e saba e e e e e e s atbeeaesarntaaaeaesan 236

16 Audio (IZS / SIPDIF) Interface (88F6180, 88F6192, and 88F6281 ONIY)eevvieiiiiereiiiiiiiiiineee 240
Table 72: Audio Unit Memory Bit DESCIIPHONciiiiiiiiie ettt e e e e e et e e e e e et eeeessneeeaeean 255

17 Secure Digital Input/Output (SDIO) INTEIfACE ...cccceiii i 256
Table 73: SOWAIE FIOWooiieee ettt e e e s b e e e e e e b b e bbb e e e e e e ntbeeeee s 260

18 Transport Stream (TS) Interface (88F6192 and 88F6281 ONIy).......cceeiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeen 262
Table 74: Transport Stream (TS) Interface Signal ASSIGNMENTccccuiiiiiiiiiiie e 264

19 General-Purpose /0O (GPIO) POrt INtErfacCeccccoeieiii i e e e e e 277

20 Real-Time CIOCK (RTC) UNIt ..ottt e e e ettt e e e e e e e e e e e s aeeeeeaeas 278

2 R 1 Y (=T 0] o} @ o 0] 1 = SRS 280

22 TIMErS QN0 COUNTEIS ...ttt et e e e e e e e e et et e et e e e e e e s aa s aaabebb e e e e e e eeeeeeesaabnnbbeeeeeas 283
Table 75: Alarm Interrupt Valid Bit USAQEccveiiiiiiiiiiee ettt e e e e e e s s nntbeeae e nnnaeeeeeean 284

A T =T U] < OO P PP PP PP TPPTPP 286

24 SYStemM CONSIABIALIONS ..ottt e e e e e s e et e e e e e e e e s e ab bbbt e e e e e e aeeeeseassbnneeeeas 288
Table 76: MMU Virtual-to-Physical Address Translation Tableccocoiiiiiiiiiee e 291
Table 77: Main HEAUEN FOIMAL.......cciitiiiiiiii ittt ettt sb et e e ab e e s bb e e et bt e e sabee e sabeeeanbeeenans 293
Table 78: Header EXIENSION FOMMAL........cicuiiiiiiie it eeeie sttt e st e e st e st ee e st e e sae e e s nteeeestbeeesnseeesnneeesnneeennns 294
Table 79: Types of NAND Flash Read Commands SUPPOIEd.cocvveiiieeiiiiieniiie et 301
Table 80: Types of ECC Protocols Supported per Flash TYPe ...t 302
Table 81: Bad Block Indicators per NAND Flash Cell TYPE.....uciiiiiiiiiiie ettt 302
Table 82: 512 Mb—SDRAM IDD VAIUESoiiiiiiiiiiie ettt ettt e e st e e e e snaae e e e e s snnteeaeasseeeaeann 304
Table 83: CPU Address Decoding Error HANAIINGooiiiiiiiiiieiii e 310
Table 84: PCI EXPress Error HANGINGc.uuiiiiiiiiiee ettt sttt e et s nnte e e snbeeesnbeeennes 310
Table 85: USB Error HANAINGoooueeiiiiiee ettt e eer e e s e e s e e e 311

AT 1] C=T g = U e 1 (=Tt (D1 = T PSPPI 312
TabIe 86: MIUS UNIES ...ttt e e e ettt e e e e e bbbt e e e e e ae e e e bbb e e e e e e anbneeeaeaan 315

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 11

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

A 88F6180/88F619X/88F6281 REQISIEr Selcciiii i
Table 87: RegiSter Field TYPE COUEScccuuiiiie ettt ettt e e e et e e e e e e e e s e stbaaaaeesssbeeesanatraeaaeaan
Table 88: Device Internal Registers Address Map
Table 89: Register Map Table for the Mbus-L to Mbus Bridge RegiSters ..o
Table 159: Register Map Table for the DDR SDRAM Controller REQISIEIS........coccuviiieeiiiiiiiii e
Table 194: Register Map Table for the Time Division Multiplexing (TDM) Unit Registers
Table 242: Register Map Table for the PCI Express Interface REgISIErSocoviiiiiiiiiiiiieeiieceiee e
Table 326: Register Map Table for the Serial-ATA Host Controller (SATAHC) Registers........cccocovvvveevivvenennn. 491
Table 399: Shadow Register BIOCK REGISIEIS MEP ...ccocuviiiiuiieiiiiieiiiie ettt et e s ntee e e 549
Table 400: Register Map Table for the Gigabit Ethernet Controller RegiSters..........ccccvvveeiiiienie e 550
Table 465: Register Map Table for the PTP REQISLEI'Scc.ueiiiiiieiiiieiiee et 597
Table 500: Register Map Table for the USB 2.0 REGISIEIS.......c.ueiiiiiiiiiiie et 625
Table 515: USB Controller Register Map (Offsets: OX50000—0X502FF)cciruiiiririeiiieeiniie e 632
Table 516: Register Map Table for the Cryptographic Engine and Security Accelerator (CESA) Registers634
Table 581: Register Map Table for the XOR Engine Registers
Table 601: Register Map Table for the TWSI REQISIEISoviiiiiiiiiiie ittt
Table 610: Register Map Table for the NAND Flash Registers
Table 614: Register Map Table for the UART REQISIEIScuvviiiiiiiiiieiie et e
Table 627: Register Map Table for the SPI RegiStersccccceeiiiiiieeennens
Table 636: Register Map Table for the Audio Interface REQISLEIS........occuvviiiiiiiiiiiie e 689
Table 677: Register Map Table for the SDIO REQISIEISccccuuiiiiie et e 714
Table 729: Register Map Table for the Transport Stream (TS) REQISIErSccoviiiiiiiiiiiieee e 744
Table 740: Register Map fOr TSU REQISIEISuiiiiiieiiiie ittt sbee e nee et e e 749
Table 766: Register Map Table for the General Purpose Port REQIStErScviiiiiiiiiie i 762
Table 783: Register Map Table for the RTC REQISIEIS.ccoii ittt 767
Table 790: Register Map Table for the BOot ROM REQISLEISccciiuviiiiiieiiiiie ettt 771
Table 792: Register Map Table for the MPP REQISIEIScciiuiiiiiiiiiiieiie ettt e eniaaee e 773
Table 801: Register Map Table for the eFUSE REQISEISuiiiiiiiiei et 779
Table 808: Register Map Table for the Miscellaneous REQISTEISooiiiiiiiiiiiiiieie e 782

[I S YA ST o] T 1= (o Y/ PPN 786
Table 816: REVISION HISIOIYuuiiiiiiiiiii et e e e st e e e e et a e e e e s aabaeeeessasbaaesastbeeaeesnnsbaeeaesan 786

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 12 Document Classification: Proprietary Information December 2, 2008, Preliminary

List of Figures

List of Figures

[(=] = (o T TP PP T PP PPPPPPPPP 17
N @Y= VT TSP OROPPPTPPPP 20
Figure 1: 88F6180 Interface BIOCK DIAGIAMc.uiiiiiiiiiiieiiie ettt se e 21
Figure 2: 88F6190 Interface BIOCK DIagramcooiuiiieiiiiiiiie ettt et e e s e ntaae e e e e e enare e e s anaeeeas 22
Figure 3: 88F6192 Interface BIOCK DIQIamcoiiueiiiiiiieiiiie e eiie ettt e tee et e e smteeeseeesnneeennee 23
Figure 4: 88F6281 Interface BIOCK DIAGIAIMc.uiiiieiiiiiieiiie ettt se e e 24
A o Lo [=TT/ - o PR 34
I S [TV 2= R O o U o = PRSP 43
4 DDR SDRAM CONTIOIBE et e e e e e et e e e e e e e e e e s e e s et e eeeebaaas 44
FIgure 5: DDR2 /O BUEI ...uuiiiiiiiiiiie ettt e e e e e e e e e et e e e e e bt b e e e e etbeeeeeeeasataeeaeeannsbaeeas 54
5 Time Division Multiplexing (TDM) Unit (88F6192 and 88F6281 ONly)cceviiiieiiiiiiiiiiiiiiieeeenn, 56
Figure 6: SLIC/Codec CoNNECHION EXAMPIE ...oiiiiiiiiiei ittt a e e et e e e et e e e e e ataeeeas 56
Figure 7: TDM UNit BIOCK DIAQIAIMueiiiiiiiiiiiee ettt ettt ettt e e et e e e s ebb et e e e s abbb et e e eatbe e e e e aaeneeeas 57
Figure 8: TDM Operation TiMe SIOt Oeeiiiiieiiiieiiiieiii ettt et e b e e et e e e s snreeeasneeenaee 59
Figure 9: TDM Wideband Mode OPErationcuuiieiiiuiiiiiee ittt eseter e e st e e s st e e e s e bt e e e s e snraeeaeeannsaeeeas 60
Figure 10: TDM TranSMit Path........coouiiiiiiiiiee ettt et e e e st e e sabe e e s e nnee e e sneeeeanbeeennes 63
Figure 11: TDM RECEIVE PaAlN..... ..ottt ettt et e e s e s ner e e anbeeenae 68
Figure 12: Codec Register WItE OPEratiOncoiiiiiuiiiee it eeiiee et e e st e e e e et e e e s st e e e e s sreeaeeansaeeeas 72
Figure 13: Codec Register REAA OPEIatiON..........ieiuiieiiiieieiiiee ittt ettt e e steeesbee e steeesbaeeasbbeessbeeeseteeessneeennee 73
LI = O I o q oY = ST TN L) (=1 o = Lo = S 74
Figure 14: High-level BIOCK DIGGIAMiii ittt ettt e e et e e e e et et b e e e e e e nnneeeas 75
Figure 15: Shallow INternal LOOPDACK.iieiiiiiiiee ittt et e et e e e ettt a e s st e e asnntbeeaeeansaeeens 87
Figure 16: Deep Internal LOOPDACK..........ccouiiiiiiiiiii e e 87
7 Serial-ATA (SATA) Il Interface (88F619x and 88F6281 ONIY)covvuiiiieiiiiiiiieeiiie e 89
Figure 17: SATAHC BIOCK DIBGIAIMcoiuiiiiieiiieiieeiee sttt sttt sb e e see e nte e seneeane e 90
Figure 18: Disc Status LED INAICAtION DIBGIAMc.coiuiiiiiiiiiiieee ettt et e e e e e aeneeeas 91
Figure 19: Command Request QUEUE—32 ENLMESuteiiiiiiiiiie ittt e st e e e e e snneennee 92
Figure 20: Command Response QUEUE—32 ENLNESuiieiiiiiiiieeeeiiiiee ettt e e e e et e e e e et e e e e s snaaeeas 93
Figure 21: EDMA INtErrupt HIEIArCHY ..ot ettt ettt e e et e e st e e snneee s 100
8 Gigabit EthernNet CONTIOIIETuueiiiiiie e e e e e e e e e e e e e e e e s e rrneeees 113
Figure 22: Ethernet Descriptors and BUFfEIS.......oouuiiii i 116
Figure 23: Ethernet Packet TransmisSion EXAMPIEooiiiiiiiiiiiiiee e 119
Figure 24: Transmit DeSCriptor DESCHPLONciiiiiiiiii et e e s e e e e e e e e e s eaaaee s 122
Figure 25: Receive DeSCrPtOr DESCIIPLIONoeiii ittt e et e e et e e e e e st e e e e s aaeee e e e e e ssbeeeeeeaanreeeeesanneeeas 131
Figure 26: Rx Packet Marvell Header EXAmPIEcoiiiiiiiiiiiie ettt 137
Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 13

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Figure 27:
Figure 28:
Figure 29:
Figure 30:

Tx Packet with Marvell Header EXAMPIEcooiiiiiiiieiiiiii et e e
Rx Packet with DSA Tag Example (4 bytes tag, TO_CPU FOrmat).........cccccovvreiiiieininienieeesiieens
Tx Packet with a DSA Tag Example (FROM_CPU format, use_vidx = 0)
Y11 @o] o s T=Tod o] o SO RPT PRSP

FIgUre 31: GMII CONNECHIONcutiiiiiiie ettt ettt ettt e s b et e et e e b e e s bb e e e et e e e nneeesnneee s
Figure 32: RGMII Pin Interconnection Between MAC and PHY ..ot
Figure 33: PTP CommON HEAder FOIMALcoiiiiiiieie ettt ettt e e ettt e e et e e e e e ennbe e e e e s emeneeeas
Figure 34: PTP OVEN UDP FramMeccouiiiiiiiiiiie ettt sttt nnn e s s e e e s e er e e e sneeesnnnee s
Figure 35: PTP 2.1 Pipe BIOCK DIBGIAIMiiiiiiiiiiie ittt iitiee ettt ee sttt et e et e e steeesnbeeesntaesnbeaesnneee s
Figure 36: Time Stamping Pipeline Stages...............
Figure 37: Ethernet Frame ClasSifiCatioN..........cooiiiiiiiiiiieei et
Figure 38: Bad Frame PrOCEAUIEuviiie ittt s ettt e e e st e e e e e et e e e e e e e bbee e e e e s asatreesasbaeeeesssbreeas
9 Universal Serial Bus (USB 2.0) INtEITACEoiiiiiiiiiiiiiiiiiec et 173
10 Cryptographic Engines and Security Accelerator (CESA) ...t
Figure 39: Authentication of @ Data ChUNK ...t
Figure 40: Typical Authentication FIOW fOr @ PACKET...........ccooiiiiiiiiiiie e
Figure 41: DES ENQGINE PIPEIINEooiiieiiiieeeeiee ettt ettt e e e et e e e e et e e e e e e ne e ansbeeee e s anneeeas
Figure 42: Typical DES/3DES Encryption FIOW fOr PACKEL............coiiiiiiiiiiiiiic e
Figure 43: Typical AES Encryption Flow for @ Data BIOCKc..cooiiiriiiiiiiiie e
Figure 44: Typical AES Decryption Flow for a Data BIOCKooiiiiiiiiiiiie e
Figure 45: Security Accelerator Main DECISION FIOWcooiuiiiiiiiiiiiie et
Figure 46: Security Acceleration Flow for Packet ProCESSING........ciiiviiiiiiiiiiiie i iiee et e e
Figure 47: Security Acceleration Flow for Packet Processing—Enhanced Mode
Figure 48: TDMA Descriptors Structure for Security Accelerator Packet Processing
Tl =] =T Tor=Te 1Y oo [SO PP ST OPRP PR 193
FIgUre 49: TDMA DESCIIPIOIS ..cuveieiiiie ettt ettt ettt ettt ettt st et e s ab ettt e e e st e e e s b et e e bb e e e an bt e e ss e anb e e e snbeeeannnee s 201
Figure 50: Chained MOdE TDIMA ...ttt et e e e e e e e et e e e e et e e e e e saataeeeesasaaaeeeeessasbaeeetbaeeeesssbeeeas 203
(@ = S 1 o Vo 1 g =SSP

Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:

Schematic Diagram of the TWO XOR ENQINEScccuiuiiiiiiiiiiiiee et e eeeieeee s
XOR Operation with Multiple Incoming Data Blocks
XOR iSCSI CRC32C OPEIAtiON.....ciuiriiieiiiiiiiieeesiteete e s satreeeessatbreeaesassbrreeeeassaaeeaesssssrereesssnsrareesaas
D@1 B Lol] o] (o) gl e 4 1 T- | S TSP
Programmable Channel Pizza ArDItEToooiiiiiiiiee e
Software and Hardware Synchronization

12 Two-Wire Serial INterface (TWSI) ... it eeee 221

FIQUre 57: TWSI EXAQMPIES ...ttt ettt e e e st e e e e et e e e e e e bt e e e e e asatbeee e e e sateessntbaeeeesassaees 222
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 14 Document Classification: Proprietary Information December 2, 2008, Preliminary

13 UART INTEITACE ...t
Figure 58: Example UART Data Frame (TWO Stop BitS).........coccveieeeiiiiiiieeeeriieeenn.

Figure 59: Example UART Data Frame (One Stop Bit)cceeevvivvieeeeiiiiieeee e,

14 8-bit NAND Flash INterface ...
Figure 60: 8-bit NAND Flash Read Parameters Example............ccccccvvvveeiiiiineeeeinnns
Figure 61: 8-bit NAND Flash Write Parameters Example..........ccccccevviiiieeeinniineenn.

15 Serial Peripheral Interface (SPI)ccccuviviiiiiiiiee e

16 Audio (IZS / SIPDIF) Interface (88F6180, 88F6192, and 88F6281 Only)
Figure 62:

Figure 63:
Figure 64:
Figure 65:

17 Secure Digital Input/Output (SDIO) Interfacecoooeuviiiieeiiiiiiiiies
Figure 66: SD_MMC Host Controller Hardware Block Diagramccccceeeevvvneenn.

Figure 67: Host Initialization FIOWcoooiiiiiiiii e

18 Transport Stream (TS) Interface (88F6192 and 88F6281 Only)................
TSU BIOCK DIagramcccooiuiiieieeiiiieeie et e e e e

TS Interface BIOCK DIagramoocvviiiieeiiiieeiieeieee e
TS Parallel Protocol (EXample).........ccoocieeieiiiiiiiie e
TS Continuous Serial Data Protocol (Example)cccccceviveeeniieeeiineenns
TS Input DeSCriPtOr QUEUEceiieieiirie ettt
TS Output Descriptor Structure—No Packet Aggregation......................
TS Output Descriptor Queue—No Packet Aggregation............cccceevveen.
Impact of Timestamp on the Average TS Data Output Data Rate..........

Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:

19 General-Purpose I/0 (GPIO) Port Interfacecccceeeeeeivevivieveeeeinn,

20 Real-Time CIoCK (RTC) UNit ...uiviiiiieeiei e a e
21 INLErruPt CONTIOIIEN .eueiii e
Figure 79: Device Interrupt Controller Scheme.........c.cccoccvviiie i,

Copyright © 2008 Marvell

December 2, 2008, Preliminary Document Classification: Proprietary Information

Audio Unit BIOCK DIiagramcccccuverieeiiiiiiiiesciiiiiee s esiieee e e esirneea e
RECOIrdING FIOWoooiiiiiiiiiiiieee e
Playback FIOW........ccoviieiiiiiiiiiiee e
Memory Structure for Transmit and ReCEIVEccccveeviiiiiiee i

Aggregated TS INPUt MOAE.........eeviiiiiiiiii e
Aggregated TS OULPULt MOEcovvieiiiiiieiiiee e
TS LOOPDACK MOGES ..ottt

List of Figures

Doc. No. MV-S104860-U0 Rev. C
Page 15

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

A N1 2 L=T =1 Lo I O 10 T) (=] N 283
D2 T =Y U £ = T 286
24 SYStemM CONSIABIALIONS ..ottt e e e e e e e ettt e e e e e e e e e e e s s nnbanbeaeeaeeaaaaeeeaasnnenees

Figure 80:

Figure 81:
Figure 82:

Binary Image Layout in the BOOt DEVICE.........ccciiiiiiiee ittt e e e e s san e snees
Initialization and Boot Method Selection Flow

Header Decoding, DDR Initialization, and Image Execution Flowchart

Figure 83: Endpoint POWEr SUPPIY CONIOL.....ciiiiiiiiiiie ettt e e e e e e et e e e e e sata e e e e s ssnaeeas
25 INtEINAl ATCRITECIUNE ..ottt e e e e e e e e e e e nab bbb et eeeeaaaee e e e e annnenes 312
Figure 84: 88F6180 and 88F619x Bus Interface Unit Mbus-L Block Diagram...........cccceveeivciiieeesciiinee e 312
Figure 85: 88F6281 Bus Interface Unit Mbus-L BIOCK Diagram...........ccuueiiiiiiiiiieieiiieeee e 313
Figure 86: CPU to DDR Mbus-L Timing Diagrams—CPU2MbusLTickDrv=0,
CPU2ZMDBUSLTICKSAMPIETO...... ..ttt e ettt e e e e ettt e e e e e e atae e e e e e annbeeeaeeannnean 314
Figure 87: CPU to DDR Mbus-L Timing Diagrams—CPU2MbusLTickDrv=2,
CPUZ2MDUSLTICKSAMPIET2 ...ttt
Figure 88: Masters Request Default Arbitration Cycle
A 88F6180/88F619X/88F6281 REQISIEr Selcciiii i i e
Figure 89: PTP Configuration Data Structure REQISIEISuuuiieiiiiiiiee ettt e e e e e
Figure 90: PTP Global Status Data StruCture REQISIEISuuiiiiiiiiie et
Figure 91: PTP Port Configuration Data Structure Registers ...
Figure 92: PTP Port Status Data StruCture REQISIEIS.........vviiiii ittt e e e
Figure 93: TAI Global Configuration Dat@ STUCIUIEcociuiieiiiieiiiie et e e e e e et e e s sneeesnneeean
Figure 94: PTP Time Application Interface Global Status Data StrUCUE.............ceeeriiieriieeiiiee e 620
[= YA =Y o I 1= (0] PR 786
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 16

Document Classification: Proprietary Information December 2, 2008, Preliminary

Preface

Preface
About this Document

About this Document

This document provides the functional specifications for the 88F6180, 88F6190, 88F6192, and
88F6281 integrated controllers. This datasheet also provides detailed definitions for the registers
implemented in these devices.

This document is intended to be the basic source of information for designers of new systems.

All feature descriptions and specifications described in this document refer to all the devices, unless
otherwise specified. In this document, the 88F6180, 88F6190, 88F6192, and 88F6281 are often
referred to as “the device/s”. In addition, the 88F6190 and 88F6192 are often referred to as the
88F619x.

Relevant Devices

88F6180
88F6190
88F6192
88F6281

Related Documentation

The following documents contain additional information related to the 88F6180,88F619x, and
88F6281:

88F6180 Hardware Specifications, Doc No. MV-S104988-U0

88F6190 and 88F6192 Hardware Specifications, Doc No. MV-S104987-U0

88F6281 Hardware Specifications, Doc No. MV-S104859-U0

88F6180, 88F6190, 88F6192, and 88F6281 Design Guide, Doc No. MV-S301398-001

Sheeva™ 88SV131 ARM v5TE Processor Core with MMU and L1/L2 Cache Datasheet,
Doc No. MV-S104950-U0

Unified Layer 2 (L2) Cache for Sheeva™ CPU Cores Addendum, Doc No. MV-S104858-U0

AN-179 TWSI Software Guidelines for Discovery™, Horizon™, and Feroceon® Devices,
Doc No. MV-S300754-001

AN-183, 88F5181 and 88F5281 Big Endian and Little Endian Support, Doc No.
MV-S300767-001

AN-249: Configuring the Marvell® SATA PHY to Transmit Predefined Test Patterns,
Doc No. MV-S301342-00%

AN-260 System Power-Saving Methods for 88F6180, 88F6190, 88F6192, and 88F6281, Doc
No. MV-S301454-001

TB-227: Differences Between the 88F6192, and 88F6281 Stepping Z0 and A0,
Doc No. MV-S105223-00%

ARM Architecture Reference Manual, Second Edition
PCI Express Base Specification, Revision 1.1

Universal Serial Bus Specification, Revision 2.0, April 2000, Compagq, Hewlett-Packard, Intel,
Lucent, Microsoft, NEC, Philips

Copyright © 2008 Marvell

1. This document is a Marvell proprietary, confidential document, requiring an NDA and can be downloaded from the
Marvell Extranet.

Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 17

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

m Enhanced Host Controller Interface Specification for Universal Serial Bus, Revision 0.95,
November 2000, Intel Corporation

ARC USB-HS OTG High-Speed USB On-The-Go Controller Core V 4.0.1 Reference.
Federal Information Processing Standards (FIPS) 46-2 (Data Encryption Standard)
FIPS 81 (DES Modes of Operation)

FIPS 180-1 (Secure Hash Standard)

FIPS draft - Advanced Encryption Standard (Rijndeal)

RFC 1321 (The MD5 Message-Digest Algorithm)

RFC 1851 — The ESP Triple DES Transform

RFC 2104 (HMAC: Keyed-Hashing for Message Authentication).

RFC 2405 — The ESP DES-CBC Cipher Algorithm With Explicit IV

IEEE standard, 802.3-2000 Clause 14

ANSI standard X3.263-1995

See the Marvell Extranet website for the latest product documentation.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 18 Document Classification: Proprietary Information December 2, 2008, Preliminary

Preface
Document Conventions

Document Conventions

The following conventions are used in this document:

Signal Range

Active Low Signals #

State Names

Register Naming
Conventions

Reset Values

Abbreviations

Numbering Conventions

Copyright © 2008 Marvell
December 2, 2008, Preliminary

A signal name followed by a range enclosed in brackets represents a range of logically related
signals. The first number in the range indicates the most significant bit (MSb) and the last
number indicates the least significant bit (LSb).

Example: DB_Addr[12:0]

An n letter at the end of a signal name indicates that the signal’s active state occurs when
voltage is low.

Example: INTn

State names are indicated in italic font.
Example: linkfall

Register field names are indicated by angle brackets.
Example: <Reglnit>

Register field bits are enclosed in brackets.

Example: Field [1:0]

Register addresses are represented in hexadecimal format.
Example: 0x0

Reserved: The contents of the register are reserved for internal use only or for future use.

A lowercase <n> in angle brackets in a register indicates that there are multiple registers with
this name.
Example: Multicast Configuration Register<n>

Reset values have the following meanings:
0 = Bit clear
1 =Bit set

Gb: gigabit
GB: gigabyte
Kb: kilobit

KB: kilobyte
Mb: megabit
MB: megabyte

Unless otherwise indicated, all numbers in this document are decimal (base 10).
An 0x prefix indicates a hexadecimal number.
An 0b prefix indicates a binary number.

Doc. No. MV-S104860-U0 Rev. C
Document Classification: Proprietary Information Page 19

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

1 Overview

The Marvell® 88F6180, 88F6190, 88F6192, and 88F6281 devices are high-performance, highly
integrated controllers. The devices are based on the ARMvV5TE-compliant, high-speed Marvell®
Sheeva™ 88SV131 CPU core with 256 KB L2 cache.

This section provides a brief description of the interfaces in each of these devices.

| ;] | The functions, interfaces, and registers/register bits described in this document do not
Not necessarily apply to all of the devices.
ote

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 20 Document Classification: Proprietary Information December 2, 2008, Preliminary

1.1 Block Diagrams

Figure 1 is a block diagram of the 88F6180 interfaces.

Figure 1: 88F6180 Interface Block Diagram

Overview
Block Diagrams

Dual Channel 16-bit
up to 400 MHz data rate
DDR2 SDRAM Controller

16 KB
L1
Sheeva™ | p_cache
88SVv131
CPU core
600 MHz
or
16 KB
800 MH
z L1
I-cache

256 KB
L2
cache

up to
400 MHz

Mbus-L
Local
bus Mbus-L to
@ 64-bit <‘,:> Mbus @
Bridge
up to
200 MHz

Copyright © 2008 Marvell

December 2, 2008, Preliminary

Mbus
64-bits
@
166 MHz

PCI Express
with integrated
SERDES
x1 port

Gigabit
Ethernet
x1 port

USB 2.0
with integrated
PHY

I

Security engine

)

XOR / DMA
x4 channels

)

TWSI, SPI,
UART x2, MPP,
NAND Flash,
BootROM

&

SIPDIF / I’S
Audio
interface

SDIO
interface

Document Classification: Proprietary Information

Doc. No. MV-S104860-U0 Rev. C

Page 21

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Figure 2 is a block diagram of the 88F6190 interfaces.

Figure 2: 88F6190 Interface Block Diagram

Dual Channel 16-bit
up to 400 MHz data rate
DDR2 SDRAM Controller

PCI Express
with integrated
SERDES
x1 port

SATAI
with integrated
PHYs
x1 port

Gb Ethernet
x1 port,
Fast Ethernet
x1 port

16 KB

L1 Mbus-L
Sheeva™ D-cache | 256 KB Local

88SV131 L2 bus Mbus-L to

CPU core cache /\\,::> 64-bit <,|:,\‘/ Mbus

up to up to Bridge @
600 MH
Z | 16KkB |300MHz 200 MHz 166 MHz

USB 2.0
with integrated

Mbus PHY

64-bits

i

g & & 3 4§ § &

Security engine
I-cache

XOR / DMA
x4 channels

TWSI, SPI,
UART x2, MPP,
NAND flash,
BootROM

SDIO
interface

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 22 Document Classification: Proprietary Information December 2, 2008, Preliminary

Figure 3 is a block diagram of the 88F6192 interfaces.

Figure 3: 88F6192 Interface Block Diagram

Overview
Block Diagrams

Dual Channel 16-bit
up to 400 MHz data rate
DDR2 SDRAM Controller

16 KB
L1
D-cache
Sheeva™
88SVv131
CPU core
800 MHz 16 KB
L1
I-cache

256 KB
L2
cache

up to
400 MHz

Copyright © 2008 Marvell

December 2, 2008, Preliminary

Mbus-L
Local

bus
<):> 64-bit

up to
200 MHz

Mbus-L to

<):‘,> Mbus

Bridge

i
S S 1 O S I O

Mbus
64-bits
@
166 MHz

TDM
SLIC/Codec
interface

PCI Express
with integrated
SERDES
x1 port

SATAII
with integrated
PHYs
X2 ports

Gigabit
Ethernet
X2 ports

USB 2.0
with integrated
PHY

Security engine

XOR / DMA
x4 channels

TWSI, SPI,
UART x2, MPP,
NAND flash,
BootROM

SIPDIF / I°S
Audio
interface

SDIO
interface

TS/Video
interface

Document Classification: Proprietary Information

Doc. No. MV-S104860-U0 Rev. C
Page 23

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Figure 4 is a block diagram of the 88F6281 interfaces.

Figure 4: 88F6281 Interface Block Diagram

Dual Channel 16-bit
up to 800 MHz data rate
DDR2 SDRAM Controller

TDM
SLIC/Codec
interface

PCI Express
with integrated
SERDES
x1 port

SATAII
with integrated
PHYs
X2 ports

Gigabit
Ethernet
X2 ports

16 KB

Sheeva™ L1
88sv131 | D-cache | 256 kB Mbus-L

Local
CPU core L2 bus Mbus-L to

cache .
1.0 GHz, <::> 64-bit <::‘,> BM_Z”S
1.2 GHz, up to ridge
or 16 KB 500 MHz
1.5 GHz L1

I-cache

USB 2.0
with integrated
PHY

Mbus
64-bits
@
200 MHz

i
S S 1 O S I O

Security engine
up to
400 MHz

XOR / DMA
x4 channels

TWSI, SPI,
UART x2, MPP,
NAND flash,
BootROM

SIPDIF / I°S
Audio
interface

SDIO
interface

TS/Video
interface

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 24 Document Classification: Proprietary Information December 2, 2008, Preliminary

Overview
Overview of Functions and Interfaces

1.2 Overview of Functions and Interfaces

The following is a list of the device functions and interfaces:

Sheeva™ 88SV131 CPU The device integrates the Sheeva 88SV131 CPU core. This core is compliant with ARMV5TE

Core architecture, as published in the ARM Architecture Reference Manual, Second Edition. The
Sheeva 88SV131 CPU core provides integrated 16/16 KB, four-way, set-associative I/D L1
caches and a unified 256 KB four-way, set-associative L2 cache.

88F6180: Running at 600 MHz or 800 MHz
88F6190: Running at 600 MHz

88F6192: Running at 800 MHz

88F6281: Running at 1.0 GHz, 1.2 GHz, or 1.5 GHz

The Sheeva 88SV131 CPU core also provides:

32-bit and 16-bit RISC architecture

An MMU to support virtual memory features
64-bit internal data bus

Branch Prediction Unit

JTAG/ARM ICE support

Big and Little Endian modes support

See Section 3, Sheeva™ CPU Core, on page 43.

DDR SDRAM Interface The device integrates a 16-bit DDR2 SDRAM interface.
88F6180 and 88F619x

= Up to 200 MHz clock frequency with an 400 MHz data rate
m Supports two DRAM chip selects

m Supports all DDR2 devices with densities up to 1 Gb

m Supports up to 16 open pages (page per bank)

= Upto 512 MB total address space

88F6281

m Up to 400 MHz clock frequency with an 800 MHz data rate
m Supports four DRAM chip selects

m Supports all DDR2 devices with densities up to 2 Gb

m Supports up to 32 open pages (page per bank)

m Upto 2 GB total address space

All of the devices
Provide the following DDR SDRAM interface features:

Support for on board DDR designs (no DIMM support)

DDR SDRAM with a clock ratio of 1:N and 2:N between the DDR SDRAM and the CPU
core, respectively

SSTL 1.8V I/0Os

Auto calibration of 1/0Os output impedance

Support for 2T mode to enable high-frequency operation with a heavy load configuration
Supports DRAM bank interleaving

Supports up to a 128-byte burst per single memory access

See Section 4, DDR SDRAM Controller, on page 44.

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Doc. No. MV-S104860-U0 Rev. C
Document Classification: Proprietary Information Page 25

—
=
—

M ARVELL®

Time Division
Multiplexing
(SLIC/SLAC/Codec)
Interface

PCI Express Interface

88F6180/88F619x/88F6281
Functional Specifications

The 88F6192 and 88F6281 contain a Time Division Multiplexing (SLIC/SLAC/Codec)
interface.
The TDM is a generic interface to the standard SLIC/SLAC/codec devices. It provides:

Compatibility with standard PCM highway formats

TDM protocol support for two channels, up to 128 time slots

SPI interface for codec register read/write access

Two integrated DMA engines to transfer voice data to/from memory buffer

See Section 5, Time Division Multiplexing (TDM) Unit (88F6192 and 88F6281 Only),
on page 56.

The device integrates a PCI Express Base 1.1 compatible interface containing a single PCI
Express lane (x1) host port with an integrated low power SERDES, based on Marvell®
SERDES technology. This interface can serve as a Root Complex or an Endpoint port with:

x1 lane width

2.5 Gbps data rate

Lane polarity reversal support

Maximum payload size of 128 bytes

Single Virtual Channel (VC-0)

Replay buffer support

Extended PCI Express configuration space
Advanced Error Reporting (AER) support
Power management: LOs and software L1 support
Interrupt emulation message support

Error message support

As a master, the PCI Express interface contains:

Single outstanding read transaction

Maximum read request of up to 128 bytes

Maximum write request of up to 128 bytes

Up to four outstanding read transactions in Endpoint mode

As a target, the PCI Express interface contains:

Supports up to eight read request transactions
Maximum read request size of 4 KB
Maximum write request of 128 bytes

Supports PCI Express access to all of the device’s internal registers

See Section 6, PCI Express Interface, on page 74.

Doc. No. MV-S104860-U0 Rev. C

Page 26

Document Classification: Proprietary Information

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Overview
Overview of Functions and Interfaces

Serial ATA Il (SATA Il) The 88F6192 and 88F6281 contain two and the 88F6190 contains one SATA Il compliant 3
Interface Gbps (Gen2i) SATA PHY(s). The SATA interface supports:

m SATA Il Native command queuing, up to 128 outstanding commands per port

m First party DMA (FPDMA) full support

m Backwards compatibility to SATA | 1.5-Gbps speed and devices

m Fully supports the SATA Il Phase 1.0 specification, and the following advanced SATA I

Phase 2.0 specification features:
* 3 Gbhps (Gen2i) SATA Il speed
e SATA Il Port Multiplier performs FIS-Based Switching as defined in SATA working
group Port Multiplier definition
e SATA Il Port Selector issues the protocol-based OOB sequence to select the active
host port
m Supports device 48-bit addressing
m Supports ATA Tag Command Queuing

The SATA Host Controller supports:

Enhanced-DMA [EDMA] for the SATA ports

Automatic command execution without host intervention

Command queuing support, for up to 32 outstanding commands

Separate SATA request/response queues

64-bit addressing support for descriptors and data buffers in system memory

Read ahead

Advanced interrupt coalescing

Target mode operation—Two devices can be attached back-to-back, through Serial ATA
ports, enabling data communication between different 88F619x/88F6281 devices, with
one acting as a host and the other emulate a device

m Advanced drive diagnostics via the ATA SMART command

See Section 7, Serial-ATA (SATA) Il Interface (88F619x and 88F6281 Only), on page 89.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 27

—
=
—

M ARVELL®

Gigabit Ethernet
Interface

88F6180/88F619x/88F6281
Functional Specifications

88F6180

The Gigabit Ethernet interface consists of a single full-duplex Gigabit Ethernet (GbE)
port that supports an RGMII/MII/MMII interface.

88F6190

The Gigabit Ethernet interface consists of one full-duplex Gigabit Ethernet (GbE) port
and one full-duplex Fast Ethernet (FE) port that supports the following modes:

¢ Port0 RGMII, Portl MII/MMII
e Port0 GMII, Portl N/A
88F6192 and 88F6281

The Gigabit Ethernet interface consists of two full-duplex Gigabit Ethernet (GbE) ports
that support the following modes:

e Port0 RGMII, Portl RGMII

e Port0 RGMII, Portl MII/MMII
* Port0 MIlI/MMII, Portl RGMII
e Port0 GMII, Portl N/A

The Gigabit Ethernet interface supports 10/100/1000 Mbps speeds, as well as the 200 Mbps
proprietary Marvell® MIl (MMII).

Receive and transmit buffer management is based on buffer-descriptor linked lists. Data
transfers are performed by the port dedicated SDMA (see Section 8.3, DMA Functionality,
on page 116).

Each Ethernet port includes advanced Destination Address (DA) filtering on received
packets that also detects packet type/encapsulations that can be used by the CPU for packet
routing:

m Layer 2: BPDU,VLAN (programmable VLAN-EtherType), Ethernet v2, LLC/SNAP

m Layer 3: IPv4, IPv6 (according to Ethertype), other

m Layer 4 (only over IPv4): TCP and UDP

The port has eight receive priority queues. Queuing is performed based on DA, VLAN-Tag,
IP-TOS, Marvell Header, and DSA Tag.

The port supports standard Ethernet frames (up to 1.5 KB) and, in addition, Jumbo frames
(up to 9 KB).

It also supports hardware TCP and UDP checksum check on receive, and generate on
transmit (checksum generation for Jumbo frames is not supported).

m Precise Timing Protocol (PTP) with:

* Precise time stamping for packets, as defined in IEEE 1588 PTP v1 and v2 and
IEEE 802.1AS draft standards

* Flexible Time Application interface to distribute PTP clock and time to other devices in
the system

* Optionally accepts an external clock input for time stamping
= Audio Video Bridging Networks including:
* |EEE 802.1Qav pre-draft Audio Video Bridging networks

* Time- and priority-aware egress pacing algorithm to prevent bunching and bursting
effects—suitable for audio/video applications
* Egress Jitter Pacer for AVB-Class A and AVB-Class B traffic and strict priority for
legacy traffic queues
See Section 8, Gigabit Ethernet Controller, on page 113.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 28

Document Classification: Proprietary Information December 2, 2008, Preliminary

USB 2.0 Interface

Cryptographic Engine
and Security
Accelerator

XOR / DMA Channel

Two-Wire Serial
Interface (TWSI)

UART Interface

NAND Flash Interface

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Overview
Overview of Functions and Interfaces

The device integrates a single USB 2.0 compliant high-speed port with an integrated PHY:
m Serves as a peripheral or host

Enhanced Host Controller Interface (EHCI) compatible as a host

As a host, supports direct connection to all peripheral types (LS, FS, HS)

As a peripheral, connects to all host types (HS, FS) and hubs

Integrates up to four independent Endpoints that support control, interrupt, bulk, and
isochronous data transfers

m Integrates a dedicated DMA for data movement between memory and port
See Section 9, Universal Serial Bus (USB 2.0) Interface, on page 173.

The device integrates a Cryptographic Engine and Security Accelerator to support data
encryption and authentication. It also contains a dedicated Direct Memory Access (DMA)
controller to perform the following:

m Hardware implementation of encryption and authentication engines to boost packet
processing speed

m Dedicated DMA to feed the hardware engines with data from the internal SRAM memory
or from the DDR memory

= Implements AES, DES, and 3DES encryption algorithms

= Implements SHA1 and MD5 authentication algorithms

See Section 10, Cryptographic Engines and Security Accelerator (CESA), on page 174.
The device integrates four XOR / DMA channels. Each channel has the capability to transfer
data between the interfaces. The channels:

m Support chaining via linked-lists of descriptors

Move data from source interface to destination interface

Support increment or hold of source and/or destination address

Support XOR operation on up to eight source blocks, useful for RAID application
Support iISCSI CRC-32 calculation

See Section 11, XOR Engine, on page 205.

The device contains a single Two-Wire Serial Interface (TWSI) port that can be configured as
either a master or a slave interface. This port can also be used for serial ROM initialization.

The TWSI fully supports multiple TWSI master environments (clock synchronization, bus
arbitration). The TWSI interface can be used for multiple applications such as a master to
control other TWSI on board devices and to auto-load values from an external serial ROM
device. It can be used as a slave for communication with some other TWSI masters

See Section 12, Two-Wire Serial Interface (TWSI), on page 221.

The device supports a Universal Asynchronous Receiver/Transmitter (UART) Interface that
consists of two Synopsis DW_16550 compatible UART ports.

The UART interface integrates:

m Two pins for transmit and receive operations

m Two pins for modem control functions

See Section 13, UART Interface, on page 228.

The device implements an 8-bit NAND Flash interface to boot from NAND Flash, or for any
other non-volatile memory usage. The NAND Flash interface provides a glueless interface to
CE care and CE don't care type NAND Flash devices.

See Section 14, 8-bit NAND Flash Interface, on page 231.

Doc. No. MV-S104860-U0 Rev. C
Document Classification: Proprietary Information Page 29

®
I% 88F6180/88F619x/88F6281

M ARVELL®

SPI Serial Flash
Interface

Audio 1S / SIPDIF
Interface

SDIO Interface

MPEG Video /
Transport Stream
Interface (TS)

General-Purpose I/0
Port (GPIO)

Functional Specifications

The device implements an SPI interface for direct boot from external SPI flash memory. This
interface operates at up to 41.6 MHz in the 88F6180 and 88F619x, and up to 50 MHz in the
88F6281.

See Section 15, Serial Peripheral Interface (SPI), on page 236.

The 88F6180, 88F6192, and 88F6281 contain an I12S / S/PDIF interface for audio in and
audio out:

m Either I1°S/ S/PDIF inputs can be active at one time

= Both IS or S/PDIF outputs can be simultaneously active (transferring the same PCM
data)

This interface supports the following 1°S and S/PDIF specific features:
= 1°S specific features:
* Sample rates of 44.1/48/96 kHz
RIS input and 12s output operate at the same sample rate
e 16/24-bit depths
* 12Sin and IS out support Independent bit depths (16 bit/24 bit)
e Supports plain I12s, right justified and left justified formats
m S/PDIF specific features:
e Compliant to IEC 60958-1, IEC 60958-3, and IEC 61937 specifications
e Sample rates of 44.1/48/96 kHz
e 16/20/24-bit depths

See Section 16, Audio (IZS | SIPDIF) Interface (88F6180, 88F6192, and 88F6281 Only),
on page 240.

The device integrates an SD/SDIO/MMC host interface that operates at up to 50 MHz.This
interface supports:

m 1-bit/4-bit SDMem, SDIO, and MMC cards

m Hardware generate/check CRC on all command and data transaction on the card bus
See Section 17, Secure Digital Input/Output (SDIO) Interface, on page 256.

The 88F6192 and 88F6281 implement an MPEG Video / TS interface of up to 80 Mbps.
Itis ISO/IEC 13818-1 standard compliant, supports any of the following modes:

m Parallel (8 bit) input

m Parallel (8 bit) output

m Two independent serial interfaces

See Section 18, Transport Stream (TS) Interface (88F6192 and 88F6281 Only),
on page 262.

88F6180 provides a 30-bit general-purpose 1/O port
88F619x provides a 36-bit general-purpose I/O port
88F6281 provides a 50-bit general-purpose /O port

Each of these general-purpose I/0O pins can be used for peripheral functions or for

general-purpose /0.

m Each pin can be configured independently

m GPIO inputs can be used to register interrupts from external devices, and generate
maskable interrupts

See Section 19, General-Purpose I/O (GPIO) Port Interface, on page 277.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 30

Document Classification: Proprietary Information December 2, 2008, Preliminary

Overview
Differences Between the 88F6180, 88F6190, 88F6192, and 88F6281 Devices

Real-Time Clock The device integrates a real-time clock that records second, minute, hour, date, day, month,
(RTC) and year.

While the system power is off, a backup battery (1.5V-1.8V) can operate the RTC unit. The
RTC unit operates with an external 32.768 kHz crystal.

See Section 20, Real-Time Clock (RTC) Unit, on page 278.

Interrupt Controller The device integrates an advanced interrupt controller that handles maskable interrupts
from all the various sources and forwards them to the Sheeva™ CPU core.

In Endpoint mode, the interrupts can also be forwarded to the Endpoint PCI Express
interface.

The Sheeva CPU core has two interrupt inputs—low and high priority. Each of the chip
interrupt events can be assigned to one of these two interrupts.

See Section 21, Interrupt Controller, on page 280.
Timers The device contains two general-purpose, 32-bit timers, and a single 32-bit watchdog timer.
See Section 22, Timers and Counters, on page 283.

Internal Architecture The device internal architecture is optimized for high-performance applications. It contains
an Mbus-L bus for high-performance, low latency CPU core to DDR SDRAM connectivity
and a proprietary Mbus architecture for 1/O connectivity.

The internal architecture integrates:
m Advanced Mbus architecture
m Dual port DDR SDRAM controller connectivity to both CPU and Mbus

See Section 25, Internal Architecture, on page 312.

1.3 Differences Between the 88F6180, 88F6190,
88F6192, and 88F6281 Devices
Table 1 provides a list of the differences between the 88F6180, 88F6190, 88F6192, and 88F6281
devices. It also lists those interfaces that are the same in all of the devices.

Table 1: 88F6180, 88F619x, and 88F6281 Device Differences and Similarities

Feature 88F6180 88F6190 88F6192 88F6281
Differences
Sheeva™ CPU | Running at600 MHz or = Running at 600 MHz Running at 800 MHz Running at 1.0 GHz,

Core 800 MHz L2 cache at up to L2 cache at up to 1,2 GHz, or 1.5 GHz
L2 cache at up to 300 MHz 400 MHz L2 cache at up to
400 MHz 500 MHz
TCLK 166 MHz 200 MHz
frequency
Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 31

—
=
—

M ARVELL®

Table 1:

Feature

DDR SDRAM
Interface

Time Division
Multiplexing
(SLIC/codec)
Interface

Serial ATA Il
(SATA 1)
Interface
Gigabit
Ethernet
Interface

Audio S/PDIF/
12S Interface

MPEG Video /
Transport
Stream
Interface (TS)

General-
Purpose /O
Port

PCI Express
Interface

USB 2.0
Interface

Cryptographic
Engine and
Security
Accelerator

88F6180/88F619x/88F6281

88F6180

Functional Specifications

88F6190

e Supports two DRAM chip selects

¢ Supports all DDR2 devices with densities up to 1Gb
e Supports up to 16 open pages (page per bank)

e Upto 512 MB total address space

None

1 GbE RGMII/MII/MMII

port

Yes

30-bits

Doc. No. MV-S104860-U0 Rev. C

Page 32

No

1 port

1 Gigabit Ethernet port
and
1 Fast Ethernet port

e Port0O RGMII,
Portl MII/MMII

« Port0 GMII,
Portl N/A

No

No

36-bits

Similarities

Yes

Yes

Yes

Document Classification: Proprietary Information

88F6192
¢ Up to 200 MHz clock frequency with an 400 MHz data rate

88F6180, 88F619x%, and 88F6281 Device Differences and Similarities (Continued)

88F6281

+ Up to 400 MHz
clock frequency
with an 800 MHz
data rate

* Supports four
DRAM chip selects

* Supports all DDR2
devices with
densitiesupto 2 Gb

e Supports up to 32
open pages (page
per bank)

* Upto 2 GB total
address space

Yes

2 ports

2 GbE ports?

Port0 RGMII,
Portl RGMII
Port0 RGMII,
Portl MII/MMII
Port0 MII/MMII,
Portl RGMII
Port0 GMII,
Portl N/A

Yes?

Yes?

50-bits

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Table 1:

Feature 88F6180

XOR engine
and DMA

Two-Wire
Serial
Interface
(TWSI)

UART
Interface

NAND Flash
Interface

SPI Serial
Flash
Interface

SDIO Interface

Real-Time
Clock (RTC)

Overview

Differences Between the 88F6180, 88F6190, 88F6192, and 88F6281 Devices

88F6190

88F6192

Yes

1 port

2 ports

1. The following interfaces are multiplexed:

- Audio
-TS
- TDM

- GbE portl or GbE port0 in GMII mode (see the note below)
For the 88F6192, only one of these interfaces may be selected at a time.
For the 88F6281, only two of these interfaces may be selected at a time.

NI

Note

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Yes

Yes

Yes

Yes

88F6180, 88F619x%, and 88F6281 Device Differences and Similarities (Continued)

88F6281

GbE port0 configured to GMII mode utilizes the pins of portO and portl. This
configuration uses the multiplex pins.

When GbE port0 is configured to GMII mode, the port cannot support MII/MMII,

due to multiplexing limitations.

GbE port0 configured to RGMII or MII/MMII mode utilizes dedicated pins, and can
be activated independently, regardless of the above multiplexed interfaces.

Document Classification: Proprietary Information

Doc. No. MV-S104860-U0 Rev. C
Page 33

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

2 Address Map

The device has a fully programmable address map. There is a separate address map for each of the
master units (units that can initiate transactions over the device Mbus).

Sheeva™ CPU core address space

PCI Express address space

GbE MAC address space

USB address space

SATA address space (88F619x and 88F6281 only)

XOR engine address space

Security accelerator address space

SDIO address space

TDM (SLIC/codec) address space (88F6192 and 88F6281 only)
Audio address space (88F6180, 88F6192, and 88F6281 only)
m TS address space (88F6192 and 88F6281 only)

Each of these interfaces includes programmable address windows that allow it to access different
device resources. Each window can map up to 4 GB of address space.

EI m Throughout this section, the term “BAR” means Base Address Register.
n

Although each master has independent address windows, when a resource (e.g.,
DRAM M_CsSn[Q]) is used by multiple masters, all masters must use the same
address map for this resource. This means that all masters must use an identical
address window setting for each resource.

2.1 Sheeva™ CPU Core Address Decoding

The Sheeva CPU core address decoding map consists of 13 address windows as follows:

m Four windows dedicated for Sheeva CPU core access to the four DRAM chip selects

m One window for Sheeva CPU core access to the chip internal registers space

m Eight configurable windows for Sheeva CPU core access to the remainder of the chip resources

Note

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 34 Document Classification: Proprietary Information December 2, 2008, Preliminary

Address Map
Sheeva™ CPU Core Address Decoding

DRAM windows Each DRAM window can have from a minimum of 16 MB of address space up to a

maximum of 4 GB of address space. Each window is defined by specific Base and
Size registers. The Base and Size are 8-bits wide, corresponds to address
bits[31:24]. The Size must be programmed as a set of 1s (staring from the LSB)
followed by a set of 0s. The set of 1s defines the size. For example, if Size[7:0] is
set to OXOF, it defines a size of 256 MB (the number of 1s is 4, 2% x 16 MB = 256
MB).

By default, each of the DRAM windows corresponds to a different DRAM chip
select (M_CSn[3:0]). However, each window can be set to support any of the
DRAM chip selects. This feature provides more flexibility in mapping DRAM
space.

Registers space The chip internal registers window has a 1 MB fixed size (It has a Base register

Configurable
address
windows

only, but no Size register).
NOTE: Only part of this space is populated with registers.

Each of the configurable address windows can have from a minimum of 64 KB of
address space up to a maximum of 4 GB of address space. Each window is
defined by a Window Base register and by a Window Control register’s <Size>
field. The Base and Size are 16-bits wide, corresponding to address bits[31:16].
The Size must be programmed as a set of 1s (staring from the LSB) followed by a
set of 0s. The set of 1s defines the size. For example, if Size[15:0] is set to
O0x03FF, it defines a size of 64 MB (the number of 1s is 10, 219 x 64 KB = 64 MB).

Address decoding starts with the address being compared with the values in the various Base
Address registers. The Size sets which address bits are significant for the comparison. In the
previous example of a 64 MB size, the CPU address bits[31:26] are compared against Base
Address bits[15:10] (the Size masks address bits[25:0]). An address is considered as a window hit if
it matches the Base Address register bits (the bits that are not masked by the Size).

NI

Note

Never program the Base and Size registers so that they result in an address
window overlap.

The address decoding scheme restricts the address window to a size of 2" and to a
start address aligned to the window size.

Upon a hit in one of the configurable windows, the transaction is forwarded to a specific target
interface specified by Window Control register’'s <Target> bits[7:4]), and with specific transaction
attributes specified by Window Control register’s <Attr> bits [15:8].

Table 2 shows a summary of target units IDs and attributes.

Table 2: Units IDs and Attributes—CPU

Field

Target Unit ID

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Description

0x0 = Reserved

0x1 = NAND flash, SPI flash, or bootROM
0x2 = Reserved

0x3 = Security Accelerator SRAM

0x4 = PCI Express

0x5—-0xF = Reserved

Doc. No. MV-S104860-U0 Rev. C
Document Classification: Proprietary Information Page 35

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

2.1.1

Table 2: Units IDs and Attributes—CPU (Continued)
Field Description
Attributes[7:0] If the target is the NAND flash, set the <Attr> field (bits [7:0]) to Ox2F.
If the target device is the SPI flash, set the <Attr> field (bits [7:0]) to OX1E.
If the target device is the bootROM, set the <Attr> field (bits [7:0]) to Ox1D.

If the target is PCI Express interface:
« To generate I/O transactions, set the <Attr> field (bits [7:0]) to OXEO.
« To generate memory transactions, set the <Attr> field (bits [7:0]) to OXES8.

If the target is the Security Accelerator SRAM:
¢ Bits[1:0]—Data swapping—set to Ox1.

00 = byte swap

01 = no swap

10 = byte and word swap

11 = word swap
e Bits[7:2] = Reserved. Must be 0.

Each of the four DRAM windows and each of the configurable windows have an enable bit (Size
register’'s <En> bit[0]).

m When set to 1, the window is enabled.

m When set to 0, the window is disabled and not taking part in the address decoding process.

The device internal registers space has a fixed size of 1 MB, even though only part of this space is
really populated with chip internal registers. Upon a write to a non-implemented register, the data is
discarded. A read to a non-implemented register will return undefined data.

The registers are located in different units of the device (distributed register file). Therefore, ordering
is not guaranteed upon CPU back-to-back writes to different registers. If ordering is required,
perform a read after each write.

For Sheeva core address decoding registers and their default values, see Section A.3.1, CPU
Address Map Registers, on page 357).

|§ | | Access to internal registers is limited to the WORD boundary (There is no support of
burst access to the register files). This means that the register file space must never be
Note cacheable.

Sheeva™ CPU Core-to-PCIl Express Address Remapping

The device supports address remapping on the Sheeva CPU core accesses to the PCI Express
interface. This enables relocating a CPU-to-PCI Express address window to a new location in the
PCI Express address space, decoupling the Sheeva CPU core and the PCI Express memory
allocation.

Each of the configurable address windows has an associated Remap register. Upon a hit in one of
these windows, the upper bits of the CPU address are replaced by the corresponding bits of the
Remap Low register, before the data is transferred to the PCI Express interface. The number of bits
to be replaced is determined according to the Size register. For example, with a 64-MB window, the
CPU address hits[31:26] are replaced with bits[31:26] of the Remap Low register.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 36

Document Classification: Proprietary Information December 2, 2008, Preliminary

Address Map
TDM (SLIC/Codec) Address Map (88F6192/88F6281 Only)

Each of these windows also has a 32-bit Remap High register that may be used for 64-bit
addressing on the PCI Express interface. When this register is not set to 0, a CPU address hit in this
window results in the PCI Express master generating a 64-bit addressing transaction.

2.1.2 CPU Address Decoding Errors

When an address decoding error occurs (for example, no hit in any of the address windows, or an
attempt to burst to an internal registers space):

1. Aninterruptis set.
2. Ifitis a write transaction, the data is discarded.

If it is a read, dummy data is driven back to the Sheeva CPU core, with an erroneous data
indication (resulting in a CPU exception).

The SDRAM address decoding windows also supports the write-protection feature. A CPU attempt
to write to a write-protected memory space is discarded and treated as the other address decoding
errors described above.

2.2 TDM (SLIC/Codec) Address Map (88F6192/88F6281
Only)

The TDM (SLIC/codec) interface address map consists of four programmable address windows for
the different interfaces (see Section A.5, Time Division Multiplexing (TDM) Unit Registers,
on page 413).

|§ | | The TDM port is restricted to access only the SDRAM and the PCI Express interfaces.
Setting the TDM port address decoding windows differently results in unpredictable
Note behavior.

2.3 PCI Express Address Decoding

The PCI Express port has its own address map. The PCI Express interface address map consists of
three Base Address registers (BARs) that map the chip address space. One BAR is dedicated for
the chip internal registers space. The other two BARSs are further sub-decoded by six programmable
address windows to the different interfaces of the chip.

The three BARs are 64-bit BARs. The internal registers space has a fixed size of 1 MB. The other
two BARs have corresponding size registers. Each programmable address window can map from a
minimum of 64 KB of address space up to a maximum of 4 GB of address space.

PCI Express address decoding is similar to the CPU address decoding scheme. An address is
considered as window hit if it matches the Base Address register bits. These are the bits not masked
by the Size register.

window overlap.

The PCI Express address decoding scheme restricts the address window to a size
of 2", and to a start address that is aligned to the window size.

EI m Do not program the Base and Size registers so that they result in an address

Note

Each of the two programmable BARs has an enable bit. If the bit is enabled, the BAR can be
configured to couple with one of the address windows. If a BAR is disabled, no address decoding is
performed to it.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 37

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

Upon an address hit, the address is further sub-decoded to any of the six address windows that are
configured to the specific BAR. Each of these windows also has Base and Size registers. Based on
this address decoding, the transaction is forwarded to a specific target interface (e.g., SDRAM
controller) with specific transaction attributes (e.g., M_CSJ0]). Table 3 shows a summary of target
units IDs and attributes.

Table 3: Unit IDs and Attributes—PCI Express

Field Description

Target Unit ID 0x0 = DRAM controller
0x1 = NAND Flash, SPI Flash, or boot ROM
0x2 = Reserved 0x3 = Security accelerator SRAM 0x4 = PCI Express
0x5-0xF = Reserved

Attributes[7:0] If the target is DRAM controller:
e To access M_CSnl[0], set the <Attr> field (bits [7:0]) to OxE.
e To access M_CSn[1], set the <Attr> field (bits [7:0]) to OxD.
« To access M_CSn[2], set the <Attr> field (bits [7:0]) to OxB (88F6281 only).
« To access M_CSnJ[3], set the <Attr> field (bits [7:0]) to Ox7 (88F6281 only).

If the target is the NAND Flash, set the <Attr> field (bits [7:0]) to Ox2F.

If the target device is the SPI Flash, set the <Attr> field (bits [7:0]) to Ox1E.
If the target device is the bootROM, set the <Attr> field (bits [7:0]) to Ox1D.
If the target is PCI Express interface:

» To generate I/O transactions, set the <Attr> field (bits [7:0]) to OXEO.

« To generate memory transactions, set the <Attr> field (bits [7:0]) to OXES.

If the target is the Security Accelerator SRAM, set the <Attr> field (bits [7:0]) to 0x1.

2.3.1 PCI Express-to-Memory Address Remapping
The device supports PCI Express address remapping. Each of the six PCI Express address
windows has an associated Remap register. Upon a hit in one of these windows, the upper bits of
the of the address in that PCI Express Window register, are replaced by the corresponding bits of
the Remap register before being transferred to the target interface. The number of bits to be
replaced is determined according to the Size register.
Each Remap register has an enable bit. If disabled, no remap action takes place, and the original
address is transferred to the destination.
2.3.2 PCI Express Address Decoding Errors
If the device PCI Express port receives a transaction that does not match any of the BARs:
1. Aninterruptis set and the error is registered.
2. The transaction is terminated as an unsupported request.
If the device PCI Express port receives a transaction that hits one of the BARs, but does not match
any of the sub-decoding windows:
1. Aninterruptis set and the error is registered.
2. The transaction is forwarded to a default target, as defined in the PCI Express Default Window
Control Register (Table 263 p. 447).
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 38 Document Classification: Proprietary Information December 2, 2008, Preliminary

2.4

2.5

2.6

2.7

Address Map
SATA Address Decoding (88F619x/88F6281)

| ;I | Set the PCI Express Default Window Control Register to point to a dummy target

Not device, so no destructive operation is performed due to the address decoding error.
ote

SATA Address Decoding (88F619x/88F6281)

The SATA port DMA uses an address decoding logic consisting of four address windows. The
address decoding scheme is the same as the Gigabit Ethernet address decoding logic.

|§ | | The SATA port is restricted to access only the SDRAM and the PCI Express interfaces.
Setting SATA port address decoding windows differently results in unpredictable
Note behavior.

Gigabit Ethernet Address Decoding

The Gigabit Ethernet port address decoding logic consisting of six address windows. Whenever the
port’s SDMA generates a read or a write transaction (for example, fetch descriptor), the address is
compared against these address windows, to determine which interface must be accessed.

The address decoding scheme is the same as for the XOR/DMA logic, with one exception. For an
address miss match, the SDMA transaction is retargeted to a fixed address and to the target
interface, as defined in the Ethernet Unit Default Address (EUDA) Register (Table 403 p. 555).

| ;I | The GbE port is restricted to access only the SDRAM interface. Setting the GbE port

Not address decoding windows differently, results in unpredictable behavior.
ote

USB Address Decoding

Each USB port uses an address decoding logic consisting of four address windows. Whenever one
of the ports generates a read or a write transaction (for example, fetch descriptor), the address is
compared against these address windows, to determine which interface must be accessed.

| ;] | The USB port is restricted to access only the SDRAM interface. Setting the USB port

Not address decoding windows differently results in unpredictable behavior.
ote

Security Accelerator Address Decoding

The Security Accelerator DMA uses an address decoding logic consisting of four address windows.
The address decoding scheme is the same as the Gigabit Ethernet address decoding logic.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 39

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

|:: | | The Security accelerator DMA is restricted to access only the SDRAM interface. Setting
the security accelerator DMA address decoding windows differently results in
Note unpredictable behavior.

2.8 XOR Engine Address Decoding

The two XOR engines each contain two XOR/DMA channels for a total of four XOR/DMA channels.
The two XOR engines share a single address decoding logic consisting of eight address windows.
Each of these windows is defined by a Base and a Size register. Each window can map from a
minimum of 64 KB of address space up to a maximum of 4 GB of address space.

Each of the eight windows can be configured to a specific target interface, and to specific transaction
attributes as shown in Table 3. Whenever one of the ports generates a read or a write transaction
(for example, fetch descriptor), the address is compared against these address windows, to
determine which interface must be accessed.

Four of the eight windows also have a Remap High register. Use these registers to generate an
address beyond the standard 4-GB space. This is useful for 64-bit PCI Express addressing.

When a DMA channel attempts to access an unmapped address, an interrupt is set, the error status
is registered, and the channel halts.

|§ | | The XOR ports are restricted to access only the SDRAM and the PCI Express
interfaces. Setting the XOR port address decoding windows differently results in
Note unpredictable behavior.

2.9 TWSI Address Decoding

The device TWSI serial ROM initialization and the TWSI debug port allow for access to the chip’s
internal resources (see the Reset Pins and Configuration section in the Hardware Specifications).

The serial ROM initialization and the debug port access to the chip resources is composed of a
32-bit address followed by 32-bit data. Bit[0] of the transaction address must be set to 0.

2.10 Audio Interface Address Map
(88F6180/88F6192/88F6281 Only)

The Audio interface address map consists of two programmable address windows for the different
interfaces (see Section A.16, Audio Interface Registers, on page 689).

|§ | | The Audio port is restricted to access only the SDRAM and the PCI Express interfaces.
Setting the Audio port address decoding windows differently results in unpredictable
Note behavior.

2.11 SDIO Address Map

The SDIO interface address map consists of four programmable address windows for the different
interfaces (see Section A.17, SDIO Registers, on page 714).

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 40 Document Classification: Proprietary Information December 2, 2008, Preliminary

Address Map
Transport Stream (TS) Address Map (88F6192/88F6281 Only)

|:: | | The SDIO port is restricted to access only the SDRAM and the PCI Express interfaces.
Setting the SDIO port address decoding windows differently results in unpredictable
Note behavior.

2.12 Transport Stream (TS) Address Map
(88F6192/88F6281 Only)

The TS interface address map consists of four programmable address windows for the different
interfaces (see Section A.18, Transport Stream (TS) Registers, on page 744).

m The TS port is restricted to access only the SDRAM and the PCI Express
| ;| | interfaces. Setting the TS port address decoding windows differently results in
unpredictable behavior.

m The SDRAM access from TS unit must not cross 32-byte boundary.

2.13 Default Address Map

Table 4 lists the default target address map for the device, including each target interface address ID
and attribute value.

Note

Table 4: Device Default Address Map

Target Interface Target Target Address Address Range in
Interface ID Interface Space Hexadecimal
Attribute Size
DDR SDRAM CSO 0 Ox0E 256 MB 0000.0000—-0FFF.FFFF
DDR SDRAM CS1 0 0x0D 256 MB 1000.0000-1FFF.FFFF
DDR SDRAM CS2 0 0x0B 256 MB 2000.0000-2FFF.FFFF
DDR SDRAM CS3 0 0x07 256 MB 3000.0000-3FFF.FFFF
Reserved - 4000.0000-7FFF.FFFF
PCI Express Memory 4 OXE8 512 MB 8000.0000-9FFF.FFFF
Reserved 512 MB A000.0000-BFFF.FFFF
PCI Express I/0 4 OxEO 64 KB C000.0000—C000.FFFF
Reserved - C001.0000—CO001.FFFF
Reserved - C002.0000-C800.FFFF
Security Accelerator Internal SRAM 3 0x00 64 KB C801.0000-C801.FFFF
Memory NOTE: Only 2-KB
NOTE: There is no access to the SRAM is
Security Accelerator Internal implemented.

SRAM Memory from the PCI
Express interface.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 41

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Table 4. Device Default Address Map (Continued)

Target Interface Target Target Address Address Range in

Interface ID Interface Space Hexadecimal
Attribute Size

Reserved - C802.0000-CFFF.FFFF

Internal Address Space?! 1MB D000.0000-DOO0F.FFFF

Reserved - D010.0000-D7FF.FFFF

NAND Flash 1 0x2F 128 MB D800.0000-DFFF.FFFF

Reserved - E000.0000-E7FF.FFFF

SPI Serial Flash 1 Ox1E 128 MB E800.0000-EFFF.FFFF

BootROM 1 0x1D - F000.0000-F7FF.FFFF

Boot device?(set by bootstrap): 1 Set by bootstrap: = 128 MB F800.0000-FFFF.FFFF

* NAND flash 2F or

* SPI Serial flash 1E or

* BootROM 1D

1. For the device Internal Address Map, see Table 88, Device Internal Registers Address Map, on page 354.

2. The actual default is determined by the selected boot option (see the Boot Mode in the Reset Configuration table in the
Hardware Specifications).

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 42 Document Classification: Proprietary Information December 2, 2008, Preliminary

Sheeva™ CPU Core

3 Sheeva™ CPU Core

The device uses the Marvell® Sheeva™ 88SV131 CPU core, compliant with the ARMV5TE
architecture. This Sheeva CPU core’ integrates a 256-KB L2 cache.

For full details and specifications about the Sheeva CPU core refer to the following documents:

m Sheeva™ 88SV131 ARM v5TE Processor Core with MMU and L1/L2 Cache Datasheet
(Doc No. MV-S104950-00)

m Unified Layer 2 (L2) Cache for Sheeva™ CPU Cores Addendum (Doc. No. MV-S104858-00).

1. In this document, the Sheeva™ 88SV131 CPU core is often referred to as the CPU.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 43

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

4 DDR SDRAM Controller

The device integrates an DDR SDRAM (Double Data Rate-Synchronous DRAM) controller that
supports up to four DRAM banks (four DRAM chip selects). It incorporates an 18-bit address bus
(M_A[14:0] and M_BA[2:0]) and a 16-bit data bus (M_DQ[15:0]).

The device supports 256 Mb, 512 Mb, 1 Gb, and 2 Gb DDR2 SDRAM devices, with up to 2 GB total
address space.

The DRAM can be accessed from any of the device interfaces. The DRAM controller supports up to
a 128-byte burst per single transaction from the Mbus port and up to a 32-byte burst from the
Mbus-L port. It supports DRAM bank interleaving, as well as open pages (up to eight pages per chip
select). Typically, this is useful on long DMA bursts to/from the DRAM.

The following optional DDR2 features are not supported:

Additive latency

Separate read and write DQS (RDQS signal)

Off Chip Driver (OCD) Impedance Adjustment

Power Down mode

Burst Length (B)L 8

Frequency change during self refresh

4.1 SDRAM Controller Implementation

The DRAM controller receives read and write requests from any of the chip units through the device
Mbus fabric, or from the CPU via Mbus-L path, and translates these requests to DDR SDRAM
transactions.

The SDRAM controller contains a transaction queue, read and write buffers. It can absorb up to four
transactions of 128 byte each, in its buffers.

Transactions from the Mbus are pushed into the transaction queue. The SDRAM controller
arbitrates between the transaction from the top of the queue and transactions received from the
CPU Mbus-L path. It drives part of the address bits of the selected transaction on M_A[14:0] and
M_BA[2:0] during the activate cycle (M_RASn), and the remaining bits during the command cycle
(M_CASN).

41.1 Write Data Path

For a write transaction, write data coming from the requesting unit is placed in the write buffer. Use
of the write buffer is required to compensate for the data-rate differences between the received write
data rate (running at core clock domain) and the rate that it is driven to the DRAM (DRAM clock
domain, double data rate).

The SDRAM interface write data path is 32b wide. Write data received from the 64b-wide Mbus is
unpacked to 32b, and driven on the 16b SDRAM interface at double data rate.

4.1.2 Read Data Path

For a read transaction, after the command cycle (M_CASn), the SDRAM controller samples read
data driven by the DRAM (sample window depends on the CAS Latency (CL) parameter), pushes
the data into the read buffer, and drives it back to the requesting unit. Use of the read buffer is
required to compensate for the data rate differences between the received read data from the DRAM

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 44 Document Classification: Proprietary Information December 2, 2008, Preliminary

4.1.3

4.2

DDR SDRAM Controller
DDR SDRAM Addressing

(running at DRAM clock domain, double data rate) and data rate of the requesting unit (core clock
domain). It is also used for temporary storage of read data, when the originator unit can not absorb
this data.

For a CPU read from the DRAM, read data is not pushed to the read buffer. It goes directly to the
CPU bus interface unit via a 64-bit wide Mbus-L path. This minimizes read latency.

The SDRAM interface read data path is 32 bits wide. Read data received from the 16b SDRAM
interface at double data rate is packed to the 64b-wide Mbus. Similarly, for CPU reads, read data
received from DRAM is packed to the 64b-wide Mbus-L.

Arbitration and Ordering

Transactions coming from the device Mbus fabric are pushed into a transaction queue. The SDRAM
controller arbitrates between the transaction at the top of the queue and transactions coming from
CPU Mbus-L path, always giving priority to the CPU.

While serving one transaction, the arbiter selects the next transaction to be served (from CPU or
from Mbus). When the next transaction is targeted to a different SDRAM bank, the SDRAM
controller utilizes its SDRAM bank interleaving capability (see Section 4.5, SDRAM Bank
Interleaving, on page 48). When the next transaction is targeted to the same page, in the same
bank, the SDRAM controller utilizes its open pages capability (see Section 4.6, SDRAM Open
Pages, on page 49)

The SDRAM controller transaction queue maintains transaction ordering between the source unit
over the device Mbus and the DRAM (no transactions re-ordering).

When receiving a CPU-to-DRAM transaction over the Mbus-L path, the SDRAM controller performs
an address lookup, against pending Mbus write transactions to the DRAM. When an address match
occurs, the CPU transaction is postponed until the matched Mbus transaction is forwarded to the
DRAM. This lookup mechanism guarantees proper producer-consumer operation.

The CPU also supports LOCK transactions. Upon receiving a LOCK transaction on the Mbus-L path,
the SDRAM controller blocks any pending Mbus transaction, until LOCK de-assertion occurs.

DDR SDRAM Addressing

The device supports 256-Mb, 512-Mb, 1-Gb, and 2-Gb DDR2 SDRAM devices. The different DRAM
devices differ in the usage of M_A[14:0] and M_BA[2:0] lines, as shown in Table 5.

Table 5: DDR2 DRAM Addressing

DRAM Type Bank Address Row Address Column Address Auto Precharge
256 Mb | 32Mx8 M_BA[1:0] M_A[12:0] M_A[9:0] M_A[10]
16Mx16 M_BA[1:0] M_A[12:0] M_A[8:0] M_A[10]
512Mb 64Mx8 M_BA[1:0] M_A[13:0] M_A[9:0] M_A[10]
32Mx16 M_BA[1:0] M_A[12:0] M_A[9:0] M_A[10]
1Gb 128Mx8 M_BA[2:0] M_A[13:0] M_A[9:0] M_A[10]
64Mx16 M_BA[2:0] M_A[12:0] M_A[9:0] M_A[10]
2Gb 256Mx8 M_BA[2:0] M_A[14:0] M_A[9:0] M_A[10]
128Mx16 = M_BA[2:0] M_A[13:0] M_A[9:0] M_A[10]
Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 45

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

| §| | m The Bank Address is the same in both RAS and CAS cycles.

Note m An auto-precharge indication, during the CAS cycle, is driven on M_A[10].

The SDRAM controller supports up to four SDRAM physical banks (four SDRAM chip selects). The
total SDRAM bank address space is determined by the nature of the DDR SDRAM devices. For
example, when using 512 Mb x8 devices (64Mx8), the bank, built up of eight such devices (a 64b
SDRAM interface), has a 512-MB address space.

4.2.1 DDR SDRAM Address Multiplex
The <CSxAddrSel> fields in the SDRAM Address Control Register (Table 172 p. 398) define how
the address bits driven by the requesting unit to the SDRAM controller are translated to row and
column address bits on M_DA[14:0] and M_BA[2:0].
The row and column address translation is different for 256-Mb, 512-Mb, 1-Gb, or 2-Gb SDRAM
densities, as well as for x8 or x16 SDRAM organization (see Table 6 and Table 7).
Table 6: Address Multiplex for 16b Interface, AddrSel =0
SDRAM M_BA[2:0] Row M_A[14:0] Column M_A[14:0]
Configuration
256 Mb 32Mx8 12:11 25:13 10:1
16Mx16 12:11 24:13,10 9:1
512 Mb 64Mx8 12:11 26:13 10:1
32Mx16 12:11 25:13 10:1
1Gb 128Mx8 13:11 27:14 10:1
64Mx16 13:11 26:14 10:1
2Gb 256Mx8 13:11 28:14 10:1
128Mx16 13:11 27:14 10:1
Table 7: Address Multiplex for 16b Interface, AddrSel = 1
DRAM Configuration M_BA[2:0] Row M_A[14:0] Column M_A[14:0]
256 Mb 32Mx8 25:24 2311 10:1
16Mx16 24:23 22:10 91
512 Mb 64Mx8 26:25 24:11 10:1
32Mx16 25:24 23:11 10:1
1Gb 128Mx8 27:25 24:11 10:1
64Mx16 26:24 2311 10:1
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 46 Document Classification: Proprietary Information December 2, 2008, Preliminary

4.3

DDR SDRAM Controller
SDRAM Timing Parameters

Table 7: Address Multiplex for 16b Interface, AddrSel =1 (Continued)

DRAM Configuration M_BA[2:0] Row M_A[14:0] Column M_A[14:0]
2Gb 256Mx8 28:26 25:11 10:1
128Mx16 27:25 24:11 10:1

By default, all four physical banks (M_CSn[3:0]) must be populated with the same DRAM devices
(the same density and configuration). However, the device also supports having a different DRAM
configuration for each of M_CSn[3:0]. This is especially useful for systems that support memory
expansion.

SDRAM Timing Parameters

The SDRAM controller supports a wide range of SDRAM timing parameters. These parameters can
be configured through the following registers:

m SDRAM Timing (Low) Register (Table 170 p. 397)
= SDRAM Timing (High) Register (Table 171 p. 397)
= SDRAM Mode Register (Table 175 p. 401)

| ;] | The DRAM controller does not support different timing parameters for each physical

bank.
Note

Table 8: SDRAM Timing Parameters

SDRAM Timing Description
Parameters
CAS Latency (CL) The number of cycles from M_CASn assertion to the sampling of the first read data.

The SDRAM controller supports a CL of 3, 4, 5, 6, or 7 cycles.

RAS Precharge (Trp) The minimum number of cycles from precharge to a new activate cycle, in the same
SDRAM bank.

M_RASn to M_CASn (Trcd) = The minimum number of cycles between activate cycle and command cycle, in the same
SDRAM bank.

Row Active Time (Tras) The minimum number of cycles between activate cycle and precharge cycle, in the same
SDRAM bank.

Write to Precharge (Twr) The minimum number of cycles between a write command and precharge, in the same
SDRAM bank.

Write to Read (Twitr) The minimum number of cycles between a write command and a read command in the

same SDRAM device

Active to Active (Trrd) The minimum number of cycles between activate bank A and activate bank B (in the same

SDRAM device)

Refresh Command (Trfc) The minimum number of cycles between a refresh command and a new activate command

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 47

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Table 8: SDRAM Timing Parameters

SDRAM Timing Description
Parameters
Read to Read (Tr2r) The minimum number of cycles between consecutive read commands to different devices.

This is not part of the JEDEC specification. This is used to prevent contention between
consecutive reads to different SDRAM devices (different chip selects).
The SDRAM controller supports Tr2r of 1 or 2 cycles.

Read to Write and Write to The minimum number of cycles between a read command and a write command. This is

Read (Tr2w_w2r)

4.4

4.4.1

4.5

Doc. No. MV-S104860-

Page 48

not part of the JEDEC specification. This is used to prevent contention between
consecutive read after write or write after read commands.
The SDRAM controller supports Tr2w_w2r of 1 or 2 cycles.

DRAM Burst

A DDR SDRAM device can be configured to different burst lengths (BL) and burst ordering. The
device SDRAM controller only supports a BL setting of four, and linear wraparound burst type (<BT>
field in the SDRAM Mode Register (Table 175 p. 401) must be set to 0).

A single DRAM access request in the device SDRAM controller can vary from a single byte up to a
128-byte burst (a burst of 64 16-bit words). The SDRAM controller drives the SDRAM address and
control signals accordingly, concatenating multiple BL accesses as a one, long burst.

Even when the required DRAM access is not a full multiple of the DRAM burst lengths, the SDRAM
controller always completes the burst to the next BL boundary. In a write transaction, the controller
masks the redundant cycles with a data mask.

Burst Chop Support

The CPU maximum transaction size is 32B (cache line) while an Mbus request can be as long as
128B. This fact represents a fairness issue on the CPU versus Mbus arbitration scheme. Since the
CPU read access is latency-sensitive, waiting for an entire 128B Mbus transaction to complete
before serving a CPU read request can result in a CPU performance penalty.

To resolve this conflict, the SDRAM controller supports a burst-chop feature, where the SDRAM
controller splits every Mbus transaction on the 32B boundaries (A 128B transaction is split into four
32B transactions). If the SDRAM controller receives a CPU request while in the middle of serving an
Mbus transaction, it forwards the CPU transaction in between the 32B segments of the Mbus
transaction.

| ;I | The burst-chop feature does not introduce any performance penalty on the Mbus

Not transactions, as long as there is no CPU transaction interference.
ote

SDRAM Bank Interleaving

The device supports both physical bank (M_CSn[3:0]) interleaving and virtual bank (M_BA[2:0])
interleaving.

Interleaving provides higher system performance by hiding a new transaction’s active cycles during
a previous transaction’s data cycles. This technique gains maximum utilization of the SDRAM-bus
bandwidth.

The SDRAM controller performs bank interleaving between the current active transaction and the
next transaction to be executed, if it is targeted to a different bank.

UO Rev. C Copyright © 2008 Marvell
Document Classification: Proprietary Information December 2, 2008, Preliminary

DDR SDRAM Controller
SDRAM Open Pages

Proper selection of SDRAM address multiplexing, via the SDRAM Address Control Register
(Table 172 p. 398), can sometimes increase the probability of virtual bank interleaving.

4.6 SDRAM Open Pages

It is possible to configure the device SDRAM controller to keep SDRAM pages open, using the
SDRAM Open Pages Control Register (Table 173 p. 400). It supports up to 32 open pages (one
page per each virtual bank).

When a page is kept open at the end of a burst (no precharge cycle), and if the next cycle to the

same virtual bank hits the same page (same row address), there is no need for a new activate cycle.

This is typically useful for large DMA transfers to/from the SDRAM. Once a page is open, it is kept

open until one of the following events occur:

m There is an access to the same bank but to a different row address. The SDRAM controller
performs a precharge (closes the page) and opens a new one (the new row address).

m The refresh counter expires. The SDRAM controller closes all open pages and performs a
refresh to all banks.

4.7 SDRAM Refresh

The device implements standard CAS before RAS refreshing.

The refresh rate for all banks is determined according to the 14-bit Refresh value in the SDRAM
Configuration Register (Table 168 p. 393). For example, when the value of <Refresh> is 0x200, if
the M_CLK_OUT frequency is 166 MHz (a 6-ns cycle), a refresh sequence occurs every 3.072 us.

Every time the refresh counter reaches its terminal count, a refresh request is sent to the SDRAM
controller. The refresh request has a higher priority than any other SDRAM access request. As soon
as the current outstanding SDRAM transactions complete, the SDRAM controller precharges all
banks (both the ones that are opened, and those that are not open), and performs an auto-refresh
command to all SDRAM banks.

4.8 SDRAM Initialization

The SDRAM controller starts the DDR SDRAM initialization sequence as soon as the <InitEn> field
in the SDRAM Initialization Control Register (Table 184 p. 407) is set to 1. The software must
initialize the DDR SDRAM Control registers prior setting this field.

The <InitEn> can be set only once by the CPU. To change the SDRAM mode and SDRAM extended
mode values after initialization has finished, see Section 4.9, SDRAM Operation Register .

The SDRAM controller postpones any attempt to access the SDRAM before the initialization
sequence completes. It is recommended that the CPU set the <Cmd> field in the SDRAM Operation
Register (Table 174 p. 400) to the NOP command, and perform read polling until the register returns
to a normal operation value.

The DDR SDRAM specification requires at least 200 us of stable clock after SDRAM power up,
before starting the initialization. Since the SDRAM controller starts driving valid clock to the SDRAM
only upon reset de-assertion, do not activate initialization earlier than 200 us after reset
de-assertion.

The SDRAM initialization sequence consists of the following steps:

1. Precharge to all SDRAM banks (all four physical banks).

2. Issue the EMRS2 (EMRS = Extended Mode Register Set) command based on the Extended
DRAM Mode 2 Register (Table 185 p. 407) value.

3. Issue the EMRS3 command based on the Extended DRAM Mode 3 Register (Table 186 p. 407)
value.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 49

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

4. Issue the EMRS command based on the Extended DRAM Mode Register (Table 176 p. 402)
value, to enable the SDRAM DLL.

5. Issue MRS (Mode Register Set) command based on the SDRAM Mode Register
(Table 175 p. 401) value, with the <DLLRst> activated.

Wait 200 cycles.

Precharge all banks.

Generate two auto-refresh cycles.

Issue the MRS command based on the SDRAM Mode Register value, and with the <DLLRst>
de-activated.

10. Issue the EMRS command with the <OCD> field in the Extended DRAM Mode Register
(Table 176 p. 402) set to 1111 (OCD Calibration Default), followed by another EMRS command
with the <OCD> field set to 000 (OCD Calibration Exit).

4.9 SDRAM Operation Register

In addition to the normal SDRAM operation mode, the SDRAM controller also supports special
SDRAM commands through the SDRAM Operation Register (Table 174 p. 400). These operations
include:

= Normal SDRAM Mode (default mode)

NOP Commands

Precharge All Banks

SDRAM Mode Register Setting (MRS)

SDRAM Extended Mode Register Setting (EMRS)

EMRS2

EMRS3

Force a Refresh Cycle

m Enter Self Refresh

The register contains four command type bits. Once the CPU changes the register default to one of
the command types, the SDRAM controller executes the required command, resets the register

back to the default value, and returns to normal operation. The CPU must poll this register to identify
when the SDRAM controller has returned to normal operation mode.

When using DDR SDRAM DIMMs, the SDRAM parameters are recorded in the DIMM Serial
Presence Detect (SPD) serial ROM. The CPU can read the SPD via the device TWSI interface and
program the SDRAM parameters accordingly, using the Load Mode register command.

© © N

The CPU must not attempt to change the SDRAM Mode Register (Table 175 p. 401) setting prior to
SDRAM controller completion of the SDRAM initialization sequence. To guarantee this restriction, it
is recommended that the CPU set the SDRAM Operation Register (Table 174 p. 400) to the NOP
command, perform read polling until the register has returned to a normal operation value, and then
set SDRAM Mode Register to its new value.

4.10 SDRAM Self Refresh Mode

The SDRAM controller also supports SDRAM Self Refresh mode. This feature is useful for two
applications:

= Power saving

m Battery backup (in case of power failure)

The SDRAM controller puts the SDRAM in Self Refresh mode by generating a refresh cycle with

M_CKEXx driven low. When exiting self refresh, it drives M_CKEXx high, and waits for 200 cycles,
before generating any new transaction to SDRAM.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 50 Document Classification: Proprietary Information December 2, 2008, Preliminary

4.10.1

4.10.2

DDR SDRAM Controller
SDRAM Self Refresh Mode

The SDRAM controller supports these two applications a bit differently:

m For power saving set the <SRMode> to 1. Normal operation resumes after any new SDRAM
access request.

m For battery backup, set the <SRMode> field in the SDRAM Configuration Register (Table 168
p. 394) to 0 (Entered Self Refresh mode). Once in Self Refresh mode, the SDRAM can no
longer be accessed and only returns to normal operation after power on reset.

support the separate placement of each physical bank into self refresh. If the board
topology does not require the use of all of these signals, it is possible to only use some
of the signals.

EI There are four CKE signals (M_CKE[3:0]) that behave the same. The device does not

Note

During self refresh, all of the SDRAM signals (excluding M_CLK_OUT, M_CKE, and
M_STARTBURST) are floated. This significantly reduces the power consumption. If the <SRClk>
field in the DDR Controller Control (Low) Register (Table 169 p. 394) is set to 1, the device also
stops driving M_CLK_OUT and M_CLK_OUTn when SDRAM is in Self Refresh mode.

The SDRAM controller keeps M_CKE low from power up until the software triggers the initialization
sequence.

When the SDRAM controller wakes up from reset, it does recognize that the SDRAM is in Self
Refresh mode. It starts an initialization sequence, as if it was a normal power up. This initialization
sequence has no effect on the SDRAM content.

Power Saving Mode

To place the SDRAM into self refresh set the <Cmd> field in the SDRAM Operation Register
(Table 174 p. 400) to 0x7. The SDRAM controller waits for 256 cycles and then generates a self
refresh command to SDRAM, and clears the SDRAM Operation register.

If there are new pending transactions to SDRAM, the SDRAM controller sets the M_CKE signals
and waits 200 cycles before generating a new transaction to SDRAM.

read/write access. Attempts to access the SDRAM with one of the operation commands
(for example, the MRS command), while in Self Refresh mode, results in a system
hang.

EI The SDRAM controller exits the Self Refresh mode only as a result of a SDRAM

Note

Battery Backup Mode

In some applications, data loss is unacceptable and a battery-backup mechanism is implemented. In
case the system detects a power failure, the SDRAM enters Self Refresh mode, just before power
goes down, and the SDRAM is kept “alive” via the battery backup. This means the SDRAM content
is not lost. It is available for re-use when power is restored.

The device does not tolerate powering of the I/O without powering the core. Since the SDRAM
power is driven from the battery during battery backup, the board must have separate power planes
to the SDRAM and to the device VDD_M.

To implement battery backup, follow these steps:

1. When the external logic detects a power failure, it interrupts the CPU. The logic can use the
device GPIO interrupts to perform this function.

2. The CPU interrupt handler sets the <Cmd> field in the SDRAM Operation Register (Table 174
p. 400) to 0x7.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 51

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

3. The SDRAM controller waits for 256 cycles and generates a Self Refresh command to the
SDRAM. This stops the SDRAM controller. It does not serve any pending SDRAM transactions.

| ;I | The CPU may notify the external hardware, via a GPIO pin, that it has placed the

SDRAM in Battery Backup mode.
Note

4. When the external logic turns the device power off, it must keep M_CKEO/1 driven LOW. This
keeps the SDRAM in Self Refresh mode while powered by the battery.

5. When the power is restored, the external logic stops driving the M_CKE signals.

6. The device SDRAM controller drives any idle commands as long as SYSRSTn is asserted, and
commences the SDRAM initialization sequence when reset is de-asserted. The initialization
starts when the CPU enables the <InitEn> field in the SDRAM Initialization Control Register
(Table 184 p. 407).

4.11 Heavy Load Support

When using multiple physical banks, the address and control signals are heavily loaded, and may be
unable to meet the SDRAM AC timing requirements. By configuring one of the registers described
below, the address/control signals are buffered and this AC timing issue is resolved.

m When using registers, all address and control signals (M_A[14:0], M_BA[2:0], M_RASN,
M_CASn, M_WEn, M_CSn[3:0], and M_CKE) arrive at the SDRAM device one cycle after they
are driven by the SDRAM controller. Also read data arrives back at the SDRAM controller one
cycle later.

To enable this mode, set the <RegDIMM> field in the SDRAM Configuration Register (Table 168
p. 393).

m An alternative solution for the heavy load configuration is using 2T mode. In this mode, all
address/control signals except for M_CSn[3:0] are asserted for two cycles, instead of one cycle.
The SDRAM protocol is still maintained, since all of the signals are qualified with M_CSn[3:0]
signals. These signals are still asserted for only one cycle. This operation results in an easing of
the timing requirement on the address/control signals.

To enable this mode, set the <2T> field in the DDR Controller Control (Low) Register (Table 169
p. 394).

4.12 SDRAM Clocking

The CPU Bus Interface Unit (BIU) and the SDRAM run from the same clock source (HCLK). HCLK is
derived from the same PLL that also generates the CPU core clock (CPU_CLK). The clocks are
edge aligned, and the entire CPU to SDRAM path runs synchronously, resulting in very low latency.

As described, the device—besides the CPU and SDRAM interfaces—runs at a different clock
domain (TCLK). Any request for SDRAM access from other units over the device Mbus passes
through synchronization logic.

4.13 SDRAM Address/Data Drive

The SDRAM clock is driven by the device M_CLK_OUT/M_CLK_OUTn differential pair. All SDRAM
address and control signals driven by the device (single data rate signals) are coupled to the rising
or to the falling edge of this clock. The clock edge is configured by the <CtrlPos> field in the DDR
Controller Control (Low) Register (Table 169 p. 395).

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 52 Document Classification: Proprietary Information December 2, 2008, Preliminary

4.14

4.15

DDR SDRAM Controller
SDRAM Read Data Sample

|:: | | Typically, address and control signals should be driven with the rising edge of
M_CLK_OUT. However, under certain board topology and SDRAM load, there may be
Note a hold time problem on these signals. Then, use the falling edge setting (0).

The front-end logic of the SDRAM controller is responsible for correctly driving the double data rate
data with the M_DQS signals, as well as unpacking the data from 32-bit SDR to 16-bit DDR.

During a write transaction, 32-bit wide data is pulled out of the write buffer and driven as 16-bit DDR
on the bus. The first 16 bits are driven with rising edge of M_CLK_OUT and the second 16 bits are
driven with the falling edge of M_CLK_OUT. The SDRAM controller drives DQS (data strobe) along
with the data. The DDR SDRAM specification requires very accurate DQS timing in respect to the
SDRAM clock. The SDRAM controller uses a Fine Tune DLL (FTDLL) and a delay line to achieve
the correct timing (shift DQ by ¥4 cycle).

SDRAM Read Data Sample

The front-end logic of the SDRAM controller is responsible for correct sampling of the double data
rate data with M_DQS signals, as well as the packing of data from 16-bit DDR to 32-bit SDR. A
16-bit DDR read data is latched via the received DQS (shifted by ¥ cycle, via the delay line). The
first 16-bits are sampled with the rising edge of DQS, and the next 64-bits with the falling edge of
DQS.

To meet the DDR SDRAM AC specification, packed 32-bit read data cannot simply be sampled with
the internal SDRAM controller clock. The exact sample point depends on class latency, silicon
process, and board topology. The controller drives a M_STARTBURSTN signal, as an envelope of
the read data phase. Route this signal on the board all the way to the SDRAM, and back to the
controller as M_STARTBURST_INn feedback. This signal is used as a reference for proper data
sample.

The assertion point of M_STARTBURST is controlled by the <SBOutDel> field in the DDR Controller
Control (Low) Register (Table 169 p. 396). The default setting of this field should be according to
Table 9.

Table 9: M_STARTBURST Output Assertion Point Configuration

SDRAM Topology CL=3 CL=4 CL=5 CL=6 CL=7
Unbuffered 0x1 0x3 0x5 0x7 0x9
Registered 0x3 0x5 0x7 0x9 0xB

The sampling point of the read data arriving from the SDRAM is determined by the <SBInDel> field
in the DDR Controller Control (Low) Register (Table 169 p. 396).

DDR2 On Die Termination (ODT)

The DDR2 supports dynamic turn ON and OFF termination resistors within the SDRAM I/O buffers,
as well as within the SDRAM controller I/O buffers. Figure 5 shows a schematic of a DDR2 1/0
buffer.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 53

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Figure 5: DDR2 I/O Buffer

VDDQ

SwW
R
R
SW
Key:
R = Resistor
VSSQ SW = Switch

The R nominal value is configurable to one of these values: 300, 150, or 100 ohm. This results in Rtt
(R/2) of: 150, 75, or 50 ohm, respectively.

The SDRAM controller has two ODT signals in the 88F619x and 88F6281 devices (M_ODT[1:0])
and one ODT signal in the 88F6180 (M_ODT). There is an additional ODT signal internal to the
device that controls the termination inside the chip I/O buffers. The ODT signals can dynamically
turn the SDRAM termination ON and OFF. This is useful for maintaining proper signal integrity, with
minimum reflection on the lines, without requiring any external termination resistors.

The device supports ODT at each of the Rtt values—150, 75, or 50 ohm—on both the SDRAM /O
buffers and the device I/O buffers.

As defined in the JEDEC specification, ODT applies only to the DM, DQ, and DQS

Not signals. External termination is still required on the address/control signals.
ote

The the termination value during ODT operation or disabling of termination is controlled by the
following fields in the Extended DRAM Mode Register (Table 176 p. 402):

m <Rtt[0]>

= <Rtt[1]>

Typically, when driving a signal and eliminating reflection, place a termination resistor at the end of
the line. When the device drives data on the DQ lines (write transactions), it is advisable to turn ON
termination on the SDRAM. On the other hand, when the SDRAM drives DQ signals (read
transactions), it is required to turn ON the termination inside the device 1/O buffer.

In a multiple-SDRAM bank environment, termination topology is more complex, and requires some
board simulation. The device SDRAM controller provides full flexibility to select which of the four

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 54 Document Classification: Proprietary Information December 2, 2008, Preliminary

DDR SDRAM Controller
DDR2 On Die Termination (ODT)

SDRAM banks terminations to turn ON or OFF, for any read or write transaction to any of the four
banks.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 55

M ARVELL®

5

5.1

®

—

= 88F6180/88F619x/88F6281

Functional Specifications

Time Division Multiplexing (TDM) Unit
(88F6192 and 88F6281 Only)

The 88F6192 and 88F6281 devices integrate a Time Division Multiplexing (TDM) Unit that is used
for interfacing with external SLIC (Subscriber Line Interface Circuit)/SLAC (Subscriber Line
Audio-processing Circuit)/codec devices, as shown in Figure 6. This interface is useful for VolP
(Voice over IP) applications.

Figure 6: SLIC/Codec Connection Example

The main features of the TDM unit are:

Two voice channels (interfaces two SLIC devices)
TDM interface with up to 128 full-duplex time slots; selectable time slot per each SLIC device
SPI interface for SLIC/SLAC registers read/write access
Support for various bit clock rates (256 kHz to 8.192 MHz in increments by powers of two).
TDM as master or slave of frame sync and PCM (Pulse-Code Modulation) clock

Support for compound (A-law/U-law) or linear voice samples
Support for wideband voice channels

Support for various flavors of PCM (short and long frame synchronization, inverted frame

Tip ,
- Line-feed -
H Ring circuitry CodecO
¢ PCM
H Ti I
: 1P : |
- Line-feed .
H Ring circuitry Codlecl
[
SPI

88F6281/
88F6192

synchronization, positive-edge/negative-edge PCM data drive/sample and others)

Functional Description

The TDM interface defines up to 128 full-duplex time slots (at 8.192 MHz PCM clock).
The TDM interface provides two independent transmit and two receive channels internally, via a

Doc. No. MV-S104860-U0 Rev. C

Page 56

Document Classification: Proprietary Information

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Time Division Multiplexing (TDM) Unit (88F6192 and 88F6281 Only)

Functional Description

tightly integrated DMA engine (see Figure 7). These channels can be mapped onto one of the 128
(maximum) time slots contained in a frame, as defined in the control registers. CPU intervention is
required only for overflow/underflow management and timely, buffer management.

The TDM interface supports the following functionality:

m PCM bus interface for telephony SLIC/SLAC/codec devices

Figure 7: TDM Unit Block Diagram

Internal register read/write access

Interrupt generation to the internal CPU
DMA operation to move data between the PCM bus and memory
Codec control register interface (via the SPI interface)

TDM_DTX

Channel 0

A

4{ PcmRdCtr

-

TXFIFO
(8x32)

H DmaWwrCtrl

Codec
inteface

\

—>‘ PcmWrCtrIP»‘

(8x32)

A

-

TDM_DRX

Y

PCM

RXFIFO P»‘ DmaRdCtrl
A

Channel 1

A

1
ﬁ Pcml{zdcm
L]

-—

TXFIFO
(8x32)

Codec
inteface

\

|
|

—» PcmWrCtrl
|

RXFIFO M DmaRdCtrl
|

(8x32)

Channel
arbiter &
mux

TDM unit

A

Fsync
generation

SPI

A

controller

-t
-

A

A4

v

DMA

Register -
file

\

\

Mbus

A

Mbus
arbiter and
mux

The size and location of the buffers are programmable through the registers. If the DMA engine fails
to service the requirements of the TDM interface in a timely fashion (due to increased internal bus
latencies), an underflow/overflow occurs, and the TDM interface generates a CPU interrupt and
signals the error via the Interrupt Status Register (Table 219 p. 427) (ISR). The channel in which the
error occurs is then switched off. In cases of Tx underflow, the TDM sends 0’s on a programmed
time slot. In cases of Rx overflow, it discards incoming data from the programmed time slot.

Copyright © 2008 Marvell

December 2, 2008, Preliminary

Document Classification: Proprietary Information

Doc. No. MV-S104860-U0 Rev. C
Page 57

—
=
—

M ARVELL®

88F6180/88F619x/88F6281
Functional Specifications

The TDM interface signals are provided in Table 10.

Table 10: Time Division Multiplexing (TDM) Interface Signals

Pin Name
TDM_CHO_TX_QL
TDM_CH2_TX_QL
TDM_CHO_RX_QL
TDM_CH2_RX_QL
TDM_CODEC_INTn
TDM_CODEC_RSTn
TDM_PCLK
TDM_FS
TDM_DRX
TDM_DTX
TDM_SPI_CS[1:0]

TDM_SPI_SCK

TDM_SPI_MOSI

TDM_SPI_MISO

Description

TDM Channel0 Transmit Qualifier
TDM Channel2 Transmit Qualifier
TDM Channel0 Receive Qualifier
TDM Channel2 Receive Qualifier
Interrupt Signal FROM the SLIC/codec
SLIC/codec Reset Signal

PCM Audio Bit Clock

TDM Frame Sync Signal

PCM Audio Input Data (for recording)
PCM Audio Output Data (for playback)

Active low SPI chip selects driven by the host to the codec for register access. Always
asserted for eight SCLK cycles at a time. Only Byte-by-Byte mode codec register
read/write is supported.

Serial SPI clock from the host to the codec for register access.

This is an RTO (return to one) clock. It toggles for eight cycles at a time (for 1 byte
transfer) during codec register access, then it returns to high.

The host drives write data on TDM_SPI_MOSI on the negative edge of TDM_SPI_SCK,
and captures read data from the codec on the positive edge of TDM_SPI_SCK.

Serial SPI data from the host to the codec for register access.

When TDM_SPI_CS[1:0] is asserted low, the data is driven from the host on the
negative edge of TDM_SPI_SCK. It is always driven for eight TDM_SPI_SCK cycles at
a time.

In a byte, the data can be driven MSB or LSB first.

Serial SPI read data from the codec to the host for register access.

When TDM_SPI_CS is asserted low, this data is driven from codec on negative edge of
TDM_SPI_SCK. It is always driven for eight TDM_SPI_SCK cycles at a time. The codec
drives data on this line only for a read operation, when it receives the command and
address in previous bytes from the host on TDM_SPI_MOSI

In a byte, the data can be driven MSB or LSB first.

| ;] | These pins are multiplexed on the device bus and MPP pins. For further information,

Note

see the Pin Multiplexing section in the respective device Hardware Specifications.

The Frame Sync (FS) is generated (or sampled) indicating the start of the time slot. The time slot
corresponds to one sample of 1 byte (A-law or U-law encoded) or 2 bytes (linear encoded). For

2 bytes, each sample occupies two adjacent time slots. In transmit operation, the data is driven out
to the codec on the Data Tx (DTX) line. The TDM can drive data on the positive edge or negative
edge of PCLK. The TDM can be the master of FS and PCLK (it drives both of these) or it can be the
slave. As a slave, it receives PCLK and FS from an outside master.

Doc. No. MV-S104860-U0 Rev. C

Page 58

Copyright © 2008 Marvell

Document Classification: Proprietary Information December 2, 2008, Preliminary

Time Division Multiplexing (TDM) Unit (88F6192 and 88F6281 Only)
TDM Protocol Specification

5.2 TDM Protocol Specification

The TDM interface defines time slots for PCM data transmit and receive. The start of the time slot is
indicated by an FS. The time slot consists of 8 PCM clocks (PCLK). The FS is always asserted at an
interval of 125 us, which corresponds to a frequency of 8 kHz. In each FS, one sample of PCM data
is received and transmitted.

The FS indicates the start of the Time Slot 0, as shown in the Figure 8.

m Data Rx: The codec drives the Data Rx (DRX) line on the positive edge of the PCLK, and the
TDM captures on the negative edge of the PCLK. In receive operations, the data is received
from the codec on the DRX line serially, in MSB first order.

m Data Tx: The TDM drives data on the positive or negative edge of PCLK on the DTX line. The
codec captures data on the negative edge of the PCLK. In transmit operations, the data is
driven out to the codec on DTX serially, in MSB first order.

Figure 8: TDM Operation Time Slot 0

e VIV T 1

L 125us >

S |

Qualifier
Type 1l
Qualifier
TypeO
DRX (msB L£>
DTX { msB @9
ime Slot 0 Time|Slot 1 ...31
[Driving edge

i Capture edge

TDM also supports Wideband mode, in which two PCM samples are transmitted and received in one
frame sync (125 us) from TDM to codec and vice-versa. The wideband codec is used for enhanced
voice quality in VoIP networks. The voice quality is improved because the effective sampling rate
becomes 16 kHz (instead of the 8 kHz rate in the standard Narrowband mode). The second sample
is sent in a time slot that is 62.5 ps from the first time slot, as shown in Figure 9, TDM Wideband
Mode Operation, on page 60.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 59

®

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

Figure 9: TDM Wideband Mode Operation

PCLK

FS

DT AL R T

[ERN
N
a1
c
(%
Y

Y

----r--+-625us

First timeslag

Second timeslot L

] [B]

o= o= o LY

L.
3

]

—
L]
B

T

TIMESLOT 0

I Driving edge

Capture edge

The TDM drives data on the positive or negative edge of PCLK on the DTX line. The FS can be
short, long, inverted, and driven on the positive or negative edge of PCLK, depending upon the
programmed value.

The TDM also supports the generation of four qualifier signals (two per channel) for receive and
transmit, as shown in Figure 8, TDM Operation Time Slot 0, on page 59. The qualifiers are used as
data enable for codecs that do not have programmable time slots. These qualifiers can be
programmed active for either:
m One PCLK, indicating the MSB for that time slot (Typel)

or

m The full duration of the time slot (Type0)

5.2.1 Tx Data Flow
EI The term CHx in the following sections stands for CHO or CH1 (Channel 0 or Channel 1).
Note
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 60 Document Classification: Proprietary Information December 2, 2008, Preliminary

Time Division Multiplexing (TDM) Unit (88F6192 and 88F6281 Only)
TDM Protocol Specification

The TDM supports two channels for Tx operation. Both channels are independent of one another,
and each channel has a separate set of control and configuration registers.

The sequence for sending PCM data from the TDM to the codec is:

1. Firmware processes the incoming data from the IP network and creates a sample buffer in
memory (typically a 10-ms sample buffer). The sample size must be in multiples of 4 bytes. The
maximum size is the 30-ms width of the sample.

2. CPU initializes the TDM.

These registers are programmed only at the beginning of the Tx operation. Changing register
values in the middle of TDM operation is not permitted.

TDM PCM Clock Rate Divisor Register (Table 215 p. 426)—selecting PCM clock.
Number of Time Slots Register (Table 214 p. 425)—FS generation.
Miscellaneous Control Register (Table 221 p. 429)—assessing reset to codec.

PCM Control Register (Table 203 p. 418)—TDM features supported by TDM. By default,
bits[1:0] are set to 0x3, which indicates target device mode TDM operation. For initiator
device operation mode, set bits[1:0] to 0x0. The codec is then reset by programming the
<CODEC_RST> field in the Miscellaneous Control Register (Table 221 p. 429) to allow
sufficient time for the codec reset (see individual codec specification for details). The codec
checks and loads the ratio of the PCM and FS clocks during reset, and uses the values for
internal operation.

Channel Time Slot Control Register (Table 204 p. 420)—selecting the time slot in which PCM
data is received. The same time slot value should also be programmed in the codec. The Rx
time slot of the TDM is the Tx time slot of the codec.

Channel 0/1 Total Sample Count Register (h=0-1) (Table 213 p. 425)—program with the
<CHO/1_TOTAL_ SMPL_CNT> and <CHO/1_INT_SMPL_CNT> fields that are used by the
TDM to synchronize with firmware. Firmware typically creates 10-ms sample widths (The
width may be any Dword size buffer up to the 30-ms sample width) of buffer in memory. The
sample from the codec can be 1- or 2-bytes in size, depending upon codec register settings.

3. CPU implements ping-pong buffers and enables transmit operation in TDM.
These registers can also be programmed during TDM operation.

Copyright © 2008 Marvell

December 2, 2008, Preliminary

The CPU checks the <TX_DMA_ST_ADDR_OWN_CHx> field in the Channel 0/1 Buffer
Ownership Register (n=0-1) (Table 208 p. 423) for a value 0. A value of 0 indicates that
software can program the <TX_DMA_ST_ADDR_CHO> field in the Channel 0 Transmit Data
Start Address Register (Table 209 p. 423) with the buffer address.

The CPU programs the <TX_DMA_ST_ADDR_OWN_CHx> field in the Channel 0/1 Buffer
Ownership Register (n=0-1) (Table 208 p. 423) with 1, which indicates this buffer is now
owned by the hardware.

The hardware makes a copy of the buffer address as programmed in the
<TX_DMA_ST_ADDR_CHO> field in the Channel O Transmit Data Start Address Register
(Table 209 p. 423), and then resets the <TX_DMA_ST_ADDR_OWN_CHx> field in the
Channel 0/1 Buffer Ownership Register (n=0-1) (Table 208 p. 423) to 0.

When this bit is not 0, the CPU cannot program the <TX_DMA_ST_ADDR_OWN_CHx> field
with a new value. In this way, the ping-pong buffers can be implemented in memory by
software.

The <TX_DMA_ST_ADDR_OWN_CHx> field points to the address of the Tx buffer in
memory.

Codec register initialization (through SPI): See individual codec specification for register
addresses and programming values.

The CPU programs the <CHNnTXEn> field in the Channel 0/1 Enable and Disable Register
(n=0-1) (Table 207 p. 422) to enable the channel transmit operation.

Doc. No. MV-S104860-U0 Rev. C
Document Classification: Proprietary Information Page 61

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

E The<TX_DMA_ST_ADDR_CHO> field must be 32-byte aligned.
Note

4. DMA is accessed.
* Active channels request access to DMA.
* DMA performs a burst read of 32 bytes from memory.
e Channel TXFIFO is filled up in one burst.

5. Once the TXFIFO is full, the TDM Tx read controller reads the TXFIFO and copies four Dwords
to the serial buffer as shown in Figure 10. When the TXFIFO becomes empty, the DMA is
activated again, to fetch the next 32 bytes from memory. This procedure continues until the total
sample count is reached (see the <CHO/1_TOTAL_ SMPL_CNT> field in the Channel 0/1 Total
Sample Count Register (h=0-1) (Table 213 p. 425)). For example, if the <CHO/1_TOTAL_
SMPL_CNT> field is set to 80 bytes, the DMA is activated three times—fetching the first 32B,
fetching the next 32B, fetching the last 16B.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 62 Document Classification: Proprietary Information December 2, 2008, Preliminary

Time Division Multiplexing (TDM) Unit (88F6192 and 88F6281 Only)

Figure 10: TDM Transmit Path

TDM Protocol Specification

DTX PCM shift

reg[15:0]

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Serialbuf4(1x32)

Serialbuf3(1x32)

Serialbuf2(1x32)

Serialbufl1(1x32)

W/

TXFIFO (8x32)

Document Classification: Proprietary Information

Ping-pong buffer
implemented in
memory (typically 80
sample size)

Ping-pong buffer
implemented in
memory
(typically 80 sample
size)

Doc. No. MV-S104860-U0 Rev. C
Page 63

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

5.2.1.1

6. As the sample sent to the codec becomes equal to the <CHO/1_INT_SMPL_CNT> field in the
Channel 0/1 Total Sample Count Register (n=0-1) (Table 213 p. 425), an interrupt—the
<SCOCHO_TX_ INT> or <SCOCH1_TX_ INT> field in the Interrupt Status Register (Table 219
p. 427)—is issued to the CPU indicating the need for a new buffer. When the CPU receives the
SCOCHXx_TX_INT interrupt, three conditions arise:

* Channel active: If the channel is still active, the CPU makes another buffer with the buffer
size as programmed in the Channel 0/1 Total Sample Count Register (n=0-1)

(Table 213 p. 425). The CPU checks if the <TX_DMA_ST_ADDR_OWN_CHx> field in the
Channel 0/1 Buffer Ownership Register (n=0-1) (Table 208 p. 423) is 0, programs the
<TX_DMA_ST_ADDR_CHO0> field in the Channel 0 Transmit Data Start Address Register
(Table 209 p. 423) with the new buffer address, and sets the buffer ownership to 1.

When all the data is fetched from the current buffer, the TDM checks that the
<TX_DMA_ST_ADDR_OWN_CHx> field is 1 and makes a copy of the
<TX_DMA_ST_ADDR_CHO> field for the next DMA operation. It also resets the
<TX_DMA_ST_ADDR_OWN_CHx> field to 0 when the previous buffer operation is complete
(i.e., all the data has been send out on the PCM bus). In this way, the software can poll the
<TX_DMA_ST_ADDR_OWN_CHx> field to check the status of the buffer and can implement
the ping-pong buffer.

For normal operation, when the channel is active, Steps 4, 5, and 6 are repeated.

* Channel closed from IP side: Programs <CHNTxEn> field in the Channel 0/1 Enable and
Disable Register (n=0-1) (Table 207 p. 422) to close the channel. The TDM sends all the
samples in the existing buffer to the PCM interface and then moves to IDLE state. The TDM
also, generates the CHx_TX_IDLE interrupt—the <CHO_TX_IDLE> or <CH1_TX_IDLE> field
in the Interrupt Status Register (Table 219 p. 428).

* The CPU fails to create a new buffer (if the channel is active) or fails to close the channel:
The TDM underflows (see Section 5.2.1.1, Tx Underflow, on page 64).

Tx Underflow

An underflow occurs when TDM is unable to meet the PCM transmit rate (one PCM sample every
125 ps in the Narrowband mode, or two samples in Wideband mode). There are two cases that
might cause Tx underflow: GbDMA underflow or software underflow.

During normal Tx operation, if the TXFIFO empties, because the last 4 Dwords are copied to the
serial buffer, and there are still samples to be fetched from the buffer in memory, the GbDMA is
triggered to fill the TXFIFO again. At that point, there are 17 PCM samples stored in the TDM to be
sent on the DTX line (1 in the PCM shift register and 16 in the serial buffers). If GbDMA fails to fetch
the next 32 bytes from memory, before these 17 PCM samples are sent on the DTX line

(17x125 ps), an underflow flag is set, which indicates that Tx underflow has occurred in the TDM.
However, the underflow interrupt is not triggered until the GbDMA fills the TXFIFO. This delay occurs
avoid the GbDMA filling the TXFIFO at some later time and causing the TXFIFO write pointer to
change.

In case of underflow the following actions are performed by the TDM:

1. The TDM generates an UFLOW_CHx_INT interrupt—the <UFLOW_CHO_ INT> or
<UFLOW_CH1_ INT> field in the Interrupt Status Register (Table 219 p. 427)—to the CPU if the
interrupt is enabled in the Interrupt Status Register (Table 219 p. 427) and Interrupt Status Mask
Register (Table 217 p. 426).

2. The TDM switches off the channel transmit, by setting the <CHNTXEn> field in the Channel 0/1
Enable and Disable Register (n=0-1) (Table 207 p. 422) to 0, and moves to IDLE state. The
TDM also flushes the TXFIFO. It keeps sending Os on the PCM interface. The buffer that was
being processed at the time that the underflow occurred becomes invalid. The audio is
disrupted.

To start the transmit operation again, software has to re-initialize the channel, by following the Step 3
as explained in Section 5.2.1, Tx Data Flow, on page 60.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 64

Document Classification: Proprietary Information December 2, 2008, Preliminary

5.2.1.2

5.2.2

Time Division Multiplexing (TDM) Unit (88F6192 and 88F6281 Only)
TDM Protocol Specification

Software underflow occurs when the CPU fails to make a new buffer (if the channel is active) or fails
to close the channel.

Once the SCOCHx_TX_INT is generated, there is a time window available for software to either
point to a new buffer to TDM or to close the channel, if it is closed from the IP side. This window
starts from the assertion of interrupt SCOCHx_TX_INT and ends at the buffer switch condition. The
buffer switch condition is defined as "The existing buffer is already fetched to TXFIFO earlier, data
from the TX FIFO is copied to serial buffers, and now there are four samples (500 ps in terms of
time) of PCM data remaining in the serial buffers." The TDM switches to the next buffer at this time
and checks the <TX_DMA_ST_ADDR_OWN_CHx> field in the Channel 0/1 Buffer Ownership
Register (n=0-1) (Table 208 p. 423) for a value of 1. The TDM needs to switch at this time to a new
buffer so that it can perform the next DMA operation, in a timely manner, and fill the TX FIFO again.
If at the buffer switch event, the TDM does not see <TX_DMA_ST_ADDR_OWN_CHx> = 1 and the
channel is still enabled, the underflow flag is set.

Setting of this flag means that the TDM has underflow. However, the UFLOW_CHXx_INT is still not
generated, as the TDM has to send all the PCM samples that it is still storing. At this moment, there
are 4 or 8 samples stored in the TDM (one in the PCM shift register and three in the serial buffer for
Narrowband mode, 1 in the PCM shift register and seven in the serial buffer for Wideband mode).
After sending these samples out on the DTX line, the UFLOW_CHx_INT is triggered.

The following actions are performed by TDM in case of underflow:

1. The TDM generates an UFLOW_CHx_INT interrupt—the <UFLOW_CHO_ INT> or
<UFLOW_CH1_ INT> field in the Interrupt Status Register (Table 219 p. 427)—to the CPU if the
interrupt is enabled in the Interrupt Status Register (Table 219 p. 427) and Interrupt Status Mask
Register (Table 217 p. 426).

2. The TDM switches off the channel transmit by setting the <CHNTXEn> field in the Channel 0/1
Enable and Disable Register (n=0-1) (Table 207 p. 422) to 0 and moves to IDLE state. It also
flushes the TXFIFO. It keeps sending 0s on the PCM interface. The audio is disrupted.

To start the transmit operation again, software has to re-initialize the channel, by following Step 3 in
Section 5.2.1, Tx Data Flow, on page 60.

Setting INT_SAMPLE_CNT

It is important to set the <CHO/1_INT_SMPL_CNT> field in the Channel 0/1 Total Sample Count
Register (n=0-1) (Table 213 p. 425) for normal Tx operation of the TDM. Once this number of
samples is sent on the DTX line, the SCOCHx_TX_INT interrupt is generated. Software then has a
window of time to point to the new buffer or close the channel, if it is closed from the IP side.
Software should set the <CHO/1_INT_SMPL_CNT> field to allow the CPU sufficient time to point to
the new buffer or close the channel. This ensures that a Tx underflow does not occur.

In quantitative terms the window size is given by the following equation (see the software underflow
description in Section 5.2.1.1, Tx Underflow, on page 64):

m For Narrowband mode(1-byte or 2-byte sample)
Window size = (TOTAL_SAMPLE_CNT - 4 - INT_SAMPLE_CNT) * 125 us

m For Wideband mode (1-byte or 2-byte sample)
Window size = (TOTAL_SAMPLE_CNT - 8 - INT_SAMPLE_CNT) * 125 us

Rx Data Flow

The TDM supports two channels for Rx operation. Both channels are independent of one another,
each with a separate set of control and configuration registers.

The sequence for receiving PCM data from the codec (codec to TDM) is:

1. When the telephone is picked up to start a conversation, an off-hook state is detected, and the
codec generates an interrupt. The dial tone is passed to the POTS by the codec, and the CPU
reads the interrupt. Once the receive channel is active:

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 65

—

= 88F6180/88F619x/88F6281

M ARVELL®

Functional Specifications

A codec interrupt is indicated by the <CODEC_INT> field in the Interrupt Status Register
(Table 219 p. 428).

The CPU reads the Interrupt Status Register (Table 219 p. 427) in the codec.
The receive channel is now active.
The CPU starts the TDM initialization process.

2. CPU initializes the TDM.

These registers are programmed only at the beginning of the Rx operation. Changing register
values in the middle of TDM operation is not permitted.

TDM PCM Clock Rate Divisor Register (Table 215 p. 426)—selecting PCM clock
Number of Time Slots Register (Table 214 p. 425)—FS generation
Miscellaneous Control Register (Table 221 p. 429)—assessing reset to codec

PCM Control Register (Table 203 p. 418)—TDM features supported by TDM.

By default, bits[1:0] are set to 0x3, which indicates target device mode TDM operation.

For initiator device operation mode, set bits[1:0] to 0x0. The codec is then reset by
programming the <CODEC_RST> field in the Miscellaneous Control Register (Table 221

p. 429) for to allow sufficient time for the codec reset (see individual codec specification for
details). The codec checks and loads the ratio of PCM and FS clocks during reset and uses
the values for internal operation.

Channel Time Slot Control Register (Table 204 p. 420)—selecting the time slot in which PCM
data is received. The same time slot value should also be programmed in the codec. The Rx
time slot of the TDM is the Tx time slot of the codec.

Channel 0/1 Total Sample Count Register (h=0-1) (Table 213 p. 425)—program with the
<CHO/1_TOTAL_ SMPL_CNT> and <CHO/1_INT_SMPL_CNT> fields, which are used by the
TDM to synchronize with the firmware. Firmware typically makes 10-ms sample width (The
width may be any Dword size buffer up to the 30-ms sample width.The size must be a
multiple of 4 bytes.) of buffer in memory. The sample from the codec can be 1- or 2-bytes in
size, depending upon codec register settings.

3. CPU implements ping-pong buffers and enables receive operation in the TDM.
These registers can also be programmed during TDM operation.

The CPU checks the <RX_DMA_ST_ADDR_OWN_ CHx> field in the Channel 0/1 Buffer
Ownership Register (n=0-1) (Table 208 p. 423) for a value 0. A value of 0 indicates that
software can program the <RX_DMA_ST_ADDR_CHO> field in the Channel 0 Receive Data
Start Address Register (Table 210 p. 424) with the buffer address.

The CPU programs the <RX_DMA_ST_ADDR_OWN_ CHx> field in the Channel 0/1 Buffer
Ownership Register (n=0-1) (Table 208 p. 423) with 1, which indicates that this buffer is now
owned by hardware.

TDM makes a copy of the buffer address as programmed in the
<RX_DMA_ST_ADDR_CHO> field, and then resets the <RX_DMA_ST_ADDR_OWN_ CHx>
field to 0. When this bit is not 0, the CPU cannot program the <RX_DMA_ST_ADDR_CHO0>
field with a new value. In this way, ping-pong buffers can be implemented in memory by
software.

<RX_DMA_ST_ADDR_CHO0>—points to the address of the Rx buffer in memory.

Codec register initialization (through SPI): See the individual codec specifications for register
addresses and programming values.

The CPU programs the <CHnRXEn> field in the Channel 0/1 Enable and Disable Register
(n=0-1) (Table 207 p. 422) to enable the channel receive operation.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 66

Document Classification: Proprietary Information December 2, 2008, Preliminary

Time Division Multiplexing (TDM) Unit (88F6192 and 88F6281 Only)
TDM Protocol Specification

E The <RX_DMA_ST_ADDR_CHO> field must be 32-byte aligned.
Note

4. Once the channel is enabled, the TDM begins receiving data serially (from the next FS) on the
DRX line in the programmed time slot as shown in Figure 11. Once a voice sample is received
in PCM shift register, it is copied to a serial buffer. This serial buffer helps to overcome the
latency on the internal bus (backup buffer). There are four serial buffers (1 Dword in size each).
Filling up one or all of these buffers is set by the <PerfBit> field in the PCM Control Register
(Table 203 p. 420). If the <PerfBit> field is set to 1 (default), all serial buffers are filled with PCM
samples, and then they are copied to the RXFIFO.

5. Once the RXFIFO becomes full, the DMA is accessed:

* The channel requests access to the DMA.

* The DMA performs a burst write of 32 bytes to memory (the channel RXFIFO is emptied in
one burst).

When the RXFIFO becomes full, the DMA is activated again to write the next 32 bytes to

memory. This procedure continues until the total sample count is reached. For example, if the

the <CHO/1_TOTAL_ SMPL_CNT> field in the Channel 0/1 Total Sample Count Register

(n=0-1) (Table 213 p. 425) is set to 80 bytes, the DMA will be activated three times—uwrite first

32 bytes, write next 32 bytes, write last 16 bytes.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 67

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Figure 11: TDM Receive Path

Ping-pong buffer
implemented in
memory (typically 80
sample size)

Serialbuf4(1x32)
DRX Serialbuf3(1x32)
PCM shift
reg[15:0]
Serialbuf2(1x32)
RXFIFO (8x32)
Serialbuf1(1x32)
Ping-pong buffer
implemented in
memory
(typically 80 sample
size)
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 68 Document Classification: Proprietary Information December 2, 2008, Preliminary

5.2.2.1

Time Division Multiplexing (TDM) Unit (88F6192 and 88F6281 Only)
TDM Protocol Specification

6. As samples are received from codec, and the number becomes equal the
<CHO/1_INT_SMPL_CNT> field in the Channel 0/1 Total Sample Count Register (n=0-1)
(Table 213 p. 425) value, a SCOCHx_RX_INT interrupt is issued to the CPU indicating that a
new buffer should be created. The CPU evaluates the conditions that can arise during TDM Rx
operations.

* Channel is still active—If the channel is still active, the CPU creates another buffer of the
same size as that programmed in the Channel 0/1 Total Sample Count Register (n=0-1)
(Table 213 p. 425) (after receiving a SCOCHx_RX_INT interrupt). The CPU checks the
<RX_DMA_ST_ADDR_OWN_ CHx> field in the Channel 0/1 Buffer Ownership Register
(n=0-1) (Table 208 p. 423) for a value of 0, programs the <RX_DMA_ST_ADDR_CHO> field
in the Channel 0 Receive Data Start Address Register (Table 210 p. 424) with the new buffer
address, and sets the buffer ownership to 1.

When all the PCM data is written to the current buffer, the TDM then checks that the
<RX_DMA_ST_ADDR_OWN_ CHx> field is 1 and makes a copy of the
<RX_DMA_ST_ADDR_CHO> field for the next DMA operation, and reset the
<RX_DMA_ST_ADDR_OWN_ CHx> field to 0. In this way, software can poll the
<RX_DMA_ ST _ADDR_OWN_ CHx> field to check the status of the buffer and to start further
processing of the buffer.

For normal operation, when the channel is active, Steps 4, 5, and 6 are repeated.

* Channel closed due to telephone hang up (on-hook)—The user can hang up the telephone
at any time during normal Rx operation. This can occur before the buffer is completely full.
When the telephone hangs up, the codec generates an interrupt to the CPU (the
<CODEC_INT> field in the Interrupt Status Register (Table 219 p. 428)). After receiving the
interrupt, the CPU can close the channel Rx by programming the <CHnRXEn> field in the
Channel 0/1 Enable and Disable Register (n=0-1) (Table 207 p. 422) to 0. In this case, the
TDM stops receiving data from the DRX line, and the remaining PCM samples in the buffer
are filled with dummy data (programmed in the <DUMMY_DATA> field in the Dummy Data
for Dummy RX Write Register (Table 220 p. 428)). The TDM then enters an IDLE state and
generates a CHx_RX_IDLE interrupt.

* The CPU fails to make a new buffer (if the channel is active) or fails to close the channel after
the telephone is hung up—the TDM overflows (see Section 5.2.2.1, Rx Overflow,
on page 69).

Rx Overflow

If the TDM is unable to meet the PCM transmit rate (one PCM sample every 125 ps in Narrowband
mode, or two samples in Wideband mode), an overflow occurs. There are two cases that might
cause Rx overflon—GbDMA overflow or software overflow.

During normal Receive operation, the RXFIFO becomes full when the last 4 Dwords are copied from
the serial buffers. The GbDMA is then triggered to empty the RXFIFO. From that moment, the TDM
can store 17 PCM samples (9 samples for linear mode) coming from DRX line. It can store 1 PCM
sample in the PCM shift register and 16 in the serial buffers, if using 1-byte samples (or 1 in the PCM
shift register and 8 in the serial buffer, if using 2-byte samples). If GhDMA fails to write the 32 bytes
to memory before these 17 PCM samples are received on the DDX line (17 x 125 ps), an overflow
flag is set, which indicates that RX overflow has occurred in the TDM. However, the overflow
interrupt is not triggered until GbDMA empties the RXFIFO. This is to avoid GbDMA reading the
RXFIFO at some later time and causing the RXFIFO read pointer to change.

In case of overflow, the following actions are performed by the TDM:

1. The TDM generates an interrupt OFLOW_CHx_INT to the CPU if the interrupt is enabled in the
Interrupt Status Register (Table 219 p. 427) and Interrupt Status Mask Register
(Table 217 p. 426).

2. The TDM switches off the channel receive by setting the <CHnNRXEn> field in the Channel 0/1
Enable and Disable Register (n=0-1) (Table 207 p. 422) to 0 and goes to IDLE state. The TDM

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 69

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

also flush the RXFIFO. It stops receiving data from PCM interface. The buffer that was being
processed at the time overflow occurred becomes invalid. The audio is disrupted.

To start the receive operation again, software has to re-initialize the channel by following the Step 3
in Section 5.2.2, Rx Data Flow, on page 65.

Software overflow occurs when the CPU fails to create a new buffer (if the channel is active) or fails
to close the channel after the telephone is hang up.

Once SCOCHx_TX_INT is generated, there is a time window available for software to either point to
new buffer to TDM or to close the channel if it is closed from the IP side. This window starts from
assertion of interrupt SCOCHx_RX_INT and ends at the buffer full condition. The buffer full condition
is defined as "All the PCM samples of the existing buffer have been written to the buffer in memory."
The TDM switches to the next buffer at that time and checks the <RX_DMA ST _ADDR_OWN_
CHx> field in the Channel 0/1 Buffer Ownership Register (n=0-1) (Table 208 p. 423) for a value of 1
(to fetch the address of a new buffer). If the TDM detects <RX_DMA_ST_ADDR_OWN_ CHx>as 0
and the channel is still enabled, overflow interrupt OFLOW_CHXx_INT is set.

The following actions are performed by the TDM in the case of overflow:

1. The TDM generates an interrupt OFLOW_CHx_INT to CPU if the interrupt is enabled in the
Interrupt Status Register (Table 219 p. 427) and Interrupt Status Mask Register
(Table 217 p. 426).

2. The TDM switches off the channel receive by setting the <CHnNRXEn> field in the Channel 0/1
Enable and Disable Register (n=0-1) (Table 207 p. 422) to 0 and moves to IDLE state. It also
flushes the RXFIFO. It stops receiving data from the PCM interface. The audio is disrupted.

To start the receive operation again, software has to re-initialize the channel by following the Step 3
in Section 5.2.2, Rx Data Flow, on page 65.

5.2.2.2 Setting Interrupt Sample Count

Setting the <CHO/1_INT_SMPL_CNT> field in the Channel 0/1 Total Sample Count Register (n=0-1)
(Table 213 p. 425) plays an important role in normal Rx operation of the TDM. Once the number of
samples set in that field are received on the DRX line, the SCOCHx_RX_INT interrupt is generated.
Software then has a window of time to point to a new buffer or close the channel, if the user hangs
up the telephone. Software should set <CHO/1_INT_SMPL_CNT> so that the CPU has sufficient
time to point to the new buffer or close the channel. This ensures that a Rx overflow does not occur.

In quantitative terms, the window size is given by the following equation (see the software overflow
description in Section 5.2.2.1, Rx Overflow):
m For 1 byte sample
Window size = (TOTAL_SAMPLE_CNT - INT_SAMPLE_CNT) * 125 ps
m For 2 byte sample
Window size = (TOTAL_SAMPLE_CNT - INT_SAMPLE_CNT) * 125 ps

5.2.3 TDM Wideband Mode Operation

In Wideband mode, two PCM samples are transmitted and received in one frame sync (125 ps) from
TDM to codec and vice-versa. The wideband codec is used for enhanced voice quality in Voice over
IP (VoIP) networks. The voice quality is improved because the effective sampling rate becomes

16 kHz. The second sample is sent in a time slot that is 62.5 ps from the first time slot.

Each of the two channels of the TDM can be individually configured in Wideband or Narrowband
mode. The <CHOWBand> field and the <CH1WBand> field in the PCM Control Register (Table 203
p. 420) define the Wideband versus Narrowband mode selection. For the Wideband time slot
programming, two registers are provided in each channel. The transmit and receive flow remains the
same as explained in Section 5.2.1, Tx Data Flow, on page 60 and Section 5.2.2, Rx Data Flow,

on page 65.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 70 Document Classification: Proprietary Information December 2, 2008, Preliminary

Time Division Multiplexing (TDM) Unit (88F6192 and 88F6281 Only)
TDM (SLIC/Codec) Registers Access via SPI

To set Channel x to Wideband mode:

1.

Set the <CHOWBand> field in the PCM Control Register (Table 203 p. 420) to 1 to select
Wideband mode for CHx.

Set the <CHODIyEn> field in the PCM Control Register (Table 203 p. 419) to 1 to select delay
control for time slot programming.

Program the Channel 0 Delay Control Register (Table 205 p. 421) for the first time slot for
transmit and receive of PCM data.

Program the TDM Channel0 Wideband Delay Control Register (Table 229 p. 431) for the
second time slot for transmit and receive of PCM data. For wideband codecs, this time slot is
generally 62.5 us from the first time slot.

5.3 TDM (SLIC/Codec) Registers Access via SPI

The codec register read/write interface is a generic design, to support various PCM codecs, which
follow SPI (4-wire) type protocol for register read/write. The pins used for this interface are:

TDM_SPI_CS[1:0]
TDM_SPI_SCK
TDM_SPI_MOSI
TDM_SPI_MISO

For a description of these pins see Table 10.

via SPI. The first method is chaining the SLIC devices, in which case only one
TDM_SPI_CSJ[1:0] signal is required. The second method uses two separate

EI The 88F6192 and 88F6281 support two methods for interfacing two SLIC/codec devices

Note Tpm_spPI_CS|[1:0] signals, one signal per each SLIC.

5.3.1 Codec Register Write Operation

A typical codec register write is shown in Figure 12. The transaction takes place in a Byte-by-Byte
mode. The CPU performs the following sequence for a codec register write:

1.

Copyright © 2008 Marvell

The CPU must check that the status of the <SPIStat> field in the SPI Control Register
(Table 197 p. 415) is 0 before starting any codec register read/write operation.

The CPU programs the CSU Global Control Register (Table 196 p. 415).

The CPU programs Codec Access Command Low Register (Table 198 p. 415), Codec Access
Command High Register (Table 199 p. 416), and Codec Registers Access Control

(Table 200 p. 416) with the appropriate values, depending on the codec specification
requirements.

After all of these steps, the CPU writes 1 in the <SPIStat> field. By writing 1 in this field, its starts
the codec register read/write operation. The 88F6192/88F6281 device drives the active low
chip select (TDM_SPI_CSJ[1:0]) and it toggles TDM_SPI_SCK for exactly eight cycles. The
command byte is sent to the codec first (depending upon the individual codec, e.g., SI3210
requires address in the first byte) on TDM_SPI_MOSI. The device drives TDM_SPI_MOSI on the
negative edge of TDM_SPI_SCK and the codec captures on the positive edge of
TDM_SPI_SCK.

Each byte can be sent by MSB/LSB first, depending upon the individual codec. This is set by
programming the <LSB_MSB> field in the Codec Registers Access Control (Table 200 p. 416).
TDM_SPI_CS[1:0] becomes high after each byte transfer.

Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 71

®

—
=
—

M ARVELL®

5.3.2

88F6180/88F619x/88F6281
Functional Specifications

After the command byte is sent, TDM_SPI_CSJ[1:0] toggles again for eight TDM_SPI_SCK
cycles and the address byte is set on TDM_SPI_MOSI. The write data is sent after this step.

When the write operation is complete, the device resets the <SPIStat> field in the SPI Control
Register (Table 197 p. 415) to 0. The CPU polls this bit. When it becomes 0, the CPU can start
the next codec write transaction.

Figure 12: Codec Register Write Operation

SC;

:

s || UULUUL WUUUULAL UBUUIROD

SMOSI

4{

CONTROL || ADDRESS | | DATA —

SMISO

Codec Register Read Operation

A typical codec register read is shown in Figure 13, Codec Register Read Operation, on page 73.
The transaction takes place in Byte-by-Byte mode. The CPU performs the following sequence for a
codec register read:

1.

The CPU must check the status of the <SPIStat> field in the SPI Control Register (Table 197
p. 415).
The CPU programs the CSU Global Control Register (Table 196 p. 415).

The CPU programs the Codec Access Command Low Register (Table 198 p. 415), Codec
Access Command High Register (Table 199 p. 416), and Codec Registers Access Control
(Table 200 p. 416) with the appropriate values, depending on the codec specification
requirements.

The CPU writes 1 in the <SPIStat> field. Writing 1 in this field starts the codec register
read/write operation. The 88F6192/88F6281 device drives the active low chip select
(TDM_SPI_CSJ[1:0]) and it toggles TDM_SPI_SCK for exactly eight cycles. The command byte is
sent to codec first (depending upon the individual codec) on SDO. The device drives SDO on
the negative edge of TDM_SPI_SCK and the codec captures on the positive edge of
TDM_SPI_SCK.

Each byte can be sent MSB/LSB first, depending upon the individual codec. This is set by
programming the <LSB_MSB> field in the Codec Registers Access Control (Table 200 p. 416).
TDM_SPI_CSJ[1:0] becomes high after each byte transfer.

After the command byte is sent, TDM_SPI_CSJ[1:0] toggles again for eight TDM_SPI_SCK
cycles and the address byte is sent on TDM_SPI_MISO. After the address byte, the codec
responds by sending the read data on TDM_SPI_MISO, when TDM_SPI_CSJ[1:0] and

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 72

Document Classification: Proprietary Information December 2, 2008, Preliminary

Time Division Multiplexing (TDM) Unit (88F6192 and 88F6281 Only)
TDM (SLIC/Codec) Registers Access via SPI

TDM_SPI_SCK are toggled again by the device. The codec drives read data on the negative
edge of TDM_SPI_SCK, and the device captures it on the positive edge of TDM_SPI_SCK.

5. When the read operation is complete, the 88F6192/88F6281 resets <SPIStat> field in the SPI
Control Register (Table 197 p. 415) to 0. The CPU polls this bit. When it becomes 0, the CPU
can read the Codec Read Data Register (Table 201 p. 417) for the read data value.

Figure 13: Codec Register Read Operation

s N N -
s [N DOUUUULD DUUUONTL

SMOSI

~— CONTROL || ADDRESS || XXOOXXXX |

SMISO

DATA[7:0] |

Copyright © 2008 Marvell

Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary

Document Classification: Proprietary Information Page 73

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

6 PCI Express Interface

The device integrates one PCI Express x1 port.

The PCI Express interface has the following features:

PCI Express Base 1.1 compatible

Root Complex port or Endpoint port

Embedded PCI Express PHY based on proven Marvell® SERDES technology
x1 link width

2.5 GHz signalling

Lane polarity inversion support

Replay buffer

Maximum payload size of 128 bytes

Single Virtual Channel (VC-0)

Ingress and egress flow control

Extended Tag support

Interrupt emulation message support

Power Management (PM):

» Software power management states D1, D2, D3},q;, and D34 Support

* Active state power management LOs and L1 support
Advanced Error Reporting (AER) capability support
Single function device configuration header

Message Signaled Interrupts (MSI) support

Expansion ROM support

Programmable address map

6.1 Functional Description

The PCI Express interface uses a layered architecture, according to the PCI Express specifications.
The main layers are the PHY layer, MAC layer, Data Link layer, and Transaction layer. In addition, a
Core Adapter layer handles the forwarding of the PCI Express Transaction Layer Packets (TLP) to
the device Mbus.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 74 Document Classification: Proprietary Information December 2, 2008, Preliminary

PCI Express Interface
Functional Description

Figure 14 provides a high-level diagram of the PCI Express interface.

Figure 14: High-level Block Diagram

PCI Express Port

Transaction Data Link Layer MAC Layer PHY Layer
Layer

L | and L L L |
B Mbus Adapter Replay SERDES TX>

Buffer

Internal
Bus

Rx

Buffer Rx

6.1.1 PHY Layer

On the Tx path, the PHY layer receives symbols from the MAC layer, converts them into a serialized
format, and transmits them on the PCI Express port. On the Rx path, the PHY layer receives a
serialized stream from the PCI Express port, and forwards them as parallel symbols to the MAC
layer.

The PHY handles symbol-locking and 8b10b encoding/decoding.

The PHY layer is responsible also for the clock tolerance compensation. The received symbol
stream is adapted to the local clock, by adding or deleting skip OSs (Ordered Sets).

6.1.2 MAC Layer

The MAC layer is responsible for establishment and maintenance of the PCI Express link, packet
framing, and data packing. The PCI Express LTSSM (Link Training and Status State Machine) is
located in this layer. It contains all the functionality for link configuration in terms of the lane polarity.
Additionally, the MAC layer performs the scrambling and functions. The MAC layer controls the
different link power-management modes, loopback mode, link disable mode and link hot-reset
function. In addition, the MAC layer handles the generation and detection of the various TSs
(Training Sequences) and OSs.

On the Tx path, the MAC layer receives packets (TLPs and DLLPs—Data Link Layer Packets) from
the Data Link layer. The packets are framed, scrambled, and packed into the relevant link width and
forwarded to the PHY.

On the Rx path, the MAC layer receives aligned symbols from the PHY. The symbols are unpacked
according to the relevant link width and unframing is performed. The packets (DLLPs and TLPs) are
then extracted from the frames and forwarded to the Data Link layer.

6.1.3 Data Link Layer

The Data Link layer provides a reliable TLP exchange between two components on the PCI Express
link. This layer performs most of the data integrity functions as specified by the PCI Express 1.1
specification.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 75

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

The Data Link layer controls the sequence number generation and detection. It also controls the
LCRC generation and detection. Outgoing TLPs are temporarily stored in a replay buffer until an
acknowledge is received from the far-end component. When a corrupted or missing TLP is detected,
the replay mechanism is used to recover and maintain reliable Transaction layer to Transaction layer
connection. The replay buffer holds transmitted packets and retransmits them when required.

The Data Link layer handles the generation and processing of DLLPs. DLLPs are used for
conveying information such as flow control, TLP acknowledgment, and power management
handshake.

6.1.4 Transaction Layer

The Transaction layer primary responsibility is handling of TLPs. Outgoing TLPs are assembled and
scheduled for transmission. Incoming TLPs are parsed and checked for various errors. In addition,
the Transaction layer is responsible for handling the split transaction protocol—both towards the PCI
Express port and the internal bus.

The Tx path accepts TLPs from the Mbus and schedules them for transmission, based on the
flow-control credit availability and the relevant ordering rules. Non-Posted (NP) TLPs are assigned
with a unique tag before they are scheduled for transmission. TLPs are then passed on to the Data
Link layer for transmission.

The Rx path examines the incoming TLPs for a variety of packet formation errors. Incoming
completions tags are checked for a valid NP request that was sent by the device. TLPs are then
passed to the Mbus.

6.2 Link Initialization

Enable the PCI Express interface by setting the <PEXOEn> field in the CPU Control and Status
Register (Table 116 p. 368). This allows programming of link parameters before the start of link
initialization.

Lane polarity inversion is supported. The lane differential couple can be routed on the board
regardless of its polarity.

In case the initialization fails and no link is established, the PHY will keep on trying to initiate a link
forever unless the port is disabled. As long as the port is enabled, the PHY will go on trying to
establish a link; once the PHY identifies that a device is connected to it, a link will be established.

The link must be enabled within 100 ms after reset to allow link initialization (per PCI Express Base
Specification, Revision 1.1).

It is recommended that from one second after reset, the software starts to check on DL Down status.
If the link DL is not UP, the software should power down the link, by first disabling the link, and
100 ms later, setting the power down register in the CPU registers.

| ;I | If the software accesses a unit when the unit is powered down, this may cause the

device to hang.
Note

6.3 Master Memory Transactions

Master memory transactions are memory space read and write requests (MRd and MWr TLPs) that
are generated and sent over the PCI Express link, and the respective completion TLPs that are
received in return.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 76 Document Classification: Proprietary Information December 2, 2008, Preliminary

PCI Express Interface
Master I/O Transactions

The following features are supported as a master memory requester:

= In Root Complex mode, a eight outstanding non-posted (NP) request (memory read request)
and a four posted (P) request (memory write request)

Maximum memory read request of 128 bytes
Maximum memory write request of 128 bytes
64-bit addressing

6.4 Master I/O Transactions

Master 1/O transactions are /O space read and write requests (IORd and IOWr TLPs) that are
generated and sent over the PCI Express link, and the respective completion TLPs that are received
in return.

The following features are supported as a master I/O requester:

m Eight outstanding NP requests (I/O read or write)

m Maximum I/O read request of 4 bytes

m Maximum I/O write request of 4 bytes

m 32-bit addressing

4 byte address boundary. These requests are illegal according to the PCI Express

EI m The user must not initiate 1/0 requests that are larger than 4 bytes and cross the
Base Specification Revision 1.1.

Note . Only partial I/O transactions are supported.
In Endpoint mode, only memory request generation is allowed by the PCI Express
Base Specification Revision 1.1. When working in Endpoint mode, do not initiate
1/0 requests.
6.5 Master Configuration Transactions

Master Configuration transactions are configuration space read and write requests (CfgRdO,
Cfgwr0, CfgRd1 and CfgWrl TLPs) that are generated and sent over the PCI Express link, and the
respective completion TLPs that are received in return.

The following features are supported as a master configuration requester:

m Eight outstanding NP requests (I/O read or write)

m Maximum Configuration read request of 4 bytes

= Maximum Configuration write request of 4 bytes

m Extended register number support (4 KB extended PCI Express configuration header space)

|§ | | In Endpoint mode, only memory request generation is allowed by the PCI Express Base
Specification Revision 1.1. When working in Endpoint mode, do not initiate
Note configuration requests.

6.5.1 Generation of Configuration Requests

As a Root Complex port, the CPU may generate TypeO or Typel configuration cycles to the PCI
Express Endpoints, via indirect access using the PCI Express Configuration Address Register

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 77

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

(Table 269 p. 450) and PCI Express Configuration Data Register (Table 270 p. 450) registers. The
following procedure is used for generating configuration cycles:

1. PCI Express Configuration Address Register—Write the Target Bus, Device, Function, Register
and Extended Register Numbers fields, using the <ConfigEn> field to enable this mechanism.

2. PCI Express Configuration Data Register—Read or write to generate a respective read or write
configuration request. The type of the request (type 0 or type 1) is set according to the following
rules:

* Typel request: generated if Target Bus Number Is different from the internal Bus Number.
* TypeO request: generated if Target Bus Number is same as the internal Bus Number, and the
Target Device Number is different from the internal Device Number.

The transmitted Configuration TLP includes the Target Bus, Device, Function and Register Numbers

as written to the PCI Express Configuration Address Register.

The Configuration request generation is only enabled when the <ConfigEn> bit is set.

6.6 Target Memory Transactions

Target Memory transactions are memory space read and write requests (MRd, MWr TLPs) that are
received over the PCI Express link, and the respective completion TLPs that are generated and
transmitted in return.

The following features are supported as a target memory completer:

Reception of up to eight Memory read requests

Reception of up to four Memory write requests

Maximum received read request size of 4 KB.

Maximum received write request of 128 bytes

Support PCI Express access to all of the device’s internal registers

64-bit addressing

Three Memory BARs (64-bit), BARO is dedicated to internal register access

In Endpoint mode: Expansion ROM support

6.7 Target I/O Transactions

Target I/O transactions are I/O space read and write requests (IORd, IOWr TLPs) that are received
over the PCI Express link, and the respective completion TLPs that are generated and transmitted in
return.

Target I/O transactions are not supported by the device and should not be generated by the
downstream device.

6.8 Target Configuration Transactions

Target Configuration transactions are Configuration space read and write requests (CfgRdO,
CfgWr0, CfgRd1 and CfgWrl TLPs) that are received over the PCI Express link, and the respective
completion TLPs that are generated and transmitted in return.

When configured as Root Complex port, target Configuration transactions are not supported and
should not be generated by downstream device. In Endpoint mode, Target TypeO Configuration
transactions are supported.

The following features are supported as a target Configuration completer:

m Reception of up to eight NP requests (configuration read or write).

m Maximum received Configuration read request size of 4 bytes.

m Maximum received Configuration write request of 4 bytes

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 78 Document Classification: Proprietary Information December 2, 2008, Preliminary

6.9

6.10

PCI Express Interface
Target Special Cases

The device as an Endpoint supports responding with Configuration Request Retry Status (CRS) to a
configuration read/write access. This is useful for postponing the Root Complex access until the
local CPU finish initialization of the Endpoint port.

To enable this feature, set the <Crs_Enable> field in the PCI Express Control Register (Table 307
p. 476) to 1, prior to enable link training (meaning, prior to setting the <PEXOEn> field in the CPU
Control and Status Register (Table 116 p. 368)). When the local CPU finish Endpoint initialization,
clear the <Crs_Enable> field.

Target Special Cases

m Access attempts that fail address decoding (e.g., do not hit a memory BAR) are completed as
Unsupported Requests.

m MemWr accesses to reserved, or not implemented registers, are completed normally on the PCI
Express port, and the data is discarded.

m MemRd accesses to reserved, or not implemented registers, are completed normally on the PCI

Express port, and a CpID TLP with data value of 0 and SC (Successful Completion status) is
returned.

Messages

PCI Express defines a new message space. Messages are used to replace legacy PCI side-band
signals such as interrupts, error signals, hot-plug signals etc. Messages are also is used to enable
new capabilities such as active power management, Slot Power Limit and others.

Table 11 lists the message groups supported as a Root Complex port, and if the group is supported
by the device.

Table 11: Supported Message Groups—Root Complex Mode

Message Group Supported Action

Interrupt Signaling Yes A received Assert_INTx message is forwarded as an interrupt to the

CPU. Reception of a Deassert_INTx message clears the relevant

interrupt.

NOTE: Both INTA, INTB, INTC and INTD are supported.
(x=A,B,CorD)

Power Management Event Yes A received PM_PME message is forwarded as an interrupt to the

(PME)

Error Signaling

CPU. The log of the message is registered in the PCI Express Root
Complex Power Management Event Register (Table 312 p. 478).
While software is handling one PME message, a new PME message
may be received and registered in this register.

Yes A received Error message is forwarded as an interrupt to the CPU.
Both Correctable, Non-fatal and Fatal error messages are supported.

Hot Plug Signaling No

Locked Transaction Support | No

Slot Power Limit Support No To enable sending SSPL, set the <SsplMsgEnable> field in the PCI

Express Root Complex Set Slot Power Limit Register (Table 310

p. 478) to 1 before the link is up. If enabled, upon reaching link up and
whenever there is a change in the <SlotPowerLimitValue> field or the
<SlotPowerLimitValue> field in the PCI Express Root Complex Set
Slot Power Limit Register (Table 310 p. 477) a message is sent.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 79

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Table 11: Supported Message Groups—Root Complex Mode (Continued)

Message Group Supported Action

PME_TurnOff Yes To send a Turn Off message, the <SendTurnOffMsg> field in the PCI
Express Power Management Extended Register (Table 313 p. 479) to
1. When the Endpoint reaches L2 state, <EPReady4TurnOff> is
asserted (see <RcvTurnOff> field in the PCI Express Interrupt Cause
Register (Table 320 p. 487)), indicating to the host that it may turn off
the primary power of the Endpoint.
The interrupt is set when the handshake is done (indicated by a timer
or a Link state of L2).
To exit this state, software must initiate a soft reset and clear the
<SendTurnOffMsg> bit once the link is up again.

Vendor Specific Messages No

Table 11 lists the message groups that are supported in Endpoint mode:
Table 12: Supported Message Groups—Endpoint Mode

Message Group Supported Action

Interrupt Signaling Yes Interrupt assertion on the internal interface is forwarded as an
Interrupt Assert message to the PCI Express port.
Interrupt de-assertion on the internal interface is forwarded as an
Interrupt De-assert message to the PCI Express port.
INTA, INTB, INTC, and INTD are supported.

Power Management Yes Receipt of a PME_Turn_Off Message triggers a maskable interrupt to
the device CPU. The device CPU must prepare the device for this low
power state, and acknowledge this message by setting the
<SendTurnOff AckMsg> field in the PCI Express Power Management
Extended Register (Table 313 p. 479) within 1 ms. Following this, the
link will start transition to L2/3 Ready. It is possible to set
<SendTurnOff AckMsg> in advance to automatically activate this
process.

Generation of an PME Message is possible, by the device CPU
setting the <PMEStat> field in the PCI Express Power Management
Control and Status Register (Table 286 p. 460).

Error Signaling Yes Error in the PCI Express port is forwarded as an Error message to the
PCI Express port.
Correctable, Non-fatal, and Fatal error messages are supported.

Hot Plug Signaling No
Locked Transaction Support | No

Slot Power Limit Support Yes When Set_Slot_Power_Limit message is received, the Slot Power
Limit Configuration registers are updated accordingly.

Vendor Specific Messages No

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 80 Document Classification: Proprietary Information December 2, 2008, Preliminary

6.11

6.12

6.13

PCI Express Interface
Message Signaled Interrupts (MSI)

Message Signaled Interrupts (MSI)

Message Signaled Interrupts (MSI) are supported in both Root Complex and Endpoint modes.

Root Complex mode: The Host sets the PCI Express MSI Message Address Register
(Table 288 p. 461) to the same value that it has set the Endpoint device.
A memory write received, with the same address, is handle as an MSI.

Upon receipt of MSI, an interrupt is set in the <RcvMsi> field in the PCI
Express Interrupt Cause Register (Table 320 p. 487). Interrupt data is
saved in the PCI Express MSI Message Data Register

(Table 290 p. 461).

Endpoint mode: MSI support is required for PCI Express devices. MSlI is driven by
preforming memory write TLP. When enabled through the PCI Express
MSI Message Control Register (Table 287 p. 460), the Endpoint
generates an MSI Write, for any edge interrupt assertion. The write
address is set, according to the PCI Express MSI Message Address
Register, and for a 64-bit address, according to the PCI Express MSI
Message Address (High) Register (Table 289 p. 461). The data content
is as configured in the register PCI Express MSI Message Data
Register.

Locked Transactions

Locked transaction semantics are not supported. This includes MRdLk, CplLk, and Unlock
messages.

Arbitration and Ordering

The arbitration scheme on both Tx and Rx directions are following the PCI Express ordering rules.
For each direction there are separate queues for posted, non-posted, and completion TLPs. So
TLPs can be forwarded according the ordering rules, A simple round-robin arbitration is performed
on TLPs.

6.13.1 Tx Ordering Rules
m All TLPs from same type (P, NP, C) are forwarded in order.
m Non-Posted transactions push posted transactions (unless the <TxNpPushDis> field in the PCI
Express TL Control Register (Table 318 p. 483) is set to 1).
m Completions push posted transactions (unless the <TxCmplPushDis> field in the PCI Express
TL Control Register (Table 318 p. 483) is set to 1).
For other transaction couples, reordering may occur.
Relaxed-ordering is not used for ordering in internal queues.
Simple round-robin arbitration is performed on all transactions that may be transmitted to the
PCI Express fabric according to those rules.
6.13.2 Rx Ordering Rules
m All TLPs from same type (P, NP, C) are forwarded in order.
m Non-Posted transactions push posted transactions (unless <RxNpPushDis> field in the PCI
Express TL Control Register (Table 318 p. 483) is set to 1).
m Completions push posted transactions (unless the <RxCmplPushDis> field in the PCI Express
TL Control Register (Table 318 p. 483) is set to 1).
m For other transaction couples, reordering may occur.
Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 81

®
I% 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

6.14

6.14.1

6.14.2

Relaxed-ordering is not used for ordering in internal queues.
Simple round-robin arbitration is performed on all transactions.

PCI Express Register Access
The PCI Express registers can be accessed from an external PCI Express device, or from the CPU.

The Read Only (RO) registers have the following access permissions:

m An external PCI Express device can only have read access to these registers.

m If not hardwired or set/clear by the hardware, these registers are read/write (RW) from the CPU.
If the device is configured as an endpoint, the configuration header registers can be accessed from
an external Root Complex port via typeO configuration transactions.

The configuration header registers are also mapped to the chip internal address space as follows:

m All configuration header registers are mapped to the internal memory space.

m Direct memory access is enabled via the <CfgMapTo MemEn> field in the PCI Express Control
Register (Table 307 p. 475). When enabled, a direct memory access can be performed from the
CPU or from an external PCI Express device, even if device is configured as Root Complex
port.

m If not hardwired or set/clear by the hardware, all RO configuration header registers are RW, if
accessed through the direct memory mapping.

D30t to DO Transition—Endpoint Mode

Switching from D3y, state to DO state is done by writing to <PMState> field in the PCI Express
Power Management Control and Status Register (Table 286 p. 459).

When such transition occurs, the configuration headers are reset to default values, except the
following registers:

m PCI Express Device and Vendor ID Register (Table 271 p. 451)

m PCI Express Class Code and Revision ID Register (Table 273 p. 453)

m PCI Express Subsystem Device and Vendor ID Register (Table 281 p. 456)

PHY Registers Access

The PCI Express PHY has its own register file. The software can access the PHY registers via the
PCI Express PHY Indirect Access Register (Table 319 p. 484).

|§ | | The PHY registers are for Marvell internal use (debug purposes). Do not access these
registers unless explicitly directed to by a 88F6180/88F619x/88F6281 related
Note document.

To write to a PHY register, write to the following fields in the PCI Express PHY Indirect Access
Register:

m <PhyAddr> field to point to the required register offset.
m <PhyData> field to set the desired data.
m <PhyAccssMd> field set to O.

To read from a PHY register:

m Write to PCI Express PHY Indirect Access Register with the <PhyAddr> field pointing to the
required register offset, and with the <PhyAccssMd> filed set to 1.

m Read the PCI Express PHY Indirect Access Register; the read data is available in the
<PhyData> field.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 82

Document Classification: Proprietary Information December 2, 2008, Preliminary

PCI Express Interface
Hot Reset

6.15 Hot Reset

Hot Reset is an in-band reset indication that can be sent from the root-complex downstream and

reset the PCI Express hierarchy. Use the following procedure to generate a hot reset:

1. Write to the <ConfMstrHot Reset> field in the PCI Express Control Register (Table 307 p. 475).

2. To check that Hot Reset has been completed, poll the <DLDown> field in the PCI Express
Status Register (Table 308 p. 476). When this bit is set, DL is down and Hot Reset has been
completed.

3. Clear the <ConfMstrHot Reset> field.

EI Root Complex registers are not reset by Hot Reset.
Note

6.16 Link Disable

According to the PCI Express Base Specification, Revision 1.1, as a Root Complex, the host may
disable the device connected to the PCI Express Link. To disable the link, set <LnkDis> field in the
PCI Express Link Control Status Register (Table 295 p. 467).

6.17 Power Management

This sections describes the PCI Express power management functions.

6.17.1 Software Power Management

The device supports all software Power Management options D1, D2, D3 as described in the PCI
Express Base Specification, Revision 1.1 and also supports the Turnoff process.

Root Complex mode: As a Root Complex it sets the device to Turnoff state, by sending a
Turnoff message, as described under Power Management Event in
Table 11, Supported Message Groups—Root Complex Mode, on
page 79. When the Turnoff process is completed, a maskable
interrupt is set in the PCI Express Interrupt Cause Register
(Table 320 p. 484).

As a Root complex, it responds to a PME event, generated by the
device. A maskable interrupt is set, upon receiving a PME message.
The PME Data is saved in PCI Express Root Complex Power
Management Event Register (Table 312 p. 478).

Endpoint mode: Upon receiving a turnoff message from the Root Complex, a
maskable interrupt is set.

The device CPU acknowledges the turnoff, as described under
Power Management Event in Table 12, Supported Message
Groups—Endpoint Mode, on page 80.

6.17.2 Active State Power Management (ASPM)

Active Power Management event is a mechanism, defined by the PCI Express Base Specification,
Revision 1.1, that allows the hardware to lower the power state of the link. This device support all
Active State Power Management (ASPM) options—both as a Root Complex and as an Endpoint.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 83

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

L1 ASPM

PCI Express driver should enable this feature as described in the PCI Express Specification.
L1 ASPM Endpoint When the Endpoint is enabled, the device starts the L1 ASPM event
mode: when the conditions defined in the PCI Express Base Specification

for this event are met and when the <L1_aspm_en> field in the PCI
Express Power Management Extended Register (Table 313 p. 479).

L1 ASPM Root Complex As a root complex, the device acknowledges an L1 ASPM event only

mode: when the <L1AspmAck> field in the PCI Express Power
Management Extended Register (Table 313 p. 479) is set. If this bit is
not set, a L1 ASPM nack respond is sent upon an L1 ASPM request.

LO ASPM

The device supports LOs event on both Rx and Tx.

6.18 Error Handling

This section details the error handling features.

6.18.1 Physical Layer Errors

Table 13 list the conditions that may cause a PHY layer Receive error.
Table 13: Physical Layer Error List

Error Name Conditions

Receiver Error * PHY Overflow
¢ PHY Underrun
« PHY 8B/10B decode error
« PHY Disparity error
Severity: Correctable.

6.18.2 Data Link Layer Errors

Table 14 lists the Data Link layer errors.
Table 14: Data Link Layer Error List

Error Name Conditions

Bad TLP ¢ LCRC Error detected in received TLP.
* Sequence number error detected in received TLP.
Severity: Correctable.

Bad DLLP CRC Error detected in received DLLP.
Severity: Correctable.

Replay Timeout Error Replay timer expired.
Severity: Correctable.

REPLAY_NUM Rollover Error REPLAY_NUM rolled over. Four consecutive replays were transmitted.
Severity: Correctable.

Data Link Layer Protocol Error Reception of an Ack with out-of-range ackNac_Seq_Num.
Severity: Fatal.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 84 Document Classification: Proprietary Information December 2, 2008, Preliminary

PCI Express Interface
Error Handling

6.18.3 Transaction Layer Errors

Table 15 lists the Transaction layer errors.

Table 15: Transaction Layer Error List

Error Name

Flow Control Protocol Error

Malformed TLP

Poisoned TLP Received.

Unsupported Request

Received UR Completion

Completion Timeout

Completer Abort

Received CA completion

Unexpected Completion

Description

¢ DLLP receive timer expiration.

* Received FC initial credit values that are less than the minimum advertisement
according to the spec.

« Received update FC message for a credit type that was advertised as infinite on
initialization.

Default severity: Fatal.

¢ Received TLP with data payload size larger than the Maximum Payload Size.

¢ Received TLP with undefined Type and Fmt fields value.

¢ Received TLP with length different than expected according to the length, type, and
TD (TLP Digest) field.

¢ Received request with Address/Length combination crossing the 4-KB boundary.

* Received Power Management Set_Slot_Power, Unlock, INTX, and error message
with TC field not equal to 0 (TCO).

Default severity: Fatal.

Poisoned TLP received.
Default severity: Non-fatal.

¢ Received unsupported TLP type (CfgWrl, CfgRd1, MrdLk).

* Received unsupported message codes.

¢ Failed address decoding on received TLP.

¢ Received CfgWr0 or CfgRdO with function_number different than 0.

* Received poisoned write request to internal register space.

Default severity: Non-fatal.

NOTE: Reception of Vendor_Defined_Type_1 message is discarded silently. It is not
an error state.

¢ Received Cpl TLP with UR completion status.
¢ Received CplLk or CpID with UR completion status.
Not a PCI Express error. Mapped to PCI status.

Outstanding Non Posted request to PCI Express timeout has expired.
Default severity: Non-fatal.

Received read requests to the internal address space, with the Length field different
than 1 DWORD.
Default severity: Non-fatal.

Received a Cpl with CA completion status
Not a PCI Express error. Mapped to PCI status.

* Received unexpected completion TLP (Cpl or CpID). Completion does not
correspond to one of the outstanding NP requests.

¢ Received CplLk or CpIDLk TLPs.

Default severity: Non-fatal.

6.18.4 Error Propogation

The PCI Express specification defines a mechanism for propagation of erroneous TLPs (erroneous
data payload) via an EP (Error Poisoning) bit in the packet header.

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Doc. No. MV-S104860-U0 Rev. C
Document Classification: Proprietary Information Page 85

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Receive
Upon receiving a poisoned write TLP:

m Ifitis not an access to the chip internal registers and if the <RxDPPropEn> field in the PCI
Express Mbus Adapter Control Register (Table 322 p. 488) is set, an erroneous data indication
is forwarded along with the data. Regardless of <RxDPPropEn> field setting, Error status bits in
the PCI Express configuration header registers are set (if enabled by the relevant configuration
registers control bits) and Error messages are sent (if enabled).

m Ifitis an access to the chip internal registers (whether PCI Express register file or another
register file), the transaction is discarded (not written to registers). An unsupported requests
completion message is sent if needed, and the relevant error status bits are set.

Upon receiving a poisoned completion TLP, if the <RxDPPropEn> field is set, an erroneous data
indication is forwarded along with the data. Regardless of <RxDPPropEn> field setting, error status
field are set, if enabled by the relevant control bits.

Transmit

Tx error forwarding is controlled by the <TxDPPropEn> field in the PCI Express Mbus Adapter
Control Register (Table 322 p. 488). For either requests or responses, the corresponding TLP is
poisoned (EP bit is set) if:

m Data received from the Mbus is marked as erroneous.

m Forwarding is enabled by the<TxDPPropEn>> field.

6.18.5 Completion Timeout

The Completion timeout (Cpl TO) mechanism is defined in the PCI Express specification. When a
device issues a NP request on the PCI Express port and does not receive all the related completions
of the request after a predefined period of time, the device must indicate a Completion Timeout error
status.

The Cpl TO period is set by the <ConfCmpToThrshld> field in the PCI Express Completion Timeout
Register (Table 311 p. 478). The Cpl TO mechanism can also be disabled through this register field.
If the Cpl TO expires before a Tx NP request is completed (not all completion fragments arrived):

m The relevant error status bits are set.

m An error message is transmitted, if not masked.

m The timed-out requests are completed on the Mbus with dummy read data, and with an
erroneous data indication.

6.19 Loopback Modes

Thee following DFT features are supported by the PCI Express port:
m Master Loopback

m Internal Loopback

m Slave Loopback

m Pseudo-Random Bit Sequence (PRBS) generation and checking

6.19.1 Master Loopback

Master Loopback mode forces the device on the other side of the PCI Express link to enter a
Loopback mode and mirror all the received traffic back to its Tx side. This mode enables a self-test
procedure for the PCI Express port and link.

Entering master loopback must be done before the PCI Express link is enabled. Use the following
procedure:

1. Setthe <ConfMstrLb> field in the PCI Express Control Register (Table 307 p. 475).

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 86 Document Classification: Proprietary Information December 2, 2008, Preliminary

PCI Express Interface
Loopback Modes

2. Setthe <PEXOEnN> field in the CPU Control and Status Register (Table 116 p. 368) to enable
the PCI Express port.

3. Check that the PCI Express link is ready for a loopback test by polling the <DLDown> field in
the PCI Express Status Register (Table 308 p. 476). When this bit is cleared, the link is in

Master Loopback mode and the loopback test can start.

4. Set the relevant registers to control the inbound traffic (BAR, address space control and the

address decoding windows).

5. Generate the loopback test traffic and check that it is received correctly.

To exit Master Loopback mode, generate hot reset or reset the entire chip.

6.19.2

Internal Loopback

When working in Internal Loopback mode, the PCI Express port mirrors all the traffic received from
the Mbus back to its Rx side. This mode enables self-test procedures for the PCI Express port, even

when no external device is attached.

The PCI Express PHY supports Shallow and Deep Loopback modes as shown in Figure 15 and

Figure 16.

Figure 15: Shallow Internal Loopback

PCIl-Express Port
PHY Layer
DL, TL and MAC Digital PHY Analog PHY
Mbus Adapter
[: SERDES TX>
I — Rx_]
Figure 16: Deep Internal Loopback
PCIl-Express Port
PHY Layer
DL, TL and MAC Digital PHY Analog PHY

Mbus Adapter

T &

SERDES

Use the following procedure to enter Internal Loopback mode:

1. For Shallow Loopback mode, set the PCI Express PHY Register 0x0 bit[0] to 1, using the PHY
registers indirect access as explained in Section 6.14.2, PHY Registers Access, on page 82.
For Deep Loopback mode set PHY register 0x0 bit[1] to 1.

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Document Classification: Proprietary Information

Doc. No. MV-S104860-U0 Rev. C

Page 87

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

2. Set PCl Express PHY register 0x44 bits[9:8] to 0x3, and register 0x81 bits [11:10] to Ox2.

3. Setthe <PEXOEnN> field in the CPU Control and Status Register (Table 116 p. 368) to enable
the PCI Express port.

4. Check that the PCI Express Link is ready for the loopback test by polling the <DLDown> field in
the PCI Express Status Register (Table 308 p. 476). When this bit is cleared, the loopback test
can start.

5. Set the relevant registers to control the inbound traffic (BAR, address space control and the
address decoding windows).

6. Generate the loopback test traffic and check that it is received correctly.
To exit Internal Loopback mode, generate hot reset or reset the entire chip.

6.19.3 Pseudo-Random Bit Sequence (PRBS)

When using an internal loopback, it is possible to use PHY PRBS generation and checking, rather
than activate the entire chip in order to generate traffic.

To enable PRBS generation, set PHY register 0x40 bit[2] to 1. PRBS errors are counted in PHY
registers 0x50 and 0x51. To reset the PRBS error counter, set PHY register 0x40 bit[3] to 1.

6.19.4 Slave Loopback

Slave loopback is the opposite case of Master loopback. This procedure is initiated and controlled by
the external PCI Express device.

6.20 Peer-to-Peer Traffic

The device supports the following PCI Express peer-to-peer traffic:

m Memory and /O transactions from the PCI interface to PCI Express ports.
m Memory transactions from the PCI Express ports to PCl interface.

The device does not comply with PCI transparent bridge specification:

m |t does not implement a PCI bridge configuration header.

m It does not support typel configuration cycles forwarding.

m It does not comply with the errors forwarding specification.

However, it is still very useful as a non-transparent bridge:
m |t supports forwarding of memory and I/O transactions.
m |t supports forwarding of PCI interrupts to PCI Express interrupt messages.

m |t supports configuration cycle forwarding via indirect access, using the PCI Express
Configuration Address Register (Table 269 p. 450) and PCI Express Configuration Data
Register (Table 270 p. 450).

Express does not support nonconsecutive byte enable within a burst write. If the PCI
bus write traffic is subject to nonconsecutive byte enable, PCI-to-PCl Express traffic is
not supported.

EI The PCI bus supports nonconsecutive byte enable within a burst write. The PCI

Note

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 88 Document Classification: Proprietary Information December 2, 2008, Preliminary

7.1

Serial-ATA (SATA) Il Interface (88F619x and 88F6281 Only)
Serial ATA Il Host Controller (SATAHC)

Serial-ATA (SATA) Il Interface
(88F619x and 88F6281 Only)

The 88F6192 and 88F6281 devices integrate two Serial-ATA (SATA) Il compliant ports.
The 88F6190 device integrates one Serial-ATA (SATA) || compliant port.

Unless specifically noted, the interface information in this section refers to a single port. Both ports
are identical and have the same features.

Based on the Marvell® SATA host controllers (SATAHC) and SATA proven technology. The 88F619x
and 88F6281 are fully compatible with SATA Il phase 1.0 specification (Extension to SATA |
specification).

The 88F619x and 88F6281 employ the latest SATA Il PHY technology, with 3.0 Gbps (Gen2i) and
backwards compatible with 1.5 Gbps (Genli) SATA I. The Marvell 88F619x and 88F6281 SATA I
PHY accommodates the following features:

m SATA Il 3 Gb/s speed

Backwards compatible with SATA | PHY's and devices
Support Spread Spectrum Clocking (SSC)
Programmable PHY for industry leading backplane drive capability
SATA Il power management compliant

SATA 1l Device Hot-Swap compliant

Low power consumption — Less then 200 mW per SATA Il PHY
PHY isolation Debug mode

1

The SATA Il interface supports the following protocols:
Non Data type command

PIO read command

P10 write command

DMA read command

DMA write command

Queued DMA read command

Queued DMA write command

Read FPDMAQueued command

Write FPDMAQueued command

The SATA Il interface does not support the following protocols:
m ATAPI (Packet) command
m CFA commands

Serial ATA 1l Host Controller (SATAHC)

The 88F619x and 88F6281 incorporate a Serial-ATA (SATA) host controller (SATAHC). The
SATAHC consists of the SATA ports with an Enhanced DMA (EDMA) that controls each port.

The sub-sections below provide detailed information about the SATAHC.

1. AC coupling is still required while working with Gen1 devices.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 89

®

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

7.2

7.2.1

71.2.2

7.3
7.3.1

7.3.2

7.4

SATAHC Block Diagram

Figure 17 provides a SATAHC block diagram, showing the flow to/from each SATA port, SATA
interface, EDMA, and the Mbus Interface.

Figure 17: SATAHC Block Diagram

> SATA

g EDMA |<gP Mbus Interface
SATA Port ¢ Interface

SATAHC EDMA

The SATAHC EDMA:

m Controls the ATA transactions associated with its port

m Contains a 0.5-KB buffer for posted write and prefetch read transactions
m Contains the registers that control the EDMA operation

SATA Interface

The SATA interface is compliant with the Serial-ATA 1l Phase 1.0 specification (Extension to SATA |
specification). SATA interface features are listed above.

SATAHC Initialization

Interrupt Coalescing
The command execution can be accomplished with or without using the coalescing mechanism:
m If the interrupt coalescing mechanism is used, initialize the following registers:

a) SATAHC Interrupt Coalescing Threshold Register (Table 351 p. 511)

b) SATAHC Interrupt Time Threshold Register (Table 352 p. 511)

m If Interrupt coalescing mechanism is not used, the <SataCoalDone> field in the SATAHC Main
Interrupt Mask Register (Table 355 p. 514) should be masked.

Unused SATA Port

The unused SATA port should be shut down to save power by clearing the appropriate
<PhyShutdown> field in the Serial-ATA Interface Configuration Register (Table 365 p. 519).

Host Direct Control Over the Hard Disk Drive

m When the EDMA is disabled, the <eEnEDMA> field in the EDMA Command Register (Table 342
p. 505) is cleared.

* The host has direct control over the device through the ATA task registers (see Table 399,
Shadow Register Block Registers Map, on page 549).

m When the EDMA is enabled, the <eENEDMA> is set.
* The EDMA has full control over the hard disk drive (HDD).

* If any of the ATA task registers are written, a write transaction results in unpredictable
behavior.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 90

Document Classification: Proprietary Information December 2, 2008, Preliminary

7.5

Serial-ATA (SATA) Il Interface (88F619x and 88F6281 Only)
LED Indications

LED Indications

For each SATA port, there are two LED indications:

m Disk present indication

m Disk active indication

These LED indications have to be selected through the MPP interface.

Optionally by setting the GPIO Blink Enable Register (Table 769 p. 763), the LED indication for both
the SATA and GPIO LEDs may blink.

The Disc Active or Presence LED indication is determined by the SATAHC LED Configuration
Register (Table 356 p. 515). Figure 18 shows the flow that sets the LED state. Table 16, Disc Status
LED State Settings, on page 91 explains the function of the bits shown in Figure 18.

Figure 18: Disc Status LED Indication Diagram

Presence—

7.6

Active —

Blink 1

MPP

e

act_led_blink act_presence || led_polarity
bit[0] bit[2] bit[3]

Table 16: Disc Status LED State Settings

Bit Bit Name Bit Function
Number
0 <act_led_blink> 0 = Use indication as is.

1 = Set indication to blinking.

2 <act_presence> 0 = Use active indication only.
1 = Multiplex active and presence indication on the same LED.

3 <led_polarity> 0 = Invert the active indication.
1 = Do not change the active indication.

EDMA Operation

The interface between host CPU and the EDMA consists of two queues: the request queue and the
response queue. The request queue is the interface that the host CPU uses to queue ATA DMA
commands as a request between the system memory and the device. The response queue is the
interface that the EDMA uses to notify the host CPU that a data transaction between the system
memory and the device was completed. Each entry in the request queue consists of an ATA DMA
command and the EDMA parameters and descriptors to initiate the device and to perform the data
transaction.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 91

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

The EDMA is further responsible for parsing the commands, initializing the device, controlling the
data transactions, verifying the device status, and updating the response queue when the command
is completed. This all occurs without CPU intervention. Direct access to the device is also supported
for device initialization and error handling.

7.6.1 EDMA Request and Response Queues

The request queue and the response queue are each located in CPU memory and organized as a
length of 32 entries, circular queues (FIFO) whose location is configured by the Queue In-Pointer
and the Queue Out-Pointer entries. Since these pointers are implemented as indexes and each
entry in the queue is a fixed length, the pointer can be converted to an address using the formula:
Entry address = Queue Base address + (entry length * pointer value).

The request queue is the interface that the CPU software uses to queue ATA DMA commands as a
request for a data transaction between the system memory and the device. Each entry in the
request queue is 32 bytes in length, consisting of a command tag, the EDMA parameters, and the
ATA device command to initiate the device and to perform the data transaction.

The response queue is the interface that the EDMA uses to notify the CPU software that a data
transaction between the system memory and the device has completed. Each entry in the response
gueue is 8 bytes in length, consisting of the command tag and the response flags.

Figure 19: Command Request Queue—32 Entries

Entry Byte Entry Byte
Number Number Number Number
0 Empty 0 0 CRQOB 0
In Out
— 1 32 -— 1 32
Pointer Empty Pointer CRQB
In
2 64 2 64
Empty Pointer > Empty
Out
3 Empty 96 3 CRQB 96 -— Pointer
4 Empty 128 4 CRQB 128
L Empty | @ ® | Cros L
L [] [L
. Empty . . CRQB .
31 Empty 1024 31 CRQB 1024
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 92 Document Classification: Proprietary Information December 2, 2008, Preliminary

Serial-ATA (SATA) Il Interface (88F619x and 88F6281 Only)
EDMA Operation

Figure 20: Command Response Queue—32 Entries

Entry Byte Entry Byte
Number Number Number Number
0 Empty 0 0 CRPB 0
In Out
Pointer L Empty 8 = Pointer 1 CRPB 8
In
2 16 — 2 16
Empty Pointer Empty
Out
3 Empty 24 3 CRPB 24 Pointer
4 Empty 32 4 CRPB 32

L Empty | @ ® | cree o

[o [[

. Empty . . CRPB .

31 Empty 256 31 CRPB 256

7.6.2 EDMA Configuration

The EDMA configuration is determined according by the EDMA Command Register

(Table 342 p. 505). The registers listed below may be changed only when <eEnEDMA> in that

register, is cleared, and the EDMA is disabled. The following registers must not be changed when

<eEnEDMA> is set.

m SATAHC Configuration Register (Table 348 p. 509)

m EDMA Configuration Register (Table 333 p. 498)

m EDMA Command Delay Threshold Register (Table 345 p. 508)

m All registers in Table 399, Shadow Register Block Registers Map, on page 549, except that the
host is allowed to change the <HOB> field (bit [7]) in the ATA Device Control register (offset
0x82120) while the EDMA is active.

All Basic DMA Registers (page 494)
All Serial-ATA Interface Registers (page 518)
* FIS Interrupt Cause Register (Table 384 p. 541)
* FIS Interrupt Mask Register (Table 385 p. 543)
7.6.3 EDMA Mode of Operation
7.6.3.1 Basic DMA Operation

When the <eEnNEDMA> field in the EDMA Command Register (Table 342 p. 505) is cleared to 0, the

EDMA is disabled, therefore, the request queue and the response queue are not in use. The Basic

DMA may be controlled directly using the following registers:

m Basic DMA Command Register (Table 327 p. 494)

m Basic DMA Status Register (Table 328 p. 495)

m Descriptor Table Low Base Address Register (Table 329 p. 496)

m Descriptor Table High Base Address Register (Table 330 p. 497)

m SATAHC Interrupt Cause Register (Table 353 p. 512)

The DMA is used to perform only DMA data transactions. The hard drive must be programmed by

writing to the ATA task registers before activating basic DMA.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 93

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

7.6.3.2

When in Basic DMA Operation mode, the commands are processed one by one: the host configures
the device, configures the DMA and starts it. The DMA indicates completion of the data transaction
by setting <SaCrpb0Done/DMAODone> field in the SATAHC Interrupt Cause Register (Table 353

p. 512) and an interrupt is generated. If an error occurs during execution of the data transfer, the
EDMA Interrupt Error Cause Register (Table 334 p. 501) is updated with the error cause, the Basic
DMA Status Register (Table 328 p. 495) is updated with the completion error, and the host is further
responsible for error handling.

Host Initialization of Basic DMA Operation

The host initializes the DMA Read/Write operation as follows:

1. Initializes the device with the data transfer command.

Initializes the Physical Region Descriptor [PRD] in memory.

Initializes the Descriptor Table Low Base Address Register (Table 329 p. 496).
Initializes the Descriptor Table High Base Address Register (Table 330 p. 497).

Confirms that the <eEarlyCompletionEn> field in the EDMA Configuration Register (Table 333
p. 499) is clear to 0.

6. If Port Multiplier is used, initializes the <PMportTx> field in the Serial-ATA Interface Control
Register (Table 379 p. 535).

7. Activates the Basic DMA by setting the control bits in the Basic DMA Command Register.

ahrwbn

Basic DMA Read/Write Operation

The Basic DMA performs only the data transaction.

1. The Basic DMA performs the data transaction.

2. It sets <SaCrpbODone/DMAODone> and a maskable interrupt is generated.
3. The host is further responsible for the device completion status.

Stop Basic DMA

The host may stop the Basic DMA operation before the commands are completed.

1. The host clears the <Start> field in the Basic DMA Command Register (Table 327 p. 494).

2. If the <Start> field is cleared while the Basic DMA is still active, as indicated by the active bit in

the Basic DMA Status Register, the Basic DMA command is aborted, and the data transferred
may be discarded before reaching its destination.

Target Mode Operation

When <eEnEDMA> field in the EDMA Command Register (Table 342 p. 505) is cleared to 0 and the
<ComcChannel> field in the Serial-ATA Interface Configuration Register (Table 365 p. 519) is setto 1,
a communication channel is opened with Serial-ATA port of another 88F619x and 88F6281 (or any
other Marvell® devices that support target mode). The communication channel is not symmetric: one
side should be configured as an initiator (<TargetMode> field in the Serial-ATA Interface
Configuration Register (Table 365 p. 519) is set to 0) while the other side is configured as a target
(<TargetMode> is set to 1).

Full Communication

The two channel should be used as follows:

1. Inchannel A—The SATA port in the device is configured as the initiator, while the companion
SATA port in the other device is configured as the target.

2. In channel B—The SATA port in the device is configured as the target, while the companion
SATA port in the other device is configured as the initiator.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 94

Document Classification: Proprietary Information December 2, 2008, Preliminary

Serial-ATA (SATA) Il Interface (88F619x and 88F6281 Only)
EDMA Operation

Initiate Basic DMA Read Operation
A Basic DMA read operation is implemented as follows:

1.
2.

Initiator Host—Activate the Initiator Basic DMA.

Initiator Host—Send the Register Device to the Host FIS (Frame Information Structure) using
the Vendor Unique interface with 10-byte command (see Section 7.8, Vendor Unique,

on page 112).

Target Transport—Update ATA task registers, set the port's <SaDevinterruptO> field in the
SATAHC Interrupt Cause Register (Table 353 p. 513), and generate the interrupt.

Target Host—Send the Register Device to the Host FIS using the Vendor Unique interface with
acknowledge.

Initiator Transport—Update the ATA task registers, optionally set the port's <SaDevinterruptO>
field, and generate the interrupt if specified in the Register Device to the Host FIS.

Target Host—Activate Basic DMA, set <eDMAActivate> field in the Serial-ATA Interface Control
Register (Table 379 p. 536).

Target Transport—Send the data as configured in the target Basic DMA.

Initiator Basic DMA—Set the port's <SaCrpb0ODone/DMAQODone> field and generate the
interrupt to the initiator host when data transfer completes.

Target Basic DMA—Set the port’s <SaCrpbODone/DMAODone> field and generate the interrupt
to the target host when data transfer completes.

Initiate Basic DMA Write Operation
A Basic DMA write operation is implemented as follows:

1.
2.

10.

Copyright © 2008 Marvell

Initiator Host—Activate Initiator Basic DMA.

Initiator Host—Send Register Device to Host FIS using the Vendor Unique interface with
10-byte command (see Section 7.8, Vendor Unique, on page 112).

Target Transport—Update ATA task registers and set the port's <SaDevinterruptO> field in the
SATAHC Interrupt Cause Register (Table 353 p. 513) and generate the interrupt.

Target Host—Send Register Device to Host FIS using the Vendor Unique interface with
acknowledge.

Initiator Transport—Update the ATA task registers and optionally set the port’s
<SaDevinterruptO> field and generate the interrupt if specified in the Register Device to Host
FIS.

Target Host—Activate the Basic DMA, send DMA Activate frame using the Vendor Unique
interface.

Initiator Transport—Set the <eDMAActivate> field in the Serial-ATA Interface Control Register
(Table 379 p. 536).

Initiator Transport—Send the data as configured in the initiator Basic DMA.

Initiator Basic DMA—Set the port's <SaCrpbODone/DMAODone> field and generate the
interrupt to initiator host when the data transfer completes.

Target Basic DMA—Set the port’'s <SaCrpbODone/DMAODone> field and generate the interrupt
to target host when the data transfer completes.

Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 95

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

m Inthis mode, the ATA task registers are updated when Register Device to Host FIS
| §| | is received regardless to the value of <BSY> bit in the ATA Status register (see

Table 399, Shadow Register Block Registers Map, on page 549).

Note . . - . .
Link Errors while transmitting Vendor Unique FIS are also reported in the

<LinkCtITxErr> field in the EDMA Interrupt Error Cause Register (Table 334
p. 502).

m For testing, this mode can be used to generate an External Loopback between the
Serial-ATA ports of the same device.

7.6.3.3 Non-queued DMA Commands

When the <eEnEDMA> field in the EDMA Command Register (Table 342 p. 505) is set to 1, the
<eSATANatvCmdQue> field in the EDMA Configuration Register (Table 333 p. 498) is cleared to 0,
and the <eQue> is clear to 0, the EDMA is in Non-queued mode. In this mode, the EDMA supports
only ATA DMA commands. It performs the commands that reside in the CRQB one by one. The next
command is issued to the device only when the previous command has completed and the CRPB is
updated. In this mode, the EDMA uses the following commands.

Read DMA

Read DMA EXT
Write DMA

Write DMA EXT
Read STREAM DMA
Write DMA FUA EXT
Write STREAM DMA

7.6.3.4 Queued DMA Commands

When the <eEnEDMA> field in the EDMA Command Register (Table 342 p. 505) is set to 1, the
<eSATANatvCmdQue> field in the EDMA Configuration Register (Table 333 p. 498) is clear to 0,
and the <eQue> is set to 1, ATA QDMA commands are performed. These commands allows the
CPU to issue concurrent commands to the same device. Along with the command, the EDMA
provides the <cDeviceQueTag> to the device to uniquely identify the command. When the device
restores register parameters during the execution of the SERVICE command, this tag is restored.
The EDMA identify the command according to the <cDeviceQueTag> and the incoming PM port and
restores the command parameters to execute the data transaction. The ATA devices support up to
32 concurrent queued commands, and these commands may perform out of order.

In this modes the EDMA uses the following commands:
m Read DMA Queued

m Read DMA Queued EXT
m Write DMA Queued
m Write DMA Queued EXT
m Write DMA Queued FUA EXT
7.6.3.5 SATA Native Command Queuing

When the <eEnEDMA> field in the EDMA Command Register (Table 342 p. 505) is set to 1 and the
<eSATANatvCmdQue> field in the EDMA Configuration Register (Table 333 p. 498) is setto 1, a
streamlined command queuing model for SATA (SATA native command queuing) is supported. This
model minimizes the required number of protocol round trips and reduces the incurred overhead.

These commands allows the CPU to issue concurrent commands to the same device. Along with the
command, the EDMA provides the <cDeviceQueTag> as the tag of the command to uniquely identify

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 96 Document Classification: Proprietary Information December 2, 2008, Preliminary

Serial-ATA (SATA) Il Interface (88F619x and 88F6281 Only)
EDMA Operation

the command. When the device restores register parameters, this tag is restored, The EDMA
identify the command according to the <cDeviceQueTag> and the incoming PM port and restores
the command parameters to execute the data transaction. The SATA devices support up to 32
concurrent queued commands, and these commands may perform out of order.

In this mode the EDMA uses the following commands:
m Read FPDMA Queued
m Write FPDMA Queued

7.6.4 EDMA Activation
The CPU activates the EDMA according to the following flow:
1. Verifies that the device is ready to receive data commands, the <DET> field in the SStatus
Register (Table 367 p. 522) equals 3, and the fields <Busy> and <DRQ> in the device Status
register are cleared.
2. Clears the EDMA Interrupt Error Cause Register (Table 334 p. 501) and clears the appropriate
<SaCrpbODone/DMAODone> field in the SATAHC Interrupt Cause Register (Table 353 p. 512).
3. Initializes the EDMA Configuration Register (Table 333 p. 498).
4. Clears the FIS Interrupt Cause Register (Table 384 p. 541).
5. Initialized the FIS Configuration Register (Table 383 p. 540).
6. Initializes the EDMA Request Queue In-Pointer Register (Table 337 p. 504).
7. Initializes the EDMA Request Queue Out-Pointer Register (Table 338 p. 504).
8. Initializes the EDMA Response Queue In-Pointer Register (Table 340 p. 504).
9. Initializes the EDMA Response Queue Out-Pointer Register (Table 341 p. 505).
10. Activates the EDMA by writing 1 to <eEnEDMA> field in the EDMA Command Register
(Table 342 p. 505).
While the EDMA is enabled, the host should not access the registers listed in Section 7.6.2, EDMA
Configuration, on page 93. The CPU accesses these registers for direct access to the device when
the EDMA is disabled. Accessing the above registers while EDMA is enabled—see the <eEnEDMA>
field—uwill result in unpredictable behavior.
7.6.5 Commands Hot Insertion to EDMA Queue
Hot insertion of commands into the EDMA queue follows these steps:
1. Sets the valid Physical Region Descriptors [PRD] for the new commands.
2. Initializes the new commands in the request queue.
3. Updates the EDMA Request Queue In-Pointer Register (Table 337 p. 504), to enable EDMA
access to the new CRQBs in the request queue.
7.6.6 Stop EDMA
To stop the EDMA operation, the CPU should sets the <eDSEDMA> field in the EDMA Command
Register (Table 342 p. 506) to 1. The EDMA stops queue processing, aborts the current command
and clears <eEnEDMA>.
If EDMA is aborted during commands processing, the host must set the <eAtaRst> field in the
EDMA Command Register (Table 342 p. 506) to recover.
7.6.7 Restart EDMA
To restart the queue, the CPU must follow the EDMA activation flow (see Section 7.6.4, EDMA
Activation, on page 97).
Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 97

®

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

7.6.8

7.6.9

7.6.10

7.6.11

7.6.12

7.6.12.1

7.6.12.2

Device Link Disconnect
See Device Disconnect on page 101 for the disconnect procedure.

Since loss of the link may occur at any time during EDMA programming, when the CPU receives a
link-down interrupt, it must wait for re-establishment of the link (see Section 7.6.9, Device Link
Connect, on page 98).

Device Link Connect

When the link to the device is renewed, the EDMA sets the <eDevCon> field in the EDMA Interrupt
Error Cause Register (Table 334 p. 501).

Device hard reset (setting the <eAtaRst> field in the EDMA Command Register (Table 342 p. 506)
and device initialization are required before any attempt to access the device.

EDMA Read Burst Limit

The <eRdBSz> field in the EDMA Configuration Register (Table 333 p. 498) defines the maximum
burst read transactions SATAHC initiates towards the Mbus. The EDMA supports a maximum read
burst size of 128B.

EDMA Write Burst Limit

The EDMA support a maximum write burst size of 128B.

Port Multiplier Support

The 88F619x and 88F6281 support the Port Multiplier (PM) ingredient in the following modes:

Port Multiplier—Command Based Switching

When the <eEDMAFBS> field in the EDMA Configuration Register (Table 333 p. 499) is cleared to
0, the EDMA Performs Command Based Switching as defined in SATA working group PM definition.
Field <cPMport> in each command in the request queue (CRQB) is used to define the specific port
in the Port Multiplier (PM) ingredient that belongs to this command. The EDMA is further responsible
for forwarding the commands to the correct target device. In this mode, Non Queued DMA
commands are supported (see Section 7.6.3.3, Non-queued DMA Commands, on page 96).

Port Multiplier—FIS-Based Switching

The EDMA performs FIS-based switching, as defined in SATA working group PM definition. In this
mode, the EDMA issues multiple outstanding commands across multiple devices at the same time.
The overall system performance increases significantly with this type of switching.

The following commands are supported in this mode:

m Non Queued DMA commands (see Section 7.6.3.3, Non-queued DMA Commands,
on page 96)

m Tag Command Queuing (TCQ) commands (see Section 7.6.3.4, Queued DMA Commands,
on page 96)

= Native Command Queuing commands (see Section 7.6.3.5, SATA Native Command Queuing,
on page 96)

N The mode is selected before EDMA is enabled. It must not be changed when the
<eEnEDMA> field in the EDMA Command Register (Table 342 p. 505) is set to 1.

Note

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 98

Document Classification: Proprietary Information December 2, 2008, Preliminary

Serial-ATA (SATA) Il Interface (88F619x and 88F6281 Only)
EDMA Operation

7.6.13 Asynchronous Device Notification

When Set Device Bits (SDB) FIS is received with N bit set to 1, the following occurs:
In the FIS Configuration Register (Table 383 p. 540):
If <FISWait4RdyEn> is cleared to O:

the device ignores the FIS.

If bit <FISWait4RdyEn>[1] is set to 1:

m Bit[1] of the <FISWait4HostRdyEn> field in the FIS Configuration Register (Table 383 p. 540) is
set.

m The <eTransInt> field in the EDMA Interrupt Error Cause Register (Table 334 p. 501) is also set
if the corresponding bit in the FIS Interrupt Mask Register (Table 385 p. 543) is set to 1.

7.6.14 EDMA Interrupts
7.6.14.1 Error indication

The EDMA Interrupt Error Cause Register (Table 334 p. 501), provides the various error indications
that may occur during DMA operation. For more information (see Section 7.6.15, Error Handling,
on page 100).

In addition, the DMA contains a EDMA Interrupt Error Mask Register (Table 335 p. 503). This
register may be used to mask the error bits in the EDMA Interrupt Error Cause Register. If one (or
more) of the unmasked bits in the EDMA Interrupt Error Cause Register is set, an error indication is
propagated to the SATAHC Main Interrupt Cause Register (Table 354 p. 513).

7.6.14.2 Command Completion Indication

The SATAHC Interrupt Cause Register (Table 353 p. 512), resides in the SATAHC arbiter. The
command completion indications are propagated from the EDMASs to the appropriate bit in this
register. The indications from the register are further propagated to the SATAHC Main Interrupt
Cause Register.

When the EDMA completes an ATA transaction:

m The last data leaves the device.

m The CRPB is updated.

m The EDMA indicates the appropriate bit in the SATAHC Interrupt Cause Register, and

m Aninterrupt indication is propagated to SATAHC Main Interrupt Cause Register.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 99

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

Figure 21: EDMA Interrupt Hierarchyl

SATAHC

EDMA Port SATAHC
Common Registers

Device_DONE_>
CRPB_DONE CMD_O0_DONE

ERROR EEEE—

INT_COAL

[SATAHC Interrupt Cause register
SATAHC Interrupt Mask register <

7.6.14.3 Interrupt Coalescing
Since the SATA ports provide a high data rate, it is important to reduce the number of interrupts that
the SATA EDMAs may generate. The device provides an interrupt coalescing mechanism that sets
the interrupt coalescing bit in the SATAHC Interrupt Cause Register (Table 353 p. 512), and
propagates an interrupt indication if one of the following is true:
m The number of EDMA commands reached the SATAHC interrupt coalescing threshold value
(see the SATAHC Interrupt Coalescing Threshold Register (Table 351 p. 511).
m Atleast one EDMA commands has completed and the time that passed since its completion
reached the SATAHC interrupt time threshold value (see the SATAHC Interrupt Time Threshold
Register (Table 352 p. 511)).
7.6.14.4 Device Interrupt
When the EDMA is active, the device interrupt request is masked. When the EDMA is disabled and
the device interrupt request is active, a separate bit is set in the SATAHC Interrupt Cause Register
and a command completion indication is propagated to the SATAHC Main Interrupt Cause Register.
7.6.15 Error Handling
Error indications from all layers are gathered in the EDMA Interrupt Error Cause Register
(Table 334 p. 501).
7.6.15.1 List Of Unrecoverable Errors
The following bits in the EDMA Interrupt Error Cause Register list the unrecoverable errors:
m <eDevDis>
m <elORdyErr>
m <LinkCtIRXErr>
m <LinkDataRxErr>
m <LinkDataTxErr>
m <TransProtErr>
When an unrecoverable error indication is set from the list above, the EMDA is self disabled and the
host must set bit <eAtaRst> field in the EDMA Command Register (Table 342 p. 506) to recover.
1. Allinterrupt indications from the SATAHC are propagated to the SATAHC Main Interrupt Cause Register
(Table 354 p. 513).
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 100

Document Classification: Proprietary Information December 2, 2008, Preliminary

Serial-ATA (SATA) Il Interface (88F619x and 88F6281 Only)
EDMA Operation

7.6.15.2 PHY Layer Errors

SError Register Errors
For PHY layer errors, see the SError Register (Table 368 p. 523).
The <Serrint> field in the EDMA Interrupt Error Cause Register (Table 334 p. 501) is set when at

least one bit in SError Register is set to 1, and the corresponding bit in the SError Interrupt Mask
Register is enabled.

Device Disconnect
When the device is disconnected, the EDMA halts and:
m Sets the <eDevDis> field in the EDMA Interrupt Error Cause Register (Table 334 p. 501).

m Disables the EDMA operation by clearing bit <cEnEDMA> field in the EDMA Command
Register (Table 342 p. 505).

m Sets the <eSelfDis> field in the EDMA Interrupt Error Cause Register (Table 334 p. 501).
Host must set the <eAtaRst> field in the EDMA Command Register (Table 342 p. 506) to recover.

The CPU is responsible for error recovery.

7.6.15.3 Link Layer Errors

Serial-ATA Il Link Layer Error During Reception of a Control Frame

m Transient Errors: When the following errors occur during control FIS reception. The link layer
responds with R_ERR to the received frame. The transport layer drop this frame and waits for
re-transmission of the frame. This may be a transient error. The EDMA ignore these type of
errors and proceeds with normal operation.

* Serial-ATA CRC error occurs. <LinkCtIRxErr> field in the EDMA Interrupt Error Cause
Register (Table 334 p. 502) bit [0] is set.
* Internal FIFO error occurs. <LinkCtIRXErr> bit [1] is set to 1.
* Link state errors, coding errors, or running disparity errors occur. Bit [3] of the <LinkCtIRXErr>
field is set.
= Non Transient Errors: When the following error occurs during control FIS reception. The
transport layer goes to protocol error state. The host must sets bit <eAtaRst> to recover.

* The Link Layer is reset (to Idle state) by the reception of SYNC primitives from the device. Bit
[2] in the <LinkCtIRxErr> field and the <TransProtErr> field are set.

Serial-ATA Il Link Layer Error During Reception of a Data Frame

When the Link Layer is reset (to Idle state) by the reception of SYNC primitives from the device, the
transport layer goes to protocol error state, bit [2] in the <LinkDataRxErr>field and the
<TransProtErr> field are set. The host must set bit <eAtaRst> to recover.

When the following errors occur during data FIS reception, the link layer responds with R_ERR to
the received frame. The transport layer ignores the error but the EDMA is self disabled.

m Serial-ATA CRC error occurs. Bit [0] of the <LinkDataRxErr> field is set.
m Internal FIFO error occurs. Bit [1] in the <LinkDataRxErr> field is set.

m Link state errors, coding errors, or running disparity errors occur. Bit [3] in the <LinkDataRxErr>
field is set.

Serial-ATA Il Link Layer Error During Transmission of a Control Frame

When the following errors occur during control FIS transmission, the transport layer re-transmits the
frame. This may be a transient error.

m Serial-ATA CRC error occurs. Bit [0] in the <LinkCtIRxErr> field is set.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 101

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

Internal FIFO error occurs. Bit [1] in the <LinkCtIRxErr> field is set.

The Link Layer is reset (to Idle state) by the reception of SYNC primitives from the device. Bit [2]
in the <LinkCtITxErr> field is set.

Link layer accepts DMAT primitive from the device. Bit [3] in the <LinkCtITxErr> field is set.

FIS transmission is aborted due to collision with received traffic. Bit [4] in the <LinkCtITXErr>
field is set.

Serial-ATA Il Link Layer Error During Transmission of a Data Frame

When the following errors occur during data FIS transmission, the transport layer ignores the error,
but the EDMA is self disabled.

m Serial-ATA CRC error occurs. Bit [0] in the <LinkDataTxErr> field is set.
m Internal FIFO error occurs. Bit [1] in the <LinkDataTxErr> field is set.

m The Link Layer is reset (to Idle state) by the reception of SYNC primitives from the device. Bit [2]
in the <LinkDataTxErr> field is set.

Link layer accepts DMAT primitive from the device. Bit [3] in the <LinkDataTxErr> field is set.
FIS transmission is aborted due to collision with received traffic. Bit [4] in the <LinkDataTxErr>

field is set.
7.6.15.4 Transport Layer Errors
Serial-ATA Il Transport Layer Protocol Non Transient Errors
When a violation of the Serial-ATA protocol was detected, the transport layer goes to protocol error
state and sets the <TransProtErr> field in the EDMA Interrupt Error Cause Register (Table 334
p. 503) and the EDMA is self disabled. The Host must set the <eAtaRst> field in the EDMA
Command Register (Table 342 p. 506) to recover. This error state can arise from invalid or poorly
formed FISs being received, from invalid state transitions, or from other causes.
The host must set <eAtaRst> to recover.
The CPU is responsible for error recovery.
Device Error Indications
Device Errors in Non Queued or Queued DMA Commands—FIS-Based Switching Mode
Disabled
FIS-Based Switching is disabled when the <cEDMAFBS> field in the EDMA Configuration Register
(Table 333 p. 499) is cleared.
| ;] | See Section 7.6.3.3, Non-queued DMA Commands, on page 96 and Section 7.6.3.4,
Queued DMA Commands, on page 96.
Note

Bit [2] in the <eHaltMask> field in the EDMA Halt Conditions Register (Table 346 p. 508) should be
set to 1:
When bit <Error> in the ATA status register is set to 1:
m The following registers are updated with the command information:

* Shadow Register Block Registers Map (Table 399 p. 549)

* Serial-ATA Interface Status Register (Table 381 p. 538)

* EDMA Status Register (Table 343 p. 506)

* EDMA Interrupt Error Cause Register (Table 334 p. 501)

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 102

Document Classification: Proprietary Information December 2, 2008, Preliminary

Serial-ATA (SATA) Il Interface (88F619x and 88F6281 Only)
EDMA Operation

m <eDevErr> field in the EDMA Interrupt Error Cause Register (Table 334 p. 501) is set.
= The EDMA halts.

Device Error Indication in Serial-ATA Native Command Queuing

See Section 7.6.3.5, SATA Native Command Queuing, on page 96 and Section 7.6.12.2, Port
Multiplier—FIS-Based Switching, on page 98.

Bit [2] in the <eHaltMask> field in the EDMA Halt Conditions Register (Table 346 p. 508) should be
setto 1:

When bit Error in the ATA status register is set to 1, the following registers are updated with the
command information:

m Serial-ATA Interface Status Register

s EDMA Status Register

m EDMA Interrupt Error Cause Register

m Host identifies which drive caused the error via the <PortNumDeVErr> field in the Serial-ATA
Interface Test Control Register (Table 380 p. 537)

EDMA does NOT update CRPB with the error indication.

The host needs to:

m Waits for completion of all outstanding commands associate to other devices (that did not
experience a device error).

m Check the <eCacheEmpty> field in the EDMA Status Register (Table 343 p. 507). If cleared,
then wait for another Device error interrupt.

m Wait for <EDMAIdle> field in the EDMA Status Register (Table 343 p. 507) to clear. If set, then
wait for another Device error interrupt.
- Good CRPBs may be received.

m Setthe <eDSEDMA> field in the EDMA Command Register (Table 342 p. 506) to disable EDMA
operation.

m Wait for clearing of the <eEnEDMA> field.
Issue a read log command to the drive and perform error handling accordingly.

Device Errors in Non Queued or Queued DMA Commands in Port
Multiplier—FIS-Based Switching Mode Enabled

See Section 7.6.3.3, Non-queued DMA Commands, on page 96, Section 7.6.3.4, Queued DMA
Commands, on page 96 and Section 7.6.12.2, Port Multiplier—FIS-Based Switching, on page 98

Bit [2] in the <eHaltMask> field in the EDMA Halt Conditions Register (Table 346 p. 508) should be
cleared to O:

Bit [0] of the <FISWait4RdyEn> field in the FIS Configuration Register (Table 383 p. 540) should be
setto 1:

When bit <Error> in the ATA status register is set to 1 via the Register-Device to Host FIS, the
following registers are updated with the command information:

m Bit [0] of the <FISWait4HostRdy> field in the FIS Interrupt Cause Register (Table 384 p. 542) is
set to 1, and the transport layer blocks reception of any new FIS until the host clears this bit.

m EDMA Interrupt Error Cause Register (Table 334 p. 501).
m The EDMA updates the CRPB with the error indication.

The host must:

m Get detailed error information from the Shadow Register Block (see Shadow Register Block
Registers Map (Table 399 p. 549)).

m Detect the aborted commands for the disk that experience error according to the EDMA NCQO
Done/TCQO Outstanding Status Register (Table 347 p. 509).

m Clear the <eDeVErr> field in the EDMA Interrupt Error Cause Register (Table 334 p. 501).

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 103

®
I% 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

7.6.15.5

7.6.16
7.6.16.1

7.6.16.2

m Clear bit [0] in the <FISWait4HostRdy> field in the FIS Interrupt Cause Register (Table 384
p. 542).

m Wait for completion of all outstanding commands (that is, any commands to the EDMA that did
not complete successfully and were not aborted or failed).

m Set bit <eDSEDMA> field in the EDMA Command Register (Table 342 p. 506) to disable the
EDMA operation.

m Wait for clear of bit <ecENnEDMA>.

DMA Errors

Internal Parity Error
The device SATAHC is parity protected on internal memories.
The internal SRAMs contain a parity bit per entry (minimal transaction width). This bit is calculated

and inserted on every write to the internal SRAMSs. This bit is verified against the data when reading
from the internal SRAMSs.

The parity bit also indicates if errors occurred during the PCI transaction.

EDMA Data Structures

Command Request Queue

The request queue is the interface that the CPU software uses to request data transactions between
the system memory and the device. The request queue has a length of 32 entries. The request
queue is a circular queue (FIFO) whose location is configured by the EDMA Request Queue
In-Pointer Register (Table 337 p. 504), and the EDMA Request Queue Out-Pointer Register

(Table 338 p. 504).

m A queue is empty when Request Queue Out-pointer reaches to the Request Queue In-pointer.

m A queue is full when Request Queue In-pointer is written with the same value as the Request
Queue Out-pointer. A full queue contains 32 entries.

m A queue contains N entries when the Request Queue Out-pointer is N less than the Request
Queue In-pointer, taking into account the wraparound condition.

See Figure 19, Command Request Queue—32 Entries, on page 92.
Each 32-byte EDMA Command Request Block (CRQB) entry consists of EDMA parameters and

commands for the ATA device. The CRQB data structure is written by the CPU. Table 17 provides a
map of the CRQB data structure registers.

EDMA Command Request Block (CRQB) Data

Table 17: EDMA CRQB Data Structure Map

Register Offset Page
CRQB DWO0—cPRD Descriptor Table Base Low Address Offset: 0x00 Table 18, p. 105
CRQB DW1—cPRD Descriptor Table Base High Address Offset: 0x04 Table 19, p. 105
CRQB DW2—Control Flags Offset: 0x08 Table 20, p. 105
CRQB DW3—Data Region Byte Count Offset: 0xOC Table 21, p. 106
CRQB DW4—ATA Command Offset: 0x10 Table 22, p. 106
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 104 Document Classification: Proprietary Information December 2, 2008, Preliminary

Serial-ATA (SATA) Il Interface (88F619x and 88F6281 Only)
EDMA Operation

Table 17: EDMA CRQB Data Structure Map (Continued)

Register Offset Page

CRQB DW5—ATA Command Offset: Ox14 Table 23, p. 106
CRQB DW6—ATA Command Offset: 0x18 Table 24, p. 107
CRQB DW7—ATA Command Offset: 0x1C Table 25, p. 107

Table 18: CRQB DWO0—cPRD Descriptor Table Base Low Address
Offset: 0x00

Bits Field Description

31:0 cPRDI[31:0] CRQB ePRD.
When <cPRDMode> is cleared to 0:
The CPU at initialization should construct a ePRD table in memory. This table contains
consecutive descriptors that describe the data buffers allocated in memory for this command.
This DWORD contains bit [31:4] of the physical starting address of this table.
Bits [3:0] must be 0x0.
When <cPRDMode> is set to 1:
This DWORD contains bits [31:1] of the physical starting address of a data region in system
memory. Bit [0] must be 0.

Table 19: CRQB DW1—cPRD Descriptor Table Base High Address
Offset: Ox04
Bits Field Description

31:.0 cPRD[63:32] Reserved
Must be set to 0x0.

Table 20: CRQB DW2—Control Flags
Offset: 0x08

Bits Field Description

0 cDIR CRQB Direction of Data Transaction
0 = System memory to Device
1 = Device to system memory

5:1 cDeviceQueTag CRQB Device Queue Tag
This field contains the Queued commands used as tags attached to the command provided to
the drive.

11:6 Reserved Reserved
Must be 0.

15:12 cPMport PM Port Transmit

This field specifies the Port Multiplier (PM) port (bits [11:8] in DWO of the FIS header) inserted
into the FISs transmission associate to this command.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 105

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Table 20: CRQB DW2—Control Flags (Continued)
Offset: O0x08

Bits Field Description

16 cPRDMode CRQB PRD Mode
This bit defines how the physical data that resides in the system memory is described.
0 = PRD tables are being used. <cPRD[31:0]> and <cPRD[63:32]> provide the ePRD table
starting address.
1 = Single data region, <cPRD[31:0]> and <cPRD[63:32]> provide its starting address.
<cDataRegionByteCount> provides its length.

21:17 cHostQueTag CRQB Host Queue Tag
This 5-bit field contains the host identification of the command.

31:22 Reserved Reserved

Table 21: CRQB DW3—Data Region Byte Count
Offset: 0x0C

Bits Field Description

15:0 cDataRegionByte Data Region Byte Count
Count When <cPRDMode> is cleared to O:

This field is reserved.
When <cPRDMode> is set to 1:
This field contains the count of the region in bytes. Bit [0] is force to 0.
There is a 64 KB maximum. A value of 0 indicates 64 KB. The data in the buffer must not cross
the boundary of the 32-bit address space; that is, the 32-bit high address of all data in the
buffer must be identical.

31:16 Reserved Reserved
The naming of the fields in the next four tables complies with the Serial-ATA convention. The

corresponding name according to the ATA convention appears in parentheses.

Table 22: CRQB DW4—ATA Command
Offset: 0x10

Bits Field Description
15:0 Reserved Reserved
23:16 Command This field contains the contents of the Command register of the Shadow Register Block (see

Table 399 on page 549).

31:24 Features This field contains the contents of the Features (Features Current) register of the Shadow
Register Block.

Table 23: CRQB DW5—ATA Command
Offset: 0x14

Bits Field Description

7:0 Sector Number This field contains the contents of the Sector Number (LBA Low Current) register of the
Shadow Register Block (see Table 399 on page 549).

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 106 Document Classification: Proprietary Information December 2, 2008, Preliminary

Serial-ATA (SATA) Il Interface (88F619x and 88F6281 Only)
EDMA Operation

Table 23: CRQB DW5—ATA Command (Continued)
Offset: Ox14

Bits Field Description

15:8 Cylinder Low This field contains the contents of the Cylinder Low (LBA Mid Current) register of the Shadow
Register Block.

23:16 Cylinder High This field contains the contents of the Cylinder High (LBA High Current) register of the Shadow
Register Block.

31:24 Device/Head This field contains the contents of the Device/Head (Device) register of the Shadow Register
Block.

Table 24: CRQB DW6—ATA Command
Offset: 0x18

Bits Field Description

7:0 Sector Number This field contains the contents of the Sector Number (Exp) (LBA Low Previous) register of the
(Exp) Shadow Register Block (see Table 399 on page 549).

15:8 Cylinder Low This field contains the contents of the Cylinder Low (Exp) (LBA Mid Previous) register of the
(Exp) Shadow Register Block

23:16 Cylinder High This field contains the contents of the Cylinder High (Exp) (LBA High Previous) register of the
(Exp) Shadow Register Block.

31:24 Features (Exp) This field contains the contents of the Features (Exp) (Features Previous) register of the
Shadow Register Block.

Table 25: CRQB DW7—ATA Command
Offset: 0x1C

Bits Field Description
7:0 Sector Count This field contains the contents of the Sector Count (Sector Count Current) register of the
Shadow Register Block (see Table 399 on page 549).
15:8 Sector Count This field contains the contents of the Sector Count (exp) (Sector Count Previous) register of
(Exp) the Shadow Register Block
31:16 Reserved Reserved

When the EDMA is in Non-Queued mode:
The following commands are supported.

READ DMA

READ DMA EXT

READ STREAM DMA

WRITE DMA

WRITE DMA EXT

WRITE DMA FUA EXT

WRITE STREAM DMA

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 107

®
I% 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

When the EDMA is in Queued mode:
The following commands are supported.

s READ DMA QUEUED

READ DMA QUEUED EXT

WRITE DMA QUEUED

WRITE DMA QUEUED EXT

WRITE DMA QUEUED FUA EXT

When the EDMA is in Native Command Queuing mode:
The following commands are supported.

m Read FPDMA Queued

m Write FPDMA Queued

EI Other commands cause unpredictable results.
Note

7.6.16.3 EDMA Physical Region Descriptors (ePRD) Table Data Structure

The physical memory region to be transferred is described by the EDMA Physical Region Descriptor
[ePRD] for DWORDs 0-3. The data transfer proceeds until all regions described by the ePRDs in
the table have been transferred. The starting address of this table must be 16B aligned, i.e., bits [3:0]
of the table base address must be 0x0.

| ;] | The total number of bytes in the PRD table (total byte count in DMA command) must be

4-pyte aligned.
Note v g

Table 26: ePRD Table Data Structure Map

Descriptor Table, Page

ePRD DWORD 0 Table 27, p. 108
ePRD DWORD 1 Table 28, p. 109
ePRD DWORD 2 Table 29, p. 109
ePRD DWORD 3 Table 30, p. 109

Table 27: ePRD DWORD 0

Bits Field Description

0 Reserved Reserved

31:1 PRDBA[31:1] The byte address of a physical memory region corresponds to address bits [31:1].

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 108 Document Classification: Proprietary Information December 2, 2008, Preliminary

Serial-ATA (SATA) Il Interface (88F619x and 88F6281 Only)
EDMA Operation

Table 28: ePRD DWORD 1

Bits Field Description

15:0 ByteCount Byte Count
The count of the region in bytes. Bit 0 is force to 0.
There is a 64-KB maximum. A value of 0 indicates 64 KB. The data in the buffer must not cross
the boundary of the 32-bit address space, that is the 32-bit high address of all data in the buffer
must be identical.

30:16 Reserved Reserved

31 EOT End Of Table
The data transfer operation terminates when the last descriptor has been retired.
0 = Not end of table
1 = End of table
NOTE: The total number of bytes in the PRD table (total byte count in DMA command) must be
4-byte aligned.

Table 29: ePRD DWORD 2

Bits Field Description

31:0 PRDBA[63:32] The byte address of a physical memory region corresponds to bits [64:32].
Must be set to 0x0.

Table 30: ePRD DWORD 3

Bits Field Description
310 Reserved Reserved
7.6.16.4 Command Response Queue

The response queue is the interface that the EDMA uses to notify the CPU software that a data
transaction between the system memory and the device was completed. The response queue is a
32 entry, circular queue (FIFO) whose location is configured by the EDMA Response Queue
In-Pointer Register (Table 340 p. 504) and the EDMA Response Queue Out-Pointer Register
(Table 341 p. 505).

The queue status is determined by comparing the two pointers:
m A queue is empty when the Response Queue Out-pointer reaches the Response Queue
In-pointer.

m A queue is full when Response Queue In-pointer is written with same value as a Response
Queue Out-pointer. A full queue contains 32 entries.

m A queue contains N entries when the Response Queue Out-pointer is N less than the Response
Queue In-pointer, taking into account the wraparound condition.

EI The EDMA may write over existing entries when the queue is full.
Note

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 109

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

See Figure 20, Command Response Queue—32 Entries, on page 93.

Each 8-byte command response entry consists of command ID, response flags, and a timestamp
(see Table 31, “EDMA CRPB Data Structure Map,” on page 110). The CRPB data structure,
described in Table 17, “EDMA CRQB Data Structure Map,” on page 104, is written by the EDMA.

7.6.16.5 EDMA Command Response Block (CRPB) Data

Table 31 provides a map of the EDMA command response block data structure tables.

Table 31: EDMA CRPB Data Structure Map

Register Offset Table, Page

CRPB ID Register Offset: 0x00 Table 32, p. 110
CRPB Response Flags Register Offset: 0x02 Table 33, p. 110
CRPB Time Stamp Register 00ffset: x04 Table 34, p. 111

Table 32: CRPB ID Register
Offset: 0x00

Bits Field Description

4:0 cHostQueTag CRPB ID
In queued DMA commands, these bits are used as a tag.
This field contains the host identification of the command.
These bits are copied from field <cHostQueTag> of Table 20, CRQB DW2—Control Flags, on
page 105.

15:5 Reserved Reserved

Table 33: CRPB Response Flags Register
Offset: 0x02

Bits Field Description

6:0 cEdmasSts CRPB EDMA Status
This field contains a copy of the EDMA Interrupt Error Cause Register (Table 334 p. 501) bits
[6:0] accepted in the last command.
NOTE: When the EDMA is in NCQ mode, ignore this field since the value of this field may
reflect the status of other commands.

7 Reserved Reserved
This bit is always 0.

15:8 cDevSts CRPB Device Status
This field contains a copy of the device status register accepted in the last read of the register
from the device.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 110 Document Classification: Proprietary Information December 2, 2008, Preliminary

Serial-ATA (SATA) Il Interface (88F619x and 88F6281 Only)
BIST

Table 34: CRPB Time Stamp Register
00ffset: x04

Bits Field Description

31:.0 Reserved —

7.7 BIST
7.7.1 Far-End Loopback

This mode is performed according to SATA 1.0 specification, section 8.5.7. BIST activate FIS.

The supported BIST patterns are:

L Far-end Retimed Loopback

m TS: Transmit Only and Scrambling Bypass

m TSA: Transmit Only, Scrambling Bypass, and Align Bypass

7.7.2 BIST as the Initiator Side

The following flow should be performed by the host CPU:

m Send BIST Activate FIS using vendor unique interface to initiate BIST mode over the SATA link
(see Section 7.8, Vendor Unique, on page 112).

m Set the <BISTMode> field in the BIST Control Register (Table 375 p. 534) to 1 to determine FIS
direction.
Initiate <BISTPattern> according to the transmitted BIST Activate FIS.
Initiate the <BistDw1> field in the BIST-Dword1 Register (Table 376 p. 534) according to the
transmitted BIST Activate FIS.

m Initiate the <BistDw2> field in the BIST-Dword2 Register (Table 377 p. 535) according to the
transmitted BIST Activate FIS.

m Set the <BISTEn> field in the BIST Control Register (Table 375 p. 534) to activate the pattern
comparator operation.
Read <BISTResult> status to determine BIST test passes or not.
Set the <eAtaRst> field in the EDMA Command Register (Table 342 p. 506) to exit both sides of
the link from BIST mode.

7.7.3 BIST as the Target Side

The following flow should be performed, when the Serial-ATA port receives BIST Activate FIS:

1. Host CPU must set bit [1] in the <FISWait4Rdy> field in the FIS Interrupt Cause Register
(Table 384 p. 541) to 1.

2. The FIS content is updated in the FIS Dword0O Register (Table 386 p. 543) through FIS Dword6
Register (Table 392 p. 544).

3. Bit[3]in field <FISWait4HostRdy> field in the FIS Interrupt Cause Register (Table 384 p. 542) is
set.

4. The <eTransInt> field in the EDMA Interrupt Error Cause Register (Table 334 p. 501) is also set
if the corresponding bit in the FIS Interrupt Mask Register (Table 385 p. 543) is set to 1.

5. Host CPU must clear bit [1] in the <FISWait4Rdy> field in the FIS Interrupt Cause Register
(Table 384 p. 541).

6. Host CPU must clear the <eTransInt> field in the EDMA Interrupt Error Cause Register
(Table 334 p. 501).

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 111

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

7. Host CPU sets the <BISTMode> field in the BIST Control Register (Table 375 p. 534) to 0 to
determine FIS direction.

8. Host CPU initiates <BISTPattern> according to the received BIST Activate FIS.

9. Host CPU initiates the <BistDw1> field in the BIST-Dword1 Register (Table 376 p. 534) with the
contents matching the received BIST Activate FIS.

10. Host CPU initiates the <BistDw2> field in the BIST-Dword2 Register (Table 377 p. 535) with the
contents matching the received BIST Activate FIS.

11. Host CPU sets the <BISTEnN> field in the BIST Control Register (Table 375 p. 534) to activate
the internal pattern generators to send the data stream onto the Serial-ATA link.

7.8 Vendor Unique

7.8.1 Vendor Unigue Frames

The following flow should be performed to activate transmission of Vendor Unique FIS.

1. Wait until all pending commands in the EDMA are completed.

2. Disable the EDMA, set the <eDsEDMA> field in the EDMA Command Register (Table 342
p. 506).

3. Verify the EDMA is disabled, the <eEnNEDMA> field is cleared.

4. Verify the Transport Layer is in idle, the <TransFsmSts> field in the Serial-ATA Interface Status
Register (Table 381 p. 539) is cleared.

5. Set Vendor Unique Mode. Write 1 to the <VendorUgDn>.

6. Insert data into the Vendor Unique Register (Table 382 p. 540).

7. Repeat steps 6 until all data except the last DWORD in the vendor unique FIS is transferred.
Note that according to the Serial-ATA protocol the FIS length is limited to 8 KB.

8. Write 1 to bit <VendorUgSend> field in the Serial-ATA Interface Control Register (Table 379
p. 536).

9. Write last DWORD in the FIS to Complete FIS transmission.

10. Wait for transmission completion. The <VendorUgDn> field or the <VendorUqErr> field in the
Serial-ATA Interface Status Register (Table 381 p. 538) is set to 1.

11. Verify successful transmission of the FIS. Bit <VendorUgErr> is cleared.

12. Clear Vendor Unique Mode. Write 0 to the <VendorUgMd> field in the Serial-ATA Interface
Control Register (Table 379 p. 535).

7.9 Protocol Based Port Select

The EDMA supports the Port Selector (PS) protocol based ingredient—When the host CPU sets the
<PortSelector> field in the PHY Mode 4 Register (Table 372 p. 530), the Serial-ATA Il PHY issues
the protocol based OOB sequence to select the active host port.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 112 Document Classification: Proprietary Information December 2, 2008, Preliminary

Gigabit Ethernet Controller
Port Features

8 Gigabit Ethernet Controller

The 88F6180 implements a single Gigabit Ethernet (GbE) controller that operates in RGMII/MII/MMII
mode.

The 88F6190 implements two Ethernet controllers. One is an interface to a Gbe port. The other is an
interface to a Fast Ethernet port. These ports support RGMII/GMII/MII/MMII modes, in the
configurations indicated below. The configuration is according to <RGMIIEn> field in the Port Serial
Controll (PSC1) Register (Table 430 p. 571).

Set the <RGMIIEn> Field

Configuration for the 88F6190 Port0 Portl
m Port0O RGMII, Portl MIl/MMII Ox1 0x0
m Port0 GMII, Portl N/A 0x0 0x0

The 88F6192 and 88F6281 implement two GbE controllers that support the following modes. The
configuration is according to <RGMIIEn> field in the Port Serial Controll (PSC1) Register (Table 430
p. 571) of port 0 and port 1:

Set the <RGMIIEn> Field

Configuration for the 88F6192, 88F6281 Port0 Portl
m Port0 RGMII, Portl RGMII 0x1 0x1
m Port0 RGMII, Portl MII/MMII 0ox1 0x0
= Port0 MIlI/MMII, Portl RGMII 0x0 0x1
= Port0 GMII, Portl N/A 0x0 0x0

EI GMII can operate at 1 Gb only, and cannot move to 10/100 Mbps and change to MII.
Note

8.1 Port Features

The 10/100/1000 Mbps GbE port provides the following features:

IEEE 802.3 compliant MAC layer function

IEEE 802.3 compliant Mll interface

1000 Mbps operation—full duplex

10/100 Mbps operation—nhalf and full duplex

GMII symmetric Flow Control: IEEE 802.3 flow-control for full-duplex operation mode
MIl symmetric Flow Control: Backpressure for half-duplex operation mode
RGMII mode

Transmit functions:

* Short frame (less than 64 bytes) zero padding

* Long frames transmission (limited only by external memory size)

* Checksum on transmit frames for standard Ethernet packet size

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 113

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

8.2

* Programmable values for Inter Packet Gap
* CRC generation
* Backoff algorithm execution
* Error reporting
m Receive functions:
* Address filtering modes:
* 16 Unicast
e 256 IP Multicast
* 256 Multicast

* Unicast promiscuous mode (reception of Unicast frames, even those not matched in the
DA filter)

* Broadcast
* Broadcast reject mode
* Automatic discard of error frames, smaller than the programmable minimum frame size
* Reception of long frames (Programmable legal frame size is up to 9700 bytes)
NOTE: Frames larger than the limit are actually received, however, they are marked in the
descriptor as Oversize errors.
* CRC checking
* Error report
m Precise Timing Protocol (PTP) with:
* Precise time stamping for packets, as defined in IEEE 1588 PTP v1 and v2 and IEEE
802.1AS draft standards
* Flexible Time Application interface to distribute PTP clock and time to other devices in the
system
* Optionally accepts an external clock input for time stamping
m Audio Video Bridging (AVB) Networks including:
* |EEE 802.1Qav pre-draft Audio Video Bridging networks
* Time- and priority-aware egress pacing algorithm to prevent bunching and bursting
effects—suitable for audio/video applications

» Egress Jitter Pacer for AVB-Class A and AVB-Class B traffic and strict priority for legacy
traffic queues

Functional Overview

Each port includes an IEEE 802.3 compliant 10/100/1000 Mbps MAC. The port speed, duplex and
IEEE 802.3 Flow Control can be auto-negotiated, according to IEEE standard 802.3. Backpressure
is supported for half-duplex mode when operating at 10/100 Mbps speeds. Each port supports MIB
counters.

Each receive port includes a Layer-2 Destination Address (MAC-DA) recognition and filtering
mechanism of up to 16-Unicast MAC addresses, 256 IP Multicast addresses, and 256
Multicast/Broadcast address. The receive ports may also detect Layer-2 frame-type encapsulation,
as well as common Layer 3 and Layer 4 protocols.

Layer-2 CRC, IP checksum, TCP checksum, and UDP checksum are always checked on received

packets, and may be generated for transmit. This capability increases performance significantly by

off-loading these operations from the software. Checksum is checked for Jumbo frames on received
packets. Checksum generation for transmitted Jumbo frames is not supported.

Each port includes eight dedicated receive DMA queues and eight dedicated transmit DMA queues,
plus two dedicated DMA engines (one for receive and one for transmit) that operate concurrently.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 114

Document Classification: Proprietary Information December 2, 2008, Preliminary

Gigabit Ethernet Controller
Functional Overview

Each queue is managed by a chain of buffers-descriptors that are managed by the software. A
transmit buffer of any byte alignment and any size, above 8 bytes, is supported.The receive buffers
must be 64-bit aligned.

Queue classification on received traffic is assigned to the DMA queue based upon a configurable
analysis, which evaluates the DA-MAC, IP, TOS (Type of Service), IEEE 802.1p priority tag, and
protocol (ARP, TCP, or UDP). An example for use of this feature is the implementation of
differentiated services or real-time, jitter-sensitive voice/video traffic intermixed with data traffic. As
each queue has its own buffering, blocking is avoided and latency is reduced for CPU service.

Detailed status is given for each receive frame in the packet descriptors, while statistics are
accumulated for received and transmitted traffic in the MIB counters, on a per port basis.

The 10/100/1000 Mbps GbE unit handles all functionality associated with moving packet data
between local memory and the Ethernet ports.

The port’s speed (10, 100, or 1000 Mbps) is auto-negotiated through the PHY and does not require
user intervention. Auto-Negotiation is according to IEEE standard 802.3. The 1000 Mbps speed
operates only in full-duplex mode. The 100 Mbps and 10 Mbps speeds operate either in half- or
full-duplex mode, with the selection of the duplex mode auto-negotiated through the PHY without
user intervention. With the RGMII/GMII interface, the port only supports symmetric Flow Control.

|§ | | Auto-Negotiation also can be disabled. When Auto-Negotiation is disabled, the link
parameters (link speed and Duplex mode) are forced by the software. The link must be
Note forced down when changing the port speed.

Frame type/encapsulation detection is available on:
e Layer 2 for:
— Bridge Protocol Data Unit (BPDU)
— VLAN (programmable VLAN-ethertype)
— Ethernet v2, LLC/SNAP
e Layer 3for:
— IPv4 (according to Ethertype)
* Layer 4 (only over IPv4) for:
— Transmission Control Protocol (TCP)
— User Datagram Protocol (UDP)

Frame enqueueing is in accordance with DA, VLAN-802.1p, IP-TOS using the highest priority
counts. Frame enqueueing is captured according to protocol type for TCP, UDP, ARP, or BPDU. The
port also supports enqueuing based on the proprietary Marvell® Header or the DSA Tag. These are
useful when interfacing Marvell FE or GE switches that utilize these features, resulting in improved
routing performance, and support for cascade and stack of switches.

Received frames smaller than the programmable minimum frame size are automatically discarded.
Reception and transmission of long frames, up to 9700 bytes, are supported. The frame type,
encapsulation method, errors, and checksums are reported in the buffer descriptor. Automatic IP
header 32-bit alignment is done in memory by adding 2 bytes at the beginning of each frame. The
TCP and UDP checksum calculations are put into the receive descriptor (and are compared with the
frame checksum for non-IP fragmented frames), even for frames over 9 KB.

|:: | | The GbE port is IPv6 ready. Even though it does not recognize IPv6 encapsulation,
IPv6 packets will be accepted (as any other un-recognized L3 type) and enqueued
Note based on L2 address and VLAN tag.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 115

®

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

8.3

Each Ethernet ports provide a great amount of flexibility with many programmable features. The
TCP, UDP, and IP checksums are generated for transmitted frames. This is programmable on a per
frame basis in the first descriptor. There are separate, programmable transmit and receive interrupt
coalescing mechanisms to aggregate several interrupts (on a time-based masking window) before
sending an indication to the CPU. The port provides programmable zero padding of short frames
(frames less that 64 bytes).

Byte based band-width distribution among transmit queues by a weighted-round-robin arbitration
mechanism is programmable. This includes programming of hybrid fixed and round-robin priorities.
The maximum byte based band-width allocation per transmit queue is also programmable. An
Egress Jitter Pacing (EJP) arbitration mechanism is supported, to comply with IEEE 802.1Qav
pre-draft. A transmit buffer of any byte alignment and any buffer size (greater than 8 bytes) is
supported; the minimum packet size is 32 bytes.

DMA Functionality

The GbE unit provides Ethernet ports functionality, with the port(s) capable of running at either 10 or
100 Mbps (half- or full duplex), or 1000Mbps (full duplex only). Each port manages packet data
transfer between memory and PHY. The data is stored in memory buffers, with any single packet
spanning multiple buffers if necessary. Upon completion of packet transmission or reception, a
status report, which includes error indications, is (optionally) written by the Ethernet unit to the first
descriptor (for receive ports) or to the last descriptor (for transmit ports) associated with this packet.

The buffers are allocated by the CPU and are managed through chained descriptor lists. Each
descriptor points to a single memory buffer and contains all the relevant information relating to that
buffer (that is buffer size, buffer pointer, etc.) and a pointer to the next descriptor. Whenever a new
buffer is needed (end of buffer or end of packet), a new descriptor is automatically fetched, and the
data movement operation is continued using the new buffer. These descriptors appear in Table 35
on page 123 through Table 42 on page 134.

Figure 22 shows an example of memory arrangement for a single packet using three buffers.

Figure 22: Ethernet Descriptors and Buffers

31 Descriptor 1 0 31 0
command/status

buffer size/byte count
buffer pointer
next descriptor pointer

packet 1 - buffer 1

Descriptor 2

> command/status

buffer size/byte count
buffer pointer

next descriptor pointer

packet 1 - buffer 2

Descriptor 3
command/status
buffer size/byte count
buffer pointer
next descriptor pointer

packet 1 - buffer 3

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 116

Document Classification: Proprietary Information December 2, 2008, Preliminary

Gigabit Ethernet Controller
DMA Functionality

The following sections provide detailed information about the operation and user interface of the
Ethernet unit and its logic subsections.

Tx and Rx buffers are managed via link list of descriptors placed in DRAM. Buffers and descriptors
are being read/write from/to memory by the port Rx and Tx DMAs.

8.3.1 Address Decoding
Each GbE MAC has six address windows. Each address window can be individually configured.

With the port DMA transaction (buffer read/write, descriptor read/write), the address is compared
against the address decoding registers. Address comparison is done to select the correct target
interface and attributes.

Four of the address windows have an upper 32-bit address register. These are used for accessing
interfaces that support more than 4-GB address space. The address generated on the interface is
composed of the 32-bit address issued by the SDMA (if it hits the relevant address window)
concatenated with the High Address Remap register content.

For the port DMA to avoid accessing a forbidden address space (due to a programing bug), each
port uses access protection logic that prevents it from read/write accesses to specific address
windows.

If the address does not match any of the address windows, or if it violates the access protection
settings, an interrupt is generated. The transaction is executed but not to the original address.
Instead, the transaction is executed to a default address and target as specified in the Default
Address and ID registers.

8.3.2 Endianess and Swap Modes

Each DMA channel has configurable behavior on Little or Big Endian support, per DMA channel data
receive and data transmission (see the <BLMR> field and the <BLMT> field in the SDMA
Configuration (SDC) Register (Table 422 p. 564) field.

For every DMA channel, descriptor accesses may be swapped (see the <SwapMode> field in the
SDMA Configuration (SDC) Register (Table 422 p. 564)).

8.3.3 Transmit DMA Descriptors

8.3.3.1 Transmit Operation
To initialize a transmit operation, the CPU must perform the following:
1. Prepare a chained list of descriptors and packet’s data buffers.

NOTE: The TxDMA supports several priority transmit queues with programmable fixed or
weighted priority with optional bandwidth limiting on the port or queue (see
Section 8.8.1, Priority Modes, on page 145). If the user wants to take advantage of this
capability, a separate list of descriptors and buffers must be prepared for each of the
priority queues.

2. Write the pointer of the first descriptor to the DMA's Transmit Current Queue Descriptor Pointer
(TCQDP) Register (n=0-7) (Table 446 p. 586) associated with the priority queue to be started. If
more than one of the priority queues are needed, initialize the Transmit Current Queue
Descriptor Pointer (TCQDP) Register (n=0-7) for each queue.

3. Initialize and enable the Ethernet port by writing to the port’s configuration and command
registers.

4. Initialize and enable the DMA by writing to the DMA's configuration and command registers
(Triggering the DMA is accomplished by setting the <ENQ> bit in the Tx Command register).

After completing these steps, the DMA starts and performs arbitration between the transmit queues
according to the configuration, on a packet by packet basis, as explained in Section 8.8.1, Priority

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 117

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

Modes. The DMA fetches the first descriptor from the specific queue it decided to serve, and starts
transferring data from the memory buffer to the Tx-FIFO.

When the entire packet is in the FIFO, it may potentially calculate and update the IP checksum, TCP,
or UDP checksum. The port then initiates transmission of the packet across the external PHY
interface. The port also calculates Layer-2 CRC and append to the packet tail. While data is read
from the FIFO, new data is written into the FIFO by the DMA.

For packets that span more than one buffer in memory, the DMA will fetch new descriptors and
buffers as necessary.

When transmission is completed, status is (optionally) written to the first long word of the last
descriptor. The Next Descriptor’s address, which belongs to the next packet in the queue, is written
to the current descriptor pointer register.

This process (starting with DMA arbitration) is repeated as long as there are packets pending in the
transmit queues. When no packets are pending in a transmit queue, the DMA resets the <ENQ> bit
in the Tx command register (one bit per queue) and reports the queue end via a TXEnd maskable
interrupt in the ICE register (for each queue).

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 118

Document Classification: Proprietary Information December 2, 2008, Preliminary

Copyright © 2008 Marvell

Gigabit Ethernet Controller
DMA Functionality

Figure 23 shows how the transmit descriptors are managed when a two buffers packet is

transmitted.

Figure 23: Ethernet Packet Transmission Example

1. Packet 1 - Transmitting 1st buffer

—> —>
buf 1 buf 2 buf 1
31 0 31 0 31 0
1‘ command (F=1) 1‘ command (L=1) 1| command (F=1)
byte count byte count byte count
buffer pointer —— buffer pointer | — buffer pointer
next descriptor ptr next descriptor ptr next descriptor ptr
2. Packet 1 - transmitting 2nd buffer
—> —>] —>
pkt 1 pkt 1 pkt 2
buf 1 TxCDP buf 2 buf 1
31 0 31 0 31 0
0 command 1 command 1 command
byte count byte count byte count
buffer pointer — buffer pointer || buffer pointer
next descriptor ptr next descriptor ptr next descriptor ptr
3. Packet 2 - transmitting 1st buffer
—> —> —>
pkt 1 pkt 1 pkt 2
buf 1 buf 2 TXCDP buf 1
31 31 0 31 0
0 command 0 status 1‘ command
byte count byte count byte count
buffer pointer buffer pointer | — buffer pointer
next descriptor ptr next descriptor ptr next descriptor ptr

1. TXCDP = Transmit Current Descriptor Pointer.
Key: pkt = packet, buf = buffer, ptr = pointer.

Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary

Page 119

Document Classification: Proprietary Information

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Ownership of any descriptor other than the last is returned to the CPU upon completion of data
transfer from the buffer pointed by that descriptor. The last descriptor, however, is returned to CPU
ownership only after the actual transmission of the packet is completed. While changing the
ownership bit of the Last descriptor, the DMA also writes status information that indicates any errors
that might have happened during transmission of this packet. There are two relevant modes:

=AM (Auto Mode): When this mode is set, the DMA will not close descriptors that are not last
descriptors (since the only change in non-last descriptors is their ownership).

m <AMNOTXES> field in the Port Configuration (PxC) Register (Table 416 p. 561): When this
mode is set, the last descriptors are also not closed.

The transmit buffer supports any byte alignment at any size (> 8 bytes) with a minimum packet size
of 32 bytes.

If generation of IP or Layer4 checksum is required, then the maximum packet size is 1.6 KB.

8.3.3.2 Retransmission (Collision)

Collision support is integrated into the Ethernet port for half-duplex operation mode. Half-duplex
mode is supported in 10 and 100Mbps speeds only.

A collision event is indicated each time receive and transmit are active simultaneously. When that
happens, active transmission is stopped, the jam pattern is transmitted and the collision count for the
packet increments. The packet is retransmitted after a waiting period that conforms to the binary
backoff algorithm specified in the IEEE 802.3 standard. The retransmit process continues for
multiple collision events as long as a limit is not reached. This retransmit limit, which sets the
maximum number of transmit retries for a single packet, is defined by the IEEE 802.3 standard as
16.

As long as a packet is being retransmitted, its last descriptor is kept under port ownership. When a
successful transmission takes place (i.e. no collision), a status word containing collision information
is written to the last descriptor and ownership is returned to the CPU.

If a retransmit limit is reached with no successful transmission, a status word with error indication is
written to the packet’s last descriptor, and the transmit process continues with the next packet.

It is important to note that collision is considered legal only if it happens before transmitting the 65™
byte of a packet. Any collision event that happens after sending the first 64 byte window is known as
a late collision, and is considered a fatal network error. Late collision is reported to the CPU through
the packet status, and no retransmission is done.

| ;] | Any collision occurring during the transmission of the transmit packet’s last four bytes is

not detected.
Note

8.3.3.3 Zero Padding of Short Frames

The Ethernet port offers a per frame padding enable bit in the transmit descriptor. This causes the
port logic to enlarge frames shorter than 64 bytes by appending zero bytes. When this feature is
used, only frames equal or larger than 64 bytes are transmitted as is. Frames smaller than 64 bytes
are zero padded and transmitted as 64-byte packets.

When using the Marvell Header mode, DSA tag, or Extended DSA Tag, the port
| ;] | performs zero padding to packet sizes of 66, 68, or 72 bytes, respectively. This
guarantees that the packet is still legal after the destination MAC strips the extra bytes

Note of Marvell Header or DSA tag.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 120 Document Classification: Proprietary Information December 2, 2008, Preliminary

8.3.3.4

8.3.3.5

8.3.3.6

8.3.3.7

8.3.3.8

Gigabit Ethernet Controller
DMA Functionality

CRC Generation

Ethernet CRC denotes four bytes of Frame-Check-Sequence appended to each packet.

The port can generate and append CRC to a transmitted packet. CRC generation can be disabled
via the <TxCRCDis> field in the Port Configuration Extend (PxCX) Register (Table 417 p. 562). If
disabled, it is the software’s responsibility to place the 32-bit CRC at the end of the packet.

If CRC generation is enabled, and the data fetched from memory is known to be erroneous, The
packet is sent, and CRC is not generated (causing bad CRC detection at the receiving side).

IP Checksum Generation

IPv4 checksum may be calculated during the packet DMA from memory, and it is replaced in the
checksum field for IPv4 packets encapsulated in Ethernet-v2 format, with or without a VLAN tag (this
must be specified in the descriptor). IPv4 checksum is similarly supported for LLC/SNAP packets,
including Jumbo frames (the CPU must set the LLC/SNAP-bit in the descriptor for such packets).

One bit in the transmit descriptor is used for specifying if the IPv4 checksum generation is required
for a specific packet.

TCP Checksum Generation

The TCP checksum may be enabled per frame. When TCP checksum is enabled, it is calculated
during the packet read from memory by the DMA and the calculated value is written in the checksum
field before transmission begins.

This is supported for TCP over IPv4 over Ethernet-v2, with or without VLAN tag (this must be
specified in the descriptor). It is similarly supported for LLC/SNAP packets, (not including Jumbo
frames). The LLC/SNAP-bit must be set by the CPU, in the descriptor for such packets.

Since a TCP segment may be transmitted over several Ethernet packets, and since the checksum in
the next packets continue the checksum calculation of previous packets, there are two types of
checksum generation commands (depending on bit 10 in the Tx descriptor):

m Calculate the checksum on the first packet in the segment:
In this case, the 16-bit checksum field in the descriptor must be zero. The checksum is done
fully by the device, and will include parsing the header according to the descriptor fields and
calculating the checksum on pseudo-header. The checksum continues with full checksum
calculation on the TCP data, and finally it is placed in the packet before transmission.

m Calculating checksum on non-first packets in the segment:
The CPU is required to calculate the initial checksum, including the pseudo-header checksum in
the <L4iChk> field in the Tx descriptor. The DMA uses this initial checksum value in calculating
the TCP checksum over the TCP payload in the packet and place it in the TCP checksum field
of the packet before transmission.

The CPU may choose to always calculate the checksum over the pseudo-header, and let the
hardware take care of the payload checksum.

UDP Checksum Generation

The UDP checksum generation is the same as the TCP checksum generation support, with both first
and non-first modes (see above).

VLAN Bit

The CPU is required to specify whether the packet is VLAN tagged or not. This is needed to facilitate
the packet parsing during fetching from memory. It is used to correctly locate the IP header when the
IP checksum, TCP checksum, or UDP checksum generation is required.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 121

—
=
—

M ARVELL®

88F6180/88F619x/88F6281
Functional Specifications

8.3.3.9 LLC/SNAP Bit

The Layer 3 and Layer 4 checksum generation is supported for Ethernet-v2 frames, or for
LLC/SNAP frames. This bit must be set in case the checksum generation features is required for
LLC/SNP frames.

8.3.3.10 Transmit Descriptor Structure

Descriptor length is four long words (4LW), and it must be 4LW aligned (that is,
Descriptor_Address[3:0]==0000).

Descriptors may reside anywhere in the device address space except for a null address
(0x00000000), which is used to indicate the end of the descriptor chain. Descriptor may not be
placed on a NAN Flash device. Descriptors are fetched always in burst of 4LW.

The last descriptor in the linked chain must have a null value in the Transmit Descriptor - Next
Descriptor's <NextDescriptorPointer> bits[31:0] (Table 38 on page 125). Alternatively, the last
descriptor may be not owned. Having a not owned descriptor is useful for performance
optimization, by using a dummy pointer for adding descriptors to a chain without reprogramming
the First Descriptor Pointer (FDP) register (see Section 10.5.4.2, Chain Mode, on page 202 and
Section 10.5.4.5, Descriptor Ownership, on page 204).

For packets that span multiple descriptors, the CPU must provide ownership on all the packet’s
descriptors before giving ownership on the first descriptor of the packet, to avoid underrun
situations.

TX buffers associated with TX descriptors are limited to 64-1 KB and can reside anywhere in
memory. However, buffers with a payload of one to eight bytes must be aligned to a 64-bit
boundary. Zero size buffers are illegal.

Figure 24: Transmit Descriptor Description

332222222222 11111111110000H00°00 0 0 Offset

10987 6543210987 6 5432109876543 210

Byte 3 Byte2 Bytel ByteO

Command / Status +0

Byte Count[15:0] <L4iChk>/Reserved +4

Buffer Pointer [31:0] +8

Next Descriptor Pointer [31:4] +C
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 122 Document Classification: Proprietary Information December 2, 2008, Preliminary

Gigabit Ethernet Controller
DMA Functionality

8.3.3.11 Tx Descriptor Command/Status

Table 35: Transmit Descriptor Command/Status

Bits Field

0 ES

2:1 EC

8:3 Reserved

9 LLC/SNAP
10 L4Chk_Mode

14:11 IPv4HdLen

15 VLAN

16 Latype

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Description

Error Summary of MAC level errors on frame transmission.

0 = No Error

1 = Error occurred (Late Collision - LC, or Retransmit Limit - RL, or Underrun Error - UR)
NOTE: This field is only valid only if <L> bit[20] is set.

If <AM> bit[30] is set and the <AMNOTXES> field in the Port Configuration (PxC)
Register (Table 416 p. 561) is set, this field, as well as <EC> bits[2:1], are not
updated.

Error Coding

00=LC

01=UR

10 = RL reached (excessive collision)

11 = Reserved

NOTE: Valid only if <L> bit[20] is set and <ES> bit[0] is set.

Reserved

When set, this bit signifies that the packet has an LLC/SNAP format.
0 = Not LLC/SNAP

1 =LLC/SNAP

NOTE: Valid only if F is set, and if GL4chk or GIPchk is set.

IP and TCP/UDP checksum is supported for LLC/SNAP frames or for Ethernetv2
frames

Provides the TCP/UDP frame type for checksum calculation mode when GL4chk=1.
0 =Frame is IP fragmented. (The CPU must provide the initial checksum value calculated
over the pseudo-header in the <L4iChk> field.)
1 = Frame is not IP fragmented. (The CPU must provide zero value in the <L4iChk> field.)
NOTE: The payload length over which the checksum is calculated is determined by the
Layer4 LENGTH field in the packet, and therefore it should NOT include any pad
bytes.

Valid only if F is set, and if GL4chk=1.

Provides the length in long words (4 bytes) of the IPv4 header.
NOTE: This is only valid if F bit [21] is set, and either GL4chk bit [17] or GIPchk bit [18] is set.

VLAN signifies if the Ethernet-v2 frame is VLAN tagged or not.

Only if <GIPchk> bit[18] or <GL4chk> bit[17] are set, this field must have a correct value.
0 = Frame is not VLAN tagged.

1 = Frame is VLAN tagged.

NOTE: This is only valid if <F> bit[21] is set.

When GL4chk is set, signifies which Layer4 protocol is carried in the frame.
0=TCP

1=UDP

NOTE: This is only valid if the <F> bit[21] is set.

Doc. No. MV-S104860-U0 Rev. C
Document Classification: Proprietary Information Page 123

M ARVELL®

—

= 88F6180/88F619x/88F6281

Functional Specifications

Table 35: Transmit Descriptor Command/Status (Continued)

Bits

17

18

19

20

21

22

23

29:24

30

31

Field

GL4chk

GlIPchk

Reserved

El

Reserved

AM

Doc. No. MV-S104860-U0 Rev. C

Page 124

Description

Generate TCP/UDP Checksum

0 = No operation

1 = Generate TCP/UDP checksum.

NOTE: This may only be set to TCP or to UDP over IPv4 over Ethernetv2 frames (tagged or
untagged).

The CPU must provide the initial checksum value calculated over the pseudo-header
in the Transmit Descriptor Register <L4iChk> bits[15:0].

The payload length over which the checksum is calculated is determined by the
Layer4 Length field in the packet, and therefore, it should NOT include any pad bytes.

This is only valid if <F> bit[21] is set.

Generate IPv4 checksum.

This is supported for Ethernetv2 and LLC/SNAP frames (tagged or untagged), with a valid
IPv4 Header (IPHL>=5, IPHL*4<=I1PTL).

NOTE: This is only valid if the <F> bit[21] is set.

Padding

When this bit is set and the packet is smaller than 60 bytes, zero-value bytes are appended
to the packet. Use this feature to prevent transmission of fragments.

NOTE: This is only valid if <L> bit[20] is set.

If disabling HW CRC generation (CRC is generated by SW), zero padding must not
be enabled.

Last
Indicates the last buffer of frame.

First
Indicates the first buffer of a frame.

Enable Interrupt

When set, a maskable interrupt will be generated upon the closing descriptor.

NOTE: To limit the number of interrupts and prevent an interrupt per buffer situation, set this
bit only in descriptors associated with Last buffers. This way the TxBuffer interrupt is
only set when transmission of a frame is completed.

Interrupts may be further delayed by the Interrupt coalescing mechanism (see
Section 8.7.1, Interrupt Coalescing, on page 144).

Reserved.

Auto Mode

When set, the DMA will not clear the <Ownership> bit at the end of the buffer process.

If the <AMNOTXES> field in the Port Configuration (PxC) Register (Table 416 p. 561) is set,
no status is reported in the last descriptor (See <ES> bit[0] and <EC> [2:1], fields above).

Ownership Bit
0 = Buffer owned by the CPU.
1 = Buffer owned by the DMA.

Copyright © 2008 Marvell
Document Classification: Proprietary Information December 2, 2008, Preliminary

Gigabit Ethernet Controller
DMA Functionality

Table 36: Transmit Descriptor Byte Count
Bits Name Description

15:0 L4iChk The CPU provides the initial checksum value calculated on the pseudo-header when:
The Transmit Descriptor’'s <GL4chk> bit[17] is set
The Transmit Descriptor’s <L4Chk_Mode> bit[10] is cleared.
Otherwise these bits are reserved.
NOTE: Only valid if the <F> bit[21] is set.

31:16 = Byte Count Number of bytes to be transmitted from the associated buffer. This is the payload size in
bytes.

Table 37: Transmit Descriptor Buffer Pointer
Bits Name Description

31:.0 Buffer Pointer A 32-bit pointer to the beginning of the buffer associated with this descriptor.
NOTE: There is a 64-bit alignment requirement for buffers that have a setting in the Transmit
Descriptor Register Byte Count bits[31:16] of 1-8 bytes.

Table 38: Transmit Descriptor Next Descriptor Pointer

Bits Name Description

31:0 NextDescriptor | A 32-bit pointer that points to the beginning of the next descriptor.
Pointer NOTE: bits[3:0] must be set to 0.
A DMA operation is stopped when a null (all zeros) value is encountered in this field.

8.3.3.12 Transmit DMA Pointer Registers

The Tx DMA employs a single 32-bit pointer register per queue, the TX DMA Current Descriptor
Pointer (TXCDP) register.

The TXCDP register is a 32-bit register used to point to the current descriptor of a transmit packet.
The CPU must initialize this register before enabling DMA operation. The value used for initialization
should be the address of the first descriptor to use.

8.3.3.13 Transmit DMA Notes

The transmit DMA process is packet oriented. The transmit DMA does not close the last descriptor
of a packet, until the packet has been fully transmitted. When closing the last descriptor, the DMA
writes packet transmission status to the Command/Status word and resets the ownership bit. A
TxBuffer maskable interrupt is generated in the ICRE register for each queue, if the <EI> bit in the
last descriptor is set.

Updating the status in the descriptor is programmable per the <AM> bit in the Tx descriptor. When
set, the DMA will not clear the Ownership bit at the end of buffer process. If, in addition AMNOTXES
bit is set in the Port Configuration register, no status will be reported in last descriptor. The
advantage of this is that it reduces memory write access per descriptor This versus the trade-off of
not getting error indications per packet, like late collisions, and not relying on the ownership bit for
each descriptor.

Transmit DMA stops processing a Tx queue whenever a descriptor with a null value in the Next
Descriptor Pointer field is reached or when a CPU owned descriptor is fetched. When that happens,
a TxEnd maskable interrupt is generated in the ICRE register (per queue) and the <ENQ> bit is
reset. To restart the queue, the CPU should issue a Enable-queue command by writing 1 to the ENQ
bit in the Tx command register.!

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 125

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

8.3.4
8.34.1

The transmit DMA does not expect a null Next Descriptor Pointer or a CPU owned descriptor in the
middle of a packet. Additionally, the transmit DMA does not expect a data integrity error on
descriptors. When any of these events occurs, the DMA aborts transmission and stops queue
processing (that is, it resets the <ENQ> hit). A TxError maskable interrupt is generated. To restart
the queue, the CPU should issue an Enable_Queue command.

A transmit underrun occurs when the DMA cannot access the memory fast enough and packet data
is not transferred to the FIFO before the FIFO becomes empty. In this case, the DMA aborts
transmission and closes the last descriptor with a UR bit set in the status word. Additionally, a
Tx_Underrun maskable interrupt is generated. The transmit process continues with the next packet.
In the device Tx DMA, transmitting packets less than 1600 bytes long, such an error cannot happen,
as the packet is fully buffered in the FIFO before transmission begins.

To stop DMA operation before the DMA reaches the end of descriptor chain, the CPU should issue a
Disable-Queue command by writing 1 to the <DISQ> bit in the DMA command register. The DMA
stops processing the queue as soon as the current packet transmission is completed, and its last
descriptor is returned to CPU ownership. Then, the DMA resets the ENQ bit. To ensure that the DMA
is actually disabled, the CPU should poll the <DISQ> bit to confirm that it is set to 1, before trying to
modify any of the DMA parameters relevant to this queue.

In addition, a TXEnd maskable interrupt is generated. To restart this queue, the CPU must issue a
Enable-Queue command.

When the Ethernet link was lost during normal operation, the DMA will disable all the queues by
resetting the <ENQ> bits. Since losing a link can happen anytime during DMA programming by the
CPU (for example, a disconnected cable or a far end disconnect) the following precaution must be
taken: If the CPU gets a link-down interrupt, then it must wait for the DMA to reset the <ENQ> bits of
the DMA channels for Tx, after the link down event, before re-enabling the DMA channels.

The CPU must never modify the DMA configuration register or the TXCDP register while the DMA
ENQ bit is set. Modifying the TxCDP registers is allowed only when the respective DMA ENQ bit is
reset. Modifying the DMA configuration registers may be done only when all the DMA channels ENQ
bits are reset.

The DMA ENQ bit cannot be reset by the CPU. Only the hardware resets it as a response to the
DISQ command, or an end-condition, error condition, or link down.

— Most of the terms used to denote either DMA commands (Enable_Queue and
N Disable_Queue) or interrupts (TxBuffer, TXEnd, and TxError) actually reflect multiple
terms (one per queue). For example, the device provides eight Enable_Queue
commands. The same applies to the other commands and interrupts listed above.

Note

Receive DMA Descriptors

Receive Operation

To initialize a receive operation, the CPU must perform the following:

1. Prepare a chained list of descriptors and packet buffers.

NOTE: The RxDMA supports eight priority queues. If the user wants to take advantage of this capability, a

separate list of descriptors and buffers should be prepared for each of the priority queues.

2. Write the pointer to the first descriptor to the DMA's current receive descriptor registers
(RxCDP) associated with the priority queue to be started. If multiple priority queues are needed,
the user has to initialize RxCDP for each queue.

1. When the DMA stops due to a null descriptor pointer, the CPU has to write TXCDP before issuing an Enable_Queue
command. Otherwise, TXCDP remains null and the DMA cannot restart the queue processing.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 126

Document Classification: Proprietary Information December 2, 2008, Preliminary

8.3.4.2

8.3.4.3

Gigabit Ethernet Controller
DMA Functionality

3. Initialize and enable the DMA channel by writing to the DMA's configuration and command
registers.

4. Initialize the Ethernet port by writing to the port’s configuration registers (among them PSCR,
Address Filter Tables, MII/GMII Serial Parameter registers, if necessary) for the desired
operational modes. Enable the port by writing to the <PortEn> bit in the Port Serial Control0
register.

After completing these steps, the port starts waiting for a receive frame to arrive to the PHY
interface. When this occurs, receive data is packed and transferred to the RxFIFO. At the same time,
an address filtering check is performed to decide if the packet is destined to this port. If the packet
passes the address filtering check, a decision is made regarding the destination queue to which this
packet should be transferred. When this is done, the actual data transfer to memory takes place. For
detailed address filtering and priority queue assignment decisions, refer to Section 8.4, Receive
Frame Processing, on page 134.

m The received packet is padded with two null bytes (the received data starts on the
third byte of the buffer). This is useful for the IP header to be placed in a 32-bit
aligned address in memory (as expected by SW IP stack).

EI m Packets that fail address filtering are dropped and are not transferred to memory.
Note

For packets that span more than one buffer in memory, the DMA fetches new descriptors as
necessary. However, the first descriptor pointer will not be changed until packet reception is
completed.

When reception is completed, the status is written to the first descriptor, and the Next Descriptor’s
address is written to the current descriptor pointer register. This process is repeated for each
received packet.

Only after the packet had been fully received and status information was written to the first LW of the
first descriptor, will the ownership bit be reset (that is, the descriptor is returned to CPU ownership).

Ownership of any descriptor, other than the first, is returned to the CPU upon completion of the data
transfer to the buffer pointed by that descriptor. This means that, for each packet, the first descriptor
of a packet is the last descriptor to return to CPU ownership.

Receive DMA Pointer Register
The Rx DMA employs one 32-bit pointer register per queue: RxCDP.

RxCDP is a 32-bit register used to point to the first descriptor of a receive packet. The CPU must
initialize this register before enabling DMA operation. The value used for initialization should be the
address of the first descriptor to use. The CPU must not write to this register while the DMA is
enabled. Reading from this register could be used to assess the DMA progress, as well as to
monitor the queue status.

Receive DMA Notes

The Receive DMA process is packet oriented. The DMA does not close the first descriptor of a
packet, until the last descriptor of the packet is closed. When closing the first descriptor, the DMA
writes the status to the Command/Status word and resets the ownership bit. A RxBuffer maskable
interrupt is generated if the <EI> bit in the first descriptor is set.

When the DMA encounters a null next descriptor pointer or a CPU owned descriptor during normal
operation (both are the only legal queue end conditions), the current received frame may be closed
with error status in the descriptor, if there is insufficient space to store it in memory. The RxDMA
engine will assert a maskable RxErrorQueue interrupt.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 127

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

8.34.4

8.3.4.5

If the end-condition was a null next descriptor pointer, the DMA disables the queue by resetting the
<ENQ> bit once it tries to prefetch the next descriptor. If the RXDMA requests a new descriptor
before the CPU re-enables the queue, the DMA increments the Discarded Frames Counter (DFC).
Any new frame to this queue will be discarded.

If the ending condition was a unowned descriptor, then the DMA does not disable itself, but rather
continues to try to read the descriptor, every time a new frame arrives to this queue.

The latter case optimizes for high speed descriptor-buffer receive allocation, as it allows the CPU to
avoid re-enabling the queue, every time it adds new descriptors to the queue.

Before the CPU may enable the queue again, it must write the correct descriptor pointer to the
RxCDP register. Alternatively, in case the queue end was a result of an unowned descriptor, the
CPU may simply provide ownership of it to the DMA and re-enable it.

When a frame is received while the Ethernet link is lost (link down), the last frame received is cut off
and closed as a bad CRC in the first descriptor.

The CPU must never modify the DMA configuration register or the RXCDP register while the DMA
<ENQ> bit is set. Modifying the RxCDP registers is allowed only when the respective DMA <ENQ>
bit is reset.

DMA <ENQ> bits are reset after the CPU writes to the <DISQ> bits, and the DMA completes the
current transaction on the disabled Queue (if working with the specific disabled Queue). If the CPU
gets a NULL of not owned descriptor in the middle of a packet and the CPU does not solve the
problem in time, the frame will be discarded, The last closed descriptor will be reclosed as a last
descriptor, and the first descriptor will be closed with a resource error.

When disabling a receive queue with the Disable-Queue command, it is necessary to ensure that
the DMA is actually disabled. Poll for the <DISQ> bit to be set to 1 before trying to modify any of the
DMA parameters relevant to this queue.

|§ | | The RX DMA does not reset the enable bits under link down. To re-program, disable
the queue by writing to the <DISQ> field in the Receive Queue Command (RQC)
Note Register (Table 444 p. 585).

Frame Type Indications

The receive processing of the frame (see Section 8.4, Receive Frame Processing, on page 134)
allows passing various useful indications about each packet in the Rx descriptor. These indicators
include MAC level errors (like Ethernet CRC check fail), to facilitate CPU processing overhead in
packet header processing, and in Layer 3 and Layer 4 checksum calculations.

See the descriptor description for details. For a definition of the indications, see Section 8.4, Receive
Frame Processing.

TCP Checksum Checking

TCP frames include a 16-bit checksum that protects the entire segment payload (that usually spans
over a number of packets) as well as the TCP header and some of the IPv4 fields.

Frames may be received in an interleaved fashion from different TCP connections, and also out of
order, within any TCP connection.

The Rx frame parsing allows off loading most of the overhead from the software. The Rx descriptor
below, provides frame type indications such as: IPv4, validity of IP header with correct IPHL, IPTL,
and IP checksum checked OK, Layer 2 encapsulation information (VLAN, Ethernetv2 or
LLC/SNAP), and TCP or UDP type detection.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 128

Document Classification: Proprietary Information December 2, 2008, Preliminary

8.3.4.6

Gigabit Ethernet Controller
DMA Functionality

TCP checksum check results are generated in the Rx descriptor in the following way, where two

cases are identified - fragmented or non-fragmented IP packets:

1. Ifitis a non-fragmented IP packet (the packet’s IP Header Flag <MF> = 0 and <Offset> = 0x0),
meaning, the packet includes both TCP header and the full payload, (and therefore TCP
checksum can be calculated), the descriptor will be closed with an indication that the frame is
not fragmented (descriptor’s <IPv4Frg> bit set to 0). The TCP checksum calculation also takes
into account the pseudo-header if the <RXCS> field in the Port Configuration (PxC) Register
(Table 416 p. 562) is set to 1. If <RXCS> is set, the L4 checksum compare result will be valid
(descriptor’s <LAChkOK> bit is valid).

| ;]| The length field for the pseudo-header is taken from the following operation: IPTL -

IPHL * 4.
Note

For the checksum calculation, the value 16'h00 is used instead of the checksum field in the
received frame as required by the standard. In addition, the checksum calculation for each
frame always starts with the initial value of 16'h00.

2. |Ifitis a fragmented IP packet (either <MF> != 0 or <Offset> != 0) or if <RXCS>is setto 0
(calculation without pseudo-header), the pseudo-header is not calculated in the checksum. The
checksum is calculated only on the TCP segment (header + data) and places the result in the
first descriptor of each frame. Therefore, the checksum compare bit (L4AChkOK bit) is not valid.

For fragmented IP packets, the checksum calculation does not put a zero in the

EI checksum field, and therefore, in a frame that is the first fragment of IP packet (<Offset>
=0x0 and <MF>!= 0), the checksum result can be wrong (since it includes the

Note checksum field of the TCP header). This should be corrected by the software.

The port calculates the checksum per each packet. The software should sum all the checksum
calculations for the complete IP packet and compare it to the checksum field in the TCP header.

UDP Checksum Checking

UDP frames include a 16-bit checksum that protects the entire segment payload (that usually spans
over a number of packets) as well as the UDP header and some of the IPv4 fields.

Frames may be received in an interleaved fashion from different UDP streams, and also out of order,
within any UDP stream.

The Rx frame parsing allows off loading most of the overhead from the software. The Rx descriptor
below, provides frame type indications such as: IPv4, validity of IP header with correct IPHL, IPTL,
and IP checksum checked OK, Layer 2 encapsulation info (VLAN, Ethernetv2 or LLC/SNAP), and
TCP or UDP type detection.

UDP checksum check results are generated in the Rx descriptor in the following way, where two
cases are identified - fragmented or non-fragmented IP packets:

1. Ifitis a non-fragmented IP packet (the packet's IP Header Flag <MF> = 0 and <Offset> = 0x0),
meaning, the packet includes both the UDP header and the full payload, (and therefore UDP
checksum can be calculated), the descriptor will be closed with an indication that the frame is
not fragmented (descriptor’s <IPv4Frg> bit set to 0), and the L4 checksum compare result will
be valid. UDP checksum calculation will also take into account the pseudo-header if the

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 129

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

<RxCS> field in the Port Configuration (PxC) Register (Table 416 p. 562) is set to 1.

| ;I | The length field for the pseudo-header is taken from the following operation:

IPTL - IPHL * 4.
Note

For the checksum calculation, the value 16'h00 is used instead of the checksum field in the received
frame as required by the standard. In addition, the checksum calculation for each frame always
starts with the initial value of 16'h00

If the frame checksum is 0x0, then the checksum function does not compare and close the
descriptor as checksum OK, since this is the indication that checksum check was disabled,
according to the standard.

2. |Ifitis a fragmented IP packet (either <MF> != 0 or <Offset> != 0) or if <RXCS> is set to 0
(calculation without pseudo-header), the pseudo-header is not calculated in the checksum. The
checksum is calculated only on the UDP segment (header + data) and places the result in the
first descriptor of each frame. Therefore, the checksum compare bit (L4ChkOK bit) is not valid.

checksum field, and therefore, in a frame that is the first fragment of IP packet (<Offset>
=0x0 and <MF>!= 0), the checksum result might be wrong (since it includes the
Note checksum field of the UDP header). This should be corrected by the software.

EI For fragmented IP packets, the checksum calculation does not put zero in the

The port calculates the checksum per each packet. The software should sum all the checksum
calculations for the complete IP packet and compare to the checksum field in the UDP header.

8.3.4.7 BPDU Indication
If a frame is detected as BPDU, and BPDU detection is enabled, the BPDU bit is set (see
Section 8.4, Receive Frame Processing, on page 134). The rest of the L3/4 fields are still provided,
but the user may want to ignore them, as they are likely not to be relevant for most BPDU protocols.
8.3.4.8 Receive Descriptor Structure
m The descriptor length is 4LW, and it must be 4LW aligned (i.e. Descriptor_Address[3:0]==0000).
m Descriptors may reside anywhere in the address space except for the null address
(0x00000000), that is used to indicate the end of a descriptor chain. Descriptors cannot be
placed on a Device-bus as they are fetched always in a burst of 4LW.
m The last descriptor in the linked chain must have a null value in the Receive Descriptor - Next
Descriptor’s <NextDescriptorPointer> bits[31:0] (Table 42 on page 134). Alternatively, the last
descriptor may be not owned. The latter option is useful for performance optimization, by using
a dummy pointer for adding descriptors to a chain without reprogramming the RXCDP register
(see Section 10.5.4.2, Chain Mode, on page 202 and Section 10.5.4.5, Descriptor Ownership,
on page 204).
m Receive buffers associated with receive descriptors are limited to 64-1 KB and must be 64-bit
aligned (i.e. Buffer_Address[2:0]==000).
m The minimum buffer size for the receive buffer is eight bytes.
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 130

Document Classification: Proprietary Information December 2, 2008, Preliminary

Gigabit Ethernet Controller
DMA Functionality

Figure 25: Receive Descriptor Description

33222222222 21111111111000W00O0O0O0O0 0 Offset
10987 6543210987 6543210987 6543210
Byte 3 Byte2 Bytel ByteO
Command / Status +0
Byte Count[15:0] Buffer Size[15:3] I 0 0 +4

P

%

4

F

r

9
Buffer Pointer [31:3] 0 0 0O +8
Next Descriptor Pointer [31:4] 0 0 0 0 +C
Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 131

—
=
—

M ARVELL®

88F6180/88F619x/88F6281
Functional Specifications

8.3.4.9 Receive Descriptor Command/Status

Table 39: Receive Descriptor Command/Status

Bits Name

0 ES
2:1 EC
18:3 L4Chk
19 VLAN
20 BPDU

22:21 Layer4

23 Layer2Ev2

24 L3IP

Doc. No. MV-S104860-U0 Rev. C

Page 132

Description

Error Summary

0 = No Error

1 = Error Occurred (RE or MF or OR or CE),
NOTE: This is only valid if <F> bit[27] is set.

MAC Error Coding

00 = CE - CRC Error

01 = OR - Overrun Error

10 = MF - Maximum Frame Length Error. Frame is longer than the MAX_FRAME_SIZE.
11 = RE - Resource Error (No descriptors in the middle of the frame)

NOTE: This is only valid if the <F> bit[27] and the <ES> bit[0] are set.

If multiple errors occurred, then the reporting priority is Resource Error, Maximum
Frame Length Error, Overrun Error, and CRC Error.

Calculated TCP/UDP Checksum
NOTE: This is only valid if Layer4 bits[22:21] are set to 00 or 01.

This is only valid if the <F> bit[27] is set and no MAC errors occurred.
This is only valid if the <IPHeadOK> bit[25] and the <L3IP> bit[24] are set.

The calculation does not include the pseudo-header if the Receive Descriptor -Byte
Count Register <IPv4Frg> bit[2] is set or the <RxCS> field in the Port Configuration

(PxC) Register (Table 416 p. 562) is set to 0 (calculation without the pseudo-header).

VLAN Frame is VLAN tagged (according to programmed VLAN-Ethertype).
NOTE: This is only valid if the <F> bit[27] is set, and the <ES> bit[0] is set to 0.

Bridge Protocol Data Unit
Set when the frame is BPDU.
NOTE: Only valid if the <F> bit[27] is set and the <ES> bit[0] is set to 0.

Frame encapsulation and protocol.
00 = Frame is TCP over IPv4 over Ethernetv2 or LLC/Snap (with or without VLAN tag).
The Checksum result is provided in the <L4Chk> bits[18:3].
01 = Frame is UDP over IPv4 over Ethernetv2 or LLC/Snap (with or without VLAN tag).
The Checksum result is provided in the <L4Chk> bits[18:3].

10 = Other Frame type.
11 = Reserved
NOTE: This is only valid if the <F> bit[27] is set, and the <ES> bit[0] is set to 0.

This is only valid if the <IPHeadOK> bit[25] and the <L3IP> bit[24] are set.
Set if Layer 2 is Ethernetv2.

Frame type is IPv4.

This is only set if Ethertype-0x800 over Ethernetv2, or over LLC/SNAP (with or without VLAN

tag). Otherwise, reset.
NOTE: This is only valid if the <F> bit[27] is set, and the <ES> bit[0] is set to 0.

Copyright © 2008 Marvell
Document Classification: Proprietary Information December 2, 2008, Preliminary

Gigabit Ethernet Controller
DMA Functionality

Table 39: Receive Descriptor Command/Status (Continued)

Bits

25

26

27

28

29

30

31

Name

IPHeadOK

El

L4ChkOK

Copyright © 2008 Marvell

December 2, 2008, Preliminary

Description

IP header is “ok” if:
* Frame type is IPv4
e [PHL>=5
e |PHL *4<=IPTL
* |Pheader Checksum is OK.
0 = Check failed
1 = Check passed
NOTE: This is only valid if <L3IP> bit[24] is set.

This is only valid if the <F> bit[27] is set, and the <ES> hit[0] is set to 0.

Last
Indicates the last buffer of a frame.

First
Indicates the first buffer of a frame.

Unknown Destination Address

The frame is Unicast and was not matched to the MAC Address Base (DA[47:6]).

NOTE: This is only set if working in promiscuous mode. See <UPM> field in the Port
Configuration (PxC) Register (Table 416 p. 561).

This is only valid if the <F> bit[27] is set, and the <ES> bit[0] is set to 0.

Enable Interrupt

When set, a maskable interrupt is generated upon the closing descriptor.

NOTE: To limit the number of interrupts and prevent an interrupt per buffer situation, set the
<RIFB> field in the SDMA Configuration (SDC) Register (Table 422 p. 564).

Interrupts may be further delayed by the Interrupt coalescing mechanism (see
Section 8.7.1, Interrupt Coalescing, on page 144).

Layer4 Checksum OK

1 = OK (passed)

0 = Check failed

NOTE: If <Layer4> bits[22:21] is 01 and the received frame checksum field was 16'h00, then
the bit will indicate passed.

This is only valid if the <IPHeadOK> hit[25] and the <L3IP> bit[24] are set.
This is only valid if Layer 4 is 00 or 01.
This is only valid if the <F> bit[27] is set, and the <ES> bit[0] is set to 0.
This is only valid if the Receive Descriptor - Byte Count Register IPv4Frg bit[2] is
cleared and the <RxCS> field in the Port Configuration (PxC) Register (Table 416
p. 562) is set to 1.

Ownership

0 = Buffer owned by the CPU.
1 = Buffer owned by the DMA.

Doc. No. MV-S104860-U0 Rev. C
Document Classification: Proprietary Information Page 133

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Table 40: Receive Descriptor Byte Count

Bits Name Description
1:0 Reserved Reserved.
2 IPv4Frg IPv4 is fragmented.

1 = Fragmented
0 = Not fragmented
NOTE: This is only valid if the <IPHeadOK> bit[25] and the <L3IP> bit[24] are set.

This is only valid if the Receive Descriptor - Command/Status Register <F> bit[27] is
set, and <ES> bit[0] is set to 0.

15:3 Buffer Size Buffer Size in Bytes
When the number of bytes written to this buffer is equal to the field’s value, the DMA closes
the descriptor and moves to the next descriptor.
NOTE: The buffer size is represented by 16-bits, where the lower 3 bits are fixed to zero.
Buffer Size = Bits[15:3] | | '000'".

31:16 = Byte Count When a descriptor is closed, this field is written by the device with a value indicating the
number of bytes actually written by the DMA into the buffer (or buffers, where the packet
occupies more than one buffer).

NOTE: This is only valid if the <F> bit[27] is set.

Table 41: Receive Descriptor Buffer Pointer

Bits Name Description

31:0 Buffer Pointer A 32-bit pointer to the beginning of the buffer associated with this descriptor.
NOTE: This field must be 64-bit aligned; therefore, bits[2:0] must be set to 0.

Table 42: Receive Descriptor Next Descriptor Pointer

Bits Name Description

31.0 Next Descriptor =~ A 32-bit pointer that points to the beginning of the next descriptor.
Pointer NOTE: This field must be 4LW aligned; therefore, bits[3:0] must be set to 0.
The DMA operation is stopped when a null (all zeros) value in the Next Descriptor Pointer
field is encountered.

8.4 Receive Frame Processing

Once a frame is received by the port, the frame is parsed through the following processing:
MAC errors checking

Accept or reject decision

Select the receive queue (0 through 7)

MIB counter increments

Extract Layer 2/3/4 protocols and perform IP and/or TCP/UDP checksum

Some MAC level errors, like fragments, are normally filtered from reception of frames and are only
counted in MIB counters. Other MAC level errors (like CRC error frames and frames beyond the
maximum allowed size) are reported in the first descriptor and in the MIB counters.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 134 Document Classification: Proprietary Information December 2, 2008, Preliminary

Gigabit Ethernet Controller
Receive Frame Processing

The frames maximum size is defined in the <MRU> field in the Port Serial Control0 (PSCO0) Register
(Table 427 p. 568). The receiver can also accept Jumbo frames, where the IEEE 802.3 Type/Length
field is set to 0x8870 (with or without IEEE 802.1Q VLAN tag).

|§ | | In this datasheet, the MAC Destination address bit[47] is the Multicast/Unicast bit. The
first DA byte received on the GMII RXD[7:0] pins is DA[40:47]. The last byte GMI|
Note received on the RXD[7:0] pins is DA[0:7]).

8.4.1 Parsing the Frames
8.4.1.1 Filtering

The frame goes through the following stages that determine if it is accepted:

1. Ifthe frame is in the Bridge Protocol Data Unit (BPDU) format (DA is equal to
01-80-C2-00-00-00 through
01-80-C2-00-00-FF, except for the Flow-Control Pause packets), frame is accepted/rejected
according to the field in the Port Configuration Extend (PxCX) Register (Table 417
p. 562).

2. If the frame is Unicast then the MAC DA bits[47:4] are compared with MAC[47:4] (see the MAC
Address Low (MACAL) Register (Table 420 p. 563) and MAC Address High (MACAH) Register
(Table 421 p. 563)).

— If they do not match, the frame is accepted/rejected according to <UPM> field in the Port
Configuration (PxC) Register (Table 416 p. 561) (Unicast Promiscuous Mode).

— If they match, then the MAC DAJ[3:0] bits are used as a pointer to the Unicast Table entries in
the DA-Filter table. Frame is accepted/rejected according to the appropriate <Pass> bit in
the Destination Address Filter Special Multicast Table (DFSMT) Register (n=0-63)

(Table 447 p. 586).

3. If DA=0OxFFFFFFFF and the protocol is 0x806 (an ARP broadcast) in Ethernet-v2 (tagged or
not), frame is accepted/rejected according to the <RBArp> field in the Port Configuration (PxC)
Register (Table 416 p. 561).

4. If DA=0xFFFFFFFF and the protocol is 0x800 (an IP broadcast), in Ethernet-v2 or LLC/SNAP
(tagged or not), the frame is accepted/rejected according to the <RBIP> in the same register.

5. If DA=OxFFFFFFFF and it is not an ARP nor an IP packet (another type of broadcast), the
frame is accepted/rejected according to the <RB> in the same register.

6. If DA=0x01-00-5E-00-00-XX (an IP multicast; XX is between 0x00 and OxFF) the MAC DA[7:0]
bits are used as a pointer to the Special Multicast Table entries in the DA-Filter table. Frame is
accepted/rejected according to the <Pass> hit.

7. If DA bit[0] is 1 and it is not a broadcast nor an IP multicast (the frame is a Multicast of another
type), a 8-bit polynomial CRC is calculated (x*"8+x"2+x"1+1) and the result is used as an index
to the Multicast Broadcast Table entries in the DA-Filter table. Frame is accepted/rejected
according to the <Pass> bit.

8.4.1.2 Enqueuing

If the frame is accepted, the receive queue is determined according to the following flow:

1. Ifitis a BPDU packet, the Rx queue is determined by <BPDUQ> field in the Port Configuration
(PxC) Register (Table 416 p. 562) (by default, it is the highest priority queue - 7).

2. Ifitis an ARP broadcast packet, the Rx queue is determined by the <RXQArp> field in the same
register.

3. Ifitis a Unicast packet that failed Unicast address compare (but the packet is still accepted
because of Promiscuous Mode), the Rx queue is determined by the <RXQ> field in the same
register (that is the default receive queue).

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 135

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

If none of the above three conditions is met, Rx queue selection proceeds as follows:
1. |Ifitis a TCP packet, the Rx queue is determined according to <TCPQ>.
2. Ifitis a UDP packet, the Rx queue is determined according to <UDPQ>.

If it is not either a TCP or a UDP packet, the Rx queue selection proceeds as follows:
1. Calculate the Rx queue as follows:

If it is a Unicast packet that passed address compare, MAC DA[3:0] bits are used as a pointer

to the Unicast Table entries in the DA-Filter table. The table’'s <Queue> bits determines Rx
queue number.

If it is an IP Multicast packet, MAC DA[7:0] bits are used as a pointer to the Special Multicast

Table entries in the DA-Filter table. The table’'s <Queue> bits determine the Rx queue

number.
If it is another type of Multicast packet, an 8-bit CRC value is used as an index to the

Multicast Broadcast Table entries in the DA-Filter table. The table’s <Queue> bits
determine the Rx queue number.

If it is a Broadcast packet (IP or other), the Rx queue is determined by <RXQ> field in the

Port Configuration (PxC) Register (Table 416 p. 561).

2. Ifitis a VLAN tagged packet, the Rx queue is determined by VLAN Priority Tag to Priority
(VPT2P) Register (Table 428 p. 569).

3. Ifitis an IPv4 packet, the Rx queue is determined by IP Differentiated Services CodePoint 0 to
Priority (DSCPO) Register (Table 423 p. 565).

4. Since a packet can match any of the above three conditions (Steps 1, 2, and 3 of this list)(e.g. a
Unicast VLAN tagged IPv4 packet), the Rx queue number is determined as the highest queue
from the one determined by the above three conditions.

gy

Note

To not use VLAN or DSCP mapping, program those registers as all zero values,
which are their default values.

If the packet has an unknown L3 type (e.g. IPv6), it is still accepted and queued
based on L2 MAC address (and VLAN priority if it is also VLAN tagged).

Before enabling the port, the DA-Filter tables must be programmed in full, as their
initial values is undefined.

The receive queue can be configured to be according to Marvell Header or DSA
tag. In tat configuration, the receive queue defined by the Marvell Header/DSA tag
overides the above enqueuing decision.

8.5 Marvell® Header Support

When interfacing a Marvell SOHO switch, Marvell recommends to enable the Marvell Header mode
in the switch and the GbE port. The Marvell Header consists of two octets placed ahead of the DA.
The Marvell Header contains information used by the software to determine from which of the switch
ports the packet arrived and to maintain QoS.

To enable Marvell Header mode, set the <MHEnN> field in the Marvell Header Register (Table 432

p.575) 0 1.

g

Note

Doc. No. MV-S104860-U0 Rev. C
Page 136

See the Marvell SOHO switches specification for additional information about the
Marvell Header mode.

When the Marvell header is enabled, the GbE port does not add two bytes when an
IP header alignment is received. The packet received from the switch is padded
with the Marvell Header two octets.

Copyright © 2008 Marvell
Document Classification: Proprietary Information December 2, 2008, Preliminary

Gigabit Ethernet Controller
Marvell® Header Support

8.5.1 Receive Operation

When the Marvell Header mode enabled in the switch, it pads each packet with two octets just
before the DA as shown in Figure 26.

Figure 26: Rx Packet Marvell Header Example

b7 bo
7 Octets Preamble ‘ DBNum([3:0] ‘ PRI[2:0] ‘ ‘ 1st Octet
1 Octet SFD T MGMT
2 Octets Marvell Header
—— Octets Within
6 Octets Destination Address Erame \[RES=0 ‘ SPID [3:0] ‘ 2nd Octet
Transmitted
6 Octets Source Address Top to
2 Octets Length/Type Bottom by DBNum is the
- the Switch DBNum of the
MAC Client Data Source Port of the
Pad frame (can be used
to indicate WAN vs.
4 Octets FCS LAN).

Table 43 details Marvell header fields.

Table 43: Marvell Header Fields

Name Description

DBNum[3:0] Database Number
Represents the address database assigned to this frame, when it ingresses into the switch (assigned
by the switch source port). Used to indicate the VLAN number of the source port.

PRI[2:0] Frame priority

The priority assignment details are in the switch specification.
RES Reserved for future use
SPID[3:0] Source Port ID

Indicates the physical port on the frame that the switch entered.

MGMT Management
For details on the MGMT bit assignment, see the switch specification.

E | | m The Marvell Header is transferred along with the rest of the packet to memory. Its
fields are not updated in the Rx descriptor status.

Note m Packet CRC generation/checking includes the two Marvell Header octets.

The GbE port also supports Rx queuing based on Marvell Header fields. This is an alternative to the
regular queuing described in Section 8.4.1, Parsing the Frames, on page 135.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 137

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

The <DAPrefix> field in the Marvell Header Register (Table 432 p. 576) selects the queuing policy:
m 0x0: The regular priority queuing is working.

m 0x1: The Rx queue is determined according to PRI[2:0] bits.

m 0x2: The Rx queue is determined according to DBNum[0] and PRI[2:1].

m 0x3: The Rx queue is determined according to SPID[3:0] and PRI[2:1].

For example, if the application requires two priority queues (Low and High) for Switch Port2, and two

priority queues (Low and High) for the rest of the switch ports, set the following fields in the Marvell
Header Register (Table 432 p. 575):

* <DA_PREFIX>to 0x3
e <SPID> to 0x2
* <MH_Mask> to 0x1 (indicating to use queues 0-3)

With this configuration, packets received from Switch Port2 are placed in queues 2 (L) and 3 (H),
and packets received from the other switch ports are placed in queues 0 (L) and 1 (H).

as described in Section 8.4.1, Parsing the Frames, on page 135 with one

EI m Packets accept/reject is handled the same way as in none Marvell Header mode
exception. If the packet is marked as MGMT, it is always accepted.

Note m Receive MIB counters do not take the Marvell Header into account. For example, if
receiving a packet that has a 128 byte size (including the Marvell Header), frames
128-255 Octets counter are incremented, instead of frames 64—127 Octets
counter.
8.5.2 Transmit Operation

With the Marvell header enabled, the software must add two octets of the Marvell header to the top
of the packet, as shown in Figure 27.

Figure 27: Tx Packet with Marvell Header Example

b7 bo
7 Octets Preamble ‘ DBNum[3:0] ‘ 1st Octet
1 Octet SFD T Reserved = 0
2 Octets Marvell Header
— Octets Within
6 Octets Destination Address Frame ‘ ‘ VLANTable[6:0] ‘ 2nd Octet
Transmitted
6 Octets Source Address Top to T Reserved = 0
2 Octets Length/Type Bottom into
the Switch Ingress Header gets
MAC Client Data written to port's
VLAN Map Register
Pad (offset 0x06) at the
4 Octets FCS start of the frame
unless both bytes =
0x00

The Marvell Header gives the software the ability to control which VLAN and address database to
use for the frame.

| ;I | See the specific SOHO switch specification for details on the Marvell Header format

and usage.
Note

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 138 Document Classification: Proprietary Information December 2, 2008, Preliminary

Gigabit Ethernet Controller
Distributed Switching Architecture (DSA) Tag Support

The GbE port generates CRC for the entire packet, including the Marvell Header. When the switch
receives the packet, it strips the Marvell Header, and recalculates the new CRC before forwarding
the frame to the network.

8.6 Distributed Switching Architecture (DSA) Tag
Support

Most Marvell GbE switches support the Distributed Switching Architecture (DSA) feature. This is
useful for cascading and stacking switch devices. Even when using a single GbE switch device, the
DSA tag is useful for the software to determine from which of the switch ports the packet arrived and
to maintain QoS. This is similar to using the Marvell Header mode, but DSA provides additional
information on the received packet.

When interfacing one of Marvell GbE switches, Marvell recommends to enable the Marvell DSA Tag
mode, both in the switch and the GbE port.

To enable Marvell the DSA feature, set the <DSAEn> field in the Marvell Header Register (Table 432
p.577)to 1 or 2.

EI m See the Marvell GbE switch specification for additional information on DSA tag.
u

The GbE port supports both extended (8 bytes) and non-extended (4 bytes) DSA
tag formats.

Not
ote If using the DSA tag, disable the Marvell Header mode by setting the <MHEn> field
in the Marvell Header Register (Table 432 p. 575) to 0. The DSA feature cannot be
used simultaneously with the Marvell Header.
8.6.1 Receive Operation

When the DSA tag is enabled in the switch, each packet is padded with four or eight octets after the
SA, see Figure 28.

Figure 28: Rx Packet with DSA Tag Example (4 bytes tag, TO_CPU Format)

b31 b24
7 Octets Preamble 0 0 ‘ T ‘ Src_Dev ‘ 1st Octet
1 Octet SFD Src_Tagged
6 Octets Destination Address b23 bis
6 Octets Source Address IC:JrCtar?:; Within ‘ Src_Port ‘ Code[3:1] ‘ 2nd Octet
4 Octets DSA Tag Transmitted
2 Octets Length/Type Topto b1s b
: Bottom 8 3rd Octet
MAC Client Data ‘ PRI[2:0] ‘ ‘ VID [11:8] ‘
4 Octets Pad Code[0]
4 Octets FCS b7 b
0. 4th Octet
VID [7:0] ‘

The GbE port can receive one of the two DSA tag formats: TO_CPU format or FORWARD format.
Table 44 and Table 45 summarize the DSA tag fields (for full details, see the GbE switch
specification).

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 139

®
I% 88F6180/88F619x/88F6281

M ARVELL®

Table 44:

Bits

WordO0

31:30

29

28:24

23:19

18:16

15:13

12

11:0

Word1l

31

30

29:27

26

25:12

11

10

7.0

Functional Specifications

DSA Tag Fields (TO_CPU Format)

Name

TagCommand

SrcTagged/
TrgTagged

SrcDev/
TrgDev

SrcPort[4:0]/
TrgPort[4:0]

CPU_Code[3:1]

UP

CPU_Code[0]

VID

Extend

CFlI

Reserved

Truncated

PktOrigBC
Reserved

SrcPort[5]/
TrgPort[5]

Reserved

SrcTrg

LongCPUCode

Doc. No. MV-S104860-U0 Rev. C

Page 140

Description

00=TO_CPU

0 = Packet was received/transmitted from/to a network port untagged.
1 = Packet was received/transmitted from/to a network port tagged.

Source/Destination device number on which the packet was received/transmitted.

Source/Destination port number on which the packet was received/transmitted.

CPU_Code[3:1] when using none extended mode. CPU_Code[3:0] must be set to OxF to
indicate an Extended DSA tag.

The IEEE 802.1p User Priority field assigned to the packet.

CPU_Code[0] when using none extended mode. CPU_Code[3:0] must be set to OxF to
indicate an Extended DSA tag.

The packet’s incoming/outgoing VID

Word1 is the last extension. Must be set to 0.

When SrcTagged = 1, this is the VLAN Tag CFI bit with which the packet was received from
the network port.

Packet sent to CPU is truncated.Indicates that only the first 128 bytes of the packet are sent
to the CPU. The packet'’s original byte count is forwarded to the CPU in <PktOrigBC> field.

The packet's original byte count.

Bit 5 (MSB) of the SrcPort[5:0]/TrgPort[5:0] field.

SrcTrg indicates the type of data forwarded to the CPU.

0 = The packet was forwarded to the CPU by the Ingress pipe and this tag contains the
packet’s source information.

1 = The packet was forwarded to the CPU by the Egress pipe and this tag contains the
packet’s destination information.

8 hit of CPU code

Copyright © 2008 Marvell

Document Classification: Proprietary Information December 2, 2008, Preliminary

Gigabit Ethernet Controller
Distributed Switching Architecture (DSA) Tag Support

Table 45: DSA Tag Fields (FORWARD Format)

Bits Name
WordO

31:30 TagCommand

29 SrcTagged

28:24 SrcDev

23:19 SrcPort[4:0]/

SrcTrunk[4:0]
18 SrclsTrunk
17 Reserved
16 CFlI
15:13 upP
12 Extend
11:0 VID
Word1
31 Extend
30 SrcTrunk[6]
29 SrcPort[5]/
SrcTrunk[5]
28 EgresskFilter
Registered

27:26 Reserved
25 Routed
24:20 SrclD
19:13 QoSProfile

12 use_vidx
1 VIDX[11]
10:5 VIDX[10:5]/

TrgPort

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Description

11 = FORWARD

0 = Packet was received from a network port untagged.
1 = Packet was received from a network port tagged.

Source device number on which the packet was received.

If SrclsTrunk = 0, indicates source port number on which the packet was received.
If SrclsTrunk = 1, indicates source trunk number on which the packet was received.

If the packet was received from a network port that is part of a trunk, this bit is set to 1

When SrcTagged = 1, this is the VLAN Tag CFI bit with which the packet was received from
the network port

The IEEE 802.1p User Priority field assigned to the packet.
1 = There is one more DSA tag word.

The packet’s incoming/outgoing VID

Wordl is the last extension. Must be set to 0.

When SrclsTrunk = 1, this is the VLAN Tag CFI bit with which the packet was received from
the network port (if SrclsTrunk = 0, this bit is reserved)

If SrclsTrunk = 0, indicates source port number on which the packet was received.
If SrclsTrunk = 1, indicates source trunk number on which the packet was received.

If set to 1, indicates that the packet is Egress filtered as a Registered packet (when this field
is 0, the type of the packet—Multicast or Unicast—is set according to the packet's MAC
DA[40]).

If set to 1, indicates that the Packet has been Layer 3 routed.
Packet's Source ID.
Packet's QoS profile.

0 = Unicast packet forwarded to the Target port specified in this tag.
1 = Multicast packet forwarded to the Multicast group specified in this tag.

When use_vidx = 1, indicates the Multicast group to which the packet is transmitted (if
use_vidx = 0, reserved)

When use_vidx = 1, indicates the Multicast group to which the packet is transmitted.
When use_vidx = 0, specifies the target port to which the packet is forwarded.

Doc. No. MV-S104860-U0 Rev. C
Document Classification: Proprietary Information Page 141

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Table 45: DSA Tag Fields (FORWARD Format) (Continued)

Bits Name Description
4.0 VIDX[4:0]/ When use_vidx = 1, indicates the Multicast group to which the packet is transmitted.
TrgDev When use_fivx = 0, specifies the target device to which the packet is forwarded.

fields are updated in the Rx descriptor status.

Packet CRC generation/checking includes the four/eight octets of the Marvell
Header.

EI m The DSA tag is transferred along with the rest of the packet to memory. None of its

Note

The GbE port also supports Rx queuing based on DSA tag fields. This is an alternative to the regular
queuing, as described in Section 8.4.1, Parsing the Frames, on page 135.
The <DAPrefix> field in the Marvell Header Register (Table 432 p. 576) selects the queuing policy:
m [f set to OxO, the regular priority queuing is working.
m If setto Ox1, Rx queue is determined according to UP field.
m If set to 0x2, needs to distinguish between two cases:

— Ifitis a FORWARD format, the Rx queue is determined according to UP field (as if

<DA_PREFIX>is set to 1).

— Ifitis a TO_CPU format, the Rx queue is determined according to the 4-bit/8-bit CPU_Code
field. When using <DAPrefix> is set to 2, the Destination Address Filter Special Multicast
Table (DFSMT) is no longer used for address filtering. Instead, it is used for mapping from
CPU_Code to Rx queue.

m [f set to 0x3, the Rx queue is determined according to SrcPort, SrcDev, and UP[2:1].
For example, if the application requires four priority queues (Low and High) for Switch Device

Number3 Port2, and four priority queues (Low and High) for the rest of the switches ports, set the
following fields in the Marvell Header Register (Table 432 p. 575):

m <DAPrefix> to 0x3

m <SPID> field to 0x2

m <SDID> field to Ox3

m <MHMask> to 0x0 (indicating to use all 8 queues)

This way, packets received from Switch Number 3 Port2 are placed in queues 4-7, and packets
received from the other ports are placed in queues 0-3.

Header mode, see Section 8.4.1, Parsing the Frames, on page 135.
When <DAPrefix> is set to 0x3, and the <SDIDEn> bit is set to 0, the <SrcDev>
field are not taken into account in the queuing decision. Only the SrcPort is used,
as in the Marvell Header mode.

m When <DAPrefix> is set to 0x3, and there is no SrcPort (FORWARD format, with
SrclsTrunk bit set), the Rx queue is determined according to UP[2:0] field only.

m If the received packet is not set to TO_CPU or FORWARD format, the packet is
qgueued as if <DAPrefix> is set to 0x0 (regular queuing).

EI m Packet accept/reject is handled in the same way as described for the Marvell

Note

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 142 Document Classification: Proprietary Information December 2, 2008, Preliminary

Gigabit Ethernet Controller
Ethernet Interrupts

8.6.2 Transmit Operation

With the DSA tag is enabled, the software must add four/eight octets of DSA tag after DA, as shown
in Figure 29.

Figure 29: Tx Packet with a DSA Tag Example (FROM_CPU format, use_vidx = 0)

b3t b24
7 Octets Preamble 0 1 ‘ T ‘ Trg_Dev ‘ 1st Octet
1 Octet SFD Trg_Tagged
6 Octets Destination Address b23 bie
6 Octets Source Address Srctaﬁ Within ‘ Trg_Port ‘ ‘ Prio ‘ 2nd Octet
4 Octets DSA Tag Transmitted L Usevix=0
2 Octets Length/Type ;ﬁ;; bis 2
MAC Client Data \ PRI[20] \ \ VID[1L:§] \ 3rd Octet
4 Octets Pad
40ctets FCS b7 b
VID [7:0] \ 4th Octet

| ;I | See the specific GbE switch specification for exact details on the DSA tag format and

usage.
Note g

The GbE port generates CRC for the entire packet, including the DSA tag. When the switch receives
the packet, it strips the DSA tag, and recalculates the new CRC before forwarding the frame to the
network.

8.7 Ethernet Interrupts

The GbE port supports many interrupt events, registered and controlled in the following registers:

m Ethernet Unit Interrupt Cause (EUIC) Register (Table 405 p. 556) and Ethernet Unit Interrupt
Mask (EUIM) Register (Table 406 p. 557)

m Port Interrupt Cause (IC) Register (Table 433 p. 577) and Port Interrupt Mask (PIM) Register
(Table 435 p. 582)

m Port Interrupt Cause Extend (ICE) Register (Table 434 p. 580) and the Port Extend Interrupt
Mask (PEIM) Register (Table 436 p. 582)

Each GbE port provides four interrupt bits to the device interrupt controller. These bits are:

m Summary bit: IC bit[31]

m Rxevents: Covers bits IC [18:2]; ICE bit [18]

m Txevents: Covers bits IC [26:19]; ICE bits [15:0], and [19]

m Misc: Covers bits ICE [16], [27], and [23]

Separation of receive and transmit interrupt enables faster service for packet receive and transmit. If
this separation is not required, the software driver can choose to use the summary bit instead.

In addition to the per port interrupt bits, the summary of all ports EUIC registers is reported as a
single bit (OR of all ports) in the device Interrupt Controller.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 143

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

8.7.1

8.8

Interrupt Coalescing

Since the GbE line rate provides a high packet rate, it is important to reduce the amount of interrupts
that the Ethernet DMA may generate.

For this purpose, the DMA receive and transmit have several modes that provide the option of
choosing the type of events that initiate issuing interrupts. (See also Port Interrupt Cause Extend
(ICE) Register (Table 434 p. 580), Ethernet Unit Interrupt Cause (EUIC) Register

(Table 405 p. 556).)

The most intensive interrupts are the packet-level interrupts on receive and transmit. In addition to
the CPU’s ability to specify, in the receive and transmit descriptor, the descriptor close that may
cause an interrupt, the device provides a programmable mechanism that allows coalescing these
types of interrupts.

On a per port basis, and for Rx and Tx transactions, the device has a programmable timer in the
<IPGIntRx> field in the SDMA Configuration (SDC) Register (Table 422 p. 564) for receive and
IPG_Int_Tx (transmit) to force a minimum time between interrupts associated with the <RxBuffer>
field in the Port Interrupt Cause (IC) Register (Table 433 p. 577) and the <IPGIntTx> field in the Port
Tx FIFO Urgent Threshold (PXTFUT) Register (Table 437 p. 583). This minimum time is
programmable and may be changed dynamically during normal operation.

The flow for packet-level interrupts on receive and transmit is as follows:

| ;I | The following example describes the receive flow, however, the transmit flow is

implemented in an identical fashion.
Note

1. A non-masked <RxBufferQueue> interrupt cause is asserted. As a result, an interrupt is raised
(propagated in the interrupt hierarchy etc.) and the relevant interrupt coalescing counter begins
to count. From this point (after CPU read from the interrupt register) until the count-down
finishes, no new interrupts can be raised due to new packet reception (transmission) from any
of the eight queues.

2. During the countdown time, and before the next CPU read of the PICR register (or PICER for
Tx), the <RxBufferQueue> events would still cause loading 1 to the appropriate cause bit, but
would not cause raising an interrupt at the unit, port, or port-Rx (Tx) level. Before reading the
register, it is assumed that the CPU does not reset the <RxBufferQueue> cause bits.

3. Once the CPU reads the PICR (or PICER for Tx), the value of all <RxBufferQueue> interrupts
that are recorded later on, accumulate in a shadow register, actually two separate
registers—one for PICR <RxBufferQueue> and one for PICER TxBuffer additional events, both
of which are invisible to the software.

4. When the countdown timer expires, the <RxBufferQueue> in the shadow register is loaded into
the PICR (or PICER for Tx). This may cause raising an interrupt again.

This mechanism prevents loss of interrupt indications in the time frame between the time that the
CPU reads the interrupt register and the time that it starts switching off interrupt bits. During this
interval, new interrupts that arrive for the same receive or transmit queue would have been lost and
buffers might have gotten stuck indefinitely. The shadow registers, just described, prevents this from
happening.

Transmit Weighted Round-Robin Arbitration

The device transmit port includes flexible bandwidth control distribution among eight transmit
gueues. For a transmit queue to be selected to transmit the next frame, the queue must be enabled

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 144

Document Classification: Proprietary Information December 2, 2008, Preliminary

8.8.1

8.8.2

8.8.3

Gigabit Ethernet Controller
Transmit Weighted Round-Robin Arbitration

by setting the corresponding bit to 1 in the <ENQ> field in the Transmit Queue Command (TQC)
Register (Table 450 p. 590), and the queue should have a frame ready for transmit.

Priority Modes

Each transmit queue can be configured in two modes:
m Fixed priority mode
m Weighted-Round-Robin (WRR) priority mode

The priority mode is configured by the <FIXPR> field in the Transmit Queue Fixed Priority
Configuration (TQFPC) Register (Table 451 p. 591). Setting these bits to 1 means the transmit
queue is set to the Fixed priority mode. Setting these bits to 0 means the queue is configured to a
WRR priority mode. Transmit Queue Fixed Priority Configuration register bit[7] is assigned to
Transmit Queue 7 and bit[0] is assigned to Transmit Queue 0.

The transmit port arbitrates between the queues in two modes in the following fashion: While there is
an enabled non-empty Fixed priority queue, select to transmit the next frame from the Fixed priority
queue or else select to transmit from the WRR priority queue(s).

Fixed Priority Mode

Select the Fixed Priority mode to transmit by selecting the non-empty, enabled and non-bandwidth
limited queue with the highest queue number first (for example, select queue 7, then 6, etc.). A
queue can be excluded from the arbitration, if it passed an optional per-queue programmable
bandwidth-limitation based on the token-bucket mechanism (see Section 8.9, Token Rate
Configuration, on page 146).

Weighted Round-Robin Priority Mode

The port would service one of the Weighted Round Robin (WRR) queues only when the fixed priority
gueues have nothing to transmit.

The WRR priority mode is utilized to distribute bandwidth among transmit queues in a round-robin
fashion when each WRR queue gets bandwidth portion relative to its configured weight. This is
called below “WRR arbitration”.

A WRR queue may be excluded from the WRR arbitration, if it passed an optional per-queue
programmable bandwidth-limitation based on token-bucket mechanism (see Section 8.8.4, Transmit
Queue Bandwidth Limitation, on page 146). Therefore, only the queues that are below the
per-queue bandwidth limitation would be considered in any WRR arbitration.

Configure the queue weight (0-255) by writing to the corresponding Transmit Queue Arbiter
Configuration (TQXAC) Register (n=0-7) (Table 458 p. 594) (one of eight) and setting the
<WRRWGT> field to the desired weight value (measure transmit ports in 256 byte units).

As used here, the “WRR bandwidth” is the available transmit bandwidth (that is not consumed by
fixed-priority ports traffic).

The WRR arbitration end result is calculated by dividing the WRR bandwidth between the
WRR-queues according to each queue’s WRRWGT/ (Sum of all WRRGTs of the WRR-queues that
are not bandwidth limited by the token bucket mechanism).

When several KWRRWGT> combinations yield the same bandwidth distribution, the user must use
a combination with the smallest KWRRWGT> value closest to the Maximum Transmit Unit (see
Section 8.8.6, Maximum Transmit Unit, on page 146).

The WRR bandwidth distribution is determined by counting the transmitted bytes from each WRR
gueue and limiting the schedule of queues that used up their bandwidth portion (WRRWGT) until all
other queues finish transmission.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 145

®

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

8.8.4

8.8.5

8.8.6

8.9

Transmit Queue Bandwidth Limitation

To implement a bandwidth limitation on transmit queues, specify the maximum available bandwidth
for each queue in approximate ranges (2 Mbs—1 Gbs) in 1024 step resolution.

The bandwidth limitation is implemented by the Token Bucket per queue. The tokens are added to
the ‘Bucket’ in a constant configurable rate and drained from the Bucket when the queue transmits.
A queue is only allowed to transmit when the number of ‘Tokens’ is larger then Maximum Transmit
Unit (MTU). It is possible to configure the queue Token-Bucket size that gives control over the
amount of credit (silent time) that the queue is allowed to accumulate.

The queue ‘Token-Rate’ is programmed by setting the corresponding queues <QTKNRT> field in the
Transmit Queue Token Bucket Configuration (TQxTBC) Register (n=0-7) (Table 457 p. 593). This
field is filled to the desired value in 1/64 bit per clock cycle units.

To disable a bandwidth limitation, set the <QTKNRT> field to its maximum value.

The queue Bucket size is programmed by writing to the corresponding queue’s <QMTBS> field in
the Transmit Queue Token Bucket Configuration (TQXTBC) Register (n=0-7) (Table 457 p. 594) in a
value of 256-byte units. The tokens accumulate in the bucket until the amount equals the <QMTBS>
setting.

The user may examine or modify the current value of a queues token bucket by read/write to the
corresponding queue’s <QTKNBKT> field in the Queue Transmit Token-Bucket Counter (QxTTBC)
Register (n=0-7) (Table 456 p. 593) with a value in 1/64-byte units.

Transmit Port Bandwidth Limitation

The transmit port implements a bandwidth limitation on all outgoing traffic. This applies to Fixed
priority and WRR priority queues.

Itis possible to specify the maximum available port bandwidth in approximate ranges (2 Mbs—1 Gbs)
in 1024 step resolution. The bandwidth limitation is implemented by a port Token-Bucket. The tokens
are added to the Bucket in a constant configurable rate and drained from the Bucket when the port
transmits. The port is allowed to transmit only when the number of Tokens is bigger than the MTU. It
is also possible to configure the port Token-Bucket size for the amount of credit (silent time) the
queue is allowed to accumulate.

The port ‘Token-Rate’ is programmed by setting the <PTKNRT> field in the Port Transmit
Token-Bucket Rate Configuration (PTTBRC) Register (Table 452 p. 591) to the desired value in
1/64-bit per clock cycle units. To disable bandwidth limitation, set <PTKNRT> to its maximum value.

The port ‘Bucket’ size is set by writing to the <PMTBS> field in the Port Maximum Token Bucket Size
(PMTBS) Register (Table 455 p. 592) in a value of 256-byte units. The tokens accumulate in the port
bucket until the setting for <PMTBS> is met.

The user may examine or modify the current value of port Token-Bucket by reading/writing to the
<PTKNBKT> field in the Port Transmit Token-Bucket Counter (PTTBC) Register (Table 459 p. 595)
with a value in 1/64-byte units.

Maximum Transmit Unit

The MTU is a configurable value common to all transmit ports and all WRR queues. It is used for
bandwidth limitation implementation.

The MTU is programmed by setting the <PMTU> field in the Port Maximum Transmit Unit (PMTU)
Register (Table 454 p. 592) in 256-byte units.

Token Rate Configuration

The relation of the desired bandwidth (BW) limitation and Token Rate programmed value is:
TokenRate[1/64 bit/cycle] = BW[Mb/sec]*64/TCLK[MHz].

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 146

Document Classification: Proprietary Information December 2, 2008, Preliminary

Gigabit Ethernet Controller
Transmit Queues Egress Jitter Pacing (EJP) Arbitration

Table 46 shows some examples of the Token Rate bandwidth configuration values.

Table 46: Token Rate Configuration Examples

Bandwidth [Mbps] TCLK [MHZz] Token Rate [1/64 bit/cycle]
2.604 167 1
1000 167 384

As shown in Table 46, 10 bits for the Token Rate span 1 Gbps—2.604 Mbps (when
TCKLK = 167 MHz).

8.10 Transmit Queues Egress Jitter Pacing (EJP)
Arbitration

The EJP (Egress Jitter Pacing) mechanism is an enhanced arbitration mechanism, enabling low
jitter. It complies with IEEE 802.1Qav pre-draft and enables implementing AVB technology.

EJP mechanism is an arbitration mechanism for four queues.

8.10.1 EJP Mechanism

When EJP mode is enabled, only enable queues 0-3, disable queues 4-7.

The EJP mechanism combines the token bucket mechanism with an advanced algorithm, for
optimized jitter performance.

| ;] | Utilize this mode of operation only for non-half duplex and non-10-Mbps operation

Not where flow control is not expected to enabled.
ote

The EJP algorithm is based on a combination of:

m Sending packets from specific queue, when its bucket is full enough (“full enough” means that
the number of tokens accumulated in the bucket is equal to or more than the Queue Maximum
Transmit Unit).

m Forcing a configurable minimum of inter-packet gap (IPG) between packets from the same
queue.

m According to the leaky bucket parameters, the transmission timing of packets from queue 3
(highest priority) must not be delayed, because a packet from lower priority queue is in
transmission.

Therefore, if there is a possibility that a transmission from a lower priority queue (0,1,0r 2) may
delay a transmission from queue 3, then transmit queue 3 first, even if its bucket is not full
enough.

m According to the leaky bucket parameters, the transmission timing of packets from queue 2
(second highest priority) must not be delayed, because a packet from lower priority queue is in
transmission.

Therefore, if there is a possibility that a transmission from a lower priority queue (0 or 1) may
delay a transmission from queue 2, then transmit queue 2 before transmitting queue 0 or 1,
even if its bucket is not full enough.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 147

—
=
—

M ARVELL®

88F6180/88F619x/88F6281
Functional Specifications

8.10.2 Initialization Sequence

To initialize the EJP follow these steps:

1.

10.

Disable TX queues 0-7 (write the value OXOF to the <ENQ> field in the Transmit Queue
Command (TQC) Register (Table 450 p. 590).

Configure the following fields in the Transmit Queue Commandl (TQC1) Register

(Table 453 p. 591):

* Set the <EJP_ENB> field.

* Clear Reserved bit[3].

* Set the <WRR_EJP_INIT> field.

* Configure the <PTP_SYNC_ENB>.

Configure the <FIXPR> field in the Transmit Queue Fixed Priority Configuration (TQFPC)
Register (Table 451 p. 591).

Clear the <PTKNBKT> field in the Port Transmit Token-Bucket Counter (PTTBC) Register
(Table 459 p. 595).

Configure the port token bucket parameters:

* Configure the <PTKNRT> field in the Port Transmit Token-Bucket Rate Configuration
(PTTBRC) Register (Table 452 p. 591), for Port Token Rate.

* Configure the <PMTU> field in the Port Maximum Transmit Unit (PMTU) Register (Table 454
p. 592). This defines the minimum tokens to be filled in the port bucket, before sending the
next packet from one of the queues of the port.

* Configure the <PMTBS> field in the Port Maximum Token Bucket Size (PMTBS) Register
(Table 455 p. 592). This field defines the maximum accumulated transmit credit, in 256-byte
units, used for the port Token-Bucket bandwidth limitation mechanism. The <PTKNBKT> field
in the Port Transmit Token-Bucket Counter (PTTBC) Register (Table 459 p. 595) is
incremented up to PMTBS*256[byte]*64[credits/byte].

For each of queues 0-3, configure the following parameters:

* Clear the <QTKNBKT> field in the Queue Transmit Token-Bucket Counter (QxTTBC)
Register (n=0-7) (Table 456 p. 593).

* Configure the <QTKNRT> field and the <QMTBS> field in the Transmit Queue Token Bucket
Configuration (TQxTBC) Register (n=0-7) (Table 457 p. 594).

* Configure the <QMTU> field, the <WRR_BCJ[17:0]> field, and the <WRRWGT> field in the
Transmit Queue Arbiter Configuration (TQxAC) Register (n=0-7) (Table 458 p. 594).

* Configure the <IPG> field in the Transmission Queue IPG (TQxIPG) Register (n=2-3)
(Table 460 p. 595). This field defines the minimum inter-packet gap, to be used by the EJP
mechanism.

Configure the <TS> field in the Transmission Speed (TS) Register (Table 464 p. 596).

Configure the <HITKNinLoPkt> field in the High Token in Low Packet (HITKNinLOPKT)
Register (Table 461 p. 595). This field defines the number of tokens that are accumulated in the
IsoHi (queue 3) token bucket, during transmission of the longest IsoLo (queue 2) packet.
Configure the <HITKNinAsyncPkt> field in the High Token in Asynchronous Packet
(HITKNinASYNCPKT) Register (Table 462 p. 595). This field defines the number of tokens that
are accumulated in the IsoHi (queue 3) token bucket, during transmission of the longest
asynchronous (queues 1 and 0) packet.

Configure the <LoTKNinAsyncPkt> field in the Low Token in Asynchronous Packet
(LOTKNINASYNCPKT) Register (Table 463 p. 596). This field defines the number of tokens that
are accumulated in the IsoLo (queue 2) token bucket, during transmission of the longest
asynchronous (queue 1 and 0) packet.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 148

Document Classification: Proprietary Information December 2, 2008, Preliminary

Gigabit Ethernet Controller
Transmit Queues Egress Jitter Pacing (EJP) Arbitration

11. To enable the EJP operation, clear the <WRR_EJP_INIT> field in the Transmit Queue
Commandl (TQC1) Register (Table 453 p. 591).

12. Enable all TX queues.

8.10.3 EJP Algorithm

The following pseudo-code describes the egress jitter pacing algorithm.

|:: | | In the following pseudo code, the addition of #n at the end of a register field, means the
algorithm use this field from queue number n (e.g., QTKNBKT#3 means the QTKNBKT
Note field of queue number 3).

function egress_jitter_pacer

begin

if {(QTKNBKT#3 >= QMTU#3) //enough tokens have accumulated in the
bucket of Q#3

and (Nr of sys clk cycle passed since last packet transmition from
Q#3 > TQXIPGH#3)}

send out Packet from Q#3
else

ifT {(QTKNBKT#2 >= QMTU#2) //enough tokens have accumulated in the
bucket of Q#2

and (Nr of sys clk cycle passed since last packet transmition from
Q#2 > TQxIPG#2)}

)}
if {(Q3 is not empty and (QTKNBKT#3 +HiTKNinLoPkt>= QMTU#3)

// Will next Q#3 packet expected transmition timing would be delayed by
sending the Q#2 packet?

send out Packet from Q#3

else

send out Packet from Q#2

else

if (QTKNBKT#1 >= QMTU#1) or QTKNBKT#0 >= QMTU#O

if {(Q3 is not empty and QTKNBKT#3 +HiTKNinAsyncPkt>= QMTU#3)

// Will next Q#3 packet expected transmition timing would be delayed by
sending the Q#0 or Q#lpacket??

send out Packet from Q#3
else if {(Q2 is not empty and ((QTKNBKT#2 +LOTKNinAsyncPkt>= QMTU#2)))

/7 Will next Q#2 packet expected transmition timing would be delayed by
sending the Q#0 or Q#lpacket?

send out Packet from Q#2

else
send out Async Packet(Q nr 1 or O - according to strict priority or
WRR)

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 149

®

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

8.11

end

Network Interface (10/100/1000 Mbps)

The device can be connected to a GbE network using a RGMII PHY, GMII PHY (88F619x/88F6281
only), or Mil PHY.

If Auto-Negotiation is enabled for GMII or Mll interface mode (by the <AN_Duplex> field and the
<AN_FC> field in the Port Serial Control0 (PSCO0) Register (Table 427 p. 567), the MDC/MDIO
Auto-Negotiation takes place using MDC/MDIO pins, as defined in IEEE 802.3 standard.

To support all speeds, the device includes several MAC blocks suited for 10, 100, and 1000 Mbps
with the following considerations:

m Support for half-duplex (for 10 and 100 Mbps only) and full duplex (in all speeds)

m Backpressure option in half duplex (for 10 and 100 Mbps only)

m Flow-control option in full-duplex

8.11.1 MIl Interface
The device MAC allows it to be connected to a 10-Mbps or 100-Mbps network. The device interfaces
with an IEEE 802.3 10/100 Mbps MIl compatible PHY device. The data path consists of a separate
nibble-wide stream for both transmit and receive activities.
These devices also support the Marvell® proprietary 200 Mbps Mil (MMII) interface.
Depending on the speed of the network, the device can automatically switch between 10- or
100-Mbps operation. Data transfers are clocked by the 25-MHz transmit and receive clocks in
100-Mbps operation, or by 2.5-MHz transmit and receive clocks in 10-Mbps operation. The clock
inputs are driven by the PHY. The PHY controls the clock rate based on its configuration, or on the
Auto-Negotiation function.
In MII mode, the GbE port receives both RXCLK and TXCLK from the external PHY, as shown in
Figure 30.
Figure 30: MIl Connection
RXCLK |«
RXD[3:0]
RXDV |
RXERR
CRS
CoL External
MIl PHY
GbE Port
TXCLK |t
TXDI[3:0] >
TXEN >
TXERR >
In MIl mode, the port operates at 10/100 Mbps (clock frequencies of 2.5/25 MHz respectively). In
MMII mode, the port operates at 200 Mbps (clock frequency of 50 MHz)
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 150 Document Classification: Proprietary Information December 2, 2008, Preliminary

Gigabit Ethernet Controller
Network Interface (10/100/1000 Mbps)

| §|| m Only four data bits (RXD[3:0], TXD[3:0]) are used.
The port TXCLK_OUT output is not used (left NC).

Note
8.11.2 GMII Interface (88F619x/88F6281)
The port Gigabit MAC supports the following:
= Connection to GMII PHY
= 1000 Mbps full duplex
m Standard IEEE 802.3 Flow Control in full duplex
The port MAC performs all of the functions of the IEEE 802.3 standard, such as frame formatting,
frame stripping, collision handling, deferral to link traffic. The port ensures that any outgoing packet
complies with the IEEE 802.3 specification in terms of preamble structure. The port transmits
56 preamble bits before the Start-of-Frame Delimiter.
The transmit and receive operations are done in full duplex and implement the standard.
When the port has a frame ready for transmission and the IPG counter has expired, the frame
transmission begins. The data is transmitted via pins GE_TXD[7:0] of the transmitting port and
clocked on the rising edge of GE_TXCLK_OUT. At the same time, signal the GE_TXEN is asserted.
Since there is no carrier-extension required, the GE_TXER signal is always driven LOW.
| ;I | The Carrier Sense (CRS) and Collision Detect (COL) input pins are ignored in this
mode.
Note
Frame reception starts with the PHY assertion of GE_RXDV or GE_RXER (while the port is not
transmitting). Once GE_RXDV or GE_RXER are asserted, the port begins sampling incoming data
on pins GE_RXD[7:0], on the rising edge of the GE_RXCLK.
The GE_RXDV signal is high during reception of packet-data.
Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 151

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

Figure 31: GMIl Connection

RXCLK
RXD[7:0]
RXDV
RXERR

CRS

COL
GbE Port

A

A

A

WY

External
GMII PHY

A

TXCLK
TXCLK_OUT >
TXD[7:0]
TXEN
TXERR >

y

/

When the port is running 10/100 Mbps, TXCLK input from the external PHY is used as the reference
for the transmit signals. When running at 1000 Mbps, TXCLK_OUT is the reference clock. The
TXCLK input is not used.

8.11.3 RGMII Interface
The RGMII specification reduces the number of pins required to interconnect the MAC and the PHY
to 12 pins, in a cost effective and technology-independent manner. To accomplish this objective, the
data paths and all associated control signals are reduced, control signals are multiplexed together,
and both edges of the clock are used (see Figure 32). For Gigabit operation, the clocks operate at
125 MHz. For 10/100 operation, the clocks operate at 2.5 MHz or 25 MHz, respectively. The transmit
and receive operations are done in full duplex and implement the standard.
Figure 32: RGMII Pin Interconnection Between MAC and PHY
TxC
=
TxD[3:0]
TxCTL
MAC RxC PHY
RxD[3:0]
RxCTL
The RGMII interface uses a 125 MHz DDR clock with 4-bits wide data path. All signals shall be
conveyed with positive logic, except where explicitly defined differently. For descriptive purposes, a
signal shall be at a logic “high” when it is at a valid voltage level greater than VOH_MIN, and logic
“low” when it is at a valid voltage level less than VOL_MAX.
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 152 Document Classification: Proprietary Information December 2, 2008, Preliminary

8.11.3.1

8.11.3.2

8.11.3.3

8.12
8.12.1

Gigabit Ethernet Controller
Auto-Negotiation

RGMII 10/200 Mbps Functionality—Modified Ml

This interface can be used to implement 10/100 Mbps Ethernet MII by reducing the clock rate to 25
MHz for 100 Mbps operation, and 2.5 MHz for 10 Mbps. The MAC always generates the SYS_CLK
signal and the PHY always generates the Px_RXCLK signal.

During packet reception, Px_RXCLK can be stretched on either the positive or negative pulse to
accommodate the transition from the free running clock to a data synchronous clock domain. When
the speed of the PHY changes, a similar stretching of the positive or negative pulse is allowed. No
glitching of the clocks is allowed during speed transitions.

The MAC must hold Px_TXCTL (TX_CTL) low until the MAC has ensured that Px_TXCTL (TX_CTL)
is operating at the same speed as the PHY.

Signals Encoding
The RGMII interface is basically a GMII interface running at double data rate:

m GMII_TXD[3:0] is driven on RGMII_TXDI[3:0] on the rising edge of RGMII_TXCLKOUT;
GMII_TXD[7:4] is driven on RGMII_TXDI[3:0] on the falling edge of RGMII_TXCLKOUT.

GMII_TXEN is driven on RGMII_TXCTL on the rising edge of RGMII_TXCLKOUT

A logical value of GMII_TXEN XOR GMII_TXERR is driven on RGMII_TXCTL on the falling
edge of RGMII_TXCLKOUT.

m GMII_RXD[3:0] is sampled on RGMII_RXDI[3:0] on the rising edge of RGMII_RXCLK;
GMII_RXD[7:4] is sampled on RGMII_RXD[3:0] on the falling edge of RGMII_RXCLK.

GMII_RXDV is sampled on RGMII_RXCTL on the rising edge of RGMII_RXCLK.

A logical value of GMII_RXDV XOR GMII_RXERR is sampled on RGMII_RXCTL on the falling
edge of RGMII_RXCLK.

In-Band Status

To ease detection of the link status, speed, and duplex mode of the PHY, inter-frame signals are
placed onto the Px_RXD[3:0] signals. CRS is indicated when, simultaneously, RX_DV = True or
RX_DV = False, RX_ER = True, and a value of FF binary exists on the Px_RXD[3:0] bits.

Collision is determined at the MAC when TX_EN = True, while either Px_CRS or PO_RXDV are
true. The PHY does not assert Px_CRS as a result of Px_TXEN being true.

Auto-Negotiation
Auto-Negotiation in MII/GMII/RGMII Modes

The device implements the standard IEEE Auto-Negotiation, using the Serial Management Interface
(SMI), for the following:

m Detect Link status

m Duplex: half- and full-duplex operation

m Flow-control for full-duplex

m Speed

To implement speed Auto-Negotiation, set the <ANSpeed> field in the Port Serial Control0 (PSCO0)
Register (Table 427 p. 568) to 0.

To switch between GMII and MIl modes, see Port Serial Controll (PSC1) Register
(Table 430 p. 571).

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 153

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

| ;] | The registers and bits referred to in this section (for example, registers 4, 5, and 15 and

bit 1.8) are PHY device registers.
Note

The device continuously reads the PHY register 1 to determine the link status, and also to determine
whether or not bit 1.8 in PHY register 1 is set.

When exiting from reset, or when the link changes from up to down, the device advertises its flow
control ability (if Auto-Negotiation for flow control is enabled by the <AN_FC> field in the Port Serial
Control0 (PSCO0) Register (Table 427 p. 567).

The device reads register bit 1.8. If this bit is reset, then the PHY does not support 1000 Mbps.

If bit 1.8 is set, the PHY supports 1000 Mbps (but the speed may still resolve to 10 or 100 Mbps at
the end). The device then continues to read register 15 to determine whether the PHY is
1000baseX-capable or 1000baseT capable. If it is 1000baseX, then the device regards the
multiplexed speed as 1000 Mbps only, and follows the IEEE 802.3 rules for duplex and flow-control
Auto-Negotiation. If it is 1000baseT capable, then the device follows the IEEE 802.3 rules to resolve
the speed, the duplex mode and the flow control.

After Auto-Negotiation is complete, the device resolves negotiated modes of operation. These
values update the Port Status register fields and affect the Network port operation.

8.13 Data Blinder

The port data blinder is the time period in which the port does not look at the wire to determine if it is
necessary to defer a pending transmission, due to receive activity.

The port data blinder is 32 bit time.

8.14 Inter-packet Gap

The Inter-packet Gap (IPG) is the idle time between two successive packets from the same port. The
default (from the standard) is 96 ns.

|§ | | Marvell does not recommend reducing the IPG setting in violation of the IEEE
standards. Reducing the IPG can improve test scores but can create Ethernet
Note compatibility problems.

Use the MII Serial Parameters Register (Table 418 p. 562) to set the IPG size.

8.15 lllegal Frames

For undersized frames (with or without good CRC), the port discards all illegal frames. These frames
are not passed to the CPU, regardless of address filtering, and the appropriate error MIB counters
are incremented. An undersized frame is determined by the Minimum Frame Size.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 154 Document Classification: Proprietary Information December 2, 2008, Preliminary

8.16

8.17

Gigabit Ethernet Controller
Backpressure Mode

Oversized frames (greater than the Maximum Receive Unit—MRU) with or without bad CRC (bad
checksum) are forwarded to the DMA queue with an error summary report in the Rx descriptor.

An oversized packet is chopped according to the MRU setting, and only MRU bytes are
| ;I | transferred to memory. If the Marvell Header mode, DSA Tag, or Extended DSA Tag is
used, an oversized packet is calculated based on MRU+2, MRU+4, or MRU+8 bytes

Note regpectively.

Backpressure Mode
Back pressure is supported only when working in 10/100 Mbps speed and in half duplex mode.

The Backpressure algorithm is enabled by setting the <ForceBPMode> field in the Port Serial
Control0 (PSCO) Register (Table 427 p. 567).

For a port in Backpressure mode, the port waits until the medium is idle and then transmits a JAM
pattern of 1536 bytes. The IPG between two consecutive JAM patterns is 4 bytes, and between last
transmitted packet to first JAM is 12 bytes.

When a port in Backpressure mode has a pending packet for transmission, it halts the transmission
of the JAM pattern. After an IPG is completed, the port transmits the packet. If the port remains in
Backpressure mode, it resumes the JAM pattern transmission, following the packet transmission.

Flow Control

The device implements the IEEE 802.3 flow control in full-duplex mode, including full
Auto-Negotiation.

Auto-Negotiation for flow control is enabled for:
m The multiplexed interface
m PHYs that have SMI interface (MIl or GMII PHYS)

The behavior of the device is determined by the value in Port Status register <En_Fc> bit, Port Serial
Control register (PSCR) <Force_FC_Mode> bit.

The CPU may write to the PSCR <Force_FC_Mode> bit when Flow Control operation is enabled in
Port Status register <En_Fc> bit (which may be result either of Auto-Negotiation resolution for flow

control, or manual setting by the CPU to enable flow-control operation, which is then reflected in the
Port Status register <En_Fc> bit).

The CPU must trigger the initiation of pause disable transmission when detecting that it cannot keep
up with the received traffic (this is typically done by monitoring the queue filling process).

When the CPU suspects that it may not be able to provide enough resources to the port, it must
trigger the beginning of flow control packets by writing 01 value to <Force_FC_Mode>. When
resources are made available, the CPU must again write a 00 value to <Force_FC_Mode> to trigger
transmission of pause enable packet (see the more detailed description in Section 8.17.2, Pause
Transmit Operation, on page 156). The CPU response time to congestion cases would determine if
and how many packets may be lost on receive.

The value in Port Status register <En_Fc> bit can be set from the following:
s CPU programming
m Result of Auto-Negotiation for Flow Control according to IEEE 802.3 standard in all modes

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 155

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

When in MIl or GMII modes, and Auto-Negotiation for Flow Control is enabled, the device writes to
the relevant advertisement register in the PHY on the following events:

m Exiting from reset

m Upon link fail detection (link changed from up to down)

Auto-Negotiation for Flow Control for L000BASE-X PHY advertises that the device supports
Symmetric Flow Control only according to the IEEE 802.3 standard.

The advertised ability of Pause support depends on the setting of the <Pause_Adv> field in the Port
Serial Control0 (PSCO0) Register (Table 427 p. 567) as follows:

m When set, the device advertises symmetric capability for Pause.
m When reset, the device advertises No Pause capability.

8.17.1 Pause Receive Operation

When the device receives a Pause packet, it avoids transmitting a new packet for the period of time
specified in the received Pause packet.

The pause quantum is 512 bits time according to the port speed.

A received packet is recognized as flow control if it was received without errors and it has the
following characteristics:

DA = 01-80-C2-00-00-01 and type=88-08 and MAC_Control_Opcode=01.

A packet received by the device from the network port that is identified as a Pause packet is always
discarded, even if the Pause function is disabled.

8.17.2 Pause Transmit Operation

For enabling a Pause Transmit operation, or either enabling or disabling, the <EnFC> field in the
Ethernet Port Status 0 (PS0) Register (Table 429 p. 570) must be in the active state.

It is the CPU'’s responsibility to determine that packets are in danger of being dropped by the receive
port, according to the dynamic availability of resources. One way of doing it is monitoring how much
of the descriptor chain is filled up by the port and how much is left. Another aspect is memory
bandwidth should be allocated to the port via the Mbus “pizza arbiter” to avoid bandwidth shortage
for the gigabit port.

| ;] | This mechanism does not provide hardware guarantee of zero frame-loss. This

Not mechanism depends on CPU functionality in triggering it dynamically.
ote

When the CPU suspects that it may not be able to provide enough resources to the port, it must
trigger the beginning of Flow Control, pause-disable packets transmission by writing a 01 value to
the <ForceFCMode> field in the Port Serial Control0 (PSCO0) Register (Table 427 p. 567). The
transmit port will schedule transmission of a pause-disable frame (timer=0xFFFF) at the next
possible frame boundary and will automatically retransmit it at least every 4.2 msec (GMII/RGMII),
42 msec (Mll at 100 MB), or 420 msec (MIl at 10 MB) as long as the value in the <ForceFCMode>
field remains 01.

The other link partner is expected to stop packet transmission upon receiving the Flow Control
disable packets, and the retransmission of them guarantees refreshing that indication continuously.

When resources are made available, the CPU must write a 00 value to <ForceFCMode>. This will
trigger transmission of a single pause enable packet (timer = 0x0000) that would enable the other
link partner to resume packet transmission.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 156 Document Classification: Proprietary Information December 2, 2008, Preliminary

8.18

8.18.1

Gigabit Ethernet Controller
Serial Management Interface (SMI)

When transmitting a pause packet, the port address is put into the source address field. The 48-bit
port address is located in the MAC Address Low and the MAC Address High registers.

| ;] | When the link goes down, the <ForceFCMode> is always reset to 00 (no pause disable

frames are sent).
Note

Serial Management Interface (SMl)
The port MAC contains a Serial Management Interface (SMI) for interfacing with two GbE PHYs.

The SMI allows control and status parameters to be passed between the device and the PHY
(parameters specified by the CPU) using one serial pin (MDIO) and a clocking pin (MDC), reducing
the number of control pins required for PHY mode control. Typically, the device continuously queries
the PHY device for the link status, without CPU intervention. The PHY addresses for the link query
are programmable in the PHY Address Register (Table 401 p. 554).

A CPU connected to the device can write/read to/from all PHY addresses/registers. The SMI allows
the CPU to have direct control over an MIl or GMII compatible PHY device via the SMI Register
(Table 402 p. 554). This control allows the driver software to place the PHY in specific modes such
as Full-Duplex, Power-Down, or 1000-speed selection. It also helps control the PHY device’s
Auto-Negotiation function, if it exists. The CPU writes commands to the SMI register and the device
reads or writes control/status parameters to the PHY device via a serial, bi-directional data pin called
MDIO. These serial data transfers are clocked by the device MDC clock output.

SMI Cycles

The SMI protocol consists of a bit stream that is driven or sampled by the device on each rising edge
of the MDC clock. The SMI frame, bit-stream format starts with PRE and ends with IDLE. Its various
steps are described in Table 47.

Table 47: SMI Bit Stream Format

READ

WRITE

PRE ST OoP PhyAd RegAd TA Data IDLE

1.

1.

1 01 10 AAAAA RRRRR Z0 D.D(16) 4

1 01 01 AAAAA RRRRR 10 D.D(16) 4

m PRE (Preamble): At the beginning of each transaction, the device sends a sequence of 32
contiguous logic 1 bits on the MDIO with 32 corresponding cycles on the MDC to provide the
PHY with a pattern that it can use to establish synchronization.

ST (Start of Frame): A Start-of-Frame pattern of 01.

OP (Operation Code): 10 - Read; 01 - Write.

PhyAd (PHY Address): A 5-bit address of the PHY device (32 possible addresses). The first
PHY Address bit transmitted by the device is the MSB of the address.

m RegAd (Register Address): A 5-bit address of the PHY register (32 possible registers in the
PHY). The first register address bit transmitted by the device is the MSB of the address. The
device always queries the PHY device for status of the link by reading register 1, bit 2.

m TA (Turn Around): The turnaround time is a 2-bit time spacing between the <RegAd> field and
the <Data> field of the SMI frame to avoid contention during a read transaction. During a read
transaction the PHY must not drive MDIO in the first bit time and drive 0 in the second bit time.
During a write transaction, the device drives a ‘10 pattern to fill the TA time.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 157

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

m Data (Data): The data field is 16-bits long. The PHY drives the data field during read
transactions. The device drives the data field during write transactions. The first data bit
transmitted and received is bit 15 of the PHY register being addressed.

m IDLE (Idle): The IDLE condition on MDIO is a high impedance state. The MDIO driver is
disabled and the PHY must pull-up the MDIO line to a logic 1.

8.19 Link Detection and Link Detection Bypass
(ForceLinkPass*)

Typically, the device continuously queries the PHY device for its link status, without CPU
intervention. The PHY address used for the link query is determined by the PHY Addresses register,
and it is programmable, where the default value is 8 for Port0, 9 for Portl. The device reads register
1 from PHY and updates the internal link bits according to the value of bit 2 of register 1. In the case
of “link is down” (bit 2 is 0), that port enters link test fail state. In this state, all of the port’s logic is
reset. The port exit from link test fail state only when the “link is up”, bit 2 of register 1 is read from
the port's PHY as 1.

The device offers the option to disable the link detection mechanism by forcing the link state of the
interface to the link test pass state. This is done by forcing the register bit, and then the link status of
the port remains in the “link is up” state regardless of the Interface-PHY’s link bit value. The link
status of the Interface-PHY can be read through the SMI from the PHY devices (register 1, bit 2).

8.19.1 Force Link_Fail

The PSCR Register <Force_Link_Fail> bit (bit 10) has the default value of forcing the link detection
on each port to link down. The user must set this bit, in order to get the true link status of the port,
and in order to enable the port link indication to go up.

The user must not program the <Force_Link_Fail> bit and the <Force_Link_Pass> bit to be set at
the same time.

8.20 Precise Time Protocol (PTP)

This section summarizes the functionality for Precise Time Protocol (PTP) Core hardware.

The Precise Timing Protocol defines a method to transport time-of-day across a network of devices
supporting this protocol. There are several industrial, consumer, and enterprise applications for PTP.
For example, in consumer space, IEEE 802.1 AVB (Audio Video Bridging) defines the usage of PTP
for transporting reliable audio video content across compliant equipment. PTP adds time information
to nodes connected via Ethernet. This is in contrast to IEEE 802 standard Ethernet that is an
asynchronous interface where end stations do not operate using a common time base and neither
do they have a concept of time.

The PTP allows multiple nodes within a given network to have a common notion of the time-of-day
and also to be able to compute frequency offsets with respect to a master clock in the network.

There are three types of PTP frames that are supported in the device:

1. |EEE 802.1AS frames on Layer 2 Ethernet

2. |EEE 1588 frames on Layer 2 Ethernet

3. |EEE 1588 frames on Layer 4 UDP

For IEEE 802.1AS and IEEE 1588 over Layer 2, the detection mechanism uses a special EtherType.
For IEEE 1588 over Layer 4 UDP, the detection mechanism is by checking the UDP destination port
value. Once a PTP frame has been detected, event messages need to be time stamped in
hardware. However, all PTP frames need to be forwarded to the CPU port for further processing.

Once the ingressing PTP frames have been processed by the CPU, certain types of PTP frames get
forwarded to other ports that again need to be detected and time stamped in hardware.

The VLAN tag of the incoming PTP frame is detected by hardware.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 158 Document Classification: Proprietary Information December 2, 2008, Preliminary

Gigabit Ethernet Controller
Precise Time Protocol (PTP)

Using a clock selection algorithm, the PTP firmware computes the frequency and phase offset
values, with respect to the best clock available in the network (labeled as the grand master). The
computed offsets can optionally be used to control the hardware clock and time-of-day counter.

The PTP message types of frames that required time stamping by the hardware is configurable.

For every time-stamped frame, the sequence number from the PTP common header is captured
along with the time stamp, in hardware for easier protocol software correlation.

IPv4/IPv6 are supported, however, IPv4/IPv6 options are not supported.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 159

E= 88F6180/88F619x/88F6281

M ARVELL®

8.20.1

Functional Specifications

Frame Format

The PTP frame format is shown in Figure 33.

Figure 33: PTP Common Header Format

7 Octets Preamble

1 Octet SFD
6 Octets Destination Address
6 Octets Source Address

2 Octets | Ether Type = PTPEType = 0x88F7

MAC Client Data

4 Octets

Pad

4 Octets

FCS

PTP over Ethernet Frame Format

Doc. No. MV-S104860-U0 Rev. C
Page 160

Document Classification: Proprietary Information

Octets Within
Frame
Transmitted
Top to
Bottom

b7 bo
Tranport Spec MessagelD Oth Octet
Version PTP 1st Octet
Message Length 2nd Octet
Message Length Contd. 3rd Octet
Domain Number 4th Octet
Reserved 5th Octet
Flags 6th Octet
Flags contd. 7th Octet
Correction field 8th Octet
Correction field contd. 9th Octet
Correction field contd. 10th Octet
Correction field contd. 11th Octet
Correction field contd. 12th Octet
Correction field contd. 13th Octet
Correction field contd. 14th Octet
Correction field contd. 15th Octet
Reserved 16th Octet
Reserved 17th Octet
Reserved 18th Octet
Reserved 19th Octet
Source port identity 20th Octet
Source port identity contd. 21st Octet
Source port identity contd. 22nd Octet
Source port identity contd. 23rd Octet
Source port identity contd. 24th Octet
Source port identity contd. 25th Octet
Source port identity contd. 26th Octet
Source port identity contd. 27th Octet
Source port identity contd. 28th Octet
Source port identity contd. 29th Octet
Sequence ID 30th Octet
Sequence ID Contd. 31st Octet
Control 32nd Octet
logMeanMessagelnterval 33rd Octet

PTP Common
Header

Copyright © 2008 Marvell

December 2, 2008, Preliminary

Gigabit Ethernet Controller
Precise Time Protocol (PTP)

The PTP over UDP frame format, for both IPv4 and IPv6, is shown in Figure 34.

Figure 34: PTP over UDP Frame

7 Octets

1 Octet
6 Octets
6 Octets
2 Octets
2 Octets
2 Octets
2 Octets
2 Octets
2 Octets
2 Octets
4 Octets
4 Octets
2 Octets
2 Octets
2 Octets
2 Octets

34 Octets

Variable based on
Message type

8.20.2

8.20.3

4 Octets

Preamble 7 Octets Preamble
SFD 1 Octet SFD
Destination Address Sgﬁ;‘: Within 6 Octets Destination Address
Source Address Transmitted 6 Octets Source Address
Top to
EtherType = IPv4 = 0x0800 Bolt)tom 2 Octets EtherType = IPv4 = 0x86DD
IP Ver| IHL | TOS 4 Octets |IP Ver| Traffic Class| Flow Label
Next Hdr = Lo
Length 4 Octets PLen| UDP = 0x11 Hop Limit
Identification 16 Octets IP SA
Flags | Fragment Offset 16 Octets IP DA
Protocol ID =
TTL | | UDP = 0x11 2 Octets UDP Source Port
UDP Dest Port = 0x013F (PTP event)
Header Checksum 2 Octets or 0x0140 (PTP general)
IP SA 2 Octets Length
IP DA 2 Octets Checksum
UDP Source Port 34 Octets PTP Common Header
UDP Dest Port = 0x013F (PTP event) Variable based on PTP M
or 0x0140 (PTP general) Message type essage
Length 4 Octets FCS
Checksum
PTP Common Header PTP over IPv6 and UDP Frame
PTP Message
FCS

PTP over IPv4 and UDP Frame

PTP Frame Time Stamping Clock

The PTP core logic receives a reference clock input (from the PTP time stamp clock) for time
stamping purposes. This clock can be a free running clock available in the chip or it can be a PTP
synchronized clock (PTP_CLK), as defined by the <PTP_SEL> field in the PTP Clock Configuration
Register (Table 814 p. 784) and the <PTPClkSelect> field in the PTP Clock Select Register

(Table 469 p. 600). The benefits of synchronization are more prominent for endpoint devices than for
standard AVB bridges. The definition of synchronized clock is when a free running clock’s frequency
is adjusted based on the frequency offset computed by the PTP software (this is the frequency
difference between the PTP Grand Master node and the PTP slave node).

The clock frequency and/or phase adjustment is expected to be handled in an external device.

Pipeline Stages

The PTP core is divided into two main blocks (see Figure 35):
m Time Stamping Core -see Section 8.20.4

m Time Application Interface—see Section 8.20.5

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 161

®
I;él 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

Figure 35: PTP 2.1 Pipe Block Diagram

RGMII/GMII/MII Marvell® Device
Interface Bus
PTP Core %
Reference
timer, event
Time Stamping Core » Time Application Interface p triggers to
external
devices
4 4
v 4

External PTP Clock Modulation
option

(to be implemented on board,

external to the Marvell® device)

PTP Clock Module

| ;] | The PTP Clock Module, which is a DSP circuit to adjust the frequency and phase offset
of the clock with respect to the grand master clock, is not part of this Marvell® device.

Note
8.20.4 Time Stamping Block

The time stamping block is a plug-in module snooping the MII/GMII/RGMII interface between the
MAC (within the device) and the PHY (external to the Marvell device) as shown in the Figure 36. All
incoming frames go through the PTP Frame Detection flow to determine if the frame is a PTP frame
or not. Once the frame is determined to be a PTP frame, fields from the PTP common header
(shown in Figure 33, PTP Common Header Format, on page 160) are extracted to determine if the
PTP frame needs time stamping or not.
The PTP logic captures the time stamp for every incoming frame. Once the frame has been
determined to be a PTP event messages (which need time stamping), the time stamp along with
SequencelD (from the PTP common header) is captured in registers and optionally an interrupt is
generated by hardware.
m Forincoming frames on Arrival0, this capture takes place in the following registers:

* PTP Port StatusO Register

* PTP Port Statusl Register

* PTP Port Status2 Register
m For incoming frames on Arrivall, this capture takes place in the following registers:

* PTP Port Status3 Register

* PTP Port Status4 Register

* PTP Port Status5 Register

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 162

Document Classification: Proprietary Information December 2, 2008, Preliminary

Gigabit Ethernet Controller
Precise Time Protocol (PTP)

m For all outgoing frames, this capture takes place in the following registers:
* PTP Port Status6 Register
* PTP Port Status7 Register
* PTP Port Status8 Register
PTP frames go through normal MAC SA and DA processing and, since it is expected that a reserved

MAC address is used in PTP frames, the MAC address lookup would result in a CPU destination
port. There is no change in the logic for sending these frames to the CPU.

Rationale for Two Arrival Counters and One Departure Counter

As stated earlier, there are two categories of event messages that need to be time stamped in
hardware:

m Sync/Follow up
m PDelay_Req/PDelay_Response

The Sync/Follow up messages flow directly from the Grand Master to all the PTP slave nodes and
PDelayReq/PDelayResponse messages are exchanged between link partners. The timing between
these two sets of event messages is not controllable. Thus, the hardware logic needs to be designed
for back-to-back PTP event messages that need time stamping. Each of these event message types
can be configured to be captured in either Arrival Counter 0 or Arrival Counter 1, using the
configuration parameter <TSArrPtr> field in the PTP Global Configuration2 Register (Table 472

p. 602).

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 163

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Figure 36: Time Stamping Pipeline Stages

RGMII/GMII/MII MAC
— # _> |ngfess 'q To Queue
RX Controller
GlobalTime PTP Module
Regjster
L Arrival
Time
Rx_DV™™ Capture » Capture
Time ArrTimeCounter0
ArrTimeCounterl A
. Interrupt I)
PTP Frame Detection Generation registers
A 1
GlobalTime ¥
Register
Departure
Capture Vim=
Tz > Capture
MAC From
T f— Egress | f— Queue
RGMII/GMII/MII Controller

8.20.5 Timing Application Interface (TAI) Block

The Precise Timing Protocol provides both frequency and time-of-day with respect to the PTP Grand
Master for the entire PTP network. In a given endpoint device (media talker or a media listener),
once the PTP Grand Master aware clock and time are available, this data must be transmitted over
to the rest of the end user application, without loss of accuracy. For example, if a Digital Video
Recorder (DVR) is the end device, the network clock and time need to be transported to the Video
device and/or Storage device and the host processor seamlessly. This ensures that when the media
is played out of the DVR, the presentation time of the content is required to be carried through the
network between the media talker and the media listener.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 164 Document Classification: Proprietary Information December 2, 2008, Preliminary

8.20.5.1

8.20.5.2

Gigabit Ethernet Controller
Precise Time Protocol (PTP)

There are three types of interfaces that this block supports:

® An event capture interface that captures the time of an event signaled by the requesting entity.

m Atrigger-generate interface that causes an event to be signaled at a time specified by the
requesting entity.

m Atrigger-clock-generator interface that causes a periodic sequence of indications to be
generated, with a rate specified by the requestor.

Precise Timing Protocol—Time Application Interface (TAI)

The TAI Timing Interface Block supports features required for the above purpose. This block utilizes
two MPP signals to offer various services:

m PTP_EVENT_REQ input signal (event request)

m PTP_TRIG_GEN output signal (trigger generate)

Using these signals, there are several functions that this block supports:
m Event pulse capture

Multiple-event counter

Trigger pulse generate, with pulse width control

Trigger clock generate, with digital clock compensation

PTP global time increment and/or decrement

Event Capture Interface

When a PTP_EVENT_REQ signal is asserted, a snap shot of the PTP Global Timer is taken and
stored in the <EventCap Register> field in the TAI Global Status2 Register (Table 497 p. 621). There
is an option to overwrite the previous event time capture register by setting the <EventCapOv> field
in the TAI Global Configuration, PTP Port = OxE (Table 488 p. 615).

If the hardware registers are being accessed by the CPU at the same time the
EI hardware logic is trying to update an <EventCap Register> field in the TAI Global

Status2 Register (Table 497 p. 621) field, an <EventCapErr> field in the TAI Global
Note giatus1 Register (Table 496 p. 621) is set to OxL.

Event Pulse Capture Interface

In many IEEE 1588 applications like industrial automation, it is important to precisely capture the
time at which a particular event occurred. The event is defined by a low-to-high transition on an
external input signal called PTP_EVENT_REQ. The event time is captured in <EventCap Register>.
This field is validated by <EventCapValid> field in the TAI Global Status1 Register (Table 496

p. 621).

The captured event time register, TAl Global Status1 Register (Table 496 p. 621), must be read by
software and the <EventCapValid> field must be cleared before the hardware captures another
event. If two back-to-back events occurred before the software read the results of the first event, an
error indication is set in <EventCapErr>. To have the hardware overwrite the Event capture register
rather than generate an interrupt, then set <EventCapOv> field in the TAI Global Configuration, PTP
Port = OXE (Table 488 p. 615).

Once an event has been captured, the software can generate an interrupt, if both the
<EventCaplIntEn> field in the TAI Global Configuration, PTP Port = OXE (Table 488 p. 616) and the
<EventInt> field in the TAI Global Statusl Register (Table 496 p. 621) are set.

The maximum jitter associated with capturing the PTP_EVENT_REQ signal pulse is the value set in
the <TSCIkPer> field in the TAI Global Configuration Register, PTP Port = OxE and OxF (Table 489
p. 617). The minimum pulse width of the PTP_EVENT_REQ signal must be 1.5 times the value set

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 165

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

in the <TSClkPer>. For the hardware logic to detect distinct events on the PTP_EVENT_REQ signal,
the minimum gap between two events needs to be 125 ns.

Multiple Event Counter Function

Similar to the Event Pulse capture interface described in Event Pulse Capture Interface, if multiple
events need to be captured, for an application to detect how many times a particular event occurred
on the PTP_EVENT_REQ input signal, the <EventCtrStart> field in the TAIl Global Configuration,
PTP Port = OxE (Table 488 p. 616) must be set to a Ox1 and <EventCapOv> field in the TAI Global
Configuration, PTP Port = OxE (Table 488 p. 615) must set to a 0x1.

The current PTP core is capable of capturing up to 255 events in the <EventCapCitr> field in the TAI
Global Statusl1 Register (Table 496 p. 621).

The maximum jitter associated with capturing the PTP_EVENT_REQ signal pulse is the value set in
the <TSCIkPer> field in the TAI Global Configuration Register, PTP Port = OxE and OxF (Table 489

p. 617). The minimum pulse width of the PTP_EVENT_REQ signal must be 1.5 times the value set
in the <TSClkPer>. For the hardware logic to detect distinct events on the PTP_EVENT_REQ signal,
the minimum gap between two events needs to be 125 ns.

| ;I | In the multiple event counter mode, the EventCapRegister (TAl Global Status, Offset

Not O0xA & 0xB) indicate the time stamp value for the last captured event register.
ote

Trigger Pulse Generate Function

In many PTP applications, the time of day computed in PTP needs to be distributed in some form to
the rest of the node. One commonly used method generating a pulse whenever the PTP Global
Time matches a certain configured value. The pulse gets output on a PTP_TRIG_GEN output
signal.

In the PTP core, configure the Trigger Pulse Generate function:

1. Setthe <TrigGenReq> field in the TAI Global Configuration, PTP Port = OXE (Table 488 p. 617)
to Ox1.

2. Setthe <TrigMode> field in the TAIl Global Configuration, PTP Port = OxE (Table 488 p. 617) to
0x1.

3. Configuring the <TrigGenAmt> field in the TAI Global ConfigurationO Register (Table 490
p. 618) with the length of time amount after which the pulse needs to be generated.

The PTP Global Timer gets compared to the value in the <TrigGenAmt> field, and upon a match, a
pulse signal is generated on the PTP_TRIG_GEN output signal.

Optionally, after generating the PTP_TRIG_GEN pulse, the CPU can be notified by setting the
<TrigGenIntEn> field in the TAI Global Configuration, PTP Port = OXE (Table 488 p. 616), and along
with the pulse output, the <TrigGenlInt> field in the TAI Global StatusO Register (Table 495 p. 620) is
set. Upon receiving the interrupt, the CPU must clear the interrupt bit.

In Pulse mode The pulse width of the output signal can be controlled by the <PulseWidth> field in
the TAI Global Configuration2 Register (Table 492 p. 618).

EI Do not set the <PulseWidth> to 0x0.
Note

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 166 Document Classification: Proprietary Information December 2, 2008, Preliminary

Gigabit Ethernet Controller
Precise Time Protocol (PTP)

Trigger Clock Generate Function

Similar to the trigger pulse generation function described Trigger Pulse Generate Function, the
same set of registers can be used to generate a periodic clock. The value specified in
<TrigGenAmt> field is used to generate the base period of the clock output. For this functional mode,
the <TrigMode> field in the TAI Global Configuration, PTP Port = OXE (Table 488 p. 617) field must
be set to a 0x0, and the <TrigGenReg> must be set to a 0x1.

The output clock can be compensated by configuring the field <TrigCIkComp> field in the TAI Global
Configurationl Register (Table 491 p. 618). This field specifies the remainder amount for the clock
that is being generated with the period specified by the <TrigGenAmt> field. The <TrigClkComp>
amount is constantly accumulated. When this accumulated amount exceeds the value specified in
<TSClkPer> field in the TAI Global Configuration Register, PTP Port = OXE and OxF (Table 489

p. 617), the <TSCIkPer> value is added to the output clock momentarily to compensate for the
remainder accumulated overtime.

EI The <TrigGenAmt> field should be set to no less than two times the <TSCIkPer> value.
Note

PTP Global Time Increment/Decrement Function

The 32-bit nanosecond segment of the Time of Day counter for the PTP is stored in hardware and
the 64-bit seconds segment is stored in software. Since every PTP slave node constantly computes
the time of day, it needs to adjust its hardware with the updated phase offset information. The PTP
core assists by providing a PTP Global Timer adjustment functions.

For an increment operation:

m Set the <TimelncDecEn> field in the TAI Global Configuration, PTP Port = OXE (Table 488
p. 616) to Ox1.

m Set <TimelncDecOp> field in the TAI Global Configuration2 Register (Table 492 p. 619) to OxO.

m Configure the <TimelncDecAmt> field to the value that needs to be added to the current PTP
Global Time value.

For a decrement operation:

m Set the <TimelncDecEn> field to 0x1.

m Set <TimelncDecOp> field to 0x1.

m Configure the <TimelncDecAmt> field to the value that needs to be subtracted from the current
PTP Global Time value.

Given that the <TimelncDecAmt> field is only an 11-bit parameter, and the PTP Global Timer is
31-bits wide, multiple iterations of the operation need to be performed to get to the adjusted time of
day value.

8.20.6 Software Initialization Procedure
The following are the steps required to initialize the PTP core:
1. Setthe corresponding per-port <DisPTP> field in the PTP Port ConfigurationO Register
(Table 475 p. 604) to a 0x1 (or set all bits, if being done after the power cycle).
2. Configure the <PTPEType> field in the PTP Global ConfigurationO Register (Table 470 p. 601)
to the EtherType value on which the PTP frames are expected to arrive.

3. Configure <MsgIDTSEn> field in the PTP Global Configurationl Register (Table 471 p. 601),
specifying the PTP message types that need to be time stamped by hardware.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 167

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

4. Configure <TSArrPtr> field in the PTP Global Configuration2 Register (Table 472 p. 602),
specifying which of the 16 message types identified by <MsgIDTSEn> field need to occupy
Arrival counter 0 and/or 1.

5. Configure <TransSpec> field in the PTP Port Configuration0O Register (Table 475 p. 604) with
the value defined in the IEEE standard. For IEEE802.1AS, this needs to be configured to 0x1,
and for IEEE1588, this needs to be configured to 0x0.

6. Configure the <DisTSOverwrite> field in the PTP Port ConfigurationO Register (Table 475
p. 604), <PTPDepIntEn> field in the PTP Port Configuration2 Register (Table 477 p. 605), the
<PTPArrintEn> field in the PTP Port Configuration2 Register (Table 477 p. 606), and the
<DisTSOverwrite> field in the PTP Port ConfigurationO Register (Table 475 p. 604), as required
by the application.

7. Reset the per-port <DisPTP> field to a Ox0.

8.21 Network Management Interface Counters

The device incorporates a set of management counters. For a complete description refer to
Table 499, MAC MIB Counters, on page 623.

8.22 Port MIB Counters

The MAC MIB Counters provide the necessary counters that support MAU, IEEE 802.3 and
EtherLike MIB. Each port has a set of counters that reside in consecutive address space. Some
counters are 64-bits wide.

The counters are meant to provide management software to support:

m |[EEE 802.3 DTE Management objects

m Ethernet-like interface MIB: RFC 2665

m Interface MIB: RFC 2863

= Remote Network Monitoring (RMON) groups 1-4: RFC 2819

EI The MAC MIB counters are not intended to be used for Bridge MIB nor for SMON MIB.
Note

Table 48 summarizes the terms used in the definition of the counters.

Table 48: Definitions for MAC MIB Counters

Term Definition
Collision Event A collision has been detected before 576-bit times into the transmitted packet after Px_TXEN is
asserted.

Relevant to 10 Mbps and 100 Mbps speeds in half-duplex mode only.

Late Collision Event A collision has been detected after 576-bit times into the transmitted packet after Px_TXEN.
Relevant to 10 Mbps and 100 Mbps speeds in half-duplex mode only.

Excessive Collision When a packet to be transmitted suffers from 15 consecutive collision events, therefore, it

Event ought to be dropped according to the IEEE 802.3 standard.
Relevant to 10-Mbps and 100-Mbps speeds in half-duplex mode only.

MRU Maximal Receive Unit: A programmable parameter that sets the maximal length of a valid
received packet.

Rx Error Event The Receive Error signal/symbol was asserted while a frame is received.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 168 Document Classification: Proprietary Information December 2, 2008, Preliminary

Gigabit Ethernet Controller
Port MIB Counters

Table 48: Definitions for MAC MIB Counters (Continued)

Term

CRC Error Event

Undersize packet

Fragment

Oversize packet

Jabber

Tx Error Event

Bad frame

MAC Control Frame

Flow Control Frame

Good Flow Control
Frame

Bad Flow Control
Frame

Good frame

Definition

This event occurs whenever an Ethernet frame is received and the following conditions are
satisfied:

1. Packet data length is between the Minimum Frame Size - and the MRU byte size inclusive
(that is, it is a valid packet data length according to the IEEE standard).

Packet has an invalid CRC.

Collision Event has not been detected.

Late Collision Event has not been detected.

Rx Error Event has not been detected.

aprwn

An Ethernet frame satisfying all of the following conditions:
1. Packet length is less than Minimum Frame Size bytes.
2. Collision Event has not been detected.

3. Rx Error Event has not been detected.

4. Packet has a valid CRC.

An Ethernet frame satisfying all of the following conditions:

1. Packet data length is less than 64 bytes, OR a packet without a Start Frame Delimiter
(SFD) and the packet is less than 64 bytes in length.

Collision Event has not been detected.

Rx Error Event has not been detected.

Packet has an invalid CRC.

Rl SN

An Ethernet frame satisfying all of the following conditions:
Packet length is more than the MRU byte size.
Collision Event has not been detected.

Late Collision Event has not been detected.

Rx Error Event has not been detected.

Packet has a valid CRC.

agrwpdppE

An Ethernet frame satisfying all of the following conditions:
1. Packet data length is greater than the MRU.

2. Packet has an invalid CRC.

3. Rx Error Event has not been detected.

An internal error event in the transmit MAC.
This is a very rare situation and when it happens, it means that there the system is
misconfigured.

An Ethernet frame that has one of the following conditions met: CRC Error Event,
Undersize, Oversize, Fragments, Jabber, Rx Error event and Tx Error Event.

An Ethernet frame that is not a bad frame and has a value of 88-08 in the
EtherType/Length field.

A MAC Control Frame with an opcode equal to 00-01.

A flow control frame with:

1. MAC Destination equal to 01-80-C2-00-00-01

2. 64-byte length

All flow control frames that are not good flow control frames

An Ethernet frame that is not a bad frame NOR a MAC Control frame

Figure 37 and Figure 38 illustrate the terms defined above:

Copyright © 2008 Marvell

December 2, 2008, Preliminary

Doc. No. MV-S104860-U0 Rev. C

Document Classification: Proprietary Information Page 169

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Figure 37: Ethernet Frame Classification

Broadcast
Good Frame

Unicast
Good Frame

Multicast Unsupported
Good Frame Opcode

Bad
Flow Control

Good
Flow Control

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 170 Document Classification: Proprietary Information December 2, 2008, Preliminary

Gigabit Ethernet Controller
Port MIB Counters

Figure 38: Bad Frame Procedure

Frame Received

Collision | Yes o
Incremented | Collision
No
MACSrCVE" P Yes o Erro:
-t
Incremented Event

Fragments
Incremented Yes
ength
No Minimum
ame Size
Undersize
Incremented
Jabber
Incremented Yes
No
Oversize
Incremented
CRC Error |
incremented [CRC Event

The packet is
NOT a bad packet

The counters initialize to 0 immediately after reset. Most counters are 32-bits, the Good Bytes
received and Bytes Sent are 64-bit counters that should be read in two separate cycles.

The 64-bit counters should be read from the low address and the next read from the MIB counters
must be from the high address of the same counter. The MIB interface will always return the high
counter data on a read from the MIBs following a read from the low address of a 64-bit counter.

Refer to PHY Address Register (Table 401 p. 554) for the address offsets of all the counters for the
port. Within the counters block, the counter offset is in the address bits[6:0].

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 171

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

In addition to the per port counters, in Section A.8.4, MAC MIB Counters, there are some additional
counters that count filtered frames for reasons like MAC address lookup results, called Port Overrun
Frame Counter (PxOFC) Register (Table 440 p. 583) and Port Rx Discard Frame Counter (PxDFC)
Register (Table 439 p. 583). In conjunction with the counters block they provide total frames
received information.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 172 Document Classification: Proprietary Information December 2, 2008, Preliminary

Universal Serial Bus (USB 2.0) Interface

9 Universal Serial Bus (USB 2.0) Interface

The device contains a Universal Serial Bus (USB 2.0) port that includes an embedded USB 2.0 PHY.

The USB 2.0 interface contains a single dual-role controller that can act as a host or a peripheral
controller (USB controller). A bridge connects the controller to the internal Mbus interface (USB
bridge).

Embedded USB 2.0 PHY features include:

m 480 Mbps High Speed (HS)/ 12 Mbps Full Speed (FS) and 1.5 Mbps Low Speed (LS) serial data
transmission rates

Synchronization/End-of-Packet (SYNC/EOP) generation and checking

Data and clock recovery from serial stream on the USB

Non Return to Zero Invert (NRZI) encoding/decoding with bit stuffing/unstuffing
Bit stuff error detections

Bit stuffing/unstuffing; bit stuff error detection

Holding registers to stage transmit and receive data

Supports USB 2.0 Test Modes

Ability to switch between FS and HS terminations/signaling

| ;I | For more details, refer to the controller specification document USB-HS High-Speed

Controller Core Reference.
Note

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 173

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

10 Cryptographic Engines and Security
Accelerator (CESA)

The device integrates hardware-based cryptographic engines and security accelerator (CESA). The
cryptographic engines and the security accelerator reduce CPU packet processing overhead by
performing time consuming cryptographic operations such as Advanced Encryption Standard (AES),
Data Encryption Standard (DES), and Triple Data Encryption Standard (3DES) encryption and
Message Digest 5 (MD5) and Secure Hash Algorithm 1 (SHA1) authentication.

The acronyms, abbreviations and definitions shown in Table 49 are used in this section.

Table 49: Acronyms, Abbreviations, and Definitions

Acronym Definition
AES Advanced Encryption Standard
AES128/128 128 data bits AES with 128-bit key width
AES128/192 128 data bits AES with 192-bit key width
AES128/256 128 data bits AES with 256-bit key width
Block/data Block of 512 bits in the Authentication engine
CBC Cipher Block Chain
CFB Cipher Feedback
DES Data Encryption Standard
3DES Triple Data Encryption Standard
ECB Electronic Code Book
EDE Encryption Decryption Encryption
EEE Encryption Encryption Encryption
\ Initial Vector / Initial Value
MD5 Message Digest 5
OFB Output Feedback
SHA-1 Secure Hash Algorithm 1
WO0...W15 Designates the 16 words in an authentication input data block; WO is the
first word and W15 is the last word.
word 32-bit
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 174 Document Classification: Proprietary Information December 2, 2008, Preliminary

Cryptographic Engines and Security Accelerator (CESA)
Cryptographic Engine Features

10.1 Cryptographic Engine Features

Engine Features

There are four cryptographic engines that operate independently, one at a time.
m DES encryption/decryption engine

m AES128 encryption engine

m AES128 decryption engine

m Authentication MD5/SHA engine

The user can implement the following algorithms, using the above hardware engines:

m Encryption: DES (ECB and CBC modes) and Triple DES (ECB, CBC EDE and EEE modes)?!
m Encryption: AES128/128, AES128/192, and AES128/2562

m Authentication: SHA-1 and MD5

The cryptographic engines implement the following features:

m Authentication in the MD5 or SHA algorithm, selectable by the user
m Authentication Continue mode, enables chaining between blocks

m Authentication Automatic Padding mode
u

Encryption and Decryption in DES, Single (ECB) or Block (CBC) mode, or 3DES, EEE or EDE
mode, selectable by the user

DES write pipeline

Optimal external update of Authentication and Encryption (in CBC) initial values, enabling
flexibility of use—multi-packet calculation, sharing between resources

Byte Swap support for DES/3DES and AES data input/output.

Automatic Engine activation when the required data block is loaded, (Saves write cycles)
Authentication and encryption termination interrupts

Supports DES, OFB, and CFB modes with additional software

AES encryption and decryption—completely separate engines that can work simultaneously
when TDMA3 is not used

10.2 Security Accelerator Features

There is one security accelerator which implements the following features.
m Performs a complete over-the-packet operation with no software intervention
m Supports four types of operation:

* Authentication only (MD5 / SHA-1 / HMAC-MD5 / HMAC-SHAL)

* Encryption/Decryption only (DES / 3DES / AES—both ECB and CBC)

* Authentication followed by Decryption/Encryption

* Decryption/Encryption followed by Authentication

10.3 Cryptographic Engines Operational Description

The unit combines four separate engines:
m Authentication MD5/SHA engine (see Section 10.3.2, Authentication, on page 177)

m DES encryption/decryption engine (see Section 10.3.3, DES Encryption/Decryption,
on page 180)

1. ECB = Electronic Code Book, CBC = Cipher Block Chain, EDE = Encryption Decryption Encryption, and EEE =
Encryption Encryption Encryption.

2. AES128/128 = 128 data bits AES with 128-bit key width, AES128/192 = 128 data bits AES with 192-bit key width, and
AES128/256 = 128 data bits AES with 256-bit key width.

3. TDMA is the Cryptographic engine’s Direct Memory Access (DMA).

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 175

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

m AES128 encryption engine (see Section 10.3.4, AES128 Encryption, on page 184)
m AES128 decryption engine (see Section 10.3.5, AES128 Decryption, on page 187)
Each of these four independent cryptographic engines has separate registers for data, control, and

operation modes. The address allocation is specified in Table 516, Register Map Table for the
Cryptographic Engine and Security Accelerator (CESA) Registers, on page 634.

10.3.1 Using the Cryptographic Engines

Access The cryptographic engines can be accessed by the security accelerator or by the host!. The access
is performed by writing and reading to specified addresses in the engine.

Commands and The engines' modes of operation (AES, DES, 3DES, and SHA) and the endianess of the input data
Control are controlled by the host. Control is performed via four specified command registers:

m SHA-1/MD5 Authentication Command Register (Table 567 p. 650)

m DES Command Register (Table 549 p. 643)

m AES Decryption Command Register (Table 529 p. 638)

m AES Encryption Command Register (Table 542 p. 641)

These registers also contain flags that are used as status indicators to the host.

The engines also provide interrupts that are set when an operation is completed (see Cryptographic
Engine/Security Accelerator/TDMA Interrupt Cause Register (Table 556 p. 645)).

Input Data The encryption engines operate on data blocks of 64 bits or 128 bits, while the authentication engine
requires a block of 16 words (512 bits) as input.

The input data is loaded by writing to data registers.

The engines, excluding DES, do not support multi-tasking. When a data block is written to one of the
engines, the host must wait until this engine finishes the calculation before it writes the next input
data block.

The engines also require cryptographic parameters, such as keys and initial values, which vary
according to the mode of operation used. Setting these parameters is performed to by writing to the
specific Key and Initial Value (IV)/Digest registers.

Both the encryption engine and the authentication engine support byte swap of input data.

Output Data The encryption engines return a cipher/decipher data block of 64 or 128 bits. The engines support
byte swap of their output data.

The authentication engine returns four or five words that are the hash signature of the input data
block.

The output data is accessed through specific Data In/Out registers in the engines.

Principle of When a host wants to perform cryptographic operations, it writes the cryptographic parameters (for

Operation example, IV and keys) and the command to be performed in registers. Then the host writes the data
to be processed (in the data registers). This triggers the engine, which starts the processing
automatically after the required amount of data was written. When the engine finishes the
cryptographic calculation, it sets a termination bit in one of the command registers and activates an
interrupt to notify the host that the operation is finished. After the operation is finished, the host can
read the result of the operation from the engines’ registers.

1. The word host is used as a generic term representing the agent that controls the operation of the cryptographic engines (either the CPU
or the security accelerator). While the accelerator is working the host cannot work with the cryptographic engines and vise versa.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 176 Document Classification: Proprietary Information December 2, 2008, Preliminary

Cryptographic Engines and Security Accelerator (CESA)
Cryptographic Engines Operational Description

10.3.2 Authentication

To activate the authentication process, the host should perform the following:

1. Verify the <Termination> field in the SHA-1/MD5 Authentication Command Register (Table 567
p. 651).
The host must read the register to verify that the engine is not busy. Writing in the middle of a
calculation results in erroneous data.
At this stage the host must read the register to verify that the engine is not in the middle of a
calculation process. Writing in the middle of a calculation results in erroneous data.

After reset the <Termination> is set. Any write that the host performs to the Authentication
engine resets the termination bit.

2. Write to the <Mode> field and <DataByteSwap> field in the SHA-1/MD5 Authentication
Command Register (Table 567 p. 651) (This is optional if no change is needed.)

3. Write initial values:
This step is only required if multiple packets are processed simultaneously.

Externally written Initial values are valid only if the <Mode> is set to 1 (Continue mode).

In SHA, the initial value is five words long and in MD5 it is four words long. The addresses of the
IV/digest registers are specified in the SHA-1/MDS5 Initial Value/Digest A Register
(Table 562 p. 649) through SHA-1 Initial Value/Digest E Register (Table 566 p. 650).

The host may write to any of these registers. Initial values registers that are not written contain
the digest from the previous calculation.

NOTE: The host may change the value of the command register during the process of writing
the data when it is necessary to swap only part of the data.

4. Write data words.
SHA/MDS5 algorithms work in 512-bit chunks, which are equal to 16 words. There are two ways
to write the data words to the engine:
* Write cycles to Data In register.
* Write cycles to the Data In register and to Byte Count registers.

10.3.2.1 Write Cycles to Data In Register
The host must perform 16 write cycles, first to WO, then to W1 through W15.

10.3.2.2 Write Cycles to the Data In Register and to Byte Count Registers

This type of access is preferred where a packet is small (i.e., less than 14 words) or for the last
chunk of a packet whose size is less than 14 words. In these cases, the algorithm requires a zero
padding to 14 words in addition to the 2-word padding of the bit count needed in single/last chunks.
This requires successive writes of full zero words.

In this type of access, the writing of these zero padding is skipped, and thus less then 16 write
accesses activate the engine.

This access is performed as follows:

1. The host writes between 0 to 13 words to the Data In register. The write to the Data In register is
performed until the word that contains bit N+1 of the data, where N is the place of the last bit of
data in the chunk. The last word written must be padded with one bit of 1 and then zeros until
the completion of the 32-bit word.

2. Then, the host writes the lower part (MD5) or the higher part (SHA) of the bit count value to the
SHA-1/MD5 Bit Count Low Register (Table 568 p. 651) —word 14 (see Figure 39).

3. Then, the host writes the higher part (MD5) or the lower part (SHA) of the bit count value to the
SHA-1/MD5 Bit Count High Register (Table 569 p. 651)—word 15 (see Figure 39). After this

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 177

—
=
—

M ARVELL®

88F6180/88F619x/88F6281
Functional Specifications

write, the engine starts working automatically, and all words of the data chunk from the last word
written to the Data In register until word 14 are considered as zeros.

Figure 39:Authentication of a Data Chunk

Less than 16-Word 16-Word

word 0 word 0

word 1 word 1

word 13 or less word 13

bit count low word 14

bit count high word 15

4. Poll the SHA-1/MD5 Authentication Command Register or wait for the interrupt:
After the engine is loaded with the data chunk or after a write to the two Bit Count registers, the
engine starts working automatically.
When the <Termination> is 1, it is an indication for the host that the engine finished the
calculation process, and the digest is ready.
The host can poll the <Termination> bit or wait for the ZInt0 interrupt—bit O in the Cryptographic
Engine/Security Accelerator/TDMA Interrupt Cause Register (Table 556 p. 645). This interrupt
is activated on the rising edge of the <Termination> bit. To clear the interrupt, the host must
write a 0 to it. Writing a 1 has no effect.
5. Read result:
Once the <Termination> bit was asserted, the host can read the digest. The digest length is
five words for SHA-1 or four words for MD5. These words are stored in the 1V/Digest registers
(see Table 562, p. 649 through Table 570, p. 652).
After reading the result, the host can immediately start the write command again for initial
values and data, or just data.
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 178

Document Classification: Proprietary Information December 2, 2008, Preliminary

Cryptographic Engines and Security Accelerator (CESA)

Cryptographic Engines Operational Description

Figure 40 shows a typical authentication flow for a packet.

Figure 40: Typical Authentication Flow for a Packet

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Is termination bit set?

Write command
(also set command
to initial mode)

v

Write Initial Values

v

-t L No Last Data Chunk ?
Y
Yes|
Write Data Word -
in Data Chunk \

16 words written ?

Is termination bit set ?

Write command
(also set command
to continue mode)

Write Data Word
in last Data Chunk

v

Last Data Word ?

Write Byte Count
of last Data Chunk

l

Is termination bit set ?

Read Digest results

Doc. No. MV-S104860-U0 Rev. C

Document Classification: Proprietary Information Page 179

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

10.3.3

DES Encryption/Decryption

The DES encryption algorithm complies with the DES standard as described in FIPS PUB 46-2.

The engine implements two different modes:
ECB A direct application of the DES standard to encrypt and decrypt data

CBC An enhanced mode of ECB, which chains together blocks of cipher text. The chain’s glue is
the DES IV (Initial Value) register (see Table 543 on page 642 and Table 544 on page 642).

Two other modes, CFB and OFB, may be implemented by the engine, however, additional software
is required.

The engine implements two triple DES (3DES) modes, as described in RFC 1851
m EEE
m EDE

The 3DES modes can work with three different keys for high security and can be combined with
ECB or CBC modes.

All the modes are reciprocal, that is, they decipher or cipher data.

Encryption/Decryption calculation time is 9 cycles in DES mode and 25 cycles in 3DES mode. This
is without taking into consideration the read and write cycles, associated with writing the input
data/key and reading the result.

To activate the Encryption engine, the following steps are required:
1. Verify termination bits in the DES Command Register (Table 549 p. 643).

At this stage the host must read the register, to verify that the engine is not in the middle of a
calculation process and that the engine’s parameters (i.e., DES operation modes and either the
DES key or the 3DES keys) can be updated.

In the initial operation, it is always necessary to write the DES key or the 3DES keys and
possibly to write an operational mode other then the default operational mode. In that case,
before the engine’s parameters are written, the <AllTermination> field in the DES Command
Register (Table 549 p. 644) (bit [30]) must be set.

When the <Termination> field (bit [31]) in that register is set, a 64-bit DES data block can be
written to the engine, but this does not necessarily mean that parameters can be updated.
Writing to the engine de-asserts this bit.

However, when the <AllTermination> is set, a DOUBLE 64-bit DES data block can be written to
the engine. In addition, when this bit is set the engine’s parameters can be updated.

The DES engine operates on a pipeline principle (see Figure 41).

The host writes to the engine when bit <WriteAllow> field in the DES Command Register
(Table 549 p. 644). When a result is ready, the host must read it, to enable the engine to
process the next data in the pipeline. When bit <WriteAllow> (bit [29]) is set, the host can write
one data block to the engine.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 180

Document Classification: Proprietary Information December 2, 2008, Preliminary

Cryptographic Engines and Security Accelerator (CESA)
Cryptographic Engines Operational Description

Figure 41:DES Engine Pipeline

Data In

Stag

Data Out

»

DES Engine
Data In Engine Data Out
D1 — —
—_—

D2 D1 —

—_
— D2 D1
D3 D2 —

—_
— D3 D2
D4 D3 —

—_—
— D4 D3

Note: A read of Dataout Low resets bit[29].

Meaning of bits [31:30] and their possible states:

Bit
[31]

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Bit Description

[30]

0 Engine is busy.

1 Engine is ready.

0 First data block waiting for
read; pipeline is full.

1 Engine completed
calculations; pipeline is
empty.

Bit Bit Bit
31 30 29

1 1 1
0 0 1
0 0 1
1 0 1
0 0 0
1 0 1
0 0 0
1 0 0

Number of Data
64-Bit Blocks
That Can Be
Written

1—only if bit [29] is set
2
1—only if bit [29] is set

_aHost reads

~—Host reads

~-—Host reads

Can Engine
Parameters
Be Updated?

No
Yes
No

Yes

Doc. No. MV-S104860-U0 Rev. C

Document Classification: Proprietary Information

Page 181

—
=
—

M ARVELL®

88F6180/88F619x/88F6281
Functional Specifications

Write operational mode and endianess for fields in the DES Command register:
Direction Encryption or decryption
Algorithm Single DES or 3DES
Triple DES mode EEE or EDE
Chain ECB or CBC
Data byte swap Similar to swapping performed in the Authentication engine.
See Section 10.2.
IV byte swap Swapping of data written to the DES IV register. Similar to data swap.
Data out byte swap These bits control byte swap of the cipher/decipher output result.

Write the keys.
Each key is a 64-bit block. Writing a single key requires two write operations.

Single DES mode A write to a single key must be performed.The key used in DES
mode is the KEYO register.

3DES mode Itis recommended to write to three different keys—KEYO0, KEY1, and
KEY2 registers.

Since keys are changed only occasionally, this step is not always required.

Write the initial value (1V).

This step is necessary only in the DES/3DES CBC modes. A 64-bit block must be written to the
IV register. In CBC, the IV value is XORed with the Data_In. The result is used as the input to
the cipher/decipher machine.

Writing the 1V register requires two write operations, one to the DES Initial Value High Register
(Table 544 p. 642) and the other to the DES Initial Value Low Register (Table 543 p. 642).
However, in 64-bit mode, a single write operation is required.

Write blocks for the 64-bit data.

DES encryption requires a 64-bit block of input data, which is loaded by writing to one of the
DES Data Buffer registers (see Table 552, p. 644 or Table 553, p. 645. One or two data blocks
can be loaded according to the engine status (see the example below).

If a data block is shorter than 64-bit length, the specification requires zero padding to 64 bits.

NOTE: If the next block to be processed uses the same cryptographic parameters (i.e., the
same keys and modes), and if the IV is the output data of the previous block, the host writes
only the DES Data Buffer registers (see Table 552, p. 644 or Table 553, p. 645). This is useful
when it is necessary to encrypt a message that consists of multiple 64-bit blocks. In this case, it
is efficient to use the DES pipeline option and write two blocks at once, as specified in the
example below.

The DES machine starts working automatically when a 64-bit data block is written to it, or when
there is data in the DES machine pipeline, and the previous result has been read.

Operation starts after the host writes to the DES data buffer addresses. The host must first write
to the DES data in/out low address and then to the DES data buffer high address, as shown in
the following example.

The data block to encrypt is 0x1122334455667788.

The host writes 0x55667788 to address 0xDD70.

The host writes 0x11223344 to address OxDD74.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 182

Document Classification: Proprietary Information December 2, 2008, Preliminary

Cryptographic Engines and Security Accelerator (CESA)
Cryptographic Engines Operational Description

Results:
Byte Swap DES Data Buffer Register
Actual Data That Will Be Encrypted
0 1122334455667788
1 4433221188776655

NOTE: Other writes to addresses 0xDD70/0xDD74 will cause unexpected results.

6. Poll the DES Command Register (Table 549 p. 643) or wait for the interrupt.

After the engine is loaded with one 64-bit blocks, it starts working automatically. The host must
not write anything to the engine until the <WriteAllow> field (bit[29]) is set.

At this stage, the host must poll the <Termination> field (bit[31]). When the bitis 1, it is an
indication to the host that the engine finished the calculation process and the result is ready.

The host may write one data block each time, or it may perform consecutive writes of two data
blocks:

The host writes one data block each time:

The result of the data block is ready and no more data is in the engine pipeline. Bit [30],
<AllTermination>, is set and engine parameters can be updated.

The host performs consecutive writes of two data blocks:

First data When the first data block result is ready, the <Termination> field and the

block <WriteAllow> field are set. At this stage, the engine has the second data in
the pipeline. However, the calculation cannot start until the host has read
the result of the first data via the DES Data Out registers (read the Data
High before the Data Low). Here the <AllTermination> field is not set.

Once the first data result is read, the <WriteAllow> field is reset, and the
engine starts the calculation of the second data. At this stage, the host can
write one data block (the third block) to the engine. This is indicated by the
<WriteAllow> field (see Figure 41 on page 181).

Second data When the second data block result is ready, the <Termination> field is set.

block At this stage, the engine has completed the second data calculation, the
pipeline is empty, and the <AllTermination> field is also set. Once the data
result is read, the host can alter the DES parameter and then write two
data blocks.

The ZIntl interrupt is set every time the <AllTermination> field in the DES Command
Register—changes from 0 to 1.

The ZInt4 interrupt is set every time the <Termination> field in the DES Command
Register—changes from 0 to 1.

After the interrupt occurs, the host writes 0 to the relevant interrupt bit in the Cryptographic
Engine/Security Accelerator/TDMA Interrupt Cause Register (Table 556 p. 645) to reset it.
Writing 1 has no effect.
7. Read DES result.
Once a termination bit has been asserted, the host may read the result. The result of the
encryption (or decryption) is stored in the DES Data In/Out registers.

Two read operations are required to read the result—the first read from address 0xDD7C and
the second read from address OxDD78.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 183

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Byte swap bits have no effect on reads, i.e, the engine does not perform any endianess change
on the result. To perform an endianess change use the <OutByteSwap> field in the DES
Command Register (Table 549 p. 644).

8. Read keys and IV.

It is possible to read the key values and IV value at anytime by accessing the appropriate
registers. In Chain modes (CBC), the IV register is changed by the machine at the end of every
DES calculation cycle. In this situation, the 1V register is loaded with the calculation result, so it
should have the same value as the DES Data Out register (see Table 554, p. 645 and

Table 555, p. 645.

Figure 42 illustrates the typical DES/3DES packet encryption flow.

Figure 42: Typical DES/3DES Encryption Flow for Packet

|

Is termination bit set?

A

Read engine result
Hi register before Lo

L > No
ermination bit Se

(for pipeline:
eadallow bit set7

Write DES operation mode

'

Write KeyO register (for
3DES Keyl and KEY2 are
also recommended)

End of Packet ? Write Next data block

A

Write Init Value (relevant for
CBC mode only) Read engine result
Hi register before Lo

Yes ;
Write Data Block (64bits) or

Two Data Blocks (for
Pipeline mode)

No

Is Alltermination bit set?

Mmination bi
(for pipeline: also
allow bit 7

Read engine result
Hi register before Lo
for Pipeline mode

v

Write Next data block DES engine finished

10.3.4 AES128 Encryption

The AES128 Encryption engine complies with the AES standard as described in the FIPS standard.

This engine performs encryption only. The decryption is performs by the AES128 decryption engine.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 184 Document Classification: Proprietary Information December 2, 2008, Preliminary

Cryptographic Engines and Security Accelerator (CESA)
Cryptographic Engines Operational Description

The engine implements the AES algorithm on a 128-bit data block on three possible Key Length
modes:

= 128-bit mode

= 192-bit mode

m 256-bit mode

Encryption calculation time is 20 cycles, without taking into consideration the read and write cycles
associated with writing the input data/key and reading the result.

To activate the AES Encryption engine, the following steps are required.

1. Verify the <Termination> field in the AES Encryption Command Register (Table 542 p. 642).

At this stage the host must read the register, to verify that the engine is not in the middle of a
calculation process. Writing in the middle of a calculation will result in erroneous data. Unless
the host made a write to the engine before, the <Termination> field must be set (The host must
set this bit after reset.).

Any write that the host performs to the AES Encryption engine resets the <Termination> field.
2. Write operational mode and endianess for fields in the AES Encryption Command Register:
* Key Length mode—128, 192 or 256 hit

* Data byte swap: This is similar to the swapping performed in the Authentication engine. Refer
to Section 10.3.2 for more details.

» Data out byte swap: These bits control byte swap of the cipher output result.
3. Write key.

The AES key length can be changed in accordance with the Key Length mode selected. It may
be a 128-, 192- or 256-hit block. Writing a single key requires four, six, or eight write operations.

With the key maximum length 256-bit block, the block is structured from 8 words, each word is a
column in the AES Cipher Key block:

AES key column 0 AES key column 1 AES key column 2 AES key column 3
Thus, there are eight AES encryption key registers, each of them containing a column of the
AES cipher key block.

Commonly a 4-word key is used. In this case, the host must write to the Key Column 0, 1, 2, and
3 registers.

Since keys are only changed occasionally, this step is not always required.

4. Write block for the 128-bit data.
The AES encryption requires a 128-bit block of input data. This block is loaded by writing to the
AES Encryption Data In/Out register.
If a data block is shorter than 128-bits, the specification requires zero padding to 128 bits.

NOTE: If the next block to be processed uses the same key; the host should write only the AES
Data In/out encryption registers (see Table 538 on page 640 through Table 541 on page 641).
This is useful for encrypting a message consisting of multiple 128-bit blocks.

The AES machine starts working automatically when a 128-bit data block is written to it (i.e.,
operation starts after the host writes to all the AES data in/out addresses).

This data is a 128-bit block. This block is structured from four words. Each word is a column in
the AES Cipher Data block:

AES Data column 0 AES Data column 1 AES Data column 2 AES Data column 3
(0OxDDAC) (0XxDDABS) (OxDDA4) (OxDDADO)

Thus, there are four AES Encryption Data In/Out registers. Each of them containing a column of
the AES cipher block.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 185

M ARVELL®

88F6180/88F619x/88F6281
Functional Specifications

Upon writing to all these registers, the AES cipher machine will automatically start working as
shown in the following example. The order in which these registers is written is not significant.

The data block to encrypt is 0xX9900AABBCCDDEEFF1122334455667788.
This data is a 128 bit block, which is structured from four words.
Each word is a column in the AES Cipher data block.
The data must be loaded to the cipher machine as follows:
Write 0x55667788 to address OxDDAO.
Write 0x11223344 to address OxXDDA4.
Write OXCCDDEEFF to address OxDDAS.
Write 0x9900AABB to address OxDDAC.

There is full support for data byte swap to the AES data blocks, similar to the DES engine,
but in the AES cipher engine all data column registers are one word in width.

Results of this write operation:
Byte Swap AES Data In/out
0 9900AABBCCDDEEFF1122334455667788
1 BBAAOO99FFEEDDCC4433221188776655

NOTE: Other writes to addresses OXxXDDAO, 0OxDDA4, 0OxDDAS8, or OXDDAC cause
unexpected results.

Poll the AES Command register or wait for the interrupt:

After the engine is loaded with the 128-bit block, it starts working automatically. The host must
not write anything to the engine until it finishes the calculation.

At this stage, the host must poll the <Termination> field in the AES Encryption Command
Register (Table 542 p. 642). When the value is 1, it is an indication to the host that the engine
finished the calculation process, and the result is ready.

Authentication calculation termination will activate the ZInt2 interrupt (see the Cryptographic
Engine/Security Accelerator/TDMA Interrupt Cause Register (Table 556 p. 645)), which can
serve as an alternative to host polling. This interrupt is set every time the <Termination>
changes from 0 to 1.

After the interrupt occurs, the host should write 0 to the <ZInt1> field in the Cryptographic
Engine/Security Accelerator/TDMA Interrupt Cause Register (Table 556 p. 645) to reset it.
Writing 1 has no effect.

Read AES result.

Once the termination bit has been asserted, the host may read the result. The result of the
encryption is stored in the AES Data In/Out registers (see Table 538 on page 640 through
Table 541 on page 641).

Four read operations are required to read the result, i.e., the host must read addresses
0xDDAO, 0xDDA4, 0xDDAS8, and OxDDAC.

Byte swap bits have no effect on reads, i.e., the engine does not perform any endianess change
on the result. To perform an endianess change, use the <OutByteSwap> field in the AES
Encryption Command Register (Table 542 p. 642).

Read keys.

It is possible to read the key values at anytime, by accessing the appropriate registers. To
perform an endianess change on key reads, use the <OutByteSwap>.

The AES Encryption Command Register controls the AES encryption modes. It also flags when
the processing is complete.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 186

Document Classification: Proprietary Information December 2, 2008, Preliminary

Cryptographic Engines and Security Accelerator (CESA)
Cryptographic Engines Operational Description

NOTE: The AES encryption key reads are necessary for the AES decryption engine
(see Section 10.3.5).

Figure 43 shows a typical AES encryption flow for a data block.

Figure 43: Typical AES Encryption Flow for a Data Block

ti

Is termination bit set?

Write to Command Register
(encryption mode and
endianess)

Write cipher key

y

Write 128 bit Data block

-

\d

No

Is termination bit set ? ~—>——

Yes
y

Read results

10.3.5 AES128 Decryption

The AES128 Decryption engine complies the AES standard as described in the FIPS draft.

This engine only performs decryption. The modes of operation and activation are similar to the AES
encryption. The difference is that before loading the key, the host must calculate a decryption key.
This process is performed by loading a key into the AES encryption unit, performing a “dummy”
encryption cycle, and then reading the resolved key from that engine. That result is the decryption

key.
A decryption key is the last 128/192/256 bits of the key block created by the key expansion
algorithm.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 187

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

As in the encryption engine, the decryption engine implements AES algorithm on a 128-bit data
block size in three possible mode sizes:

m 128-bit mode
m 192-bit mode
m 256-bit mode

Decryption calculation time is 20 cycles, without taking into consideration decryption key calculations
and read and write cycles, associated with writing the input data/key and reading the result.

To activate the AES Decryption engine, the following steps are required:
1. Calculate the decryption key.

This step is unique to the AES Decryption engine, and is only necessary when a new key, which
was never used before, is loaded. The AES algorithm uses a complex key schedule. Thus, at
the end of the encryption operation the key is changed. To perform AES decryption the engine
must actually start from the key at the end of the encryption key schedule. To decrypt a data
block with a given key, the host must first load this key into the decryption engine, then start the
key generation process setting <AesDecMakeKey> field in the AES Decryption Command
Register (Table 529 p. 638) bit to 1. At the end of the key generation process, the host reads the
key registers from the Encryption engine. This decryption key is loaded by the host into the
decryption key registers, to start the required description process.

To read the decryption key from the encryption engine, the host must set the
<AesDecKeyReady> field in the AES Decryption Command Register (Table 529 p. 639) to 1
prior to the reading of the AES encryption key registers. Setting this bit enables reading of the
internal key in the AES Encryption engine, which at the end of an encryption process, is the key
for the decryption start point.

The host may store the decryption key in memory, so that the decryption key calculation may be
skipped next time, and the same key used.

n

Verify the termination bit in the AES Decryption/Encryption Command regis‘[er.1

Write operational mode and endianess for fields in the AES Encryption Command
Register—This is the same as for the AES encryption.

w

Write decryption key.1
Write block for the 128-bit data.1
Poll the AES Decryption/Encryption Command register or wait for the interruptl.

Read AES resultl.
Read keys.

It is possible to read the key values at anytime by accessing the appropriate registers. To
perform an endianess change on key reads, use the <OutByteSwap> bit of the AES Encryption
Command Register (Table 542 p. 641) or the AES Decryption Command Register

(Table 529 p. 638).

The AES Decryption Key registers (see Table 517 on page 636 through Table 524 on page 637)
contain the AES key block for the Decryption engine. A read to these registers returns the last
key written there by the host. The host must load a pre-calculated decryption key to these
registers (as described previously, see “Calculate the decryption key.” on page 188).

© N o g &

NOTE: Directly loading an encryption key to these registers returns incorrect results!

The AES Decryption Command Register (Table 529 p. 638) controls the AES decryption
operation. It also flags when the processing is complete.

1. This is the same as for the AES encryption (see Section 10.3.4).

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 188

Document Classification: Proprietary Information December 2, 2008, Preliminary

Cryptographic Engines and Security Accelerator (CESA)
Security Accelerator Operational Description

Figure 44 shows a typical decryption flow for a data block.

Figure 44: Typical AES Decryption Flow for a Data Block

ki

Is termination bit set?

Calculate decryption key
using AES encryption engine

/

‘ No

Is termination bit set? —

Yes
v
Write to Command Register
(Decryption mode and
endianess)

v

Write Decryption Key
(calculated above)

v

Write 128 bit data block

4

No

Is termination bit set?

Read Digest results

10.4 Security Accelerator Operational Description

104.1 Using the Security Accelerator

The accelerator is activated by the CPU. The entire operation of the accelerator is performed in the
security accelerator local SRAM as follows:

m The CPU performs the following:

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 189

—
=
—

M ARVELL®

88F6180/88F619x/88F6281
Functional Specifications

1. Copies the packet to be processed into the security accelerator local SRAM or the uses the
TDMA engine instead for this process.

2. Prepares a descriptor, stating the required operation (see Section 10.4.4 "Security
Accelerator Descriptor Data Structure")

3. Activates the accelerator

The accelerator performs the following:

Reads the descriptor

Sets up the engines

Starts feeding the packet data into the engine one data block at a time
Waits for completion,

Reads the data from the engine

6. Stores the data in the security accelerator local SRAM.

IS

This process repeats until the entire packet is processed.

10.4.2 Hardware Flow Chart

Figure 45 shows the main accelerator decision flow.

Figure 45: Security Accelerator Main Decision Flow

Authentication before Encryption ?

Encryption only /
Encryption before Authentication ?

Authentication only /

Encryption before Authentication ?

Do Authentication Do Encryption

>

Authentication before Encryption ?

Authentication only ? Encryption only ?

Terminate and Disable
session

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 190

Document Classification: Proprietary Information December 2, 2008, Preliminary

10.4.3

Cryptographic Engines and Security Accelerator (CESA)
Security Accelerator Operational Description

Software Flow Chart

The managing software performs the following:

1.

7.

Uses the TDMA to copy the packet from main memory into the local SRAM of the security
accelerator. Since the local SRAM of the security accelerator is only 2 KB, it cannot contain
large packets.

Stores the cryptographic parameters relevant for the security accelerator operation to be
undergone by the packet.

Prepares a descriptor in the local SRAM of the security accelerator, stating the required
operation and parameters for the accelerator. The descriptor, which is 8 Dwords long, is
described in Section 10.4.4.

Writes the pointer to this descriptor into the selected session, the <SecurityAcclDescPtr0O> field
in the Security Accelerator Descriptor Pointer Register (Table 559 p. 647).

Activates the programmed session by setting the appropriate bit in the Security Accelerator
Command Register (Table 558 p. 647).

Waits for the session completion indication either by polling the Security Accelerator Status
Register (Table 561 p. 648) or by interrupt.

Uses the TDMA to copy the processed packet back into main memory.

Figure 46 illustrates the security acceleration flow for packet processing and Figure 47 illustrates the
enhanced mode.

Figure 46: Security Acceleration Flow for Packet Processing

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Are security
accelerator AND
TDMA available?

Activate TDMA:
Copy packet from DRAM to
security accelerator local
SRAM

-

Yes
‘ No

Is TDMA comp bit set?

Initialize security
accelerator local SRAM:
Descriptor and

Parameters tables

Yes

y
Initialize security
accelerator
descriptor pointer
register

Yes

\j

Activate security
accelerator

-

Yes L

No

Is termination bit
set?

% Yes

Activate TDMA:
Copy packet from
security accelerator

local SRAM to DRAM

Yes

A4 No

Is TDMA comp bit set?

Read results from SRAM
(processed Packet in DRAM)

Doc. No. MV-S104860-U0 Rev. C

Document Classification: Proprietary Information Page 191

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

10.4.3.1

Doc. No. MV-S104860-U0 Rev. C

Page 192

Attaching TDMA to Security Accelerator for Enhanced Software Flow

To perform the following flow, set the <WaitForTDMA> field and the <ActivateTDMA> field in the
Security Accelerator Configuration Register (Table 560 p. 648).

When the security accelerator operates in conjunction with the TDMA, the security accelerator can
operate solely with external DRAM. As indicated by the flow shown in Figure 47, the security
accelerator has the capability to activate the TDMA, determine the status of the TDMA, and provide
a single completion interrupt. The first five steps in the flow are performed by the software (SW) and
the remaining steps are preformed by the hardware (HW).

Figure 47: Security Acceleration Flow for Packet Processing—Enhanced Mode

SW initializes TDMA descriptors chain
(in DRAM)

v

SW initializes TDMA configuration
registers

Y
SW initializes security accelerates
descriptor and parameters (in DRAM
or local SRAM)

A Security accelerator HW further
SW initializes security accelerate processes the packet according the
configuration registers change Security accelerator descriptor,
placing the result in the Security
Y accelerator local SRAM
SW activates the security accelerate
HW Y
Y Security accelerator clears the COMP

and OWN bits of the TDMA and HW

Security accelerator HW activates activates TDMA for phase 2

TDMA +

\ TDMA copies the processed packet
TDMA copies the Security accelerator from the Security accelerator local
descriptor and parameters from DRAM SRAM to DRAM
to the Security accelerator local SRAM

\ /

TDMA indicates TDMA phase 2

TDMA copies the packet from DRAM completion to the Security accelerator
to the Security accelerator local SRAM HW by setting COMP bit to 1

o] Security accelerator sets bit
TDMA indicates the Security AccAndTDMAINt, and the completion
accelerate HW on TDMA phase 1

interrupt indication for the entire flow
completion by set‘ting OWN bitto 1

Copyright © 2008 Marvell
Document Classification: Proprietary Information December 2, 2008, Preliminary

Cryptographic Engines and Security Accelerator (CESA)
Security Accelerator Operational Description

Figure 48 depicts the TDMA descriptors structure for security accelerator packet processing when in
the security accelerator is operating in enhanced mode.

Figure 48: TDMA Descriptors Structure for Security Accelerator Packet Processing
in Enhanced Mode

Source packet —
First Descriptor

Y

Source packet —
Last Descriptor*

v

Security accelerator
OWN bit set

v

Destination packet —
First Descriptor

) J

Destination packet —
Last Descriptor?

v

NULL

1This step only applies if there is more than one source packet descriptor.

2This step applies if there is more than one destination packet descriptor.

10.4.3.2 Multi-Packet Chain Mode

The device security accelerator also supports Multi-Packet Chain mode. In this mode, multiple
packets can be chained and processed by the hardware without software interference. To enable
this mode, set the <MultiPacketChainMode> field in the Security Accelerator Configuration Register
(Table 560 p. 648) to 1.

In Multi-Packet Chain mode, the software prepares multiple packets in memory. For each packet that
needs to be processed, the software also prepares a set of descriptors, as described in Figure 48,
TDMA Descriptors Structure for Security Accelerator Packet Processing in Enhanced Mode, on
page 193 except for a small modification. Instead of a NULL pointer at the last descriptor of the
destination packet, the software includes pointer to the next source packet’s first descriptor.

If the Multi-Packet Chain mode is enabled, after writing the encrypted packet N back to memory:
1. The TDMA fetches the first descriptor of source packet N+1.

2. The security accelerator sets the <AccAndTDMAInt_CM> field in the Cryptographic
Engine/Security Accelerator/TDMA Interrupt Cause Register (Table 556 p. 646).

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 193

—
=
—

M ARVELL®

88F6180/88F619x/88F6281
Functional Specifications

When there are no more packets to process (meaning, the destination packet last descriptor
points to a NULL pointer), the security accelerator halts, and the Cryptographic Engine Interrupt
Cause register’'s <AccAndTDMAInt> bit[7] is set.

10.4.3.3 Encryption Operation

Initialization

To initialize the encryption operation follow these steps:

1. Reads Encryption mode from the Security Accelerator Data Structure Dword 0—Configuration
(Table 50 p. 196) and the configuration register of the selected cryptographic engine is written.

2. Reads the source and destination pointers from the Security Accelerator Data Structure Dword
1—Encryption Pointers (Table 51 p. 197).

3. Reads the number of bytes to be encrypted from the Security Accelerator Data Structure Dword
2—Encryption Data Length (Table 52 p. 198).

4. Reads the keys for encryption from the pointer specified in the Security Accelerator Data
Structure Dword 3—Encryption Keys Pointer (Table 53 p. 198) and writes to the selected
cryptographic engine.

5. When the mode selected is CBC, reads initial values from the pointer specified in the Security
Accelerator Data Structure Dword 4—Encryption Initial Values Pointer (Table 54 p. 198). For
DES/3DES, writes initial values to the engine.

Data Processing

Data processing must implement the following steps:

1. Reads data from the source pointer block by block for the specified data size (8 bytes for
DES/3DES, 16 bytes for AES). If the size is not a multiple of block size, the last block is padded
with zeros.

2. Feeds each block to the engine. When the engine finishes processing a block, the result is read
and written to the location specified by the destination pointer.

3. When using AES CBC encryption, XORs the first block data with the initial values before the
writing data to the engine. Each of the following blocks is first XORed with the result of the
previous block processing before it is written to the engine.

4. When using AES CBC decryption, XORs the result of the first block processing with the initial
values before writing it to the destination. Then, each processed block is XORed with the
previous block of data before it is written to destination.

Termination

Termination is carried out as follows:

1. When using CBC encryption, writes the last block of the destination data to memory, according
to the pointer specified in the Security Accelerator Data Structure Dword 4—Encryption Initial
Values Pointer, overwriting the previous data.

2. When using CBC decryption, writes the last block of source data to memory, according to the
pointer specified in the Security Accelerator Data Structure Dword 4—Encryption Initial Values
Pointer.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 194

Document Classification: Proprietary Information December 2, 2008, Preliminary

10.4.3.4

Copyright © 2008 Marvell

Cryptographic Engines and Security Accelerator (CESA)
Security Accelerator Operational Description

Authentication Operation

Initialization
To initialize the authentication operation follow these steps:

1.

Reads Authentication mode from the Security Accelerator Data Structure Dword
0—Configuration (Table 50 p. 196) and writes the configuration register of the Authentication
engine.

Reads the source pointer from the Security Accelerator Data Structure Dword 5—MAC Source
Pointer (Table 55 p. 199).

Reads the Digest location pointer and the number of bytes in the message from the Security
Accelerator Data Structure Dword 6—MAC Digest (Table 56 p. 199).

When the direction is “Decode”, reads the original digest first and stores it internally, then
overwrites it with zeros.

When using the Hash-based Message Authentication Code (HMAC) operation, reads the inner
initial values pointer from the Security Accelerator Data Structure Dword 7—MAC Initial Values
Pointers (Table 57 p. 199), and writes the values to the IV registers of the authentication engine.

Data Processing
Data processing is carried out as follows:

1. Reads data from the source pointer block-by-block (64 bytes per block).

2. Pads the last chunk of data with a single 1 bit, as many zeros as needed, and the original
message length. For HMAC modes, packet length is increased by 64 bytes to reflect the ipad
string length.

3. For HMAC modes, reads the outer initial values pointer from the Security Accelerator Data
Structure Dword 7—MAC Initial Values Pointers (Table 57 p. 199), and writes the values to the
IV registers of the Authentication engine. The digest from the previous section is now used as
the input data to the engine, padded again as specified, with the packet length now equal to the
key length plus 64 bytes (which now reflects the opad string length).

Termination

Termination is carried out as follows:

1. Reads the resulting digest from the engine, and stores it at the location that has been read from
the Security Accelerator Data Structure Dword 6—MAC Digest.

2. When the direction is “Decode”, compares the digest to the copy extracted from the original

message.

* |f the digests are not identical, an indication bit is set in the Security Accelerator Status
Register (Table 561 p. 648).

* |If the <StopOnDecodeDigestErr> field in the Security Accelerator Configuration Register
(Table 560 p. 648) was set, the session is immediately aborted.

Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 195

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

10.4.3.5 Security Accelerator in Fragmented and Non-Fragmented Modes
Non-Fragmented The Security Accelerator supports Non-Fragmented (multi-packet) mode. To
mode enable this mode, set the <MultiPacketChainMode> field in the Security
Accelerator Configuration Register (Table 560 p. 648) to 1. In this mode the
Security accelerator continues to process packets until TDMA reach the NULL
pointer (no more packets to process).
Fragmented The Security Accelerator also supports Fragmented (single packet) mode. To
mode enable this mode, set the <MultiPacketChainMode> field in the Security
Accelerator Configuration Register (Table 560 p. 648) to 0.
In this mode, the Security Accelerator can process fragmented packets one at a
time. Only single packets need to reside in the Security Accelerator local SRAM,
while the total size of the packet is limited to 64 KB.
Field Fragmentation mode is used to indicate if the current fragment is the first,
middle, or last in the packet.
The fragments must be inserted in order.
Processing the First Fragment
The first fragment is process as follows:
1. The operation starts in the same manner as in Non-fragmented mode. Finalization does not
performed.
2. In encryption, IV is not stored.
3. In authentication, data is not padded, the outer operation in HMAC does not occur, and the
digest is not written or compared.
Processing All of the Middle Fragments
The middle fragments are process as follows:
1. Initializations are not processed.
2. Inencryption, keys and IVs are not loaded to the engines. Finalization is not performed, as for
the first fragment.
3. In authentication, the digest is not read or cleared. Inner operation of HMAC does not occur.
Processing the Last fragment
The last fragment is process as follows:
1. Initializations are not processed, as for a middle fragment.
2. Finalization is processed as in Non-fragmented mode.
10.4.4 Security Accelerator Descriptor Data Structure
The descriptor data structure is described in Table 50 through Table 57.
Table 50: Security Accelerator Data Structure Dword 0—Configuration
Bits Field Function
1:0 Operation 00 = MAC only
01 = Cryptographic only
10 = MAC then cryptographic
11 = Cryptographic then MAC
3:2 Reserved Reserved
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 196 Document Classification: Proprietary Information December 2, 2008, Preliminary

Cryptographic Engines and Security Accelerator (CESA)
Security Accelerator Operational Description

Table 50: Security Accelerator Data Structure Dword 0—Configuration (Continued)

Bits Field Function
6:4 MacMode 100 = MD5
101 = SHA1

110 = HMAC-MD5
111 = HMAC-SHA1
All other combinations are reserved (no operation).

7 AuthResultLen Authentication result length
0 = Full size (128 bit in MD-5, 160b in SHA-1)
1=96b

9:8 EncryptMode 00 = Reserved (no operation)
01 =DES
10 = 3DES
11 = AES

11:10 Reserved Reserved

12 Direction 0 = Encode
1 = Decode

15:13 Reserved Reserved

16 EncryptConfidentia 0 = ECB

lityMode 1=CBC

19:17 Reserved Reserved

20 3DESMode 0=EEE
1=EDE

Relevant only in 3DES encryption mode.

31:30 FragMode Fragmentation mode
00 = Not fragmented
01 = First Fragment in packet
10 = Last Fragment in packet
11 = Middle Fragment in packet

Table 51: Security Accelerator Data Structure Dword 1—Encryption Pointers

Bits Field Function

10:0 EncrypSourceData Pointer to the first Dword of data to encrypt (Dword aligned)
Ptr Bits [2:0] must be 0.

15:11 Reserved Reserved

26:16 EncrypDesDataPtr Pointer to the first Dword of encrypted data (Dword aligned)
Bits [18:16] must be 0.

31:27 Reserved Reserved

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 197

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Table 52: Security Accelerator Data Structure Dword 2—Encryption Data Length

Bits Field

10:0 EncrypDatalLen

31:11 Reserved

Function

Numbers of bytes to encrypt

The length should be a multiple of encryption block size (8 bytes for
DES/3DES, 16 bytes for AES).

Bits [2:0] must be 0.

Bit [3] (in AES only) is reserved and assumed to be 0 regardless of
programming.

Reserved

Table 53: Security Accelerator Data Structure Dword 3—Encryption Keys Pointer

Bits Field

10:0 EncrypKeyPointer

31:11 Reserved

Function

Pointer to an array (EKey) of Dwords that contains the encryption key

(Dword aligned):

» EKey[0] = Key 0 low of DES/3DES / Key column 0 of AES
128/192/256

¢ EKey[1] = Key 0 high of DES/3DES / Key column 1 of AES
128/192/256

* EKey[2] = Key 1 low of 3DES / Key column 2 of AES 128/192/256

« EKey[3] = Key 1 high of 3DES / Key column 3 of AES 128/192/256

* EKey[4] = Key 2 low of 3DES / Key column 4 of AES 192/256

* EKey[5] = Key 2 high of 3DES / Key column 5 of AES 192/256

* EKey[6] = Key column 6 of AES 256

* EKey[7] = Key column 7 of AES 256

Bits [2:0] must be 0.

Reserved

Table 54: Security Accelerator Data Structure Dword 4—Encryption Initial Values

Pointer

Bits Field

10:0 EncryptlVPointer

15:11 Reserved

26:16 EncryptlVBufPoint
er

Doc. No. MV-S104860-U0 Rev. C

Function

Pointer to an array (EIV) of Dwords that contains the encryption initial
values (Dword aligned):

« EIV[0] = IV low of DES/3DES / IV 0 of AES

« EIV[1] = IV high of DES/3DES / IV 1 of AES

« EIV[2] = IV 2 of AES

« EIV[3]= IV 3 of AES

Reserved

e In Encryption mode, in the encryption direction:
Before encryption starts, the security accelerator copies the contents
of <EncryptlVPointer> (bit[15:0] in same register) to
<EncryptlVBufPointer>.

¢ In Encryption mode, in the decryption direction:
Before decryption starts, the security accelerator copies the contents
of <EncryptlVBufPointer> to <EncryptlVPointer>.

Bits [18:16] must be 0.

Copyright © 2008 Marvell

Page 198 Document Classification: Proprietary Information December 2, 2008, Preliminary

Cryptographic Engines and Security Accelerator (CESA)
Security Accelerator Operational Description

Table 54: Security Accelerator Data Structure Dword 4—Encryption Initial Values
Pointer (Continued)

Bits Field Function

31:27 Reserved Reserved

Table 55: Security Accelerator Data Structure Dword 5—MAC Source Pointer

Bits Field Function

10:0 MACSourceDataP Pointer to the first Dword of data to MAC (Dword aligned)
ointer Bits [2:0] must be 0.

15:11 Reserved Reserved

31:16 TotalMacDatalLeng In MAC Non Fragment mode, this field should be equal to
th MacDatalLength (see Table 56). In the last MAC fragment, it should be
equal to the total data lengths of all the packet fragments.

Table 56: Security Accelerator Data Structure Dword 6—MAC Digest

Bits Field Function

10:0 MACDigestPointer Byte location in which digest is stored during encoding or should be
stored during decoding
Bits [2:0] must be 0.

15:11 Reserved Reserved
26:16 MACDatalLength Numbers of bytes to MAC

31:27 Reserved Reserved

Table 57: Security Accelerator Data Structure Dword 7—MAC Initial Values
Pointers

Bits Field Function

10:0 MACInnerlVPointe Pointer to an array (MIIV) of Dwords that contains the MAC inner initial
r values (Dword aligned)
These values are the outcome of the hash function operation over the
64-byte string that equals the bitwise XOR between the key padded with
zeros and the ipad string.
e MIIV[O] = Inner IV 0 of HMAC-MD5/HMAC-SHA1
e MIIV[1] = Inner IV 1 of HMAC-MD5/HMAC-SHA1
e MIIV[2] = Inner IV 2 of HMAC-MD5/HMAC-SHA1
e MIIV[3] = Inner IV 3 of HMAC-MD5/HMAC-SHA1
e MIIV[4] = Inner IV 4 of HMAC-SHA1
Bits [2:0] must be 0.

15:13 Reserved Reserved

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 199

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Table 57: Security Accelerator Data Structure Dword 7—MAC Initial Values
Pointers (Continued)

Bits Field Function

26:16 MACOuterlVPoint Pointer to an array (MOIV) of Dwords that contains the MAC outer initial
er values (Dword aligned). These values are the outcome of the hash
function operation over the 64-byte string that equals the bitwise XOR
between the key padded with zeros and the opad string.
e MOIV[0] = Outer IV 0 of HMAC-MD5/HMAC-SHA1
¢ MOIV[1] = Outer IV 1 of HMAC-MD5/HMAC-SHA1
* MOIV[2] = Outer IV 2 of HMAC-MD5/HMAC-SHA1
* MOIV[3] = Outer IV 3 of HMAC-MD5/HMAC-SHA1
* MOIV[4] = Outer IV 4 of HMAC-SHA1
Bits [18:16] must be 0.

31:27 Reserved Reserved

10.5 TDMA Controller

The device has one independent TDMA engine. The TDMA engine optimizes system performance
by moving large amounts of data without significant CPU intervention.

The TDMA engine can move data between the DDR memory and the internal SRAM, and from the
internal SRAM to the DDR memory. It can transfer a single data buffer of up to 2 KB. It can also run
in Chain mode. That mode assigns a unique descriptor to each buffer.

As long as TDMA is active, any software read access to the local SRAM of the security accelerator is
forbidden. A software read access is not expected. See the software flow description in
Section 10.4.3.

10.5.1 Functional Description

When fetching data into the SRAM, the data is read from the source through the Mbus and written
directly into the internal SRAM.

When storing data from the SRAM, the data is read from the SRAM and written to the DDR memory
through the Mbus.

10.5.2 TDMA Descriptors

The TDMA Descriptor consists of four 32-bit registers.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 200 Document Classification: Proprietary Information December 2, 2008, Preliminary

Cryptographic Engines and Security Accelerator (CESA)

TDMA Controller

Figure 49: TDMA Descriptors

320

Reserved Byte Count

Source Address

Destination Address

Next Descriptor Pointer

Table 58: TDMA Descriptor Definitions

TDMA Descriptor

Byte Count

Source Address
Destination Address

Pointer to the Next
Descriptor

Own

Definition

Number of bytes of data to transfer.

The maximum number of bytes to which the TDMA controller can be
configured to transfer is 64 KB-1 (16-bit register).

This register decrements at the end of every burst of transmitted data
from the source to the destination. When the byte count register is 0, the
TDMA transaction is finished or terminated.

Bits [31:0] of the TDMA source address.
Bits [31:0] of the TDMA destination address.

Bits [31:0] of the TDMA Next Descriptor address for chained operation.

The descriptor must be 16 sequential bytes located at a 16-byte aligned

address (bits [3:0] are 0).

NOTE: This descriptor is used only used when the TDMA is configured
to Chained mode.

The <Own> field in the TDMA Byte Count Register (Table 574 p. 655)

acts as an ownership bit.

« If setto 1, the descriptor is owned by the device TDMA.

« If setto O, the descriptor is owned by the CPU. Once the CPU
prepares a buffer to be transferred, it sets the ownership bit. This
indicates that the buffer is owned by the TDMA.

| ;] | The source or destination address must be configured to the internal SRAM address

space.
Note P

10.5.3 TDMA Address Decoding

The TDMA shares four address windows. Each address window can be individually configured.

For each TDMA transaction, the TDMA engine first compares the address (source, destination, or
descriptor) against its address decoding registers. Each window can be configured to a different
target interface. Address comparison is completed to select the correct target interface.

Copyright © 2008 Marvell

December 2, 2008, Preliminary Document Classification: Proprietary Information

Doc. No. MV-S104860-U0 Rev. C
Page 201

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

10.5.4

10.54.1

10.5.4.2

TDMA Control

The TDMA has its own unique control register, where certain TDMA modes are programmed. The
following sections describe the bits for each field in the control registers.

Burst Limit
The TDMA byte count is divided into small bursts.

The burst limit can be 32 or 128 bytes. The limit determines the burst length of the TDMA transaction
against the source and destination. There are separate Burst Limit parameters for source and
destination.

The burst limit setting is affected by the source and destination characteristics, as well as by system
bandwidth allocation considerations.

|§ | | Regardless of the burst limit setting, the fetch of a new descriptor is always a 16-byte
burst. Therefore, descriptors cannot be located in devices that do not support such
Note bursts.

Chain Mode

When the <ChainMode> field in the Control Register (Table 573 p. 654) is set to 0, Chained mode is
enabled.

In Chain mode, at the completion of one buffer transfer, the Pointer to Next Descriptor provides the
address of the next TDMA descriptor. If it is a NULL pointer (value of 0), it indicates that this is the
last descriptor in the chain. If not, the TDMA engine fetches the new descriptor, and starts
transferring the new buffer.

Fetching of the next descriptor can be forced by bit [13] the <FetchND> field in the Control Register
(Table 573 p. 654).

Setting the <FetchND> to 1 forces a fetch of the next descriptor based on the value in the Pointer to
Next Descriptor register. This bit is reset to 0 after the fetch of the new descriptor is complete.
Setting <FetchND> is not allowed if the next descriptor pointer equals NULL.

The first descriptor of a chain can be set directly by programming the TDMA registers, or can be
fetched from memory, using the <FetchND> bit. If fetched from memory, the next descriptor address
must be first written to the Next Descriptor Pointer register of the TDMA. The TDMA then must be
enabled by setting bit [12] the <TDMAERN> field in the Control Register (Table 573 p. 654) to 1 (see
Section 10.5.4.3, TDMA Activation, on page 203) and by setting the <FetchND> field to 1.

When the TDMA transfer is completed, a TDMA completion interrupt is set. When running in Chain
mode, an interrupt is asserted only upon the completion of the last descriptor byte count.

If the <ChainMode> field in the Control Register (Table 573 p. 654) is set to 1, Chained mode is
disabled and the Pointer to Next Descriptor register is not loaded at the completion of the TDMA
transaction.

In Non-chained mode, the Byte Count, Source, and Destination registers must be

initialized prior to enabling the TDMA.
Note

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 202

Document Classification: Proprietary Information December 2, 2008, Preliminary

Cryptographic Engines and Security Accelerator (CESA)
TDMA Controller

Figure 50 shows an example of a TDMA descriptor chain.

Figure 50: Chained Mode TDMA

Byte Count

Source Address

Destination Address

Next Descriptor Pointer (0x10)

0x10 Byte Count
0x14 Source Address
0x18 Destination Address

Ox1c | Next Descriptor Pointer (0x100)

0x100 Byte Count
0x104 Source Address
0x108 Destination Address

0x10c | Next Descriptor Pointer (0x200)

0x200 Byte Count
0x204 Source Address
0x208 Destination Address
0x20c Null Pointer (0x0)

10.5.4.3 TDMA Activation

Software TDMA activation is preformed using the <TDMAEnN> field in the Control Register

(Table 573 p. 654) as follows:

m When set to 0, the TDMA is disabled.

m When setto 1, the TDMA is initiated based on the current setting loaded in the TDMA descriptor
(i.e., byte count, source address, and destination address).

An active TDMA can be temporarily stopped by clearing the <TDMAEnN> bit. Then the active TDMA
can be continued from the point where it stopped by setting the <TDMAEnN> bit back to 1.

Clearing the <TDMAERN> bit during a TDMA operation does not guarantee an immediate TDMA
pause. The TDMA engine must complete transferring the last burst it was processing before it
pauses. Software can monitor the TDMA status by reading the <TDMAAct> field (bit [14]).

The <TDMAACct> bit is read only.

m |fsetto 0, the TDMA is not active.

m If setto 1, the TDMA is active.

In Non-chain mode, this bit is de-asserted when the byte count reaches zero.
In Chain mode, this bit is de-asserted when the pointer to the next descriptor is NULL and the byte
count reaches zero.

10.5.4.4 Source and Destination Addresses Alignment

The TDMA implementation maintains aligned accesses to both source and destination.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 203

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

If source and destination addresses have different alignments, the TDMA performs multiple reads
from the source to execute a write of full burst limit to the destination. For example, if the source
address is 0x64 and the destination address is the internal SRAM:

1. The Burst limit of the source is set to 32 bytes.
2. The byte count is 64.
3. The TDMA perform three reads from the source:
a) 28 bytes from address 0x64 (due to the Mbus transfer limit).
b) 32 bytes from address 0x80 (due to the source burst limit).
¢) 4 bytes from address 0xAO.
This implementation guarantees that all reads from the source and all writes to the destination have
all byte enables asserted (except for the buffer start/end, in case they are not aligned). This is

especially important when the source device does not tolerate reads of extra data (destructive
reads) or when the destination device does not support write byte enables.

10.5.4.5 Descriptor Ownership
A typical application of Chain mode TDMA involves the CPU preparing a chain of descriptors in
memory and then preparing buffers to move the descriptors from source to destination.
The <Own> field in the TDMA Byte Count Register (Table 574 p. 655) (bit [31]) is assigned as an
ownership bit.
m If setto 1, the descriptor is owned by the device TDMA.

m Ifsetto 0, itis owned by the CPU. Once the CPU prepares a buffer to be transferred, it sets the
ownership bit. This indicates that the buffer is owned by the TDMA.

An attempt by the TDMA to fetch a descriptor that is owned by the CPU (which means the CPU did
not prepare a new buffer yet) results in an interrupt assertion, and the TDMA stops.

10.5.5 TDMA Interrupts

The TDMA interrupts are registered in the Cryptographic Engine/Security Accelerator/TDMA
Interrupt Cause Register (Table 556 p. 645). Upon an interrupt event, the corresponding cause bit is
setto 1. It is cleared upon a software write of 0.

The following interrupt events are supported:

= TDMA completion

m TDMA descriptor ownership violation

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 204 Document Classification: Proprietary Information December 2, 2008, Preliminary

XOR Engine
Theory of Operation

11 XOR Engine

This device integrates two XOR engines. Each one contain two XOR/DMA channels (for a total of
four XOR/DMA channels), as shown in Figure 51.

Figure 51: Schematic Diagram of the Two XOR Engines

XOR Engine0 XOR Enginel
XOR/DMA XOR/DMA XOR/DMA XOR/DMA
channelO channell channelO channell

The section describes a single XOR engine.

The XOR engine is a generic acceleration engine for storage applications that provides a low
latency, high throughput XOR calculation capabilities, enabling CPU XOR calculation off-loading in
various RAID implementations. In addition, the engine provides iSCSI CRC32C calculation, DMA
operation, memory initialization, support.

The XOR engine enables PC/Server manufactures (ROM), Internal RAID Controllers and External
RAID systems to speed up overall system performance.
XOR engine features:

m Two separate channels for enabling concurrent operation (for example, concurrent XOR and
iSCSI CRC32C calculations)

1 KB temporary result store queue per channel. Arranged as 128 X 8B buffer
Support packing/unpacking of unaligned data transfers

XOR calculation for up to eight data block sources

Data block size up to 16 MB

Programmable maximum burst size on read and write

Descriptor chain mechanism

Hot insertion of new descriptors to chain

iSCSI CRC32C calculation that is compliant with IPS iSCSI version 13 draft
DMA operation

Memory initialization support

Write access protection of configuration registers

11.1 Theory of Operation
XOR engine has four main operation modes:
m XOR calculation Mode (XOR)
m iSCSI CRC32C Calculation Mode (CRC)

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 205

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

= DMA Operation Mode (DMA)
m Memory initialization Mode (Meminit)

The engine has two independent channels. Each channel can be configured to one of the operation
modes at a time. The operation mode is defined through the <OperationMode> field in the XOR
Engine [0..1] Configuration (XEXCR) Register (n=0-1) (Table 588 p. 664). In the XOR, CRC and
DMA operation modes, the XOR engine is controlled by chain descriptors and responds to similar
activation scheme. These modes differ only in the interpretation of the chain descriptor fields. In
Memory Initialization (MemInit) mode, the XOR engine responds to different activation schemes. It is
controlled by programming internal registers directly. On all operation modes, XOR engine uses the
same address decoding scheme.

Upon startup, the two XOR channels are in an inactive state and can be configured to any operation
mode (XOR, CRC, DMA, or Memlnit). After being configured, the XOR engine channel can be
activated. It can be stopped or paused by software at any time. After stopped by software, the
engine re-enters inactive state and can be configured to another operation mode and re-activated.
This also applies if the XOR engine channel finished the operation (reached End Of Chain) without
being stopped by the software. Again, the engine re-enters an inactive state and can be configured
to another operation mode, and re-activated. After paused by software, the XOR engine channel
suspends the current operation at the earliest opportunity. Upon activating the channel again, it
resumes executing the same operation.

The two XOR engine channels are independent in their operation modes. The only exception is that
both engines must not be configured to Memlnit operation modes. These modes share hardware
resources.

| ;] | Attempting to change the channels operation mode during a pause will result in
unexpected behavior.

Note
11.1.1 XOR Operation
The XOR engine enables block XOR calculation in hardware. It performs the XOR operation on
multiple blocks of source (incoming) data and stores the result back in a destination block. The
source and destination addresses are specified through a chain descriptor.
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 206

Document Classification: Proprietary Information December 2, 2008, Preliminary

XOR Engine
Theory of Operation

Figure 52 shows how the XOR operation works with multiple blocks of source (incoming) data and

stores the result back in a destination block.

Figure 52: XOR Operation with Multiple Incoming Data Blocks

Source 0

Source 1

XOR Engine

Sourcen

h

88F6180/88F619x/88F6281

Destination

destination = (source 0) xor (source 1) ... xor (source n)
number of sources can beup to 8 (n =7)

The parameters of the XOR operation are configured by writing the relevant information to a chain
descriptor. The relevant parameters consist of source addresses, destination addresses, the number
of bytes to transfer, and various control information.

When activated in XOR mode, the XOR engine fetches the first descriptor and starts performing the
XOR operation according to its parameters. After finishing the operation, the XOR engine closes the
descriptor by writing back the status word to the descriptor and returning the ownership of it to the

CPU. The XOR engine checks whether it reached the end of the descriptor chain. If it is the end, the
engine enters an inactive state and waits to be re-activated by software. If it did not reach the end of

the chain, it progresses to the next descriptor, and so on.

The basic XOR operation algorithm is as follows:
Read data from the first enabled source block to the internal buffer.

Read from the second enabled source block and calculate XOR with the data from the internal
buffer. The intermediate result is stored in the internal buffer.

Step 2 is repeated for the rest of the source buffers until all enabled source buffers are handled

1.
2.

Copyright © 2008 Marvell

December 2, 2008, Preliminary

(up to 8 sources).

Write the internal buffer to the destination buffer.

Repeat stages 1-4 until the descriptor byte count in is reached.

Document Classification: Proprietary Information

Doc. No. MV-S104860-U0 Rev. C
Page 207

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

11.1.2

ISCSI CRC32C Calculation

In addition to the XOR operation, the XOR engine also provides iSCSI CRC32C calculation
capabilities. It performs iSCSI CRC32C calculation on a source block and writes the result back to a
descriptor, as shown in Figure 53.

Figure 53: XOR iSCSI CRC32C Operation

Source

Read one Block

Write the result to
the destination.

iSCSI CRC32C
Engine

88F6180/88F619x/
88F6281

Destination

A

The source blocks are specified through a chain of descriptors. Parameters of the iISCSI CRC32C
operation are configured in the same way as in XOR operation - writing the relevant information to a
chain descriptor. The relevant parameters consist of source addresses, destination address, size of
source block, and ‘last block in CRC source chain’ indication.

The CRC source block in CRC mode can be scattered over a few target blocks. It can be in
non-consecutive memory spaces and even in different interfaces. The CRC Source block is
represented by a source block chain of descriptors. Every descriptor represents one consecutive
section of the CRC source block.

When activated in CRC mode (see the <OperationMode> field in the XOR Engine [0..1]
Configuration (XEXCR) Register (n=0-1) (Table 588 p. 664) is set to CRC), XOR engine executes
iSCSI CRC32C calculation according to the source block chain. The last descriptor in a source block
chain is marked as ‘last’. After the calculation is finished, the 32-bit result is written to the CRC
source block chain’s last descriptor.

The chain descriptor operation is slightly different in CRC-32 mode than in XOR mode. In XOR
mode, every descriptor stands for a self contained XOR operation. In CRC mode, one CRC
operation (one CRC source block) can be represented by a number of chain descriptors, thus
enabling concatenation of a few data sources to one block, for CRC calculation. The descriptor
chain is constructed of several source block chains.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 208

Document Classification: Proprietary Information December 2, 2008, Preliminary

11.1.3

11.1.4

11.2
11.2.1

XOR Engine
Descriptor Chain

The Basic iSCSI CRC32C operation is as follows:

1. Read data from the source block to internal buffer.

Calculate iISCSI CRC32C on the internal buffer and store intermediate result.
Repeat step 1-2 for the rest of the source block, until all of the blocks are processed.
Repeat steps 1-3 for the rest of the blocks in the source block chain.

Write result to the last descriptor.

DMA Operation

The XOR engine also provides generic DMA capabilities—copying of a source block to a destination
block. The source blocks are specified through a chain of descriptors. Parameters of the DMA
operation are configured in the same way as in XOR operation - by writing the relevant information
to a chain descriptor. The relevant parameters consist of source address, destination address, and
size of source block.

a s~ wD

When activated in DMA mode, the XOR engine fetches the first descriptor and starts performing the
DMA operation according to its parameters. After finishing the operation, the XOR engine closes the
descriptor by writing back status word to the descriptor and returning the ownership of it to the CPU.
The XOR engine checks whether it reached the end of the descriptor chain. If the end has been
reached, the engine enters an inactive state and waits to be re-activated by the software. If it did not
reach the end of the chain, it progresses to the next descriptor, and so on.

Memory Initialization

The XOR engine provides memory value initialization capabilities. It performs writes of pre-defined
values to a destination memory block. The destination address and block size are specified directly
by internal registers. The relevant parameters consist of a destination address, an initial memory
value, and a size of the destination block.

Only one channel may be configured to MemInit mode at a time. If both channels are

Not configured to MemlInit mode, engine behavior is unpredictable.
ote

When activated in MemInit mode, the XOR engine executes a memory initialization operation
according to the relevant internal registers. It will write the 64-bit initial value, specified by the XOR
Engine Initial Value Low (XEIVRL) Register (Table 599 p. 670) and XOR Engine Initial Value High
(XEIVRH) Register (Table 600 p. 670), in a cyclical method to the destination block. Upon
completion of the memory initialization operation, the XOR engine channel asserts the EOC
interrupt.

Descriptor Chain

Descriptor Format

The XOR engine descriptor format supports 32-bit addressing. In XOR mode, the descriptor consists
of sixteen 32-bit words which totals the 64B size of each descriptor. In CRC and DMA modes, only
the upper 32B of the descriptor is needed. Therefore, the descriptor consists of eight 32-bit words,
totalling to a 32B size for each descriptor (see Figure 54).

By fetching a descriptor from memory, the XOR engine gets all the information about the next
operation to be performed. When the XOR engine finishes the operation associated with a
descriptor, it closes the descriptor by updating the status word. This means the operation completed
successfully and returns the ownership of the descriptor to the CPU.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 209

®

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

|:: | | The chain descriptor operation is valid only in XOR, CRC and DMA operation modes. In
Meminit mode, the XOR engine receives the operation data directly from its internal
Note registers.

Figure 54: XOR Descriptor Format

31 0
0x0 Status
0x4 CRC-32 Result
0x8 Command
CRC & DMA 0xC Next Descriptor Address
Descriptor < 0x10 Byte Count
0x14 Destination Address
0x18 Source Address #0
XOR _ Ox1C Source Address #1
Descriptor 0x20 Source Address #2
0x24 Source Address #3
0x28 Source Address #4
0x2C Source Address #5
0x30 Source Address #6
0x34 Source Address #7
0x38 Reserved
\ 0x3C Reserved

The XOR descriptor must be 64 Bytes aligned (Address[5:0]=0). The CRC and DMA descriptors
must be 32 Bytes aligned (Address[4:0]=0). There are no restrictions on source or destination data
block alignment. Source and destination blocks can have different alignments. Different source
blocks can have different alignments as well.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 210 Document Classification: Proprietary Information December 2, 2008, Preliminary

XOR Engine
Descriptor Chain

Table 59: Descriptor Status Word Definition

Bit Field
29:0 Reserved

30 Success

31 Own

Description
Reserved.

Successful descriptor execution indication.
Indicates whether the operation completed successfully.
0 = Completed unsuccessfully - Transfer terminated before the whole byte count was
transferred.
1 = Completed successfully - The whole byte count transferred.
That field is updated upon closing the descriptor

Ownership Bit
Indicates whether the descriptor is owned by the CPU or the XOR engine.
0 = CPU owned.
1 = XOR engine owned.
That field is updated upon closing a descriptor - XOR engine gives back ownership to the
CPU by clearing the own bit.

Table 60: Descriptor CRC-32 Result Word Definition

Bit Field
31:0 CRCresult

Description

Result of CRC-32 calculation

Valid only in the last descriptor of a CRC source block chain, after it was closed by the
XOR engine.

NOTE: Valid only in CRC mode.

Table 61: Descriptor Command Word Definition

Bit Field

0 SrcOCmd
1 Src1Cmd
2 Src2Cmd
3 Src3Cmd
4 Src4Cmd

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Description

Specifies the type of operation to be carried out on the data pointed by SA#0 (Source
Address 0 word of the descriptor).
0x0 = Null Command - Data from Source will be disregarded in the current descriptor
operation.
0x1 = XOR Command - Data from source will be transferred and will be significant in the
XOR calculation.
NOTE: Relevant only on XOR operation mode. disregarded in all other operation modes.

Specifies the type of operation to be carried out on the data pointed by SA#1 (Source
Address #1 word of the descriptor).
NOTE: Relevant only on XOR operation mode. Disregard in all other operation modes.

Specifies the type of operation to be carried out on the data pointed by SA#2 (Source
Address #2 word of the descriptor).
NOTE: Relevant only on XOR operation mode. Disregard in all other operation modes.

Specifies the type of operation to be carried out on the data pointed by SA#3 (Source
Address #3 word of the descriptor).
NOTE: Relevant only on XOR operation mode. Disregard in all other operation modes.

Specifies the type of operation to be carried out on the data pointed by SA#4 (Source
Address #4 word of the descriptor).
NOTE: Relevant only on XOR operation mode. Disregard in all other operation modes.

Doc. No. MV-S104860-U0 Rev. C
Document Classification: Proprietary Information Page 211

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Table 61: Descriptor Command Word Definition (Continued)

Bit Field Description

5 Src5Cmd Specifies the type of operation to be carried out on the data pointed by SA#5 (Source
Address #5 word of the descriptor).
NOTE: Relevant only on XOR operation mode. Disregard in all other operation modes.

6 Src6Cmd Specifies the type of operation to be carried out on the data pointed by SA#6 (Source
Address #6 word of the descriptor).
NOTE: Relevant only on XOR operation mode. disregarded in all other operation modes.

7 Src7Cmd Specifies the type of operation to be carried out on the data pointed by SA#7 (Source
Address #7 word of the descriptor).
NOTE: Relevant only on XOR operation mode. Disregard in all other operation modes.

29:8 Reserved Reserved

30 CRClLast Indicated last descriptor in a CRC-32 calculation chain.
0 = Not last descriptor in a CRC calculation chain.
1 = Last descriptor in a CRC calculation chain. When closing the descriptor, the XOR
engine writes the CRC result to its CRC-32 Result word. The next descriptor in the
descriptor chain initiates a new CRC calculation. If the source block is represented by
one descriptor only, it should be marked as last.
NOTE: Relevant only in CRC operation mode.

31 EODIntEn End Of Descriptor Interrupt Enable.
Specifies if the EOD interrupt is asserted upon closure of that descriptor.
1 - EOD Enabled.
0 - EOD Disabled.

Table 62: Descriptor Next Descriptor Address Word

Bits Field Description

310 NDA Next descriptor address pointer
XOR Mode: NDA must be 64-byte aligned (bits[5:0] must be 0x0).
CRC/DMA Mode: NDA must be 32-byte aligned (bits[4:0] must be 0x0).
NDA field of the last descriptor of a descriptor chain must be NULL.

Table 63: Descriptor Byte Count Word

Bit Field Description

23:0 ByteCount XOR mode: Size of source and destination blocks in bytes.
CRC mode: Size of source block part represented by the descriptor.
DMA mode: Size of source and destination block in bytes.
Minimum blocks’ size: 16B.
Maximum blocks’ size: 16MB-1

31:24 Reserved Reserved.

Table 64: Descriptor Destination Address Word

Bits Field Description

310 DA Destination Block address pointer
XOR Mode: Destination Block address pointer.
CRC mode: Not used.
DMA mode: Destination Block address pointer.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 212 Document Classification: Proprietary Information December 2, 2008, Preliminary

XOR Engine
Address Decoding

Table 65: Descriptor Source Address #N Words

Bits Field Description
310 SA#0 source block #0 address pointer.
Source XOR Mode: Source Block #0 address pointer.
Address #0 CRC mode: Address pointer to part of source block represented by the descriptor.
DMA Mode: Source Block address pointer.
31:0 SA#N source block #N address pointer.
[N=1..7] XOR mode: Source Block #N address pointer.
Source CRC mode: Not used.

Address #N DMA mode: Not used.

11.3

11.3.1

11.3.2

11.3.3

Address Decoding

The XOR engine has eight address windows that can be individually configured. With each
transaction, the XOR engine first compares the address (source, destination, or descriptor) against
the address decoding registers. Each window can be configured to a different target interface.
Address comparison is done to select the correct target interface. If the address does not match any
of the address windows (no hit), an interrupt is generated and the XOR engine is stopped. If the
address matches more than one address window (multiple hit), an interrupt is generated and the
XOR engine is stopped.

For the XOR engine to avoid accessing forbidden address space (due to a programing bug), each
channel uses access protection logic that prevents it from read/write access to specific address
windows. In case of access violation, the operation is stopped, the channel becomes inactive, and
an interrupt is asserted.

Target Interface

Source data blocks, destination data block, and descriptors can be targeted to any of the chip
Interfaces. The unique attributes of each interface are configured per address window through the
XOR engine BARs (Base Address Registers) (see Appendix A.11.1, XOR Engine Address Decoding
Registers, on page 659).

64-bit Addressing

Four of the eight address windows have an upper 32-bit address register. These are used for
accessing interfaces that support more than 4 GB of address space. The address generated on the
interface is composed of the 32-bit address issued by the XOR engine, if it hits the relevant address
window, concatenated with the High Remap register.

The XOR engine address decoder can map a total of up to a 4 GB address space.

Address Override

The XOR engine also supports an address override feature. Each of the sources, destination, or
next descriptor addresses of each channel, can be configured to use the override feature by using
the XOR Engine [0..1] Address Override Control (XEAOCR) Register (n=0-1) (Table 586 p. 661).
When override is enabled and the respective pointer field is set to 0x0, the transaction target
interface, and attributes, are taken from the Base Address register 0 (XEBARO) and the upper 32
bits of the 64 bit address are taken from High Address Remap Register 0 (XEHARRO). When set to
0x1, these items are taken from XEBAR1and XEHARRL1 respectively, and so on for pointer values of
0x2 and 0x3.

This address override feature, enables additional address de-coupling. For example, it allows the
use of the same source and destination addresses, while the source is targeted to one interface and
destination to a different interface.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 213

®

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

|:: | | When using the address override option, no window access control is performed. For
example if override is set to SA#5 of channel 1, any address that is specified in the
Note descriptor as SA#5 is directly accessed without any window access control check.

11.4 Arbitration

The two XOR engines share the same Mbus port.
The arbitration is performed in two stages.
1. Arbitration between the two XOR channels within each engine.

2. Arbitration between the chosen XOR channel of XOR engine0, and the chosen XOR channel of
XOR enginel.

11.4.1 Arbitration Between XOR Engines O and 1

A fixed round robin arbitration is performed between the two XOR engines. If both are active, the
effective bandwidth allocation in congestion conditions is approximately 50% for each unit.

11.4.2 Arbitration Between XOR Engine Channels

The two XOR engine channel use the same Mbus port. A programmable weighted round robin
arbiter controls the bandwidth allocation for each channel on the Mbus port. Each channel can be
configured to have a different bandwidth allocation. Figure 55 shows an example of the arbitration
cycle.

Figure 55: Programmable Channel Pizza Arbiter

Arbitration
wcle
Cho
Cho Chi
Chi Cho
Current
ointer
Cho

The pizza arbiter has eight slices, each slice can be configured to serve a different channel. In
Figure 55, channelO gets 75% of the bandwidth, and channell 25% each. At each clock cycle, the
arbiter samples all channels requests and gives the bus to the next channel according to the “pizza”
setting.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 214 Document Classification: Proprietary Information December 2, 2008, Preliminary

XOR Engine
XOR Engine Programming

The bandwidth allocation is flexible. The arbiter influences the bandwidth allocation only when two
ports demand Mbus port service at the same time (congestion conditions). If only one channel
demands Mbus bandwidth, the channel receives 100% of the bandwidth. For example, in Figure 55,
only ChannelO is active and so it gets 100% of the Mbus port bandwidth.

11.5 XOR Engine Programming
11.5.1 Programming in XOR, CRC, and DMA modes

The XOR engine operation is similar in XOR, CRC, and DMA modes. All of these modes use
descriptor chains. The modes differ in their configuration parameters and in their chain descriptor
size and field interpretation.

11.5.1.1 Activation on Startup

To activate an XOR engine for the first time after Reset de-assertion, the software must perform the

following sequence:

1. Confirm that the relevant XOR engine channel is inactive (the <XEstatus> field in the XOR
Engine [0..1] Activation (XEXACTR) Register (n=0-1) (Table 589 p. 666) is set to 0).

2. Initialize the relevant XOR engine channel configuration through the XOR Engine [0..1]
Configuration (XEXCR) Register (n=0-1) (Table 588 p. 664).

3. Prepare the descriptor (or chain of descriptors) in memory.

4. Update the relevant XOR Engine [0..1] Next Descriptor Pointer (XEXNDPR) Register (n=0-1)
(Table 590 p. 666) register.

5. Set the <XEStart> field in the XOR Engine [0..1] Activation (XEXACTR) Register (n=0-1)
(Table 589 p. 665).

6. When the XOR engine activates the relevant channel (<XEstatus> field in XEOACTR or
XE1ACTR is set).

When activated (<XEstatus> is set), the XOR engine fetches the descriptor pointed by the XOR

Engine [0..1] Next Descriptor Pointer (XEXNDPR) Register (n=0-1) (Table 590 p. 666), and starts

performing the operation on it. Upon completion of the operation it progresses to the next descriptor.

It continues this operation until it reaches the end of the descriptor chain (Next descriptor Address

field of current descriptor = NULL). When it reaches the end of the chain, the XOR engine asserts an

interrupt (EOC - End Of Chain interrupt), clears the <XEstatus> bit and enters an inactive state. This

inactive state is equal to the initial state of XOR engine upon startup.

11.5.1.2 Update Descriptor Chain
A new descriptor can be added to the chain even when the XOR engine is active (<XEstatus>=1).
The software adds new descriptors to the descriptor chain by performing the following:

1. Prepares new descriptors (or chain of descriptors) in memory.
2. Updates the next descriptor address field in the former last descriptor.

| ;I | If the ownership mechanism is violated, the CPU will write to an XOR engine owned

Not descriptor (the former last one). This does not affect the XOR engine operation.
ote

11.5.1.3 Pause Operation

The pause operation enables a temporary halt of the current descriptor chain processing and then a
continuation of it without any impact on the execution, except the delay caused by the pause period.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 215

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

11.5.1.4

When paused the XOR engine channel does not initiate any requests to the Mbus, releasing its
resources to other units.

The pause operation can be used for boosting performance of a mission critical process for a
specific time period. After the critical time period is over, the software signals the XOR engine
channel to continue processing the current descriptor chain from the point at which it was paused.
The software can pause the XOR engine channel operation during an active phase by performing
the following:

1. Confirm that the relevant XOR engine channel is active (<XEpause> field in the XOR Engine
[0..1] Activation (XEXACTR) Register (n=0-1) (Table 589 p. 665) is set). If it is not active, the
pause operation is not necessary.

2. Set the relevant <XEpause>.

3. Check the relevant <XEstatus> field. When it is cleared, the pause operation completed.

When paused (<XEpause> is set), the XOR engine channel suspends the current operation at the
earliest opportunity, and enters a pause state. Upon entering a pause state, the XOR engine channel
signals the software by clearing the <XEstatus> bit in the activation register and asserting the
paused interrupt.

Receipt of an EOC interrupt before a paused interrupt, after initiation of a pause operation, implies
that:

m The channel completed the current descriptor chain before the pause operation.

m The channel is in stop mode and not in paused mode.

The software must act accordingly and reactivate the channel according to the Re-Activation After
Stop information.

Re-Activation After Pause

To re-activate the channel, the software must set the <XErestart> field in the relevant activation
register (XEOACTR or XELACTR). When <XEstatus> field is set, the XOR engine has resumed
operation.

After pausing a channel, it is not allowed to stop it. To stop the channel, the software must first
perform a re-activation after pause operation. Only after the channel becomes active can it be
stopped.

Stop Operation

The stop operation terminates processing of an XOR engine channel’s current operation. After stop,

the current operation cannot be resumed and a new operation must be loaded to the XOR engine

channel. The software can stop the XOR engine channel operation while active, by performing the
following:

1. Check that the relevant XOR engine channel is active (<XEstatus> field in the XOR Engine
[0..1] Activation (XEXACTR) Register (n=0-1) (Table 589 p. 666) is set). If it is not active, the
stop operation is not necessary.

2. Set the relevant <XEstop> field.

3. Check the relevant <XEstatus> field. When it is cleared, the stop operation is completed.
When stopped (<XEstop> is set), the XOR engine stops performing the operation at the earliest
opportunity and enters an inactive state. Upon entering an inactive state, the XOR engine closes the
current descriptor and signals the software by clearing the <XEstatus> field in the activation register
and asserting the stopped interrupt. Inactive state is similar to Initial state of XOR engine on startup.

Re-Activation After Stop

Re-activation is similar to activation on startup (see Section 11.5.1.1, Activation on Startup,
on page 215).

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 216

Document Classification: Proprietary Information December 2, 2008, Preliminary

11.5.1.5

XOR Engine
XOR Engine Programming

The software must perform the following steps:

1. Confirm that the relevant XOR engine channel is inactive. The <XEstatus> field in the XOR
Engine [0..1] Activation (XEXACTR) Register (n=0-1) (Table 589 p. 666) is set to 0.

2. Initialize the relevant XOR engine channel through the XOR Engine [0..1] Configuration
(XEXCR) Register (n=0-1) (Table 588 p. 664).

3. Prepare a descriptor (or chain of descriptors) in memory.

4. Update the XOR Engine [0..1] Next Descriptor Pointer (XEXNDPR) Register (n=0-1)
(Table 590 p. 666).

5. Set the <XErestart> field.

6. When the XOR engine activates the relevant channel (the<XEstatus> field in the XOR Engine
[0..1] Activation (XEXACTR) Register (n=0-1) (Table 589 p. 666) is set), the activation
sequence is complete.

When activated (<XEstatus> is set), the XOR engine fetches the descriptor pointed by the XOR
Engine [0..1] Next Descriptor Pointer (XEXNDPR) Register (n=0-1) (Table 590 p. 666), and starts
performing the operation on it. Upon completion, it progresses to the next descriptor and continues
until the end of the descriptor chain is reached, the EOC - Next descriptor Address field of the
current descriptor equals NULL. Upon reaching the end of the chain, the XOR engine clears the
<XEstatus> bit and enters inactive state. This state is equal to the initial state of XOR engine on
startup.

Reaching End of Descriptor Chain

Upon reaching the end of the descriptor chain, the XOR engine asserts an EOC (End Of Chain)
interrupt and enters an inactive state. It waits to be re-activated by the software (setting <XEStart>
field in the XOR Engine [0..1] Activation (XEXACTR) Register (n=0-1) (Table 589 p. 665)).

Upon receiving an EOC interrupt, two options must be examined by the software:
m True EOC: The XOR engine reaches the end of a descriptor chain.

m False EOC: The chain was updated and the XOR engine is not in the current EOC. This can
occur when software updates the descriptor chain while the XOR engine is processing the
former last descriptor in the chain. In this case, the XOR Engine [0..1] Next Descriptor Pointer
(XEXxNDPR) Register (n=0-1) (Table 590 p. 666) has a NULL value. Although it did not reach a
true EOC, the XOR engine enters an inactive state.

To determine which option is valid, and to act accordingly, the software must check if the XOR
engine current descriptor is currently the last descriptor in the chain. For example, read the XOR
Engine [0..1] Current Descriptor Pointer (XEXCDPR) Register (n=0-1) (Table 591 p. 666) and match
it with the software’s current descriptor parameter.

If it is true, EOC acts according to activation after stop.

If it is false EOC forces the XOR engine to re-read the current descriptor. That is done by writing to
the current descriptor pointer, that was read from XECDPR, to the Next descriptor Pointer Register
(XENDPR), and performing an activation after stop, set the <XEstart> bit in the XOR Engine [0..1]
Activation (XEXACTR) Register (n=0-1) (Table 589 p. 665).

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 217

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

11.5.1.6 Synchronizing Software and Hardware

Figure 56: Software and Hardware Synchronization

Software
Hardware

Activation ‘ Initialize XorEngine
Wait for XEstart=1 .
Inactive

chain in memory.

‘ Prepare Descriptor D

Initialize .
Set XEactive Active
Write XENDPR
- Next Descriptor
Pointer
Fetch ND according to
XENDPR
Set XEstart D
‘ Execute D
Chain Prepare New
Descriptor chain in
Update memory. ‘ Close Descriptor D

Update NDA Field of
former last descriptor
in chain.

as this the
last descriptor
in the chain 2

YES

¥

Interrupt: EOC
Clear XEactive

NO

<

Interrupt: EOD

Upon EOC interrupt

End of C_:hain or XEactive=0 without
Handling XEstop operation
Check if True/False
EOC
Get Proper NDA
11.5.2 Programming in MemInit modes

Memlnit mode is programmed and controlled directly through internal registers (without using
descriptor chains).

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 218 Document Classification: Proprietary Information December 2, 2008, Preliminary

XOR Engine
Burst Limit

11.5.2.1 Activation

To activate the XOR engine, the software must perform the following sequence:

1. Confirm that XOR engine relevant channel is inactive. The <XEstatus> field in the XOR Engine
[0..1] Activation (XEXACTR) Register (n=0-1) (Table 589 p. 666) is set to 0.

2. Initialize the relevant XOR engine channel configuration through the XOR Engine [0..1]
Configuration (XExCR) Register (n=0-1) (Table 588 p. 664).

3. Program the relevant internal registers (XOR engine MemlInit Registers).

4. Setthe <XErestart> field.

11.5.2.2 Stop Operation

The stop operation terminates a XOR engine channel’s processing of the current operation. After
stop, the current operation cannot be resumed. A new operation must be loaded to the XOR engine
channel.

To stop the XOR engine channel operation while active, performing the following:

1. Check that the relevant XOR engine channel is active. The <XEstatus> field in the XOR Engine
[0..1] Activation (XEXACTR) Register (n=0-1) (Table 589 p. 666)Register must be set. If it is not
active, the stop operation is not necessary.

2. Set the <XEstop> field in the relevant activation register.
3. Check the relevant <XEstatus> field. When it is cleared, the stop operation is completed.

When stopped (<XEstop> is set), the XOR engine stops performing the operation at the earliest
opportunity and enters an inactive state. Upon entering inactive state, the XOR engine signals the
software by clearing the <XEstatus> field in the activation register and asserting the stopped
interrupt. The inactive state is similar to initial state of the XOR engine on startup.

11.5.3 Internal Registers Write Access Protection

When an XOR engine channel is active, all the registers that are related to that channel, the shared
address decoding registers, the shared channel arbitration registers and the shared memory
initialization initial value registers, are write access protected. Every write request to those internal
registers when the channel is active (<XEstatus> of the relevant channel is set) is silently
disregarded. The only channel related registers that can be write accessed during the channel active
period are the activation registers, the shared interrupt cause and mask registers, and the debug
register.

This design prevents configuration changes during channel operation. Changes during a channel’s
operation can cause unpredictable results. The register access protection can be de-activated per
channel through the relevant <RegAccProtect> field in the XOR Engine [0..1] Configuration
(XEXCR) Register (n=0-1) (Table 588 p. 665).

If at least one of the channels enables register write access protection, write accesses to internal
registers shared by channels (for example, address decoding, channel arbitration, and memory
initialization initial value registers) are disregarded.

Read requests for all internal registers are enabled at all times, regardless of the channel activation
status (except for WO - Write Only registers).

11.6 Burst Limit
The maximum burst sizes of different transaction types on the Mbus can be configured through the
XOR Engine [0..1] Configuration (XEXCR) Register (n=0-1) (Table 588 p. 664).
m Data read (reading a source buffer) maximum burst size: 32B / 64B / 128B.
m Data write (writing to destination buffer) maximum burst size: 32B / 64B / 128B.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 219

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

11.7

A descriptor read, fetching a descriptor, is always a 32B burst size. In XOR mode, almost all the 64
bytes of the descriptor are relevant and two 32B read requests are required. In CRC mode, only the
upper 32B of the descriptor are relevant and one 32B read request is sufficient.

Descriptor write, closing a descriptor, is always 8B burst size (Status and iISCSI CRC32C Result
words).

Errors and Interrupts

The XOR engine interrupts are registered in the XOR Engine Interrupt Cause (XEICR1) Register
(Table 593 p. 667). Upon an interrupt event, the corresponding cause bit is set to 1. It is cleared
upon a software write of 0.

The XOR Engine Interrupt Mask (XEIMR) Register (Table 594 p. 668) controls whether an interrupt
event causes an interrupt assertion. The setting of the mask register only affects the interrupt
assertion. This setting has no effect on the cause register bits setting.

The XOR engine interrupts can be divided to two groups:

m Error Interrupts: Descriptor ownership violation, address miss, multiple hit, window access
violation, write protect violation, or parity error.

m Operation Completion Interrupts: EOD (End of Descriptor), EOC (End of Chain), pause, or stop
by software.

Table 66 summarizes the interpretation of EOD and EOC interrupts for each operation mode.

Table 66: EOC/EOD interpretation

Operation Mode Operation Related Interrupt Description

XOR, CRC, DMA

Meminit

Doc. No. MV-S104860-

Page 220

e The EOD interrupt is asserted upon closing each descriptor. If the
<EODIntEn> bit of the descriptor is cleared, EOD interrupt is not asserted when it is
closed.

e The EOC interrupt is asserted upon reaching end of descriptor chain or upon end of chain
processing due to error condition.

e The EOC interrupt is asserted upon completing the Memlnit operation.

The following error interrupts are supported:

m Parity error: Internal data path parity error.

m Ownership error: Fetching descriptor that is owned by the CPU (software error).

m Address Miss Error: Accessing an address that is not in one of the address windows, or an
address which matches more than one address window.

m Access Protect Error: Accessing an address which is access protected.

m Write Protect Error: Writing to a write protected address.

In all error conditions, the XOR engine halts, as if it is stopped by the software. Also, in all case of an
error address, the address is latched in the XOR Engine Error Address (XEEAR) Register

(Table 596 p. 669). Once an address is latched, no new addresses (due to additional errors) can be
latched until the current address being read.

UO Rev. C Copyright © 2008 Marvell
Document Classification: Proprietary Information December 2, 2008, Preliminary

Two-Wire Serial Interface (TWSI)
TWSI Bus Operation

12 Two-Wire Serial Interface (TWSI)

The device integrates a single, general-purpose TWSI port that can act as a TWSI master or as a
slave.

If enabled via reset strap, the TWSI interface also supports initialization from external TWSI serial
ROM.

|§ | | Refer to AN-179 TWSI Software Guidelines for Discovery™, Horizon™, and Feroceon®
Devices for the specific sequences required for each CPU write or read access to the
Note TWSI interface. If these are not implemented, the TWSI may not work well.

12.1 TWSI Bus Operation

The TWSI port consists of two open drain signals:
m SCL (Serial Clock)
m SDA (Serial Data/Address)

The TWSI master starts a transaction by driving a start condition followed by a 7- or 10-bit slave
address and a read/write bit indication. The target TWSI slave responds with acknowledge.

In case of a write access (R/W bit is 0 following the TWSI slave acknowledge), the master drives
eight bits of data, and the slave responds with acknowledge. This write access (8-bit data followed
by acknowledge) continues until the TWSI master ends the transaction with a stop condition.

In case of a read access following the TWSI slave address acknowledge, the TWSI slave drives
eight bits of data and the master responds with acknowledge. This read access (8-bit data followed
by acknowledge) continues until the TWSI master ends the transaction by responding with no
acknowledge to the last 8-bit data, followed by a stop condition.

A target slave that cannot drive valid read data right after it received the address, can insert “wait
states” by forcing SCL low until it has valid data to drive on the SDA line.

A master is allowed to combine two transactions. After the last data transfer, it can drive a new start
condition followed by new slave address, rather than drive stop condition. Combining transactions
guarantees that the master does not lose arbitration to some other TWSI master.

TWSI examples are shown in Figure 57.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 221

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Figure 57: TWSI Examples

Data Transfer Sequence

. / 5
: : : : : ﬁj/; : :
SDA N\ / ! 7 \ /S
: : : : : 4 : :
. J . .
—— N ‘ —
Start Valid Ianega Stop
Condition Data Y Condition
Change

Sequential Read

s
t First Data Last Data S
a t
' /—j\ﬁ /—/% o
t riw p
s| 1} O 1) Of x| x| x| 1 I_pl
a a n
\ J ¢ c o
k k
Address a
c
k

Combined Access

s s

t t Last Data S

a a t

r r /_/% 0

t riw t riw p

s| 1| O] 1) Of x| x| x| O s| 1} O 1) Of x| x| x| 1 I_pl
a a a a n

{
0
x 0
{
~ 0
x 0
o

Address Address a

12.2 TWSI Port Operation

The port can act as master, generating read/write requests, and as a slave, responding to read/write
requests from an external master. It can be used for various applications, and can control other
TWSI on-board devices such as temp sensors, to read DIMM SPD ROM. It is also used for serial
ROM initialization (see the Serial ROM Initialization section in the device Hardware Specifications)

The TWSI interface master and slave activities are handled by a simple CPU access to internal
registers, plus an interrupt interface. The protocol is byte oriented— the CPU is required to handle
each transmitted/received byte. The following sections describe TWSI registers and receive/transmit
operation.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 222 Document Classification: Proprietary Information December 2, 2008, Preliminary

12.2.1

12.2.2

12.2.3

Two-Wire Serial Interface (TWSI)
TWSI Port Operation

TWSI Slave Address Registers

The TWSI slave interface supports both 7-bit and 10-bit addressing. The slave address is
programmed by the TWSI Slave Address Register (Table 602 p. 671) and TWSI Extended Slave
Address Register (Table 607 p. 674).

When the TWSI receives a 7-bit address after a start condition, it compares that address against the
value programmed in the Slave Address register. If the address matches, it responds with
acknowledge.

If the received 7 address bits are ‘11110xx’, meaning that it is an 10-bit slave address, the TWSI
compares the received 10-bit address with the 10-bit value programed in the Slave Address and
Extended Slave Address registers. If the address matches, it responds with acknowledge.

The TWSI interface also supports slave response to general call transactions. If GCE bit in the Slave
Address register is set to 1, the TWSI also responds to general call address (0x0).

TWSI Data Register
The 8-bit data register is used both in master and slave modes.

In master mode, the CPU must place the slave address or write data to be transmitted. In case of
read access, it contains received data (need to be read by CPU).

In slave mode, the Data register contains data received from master on write access, or data to be
transmitted (written by CPU) on read access.

| ;] | The data register Most Significant bit (MSb) contains the first bit to be transmitted or

being received.
Note

TWSI Control Register

This 8-bit register contains the following bits:

Table 67: TWSI Control Register Bits

Bit Function Description

1:0 Reserved Read only 0.

2 Acknowledge Bit When set to 1, the TWSI drives an acknowledge bit on the bus in response to a received
address (slave mode), or in response to a data received (read data in master mod, write
data in slave mode).

For a master to signal a TWSI target a read of last data, the CPU must clear this bit
(generating no acknowledge bit on the bus).
For the slave to respond, this bit must always be set back to 1.

3 Interrupt Flag If any of the interrupt events occur, set to 1 by TWSI hardware
If set to 1 and TWSI interrupts are enabled through bit[7], an interrupt is asserted.

4 Stop Bit When set to 1, the TWSI master initiates a stop condition on the bus.

The bit is set only. It is cleared by TWSI hardware after a stop condition is driven on the
bus.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 223

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Table 67: TWSI Control Register Bits (Continued)

Bit Function

5 Start Bit

6 TWSI Enable

7 Interrupt Enable
31:8 Reserved

Description

When set to 1, the TWSI master initiates a start condition on the bus, when the bus is free,
or a repeated start condition, if the master already drives the bus.

The bit is set only. It is cleared by TWSI hardware after a start condition is driven on the
bus.

If set to 1, the TWSI slave responds to calls to its slave address, and to general calls if
enabled.

If set to 0, SDA and SCL inputs are ignored. The TWSI slave does not respond to any
address on the bus.

If set to 1, TWSI interrupts are enabled.
Marvell recommends to use the TWSI interrupt to interface the TWSI module, rather than
using the register polling method.

Reserved

12.2.4 TWSI Status Register

This 8-bit register contains the current status of the TWSI interface. Bits[7:3] are the status code,
bits[2:0] are Reserved (read only 0). Table 68 summarizes all possible status codes.

Table 68: TWSI Status Codes

Code Status

0x00 Bus error.

NOTE: A bus error occurs if the TWSI slave interface drives the bus (Data or Clock) when it should not. To
recover from this error, set the <Stop> field in the TWSI Control Register (Table 604 p. 672) and clear
the interrupt.

0x08 Start condition transmitted.
0x10 Repeated start condition transmitted.
0x18 Address + write bit transmitted, acknowledge received.
0x20 Address + write bit transmitted, acknowledge not received.
0x28 Master transmitted data byte, acknowledge received.
0x30 Master transmitted data byte, acknowledge not received.
0x38 Master lost arbitration during address or data transfer.
0x40 Address + read bit transmitted, acknowledge received.
0x48 Address + read bit transmitted, acknowledge not received.
0x50 Master received read data, acknowledge transmitted.
0x58 Master received read data, acknowledge not transmitted.
0x60 Slave received slave address, acknowledge transmitted.
0x68 Master lost arbitration during address transmit, address is targeted to the slave (write access), acknowledge
transmitted.

Doc. No. MV-S104860-U0 Rev. C
Page 224

Copyright © 2008 Marvell
Document Classification: Proprietary Information December 2, 2008, Preliminary

Two-Wire Serial Interface (TWSI)
TWSI Port Operation

Table 68: TWSI Status Codes (Continued)

Code Status
0x70 General call received, acknowledge transmitted.
0x78 Master lost arbitration during address transmit, general call address received, acknowledge transmitted.
0x80 Slave received write data after receiving slave address, acknowledge transmitted.
0x88 Slave received write data after receiving slave address, acknowledge not transmitted.
0x90 Slave received write data after receiving general call, acknowledge transmitted.
0x98 Slave received write data after receiving general call, acknowledge not transmitted.
O0xAO0 Slave received stop or repeated start condition.
OxA8 Slave received address + read bit, acknowledge transmitted.
0xB0O Master lost arbitration during address transmit, address is targeted to the slave (read access), acknowledge
transmitted.
0xB8 Slave transmitted read data, acknowledge received.
0xCO0 Slave transmitted read data, acknowledge not received.
0xC8 Slave transmitted last read byte, acknowledge received.
0xDO Second address + write bit transmitted, acknowledge received.
0xD8 Second address + write bit transmitted, acknowledge not received.
OxEO Second address + read bit transmitted, acknowledge received.
OxES8 Second address + read bit transmitted, acknowledge not received.
O0xF8 No relevant status. Interrupt flag is kept 0.
12.2.5 Baud Rate Register
The TWSI spec defines SCL frequency of 100 kHz (400 kHz in fast mode). The TWSI module
contains a clock divider to generate the SCL clock. Setting bits[6:0] (fields <M> and <N>) of the
TWSI Baud Rate Register (Table 606 p. 674) defines SCL frequency as follows:
F — I:TCIk
SCL — (N+1)
10a(M+1)a2
|§ | | Where M is the value represented by bits[6:3] and N the value represented by bits[2:0].
If for example M=N=4 (which are the default values), running TCLK at 200 MHz results
Note in SCL frequency of 125 KHz.
As defined in the TWSI spec, the maximum supported SCL frequency is 100 kHz. Fast mode (where
SCL frequency is 400 kHz) is not supported.
The Baud Rate register must be set properly, even when using the TWSI port as a slave only. It
should be set such that Fgc; will be in the range of x1 to x2 of the TWSI bus frequency.
Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 225

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

12.2.6 TWSI Port Master Operation

A master write access consists of the following steps:

1. The CPU sets the <Start> field in the TWSI Control Register (Table 604 p. 672) to 1. The TWSI
master then generates a start condition as soon as the bus is free, sets an Interrupt flag, and
sets the Status register to 0x8.

2. The CPU writes a 7-bit address plus a write bit to the Data register and clears the Interrupt flag
for the TWSI master interface to drive the slave address on the bus. The target slave responds
with acknowledge. This causes an Interrupt flag to be set and a status code of 0x18 is
registered in the Status register.

If the target TWSI device has an 10-bit address, the CPU needs to write the remainder 8-bit
address bits to the Data register. The CPU then clears the Interrupt flag for the master to drive
this address on the bus. The target device responds with acknowledge, causing an Interrupt
flag to be set and status code of 0xDO be registered in the Status register.

3. The CPU writes a data byte to the Data register, and then clears the Interrupt flag for the TWSI
master interface to drive the data on the bus. The target slave responds with acknowledge,
causing the Interrupt flag to be set, and status code of 0x28 be registered in the Status register.
The CPU continues this loop of writing new data to the Data register and clearing the Interrupt
flag as long as it needs to transmit write data to the target.

4. After the last data transmit, the CPU may terminate the transaction or restart a new transaction.
To terminate the transaction, the CPU sets the Control Register <Stop> bit and then clears the
Interrupt flag. This causes the TWSI master to generate a stop condition on the bus and to
return to idle state. To restart a new transaction, the CPU sets the TWSI Control Register
<Start> bit and clears the Interrupt flag, thus causing the TWSI master to generate a new start
condition.

|§ | | The above sequence describes a normal operation. There are also abnormal cases,
such as a slave not responding with acknowledge or arbitration loss. Each of these
Note cases is reported in the Status register and needs to be processed by the CPU.

A master read access consists of the following steps:

1. Generating start condition, exactly the same as in the case of write access (see Section 12.2.1,
TWSI Slave Address Registers).

2. Drive 7- or 10-hit slave address, exactly the same as in the case of write access, with the
exception that the status code after the first address byte transmit is 0x40, and after 2nd
address byte transmit (in case of 10-bit address) is OxEO.

3. Read data being received from the target device is placed in the data register and acknowledge
is driven on the bus. Also interrupt flag is set, and status code of 0x50 is registered in the Status
register. The CPU reads data from Data register and clears the Interrupt flag to continue
receiving next read data byte. This loop is continued as long as the CPU wishes to read data
from the target device.

4. To terminate, the read access needs to respond with no acknowledge to the last data. It then
generates a stop condition or generates a new start condition to restart a new transaction. With
last data, the CPU clears the TWSI Control Register <Acknowledge> bit (when clearing the
Interrupt bit), causing the TWSI master interface to respond with no acknowledge to last
received read data. In this case, the Interrupt flag is set with status code of 0x58. Now, the CPU
can issue a stop condition or a new start condition.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 226 Document Classification: Proprietary Information December 2, 2008, Preliminary

Two-Wire Serial Interface (TWSI)
TWSI Serial ROM Initialization

|:: | | This sequence describes a normal operation. There are also abnormal cases, such as
the slave not responding with acknowledge, or arbitration loss. Each of these cases is
Note reported in the Status register and needs to be handled by CPU.

12.2.7 TWSI Port Slave Operation

The TWSI slave interface can respond to a read access, driving read data back to the master that
initiated the transaction, or respond to write access, receiving write data from the master.

Upon detecting a new address driven on the bus with a read bit indication, the TWSI slave interface
compares the address against the address programmed in the Slave Address register. If it matches,
the slave responds with acknowledge. It also sets the Interrupt flag, and sets status code to 0xA8.

|§ | | If the TWSI slave address is 10-bit, the interrupt flag is set, and the status code
changes only after receiving and identifying an address match on the second address
Note byte.

The CPU now must write new read data to the Data register and clears the Interrupt flag, causing
TWSI slave interface to drive the data on the bus. The master responds with acknowledge causing
an Interrupt flag to be set, and status code of 0xB8 to be registered in the Status register.

If the master does not respond with acknowledge, the Interrupt flag is set, status code 0f OxCO is
registered, and TWSI slave interface returns back to idle state.

If the master generates a stop condition after driving an acknowledge bit, the TWSI slave interface
returns back to idle state.

Upon detecting a new address driven on the bus with write bit indication, the TWSI slave interface
compares the address against the address programed in the Slave Address register. If the address
matches, it responds with acknowledge.matches, responds with acknowledge. It also sets an
Interrupt flag, and sets the status code to Ox60 (0x70 in case of general call address, if general call is
enabled).

Following each write byte received, the TWSI slave interface responds with acknowledge, sets an
Interrupt flag, and sets status code to 0x80 (0x90 in case of general call access). The CPU then
reads the received data from Data register and clears Interrupt flag to allow transfer to continue.

If a stop condition or a start condition of a new access is detected after driving the acknowledge bit,
an Interrupt flag is set and a status code of OxAO is registered.

12.3 TWSI Serial ROM Initialization

The TWSI port can be set at reset to perform serial ROM initialization (to act as a TWSI master,
reading data from an external TWSI ROM, and writing this data to the device registers). See the
Reset Configuration section of the device Hardware Specifications.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 227

®
I% 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

13

13.1

13.2

13.3

UART Interface

The device supports a two-port Universal Asynchronous Receiver/Transmitter (UART) interface.

Each UART port performs the following data conversions:

m Serial-to-parallel conversion on data characters received from a peripheral device or a modem
m Parallel-to-serial conversion on data characters received from the device

The device can read the complete UART status for the Line Status (LSR) Register

(Table 624 p. 683). Status information includes the type and condition of transfer operations and
error conditions (parity, overrun, framing, or break interrupt) associated with the UART.

Each serial port operates in either FIFO or non-FIFO mode. In FIFO mode. A 16-byte transmit FIFO
holds data from the device until it is transmitted on the serial link; a 16-byte receive FIFO buffers
data from the serial link until it is read by the device.

For complete information regarding the UART, refer to the Synopsys DW_16550 specification.

Features

The UART interface incorporates the following features:

m Ability to add or delete standard asynchronous communications bits (start, stop, and parity) in
the serial data

Independently controlled transmit, receive, line-status, and data-set interrupts
Programmable baud-rate generator (see Section 13.4, Programmable Baud-Rate Generator)
Modem control functions (nCTS and nRTS).

Programmable serial interface:

*« 5- 6-, 7- or 8-bit characters

e Even, odd, or no parity detection

¢ 1, or 2 stop-bit generation

16-byte transmit FIFO

16-byte receive FIFO

Complete status-reporting capability

Ability to generate and detect line breaks

Internal diagnostic capabilities that include:

« Loopback controls for communication link fault isolation

« Break, parity, and framing-error simulation

= Fully prioritized interrupt system controls

UART Interface Pin Assignment

The device supports the UART interface through the UA0/1_TXD and UAO/1_RXD pins and
provides modem control functions through the UA0/1_CTSn and UA0/1_RTSn pins, multiplexed on
the MPP.

For a description of the UART signals, refer to the Hardware Specifications for the device.

Operation

Figure 58 and Figure 59 show the format of a UART data frame, respectively, with two stop bits and
with one stop bit.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 228

Document Classification: Proprietary Information December 2, 2008, Preliminary

UART Interface
Programmable Baud-Rate Generator

Figure 58: Example UART Data Frame (Two Stop Bits)

Start | Data | Data | Data | Data | Data | Data | Data | Data | Parity | Stop | Stop
Bit <0> | <1> | <2> | <3> | <4> | <5> | <6> | <7> Bit Bit1 | Bit2

TXD or RXD pin

LSB MSB

f

To ensure bus stability, the receiver samples the serial input data at approximately the mid-point of
the bit sequence, once the start bit has been detected.

Figure 59: Example UART Data Frame (One Stop Bit)

Start | Data | Data | Data | Data | Data | Data | Data | Data | Parity | Stop
Bit <0> | <1> | <2> | <3> | <4> | <5> | <6> | <7> Bit | Bitl

TXD or RXD pin

LSB MSB

f

The receive-data sample-counter frequency is 16 times the value of the bit frequency. The 16x clock
is created by the baud-rate generator. Each bit is sampled three times in the middle of the bit
sequence. Shaded bits are optional and can be programmed by software.

The data frame is between 7 and 12 bits long, depending on the size of the data programmed, parity
status (enabled/disabled), and the number of stop bits. A data frame begins by transmitting a start bit
that is represented by a high to low transition. The start bit is followed by five to eight bits of data that
begin with the least significant bit (LSB).

The data bits are followed by an optional parity bit. The parity bit is set if even parity is enabled and
the data byte has an odd number of ones, or if odd parity is enabled and the data byte has an even
number of ones. The data frame ends with one or two stop bits, as programmed by software. The
stop bits are is represented by one or two successive bit periods of logic one.

Each UART port has a transmit and a receive FIFO.

m The transmit FIFO is 16 bytes deep.
m The receive FIFO is 16 bytes deep.

13.4 Programmable Baud-Rate Generator

Each UART port includes a programmable baud-rate generator that can take a fixed-input clock and
divide it to generate the preferred baud rate. The baud rate is calculated by taking the TCLK
frequency and dividing it by a value between 1 and (216 - 1), to produce a 16x clock that is used to
drive the internal transmit and receive logic. Each UART operates in an environment that is either
controlled by software and can be polled, or is interrupt driven.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 229

M ARVELL®

—

= 88F6180/88F619x/88F6281

Functional Specifications

The baud-rate generator output frequency is 16 times the baud rate. The <DivLatchLow> field in the
Divisor Latch Low (DLL) Register (Table 616 p. 679) and the <DivLatchHigh> field in the Divisor
Latch High (DLH) Register (Table 619 p. 680)make up the two 8-bit divisor latch fields that store the
divisor in a 16-hit binary format. Load these divisor latches during initialization to ensure that the
baud-rate generator operates properly. The 16x clock stops both fields are loaded with 0x0.

The baud rate of the data shifted into or out of a UART is given by the formula:

BaudRate= TCLK fre
(16xDivisor)

Table 69: Typical Baud Rates where TCLK =166 MHz

Required Baud

1200
2400
4800
9600
19,200
38,400
57,600
76,800
115,200
230,400
460,800
500,000

921,600

Doc. No. MV-S104860-U0 Rev. C

Page 230

Divisor (decimal)

8681

4340

2170

1085

543

271

181

136

90

45

23

21

11

Actual Baud Rate

1200
2400
4800
9600
19,184
38,438
57,551
76,593
115,741
231,481
452,899
496,032

946,970

Document Classification: Proprietary Information

Error (%)
0

0

0.1
0.1
0.1
0.3
0.5
0.5
17
0.8

2.8

Copyright © 2008 Marvell
December 2, 2008, Preliminary

14

14.1

14.2

14.3

8-bit NAND Flash Interface
NAND Flash Interface Pin Assignment

8-bit NAND Flash Interface

The device integrates a NAND Flash interface that incorporates the following features:
m Glueless interface to CE don't care NAND flash

m Glueless interface to CE care NAND flash

m Boot from NAND flash (see Section 14.6, Boot from NAND Flash, on page 234)

m Read bursts of up to 32 bytes, splits the transaction to multiple 8 bytes bursts

NAND Flash Interface Pin Assignment

Table 70 provides a list of the NAND Flash interface pins.

Table 70: Device Controller Pin Assignments

Pin Name Type Description

NF_CEn O NAND Flash Chip Enable (CE)
NF_REn (0] NAND Flash Read Enable

NF_WEn (0] NAND Flash Write Enable

NF_ALE (0] NAND Flash Address Latch Enable
NF_CLE (0] NAND Flash Command Latch Enable
NF_D[7:0] t/s /O | NAND Flash Data Bus

NOTE: NF_DI[7:0] do not have dedicated pins; these signals are
multiplexed on the MPP interface.

NAND Flash Types

The device bus supports both chip enable (CE) care NAND flash and CE don't care NAND flash.

The difference between CE care NAND flash and CE don’t care NAND flash is that for CE don't care
NAND flash the chip enable does not need to be continuously asserted low during the read busy
period.

Software Responsibilities

The software is responsible for the following:

m Enabling access to NAND flash, following the appropriate guidelines, as specified in
Section 14.3.1, Guidelines for Access to NAND Flash

m Generating ECC
m Checking ECC
m Error recognition
m Error correction
m Following the timing constraints of the NAND flash device
Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 231

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

14.3.1

14.4

Guidelines for Access to NAND Flash

Follow the guidelines listed below for access to NAND flash.

N

Note

These guidelines apply to both CE care NAND flash and CE don’t care NAND flash.

For a CE care NAND Make sure the <NFActCEnBoot> field in the NAND Flash Control Register

Flash device: (Table 613 p. 676) is set to 1. This bit may be cleared to 0 after the NAND flash
transaction is completed.

Address phase: Write single-byte data to the NAND Flash with A[1:0] = 10 and with the data
containing the required address. Repeat this phase as required by the NAND
flash device.

Command phase: Write single-byte data to the NAND Flash with A[1:0] = 01 and with the data
containing the required command.

Read Data phase: Single or burst read transactions are allowed. Perform as many read
transactions as required with A[1:0] = any value. Up to 32 bytes per burst (see
Section 14.4, NAND Flash Interface Read Timing Parameters, on page 232).

Write Data phase: Single-byte write transaction with A[1:0] = 00 and the data including the
required data to be written to the NAND Flash. Repeat this stage as many
times as required. Bursts are not allowed (see Section 14.5, NAND Flash
Interface Write Timing Parameters, on page 234).

Polling: Poll (read) the NAND Flash device status via the Status Register in the NAND
Flash device, which may be read to determine whether the program or erase
operation is completed, and whether the operation has completed
successfully. Alternatively, the ready busy (R/B) signal can be connected to the
device MPP interface.

EI Only the CPU can access a NAND Flash device on the device bus interface.
Note

NAND Flash Interface Read Timing Parameters

To allow flexible interfacing to slow and fast devices, the interface read timing can be programmed
with different timing parameters according to the NAND Read Parameters Register

(Table 611 p. 675) and the NAND Flash Control Register (Table 613 p. 676). The following
parameters affect the read timing:

TurnOff: Used to define the number of cycles in a read access between the negation of
NF_CEn to following assertion of NF_CEn.
Number of cycles = TurnOff + 4

Acc2First: Used to define the number of TCLK cycles from the assertion of NF_CEn to
the cycle where the first read data is sampled by the device.
Number of cycles = Acc2First - 4

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 232

Document Classification: Proprietary Information December 2, 2008, Preliminary

Acc2Next:

NFOENnW:

8-bit NAND Flash Interface
NAND Flash Interface Read Timing Parameters

This parameter defines the number of TCLK cycles between the cycle that
samples data N to the cycle that samples data N+1 (in burst accesses). The
minimum setting of this parameter is 0x2.

Used to define the number of TCLK cycles from the negation of NF_REn to its
next assertion during a burst read.
Number of cycles = NFOEnW + 1

All output signals are driven with the rising edge of TCLK, and all inputs are sampled with the rising

edge of TCLK.

Figure 60 provides a NAND Flash read timing parameters example.

Figure 60: 8-bit NAND Flash Read Parameters Example

TCK /S S S S S

|[«—Acc2First=6 —»
NF_CEn

NF_CLE (I

NF_ALE (I

NF_REn (D |

NE wen

f-Acc2Next = 2 -sle- TurnOff = 2 >

IRINIRIE

NF_IO[7:0]

14.4.1 Read Burst Support

The NAND Flash controller supports a write of single byte in each transaction and a read of up to
32-byte burst. The NAND Flash controller incorporates a single 32-byte read buffer. Multiple 8-byte
read bursts are performed towards the NAND Flash device until the data transfer is completed.

The NAND Flash controller needs to pack read data from the 8-bit wide NAND Flash to the device
internal 64-bit data path. The NAND Flash controller drives the read data to the initiator only when
the transaction on the NAND Flash interface completes and all data resides on its internal buffer.

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Doc. No. MV-S104860-U0 Rev. C

Document Classification: Proprietary Information Page 233

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

14.5

NAND Flash Interface Write Timing Parameters

To allow flexible interfacing to slow and fast devices, the interface write timing can be programmed
with different timing parameters according to NAND Write Parameters Register (Table 612 p. 676).
The following parameters affect the write timing:

CENn2WEn: Used to define the number of TCLK cycles from NF_CEn assertion to
NF_WEn assertion.
Number of cycles = CEn2WEn - 4

WrLow: This parameter defines the number of TCLK cycles that NF_WEn is active
(low), which is the setup time of data to NF_WEn rise. The NF_D bus is valid
as long as NF_WEn is active.

WrHigh: This parameter defines the number of cycles in a write access from NF_WEn
de-assertion to NF_CEn de-assertion, which is the hold time of the NF_D bus
after NF_WERn rise. Data is kept valid as long as NF_CEn is active. The
minimum setting of this parameter is 0x1.

All output signals are driven with the rising edge of TCLK, and all inputs are sampled with the rising
edge of TCLK.

Figure 61 provides a NAND Flash write timing parameters example.

Figure 61: 8-bit NAND Flash Write Parameters Example

TCLK VA U A WA WA W W A U A WA WA
[«—CENn2WEnN=6—
NF_CEn /
NF_CLE Address0
NFALE I Addressi
NF_REn (D
«— WrLow=2 —fe—WrHigh=2
vewen S 00000909090\ /S
NF_to[7:0] (HE < Data >

14.6

Boot from NAND Flash

The device supports booting directly from NAND Flash, when the first block—placed on 00h block
address—is guaranteed to be a valid block with no errors.

14.6.1 Boot Sequence
If the <NFISD> field in the NAND Flash Control Register (Table 613 p. 677) is cleared to 0, the
following internal process is performed immediately after reset to issue the read command to the
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 234

Document Classification: Proprietary Information December 2, 2008, Preliminary

8-bit NAND Flash Interface
Boot from NAND Flash

NAND Flash device. This process allows the CPU to perform sequential reads to the NAND Flash
immediately after reset, starting from address 0x0.

1.
2.

o

Copyright © 2008 Marvell

Set CPU internal reset.

Write 8 bits to the NAND Flash to Address = 0x1 with Data = 0x0. Set the NAND Flash
command to Read.

Write 8 bits to the NAND Flash to Address = 0x2 with Data = 0x0. Set Address to 0x0.
This step is repeated5 times.

Write 8 bits to the NAND Flash to Address = 0x1 with Data = 0x30.

Wait until NAND Flash is ready with valid data, as define by the <NFTr> field.

Clear CPU internal reset.

Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 235

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

15 Serial Peripheral Interface (SPI)

The device integrates a general-purpose Serial Peripheral Interface (SPI) port. It supports two
modes:
Indirect mode Byte transmit and receive operations, using register access.

Direct mode This mode only supports read operations. It enables the CPU to directly access
the memory space of the SPI. This mode support bursts of up to 128B.

The SPI is a synchronous serial data protocol used for transferring data simply and quickly from one
device to another. With an SPI connection, there is always one Master device that controls the
peripheral devices (Slaves).
The main features of the SPI are:
m Synchronous protocol:
* The data is clocked along with a clock signal.
* The clock signal controls when data is changed and when it should be read.
* The clock rate can vary.
m Master-Slave protocol:
* The Master device controls the clock.
* No data is transferred unless a clock signal is present.
* The slaves are controlled by the master clock, and may not manipulate the clock.
m Data Exchange protocol:
* As data is being clocked out, new data is clocked in.
* The Master controls the exchange by manipulating the clock line.

15.1 SPI Interface Signals
Table 71 provides a list of the of the SPI interface signals.

Table 71: SPI Interface Signals

Signal Name Type Description

SPI_MOSI ¢} SPI data output.

Data is output from the master and input to the slave.
SPI_MISO SPI data input.

Data is input to the master and output from the slave.
SPI_SCK (0] SPI clock
SPI_CSn (@) SPI chip select

SPI signals are multiplex on the Multi-Purpose Pins (MPPSs). For a description of the SPI signals,
refer to the Hardware Specifications for the device.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 236 Document Classification: Proprietary Information December 2, 2008, Preliminary

15.2
15.2.1

15.2.2

15.2.3

15.2.4

15.3

Serial Peripheral Interface (SPI)
Indirect Mode

Indirect Mode
SPI Input/Output

The serial data clock is generated out of the device core clock (TCLK) with a programmable baud
generator that has a prescaler values of 4, 6, 8,...30. At power up, the prescaler value is 18.

The SPI Chip-Select signal (SPI_CSn) is asserted whenever the <CSnAct> field in the Serial
Memory Interface Control Register (Table 628 p. 685)is set. The Serial data clock output SPI_SCK is
driven high and low only during data 1/O.

Output One Byte to SPI
To output one byte, the CPU writes to the Serial Memory Data Out Register (Table 630 p. 687).

This register’s bits [7:0] are shifted out on the SPI_MOSI pin and on the falling edge of the SPI_SCK.
There will be eight clock pulses output for eight data bits. Bit [7] is output first. After all eight bits are
shifted out, the <SMemRdy> field in the Serial Memory Interface Control Register (Table 628 p. 685)
is set. When the CPU again writes to the Serial Memory Data Out Register, the
Serial-Memory-Data-Ready status (<SMemRdy> field) is cleared.

Input One Byte from SPI

While SPI_SCK is toggling, the SPI_MISO pin is clocked into the Serial Memory Data In Register
(Table 631 p. 687). The data is clocked into bit O as the register is shifted LEFT.

Therefore, to shift in one byte from the external SPI device, the CPU can write a dummy data into
the Serial Memory Data Out Register. As dummy data is shifted out on SPI_MOSI, data is shifted in
from the SPI_MISO pin. When the <SMemRdy> field is set, the CPU can read the Serial Memory
Data In Register to retrieve the input data byte.

Output or Input Two Bytes

To simplify firmware and improve the read/write throughput, the SPI interface logic can shift two
bytes in and out for each access. When the <BYTE_LEN> field in the Serial Memory Interface
Configuration Register (Table 629 p. 686) is set to 0x1, two byte /O mode is enable. When the CPU
writes to the Serial Memory Data Out Register, bits [7:0] are shifted out first, then bits {15:8] are
shifted out.

For data in, the SPI_MISO pin is shifted first into the Serial Memory Data In Register bits [7:0], and
then bits [15:8].

When both bytes are shifted out (and in), the <SMemRdy> field is set.

Direct Mode

The device SPI controller also supports direct read and writes from/to external SPI devices, without
the software overhead of reading and writing from/to the Serial Memory Interface Control Register
(Table 628 p. 685), Serial Memory Data Out Register (Table 630 p. 687), and Serial Memory Data In
Register (Table 631 p. 687).

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 237

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

15.3.1 Direct Read from SPI

Two read modes are supported, as defined by the <DirectRdCommand> field in the Serial Memory
Interface Configuration Register (Table 629 p. 686).

m Read A read command is used (0x03), and there is no dummy
(Read Memory at up to TCLK/8): writer after the address phase.

m Fast_Read A higher-speed read command is used (0x0OB), and a
(also known as high-speed read) one-byte dummy write is added after the address phase.
(Read Memory at up to TCLK/4):

The length of the address can be set to be between 1 and 4 bytes according to the <DirectAddrLen>
field of that register.

If using SPI flash, set the <Attr> field in the CPU address decoding windows to match the SPI
interface (see Section 2, Address Map, on page 34 for more details). Any CPU read to this address
space is converted by the SPI controller to a SPI flash read transaction, composed of an address
phase, followed by a data phase.

The actual sequence that is driven on the SPI interface is:

1. Assert SPI_CSn. Write command to the SPI. The command is either Read or Fast_Read,
based on the configuration of the <DirectRdCommand> field.

2. Write the address. The Address is driven in 1 to 4 phases based on the configuration of the
<DirectAddrLen>> field. The order of the bytes is MSB to LSB.

3. InFast_Read mode, add a one-byte dummy write.
Read the data, according to the length given by the request.

5. De-assert the SPI_CSn signal.

EI The maximum supported burst read is 32B.
Note

15.3.2 Boot from SPI Flash
Direct Read from SPI can be used to boot from SPI.

If configured to boot from SPI at reset, the <Attr> field in the Window7 Control Register (Table 112
p. 365) is set to SPI interface, which results in redirecting the CPU boot reads to the SPI interface.

This causes the first instruction fetches to be directed to the SPI with an attribute that causes the
transaction to be an SPI Direct mode transaction (see Section 15.3).

For boot from SPI flash using the BootROM code, see Section 24.2, BootROM Firmware,
on page 290.

15.3.3 Direct Write to SPI

The device SPI Controller supports direct writes that will be transmitted on the SPI. The action and
data to be transmitted consists of the following:
1. AssertCS.
This stage can be omitted by clearing the <Direct Wr Deassert Cs> field in the Serial Memory
Direct Write Configuration Register (Table 634 p. 688).
2. CS hold Gap.
All signals are steady. The length of the gap will be at least <Direct Wr Cs Hold> core clock
cycles.This gap will not exist when <Direct Wr Deassert Cs> is cleared.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 238 Document Classification: Proprietary Information December 2, 2008, Preliminary

Serial Peripheral Interface (SPI)
Direct Mode

3. Constant Header:
This is a 1-4 byte field that is taken from the <SpiDirectHdr> field in the Serial Memory Direct
Write Header Register (Table 635 p. 688).
The size of the header is configured on <Direct Wr Hdr Size> field in the Serial Memory Direct
Write Configuration Register (Table 634 p. 688) and can be omitted by clearing <Direct Write
Hdr Enable> of that same register. A possible usage of this header is setting a Write command,
that will be served as a prefix to any command.

4. Address Phase.
This is al1-4 byte field that is taken from the address of the request.
The size of the address is configured via the <DirectAddrLen> field in the Serial Memory
Interface Configuration Register (Table 629 p. 686).
The entire Address phase is omitted when <Direct Wr Addr Enable> field in the Serial Memory
Direct Write Configuration Register (Table 634 p. 688) is cleared.

5. Data Phase.
A 1-32 byte transition of the data provided by the write request.

6. CS Preservation.
The CS will be return to the state that it was prior to the Write command. If it was asserted
before the action took place, then this stage is meaningless. If it was not asserted, then at this
stage the CS will be de-asserted.
This stage will be omitted if <Direct Wr Deassert Cs> is cleared.

EI The maximum supported burst read is 32B.
Note

15.3.4 DMA Based SPI

Direct Write to SPI can be accomplished by the DMA function in the XOR engine, to transmit large
buffers of data without the software overhead.

This is accomplished by completing the following steps:

1. Configure DMA registers so that the burst length is at most 32B.

2. Setthe <Target> field in the XOR Engine Base Address (XEBARX) Register (n=0—7) (Table 583
p. 660) to 0x1.

3. Setin the <Attr> field of that register to Ox1E (Boot from SPI).

EI Direct Write to SPI cannot be used for flash devices.
Note

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 239

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

16 Audio (I°S / SIPDIF) Interface
(88F6180, 88F6192, and 88F6281 Only)

The 88F6180, 88F6192, and 88F6281 integrate an Audio Unit (ADU) that supports recording and
playback for the following audio protocols:

m 12S with three different protocols:
* Plain IS is the original Philips protocol
* Right justified
* Left justified
Sony/Philips Digital Interconnect Format (S/PDIF) Consumer Mode IEC 60958-3
IEC 61937 Non-PCM protocols above the S/PDIF layer

Record: The ADU can record audio using either the I2S or S/PDIF input protocols. They
cannot be used simultaneously.

Play; It can play audio using either the I2S or S/PDIF output protocols, or using both
protocols simultaneously.

By using two separate DMA engines, the ADU supports concurrent recording and playback.

Figure 62 provides a block diagram of the ADU.

Figure 62: Audio Unit Block Diagram

Unit Unit
Interface l Mbus Interface
- AU IZSBCLK(’Q
%
AU_12SLRCLK®)| | ‘ Bus Interface AU_12SLRCLK(*)
AU _12SDI » I’Siin I*siout
AU I2SBCLK®) | mem FIFO | DMA | | DMA | FIFO AU_I2SDO .
> < _ | AU 12SMCLK_
Record Sample Psl‘aybalck
Counter 32bit ampe
AU SPDIFI Counter 32bit
* S/P. DIF SIPDIF Channel Status
In < and User Buffers AU| SPDIFO
m S/P DIF g
Interrupt Controller ‘ out
Register Set A
AU_SPDIFRMCLK
Frequency|Control i
\ SPCR 256 Fs
AU_EXTCLK 256 Es -
(*) Chip outputs that clock iy
the external DAC and
the internal 1°S In
Ref Clock mclk (256 F,
——* DCO @Rl
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 240 Document Classification: Proprietary Information December 2, 2008, Preliminary

Audio (I2S / SIPDIF) Interface (88F6180, 88F6192, and 88F6281 Only)

General Features
The general features include:

If Pulse Code Modulation (PCM) data is being played, the 12S and S/PDIF outputs can be active
simultaneously. In this scenario, the same audio data is passed to the I2S and S/PDIF outputs. If
non-PCM data is being played over the S/PDIF output, the 12s output must be muted or
disabled.

Only one of the 12S or S/PDIF inputs can be active at one time.

The S/PDIF Clock Recovery (SPCR) is used to recover the S/PDIF clock (SPDIFRMCLK) and
the clock frequency.

The Digital Controlled Oscillator (DCO) is used for generating the 12S playback and recording
clock. It can also be used for the S/PDIF playback clock. The DCO takes its reference clock
from the internal core clock. It can be configured to work at each of the supported frequencies
with a configurable runtime offset of ppm1 resolution adjustments.

12S or S/PDIF outputs can work with the SPCR, an external clock, or the programmable DCO. It
is possible to move between the SPCR clock and the DCO clock in run time. Only switch to the
AU_EXTCLK or from the AU_EXTCLK to the other clock sources when playback is inactive.
The ADU supports stereo and mono playback and recording. During mono recording, only one
of the channels is recorded. During mono playback, both channels may be used to concurrently
play the same data, or the either of the channels can be muted resulting in the data playing in
the single un-muted channel.

Recording and playback may also be muted. Playback mute is possible on each of the
interfaces separately.

The ADU utilizes two DMA engines:
* One recording DMA that is used to transfer data from the 12S or S/PDIF interface to memory.

* One playback DMA that is used to transfer data from memory to either the 1S interface, the
S/PDIF interface, or both interfaces.

The DMA engines operate at the core clock speed, and can be configured to have a burst
transfer of 32 bytes or 128 bytes during memory access.

When recording or playback is activated, the DMA engines work independently using the
configured start address and the size of a cyclic buffer in memory.

The DMA operation continues without the need for software intervention until playback or
recording is stopped or paused. However, software intervention is required for moving data from
the recording cyclic buffer to another memory location during recording, and to write new data in
the playback cyclic buffer during playback.

I°S Supported Features
The I2S protocol supports:

An audio sample rate (Fg) of 44.1/48/96 kHz.

The IS input and 12s output can only operate at the same sample rate.
The available sample sizes are 16-bit, 20-bit, 24-bit, and 32-bit.
Regardless of the sample size, 32-bits are always used per channel.
Two channels are supported.

Sample sizes do not have to be the same for input and output. Unused data bits are padded
with zeros. For example, 8-bit padding is used for 24-bit sample sizes and 16-bit padding for
16-bit sample sizes.

For the receiver and the transmitter side, the ADU outputs AU_I2SMCLK (master clock =
256xF¢) and functions as a master over ADU_I2SLRCLK (1xFs) and over AU_I2SBCLK
(64xFy).

Works in plain I2S, right justified, and left justified formats.

Copyright © 2008 Marvell

1. ppm = Parts Per Million

Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 241

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

S/PDIF Supported Features

The S/PDIF protocol supports:

m The IEC 60958-1, IEC 60958-3, and IEC 61937 specifications.

An audio sample rate (Fg) of 44.1/48/96 kHz.

Sample sizes of 16-bit, 20-bit, and 24-bit

Outputs S/PDIFRMCLK = Recovered S/PDIF master clock (master clock = 256xF)

Signals lock status change to the CPU (loss of lock/return to lock). In the event of loss of S/PDIF
input lock, the data stream is automatically paused. New samples are not written to the
recording FIFO.

m Double buffering for status and user bits at both recording and playback.

* For recording, an interrupt can be generated at the end of the recorded block if there was a
change of any of the recorded channel status/user bits. An interrupt can also be generated at
the end of each recorded block. This allows the user approximately a one block recording
period to retrieve the new status or user bits.

* For playback, an interrupt can be generated when a new block playback begins. This allows

the user approximately a one block playback period to configure the new channel status and
user bits of the next block before these bits are sent.

* All interrupts can be masked. S/PDIF control bit related interrupts can be masked per
channel.

16.1 Recording Data Flow

Follow these steps to record data:

1. Configure the <Recording Buffer Start Address> field in the Recording Start Address Register
(Table 666 p. 708) and the <Recording Buffer Size> field in the Recording Buffer Size Register
(Table 667 p. 708).

2. Configure the:
* <Recording Base> field in the Recording Window Base Address Register (Table 644 p. 694)
* Recording Window Control Register (Table 645 p. 694)

* <Recording DMA Burst Size> field in the Recording Control Register (Table 665 p. 707) and
the required audio configuration modes using:
- the Recording Control Register (Table 665 p. 706)
and
- the 12S Recording Control Register (Table 670 p. 709)
or
- the SPDIF Recording General Register (Table 671 p. 710).

3. Configure the 12S clock source by selecting one of the following clock sources through the
<MCLK source> field in the Clocks Control Register (Table 642 p. 693):

* SPCR: The spcr_lock should read high before playback is enabled.
* Configurable DCO clock: The dco_lock should be read high before playback is enabled.
* External clock

|z | | m Each of these clocks has a frequency of 256xFs.

® When I?S data is recorded, the ADU generates the 12S clocks from the configured
Note clock source.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 242 Document Classification: Proprietary Information December 2, 2008, Preliminary

Audio (IZS / SIPDIF) Interface (88F6180, 88F6192, and 88F6281 Only)
Recording Data Flow

4. Decide which buffer management method to use. Enable the relevant mask bits and optionally
set a proper value in the Recorded Byte Counter for Interrupt Register (Table 669 p. 709).
The recording buffer management methods are described in section Section 16.1.1, Recorded
Data Buffer Management Methods, on page 243.

5. Enable recording by asserting the <I2S Recording Enable> or the <SPDIF Recording Enable>
field in the Recording Control Register (Table 665 p. 708).

Based on the protocol being used, the DMA transfers data to the cyclic memory buffer when:
m The I°S interface is enabled.
m The S/PDIF interface is enabled and synchronized to the incoming signal.

The size of each DMA write burst access is determined by the recording DMA burst size
configuration.

16.1.1 Recorded Data Buffer Management Methods

There are two methods used by the software to move recorded data from the cyclic buffer to other
memory locations before the recording DMA overwrites the buffer.

Divided Buffer As shown in Figure 63, the buffer is divided into quarters or halves. After each

Method quarter or half of the buffer is written by the recording DMA, the software is
interrupted. An interrupt handler can then move the respective buffer segment to
another memory location before it is overwritten, when the DMA address
counter wraps around.

In this method, if an interrupt handler operation is delayed for a period of less
than a full buffer recording time, the cause register still holds information of
which quarters of the buffer were recorded. This provides the software an
opportunity to recover from an unexpected interrupt handler delay and prevents
data being dropped.

Configured It is possible to configure the recorded byte counter for an interrupt.
Recorded Byte . .) .
Counter Each time the dedicated counter reaches a pre-configured value in the

Recorded Byte Counter for Interrupt Register (Table 669 p. 709), an interrupt is
asserted in the Audio Interrupt Cause Register (Table 650 p. 696), and the
counter is reset. This allows for user-defined interrupt resolutions.

Method

The interrupt cause bits can be read from the Audio Interrupt Cause Register (Table 650 p. 696).
The respective mask bits can be found at the Audio Interrupt Mask Register (Table 651 p. 698).

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 243

®
I;él 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

Figure 63: Recording Flow

S/IPDIF I’s
) Audio Unit
S/PDIF IS Interface
Control Control Recording
Recording
Sample
Counter
Recording |
FIFO v
Audio Unit »ERR INT
_ ‘ ‘ Interrupt » INT
Recording Controller
Registers
Recording DMA
Recording
Byte
Counter
Mbus
Software Buffer o
in Memor > INT after
buffer full
DMA wraps
around to write Second Half of Memory Buffer — INT after 3/4
to the first half buffer
after the second
half is full.
During this o
period, the CPU » INT after
reads the 1/2 buffer
second half.
First Half of Memory Buffer —® INT after 1/4
buffer

Doc. No. MV-S104860-U0 Rev. C

Page 244 Document Classification: Proprietary Information

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Audio (IZS / SIPDIF) Interface (88F6180, 88F6192, and 88F6281 Only)
Recording Data Flow

16.1.2 Recovering Residual Data

After recording data is disabled, regardless of which buffer management method is used, residual
recorded data remains in the memory buffer. This residual data enters the memory in the period
between the assertion of a recording data interrupt and the disabling of the interface.

With the divided buffer method, it is possible to determine how many recorded bytes remain by
reading the <Recording Buf Byte Count> field in the Recording Buffer Byte Counter Register

(Table 668 p. 709). This field holds the number of bytes written by the recording DMA, since the last
recording byte counter wrap around.

With the byte counter method, the <Recorded Byte Count for Interrupt> field in the Recorded Byte
Count for Interrupt Register (Table 652 p. 698) can be used for the same purpose.

16.1.3 1°S Recording

The ADU is always master over the 1S clocks. When I2S recording is enabled, the ADU activates
the IS clocks for both the external transmitter and the ADU recording sub-unit.

If a DCO is used to generate I2S clocks, check that the <dco_lock> field in the SPCR and DCO
Status Register (Table 638 p. 692) is asserted before enabling 12S recording. This ensures that the
I°S clocks operate as required.

16.1.4 S/PDIF Specific Recording Flow

Retrieving S/PDIF Status/User Bits from ADU Internal Buffers

When the recorded status/user bits are used from the internal ADU buffers, channel specific
interrupts can be enabled through the SPDIF Recording Interrupt Cause and Mask Register

(Table 672 p. 711). These interrupts are asserted after each recorded block that contains new
channel status/user information is compared to the previous block. The comparison is performed at
the end of the recorded block.

An interrupt can also be enabled after each recorded block, using the <spdif_rc_block_end> field in
the Audio Interrupt Cause Register (Table 650 p. 697).

The status/user bits are double buffered. After the interrupt is asserted, software can read the
status/user bits of the previous block while the recording of the current block is taking place. The
interrupt handler has only one recording block time period to retrieve the user/status bits from the
internal buffers before the bits may be changed at the beginning of the next recorded block.

S/PDIF Recording Flow

Follow this procedure to perform S/PDIF recording:

1. Before enabling S/PDIF recording, mask all the S/PDIF interrupts cause bits in the SPDIF
Recording Interrupt Cause and Mask Register (Table 672 p. 711).

2. After S/PDIF recording is enabled, wait for the ADU to lock on the incoming S/PDIF signal.

A dedicated interrupt in the <spdif_rc_locked> field in the Audio Interrupt Cause Register
(Table 650 p. 698) indicates that the ADU has locked. This register also reflects the lock status
in the <spdif_rc_lock_status> field at the time the interrupt handler reads the cause register.
After a lock is achieved, the SPCR registers the recovered S/PDIF frequency in the
<spcr_ctrlfs> field in the SPCR and DCO Status Register (Table 638 p. 691). Then, the SPCR
outputs the S/PDIF recovered clock.

The data, status, and user bits only begin to be recorded after the lock is established.

3. Wait for the first interrupt assertion of the <spdif_rc_block_end> field in the Audio Interrupt
Cause Register (Table 650 p. 697). Clear this interrupt and all additional interrupts in the SPDIF
Recording Interrupt Cause and Mask Register. Then, enable the required interrupts in the
SPDIF Recording Interrupt Cause and Mask Register.

Explanation: Recording may start after the beginning of the current S/PDIF block. This means that

the status and user bits of the first recorded block stored in the ADU internal buffers cannot be used.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 245

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

The reason is that it is impossible to know the location of the first recorded status and user bits
inside the block at the time that the first block is being recorded.

4. The second time that any of the interrupts in the SPDIF Recording Interrupt Cause and Mask
Register is asserted, the software reads the status information stored in the SPDIF Recording
Channel Status Left n Register (n=0-5) (Table 673 p. 712) and SPDIF Recording Channel
Status Right n Register (n=0-5) (Table 674 p. 713). The software then checks if PCM or
non-PCM data is recorded and determines the sample size of the recorded S/PDIF.

5. Write the sample size that was retrieved from the status bits to the <Recording Sample Size>
field in the Recording Control Register (Table 665 p. 706). After the sample size is written,
future recorded data is organized to reflect the new sample size configuration (see
Section 16.4, Audio Unit Memory Structure, on page 252).

- When following steps 1-5, up to three of the first S/PDIF blocks in memory can contain
N data that is not organized according to the Audio Unit Memory Structure. This occurs
when the recorded sample size that was retrieved from the status buffers is different
Note than the initially configured sample size. Therefore, the user should mute or pause the
recording from the time when recording is enabled until the actual sample size is
configured.

16.1.5 Recording Mute

When recording mute is enabled by the <Recording Mute> field in the Recording Control Register
(Table 665 p. 707), the I°S or S/PDIF recorded data value is replaced by zeros. The S/PDIF control
bits remain untouched, except for the required S/PDIF parity update.

The recording DMA and the 1°S or S/PDIF interfaces continue working normally.

16.1.6 Recording Pause

When recording pause is enabled in the <Recording Pause> field in the Recording Control Register
(Table 665 p. 707), the 1S interface continues to work normally but the recording DMA halts. Unlike
the 12S recording disable (STOP), the I12S clocks remains active as long as 1S recording is enabled.
This allows the I°S transmitter to continue playing data even though the ADU discards it.

Control Register Recording Control Register (Table 428 p. 386) (Table 428 p. 389) to
0, the I12S clocks remains active if the 12s playback is enabled, because the 12S master
mode is used.

16.2 Playback Flow

To playback data, use the following procedure:

1. Select one of the following clock sources through the <MCLK source> field in the Clocks
Control Register (Table 642 p. 693). Each of these clocks has the frequency of 256xFg:

EI If 12S recording is disabled by setting the <I2S Recording Enable> field in the Recording

Note

* SPCR recovered S/PDIF recording clock: The spcr_lock should be read asserted before
playback is enabled.

» Configurable DCO clock: The <dco_lock> field in the SPCR and DCO Status Register
(Table 638 p. 692) should be read asserted before playback is enabled. The frequency of the
DCO must be configured by writing to the <dco_ctrlfs> field in the DCO Control Register
(Table 637 p. 691).

e External clock

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 246 Document Classification: Proprietary Information December 2, 2008, Preliminary

Audio (IZS / SIPDIF) Interface (88F6180, 88F6192, and 88F6281 Only)
Playback Flow

2. Configure the <Playback Buffer Start Address> field in the Playback Start Address Register
(Table 655 p. 702) and the <Playback Buffer Size> field in the Playback Buffer Size Register
(Table 656 p. 702).

3. Write the playback data to the entire cyclic buffer.

4. Configure the following:

* <Playback Base> field in the Playback Window Base Address Register (Table 646 p. 695)
* Playback Window Control Register (Table 647 p. 695)
* <Playback DMA Burst Size> field in the Playback Control Register (Table 654 p. 701)
* Required audio configuration modes in the:
— Playback Control Register (Table 654 p. 699)
— S/PDIF Playback Registers (see Table 660 through Table 664)
—12S Playback Control Register (Table 659 p. 703)

5. Decide which buffer management method to use. Enable the relevant mask bits and optionally
set a proper value in the Playback Byte Counter for Interrupt Register (Table 658 p. 703). The
playback buffer management methods are described in section Section 16.2.1, Playback Data
Buffer Management Methods, on page 248.

6. Enable playback with either the <I2S Playback Enable> or the <SPDIF Playback Enable> field
in the Playback Control Register (Table 654 p. 700).

It is possible to enable the I°S interface, the S/PDIF interface, or both interfaces simultaneously. If
both interfaces are enabled, they should be enabled and disabled at the same time.

During simultaneous playback, the DMA sends the same data to both 1S and S/PDIF interfaces.
S/PDIF control bits are sent only to the S/PDIF interface when a playback sample size of 24-bits or
less is selected. Non-PCM data cannot be used during simultaneous playback.

EI When playing a 32-bit sample, disable or mute the S/PDIF output interface.
Note

As long as playback is activated, playback-DMA transfers data independently from the cyclic
memory buffer to the ADU outputs. The size of each DMA read burst access is determined by the
<Playback DMA Burst Size> field in the Playback Control Register (Table 654 p. 701).

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 247

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

16.2.1 Playback Data Buffer Management Methods

The software must continuously fill the cyclic memory buffer using one of the following interrupt
methods. Interrupt cause bits can be found at the Audio Interrupt Cause Register (Table 650 p. 696)
and can be masked by using the Audio Interrupt Mask Register (Table 651 p. 698).

Divided Buffer
Method

Configured
Playback Byte
Counter
Method

Doc. No. MV-S104860-U0 Rev. C
Page 248

As shown in Figure 64, the first method divides the buffer into quarters or
halves. After each quarter or half of the buffer is read by the playback DMA, the
software is interrupted. An interrupt handler can overwrite the already played
buffer segment with new playback data, while playback continues from the
following buffer segments.

In this method, if an interrupt handler operation is delayed for a period of less
than a full buffer playback cycle, the cause register still holds the information of
which quarters of the buffer were played. This gives the software more time to
recover from an unexpected interrupt handler delay.

The second method enables the user to configure the playback byte count for an
interrupt.

Each time the dedicated counter reaches a pre-configured value in the
Recorded Byte Counter for Interrupt Register (Table 669 p. 709), an interrupt is
asserted in the Audio Interrupt Cause Register (Table 650 p. 696), and the
counter is reset.

The advantage of this method is that it allows other user-defined interrupt
resolutions.

Copyright © 2008 Marvell
Document Classification: Proprietary Information December 2, 2008, Preliminary

16.2.2

Audio (I2S / SIPDIF) Interface (88F6180, 88F6192, and 88F6281 Only)

Figure 64: Playback Flow

Playback Flow

S/PDIF

AN

1’S

AN

S/PDIF 12s Audio Unit
Control Control Playback
Playback
Sample
Counter
Playback
FIFO v
Audio Unit » ERRINT
Interrupt » INT
Playback Controller
Registers
Playback DMA
Playback
Byte
ﬁ Counter
Software Buffer L J Mbus
in Memo P INT after
buffer full
After the
second Second Half of Memory Buffer ——» |NT after 3/4
half was read, buffer
the DMA wraps
around to read
the first half,
while the CPU P INT after
re-writes the 1/2 buffer
second half.
First Half of Memory Buffer —® NT after 1/4
buffer

S/PDIF Specific Playback Flow

User bits can be sent either from the ADU internal buffers at:
SPDIF Playback User Bits Left n Register (n=0-5) (Table 663 p. 705)

and

SPDIF Playback User Bits Right n Register (n=0-5) (Table 664 p. 706)

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Document Classification: Proprietary Information

Doc. No. MV-S104860-U0 Rev. C
Page 249

®

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

16.2.3

16.2.4

16.2.5

or from memory. When status and user bits are sent from the ADU internal buffers, they are updated
during playback in parallel to the data. Before the start of each new played block, an S/PDIF start of
block interrupt can be enabled. The software uses this interrupt to update the new ADU internal
buffers status and/or user bits. The new bits are played together with the block following the one that
has now started.

Status and user bits are double buffered, allowing the software approximately one block of playback
time to update the new S/PDIF user and/or status bits.

Playback Mute

It is possible to mute either the 1S or the S/PDIF interface during simultaneous playback, or when
only one of the interfaces is active.

During simultaneous playback with both interfaces enabled, the interfaces can be muted together or
separately at any time. Muting is performed using the <I2S Playback Mute> field or the <SPDIF
Playback Mute> field in the Playback Control Register (Table 654 p. 701).

During mute, the Playback-DMA and 12S clocks remain active.

During non-simultaneous 12S and S/PDIF playback control, when mute is activated, the S/PDIF user
and status bits are automatically taken from the internal buffers. This means that the internal buffers
should hold their required mute values before mute can be asserted.

Playback Pause

If the <Playback Pause> field in the Playback Control Register (Table 654 p. 701) is enabled, the
playback DMA halts, but the 12S and the S/PDIF interfaces remain active and playing “silence”.

During pause, the S/PDIF user and status bits are automatically played from the internal buffers.
This means that the internal buffers should hold their required pause values before pause can be
asserted.

Sample Counters and DCO Run-Time Operation

The ADU includes a <Playback Sample Counter> field in the Playback Sample Counter Register
(Table 640 p. 693) and a <Recorded Sample Counter> field in the Recording Sample Counter
Register (Table 641 p. 693).These counters are incremented by each incoming and outgoing audio
sample from the ADU I/O interface.

When S/PDIF recorded data is being played concurrently to being recorded and the DCO clock is
used to clock the playback circuits, sample counters can be used to adjust the DCO playback
frequency, in ppm resolution, to balance the playback rate with the recording rate. The recording rate
is clocked by the external transmitter clock. This external clock frequency can differ slightly from the
DCO clock frequency. Therefore, adjust the DCO playback frequency to avoid a long-term memory
buffer overflow.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 250

Document Classification: Proprietary Information December 2, 2008, Preliminary

Audio (I2S / SIPDIF) Interface (88F6180, 88F6192, and 88F6281 Only)

Error Handling

16.3 Error Handling

The ADU error handling of recording parity errors, recording overrun, and playback underrun is
described in the following sections.

Recording Parity
Error

Recording Overrun

Playback Underrun

Copyright © 2008 Marvell

When an S/PDIF parity error is encountered during recording, the data is
stored normally, recorded validity is asserted by the ADU, and an S/PDIF
Recording Parity Error interrupt can be enabled in bit [1] of the Audio
Error Mask Register (Table 649 p. 696).

When the internal recording FIFO is full, new samples are dropped. The
<Recording Overrun Err> field in the Audio Error Cause Register

(Table 648 p. 696) is asserted. This event may occur, for example, when
the Audio unit write accesses to the DDR are slower than the recording
speed.

The field <Recording Overrun Err> can be masked by de-asserting bit [4]
in the Audio Error Mask Register (Table 649 p. 696).

If Playback underrun occurs, a Playback 12S Underrun Error interrupt or
a Playback S/PDIF Underrun Error interrupt in the Audio Error Cause
Register (Table 648 p. 695) can be enabled via bit [5] and bit [6],
respectively, in the Audio Error Mask Register (Table 649 p. 696).

Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 251

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

16.4 Audio Unit Memory Structure

The memory structure for 12S and S/PDIF data transmit and receive can use 16-, 20-, or 24-bit
sample sizes. 1S data transmit and receive may also use a 32-bit sample size.
For 16-bit playback and recording, two memory structure options exist:

16-Bit Compact Mode Data is stored in memory sequentially and there are no gaps, see
Example A (stereo) and Example C (mono) in Figure 65.

In this option, the 192 status and user bits per channel are double
buffered in the ADU internal buffers. Validity, parity, and block start bits
are not recorded.

On the playback path, the user and channel status bits are taken from
the internal buffers that hold the 192 status bits and the 192 user bits
per channel. These registers are configured per channel, and are sent
automatically and repeatedly for every block.

For normal operations, the validity bit should be configured in the
register file as:

m O for PCM traffic

m 1 for non-PCM traffic

Full 16-Bit Mode This option is depicted in Example B (stereo) and Example D (mono) in
Figure 65.

This option uses twice as much memory space and bandwidth versus
the 16-bit Compact Mode. It allows the user to store status, validity,
parity, block start and parity error indication bits values in memory, along
with the data.

During playback the user bit, validity bit, and start of block can be
played from memory on a sub-frame basis.

EI Non-linear PCM traffic always uses an S/PDIF 16-bit sample size.
Note

To determine the sample size mode, configure the <Playback Sample Size> field in the Playback
Control Register (Table 654 p. 699) and the <Recording Sample Size> field in the Recording Control
Register (Table 665 p. 706). For 12s only, also configure the <I2S PB sample size> field in the 12S
Playback Control Register (Table 659 p. 704), and the <I2S Recording Sample Size> field in the 12S
Recording Control Register (Table 670 p. 710).

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 252 Document Classification: Proprietary Information December 2, 2008, Preliminary

Audio (IZS / SIPDIF) Interface (88F6180, 88F6192, and 88F6281 Only)
Audio Unit Memory Structure

Figure 65 displays the memory structure for data transmit and receive in 16-/20-/24-bit sample size
for 1°S and S/PDIF data.

Before using the Audio unit to play a PCM file, the user must first ensure that the PCM
| §| | file memory structure is compatible with the ADU memory structure. If not, the PCM file
must be converted to the Audio unit memory structure.

Note For example, an audio .wav file may use the following memory structure per sample
size:

m 16-bit: Same as the Audio unit 16-bit Compact Mode.

m 20-bit: Each 20-bit sample is stored in a 24-bit word, where bits[19:0] are stored in
bits[23:4] of the 24-bits word. The four bits [3:0] are padded with zeros. The 24-bit
word is stored in memory as described below.

m 24-bit: Each of the 24-bits is stored sequentially in memory without padding.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 253

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Figure 65: Memory Structure for Transmit and Receive

31 16 15 0
Example A
16-hit Compact 2" 16 bits (R) 1% 16 bits (L)
Mode Stereo
31 30 29 28 27 26 25 1615 0
Addr0 piclu|v|B|S 1% 16 bits (L)
Example B
16-bit Full
Mode Stereo 31 30 29 28 27 26 25 1615 0
Addr4 |plclu|v|B|S 2" 16 bits (R)
31 1615 0
Example C nd . st .
16-bit Compact 2™ 16 bits (L) 1> 16 bits (L)
Mode Mono
31 30 29 28 27 26 25 1615 0
Addro piclulv|B|§ 1% 16 bits (L)
Example D
16-bit. Ful 31 30 29 28 27 26 25 1615 0
Mode Mono :
o n i
Addr4 |plclulve 5 2™ 16 bits (L)
31 30 29 28 27 26 25 2423 2019 0
. |
AddrO0 \pic|ulv|B k3 : 1% 20/24 bits (L)
|
Example E I
20/24-bit Stereo 31 30 29 28 27 26 252423 2019

Addr4 Ipiclu|v|B 2" 20/24 bits (R)

Perr

31 30 29 28 27 26 25 2423 20|19 0
- I
Addro |piclulv|e E ! 1% 20/24 bits (L)
Example F :
20/24-bit Mono 3130 29 28 27 26 25 2423 20|19 0
- |
Addr4a |plclulvie k7 : 2" 20/24 bits (L)
l
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 254 Document Classification: Proprietary Information December 2, 2008, Preliminary

Audio (I2S / SIPDIF) Interface (88F6180, 88F6192, and 88F6281 Only)

Audio Unit Memory Structure

Table 72 describes the meaning of each memory structure bit for all sample sizes, except for 16-bit

Compact mode.

Table 72: Audio Unit Memory Bit Description

Bit Symbol

31 P

30 C

29 U

28 \%

27 B

26 Perr
16.4.1

Name
S/PDIF parity bit

S/PDIF channel
status

S/PDIF user bit

S/PDIF validity bit

S/PDIF block start
trigger

S/PDIF parity error
indication

Description
This bit is recorded but not used during playback.

This bit is recorded but not used during playback. Channel status bits are used
from the ADU internal buffers.

User bit is recorded and can be used during playback from the ADU internal
buffers or from memory.

When the validity bit is recorded or played from memory, it is always asserted
by the ADU when the Perr bit is asserted, or in the case of recording/playback
mute or pause. Validity can be used during playback from the ADU register file
or from memory, as configured in the SPDIF Playback Control Register

(Table 660 p. 704).

When playing non-PCM audio, This bit should be asserted.

This bit is recorded and can be used during playback when the <SPDIF PB
Block Start> field in the SPDIF Playback Control Register (Table 660 p. 704) is
asserted.

When asserted, the B-bit indicates to the ADU to send the data sample with the
start of block preamble. Block start should be computed internally, and not
taken from the B-bit during playback when both user and status bits are taken
from the ADU internal buffers. Otherwise, the block start should be taken from
memory.

During underrun or pause, or during mute in non-simultaneous S/PDIF and I2S
playback, this bit is automatically computed by ADU and the B-bit is ignored.

This bit is used to indicate that recorded data has a parity error.

Used in playback to assert validity in the event of a parity error indication.

Perr can be used in playback to force a parity error in the outgoing sub-frame.

If the <Force Parity Error> field in the SPDIF Playback Control Register

(Table 660 p. 704) is asserted and the <Perr> bit is asserted, the ADU

computes an erroneous parity. This can be used to maintain the parity error

that was detected in the recording.

NOTE: When Perr is asserted and PCM data was recorded, the recorded Perr
bit may equal the calculated parity since the ADU asserts the recorded
validity when a parity error is detected.

Stereo Mode Alignment

In Stereo mode recording and playback, the left channel data is stored in memory locations with
addres2=0, and the right channel is stored in memory locations with address2=1.

When using the 16-bit Compact mode in Stereo mode, the left channel is stored in memory locations
with address1=0, and the right channel is stored in memory locations with address1=1.

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Doc. No. MV-S104860-U0 Rev. C
Document Classification: Proprietary Information Page 255

17

—

=
—

M ARVELL®

88F6180/88F619x/88F6281
Functional Specifications

Secure Digital Input/Output (SDIO)
Interface

The device integrates a Secure Digital (SD) and MultiMedia card (MMC) host controller unit. This
unit functions as a host for the SD/MMC bus to transfer data through the Mbus between SDMem,
SDIO, and MMC cards on one side and system buffers (see Figure 66).

One side of the unit interfaces with a standard SD/MMC host bus.

The other side is programmable to interface either:
m Directly with the CPU—Mbus Slave
m From the DMA engines to the DRAM—Mbus Master

Figure 66: SD_MMC Host Controller Hardware Block Diagram

Mbus

Mbus Slave SD/MMC
(Access to .
> - < » Register
Register File
File)
A
A
Master/
Slave
Arbiter
DAT[3:0]
A
MD
Y sor &
Mbus MMC
Master SD/MMC bus |[CLK
> < > Host
(DMA
. Controller
engines)
VSS
VDD

Communication over the SD/MMC bus is based on commands and data bit streams. They are
initiated by a start bit and terminated by a stop bit.

Command

Command response

Doc. No. MV-S104860-U0 Rev. C

Page 256

A command is a token that starts an operation. A command is sent from the
host to the card(s). The command is transferred serially on the CMD line and
multiplexed on the MPP as SD_CMD. The SD_CMD is bidirectional.

A command response is a token that is sent from an addressed card to the
host as an answer to a previously received host command. The response is
transferred serially on the CMD line and multiplexed on the MPP as
SD_CMD.

Copyright © 2008 Marvell

Document Classification: Proprietary Information December 2, 2008, Preliminary

Secure Digital Input/Output (SDIO) Interface

Features
Data There are four bidirectional data transfer lines used to transfer data from the
card to the host or vice versa. They are multiplexed on the MPP as
SD_DI[3:0].
SD_CLK This clock synchronizes the SDIO bus of the device.

EI For more information, refer to the SD Memory Card Specifications.

Note
17.1 Features
The SDIO features supported by the device, and those features that are not supported are:
Features supported: Features not supported:
m 1-bit/4-bit SDMem, SDIO, and MMC cards m Interrupts mode in the MMC card
m Up to 50 MHz for SD and MMC = SPI mode

Multiple MMC cards sharing a common bus

Interrupts for information exchange between host
and cards

Read wait commands in SD cards

Hardware generate/check CRC on all command and
data transaction on card bus

Suspend/resume in SDIO cards

Stream read/write in MMC cards

17.2 SDMem, MMC, and SDIO Arbitration Scheme

Host and SD/MMC cards go through two phases following each power on reset, software reset, or
addition of a new card (see Figure 67):

Card identification phase The host looks for new cards on the bus. While in this phase, the

host resets all the cards that are in Card Identification mode. Any

card that is already identified will not be reset. Then the host sends

the command to validate the operation voltage range, identify the

card, and request the card’s Relative Card Address (RCA).

m In SDmem, this operation is done to each card separately on
its own CMD line.

m Inthe MMC system, it is done on a shared CMD line.

All data communication in the Card Identification phase uses the

CMD line only. The host starts the card identification process with

an identification clock rate fOD that is slow (see SD Memory Card

Specifications).

Data transfer phase The host enters the data transfer phase after identifying all the

cards on the bus. In this phase, the host is ready to transfer data.

After the host driver completes the setup of the host controller, it starts data transfer by writing to the
Command Register (Table 685 p. 719). Therefore, the Command register has to be written last.

Copyright © 2008 Marvell

Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 257

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Figure 67 shows the Host initialization flow.

Figure 67: Host Initialization Flow

Idle State

A

Response No response

ACMDA41
(arg=00) v

CDMO
Reset card

Response No response

No response

Response
A 4 \ 4
SDmem. Card MMC Card SDIO Card
Ready State Ready State Ready State

A 4

Identification
state
A 4 \4
CMD3 | CMD3 | | CMD3 |

Identification
state

Identification
state

A

Card identification phase

v

A \ 4
(Standby state) (Standby state) (Standby state)

A A A
\ 4 y A
| CMD3 | | CMDA4... | | CMD7 |
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Data transfer phase

Page 258 Document Classification: Proprietary Information December 2, 2008, Preliminary

17.3

17.4

17.5

Secure Digital Input/Output (SDIO) Interface
Difference Between SD Cards and MMC Cards

Difference Between SD Cards and MMC Cards

The SD card protocol is designed to be a super-set of the MultiMedia card (MMC) protocol.
However, besides some different commands in the initialization protocol, the only difference
between the SD and MMC cards is the bus topology.

SD card Each SD card has a dedicated, independent point-to-point
connection—containing its own CLK, CMD, DATA lines—to the host.
The I/O pads of the SD card are a push-pull type.

MultiMedia card The MMC card bus is a shared bus, between multiple MMC cards
with the MMC cards identified serially, one at a time. Therefore,
during initialization, MMC cards use open-drain 1/O pad types. In the
data transfer phase, MMC cards switch to push-pull I/O type just like
the SD cards.

To the host, this shared bus makes no difference. However, each of
the MMC cards has to monitor the bus to determine whether or not it
has won the bus.

To support both bus topologies, the host controller functions as an open-drain during the initialization
phase, and functions as a push-pull type during the data transfer phase. For the CMD and DATA
lines, for both SD cards and MMC cards, the type needs to be pull-up.

SDIO / SDMem / MMC Host Controller Initialization

If the SD/MMC host controller requires a configuration different from the default, the software should
configure the following registers:

Mbus Control Low Register (Table 716 p. 739) (offset: 0x80100)

Mbus Control High Register (Table 717 p. 739) (offset: 0x80104)

WindowO Control Register (Table 718 p. 740) (offset: 0x80108)—size, target, and attributes
WindowO Base Register (Table 719 p. 740) (offset: 0x8010C)

Window1 Control Register (Table 720 p. 741) (offset: 0x80110)—size, target, and attributes
Window1 Base Register (Table 721 p. 741) (offset: 0x80114)

Window2 Control Register (Table 722 p. 741) (offset: 0x80118)—size, target, and attributes
Window2 Base Register (Table 723 p. 742) (offset: 0x8011C)

Window3 Control Register (Table 724 p. 742) (offset: 0x80120)—size, target, and attributes
Window3 Base Register (Table 725 p. 743) (offset: 0x80124)

SDIO / SDMem / MMC Command Execution

The SD/MMC command is activated by configuration of the relevant SD registers (see Table 677,
Register Map Table for the SDIO Registers, on page 714). Some commands (e.g., Auto Cmd12)
require the setting of dedicated registers before executing the command. Software will set
appropriate registers before writing Command to the Command Register (Table 685 p. 719). Upon
writing Command to the Command register, the hardware automatically starts command execution,
data transfer, and CRC generation or checking. Therefore, the Command register is the last register
to be written by software. The command completion could be detected by interrupt assertion or by
polling Interrupt Status Registers (offsets: 0x80060-0x80074).

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 259

—
=
—

M ARVELL®

88F6180/88F619x/88F6281
Functional Specifications

Table 73 shows an example of the software flow for the SDIO command execution. Configure the

registers listed in this table:
Table 73: Software Flow

Register Name

Offset

DMA Buffer Address 16 LSB Register (Table 678 p. 715) 0x80000

DMA Buffer Address 16 MSB Register (Table 679 p. 715) 0x80004

Data Block Size Register (Table 680 p. 716) 0x80008

Data Block Count Register (Table 681 p. 716) 0x8000C

Argument in Command 16 LSB Register (Table 682 p. 716) 0x80010

Argument in Command 16 MSB Register (Table 683 p. 717) 0x80014

Host Control Register (Table 697 p. 724) 0x80050
Data Block Gap Control Register (Table 698 p. 727) 0x80054
Clock Control Register (Table 699 p. 728) 0x80058

Argument in Auto Cmd12 Command 16 LSB Transferred 0x80084
Register (Table 710 p. 737)

Argument in Auto Cmd12 Command 16 MSB Transferred 0x80088
Register (Table 711 p. 737)

Index of Auto Cmd12 Commands Transferred Register 0x8008C

(Table 712 p. 738)

Transfer Mode Register (Table 684 p. 717) 0x80018

Field
<DmaAddrLo>
<DmaAddrHi>
<BlockSize>
<BlockCount>
<ArgLow>
<ArgHigh>

<PushPullEn>
<CardType>
<BigEndian>
<LsbFirst>
<DataWidth>
<HiSpeedEn>
<TimeoutValue>
<TimeoutEn>

<Resume>
<SclkMastereEn>

<AutoCmd12ArgLo>

<AutoCmd12ArgHi>

<AutoCmd12BusyChkEn><
AutoCmd12IndexChkEn>
<AutoCmd12Index>

<SwWrDataStart>
<HwWrDataEn>
<AutoCMD12En>
<IntChkEn>
<DataXferTowardHost>
<StopCIkEn>
<HostXferMode>

NOTE: After this sequence, the Command Register (Table 685 p. 719) fields must be configured. Writing
to the command register is the trigger for SDIO command execution.

Command Register (Table 685 p. 719) 0x8001C

Doc. No. MV-S104860-U0 Rev. C
Page 260

Document Classification: Proprietary Information

<RespType>
<DataCrc16ChkEn>
<CmdCrcChkEn>
<CmdIndexChkEn>
<DataPresent>
<UnexpectedRespEn>
<CmdIndex>

Copyright © 2008 Marvell
December 2, 2008, Preliminary

17.6

Secure Digital Input/Output (SDIO) Interface
SDIO / SDMem / MMC Interrupts

SDIO / SDMem / MMC Interrupts

The SD/MMC interrupts are registered in two Interrupt Cause registers:

m Normal Interrupt Status Register (Table 701 p. 729) (offset: 0x80060)

m Error Interrupt Status Register (Table 702 p. 730) (offset: 0x80064)

The interrupt going from the unit to the CPU is generated as a bitwise OR of all bits of these

registers. Upon an interrupt event, the corresponding cause bit is set to 1. It is cleared upon a
software write of 0.

Each bit in the Normal Interrupt Status Register can be enabled or disabled by the relevant bit in the
Normal Interrupt Status Enable Register (Table 703 p. 732) (offset: 0x80068).

The impact of each bit on SD/MMC interrupt generation may be enabled or disabled by the relevant
bit in Normal Interrupt Status Interrupt Enable Register (Table 705 p. 734) (offset: 0x80070).

Each bit in Error Interrupt Status Register can be enabled or disabled by the relevant bit in the Error
Interrupt Status Enable Register (Table 704 p. 733) (offset: 0x8006C).

The impact of each bit on SD/MMC interrupt generation may be enabled or disabled by the relevant

bit in Error Interrupt Status Interrupt Enable Register (Table 706 p. 735) (offset: 0x80074).

The following interrupt events are supported:

Normal Interrupts:

Copyright © 2008 Marvell

December 2, 2008, Preliminary

Command Complete n
Transfer Complete [
Block gap event u
DMA interrupt [

TX ready—the FIFO has room for the CPU to write 16 bits of m
data.

RX ready—the FIFO contains at least 1 byte of data ready to m
be read by the CPU.

Cards interrupt. [
Read Wait state is on. n

There are at least eight filled entries for data to be read from =
the FIFO.

There are at least eight empty entries for data to be written in m
the FIFO.

The hardware is suspended. n
Auto_cmd12 is completed. n
Unexpected response from devices detected. n

Document Classification: Proprietary Information

Error Interrupts:

Command timeout error
Command CRC error

Command end bit error
Command start bit error

Command index error

Auto CMD12 error

Data timeout error
Read data CRC error
Read data end bit error

Transfer size mismatched
error

Response T bit error
CRC end bit error
CRC start bit error
CRC status error

Doc. No. MV-S104860-U0 Rev. C
Page 261

®

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

18 Transport Stream (TS) Interface
(88F6192 and 88F6281 Only)

The 88F6192 and 88F6281 implement a Transport Stream Unit (TSU) that is responsible for
handling MPEG-2 Transport Stream (TS) Interface format. This packet-based format transfers video,
audio, and other information such as timestamps, as defined in ISO/IEC 13818-1.

The TSU includes two ports, supporting the following parallel and serial modes:

Single parallel input (only Port O is active)

Single parallel output (only Port O is active)

Dual serial outputs (two ports are active)

Dual serial inputs (two ports are active)

Single serial input and single serial output (two ports are active)

Figure 68 illustrates the flow to/from each TS port, TS interface, and Mbus internal interface.

Figure 68: TSU Block Diagram

—_— R egfile
TS TS B _
- Port0 9 >
-
Mb
I/Fus s
TS TS) -
- Port1 B >
— Regfile
The TSU implements the following features:
m |ISO/IEC 13818-1 format compatibility
m Sampling/sending data with rising or falling edge of the clock
= Support of configurable control signals polarity
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 262 Document Classification: Proprietary Information December 2, 2008, Preliminary

18.1

Transport Stream (TS) Interface (88F6192 and 88F6281 Only)
TS Port Architecture

TS Port Architecture

Unless specifically noted, the information in this section refers to a single TS port. The two ports are
identical and have the same features.

The TS interface can handle both input and output TS streams, when one direction is used at a time.
The Input and Output Control Blocks are configurable for either serial or parallel mode. They can
process data byte-wise or bit-wise and sample/send data with the rising or falling edge of the clock.
Polarity of the control signals is also configurable. The Input Control Block samples the timestamp of
the received TS packet. A FIFO is implemented, to compensate for bus latency on the input path
and process time on the output path. A Control Registers block is implemented to configure the TS
interface.

The Mbus Direct Memory Access (DMA) interface controls data transfer from memory to the TS
interface and vice versa. It also handles register accesses from the CPU. The DMA interface
processes a chain of descriptors. It is triggered to fetch the next descriptor, based on the TS
Descriptor Write and Read Pointer scheme. Data transfer in the TS input direction starts every time
TS data is available in the TS port FIFO. In the TS output direction, the data transfer from memory
over the Mbus to the FIFO is triggered by a timer. This timer is controlled by the firmware, based on
the timestamps of the received TS packets. Therefore, the firmware and the TS port can correct any
network jitter.

After each data transfer, the TS port stores a status double-word in the SDRAM Done queue.

Figure 69 provides a block diagram of the TS interface.

Figure 69: TS Interface Block Diagram

TS
I/F

Timestamp

Timestamp clock

A A

18.2

Output Clock
Generator

) FIFO
- Serlal/CParalllel - - Read -
Input Contro Control
A
Mbus
FIFO DMA
Interface
FIFO
Serial / Parallel | - -t
Ouput Control [Write N
Control
A A A

A

4% Control Registers ‘
System Clock ‘

TS Interface

The TS port includes a set of pins that can be configured to support input or output configurations. In
addition, this set of pins can be configured in serial or parallel mode.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 263

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

TS Serial mode is a subset of Synchronous Parallel Interface (SPI) mode, using the same control
interface, but only one TS_DATA[O].
The interface defined in Table 74 fulfills the following requirements:

m Selection of interface mode (serial/parallel) is programmable via the <TS Data Mode> field in
the TS Interface Configuration Register (Table 741 p. 751).

Selection of interface direction (input/output) is programmable via <TS Data Direction>.
Supports of up to 256-byte TS packet size, programmable via <TS Packet Size>.
Polarity of TS_SYNC is programmable via <TS_SYNC Polarity>.

Polarity of TS_VAL is programmable via <TS_VAL Polarity>.

Polarity of TS_ERR is programmable via <TS_ERR Polarity>.

A complete TS packet can be output on consecutive clock cycles.

Signals TS_DATA[7:0] remain low during inter-packet gaps (SPI).

Signal TS_ERR is active during the entire TS frame.

Data transition is programmable to be either on the rising or falling edge of the TS_CLK
via <TS Data Transmission Edge>.

For Serial mode the following additional requirements are fulfilled:
m Signals TS_DATA[7:1] are held low.

m Serial data stream is programmable to output either in an MSB or LSB first direction
via <TS Serial Data Order>.

m Signal TS_SYNC is programmable to be active during the entire first byte or the first bit only
via <Serial TS_SYNC Active>.

m TX_CLK is programmable to either gapped or continuous clock mode via
<TS Serial Clock Mode>.

m In continuous mode the clock runs without regard to data being output. TS_VAL is used as a
data strobe.

Table 74: Transport Stream (TS) Interface Signal Assignment
Pin Name /0 Description

TSMPJ[0] | EXT_CLK
External clock that can be used to drive the TSO_CLK and TS1_CLK

TSMP[1] /0 | TSO_CLK
Port0 TS clock.
» If TSO_VAL is used, the clock may be continuous.
« If TSO_VAL is not used, the clock may toggle only when valid data is
available on TSO_DATA.

TSMP[2] /0 TSO_SYNC
Port0 Sync/Frame Start Indicator or Packet Clock.
The TSO_SYNC in parallel mode is a pulse that is active during the first (Sync)
byte of the TS packet. In serial mode, the TSO_SYNC pulse may be active for
the entire byte or only for the first bit. The polarity is programmable to be either
active high or active low.

TSMP[3] /0 TSO_VAL
Port0 Valid Data Indicator
When this signal is used and is valid, it indicates that valid data is present on
TSO_DATA. TSO_VAL is active during the TS frame packet data and inactive
when there is no TS synchronization.
In output mode, the polarity of TSO_VAL is programmable to be either active
high or active low.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 264 Document Classification: Proprietary Information December 2, 2008, Preliminary

Transport Stream (TS) Interface (88F6192 and 88F6281 Only)
TS Interface

Table 74: Transport Stream (TS) Interface Signal Assignment (Continued)

Pin Name
TSMP[4]

TSMP[5]

TSMP[6]

TSMP[7]

TSMP[8]

TSMP[9]

TSMP[10]

TSMP[11]

TSMP[12]

Copyright © 2008 Marvell
December 2, 2008, Preliminary

1/0
le}

lle}

/0

/0

/0

/0

/0

1’0

1’0

Description

TSO_ERR

Port0 Uncorrectable Packet Error

When this signal is used, an error indicates that the packet contains an
uncorrectable error, and therefore should not be used.

In output mode, the TSO_ERR is active during the entire TS frame.

TSO_DATA[0]
Port0 TS Data bit 0 in both parallel and serial modes.
In Serial mode TSO_DATA[O] is used as data input or output.

» Parallel Mode:
TSO_DATA[1]: Port0 TS Data bit 1
* Serial Mode:
TS1_CLK: Portl TS clock.
- If TS1_VAL is used, the clock may be continuous.
- If TS1_VAL is not used, the clock may toggle only when valid data is
available on TS1_DATA

» Parallel Mode:
TSO0_DATA[2]: PortO TS Data bit 2
* Serial Mode:
TS1_SYNC: Portl Sync/Frame Start Indicator or Packet Clock.
The TS1_SYNC pulse may be active for the entire byte or only for the first
bit. The polarity is programmable to be either active high or active low

» Parallel Mode:
TSO_DATA[3]: Port0 TS Data bit 3

» Serial Mode:
TS1_VAL: PortlValid Data Indicator
When this signal is used and is valid, it indicates that valid data is present on
TS1_DATA[O].
TS1_VAL is active during the TS frame packet data and inactive when there
is no TS synchronization.
In output mode, the polarity of TS1_VAL is programmable to be either active
high or active low.

» Parallel Mode:
TSO0_DATA[4]: Port0 TS Data bit 4
* Serial Mode:
TS1_ERR: Portl Uncorrectable Packet Error
When this signal is used, an error indicates that the packet contains an
uncorrectable error, and, therefore, should not be used.
In output mode the TS1_ERR is active during the entire TS frame.
» Parallel Mode:
TSO0_DATA[5]: PortO TS Data bit 5
* Serial Mode:
TS1_DATA[O]: Portl TS Data bit 0, used as data input or output.

TSO_DATA[6]

Port0 TS Data bit 6

This pin is only valid in Parallel mode.
TSO_DATA[7]

Port0 TS Data bit 7

This pin is only valid in Parallel mode.

Doc. No. MV-S104860-U0 Rev. C
Document Classification: Proprietary Information Page 265

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Figure 70 is an example of the parallel TS data protocol, with active high control signals and data
transition on the rising edge of the TS_CLK.

Figure 70: TS Parallel Protocol (Example)

Figure 71 is an example of continuous serial TS data protocol with active low control signals and
data transition on the falling edge of TS_CLK.

Figure 71: TS Continuous Serial Data Protocol (Example)

18.3 Clocks

The TS does not support any clock recovery mechanism for generating the output clock on the basis
of packets received at any input interface.

Mode is selected by the firmware, which analyzes the timestamp of the TS packets and calculates
the TS data rate of the sending device. Once the data rate of the sender has been determined, the
firmware selects the output clock mode as follows:

Sender data rate <= mode data rate
The TS port output clock cycles are controlled by the TSU source clock, as supplied to the TSU from

the device and the <Output Clock Frequency> field in the TS Interface Configuration Register
(Table 741 p. 751) (which supplies the three different options for serial and parallel interfaces).

The Output clock is configured to supply:

m The same data rate as supplied by the source clock
m Half of the source clock data rate

m A quarter of the source clock data rate

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 266 Document Classification: Proprietary Information December 2, 2008, Preliminary

Transport Stream (TS) Interface (88F6192 and 88F6281 Only)
TS Input Data Flow

The TSU source clock from the device must be configured before the TSU exits from reset by
programming (see the <TSCK88> field in the TSU Modes Register (Table 730 p. 744).

Timestamp Counter Clocking: The timestamp counter is clocked by an internally generated clock
with a period of 192 ns.

18.4 TS Input Data Flow

TS input data flow is as follows:

1. During initialization the firmware programs the Control registers to set up TS signals and set the
Control Block to input mode.

2. Received TS packets (either in serial or parallel mode) are stored in the FIFO. A timestamp for
each packet is calculated, by deriving a sampling instant from the clock, which is constantly
incrementing.

3. TSU transfers data into the memory (The buffer address was previously supplied by the
firmware.) and also writes the status double-word (timestamp, errors information) for each
packet into the memory. Then it informs the firmware that a new packet is available.

4. After having updated the remaining header fields, the firmware writes the start address of the
packet into the pointer area of the memory.

18.5 TS Output Data Flow

TS output data flow is as follows:

1. During initialization the firmware programs the Control registers to set up TS signals and set the
Control Block to output mode.

2. Firmware configures the TS port to load data from the memory into the TSU port FIFO. For this
reason the firmware provides the start address of data, the number of bytes, and a timer value.
Based on the timer value the TSU can builds the inter-packet gaps of the TS input interface on
the TS output interface and corrects network jitter and delay.

3. Data transfer of each TS packet from the memory is triggered by the TS port timer.
4. Inside the TSU, the data is transferred from the DMA interface into the FIFO.
5. The TS port writes a status double-word for each packet into the memory.

18.6 DMA Engine

The TS port manages packet stream transfers between the memory and the TS interface. Data is
stored in the memory buffers and managed by descriptors.

The TS port includes the DMA engine, which handles the packets and descriptor transfers from the
memory to TS and vise versa.

The TS port works in half-duplex mode, i.e., TS packets are transferred in only one direction at a
time.
The TS port manages the following data structures to handle data flow:

m TS port DMA Engine includes two descriptor registers—one for the descriptor of the current TS
packet (Current Descriptor) and one for the descriptor of the next TS packet (Next Descriptor).

m TS Descriptor queue: Stores one double-word for each TS input direction packet and two
double-words for each output direction packet in the memory. The TS Descriptor queue is
defined by the following registers:

* Queue Base Address (Current Descriptor Register (Table 749 p. 754)),
* Write Pointer (TSU Enable Access Register (Table 752 p. 755))
* Read Pointer (TSU Timestamp Register (Table 753 p. 756)).

m TS Done queue: Stores one double-word for each TS input and output packet in the memory.
The TS Done queue is defined by the following registers:

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 267

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

* Queue Base Address (Descriptor Queue Read Pointer Register (Table 748 p. 754)),
* Write Pointer (Current DMA Address Register (Table 750 p. 755))
* Read Pointer (Current DMA Length Register (Table 751 p. 755)).

All descriptors in the TS Descriptor queue and in the TS Done queue start at a double-word
boundary.

18.6.1 TS Input Direction Data Structures

18.6.1.1 TS Input Descriptor Structure
Each TS input descriptor consists of a 32-bit register containing the buffer address of the packet to
be received.

18.6.1.2 TS Input Descriptor Queue Structure
The TS Input Descriptor queue is located in the CPU memory and has up to 1024 entries. It is
organized as a circular queue (FIFO) whose location is configured by the following registers:
m Current Descriptor Register (Table 749 p. 754)
m TSU Enable Access Register (Table 752 p. 755)
m Descriptor Queue Read Pointer Register (Table 748 p. 754).
The queue Write and Read pointers are defined as byte addresses. Adding them to the Queue Base
address results in the byte address of the queue entry.
The TS Descriptor queue size is determined by programming the <TS Descriptor Queue Size> field
in the TS DMA Parameter Register (Table 742 p. 752), which defines the number of double-words
the queue consists of, and as a result, the number of descriptors.
The circular queue structure is maintained using Read Pointer and Write Pointer rollover bits, whose
locations are derived from the programmed queue size.
The TS Input Descriptor queue is the interface used by firmware to queue valid descriptors for
managing incoming TS traffic through the device memory. The Write Pointer is controlled by TSU
and is incremented whenever a valid descriptor is placed for use. The Read Pointer is controlled by
the firmware and is incremented whenever a descriptor from the queue is used for pointing to a new
received TS packet in the memory (see Figure 72).

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 268

Document Classification: Proprietary Information December 2, 2008, Preliminary

Transport Stream (TS) Interface (88F6192 and 88F6281 Only)

DMA Engine
Figure 72: TS Input Descriptor Queue
Entry Byte Entry Byte Entry Byte
Nurrber Nurrber Nurrber Nurrboer Number Nurmber
0 Emty 0 0 Empty 0 0 InDesc | O
1| Emy | 4 o — 1| InDec | 4 1| InDesc | 4
a—> 2 | EPy | 8 €— 2| InDesc |8 2| By |8 €—
3| By | 3| InDesc |12 = 3| InDesc |12
4| Emy |16 4| By |16 €— oo 4| InDesc |16
| Empy | * Empy (© ® | nDesc |©
() o o () () ()
Enpty Enply InDesc
° o o (] () o
1023 Bty [40%2 1023 Enpty |40 1023 InDesc |40%2
18.6.1.3 TS Input Done Queue Structure
The TS Done queue is used for storing completion status for each received TS packet. It is located
in the CPU memory and is organized as a circular queue whose location is configured by:
m Descriptor Queue Read Pointer Register (Table 748 p. 754), Current DMA Address Register
(Table 750 p. 755)
= Current DMA Length Register (Table 751 p. 755).
Queue size is determined by programming the <TS Done Queue Size> field in the TS DMA
Parameter Register (Table 742 p. 752).
The TS Input double-word Status consists of the following fields in TSU Status Register
(Table 754 p. 756):
m <TS Connection Error>
m <TS FIFO Overflow Error>
m <TSIF Error>
m and the <Timestamp> field in the TSU Timestamp Register (Table 753 p. 756): Timestamp
value
18.6.2 TS Input Direction DMA Flow

Copyright © 2008 Marvell
December 2, 2008, Preliminary

If the TSU is configured as an input device, received TS packets are handled on serial or parallel
input interfaces and stored in the memory.

At initialization, the following steps are taken, to program the TSU to handle input:
1. Allocate buffers with predefined headers in the memory.
2. Configure the TSU to TS Input mode.

3. Set up descriptors for the TSU in the TS Descriptors queue. All the descriptors are one
double-word per TS packet. The descriptors act as a pointers to the start of the data payload
area within the buffer, or in case of aggregation to the start offset for the next TS packet, within
the buffer.

4. Update the TSU Enable Access Register (Table 752 p. 755).

Each time the next descriptor is not valid and the TS Descriptor Write Pointer differs from the TS
Descriptor Read Pointer, the DMA engine fetches a descriptor in the Next Descriptor register from

Doc. No. MV-S104860-U0 Rev. C

Document Classification: Proprietary Information Page 269

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

the TS Descriptor queue in the memory. The descriptor is transferred from the Next Descriptor
register to the Current Descriptor register at the beginning of each TS packet transfer.

As soon as data arrives in the TS interface, the FIFO of the DMA engine is filled. As soon as the
watermark is reached or the last byte of the TS packet arrives in the FIFO, a DMA transfer is
triggered, with the size of one watermark or the number of bytes up to End of Packet (EOP),
whichever is lower. After the DMA has been performed, the Current DMA Address is incremented,
and the Length Pointer is decremented by the number of bytes transferred. The TSU generates an
interrupt. While the CPU manages the received interrupt, the TSU can receive and transfer more
packets but cannot interrupt the CPU unless the interrupt is cleared. For handling the received
packets, the firmware can determine from the TS Descriptor queue Read Pointer, how many buffers
have been used to store received packets. The status of the received packets is stored in the TS
Done queue. Once the received packets have been processed, the TS Descriptor queue and TS
Descriptor Write Pointer must be updated, to re-enable TS input interrupt. Another option is that the
TSU generates an interrupt only if the difference between the TS Descriptor Write Pointer and the
TS Descriptor Read Pointer is less than the programmable value <Descriptor IRQ Threshold> field
in the IRQ Parameter Register (Table 759 p. 759). The interrupt triggers the firmware to process new
TS packets and generate new descriptors.

18.6.3 TS Output Direction Data Structures
18.6.3.1 TS Output Descriptor Structure

When Type 1 Aggregation or Type 2 Aggregation is used, each output descriptor consists of one
32-bit register that holds the buffer address (see Section 18.8, TS Packet Aggregation,
on page 273).

When aggregated modes are not used, each output descriptor consists of two 32-bit registers, as
depicted in Figure 73.

Figure 73: TS Output Descriptor Structure—No Packet Aggregation

Buffer Address

TS
Resv ERR Sync Value

The TS Output Descriptor includes the following fields:
Buffer Address Bits[31:0] of the first register Buffer address of the packet to be transmitted.

Sync Value Bits[27:0] of the second register Timestamp timer value for this packet.
Used for packet transmission scheduling.
TS ERR Bit[28] of the second register If set, the TSU asserts a TS_ERR signal on

the TS interface when sending this packet.

18.6.3.2 TS Output Descriptor Queue Structure

When packet aggregation is used, the TS output queue structure is the same as the TS input
descriptor queue structure (see Section 18.6.1.2, TS Input Descriptor Queue Structure,
on page 268).

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 270 Document Classification: Proprietary Information December 2, 2008, Preliminary

Transport Stream (TS) Interface (88F6192 and 88F6281 Only)
DMA Engine

The remainder of this section describes the TS output queue structure when packet aggregation is

not used.

The TS Output Descriptor queue is located in the CPU memory and is organized as a circular queue

(FIFO) of up to 512 entries. The queue is controlled by the same pointers as those used for
managing the TS Input Descriptor queue, with the exception that each entry is two double-words.

Figure 74: TS Output Descriptor Queue—No Packet Aggregation

Entry Byte Entry Byte Entry Byte
Nurrber Nurrber Nurrber Nurrber Nurrber Nurrber
o BEmty | O 0| Empy 0 0| OubDesc | O
1| By |8 o) —> 1 | QuiDesc | 8 1| OuDesc | 8
M — 2| By |16 — o 2| oubesc | 16 2| Bmy |16 4— o
3| By |2 3| QuDec | 2 oo — 3 | CuDesc | 4
4| By |2 4| By | R— 4 | QuDesc | 2
[} Enpty [} [} Enply [] ® [QutDec | @
() ° () .))
Empty Emply QutDesc
() (] ° °))
51| Enpy [4088 511 Enply | 4088 511 QuitDesc (4088
18.6.3.3 TS Output Done Queue Structure
The TS Output Done queue is used for storing completion status for each transmitted TS packet.
The TS Output Done queue is located in the CPU memory and is organized as a circular queue
whose location is configured by:
m Descriptor Queue Read Pointer Register (Table 748 p. 754)
m Current DMA Address Register (Table 750 p. 755)
m Current DMA Length Register (Table 751 p. 755).
Queue size is determined by programming the <TS Done Queue Size> field in the TS DMA
Parameter Register (Table 742 p. 752).
The TS Output Status consists of the following field:
TS FIFO Underflow Error - Bit[28]. TS FIFO Underflow Error signaled by the interface
18.6.4 TS Output Direction DMA Flow

Copyright © 2008 Marvell
December 2, 2008, Preliminary

At initialization the firmware configures the TSU to TS Output mode. It creates the address pointers
of the descriptors pointing to the start of the TS packets within the received packets. In addition, the
firmware generates the status fields of the descriptors, writes the descriptors to the TS Descriptor
gueue, and updates the TS Descriptor queue Write Pointer. Each time the Next Descriptor is not
valid and the TS Descriptor Write Pointer differs from the TS Descriptor Read Pointer, the DMA
engine fetches a descriptor in the Next Descriptor register from the TS Descriptor queue in the
memory. The descriptor is transferred from the Next Descriptor register to the Current Descriptor
register at the beginning of each TS packet transfer.

The data DMA for each packet is timer-triggered (see Section 18.7, TS Timestamp Mechanism). All
data DMAs within the packet start as soon as enough space is available in the FIFO (watermark
size). DMA size in one watermark or the number of bytes up to EOP, whichever is lower. After the

Doc. No. MV-S104860-U0 Rev. C

Document Classification: Proprietary Information Page 271

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

DMA has been performed, the Current DMA Address is incremented and the Length Counter is
decremented by the number of bytes transferred. If the Length Counter is 0, the status is written to
the TS Done queue, and the TS Done queue Write Pointer and TS Descriptor Read Pointer are
incremented.

The TS port only generates an interrupt if the difference between the TS Descriptor Write Pointer
and the TS Descriptor Read Pointer is smaller than the programmable value <Descriptor IRQ
Threshold> field in the IRQ Parameter Register (Table 759 p. 759). The interrupt triggers the
firmware to process new TS packets and generate new descriptors. If the firmware has generated
the last descriptor (for the last TS packet) of the session, it writes to the Interrupt Mask register in the
TS port to disable further TS port interrupts.

18.7 TS Timestamp Mechanism

The average data rate on the TS output interface must be constant, i.e., the TS packet gaps on the
TS input have to be rebuilt on the TS output.

At the beginning of the TS packet transfer on the TS input interface, a timestamp is sampled for each
received packet on the TS port input interface. The sampled timestamp for each packet is an
absolute time value, based on a free-running timer in the TS port. After the DMA transfer of the TS
packet, the related timestamp is stored as part of the descriptor in the TS Done queue.

Synchronization on the TS output interface is also based on a timer scheme. For each packet an
absolute time value is provided in the TS Descriptor queue. At the beginning of a Transport Stream
session, the firmware pre-loads the timer with the absolute time value of the first packet (see TSU
Timestamp Control Register (Table 755 p. 757)), generates the first descriptor, and updates the TS
Descriptor Write Pointer. This triggers the TS port to start the data DMA of the first packet. Then the
firmware starts the timer (see TSU Timestamp Control Register), which is incremented with each
clock edge. After the transfer of Packet x from the memory to the FIFO, the actual timer value is
compared with the time value of Packet x+1. This value is pre-fetched with the descriptor x+1, during
the data transfer of Packet x. If the actual timer value is equal to or greater than that of x+1, the TS
port starts the data transfer of Packet x+1 and the pre-fetch of the descriptor x+2.

The TSU Timestamp mechanism is fully controllable by programming the TSU Timestamp Control
Register. The timer value is readable by reading the TSU Timestamp Register (Table 753 p. 756).

When the timestamp mechanism is disabled (see the TSU Timestamp Control Register), the TS
packets are only transmitted on the TS output back to back, based on the TS output frequencies.

Every TS packet can receive a timestamp based on a software calculation. It is not only input stream
dependent. This timestamp can define the TS output data rate. Furthermore, an existing timestamp
can be changed via a software algorithm, to redefine the TS output data rate.

For example, packets come in bursts of 20 packets every 100us. Setting the timestamps of the
packets to intervals of 5us configures the TS port to send them as a stream of one packet every 5us.

Figure 75 illustrates a TS output data rate that is twice the input rate, but data is only transmitted
within the timestamp range.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 272 Document Classification: Proprietary Information December 2, 2008, Preliminary

Transport Stream (TS) Interface (88F6192 and 88F6281 Only)
TS Packet Aggregation

Figure 75: Impact of Timestamp on the Average TS Data Output Data Rate

18.8 TS Packet Aggregation

The TSU supports TS packet aggregation in both input and output directions. Aggregation is
enabled by setting the <Aggregation on> field in the TSU Aggregation Control Register (Table 764
p. 760). Aggregation mode parameters are also fully controlled by this register.

18.8.1 TS Input Mode

The following actions are performed for hardware aggregation of the TS packets in TS Input mode:

Type 1 Aggregation

1. The TSU loads the Start Address provided by the CPU via the descriptor.
NOTE: Type 1 Aggregation must only be used when the packet size is a multiple of 32 bytes.
The start address must be aligned to 32 bytes.

2. The TSU writes the TS packets continuously into memory from the Start Address.

3. Atthe end of each TS packet, the TS port writes the timestamp (see the TSU Timestamp
Register (Table 753 p. 756)) into the Done queue and calculates the time interval.
(Later, firmware will use only one of these timestamps.)

4. ltiterates according to the number defined in the <Aggregated Packets> field and an interrupt is
asserted after the last TS packet.

Type 2 Aggregation
1. The TSU loads the Start Address provided by the CPU via the descriptor.

NOTE: Aggregation mode 2 must only be used when the packet size is not a multiple of 32
bytes. The start address and the Time stamp offset (the <Timestamp Offset> field in the TSU
Aggregation Control Register (Table 764 p. 761)) must be such that the sum of (start address +
Time stamp offset) is aligned to 32 bytes.

2. The TS port writes each TS packet from the Start Address, but packets are separated by the
<Timestamp Offset>. The offset space remains empty at this time.
3. Atthe end of each TS packet, the TS port writes the timestamp into the offset space.

4. ltiterates according to the number defined in the <Aggregated Packets> field, and an interrupt
is asserted after the last TS packet.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 273

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Figure 76 depicts the aggregate TS Input mode.

Figure 76: Aggregated TS Input Mode

Typel Aggregation Type2 Aggregation
Data Structure Done queue
TimeStamp 0 START
START
ADDR Header TimeStamp 1 ADDR Header
JY
TS PktO
TS Pkt 0
TimeStamp n
+
§2} o
§ e)
P S 2 TIMSTP_|
e g o OFFSET
[} %) £
S - F
o £ L
- £ g
- |
4 o
3 g3
Q
o
o < <
Q
<
ISR TS Pktn
¥
TMSTP_OFFSET =0
|:| : Filled by TSU

l:l : Filled by Firmware

18.8.2 TS Output Mode

The following actions are performed for hardware aggregation of the TS packets in TS Output mode:

Type 1 Aggregation

1. The TS port loads the Start Address provided by the CPU via the descriptor.
Note: Type 1 Aggregation must only be used when the packet size is a multiple of 32 bytes. The
start of packet, i.e., the sum of (start address+ Timestamp interval size + initial timestamp size)
must be aligned to 32 bytes.

2. The TS port loads the timestamp interval and the initial timestamp. It uses the initial timestamp
for the first TS packet and the interval value for remaining packets.

3. This procedure occurs <Aggregated Packets> times.

4. After the last Status has been written to the Done queue, an interrupt is asserted.

Type 2 Aggregation
1. The TS port loads the Start Address provided by the CPU via the descriptor.

Note: Aggregation mode 2 must only be used when the packet size is not a multiple of 32 bytes.
The start address and the Time stamp offset (field <Timestamp Offset>) must be such that the
sum of (start address + Time stamp offset) is aligned to 32 bytes.

2. The TS port reads the first timestamp with the first TS packet, then the second timestamp and
second TS packet, etc.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 274 Document Classification: Proprietary Information December 2, 2008, Preliminary

3.
4.

Transport Stream (TS) Interface (88F6192 and 88F6281 Only)
TS Port Interrupts

This procedure occurs <Aggregated Packets> times.
After the last Status has been written to the Done queue, an interrupt is asserted.
Figure 77 depicts the aggregate TS Input mode.

Figure 77: Aggregated TS Output Mode

Typel Aggregation Type2 Aggregation
Data structure Data structure
Header Header
START, > START
ADDR A Timestamp interval (4 byte) ADDR A
Ts Pkt 0
Initial imestamp (4 byte)
Ts Pkt 0
TIMSTP_
OFFSET
@ £
g
§ 2 e
o g g
[S 3
. 5 E
” E Y
=
X
3 g 2
< o
38
E-
Ts Pktn
Y
TsPktn
_Y
TIMSTP_OFFSET =0

18.9

TS Port Interrupts

The TS port supports different interrupt events, which are registered and controlled in the following

registers:

m TS port interrupts are registered in the TSU Interrupt Source Register (Table 757 p. 758). Upon
an interrupt event, the corresponding cause bit is set to 1. It is cleared upon software read.

m TSU interrupts are masked in the TSU Interrupt Mask Register (Table 758 p. 758).

The TS port supports the following interrupt events:

m Interrupt Descriptor Threshold: Asserted when the difference between the Descriptor Read
Pointer and Descriptor Write Pointer is that defined in the <Descriptor IRQ Threshold> field in
the IRQ Parameter Register (Table 759 p. 759).

m Interrupt Done Put Descriptor: Asserted after the descriptor has been inserted in the TS Done

queue.

m Interrupt Done Aggregated Packet: Asserted after the last Status/Timestamp of the aggregated
packet has been put into the TS Done queue.
m Interrupt on TS Interface Error: Asserted if a TS_ERR signal has been asserted for a packet.

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Doc. No. MV-S104860-U0 Rev. C
Document Classification: Proprietary Information Page 275

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

* Interrupt on FIFO Overflow Error: Asserted if a FIFO Overflow error has occurred on a
packet.

* Interrupt on TS connection Error: Asserted if a TS Connection Error has occurred on a
packet.

* Interrupt on CLK Sync Timer: Asserted after the Clock Synchronization timer expires.

18.10 Loopback Mode

The device supports Loopback mode between the two integrated TS ports. Loopback is supported in
both parallel and serial modes. Both TS0-to-TS1 and TS1-to-TS0 loopback directions are supported.
The loopback operation is enabled by setting the <Enable Loop TS1 to TS0> or <Enable Loop TSO
to TS1> field in the TSU Test Register (Table 756 p. 757) of each TS port.

Figure 78: TS Loopback Modes

TSOto TS1 Loopback TS1to TSO Loopback
TSO TSO [~
TS1 g TS1
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 276 Document Classification: Proprietary Information December 2, 2008, Preliminary

19

19.1

19.2

19.3

General-Purpose I/0O (GPIO) Port Interface
GPIO Control Registers

General-Purpose I/0 (GPIO) Port Interface

The device contains a General-Purpose Input/Output (GPIO) port that varies in size for each device:
m 88F6180: 30-bit GPIO port
m 88F619x: 36-bit GPIO port
m 88F6281: 50-bit GPIO port

Some of the GPIO pins can be assigned to act as a general-purpose input or output pins and can be
used to register external interrupts (when assigned as input pins).

Some of the GPIO pins are used for reset sampling. These pins cannot be used as input GPIO pins,
but are output GPIO pins only. For details, see the MPP Functional Summary table in the Hardware
Specifications for each device.

GPIO Control Registers

Depending on the setting of the GPIO Data In Polarity Register (Table 770 p. 763), the GPIO Data In
Register (Table 771 p. 763) samples either the data sampled on the pins or the inverted data.

Each GPIO can act also as an output. Setting the GPIO High Data Out Enable Control Register
(Table 776 p. 764), enables driving data on the corresponding GPIO output pin. The data driven on
the pin is the data configured into GPIO Data Out Register (Table 767 p. 762).

The combination of the GPIO Data Out Register and GPIO Data Out Enable Control Register, also
allows open drain/open source output implementation. For example, to implement an open drain
output, set the <GPIODOut> field in the GPIO Data Out Register (Table 767 p. 762) to 0, and toggle
the output by setting/clearing the corresponding field in the GPIO Data Out Enable Control Register.

GPIO Blink Enable Register

When GPIO Blink Enable Register (Table 769 p. 763) is set and the corresponding bit in GPIO Data
Out Enable Control Register (Table 768 p. 762) is enabled, the GPIO pin blinks every 2224 TCLK
clocks.

GPIO Interrupts

When configured to act as GPIO inputs, the GPIOs can be used for registration of external devices
interrupts into the CPU interrupt controller. The device supports both edge and level sensitive
external interrupts.

m When the external device uses edge sensitive interrupts, each toggle of <GPIODIn> field in the
GPIO Data In Register (Table 771 p. 763) from 0 to 1 is registered in the GPIO Interrupt Cause
Register (Table 772 p. 763). If the interrupt is not masked by the GPIO Interrupt Mask Register
(Table 773 p. 764), the interrupt is routed to the CPU Main Interrupt Cause register.

To clear an edge sensitive interrupt, the software must clear the corresponding bit in the GPIO
Edge Sensitive Interrupt Cause register.

m When the external device uses level sensitive interrupts, the data is registered in the GPIO Data
In Polarity Register. If not masked by the GPIO High Interrupt Level Mask Register
(Table 782 p. 766), the interrupt is routed to the CPU Main Interrupt Cause register.

To clear a level sensitive interrupt, the software clears the interrupt directly on the external
device.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 277

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

20 Real-Time Clock (RTC) Unit

The device integrates a real-time clock (RTC)/calendar that provides seconds, minutes, hours, day,
date, month, and year information. The end of the month date is automatically adjusted for months
with fewer than 31 days, including corrections for leap years up to the end-of-year 2099. The clock
operates in either the 24-hour or 12-hour format with an AM/PM indicator. The RTC also provides
and alarm function.

The RTC unit operates with an external 32.768 kHz crystal, a dedicated power supply of 1.5V-1.8V,
which can be supplied by a battery when the device power is down.

20.1 Features

RTC features include:

m Real-time fields: second, minute, hour, date, day, month, and year
m Leap-year compensation
m Independent power pin (RTC_AVDD) for power by battery
m Total current consumption for typical case: 3 uA
m Alarm-time fields: second, minute, hour, date, month, and year
m Real-time field setting by CPU
m Valid until the end of the century (i.e., 23:59:59, December 31, 2099)
20.2 Functionality
To set the RTC date and time, write the desired time and date to the respective time and date
registers:

m RTC Time Register (Table 784 p. 767)
m RTC Date Register (Table 785 p. 768)

The values written to the fields in these registers are in BCD (Binary-Coded Decimal) format.

RTC date and time are known by reading the RTC Time Register and RTC Date Register.

20.2.1 Setting the Time

To configure the day of the week and the time:

1. Setthe <WeekDay> field in the RTC Time Register (Table 784 p. 768) field to indicate the day
of the week.

2. Setthe <HourFomat> to indicate if the time value is a 24-hour or a 12-hour presentation.

* When this field is set to a 12-hour representation, set bit [21] of the <Hour> field to indicate
whether the time is AM or PM, and set bits [20:16] to set the hour.

* When this field is set to a 24-hour representation, set the <Hour> field to indicate the hour.

3. Set the <Minute> field to indicate the minutes within the hour.
4. Setthe <Second> field to indicate the seconds within the minutes.

All the above fields are located in the same register, and can be set using a single write transaction.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 278 Document Classification: Proprietary Information December 2, 2008, Preliminary

Real-Time Clock (RTC) Unit
Functionality

20.2.2 Setting the Date
To set the date:
1. Setthe <Day> field in the RTC Date Register (Table 785 p. 768) to indicate the day of the
month.
2. Set the <Month> field to indicate the month.
3. Set the <Year> field to indicate the year.
All the above fields are located in the same register, and can be set using a single write transaction.
20.2.3 Setting Both the Time and Date
When setting both the time and the date, Marvell® recommends setting the RTC Time Register prior
to setting the RTC Date Register. This avoids the occurrence of a new date increment due to an
existing (invalid) time, which may occur if the recommended order is not followed. For example, if
the updated date is set first, while the current time is set to 23:59:59, when the time is updated
(1 second or more later), the date advances again when the clock reaches 0:0:0, resulting in a date
advance of one additional day.
20.2.4 RTC Alarm Operation
The RTC alarm is not powered by the battery power pin. It can be used when the device power is on
(see Section 22.3, RTC Alarm, on page 283).
Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 279

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

21

21.1

Interrupt Controller

The device includes an interrupt controller that routes internal interrupt requests and external
interrupt requests (GPIOs) to the CPU.

The device interrupt controller drives two interrupt signals to the CPU—FIQ (high priority) and IRQ
(regular priority). All interrupts are level-sensitive. The interrupt is kept active as long as there is at
least one non-masked cause bit set in the Interrupt Cause registers.

The device can also be used as the interrupt controller for external devices generating interrupts to
the CPU via GPIO inputs. The interrupt controller can also receive interrupt messages from an
external PCI Express device.

In addition, the device can act as a PCI Express Endpoint. As such, it can generate the PCI Express
INTA emulation message or the INTAnN signal.
The device handles interrupts in two stages.

m In the first stage, the specific unit cause register that distinguish between specific interrupt
events within the unit is set, if it is not masked in the unit mask register (see Section 21.1, Local
Interrupt Cause and Mask Registers).

m The second stage includes the main interrupt mask registers that summarize the interrupts
generated by each unit (see Section 21.2, Main Interrupt Cause and Mask Registers). The
interrupt handler:

* First reads the Main Interrupt Cause Low Register (Table 151 p. 383).
* If <MainHighSum> field in the Main Interrupt Cause Low Register (Table 151 p. 383) is set, it
also reads the Main Interrupt Cause High Register (Table 155 p. 386).

* Then reads the specific unit cause register.

Local Interrupt Cause and Mask Registers

Once an interrupt event occurs, its corresponding bit in the unit cause register is set to 1. If the
interrupt is not masked by the unit mask register, it is asserted in the Main Interrupt Cause Low
Register (Table 151 p. 383) or Main Interrupt Cause High Register (Table 155 p. 386).The unit local
mask register has no effect on the setting of interrupt bits in the unit local cause register. It only
affects the setting of the interrupt bit in the Main Interrupt Cause Low Register or Main Interrupt
Cause High Register.

When working in level mode, the GPIO Data In Register (Table 771 p. 763) must be used. Do not
use the GPIO Interrupt Cause Register (Table 772 p. 763).

The different units cause registers are:

= Mbus-L to Mbus Bridge Interrupt Cause Register

= TDM Interrupt Cause Register (88F6192 and 88F6281 only)

m PCI Express Port Interrupt Cause Registers
u

SATAHC Main Interrupt Cause register and SATAHC Interrupt Cause Register
(88F619x and 88F6281 only)

m GbE Port 0/1 Interrupt Cause Register (Port 1 is implemented only in the 88F6192 and
88F6281)

USB 2.0 Port Interrupt Cause Register
Cryptographic Engine Security Accelerator Cause Register
XOR Engine Interrupt Cause Register

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 280

Document Classification: Proprietary Information December 2, 2008, Preliminary

Interrupt Controller
Main Interrupt Cause and Mask Registers

TWSI Interrupt Cause Register

UARTO/1 Interrupt Identity (IIR) Register

SPI Cause Register

Audio Interrupt Cause Register (88F6180, 88F6192 and 88F6281 only)
SDIO Error Interrupt Status Register

MPEG-TS 0/1 Interrupt Cause Register (88F6192 and 88F6281 only)
GPIO Interrupt Cause Register

21.2 Main Interrupt Cause and Mask Registers

| ;] | The Main Interrupt Cause register bits are Read Only. To clear an interrupt cause, the

Not software needs to clear the active bit(s) in the specific unit cause register.
ote

There are two mask register sets corresponding to the two CPU interrupt lines—IRQ and FIQ.
Setting these registers allows the reporting of different interrupt events on the different interrupt
lines. If a bit in the mask register is set to 1, the corresponding interrupt event is enabled. The setting
of the mask bits has no effect on the value registered in the Main Interrupt Cause Low Register or
Main Interrupt Cause High Register, it only affects the assertion of the interrupt line. An interrupt is
asserted if at least one of the non-masked bits in the cause register is set to 1.

When the device functions as Endpoint, a third mask register corresponding to PCI Express interrupt
is used to generate an interrupt towards the host. The INTA interrupt or MSI is routed to host
according to this bit value.

| §|| m See the Appendix A.3.6, Main Interrupt Controller Registers, on page 383.

Note m See Section 21.4, Device Interrupt Controller Scheme, on page 282.

21.3 Doorbell Interrupt

When device functions as an Endpoint device, a doorbell mechanism is provided to communicate
between CPU and the external host.

The device supports a 32-bit doorbell interrupt register from the host to the CPU. See the
Host-to-CPU Doorbell Register (Table 132 p. 377) and the Host-to-CPU Doorbell Mask Register
(Table 133 p. 378).

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 281

®

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

21.4 Device Interrupt Controller Scheme

Figure 79 depicts the interaction between the individual unit interrupt and mask registers and the

Main Interrupt controller.

Figure 79: Device Interrupt Controller Scheme

UNIT O UNIT 1 UNIT N
Interrupt Cause Reg. Interrupt Cause Reg. Interrupt Cause Reg,
00O
Interrupt Mask Reg. Interrupt|Mask Reg. Interrupt Mask Reg.
N N N
Main Interrupt Controller
Main Interrupt Low and High ooo
Cause Registers I
Main IRQ Interrupt Low and High 000
Mask Registers
I p- > IRQ
N —>
Main FIQ Interrupt Low and High ooo
Mask Registers
I p- FIQ
N >—>
Main PCI Express Interrupt 000
Mask Register
I £ INTA PCI Express
T)
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 282 Document Classification: Proprietary Information December 2, 2008, Preliminary

22

22.1

22.2

22.3

Timers and Counters
32-bit General-Purpose Timers

Timers and Counters

The device provides two general-purpose timers and one watchdog timer.

32-bit General-Purpose Timers

The device provides two 32-bit general-purpose timers. Each timer decrements with every TCLK
rising edge, if the corresponding enable bit is enabled. Reads and writes from/to the timer are
performed to the counter itself.

The timers provide Auto mode:

m When Auto mode is disabled, and the timer reaches 0, the timer stops counting.

m When Auto mode is enabled, and the timer reaches 0, the timer reloads and continues counting.

Regardless of whether Auto mode is enabled or disabled, when the timers reach 0, a maskable
interrupt is generated.

EI See Appendix A.3.4, CPU Timers Registers, on page 378.
Note

Watchdog Timer

The device internal watchdog timer is a 32-bit count down counter that can be used to generate a
maskable interrupt or reset the system in the event of unpredictable software behavior.

After the watchdog is enabled, it is a free running counter that needs to be serviced periodically to
prevent its expiration.

When the watchdog timer expires and the <WDRstOutEn> field in the RSTOUTn Mask Register
(Table 117 p. 368) is set to 1, the SYSRST_OUTn output signal is set.

EI See Appendix A.3.4, CPU Timers Registers, on page 378.
Note

RTC Alarm

This section describes the RTC alarm function.

To set the RTC Alarm date and time, write the desired alarm time and date and alarm valid data to
the respective alarm time and date registers:

m RTC Alarm Time Configuration Register (Table 786 p. 768)

m RTC Alarm Date Configuration Register (Table 787 p. 769)

The values written to the fields in these registers are in BCD (Binary-Coded Decimal) format.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 283

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

RTC alarm date and time are known by reading the RTC Alarm Time Configuration Register and
RTC Alarm Date Configuration Register.

These two registers contain the six alarm fields Real-time Clock (RTC), corresponding to the six data
and time fields (day in week is excluded). For each such field, a valid bit specifies whether an alarm
event does or does not include the matching between the alarm field and the corresponding
real-time field.

The match is tested on a once-per-second update of the time and date registers.

Upon a tested match the <Alarminterrupt> field in the RTC Interrupt Cause Register (Table 789
p. 770) is set resulting in an RTC Alarm interrupt.

To clarify the Alarm Interrupt valid bit usage, Table 75 provides a number of examples of
configurations and the corresponding alarm behavior.

Table 75: Alarm Interrupt Valid Bit Usage

RTC Alarm Date RTC Alarm Time Configuration Alarm Rate
Configuration Register Register
Alarm Alarm Alarm Alarm Alarm Alarm
Year Month Day Hour Minute Second
Valid Valid Valid Valid Valid Valid
0 0 0 0 0 0 Alarm once per second.
0 0 0 0 0 1 Alarm once per minute, when seconds
match.
0 0 0 0 1 1 Alarm once per hour, when minutes and
seconds match.
0 0 0 1 1 1 Alarm once per day, when hour, minute, and
seconds match.
1 1 1 0 0 0 Alarm once per second, in a specific date.
1 1 1 1 0 0 Alarm every second in a specified date and
hour.
1 1 1 1 1 0 Alarm every second in a specified date,
hour, and minute.
1 1 1 1 1 1 Alarm once, when all fields match.
The alarm registers are initialized at reset, with all Alarm Valid bits being in not set state. As shown in
the first row of Table 75, this mode will set the alarm upon every second. Without setting the RTC
Alarm Time Configuration Register and RTC Alarm Date Configuration Register, the user should not
expect a deterministic value at the <Alarminterrupt> field, since its value depends on the reset
de-assertion and the register read of a real-time-second change.
To set the alarm registers, the following sequence must be applied:
1. Disable interrupts by writing O to the <AlarminterruptEnable> field in the RTC Interrupt Mask
Register (Table 788 p. 770).
2. Setthe fields in the RTC Alarm Time Configuration Register and RTC Alarm Date Configuration
Register.
3. Clear the <Alarminterrupt> field.
4. Enable the interrupt by writing 1 to <AlarminterruptEnable> field.
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 284 Document Classification: Proprietary Information December 2, 2008, Preliminary

22.4

Timers and Counters
SYSRSTn Duration Counter

SYSRSTn Duration Counter

The devices implement a hardware-based SYSRSTn duration counter. When SYSRSTn is asserted
low, a SYSRSTn duration counter is running. The SYSRSTn duration counter is useful for
implementing a manufacturer/factory reset. Upon a long reset assertion that is greater than a
pre-configured threshold, the host software may reset all settings to the manufacturer/factory default
values. The counter value is stored in the SYSRSTn Length Counter Register (Table 811 p. 783).

m The counter is based on the 25-MHz reference clock (40ns)

m |tis a 29-bit counter, yielding a maximum counting duration of 2/29/25 MHz (21.4 seconds).

The host software can read the counter value through the <Count> field and reset the counter
through the <Clr> field.

When the counter reach its maximum value, it remains at this value until counter reset is triggered by
software.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 285

®

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

23 eFuse

The device integrates two eFuse blocks: eFuse0 and eFusel. Each eFuse block has 64
programmable data bits that provide a total of 128 bits (2 * 64). The eFuse is a one-time electrical
programmable element, where the data bit values can be programmed.

The device supports:

m eFuse programming—updating the data bits in the eFuse

m eFuse locking—disabling the programming operation

m eFuse reading—reading the data bits and the lock bit.

The default value of the of the eFuse data bits and the lock bit is 0x0.

23.1 Typical eFuse Applications

Specific private/public key for security and prevention of hacking.
Operations information, such as system serial number/production number.

Time of the initial operation of system by the end user. (For example, software may burn
date/time after the initial power up.)

m Software upgrade limiter. (For example, only three upgrades are allowed by the system vendor,
where each upgrade burns specific eFuse bits).

m Device unique name/ID (for example, MAC address).

23.2 eFuse Power Supply
When programming the eFuse, a 2.5V power supply is required for the VHV power pin.
When reading from the eFuse, a 1.0V power supply is required for the VHV power pin.

For more details, see the Electrical Specifications section in the Hardware Specifications.

23.3 eFuse Program and Lock

eFuse0 and eFusel can be programmed and /or locked by the CPU. Each data bit can be set to 1,
one time only. After programming a bit in the eFuse to 1, it can no longer be changed to 0. When a
data bit has a value of 0, and it is programmed to 0, it is as if it has not been programmed, since it
remains unchanged. In such a situation, the bit can still be programmed to the value 1.

Programming and/or locking the eFuse without using the required power supply results

in unpredictable data in the eFuse.
Note

Each of the eFuse0 and eFusel blocks can be locked independently. When a eFuse block is locked,
the eFuse programming operation is disabled.

The eFuse lock operation can be performed one time only. After locking the eFuse, it cannot be
unlocked.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 286 Document Classification: Proprietary Information December 2, 2008, Preliminary

eFuse
eFuse Read

| ;] | Refer to the device Hardware Specifications for information regarding the VHV power

. pins and burn and read voltage requirements.
ote

Follow the below sequence to program and/or lock the eFuse:

1.
2.

o

Note

Set the <Burn Mode> field in the eFuse Control Register (Table 807 p. 781).

Set the required data bits (the bits that should be burned to 1) by writing to the <eFuse0 Low>
field in the eFuse0 Low Register (Table 803 p. 780) and the <eFuse0 High> field in the eFuse0
High Register (Table 804 p. 780).

To lock the eFuse, set the security bit by writing to <FSBO> field in the eFuse Protection
Register (Table 802 p. 779).
NOTE: Where further programming to the eFuse block is required, do not lock the eFuse.

Set the <eFuse0 Write Trigger> field in the eFuse Control Register (Table 807 p. 781) to trigger
the burning of eFuse0.

Poll the <eFuse Burn Done> field until it set, for an indication that the burn process completed.
To program eFusel, repeat steps 2-5, using the fields related to eFusel instead of eFuse0.
Clear the <Burn Mode> field.

EI m The sequence above demonstrates a write to both eFuses. The user can optionally

write to only one of the eFuses. For example, to program eFuse0 only, skip step 6,
in the programming sequence.

m eFuse0 and eFusel must be programmed separately. To prevent simultaneously
programming of both eFuse0 and eFusel, do not set eFuse0 Write Trigger and
eFusel Write Trigger simultaneously.

23.4 eFuse Read

For eFuse value reading, read:

Copyright © 2008 Marvell

eFuse0 Low Register (Table 803 p. 780)
eFuse0 High Register (Table 804 p. 780)
eFusel Low Register (Table 805 p. 780)
eFusel High Register (Table 806 p. 781)

Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 287

®

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

24

24.1

24.1.1

24.1.2

System Considerations

This section describes the Endianess, bootROM, power management, and error handling for the
device.

Big and Little Endian Support

The device supports both Big Endian and Little Endian byte ordering, as defined in the ARM
Architecture Reference Manual, Second Edition. It also supports hardware features for performing
data conversion on some of its interfaces.

CPU Core Byte Ordering

The Endian mode is set by bit [7] in register r1, within the CPU-CP15 registers. The value of
 hit is reflected by the <BigEndian> field in the CPU Control and Status Register (Table 116
p. 368).

The initial value of bit is set by the <Endianlnit> field in the CPU Configuration Register
(Table 115 p. 366). The initial value of bit <EndianInit> is defined as Little Endian mode (0).

The CPU performs the proper data swapping, according to this setting. For full details, see AN-183,
88F5181 and 88F5281 Big Endian and Little Endian Support.

Regardless of the endianess mode, the device internal registers and DMAs descriptors
| ;] | always operate in Little Endian mode. When working in Big Endian mode, use a
software macro to perform byte swapping when an internal register or a descriptor is

Note \yritten, or read.

PCI Express Space

The PCI Express specification defines that a TLP data payload be presented as Big Endian, and the
packet header (address, command) be presented as Little Endian. The PCI Express interface meets
these requirements. Depending on the chip endianess configuration, the PCI Express interface
either performs or does not perform byte swapping.

The least significant byte is always the one to be transmitted first. For example, if a CPU is
configured to Big Endian mode and there is a CPU write of 4 bytes to address 0x0 (which appears
on the CPU bus as 64’hAABBCCDD.XXXXXXXX), the device drives OxAA as the first byte on the
PCI Express link.

| ;] | The PCI Express interface does not support different byte swapping on a per master

Not and slave operation, nor on a per address-window basis.
ote

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 288

Document Classification: Proprietary Information December 2, 2008, Preliminary

24.1.3

24.1.3.1

24.1.3.2

24.1.3.3

24.1.3.4

System Considerations
Big and Little Endian Support

DMA Data Swapping

The device DMAs (XOR DMA, GbE SDMA, USB DMA, SATAHC DMA, and encryption DMA)
support the required mechanisms for proper data transfer both in Big Endian and Little Endian
environments.

XOR DMA Data Swapping

By default, the XOR DMA does not need to perform any data byte swapping when transferring data
buffers over the Mbus. However, the XOR DMA supports byte swapping on a 64-bit Qword basis
upon a read from source buffers or a write to a destination buffer via the <DrdResSwp> field and the
<DwrRegSwp> field in the XOR Engine [0..1] Configuration (XEXCR) Register (n=0-1) (Table 588
p. 664). This can be useful for endianess conversion.

The XOR DMA descriptor is fetched from memory as either a 32-byte or 64-byte burst, depending
on the XOR mode of operation. The descriptor is loaded into the XOR DMA register file, which
maintains the Little Endian convention. Thus, the descriptor is expected to be prepared in memory
accordingly.

If the <DesSwp> field in the XOR Engine [0..1] Configuration (XExCR) Register (n=0-1) (Table 588
p. 665) is set to 1, the DMA performs a byte swap on a 64-bit Qword basis when fetching (and
closing) descriptors.

GbE SDMA Data Swapping

When transferring data between memory and MAC, the GbE SDMA can swap the bytes on 64-bit
Qword basis. Set the <BLMR> field in the SDMA Configuration (SDC) Register (Table 422 p. 564) to
0, for byte swap of Rx buffers when written to memory, and set field <BLMT> to 0, for byte swap of
Tx buffers when being read from memory.

When reading Tx data from memory, the GbE SDMA always first transmits byte[7:0], followed by
byte[15:8], and so on. In Big Endian convention, byte[63:56] stands for the least significant byte.
This means that it is expected to be transmitted first. To achieve this behavior, set <BLMR> and

<BLMT> fields to 0.

The GbE SDMA descriptor is being fetched from memory as a burst of 16 Bytes. The descriptor is
loaded into the SDMA register file, which maintains Little Endian convention. Thus, the descriptor is
expected to be prepared in memory accordingly.

If the <SwapMode> is set to 1, the SDMA performs byte swap on a 64-bit qword basis when fetching
(and closing) descriptors.

USB Data Swapping

The device supports byte swap (within 8 byte qword) upon read/write access to memory. To enable
byte swap, clear the <BS> field in the USB 2.0 Bridge Control Register (Table 509 p. 629).

| ;] | The data swapping logic cannot distinguish between descriptors to raw data. It is a

static setting.
Note

SATAHC Data Swapping

The device SATA controller supports the following byte swap mechanisms, via the SATAHC

Configuration Register (Table 348 p. 509):

m Byte swap (within a 8 byte Qword) upon Basic DMA read/write access to memory. Clear the
<DmaBS> to enable byte swapping.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 289

®

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

24.1.3.5

24.2

m Byte swap (within a 8 byte Qword) upon EDMA read/write access to memory. Clear the
<EDmaBS> to enable byte swapping.

= Byte swap (within a 8 byte Qword) upon PRDP read/write access to memory. Clear the
<PrdpBS> to enable byte swapping.

| ;] | The data swapping logic cannot distinguish between descriptors to raw data. It is a

static setting.
Note

Cryptographic Engine Data Swapping

The device Cryptographic Engine and Security Accelerator (CESA) supports the following byte swap

mechanisms:

m Byte swap and word swap (within an 8-byte Qword) upon read/write access to the CESA
integrated SRAM. Set the Target Attributes field in the CPU address decoding registers to
achieve the required data swapping (see Section 2.1, Sheeva™ CPU Core Address Decoding,
on page 34).

m Byte swap (within an 8-byte Qword) upon a TDMA read/write access to memory. Clear the
<BS> field in the Control Register (Table 573 p. 654) to enable byte swapping.

The data swapping logic cannot distinguish between descriptor and packet data. It is a

static setting.
Note

BootROM Firmware

24.2.1 Functional Description
The bootROM firmware—on the device’s bootROM—is executed according to the sample at reset
configuration bits in the Sample at Reset Register (Table 800 p. 778).
The bootROM firmware performs basic initialization of the device and loads and executes code that
is on one of the following boot devices:
m Serial (SPI) flash
= NAND flash
m SATA interface (88F619x and 88F6281 only)
m PCI Express interface
m UART interface (using the Xmodem protocol)
Boot from the UART interface is not a configurable reset strap option, but it is

| §| | performed before every boot process, of the other boot types.

Note The BootROM firmware senses the UARTO interface (Rx side) looking for a unique
stream of data. Detecting the data pattern identifies the multiplexed pins (MPP)
assigned for the UARTO interface. This boot option is useful during system debugging
and manufacturing.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 290

Document Classification: Proprietary Information December 2, 2008, Preliminary

System Considerations
BootROM Firmware

24.2.2 General Considerations

BootROM firmware code was written and compiled to take into account the following:

Endianess BootROM firmware always executes in Little Endian mode. However
there are no restrictions on the Endianess of the image booted from
the device’s interfaces. If the image was compiled to Big Endian
mode, it is the responsibility of the image to switch back to Big Endian
mode.

ARM/Thumb Mode Most of the bootROM firmware code is compiled to run in Thumb
mode, due to code size considerations. However, bootROM firmware
switches back to ARM mode before booting an image from one of the
device’s interfaces.

BootROM Firmware Image The bootROM firmware image size is 12 KB, with the last 4 bytes
Format consisting of a CRC-32 field.

24.2.3 Address Decoding and Memory Management Unit (MMU)
Operations
For performance enhancement purposes, the bootROM performs the following:
m Enables the L2 Cache
m Enables the Instruction Cache

m Enables the MMU (using a reduced translation table resident in the Cryptographic engine
SRAM)

m Enables the Data Cache

Since the MMU is enabled, access to the 4 GB memory space is done using virtual addresses.
Table 76 provides the virtual-to-physical address translation table.

Table 76: MMU Virtual-to-Physical Address Translation Table

Device Physical Address Virtual Address Size Caching
BootROM OxFFFO00000 OxFFF00000 1MB Cacheable
NAND registers 0xE8000000 OxFFE00000 1MB Non-Cacheable
Internal register 0xD0000000 OxFFDO00000 1MB Non-Cacheable
SPI 0xD8000000 0xE8000000 125 MB Non-Cacheable
SDRAM 0x0 0x0 384 MB Non-Cacheable

certain to consider the following points:
The image can be copied up to offset 0xX17FFFFFF (384 MB) in the DDR.
The SPI space is 125 MB instead of 128 MB.

m The extended header should include register configurations in the virtual space.
For example, if internal register 0x1480 should be set to 0x1, then the extension

header should include an Address/Value couple in the form
0xFFD01480/0x00000001.

EI Since the MMU translation table covers 512 MB out of the 4 GB address space, make

Note

24.2.4 Boot Image Format

The boot image is the binary image residing on the specific boot device. It must contain a valid main
image header at offset 0x0 and may include a header extension, according to the header extension
flag in the main header. In addition, it includes the binary image that should be copied and executed

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 291

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

in the SDRAM (excluding boot from SPI when the image is executed directly from the SPI memory
space).

In most cases, the header extension is used to provide the bootROM firmware with the DDR
configurations. It must be concatenated to the main header, and the total size of the main header
and the header extension must be exactly 512 bytes. The header extension may be omitted if the
boot is to be performed directly from the boot device, without copying the user image to the DDR
(valid for SPI boot device only).

The source image can immediately follow the main header or header extension, or it can reside at a
more distant offset (this option is necessary in boot from SATA) (see Figure 80).

Figure 80: Binary Image Layout in the Boot Device

DRAM
Boot Device
(SPI Flash / NAND Flash / SATA)
Boot Image
0x0
Main Header
0x20
I I
I I
| Header Extension : AT Image Destination
| | y;
| | /
0x200 (R —— s | '
/ | |
/
A |
Image Source
Source
Image
: Source :
I Image I
| |
AT T
/
/
/
/
/
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 292 Document Classification: Proprietary Information December 2, 2008, Preliminary

24241

System Considerations
BootROM Firmware

Main Header Format

The main header is 32 bytes long and is in Little Endian mode. Its content differs according to the
desired boot method and the device where the header is located.

Table 77: Main Header Format

Byte

0x0

Ox1

0x2—-0x3

0x4-0x7
0x8-0xB

OxC—-OxF

0x10-0x13

Field

Identifier

NAND ECC mode

NAND flash page size

Block size
Reserved

Source address

Destination address

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Description / Usage

0x5A = Boot from Serial (SPI) flash

0x8B = Boot from NAND flash

0x78 = Boot from SATA device (88F619x and 88F6281 only)
0x9C = Boot from PEX interface

0x69 = Boot from UARTO

Relevant to boot from NAND flash only. This field can be used to

changel/disable the default ECC algorithm, used in reading the image from the

NAND flash device.

The following are the four options setting this field:

0x0 = Default ECC algorithm, based on page size (Hamming from 512B page
devices and Reed-Solomon for large page devices).

0x1 = Force Hamming ECC algorithm.

0x2 = Force RS algorithm (for large page devices only).

0x3 = Disable ECC calculation.

Relevant for boot from NAND flash only.

Provides the bootROM firmware with the ability to boot from different NAND
flash devices with different page sizes.

If the Boot device is NAND flash, this field must contain the page size of the
NAND flash used (for example, 0x800 for 2-KB page devices).

0x0 = Boot device is not NAND flash (page size is not relevant), this field is
ignored.

Image size in bytes to be downloaded into DDR.
Should be 0x0.

Boot from serial (SPI) flash and NAND flash:
Image offset in bytes from the beginning of the flash device used for boot.
For NAND flash devices, this address must be aligned to the boundaries
of 512 byte. Necessary for the ECC calculation.
Boot from SATA (88F619x and 88F6281 only):
Image LBA location offset (in sectors) in the hard drive used for boot.
Boot from UARTO:
Image location offset in bytes from the file transferred by the Xmodem.
Boot from PCI Express:
This parameter is not used, since the Root Complex device initiates the
transfer of the image to the DDR. Set to OxFFFFFFFF.

Destination address in DDR where the image will be copied.
If this address equals OxFFFFFFFF, the image is not downloaded to DDR
(relevant only for boot from serial (SPI) flash only).

For Boot from PCI Express, this field indicates the start address of the image
(Starting from this address, the 32-bit checksum is calculated and verified).

Doc. No. MV-S104860-U0 Rev. C

Document Classification: Proprietary Information Page 293

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Table 77: Main Header Format (Continued)
Byte Field Description / Usage

0x14-0x17 Execution address Address from which to start executing the image.
This address is usually on the DDR, unless the destination address was set to
OXFFFFFFFF, where the execution address must be on the boot device
(relevant only for boot from SPI flash).

0x18 Reserved Must be 0x0.

0x19-0x1D Reserved Must be 0x0.

Ox1E Header extension 0x1 = An extra header of 480 bytes is appended directly after the main
header.

0x0 = No extra header exists (relevant for SPI boot device only).

Ox1F Checksum 8-bit checksum of the main header
The checksum is calculated by adding together each 8 bits of data. Each time
the sum exceeds OxFF, it restarts at zero (e.g., 0xFO + 0x12 = 0x02).

24.2.4.2 Header Extension Format

The header extension starts right after the main header, existing only if byte Ox1E of the main header
does not equal 0x0. It is in Little Endian mode and is 480 bytes (480 = 512-32). The extension
header is used for register configurations (usually DDR registers) before downloading the image to
the DDR. Its format is as follows:

Table 78: Header Extension Format
Byte Field Description / Usage
0x0-0x3 Offset of Register configurations = The offset of register configuration information in this header
extension. The offset is from the main header start.

When this field is set to 0x0, there is no valid register configuration in
the header extension.

0x4—-0x1F Reserved Must be 0xO.

Offset that Register configuration Registers configuration.

appears at The format is:

0x0 ¢ Offset n is the address of the register.

« Offset n+4 is the value of the register.
The actual registers configuration address space must end with zero
terminators (the last 8 bytes must be zero).

This field is used to modify any 32-bit address with any 32-bit value.
This is useful for performing basic configuration before starting to
execute the user image.

Ox1FF Checksum 8-bit checksum
The checksum is calculated by adding each 8 bits of data together.
Each time the sum exceeds OxFF, it restarts at zero (e.g., OxFO +
0x12 = 0x2).

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 294 Document Classification: Proprietary Information December 2, 2008, Preliminary

System Considerations
BootROM Firmware

24.2.4.3 Source Image Considerations

BootROM firmware assumes the following for the images that can be booted from the device’s
interfaces:

m Image base address at the specific device interface is aligned to 32 bits (for NAND flash
boot—88F619x and 88F6281, the image must be aligned to the boundaries of 512 bytes).

Image size including the checksum is aligned to 32 bits.

If the image will be downloaded to the DDR, the destination offset on the DDR is aligned to
32 bits.

The image includes a simple 32-bit checksum in the last 4 bytes.

The first instruction of the image is in Little Endian mode. If the image will be executed in Big
Endian mode, the image must include the appropriate code to switch back to Big Endian mode.

m The first instruction is in ARM mode.

24.2.5 BootROM Firmware Boot Sequence
The bootROM firmware boot sequence can be divided into the following phases, which are
described in the following sub-sections:
1. Initialization
2. Boot mode selection

3. Sensing the UARTO interface to detect a user request for entering the bootROM command line
debug mode or for booting from UARTO.

4. Load, check, and update the device’s main header information.
5. If an extended header exists:
a) Load and check the device’s extended header.
b) Execute all register configurations indicated in the extended header.
6. Load and check the device image (unless it is to be executed from the SPI).
7. Execute the device image code.
In addition, bootROM firmware contains the following functionality:
m Error reporting and handling
m Exception handling

24.25.1 Initialization
After reset, the CPU starts running at OXFFFF0000, where the bootROM firmware code is located.
It performs the following operations (in Assembly Language):
1. Setsr0=0.

Enters CPU supervisor mode and disables interrupts.

Invalidates caches and flushes TLB.

Disables CPU streaming.

Initializes the Translation table.

Enables L2-cache, MMU, D-Cache, and I-Cache.

Starts the boot sequence, by detecting the selected boot device.

No o sMwDd

This process is illustrated in Figure 81.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 295

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Figure 81: Initialization and Boot Method Selection Flow

—] ro

. Exception
Jump to Exeption Handler [S e —

Enter SVC mode

Disable Interrupts

Invalidate Caches
Disable CPU Streaming

1

Initialize the MM U Translation Table Exception Handler
l RO = Exceptions #

Enable the L2-Cache, MMU, D-Cache and
I-Cache

Read the reset strap register to get the
boot device selected and start boot
sequence

24.2.5.2 Boot Device Selection
The Boot device is selected in the main routine, executed directly after initialization of the MMU and
caches. The following operations are executed in the sequence listed:
1. Calls the UART Initialization routine, which initializes the UARTO to the 115,200-8N1 baud rate
(8N1—8-hits of Data, No parity, 1 stop bit) according to the detected value of the TCLK.
2. If the main routine was executed as the result of an exception, then the Error Handler is called.
3. Call the Execution Handler.

Execution Handler

This routine reads the Sample at Reset Register (Table 800 p. 778) and calls the appropriate
routine, according to the value of bits[13:12]. Also refer to Boot Device in the Reset Configuration
table of the Hardware Specifications.

If the Execution Handler returns an error code, the error is registered in the Boot ROM Routine and
Error Code Register (Table 791 p. 771).

24253 UARTO Sensing

Before starting a specific boot sequence indicated by the bootstrap, the bootROM tries to sense the
UARTO interface, to detect a user request for entering bootROM command line debug mode or a
request to boot from UART, using the Xmodem protocol.

Since UARTO pins are multiplexed pins, the bootROM attempts to detect the location of the Rx data
signal, by first configuring MPP[4] as UAO_RXD and trying to read from there with timeout. If the
read process times out twice, the bootROM configures MPP[4] back to its default value, configures
MPP[11] as UAO_RXD, and tries again to read with timeout. If the second option fails, the bootROM
configures MPP[11] back to its default value and moves back to the normal boot flow.

There are two modes of operating the UART interface based on the detected pattern on the RX side:

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 296 Document Classification: Proprietary Information December 2, 2008, Preliminary

System Considerations
BootROM Firmware

Entering command line debug mode:
During power up, the user can transmit a special 64-bit debug pattern (OxDD 0x11 0x22 0x33
0x44 0x55 0x66 0x77) in a loop, to indicate a request for debug. When the bootROM begins
execution, it attempts to read data from the UARTO interface (as explained above). If it
successfully reads the debug pattern, it enters the command line debug mode. It configures the
appropriate MPP pin to operate as a UAO_TXD signal. (If a pattern is detected on MPP[4], then
it configures MPP[5] as UAO_TXD, otherwise it configures MPP[10] as UAO_TXD.) Then it
prints the bootROM version, and waits on the debug prompt for user input.

Boot from UART:
If the bootROM detects the 64-bit UART boot pattern (OxBB 0x11 0x22 0x33 0x44 0x55 0x66
0x77) injected by the user, as an indication to start the Xmodem protocol and the UART boot
process); it configures the appropriate MPPs to operate as UAO_RXD and UAO_TXD, as in the
previous sub-section and starts the Xmodem protocol to load the image from UART to the DDR.

24.254 Header Decoding, DDR Initialization, and Image Execution

Each of the boot methods is described in detail in Section 24.2.6, BootROM Firmware Boot Options.
However, all boot methods use the same logic for reading/decoding the header, and execute the
loaded image. The following describes the flow (also illustrated in Figure 82).

1. Main Header decoding:

a) Read the main header (first 32 bytes) from the boot device into the stack (for NAND flash
boot, 512 bytes of data are loaded, since ECC is calculated over chunks of 512 bytes).

b) Checksum is calculated and verified on the main header.

c) If the checksum is valid, verify the header ID. If either is invalid, report an error.

2. Header Extension decoding:

a) If byte Ox1E of the main header is 0x0, no extension header exists, therefore no register
configuration occurs. Proceed to step 3.

If byte OX1E of the main header is not 0x0, an extension header exists.

b) Load the extension header from offset 0x20 into the stack (for NAND flash boot this is not
necessary, since the extension header was already loaded, together with the main header).

¢) Verify the checksum. If the checksum is invalid, report an error.

d) If offset 0x0 in the extension header is not O, there are valid register configurations in the
header extension.

The bootROM parses the Address/Value list, writing each value in the appropriate Address
until it reaches the first 0x0/0x0 couple.
If offset 0x0 in the extension header is 0, no register configuration occurs.
3. Image Loading and verification:
For boot from SATA, NAND flash, or SPI (with image copy to DDR), the image must be loaded to the
DDR and executed from there. The following sequence is performed:

a) Copy the image from the Source Address indicated in bytes 0xC—OxF of the main header to
the Destination Address indicated in bytes 0x10—-0x13. The size of the image to be copied is
indicated in bytes 0x4—0x7. (This size includes the extra 4 bytes of the checksum-32.)
NOTE: For NAND flash and SPI flash, the Source Address is the offset in bytes from the start
of the device (where the main header resides).

For SATA, the Source Address is the LBA address (i.e., the number of the first sector of the
partition containing the image).

b) Calculate the checksum-32 on the entire image (in the DDR), without the last 4 bytes, and
compare the result to the last 4 bytes of the image.

c) If the calculated checksum-32 and the recorded checksum-32 (following the image) differ;
report the error; else proceed to the next step.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 297

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

For boot from SPI, the image can optionally be executed from the same location, without copying it
to the RAM. The following sequence is performed:

a) The destination must be OXFFFFFFFF, as an indication that no copy is necessary and the
image must be executed in place (i.e., executed directly from the SPI flash, using the directly
mapped memory space).

b) The Source Address indicates the offset in bytes (from the beginning of the SPI flash, where
the main header resides) at which the image starts.

c¢) Calculate the checksum-32 on the entire image (on the SPI flash) without the last 4 bytes,
and compare the result to the last 4 bytes of the image.

d) If the calculated checksum-32 and the recorded checksum-32 (following the image) differ;
report the error; otherwise proceed to the next step.

For boot from PCI Express, the image is loaded by the Root Complex and no copying is necessary.
The following sequence is performed:
a) The bootROM starts by initializing the PCI Express Boot Address Register (Table 309 p. 477)
with OXFFFFFFFF.
It then performs PCI Express interface initialization, setting it to Endpoint mode.
Next it enters an infinite loop, waiting for the Root Complex to change the PCI Express Boot
Address Register and update it with the address holding the image header. This is a
handshake, indicating that the Root Complex has completed the necessary DDR
configuration and downloaded the image to the execution location.
b) When the PCI Express Boot Address Register has been updated with the location of the
main header address, the bootROM verifies the main header.
¢) The Source Address in the header is not used if the boot device is PCI Express.
d) The Destination Address specifies the location of the image.
e) The bootROM calculates the checksum-32 on the image in the location specified in the
Destination Address.
f) If the calculated checksum-32 and the recorded checksum-32 (following the image) differ;
report the error; otherwise proceed to the next step.
4. Image execution:
a) Disable MMU, I-Cache, and D-Cache.
a) Disable L2 cache.
b) Flush L2-Cache, I-Cache, and D-Cache
¢) Jump to the execution address that was extracted from the main header.

If any error occurs during the entire process, it is registered in the <Error Code> field in
| ;I | the Boot ROM Routine and Error Code Register (Table 791 p. 771), and the entire
process is restarted from the early boot stages, where the sample at reset configuration

Note s read from the bootstrap register.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 298 Document Classification: Proprietary Information December 2, 2008, Preliminary

System Considerations
BootROM Firmware

Figure 82: Header Decoding, DDR Initialization, and Image Execution Flowchart

main header
From boot device

Yes Header ID and
checksum OK ?
No Bxtension Yes
header exists?
Read header

extension fromdevice

Yes
Checksumis OK? No Error Handler

-~
No DDR Yes
parameters
exist?
Wite all requests.
This should initialize
the DDR
v
SATA/ NAND/
SPI (dest '= OXFFFFFFFF))
Download image to
————
Check Boot Mode DRAM
PCl Express /
SPI (dest = OXFFFFFFFF)
¢ ,~ Image checksum No
i’ is OK
Yes
Jump to execution
address
Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 299

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

24255 Debug and Error Handling

BootROM Firmware Error Registers

All boot methods use the same Error Handling mechanism (see Section 24.4, Error Handling
Functional Description, on page 309). This mechanism takes advantage of the Boot ROM Routine
and Error Code Register (Table 791 p. 771).

BootROM Firmware Error Handling Description
Error Handling is performed as follows:

1. On error, the specific boot method calls the Error Handler with the appropriate <Error Code>
and <Error Location> field in the Boot ROM Routine and Error Code Register (Table 791 p. 771)
representing the current execution method.

2. The Error Handler automatically increments the <Retry_Count> field

3. Ifthis is the first call to the Error Handler (checked by examining the <Retry_Count> field), it
updates the <Error Code> and <Error Location> fields.

4. The bootROM tries to perform the boot method again by jumping to the main routine.

5. If the retry count exceeds 16, the bootROM stops the retry mechanism and tries to sense the
UARTO port, looking for one of the two UART patterns.

24.2.6 BootROM Firmware Boot Options
24.2.6.1 Boot from UARTO

As previously indicated, boot from UARTO is not a sample at reset configuration option, but is
performed before every type of boot through sensing the Rx side of the UARTO interface on both
MPP options.

If the debug pattern (OxDD 0x11 0x22 0x33 0x44 0x55 0x66 0x77) was received, the bootROM
enters the command line debug mode. Otherwise, if the boot sequence (0xBB 0x11 0x22 0x33 0x44
0x55 0x66 0x77) was received, the bootROM enters the Boot from UART routine, which starts
receiving the boot image using the Xmodem protocol (i.e., it starts receiving chunks of 128 bytes,
each with an 8-bit checksum).

The boot image must be a continuous image, which includes a main header and an extension
header (extended header is mandatory in this case, since the DDR must be initialized).

The main header, extension header, and source image must contain valid checksum values.

According to the boot sequence described above, this boot method:
1. Executes the registers configuration in the extended header.

2. Downloads the source image to DDR.

3. Executesitin the DDR.

24.2.6.2 Boot from Serial (SPI) Flash

In this boot method, a boot image must be located on the external serial (SPI) Flash. The main
header must exist at offset 0 of the External SPI flash. An extension header may exist, if the
extended header bit is set in the main header.

The main header, extension header, and source image must contain valid checksum values.

The boot from serial (SPI) flash can be performed in two ways, based on the value of the Destination

Address specified in the main header.

m If the destination field holds a value different from OxFFFFFFFF, it downloads the source image
to the DDR address specified in the destination field and executes it from the address indicated
in the execution address field. In this case, an extension header is mandatory, to perform the
necessary DDR initialization (since the image must be copied to the DDR).

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 300 Document Classification: Proprietary Information December 2, 2008, Preliminary

24.2.6.3

Copyright © 2008 Marvell
December 2, 2008, Preliminary

System Considerations
BootROM Firmware

m If the destination field equals OxFFFFFFFF, it simply executes the source image directly from
the serial (SPI) flash, using SPI directly mapped memory space.

Boot from NAND Flash

In this boot method, a boot image must be located on the first page of the NAND flash. The main
header must exist at offset 0, and an extension header is mandatory for this boot device, to perform
DDR initialization (since the image must be copied to the DDR to be executed, and it cannot be
executed directly from NAND flash).

|§ | | In this boot mode, <NFActCEnBoot> field in the NAND Flash Control Register
(Table 613 p. 676) is set to 1, which enables the NAND flash controller to hold the CEn
Note signal asserted throughout the entire read phase.

The source image must be located at the offset specified by the main header.
The main header, extension header, and source image must contain valid checksum values.
The source image is downloaded to the DDR byte-by-byte, using a NAND flash software protocol.

Since there are different types of NAND flash devices, with different read command sequences, the
bootROM implements a detection mechanism, to support most of the NAND flash types. The
bootROM tries to read the first 512 bytes in four different ways, and uses the main header checksum
check as a success indication.

Following are the four types of NAND flash read commands used, listed in the order they are tried by
the bootROM:

Table 79: Types of NAND Flash Read Commands Supported

NAND Flash Type

Large pages
5 address cycles with 0x30
command trailer

512 byte pages
3 address cycles

Large pages
4 address cycles with 0x30
command trailer

512 byte pages
4 address cycles

Read Command Sequence

Command 0x00, Address 0-7, Address 8-11, Address 12-19,

Address 20-27, Address 28 and above, Command 0x30

NOTE: For pages larger than 2K, the size should be indicated in
the main header of the BootROM.

Plane A (Address bit-8 = 0): Command 0x00, Address 07,
Address 9-16, Address 17-24
Plane B (Address bit-8 = 1);: Command 0x01, Address 0-7,
Address 9-16, Address 17-24

Command 0x00, Address 0-7, Address 8-11, Address 12-19,

Address 20-27, Command 0x30

NOTE: For pages larger than 2K, the size should be indicated in
the main header of the BootROM.

Plane A (Address bit-8 = 0): Command 0x00, Address 0-7,
Address 9-16, Address 17-24, Address 25-26
Plane B (Address bit-8 = 1);: Command 0x01, Address 0-7,
Address 9-16, Address 17-24, Address 25-26

The bootROM tries to boot from four types of NAND flash devices four times (a total of 16 times).
The first eight trials are performed with ECC calculation and the last eight trials are performed
skipping ECC correction. A NAND flash reset (using the command OxFF) is performed before each
boot trial.

Doc. No. MV-S104860-U0 Rev. C
Document Classification: Proprietary Information Page 301

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

24.26.4

On each trial, the bootROM checks the 32-bit checksum on the image copied to the RAM. If the
checksum fails, the bootROM registers the error, increments the retry count, and restarts the boot
process. The bootROM supports both 4-bit RS ECC (Reed-Solomon Error Correcting Code) and
1-bit Hamming ECC (Error Correcting Code). For Large Page NAND flash devices, RS ECC is used,
while for small page devices, Hamming ECC is used.

The following are the ECC algorithms supported per NAND flash types.

Table 80: Types of ECC Protocols Supported per Flash Type

NAND Flash Type Read Command Sequence

1 Large pages RS-ECC with 4-bit detection/correction per 512B of data.
4 or 5 address cycles with
0x30 command trailer

2 512 byte page Hamming with 2-bit detection, with 1-bit correction per 256B of
3 and 4 address cycles data (23-bit ECC).

Bad Block Management
The BootROM supports bad block skipping. Before reading from a block, it is verified to be a good
block, by checking the appropriate OOB byte (or bytes) in the Spare area to be OxFF.

For the 512B page devices, the number of pages per block is fixed at 32 (and thus block size is

16 KB).

For Large page devices (2 KB and over), the block size, pages per block number, and the
technology used (cell type is MLC or SLC) are read at runtime using the READID command (in bytes
3 and 4).

The following are the OOB locations checked by the bootROM based on the type of NAND flash
selected through the reset strap.

Table 81: Bad Block Indicators per NAND Flash Cell Type

NAND Flash Type Read Command Sequence

1 Large page MLC devices Byte[0] of the spare area in the last page of the block (For a
good block, the byte should be equal to OxFF).

2 Large page SLC devices Byte[0] and Byte[5] of the spare area in the first and second
pages of the block (For a good block, both bytes should be
equal to OXFF).

3 512B page SLC devices Byte[5] of the spare area in the first and second pages of the
block (For a good block, the bytes should be equal to OXFF).

Boot from a SATA Device

In this boot device, the main header must be located in sector number 1 of the hard disk (since
sector 0 holds the partition table). An extension header is mandatory, to perform DDR initialization
(since the image must be copied to the DDR to be executed from there and cannot be executed in
place).

The source image must be located at the beginning of the sector specified by the main header.
(Usually the first partition starts in sector 63.)

The main header, extension header, and source image must contain valid checksum values.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 302

Document Classification: Proprietary Information December 2, 2008, Preliminary

24.2.6.5

24.3

System Considerations
Power Management

This boot method downloads the source image to the DDR and executes from there. The source
image is downloaded to DDR is using the DMA.

The first 2 KB of SDRAM are used for the SATA descriptors.

Boot from PCI Express Interface

This boot device differs from the other four boot devices. The device functions as a PCI Express
Endpoint, with a Root Complex, which is responsible for performing the basic steps of the boot
process.

In this boot mode, the first task the bootROM preforms is to set the PCI Express Boot Address
Register (Table 309 p. 477) with the value OXFFFFFFFF.

Then the bootROM initializes the PCI Express interface and configures the PCI Express controller to
function as a an Endpoint. By default, the device configures its BARs to allow access to its internal
registers. This allows the Root Complex to use BAR 0 to configure the device, initialize the DDR (if it
exists) and set up the DDR BAR 1 and windows, if necessary.

After performing the interface initialization, the bootROM enters an infinite loop, waiting for the Root
Complex to change the PCI Express Boot Address Register and update it with the address (locally
on the DDR) holding the image header. This is a handshake mechanism, which indicates that the
Root Complex is ready, having performed the necessary configurations and downloaded the image
to the execution location on the DDR.

After detecting the change in the PCI Express Boot Address Register, the bootROM uses the value
passed as the location of the main header and verifies the header checksum to make sure that it is
valid.

The bootROM uses the Destination Address as the absolute location of the image to check the
image checksum-32.

Finally, if the checksum is valid, the bootROM jumps to the Execution Address specified in the main
header and starts running from there.

Power Management

24.3.1 Functional Description
The device includes various power management (PM) features that enable fine-tuning of the
device's power consumption, according to the desired usage scheme.
For a detailed description of power management in this device, refer to AN-260 System
Power-Saving Methods for 88F6180, 88F6190, 88F6192, and 88F6281.
For the exact power consumption values for each device, refer to the respective device Hardware
Specifications.

24.3.2 CPU Power Saving
This section describes the CPU power saving options.

24.3.2.1 Wait for Interrupt CP15 Mode
The CPU Wait for Interrupt CP15 mode disables all the CPU Core clocks, including logic, caches,
MMU and tables. It also disables the L2 controller and array clocks. The CPU preserves the latest
data and caches. Once the CPU wakes up, it proceeds from the last executed instruction.
To enter this mode, execute the Wait For Interrupt CP15 instruction.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 303

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

The transition from this mode to active mode is caused by one of the following:
e Assertion of an interrupt (nIRQ) or fast interrupt (nFIQ), whether masked on unmasked.
m Assertion of reset.

For additional information, refer to the Sheeva™ 88SV131 ARM v5TE Processor Core with MMU
and L1/L2 Cache Datasheet.

24.3.2.2 Dynamic Frequency Scaling
The CPU Subsystem dynamic frequency scaling enables a fast transition between Fast Clock mode
and Slow Clock mode per application demand.
m In Fast Clock mode, the CPU Subsystem (CPU and L2 cache) operate at fast frequencies, as
determined at reset.
m In Slow Clock mode, the CPU Subsystem clock is lowered to the DDR frequency.

To enable the Slow Clock mode, perform the following sequence:

1. Setthe <CPU_SW_Int_BIlk> field in the CPU Control and Status Register (Table 116 p. 368) to
0x1. This setting disables interrupts to the CPU.

2. To enable the Power Saving mode, set the <GotoPowerSave> field in the Clock Gating Control
Register (Table 122 p. 372).

3. Use the MCR CP15 Wait-For-Interrupt command.

4. Clear the <CPU_SW_Int_Blk>. This enables the interrupts to the CPU.

To return to Fast Clock mode, perform the following sequence:

1. Setthe <CPU_SW_Int_BIk> to Ox1. This setting disables interrupts to the CPU.
2. To disable the Power Saving mode, clear the <GotoPowerSave>.

3. Use MCR CP15 Wait-For-Interrupt command.

4. Clear the <CPU_SW_Int_BIk>. This enables the interrupts to the CPU.

When entering the Wait For Interrupt mode (step 3 in both procedures), there is no need to assert the
EI interrupt for waking up. The Clock Generation logic takes care of this, and once the clocks adjust to the
needed frequencies, they automatically wake the CPU Subsystem clocks (Core and L2 cache). During
Note the transition period, the DDR Clock remains intact and keeps its frequency and phase throughout the
procedure, making it transparent to the system.

24.3.3 SDRAM Power Saving

The SDRAM power consumption depends on SDRAM technology (DDR2), density, operation
frequency, and operating mode. Table 82 list the typical values for a single 512 Mbit (DDR400)
SDRAM device.

Table 82: 512 Mb—SDRAM IDD Values

Operating Condition Symbol DDR2

Full Operating Power IDD7 230 mA
Four bank interleaving read access.

Idle Current IDD2 40 mA
No activity and all pages are closed.

Self Refresh Current IDD6 5 mA
In Self Refresh mode, the SDRAM current is far less than with other operating conditions. This mode

is useful when the system is in Standby mode, and no activity is expected in the next few
milliseconds.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 304 Document Classification: Proprietary Information December 2, 2008, Preliminary

System Considerations
Power Management

To set the SDRAM to Self Refresh mode, set the <Cmd> field in the SDRAM Operation Register
(Table 174 p. 400) to 0x7. After 256 cycles from when the <Cmd> field is set, the SDRAM controller
waits for an idle state and then sets the SDRAM to Self Refresh mode.

When in Self Refresh mode:

m The SDRAM controller does not generate refresh cycles. The SDRAM has an internal refresh
counter that manages the SDRAM refresh.

m Excluding the M_CLKOUT, M_CLKOUTn, M_CKE, and M_STARTBURST signals, all of the
other SDRAM interface signals are floated, resulting in additional power-saving.

When new pending transactions are targeted to the SDRAM, the SDRAM controller restores the
SDRAM interface to normal operation.

Resuming normal operation requires 200 SYS_CLK cycles. Due to this requirement, Marvell®
recommends using the SDRAM Self Refresh mode only when the system is really in a Standby
mode. This prevents frequent Self Refresh enter/exit operations that can result in performance
degradation.

| ;I | Do not use Self Refresh mode if an external PLL-based clock buffer is used for clock fan out toward the

SDRAM.
Note

24.3.4 PCI Express Power Saving

The device supports PCI Express power management as a root complex (controlling external PCI
Express endpoints), or as an endpoint.

When there is no device connected to the PCI Express interface, it is possible to power down the
PCI Express PHY. Shutting down the PCI Express PHY reduces the device power consumption.

To power down the PCI Express PHY, write the value 0x20800087 to the PCI Express PHY Indirect
Access Register (Table 319 p. 484).

It is also possible to reduce the device power consumption by disabling the PCI Express clock. To
accomplish this, set the <PEX0_Mem_PD> field in the Memory Power Management Control
Register (Table 121 p. 370).

24.3.4.1 Device as a PCl Express Root Complex

When the device is in Root Complex mode, the operating system should perform the following

sequence, to set the external PCI Express endpoint into one of the power-saving modes:

1. Requests the endpoint software driver to complete all of its tasks, and sets the device into a
power-down state.

2. Sets the endpoint <PMState> field in the PCI Express Power Management Control and Status
Register (Table 286 p. 459) to the required power state.

As a result, the endpoint initiates a link power-down procedure. This turns the device PCI Express
PHY to power-saving mode.

|§ I | When in D3 power state, the external endpoint is only permitted to respond to configuration cycles. The
software must not access the external device with memory or I/O transactions. These types of accesses
Note result in a master abort condition.

If the external PCI Express endpoint requires a wake up (for example, a NIC device that received a
wake-up packet), it sends a PME message. As a result, the <RcvPmPme> field in the PCI Express

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 305

—

= 88F6180/88F619x/88F6281

M ARV EL L® Functional Specifications

24.3.4.2

Interrupt Cause Register (Table 320 p. 487) is set and a CPU interrupt is asserted, if not masked. In

response, the operating system:

1. Sets the endpoint back to DO state for normal operation, and clears the device’s PMEn interrupt
by writing 1 to the <PMEStat> field in the PCI Express Power Management Control and Status
Register (Table 286 p. 460).

2. Signals the endpoint software driver to resume normal operation.

Any access to the PCI Express endpoint (for example, a CPU write to the endpoint's <PMState>)

results in the link resuming its full power state.

Device as a PCIl Express Endpoint

As a PCI Express endpoint, the device implements the required power management configuration
registers, including PME message and PHY power down.

For the external system host to set the device into one of the power-saving modes, the external host
must perform the following steps:

1. Request the device software driver to complete all of its tasks.

2. Setthe <PMState> to the required power state.

As a result, the PCI Express interface initiates a link power-down process, that leads to a PHY
power down.

Due to the <PMState> field change, the device sets the <DstateChange> field in the PCI Express

Interrupt Cause Register (Table 320 p. 485) and asserts a CPU interrupt, if not masked. The local
CPU can use this interrupt to set the board components to power-saving mode.

| ;l | When in D3 power state, the device resets its PCI Express configuration registers to their default values,

as required by the PCI Express specification.

Note

For the external system host to return the device to normal operation, it must perform the following
steps:
1. Clear the <PMState> field to 0x0 (DO state).
2. Signal to the device software driver to resume normal operation.
As a result of a <PMState> field change, the device sets the <DstateChange> and asserts a CPU
interrupt, if not masked. The local CPU can use this interrupt to return the board components to
normal operation.
The device also supports PMEn message generation. Upon a wake-up event, the local CPU
attached to the device is expected to trigger a PMEn message by writing 1 to the <PMEStat> field in
the PCI Express Power Management Control and Status Register (Table 286 p. 460). In response,
the system host sets the device back to the DO state, and clears the PMEn interrupt by writing 1 to
the <PMEStat>.

24.3.4.3 LO Power Saving
The device also support PCI Express LO Rx and Tx power-saving states, as defined in the PCI
Express specification. If there is no traffic on the link for seven microseconds, the PCI Express PHY
initiates power down on its Tx side.
Similarly, the external PCI Express device may initiate LO power down, causing an LO power down
on the device PCI Express Rx side.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 306

Document Classification: Proprietary Information December 2, 2008, Preliminary

System Considerations
Power Management

24.3.4.4 Endpoint Power Down (Extended D3 Power Saving)

If it is necessary to extend the power-saving methods beyond the D3 state, as described in
Section 24.3.4.1, Device as a PCI Express Root Complex, on page 305, there is an option to power
down the endpoint device by using the following sequence:

1.

o

The operating system requests the endpoint software driver to complete all of its tasks, and
then, it sets the device to a power-down state.

The operating system sets the endpoint <PMState> field in the PCI Express Power
Management Control and Status Register (Table 286 p. 459) to 0x3, D3 power-saving state.
Read the D-state register from the endpoint device and verify that the D3 is written in the
<PMState> field.

Clear the <PexLinkdownResetCpu> field in the CPU Configuration Register (Table 115 p. 367).
Wait 20 ms.

Turn off the power to the endpoint device, this is system board implementation dependent. For
example, a board designer can use an MPP output to disable/enable the dedicated endpoint
power supplies, see Figure 83, “Endpoint Power Supply Control.

To power up the endpoint device, use the following sequence:

1.

Turn on power to the endpoint device. The period required to power up the endpoint device
depends on the reset sequence.

Clear the <PexLinkdownResetCpu> to 0.

Wait for the <DLDown> field in the PCI Express Status Register (Table 308 p. 476) to be
cleared to O (the DL link is active).

The endpoint device is ready for enumeration and software initialization.

| ;| | When designing the software, take into account the fact that the endpoint device initialization is software
dependent.

Note

Figure 83: Endpoint Power Supply Control

Enable/Disable
Control Power
MPP P Supply
Marvell® Device
(as a PCle
Root Complex)
x1 .
Endpoint
Device

24.3.5 Ethernet Power Saving

It is possible to reduce the device power consumption by disabling the Ethernet port and its clock.

Copyright © 2008 Marvell

Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 307

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

To disable the port, proceed as follows:

1. Setthe active queues in the <DISQ> field in the Receive Queue Command (RQC) Register
(Table 444 p. 585) and in the <DISQ> field in the Transmit Queue Command (TQC) Register
(Table 450 p. 590). There is one bit per queue. This action stops all active Rx and Tx queues.

2. Verify that all of the bits in the <ENQ> field in the Receive Queue Command (RQC) Register
(Table 444 p. 585) and in the <ENQ> field in the Transmit Queue Command (TQC) Register
(Table 450 p. 590) are 0. When these bits are set to 0, it indicates that all of the queues have
stopped.

3. Read the Ethernet Port Status 0 (PS0) Register (Table 429 p. 569) register to confirm that the
<TxFIFOEmp> and <TxInProg> fields each have a value of 1. This value means that the Tx
FIFO is empty and that transmit activity has stopped.

4. Clear the <ForceLinkFail> field in the Port Serial Control0 (PSCO) Register (Table 427 p. 568) to
force the link down.

5. Clear the <PortEn> field in the Port Serial Control0 (PSCO0) Register (Table 427 p. 566) to
disable the port.

To disable the Ethernet port clock, set the <GEO_Mem_PD> field and the <GE1_Mem_PD> field in
the Memory Power Management Control Register (Table 121 p. 371).

24.3.6 USB Power Saving

The device supports power down of any attached USB device, as specified in the EHCI
specification.

|§ | | The bits mentioned in this section are in the PORTSC register (offset 0x50184). Refer
to the ARC USB-HS OTG High-Speed USB On-The-Go Controller Core V 4.0.1
Note Reference.

To configure the USB port to Suspend mode, set the PORTSC register Suspend field (SUSP bit[7])
to 1. The USB port stops all bus activity, resulting in power down of the attached USB devices.

To resume normal operation, set the PORTSC register Force Port Resume field (FPR bit[6]) to 1.
After resuming normal operation, the USB MAC sets the PORTSC register Force Port Resume field
back to 0.

The USB port may be in an inactive state (no external device connected). Upon connection of an
external device, the PORTSC register Connect Status Change field (CSC bit[1]) is set, and an
interrupt is asserted, if not masked. The software then wakes up the bus. Similarly, upon a
disconnect event, the software turns the USB port off.

24.3.7 SATA Power Saving

When using the SATA interface, it is possible to reduce the device power consumption by disabling
the SATA PHY. If the SATA interface is not used, it is still recommended to disable the SATA PHY to
ensure the minimal device power consumption.

To disable the PHY, shut down the link and then disable the port PHY.

Shutting down the port link

To disable the PHY, shut down the link, and then, disable the port PHY.
To shut down the link:

1. Setthe <SPM> field in the SControl Register (Table 369 p. 525) to:

* 0x1 = Initiate a Partial power management mode, a faster, but less effective power
management state.
OR

e 0x2 = Initiate Slumber power management mode.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 308 Document Classification: Proprietary Information December 2, 2008, Preliminary

24.3.8

24.3.9

24.4

System Considerations
Error Handling Functional Description

2. Ensure that the <IPM> field represents the enabled interface power management states that
can be invoked via the Serial ATA interface power management capabilities.

Disabling the port PHY

After the <SPD> field is set, disable the port PHY by using the following sequence:

1. Inthe PHY Mode 2 Register (Table 374 p. 532), clear the <FORCE_PU_TX>,
<FORCE_PU_RX>, <PU_PLL>, and <PU_IVREF> fields.

2. Set the <PhyShutdown> field in the Serial-ATA Interface Configuration Register (Table 365
p. 519) to 0x1. This setting places the PHY in Shutdown mode.

Reactivating the SATA port

To reactivate the SATA port, perform the following sequence:

1. Clear the <PhyShutdown>. This setting places the PHY in Operational mode.

2. Setthe <FORCE_PU_TX>, <FORCE_PU_RX>, <PU_PLL>, and <PU_IVREF> to Ox1.

3. Setthe <SPD> field in the SControl Register (Table 369 p. 525) to 0x3. This setting places the
PHY in Active mode.

Cryptographic Engines and Security Accelerator (CESA)
The CESA unit does not have any external interfaces (no PHY is involved), which simplifies power
management. In addition, the CESA unit was designed with an orientation to power-saving modes.

Currently, the only sequence that can be performed is to enable the automatic power-save mode.
This mode manages enabling/disabling the clock for the entire unit. The unit disables the clock
whenever it is idle and enables it with the first access to the unit.

To enable the automatic power saving mode, set the <Crypto_Mem_PD> field in the Memory Power
Management Control Register (Table 121 p. 371).

Core Clock Power Saving

It is possible to enhance power saving by shutting down the core clock (TCLK) supply to inactive
interfaces. If an interface is not used, it is possible to disable the core clock input to that interface.
Use the Memory Power Management Control Register (Table 121 p. 370) to control the clock input
for the different interfaces.

Error Handling Functional Description

The device provides error handling for the following types of errors:
m CPU address decoding errors

m PCI Express errors

m USB errors

N As the DDR controller does not support ECC, no errors are generated by the DDR
controller.

Note

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 309

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

24.4.1 CPU Address Decoding Errors

Table 83 lists the CPU address decoding errors and describes how they are handled.

Table 83: CPU Address Decoding Error Handling

Error Type Error Handling

Access to unmapped window Accesses are completed according to the setting of bit <AHBErrorProp>
field in the CPU Configuration Register (Table 115 p. 366).

Write Access to write protected window <AHBErrorProp> = 0

Error indications are not propagate to Mbus-L.

The transactions are completed normally.
<AHBErrorProp>=1

Error indications are propagate to Mbus-L.

Other errors Unpredictable behavior.

24.4.2 PCI Express Errors

Table 84 lists the PCI Express errors and describes how they are handled.

Table 84: PCI Express Error Handling

Flow Error Type Error Handling

PCI Express Master Error indication from initiator unit Forward the transactions with data poisoning indications
Write to the PCI Express interface.

PCI Express Master 1. Data Poisoning from Forward the transactions with error indications to the
Read completion PCI Express interface initiator.

2. Completion timeout
3. Received completion with
unsuccessful completion

status
PCI Express Slave Data Poisoning from PCl Express = Drop the data. Close the transactions normally.
Write interface
PCI Express Slave Error indication from target unit Forward the transactions with data poisoning indications
Read to the PCI Express interface.
Link Fail 1. Reset link state machine.

2. Generate maskable interrupt.

Hot reset received 3. Activate system reset if enabled.
(Endpoint mode)
PHY/Link/Transport Set maskable interrupt.
Unrecoverable error
PHY/Link/Transport
Recoverable error
Address Decoding Unpredictable behavior.

errors

1. The CPU is the initiator. The transaction is propagated on the Mbus-L if the <AHBErrorProp> field in the CPU
Configuration Register (Table 115 p. 366) is set to 1.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 310 Document Classification: Proprietary Information December 2, 2008, Preliminary

System Considerations
Error Handling Functional Description

24.4.3 USB Errors

Table 85 lists the USB errors and describes how they are handled.

Table 85: USB Error Handling

Flow Error Type Error Handling

Address Decoding No hit or multiple hit on address Transactions are forwarded according to windowO.
errors windows Generate maskable interrupts.

USB Controller errors Handled by the USB controller core according to the

USB 2.0 specification.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 311

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

25 Internal Architecture

25.1 Mbus-L—Sheeva™ CPU Core Local Bus

The device CPU uses the Mbus-Light (Mbus-L) protocol as the internal interface to the rest of the
device.

The Mbus-L protocol is targeted at a high-performance, high-frequency CPU. It is intended to
maximize the device CPU Bus Interface Unit (BIU) throughput, and to minimize the bus read latency.
The Mbus-L provides the following features:

m Separate address/control and data phases—burst-based transactions with only start
addresses:

* Enables multiple outstanding read transactions
* Enables new read/write requests during the read response data phase
* Enables new read transfer requests during the write data phase
m Separate write data and read data interfaces:
* Enables write data transfer and read response data transfer to occur simultaneously
* Guarantees streaming read response transfer, no acknowledgment needed
m Separate interfaces to DDR controller and to Mbus bridge:
* Enables simultaneous transactions to DDR controller and to Mbus bridge
* Guarantees streaming read response transfer, no acknowledgment needed
m Transaction ID is attached to the transaction command:
* Enables out-of-order transaction completion
Figure 84 provides a block diagram of the 88F6180 and 88F619x Bus Interface Unit Mbus-L.

Figure 84: 88F6180 and 88F619x Bus Interface Unit Mbus-L Block Diagram

CPU CPU CPU
Internal L. Internal Internal
Master N Master 1 Master 0

88F6180/88F6192 CPU Bus Interface Unit (BIU)
runs solely @ CPU clock

64-bit @ up to 64-bit @ up to
200 MHz Mbus-L 200 MHz Mbus-L
Bridge to Mbus DDR Controller
Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 312 Document Classification: Proprietary Information December 2, 2008, Preliminary

Internal Architecture
Mbus-L—Sheeva™ CPU Core Local Bus

Figure 85 provides a block diagram of the 88F6281 Bus Interface Unit Mbus-L.

Figure 85: 88F6281 Bus Interface Unit Mbus-L Block Diagram

CPU CPU CPU
Internal - Internal Internal
Master N Master 1 Master O

88F6281 CPU Bus Interface Unit (BIU)
runs solely @ CPU clock

64- bit @ up to 64- bit @ up to
400 MHz Mbus-L 400 MHz Mbus-L
Bridge to Mbus DDR Controller

25.1.1 CPU Throughput

To further utilize Mbus-L capabilities:

m DDR controller provides two read/write transaction buffers for Mbus-L transactions:
* Supports multiple outstanding transactions
* Enables back-to-back transactions on DDR memory

= Mbus-L to Mbus bridge provides two read/write transaction buffers:

* Supports multiple outstanding transactions
25.1.2 DDR Latency

The CPU and DDR work in different clock domains. The Bus Interface Unit (BIU) executes in the

same clock domain as the CPU. Since the DDR controller runs at the DDR clock frequency, the

following mechanism is used to minimize the delay of the Mbus-L signals on the CPU-DDR
interface:

m The CPU drives Mbus-L signals towards the DDR controller on a specific CPU clock rather than
on the DDR clock. This specific CPU clock is selected from the <CPU2MbusLTickDrv> field in
the CPU Configuration Register (Table 115 p. 366).

For an example of this mechanism for the CPU-to-DDR clock period ratio of 1:4, see Figure 86,
CPU to DDR Mbus-L Timing Diagrams—CPU2MbusLTickDrv=0, CPU2MbusLTickSample=0,
on page 314 and Figure 87, CPU to DDR Mbus-L Timing Diagrams—CPU2MbusLTickDrv=2,
CPU2MbusLTickSample=2, on page 314.

m The CPU samples Mbus-L signals from the DDR controller on a specific CPU clock rather than
on the DDR clock. The specific CPU clock is selected by the <CPU2MbusLTickSample> field in
the CPU Configuration Register (Table 115 p. 367). See Figure 86 and Figure 87 for an
example of this mechanism for the CPU-to-DDR clock period ratio of 1:4.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 313

®

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Figure 86: CPU to DDR Mbus-L Timing Diagrams—CPU2MbusLTickDrv=0,
CPU2MbusLTickSample=0

Sheeva™ CPU
0 1 2 3 4 5 6 7 8 9 10 11

CPUChck /_/ N/ /[\/ /S S/

DDR Clock

CPU_2 DDR_REQ /

DDR_2_CPU_READ_VALID .
(In CPU)

DDR Controller

DDR_2_CPU_READ_VALID /

Figure 87: CPU to DDR Mbus-L Timing Diagrams—CPU2MbusLTickDrv=2,
CPU2MbusLTickSample=2

Sheeva™ CPU
0 1 2 3 4 5 6 7 8 9

CPUClock _/ '\

DDR Clock

_CPU2MbusLTicDrv = 2

—

CPU_2_DDR_REQ /

CPU2MbusLTicSample = 2

DDR_2_CPU_READ_VALID
(in CPU)

\ /
DDR Controller \ J
I |

DDR_2_CPU_READ_VALID

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 314 Document Classification: Proprietary Information December 2, 2008, Preliminary

25.2

25.2.1

Internal Architecture
Mbus—Device Internal Bus

Mbus—Device Internal Bus

The Mbus is a 64-bit internal bus. It is used for data transfer between the different units (except for
the CPU access to DDR SDRAM). The different units can act as masters on the bus generating
requests, or as targets driving read responses. Table 86 lists the units connected through the Mbus
and indicates the functions implemented by each unit. The Mbus runs at TCLK.

Table 86: Mbus Units

Unit Unit ID Function
DDR SDRAM controller 0x0 Target

TWSI, UART, NAND flash, SPI, RTC, GPIO, and 0x1 Master/Target
BootROM

Mbus-L to Mbus bridge 0x2 Master/Target
Cryptographic engines and Security accelerator 0x3 Master/Target
PCI Express port 0x4 Master/Target
USB 2.0 port 0x5 Master/Target
XOR and DMA unit 0x6 Master/Target
Gigabit Ethernet port(s) 0x7 Master/Target
SATA ports (88F619x and 88F6281 only) 0x8 Master/Target
SDIO port 0x9 Master/Target
Audio port (88F6180, 88F6192, and 88F6281 only) OxA Master/Target
MPEG Transport Stream port 0xB Master/Target

(88F6192 and 88F6281 only)

TDM ports(88F6192 and 88F6281 only) 0xD Master/Target

functions as a master only after reset, when using TWSI serial ROM initialization.
Only the target interfaces PCI Express, NAND flash, SPI and DDR are units that
are targeted for direct access to an external interface. The rest of the target units
are accessed for their internal registers to configure and operate the unit.

EI m The TWSI, UART, NAND flash, SPI, BootROM interfaces act as targets. The TWSI

Note

The Mbus uses a proprietary protocol. All read transactions are split transactions. This ensures that
the bus does not remain busy while a slow memory unit is accessing the requested data. The bus
supports up to 128B transfer per transaction.

Mbus Arbitration

The DDR SDRAM interface Mbus port implements a programmable arbitration scheme to optimize
the device performance, according to the system requirements. The arbitration priorities for the
initiators can be adjusted through the registers in Section A.4, DDR SDRAM Controller Registers,
on page 389.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 315

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

The DDR SDRAM controller further arbitrates between the winning Mbus transaction and Mbus-L
requests from the CPU. For more details, see Section 4.1.3, Arbitration and Ordering, on page 45.

Each of the other Mbus target units also has a dedicated arbiter. Those arbiters used a
EI fixed arbitration scheme that cannot be programmed. A two-level arbitration scheme is
used for those arbiters. All read responses target units are serviced first, followed by all
Note initiator requests from master units. The arbitration between the initiator units operates
in a fixed-round-robin fashion. The arbitration between target units also operates in a
fixed-round-robin fashion. Each of these arbitration schemes operations in a
fixed-round-robin fashion.

Figure 88 depicts the arbitration in the form of a wheel with the wheel representing one clock cycle
and each slice of the wheel representing a transaction on the Mbus. The arbitration scheme works
as follows:

m The arbiter gives access to the initiator unit that has priority according to the current transaction
slice.

m For each TCLK cycle, if the initiator unit that has priority in the current slice has not re-asserted
a request, the arbiter will give the transaction to the initiator unit that has priority in the next
slice. This will continue until an initiator unit is found that has asserted a request.

Figure 88: Masters Request Default Arbitration Cycle

Arbitration Cycle

The Mbus SDRAM arbiter priority scheme can be used to allocate a fair bandwidth to the different
master units. The arbiter has 16 slices, each of which can be assigned to any unit. The arbiter works
in a fixed-round-robin fashion, calculating at each available cycle which of the pending requests is
the next to be served. The arbiter works on a transaction basis, meaning, it enters a new arbitration
cycle, only when a transaction ends. This means that priority settings should be affected by the
typical transaction size for each unit. If for example, the typical transaction size of unit A is twice the
typical transaction size of unit B, unit B should get twice as many priority slices as unit A to have the
same bandwidth allocation.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 316 Document Classification: Proprietary Information December 2, 2008, Preliminary

Internal Architecture
Mbus-L to Mbus Bridge

25.3 Mbus-L to Mbus Bridge

The CPU interfaces with the device units over the Mbus-L to Mbus bridge. This bridge forwards CPU
transactions to the device units over the Mbus, and forwards read responses back from the units to
the CPU. This bridge also integrates the device control and status registers related to the CPU.

25.3.1 Mbus-L to Mbus Bridge Features

m Unidirectional bridge—Only transactions from Mbus-L to Mbus are supported.
m Supports two outstanding read requests.
m Contains two read/write buffers of 32B.

The Mbus-L to Mbus bridge is configured using the registers listed in following sections:
m Appendix A.3.1, CPU Address Map Registers, on page 357.

Appendix A.3.2, CPU Control and Status Registers, on page 365.

Appendix A.3.3, CPU Doorbell Registers, on page 377.

Appendix A.3.4, CPU Timers Registers, on page 378.

Appendix A.3.6, Main Interrupt Controller Registers, on page 383.

25.4 Transaction Ordering

The device supports the following ordering rules:
CPU lock

Read after write ordering

Write after write ordering

PCI Express bridge ordering rules
Producer-consumer ordering

This section details these rules.

25.4.1 CPU Lock

The CPU supports Lock transactions. These transactions are useful for atomic read-modify-write
commands.

When the CPU generates a lock read transaction to DRAM, no other DRAM transaction is served
until the CPU performs an unlock transaction.

25.4.2 Read-after-Write and Write-after-Write Ordering

The implementation of the transaction queues, for each of the device master units, guarantees
read-after-write and write-after-write ordering of transactions from the same originator to the same
target.

However, the basic implementation of the transaction queues cannot guarantee ordering of
transactions between different sources and destinations. For example, if the CPU generates two
consecutive write transactions, the first one to the GbE MAC and the second one to the DRAM,
there is no way for the hardware to guarantee that the write on the GbE MAC will be executed first.

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 317

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

25.4.3 PCI Express Bridge Ordering Rules

PCI Express Host Hardware-Enforced Ordering

CPU/DRAM.
The term “downstream” is used for data transfer from the CPU/DRAM to the PCI
Express.

E The term “upstream” describes a data transfer from the PCI Express towards the

Note

The device supports the PCI Express bridge transaction ordering rules. Especially, in cases of a
CPU read from the PCI Express endpoint, the device drives the read response on the CPU bus only
after flushing all upstream write data previously posted from the PCI Express into memory.

To enable PCI Express host hardware-enforced ordering, set both the <RxCmplPushDis> field and
the <RxNpPushDis> field in the PCI Express TL Control Register (Table 318 p. 483) to 0 (the default
settings).

PCI Express Endpoint Hardware-Enforced Ordering

The device also supports the transactions ordering rules when it acts as an endpoint. Especially,
when an external PCI Express host performs a read from the device local memory. The device only
drives downstream read completion after all pending downstream posted write data is flushed.

To enable PCI Express endpoint hardware-enforced ordering, set the <TxCmplPushDis> field and
the <TxNpPushDis> field in the PCI Express TL Control Register (Table 318 p. 483) to 0 (the default
settings).

25.4.4 Producer-Consumer Ordering
With producer-consumer ordering, the producer can be the 1/0 device and the consumer can be the
CPU, or the opposite, the producer is the CPU and the consumer is the 1/O device).
The basic concept of a producer-consumer model operates as follows:
m The producer places some data in memory for the consumer to process.

m The producer notifies the consumer (via interrupt or any other means) that there is pending data
in memory for the consumer to process.

m The consumer reads the data from memory and processes it.

The device implementation guarantees that this model works properly, meaning that it is guaranteed
that when the consumer reads data from memory, it reads the valid data.

Producer-Consumer Operation

| ;] | The following describes the producer-consumer operation between the CPU and the

Not GbE SDMA. However, it also applies to all of the chip DMAs.
ote

GbE MAC transmit operation consists of:

1. The CPU prepares transmit descriptors and buffers in memory.

2. The software flushes buffer descriptors from L1 and L2 caches to the DRAM, using cache
operations. The software also performs drain write buffer operation, to guarantee that data is
flushed all the way to memory.

3. Triggering the GbE SDMA (a write to GbE MAC register).

4. The GbE SDMA starts to fetch descriptors and buffers from the DRAM.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 318 Document Classification: Proprietary Information December 2, 2008, Preliminary

Internal Architecture
Transaction Ordering

The DRAM controller implementation guarantees that the GbE SDMA reads the latest data from
DRAM, and not some old invalid data (see DRAM Controller chapter for full details).

GbE MAC receive operation consists of:

1. The SDMA writes received packets to buffers in memory.

2. The SDMA writes the Rx descriptor status to memory. It then interrupts the CPU.

3. The CPU reads the interrupt cause register (identify interrupt cause).

4. The CPU reads the Rx data from memory.

The DRAM controller implementation guarantees that the CPU reads the latest data from DRAM,
and not old invalid data (see DRAM Controller chapter for full details).

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 319

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

THIS PAGE IS INTENTIONALLY LEFT BLANK

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 320 Document Classification: Proprietary Information December 2, 2008, Preliminary

88F6180/88F619x/88F6281
Register Set

Marvell. Moving Forward Faster

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

THIS PAGE IS INTENTIONALLY LEFT BLANK

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 322 Document Classification: Proprietary Information December 2, 2008, Preliminary

List of Registers

A.3 Mbus-L to Mbus Bridge RegiSterscccccvvvvvvevievrivereeereeereenee.
Table 90: WindowO0 Control REgIStercccoeiiiiiiiiiiiiic e

Offset: 0x20000

Table 91: WIindowO0 Base RegIStercccciiiiiiiiiiiiiii e

Offset: 0x20004

Table 92: Window0 Remap LOW REQISLENccciiviiieeiiiiieeeciiiee e eiee e

Offset: 0x20008

Table 93: Window0 Remap High ReQIStErccoiiiiiiieiiiiee e

Offset: 0x2000C

Table 94: Windowl Control REQISErccccuiieeiiiiiee e s e e e

Offset: 0x20010

Table 95: WiIiNndowl Base REQISIEIc..ovveviieiiee e

Offset: 0x20014

Table 96: Windowl Remap LOW REQISLErcoeviiiieieiiiiieeesiiie e eeiee e

Offset: 0x20018

Table 97: Windowl Remap High RegISterccocoeereiiiiiiieiiiee e ee e

Offset: 0x2001C

Table 98: WiIindow2 Control REQISErcoocuuiiiiiiiiiie e

Offset: 0x20020

Table 99: WiIiNdow2 Base ReQISIErevviiiiiiiee e

Offset: 0x20024

Table 100: Window2 Remap LOW REGISIErcveeieiiiiiieeiiiiiee e

Offset: 0x20028

Table 101: Window2 Remap High Registercccocviiiiiiiiiiciiieeeee

Offset: 0x2002C

Table 102: Window3 Control REgIStErcciviiiiiiiiiiiiii e

Offset: 0x20030

Table 103: WIiNndow3 Base REQISLErccovcviiiiiiiiiiii i

Offset: 0x20034

Table 104: Window3 Remap LOW REQIStErcocoeviiiiiiiiiiiiiiicciceeeee e

Offset: 0x20038

Table 105: Window3 Remap High REQIStErooviiiiiiieiiiiiee e

Offset: 0x2003C

Table 106: Window4 Control REQISIErcvevieiiiieee e e e

Offset: 0x20040

Table 107: WIiNdow4 Base REQISIETccccuveeiiiiiee et e e e

Offset: 0x20044

Table 108: WIndow5 Control REGISIErc.veveiiiiiie e

Offset: 0x20050

Table 109: WINdow5 Base REQISIETccccueiieiiiiiiie e e e

Offset: 0x20054

Table 110: WIndow6 Control REGISIErc.vevveiiiiiee e

Offset: 0x20060

Table 111: WINdow6 Base REQISIErccceiiiiiiiiieiiiiiee e

Offset: 0x20064

Copyright © 2008 Marvell

December 2, 2008, Preliminary Document Classification: Proprietary Information

List of Registers

Doc. No. MV-S104860-U0 Rev. C
Page 323

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Table 112: WIndow7 Control REQISIErccuueiiiiiiiieeiciiee e

Offset: 0x20070

Table 113: WINdOW7 Base REQISIENccoiuiiiiiiiiiie e

Offset: 0x20074

Table 114: Device Internal Registers Base AdAreSSocccccevrieeeeeiniieeeeeniieeesnniens

Offset: 0x20080

Table 115: CPU Configuration REQIStErccceociiiiiiiiiiiiie e

Offset: 0x20100

Table 116: CPU Control and Status Registerccccociiiiiiiiiiniiieiin e

Offset: 0x20104

Table 117: RSTOUTN Mask REQISIErcccocviiiiiiiiiiiciiiie e

Offset: 0x20108

Table 118: System Soft ReSet REQISIEr eviiiiiiiie e

Offset: 0x2010C

Table 119: Mbus-L to Mbus Bridge Interrupt Cause Registerccccccvcveevivvveennnns

Offset: 0x20110

Table 120: Mbus-L to Mbus Bridge Interrupt Mask Registercccccocvevveeviviieennnnns

Offset: 0x20114

Table 121: Memory Power Management Control Registerccccccevcvvveeviienenninns

Offset: 0x20118

Table 122: Clock Gating Control REQISLErcc.eevieiiiiiiee e eee e eree e e

Offset: 0x2011C

Table 123: BIU Configuration REQISIEroviiiiiiiieiiiiiie e see e siee e

Offset: 0x20120

Table 124: CPU L2 Configuration REgISIErc.evieiiiiiieiiiiiie i

Offset: 0x20128

Table 125: L2 RAM Timing O REQISIEr ..ovviiiiiiiiee et

Offset: 0x20134

Table 126: L2 RAM TimiNg 1 REJISIEI ..cooviiieiiiiieee et

Offset: 0x20138

Table 127: L2 RAM Power Management Control Registerccccceeveviieeiiieennnn.

Offset: 0x20144

Table 128: CPU RAM Management Control0 Registercccccoviiiiiiiiieniieennn.

Offset: 0x20148

Table 129: CPU RAM Management Controll Registerccccovviiiiiiiiiiniieennnn.

Offset: 0x2014C

Table 130: CPU RAM Management Control2 Registercccccoviciiiiiiiiiieennen.

Offset: 0x20150

Table 131: CPU RAM Management Control3 REgISterccccocveereeiviveeeiiieeeeeinens

Offset: 0x20154

Table 132: Host-to-CPU Doorbell REQISTErcc.vvveeiiiiie e esiee e e

Offset: 0x20400

Table 133: Host-to-CPU Doorbell Mask REQISIEroceeviiiiiiiiiiiee e

Offset: 0x20404

Table 134: CPU-to-Host Doorbell REQISTErcvevveiieiiie e eree e

Offset: 0x20408

Table 135: CPU-to-Host Doorbell Mask REQISIErcoeeviviiiiiiiiee e

Offset: 0x2040C

Table 136: CPU Timers Control REGISIErcooiieiieiiiiie e e e

Offset: 0x20300

Table 137: CPU Timer0 Reload RegISIErcoovieiiiiiiiiieeiiiiiee e

Offset: 0x20310

Doc. No. MV-S104860-U0 Rev. C
Page 324 Document Classification: Proprietary Information

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Table 138: CPU Timer 0 REJISIEr uiiiiiiiiiiee e

Offset: 0x20314

Table 139: CPU Timerl Reload RegIStErcoooueiiiiiiiiieiiiiiee et

Offset: 0x20318

Table 140: CPU TimMer L REJISIEr ...uviiiiiiiiiiee ettt e e

Offset: 0x2031C

Table 141: CPU Watchdog Timer Reload RegiSterccccvviiiiiiiiiiiniiiniienee

Offset: 0x20320

Table 142: CPU Watchdog Timer ReQIStercccovciiiiiiiiiiiiiiiciiicceesiee e

Offset: 0x20324

Table 143: Window0 Base Address RegiStercccoocviiiiiiiiiiciiiiiiiiesiee e

Offset: 0x20A00

Table 144: WindowO0 Size ADdress ReQIStErccovviiiieiiiiieeeiiieee e e

Offset: 0x20A04

Table 145: Windowl Base Address REQISIErccoovvivieiiciiiree e ciiee e esreea e

Offset: 0x20A08

Table 146: Windowl Size ADdress ReQIStErccovvcviiieiiiiiieeeiieee e sciiee e e

Offset: 0x20A0C

Table 147: Window?2 Base Address REQISIErcoovvvivreiiiiieeeiieee e sieee e e

Offset: 0x20A10

Table 148: Window?2 Size ADAress RegIStercoooviiiereiiiiieeeiieee e e

Offset: 0x20A14

Table 149: Window3 Base Address REQISIErcccovvviveeiiiiiieeeiiiiee e ssiee e e

Offset: 0x20A18

Table 150: Window3 Size Address RegiStercccovveereiiiiieeiiiiee e

Offset: 0x20A1C

Table 151: Main Interrupt Cause LOW ReQiISterccccceiiciieeriiiieeiiiiieee e

Offset: 0x20200

Table 152: Main IRQ Interrupt Mask LOW RegiStercccooveviiiieeiiiiieeeiiieeeenine

Offset: 0x20204

Table 153: Main FIQ Interrupt Mask Low RegiSterccccocciiiiiiiiiiiiiiiiiiiiiniieee

Offset: 0x20208

Table 154: Endpoint Interrupt Mask Low Registercccccciiiiiiiiiiiiiiiiiiniiene

Offset: 0x2020C

Table 155: Main Interrupt Cause High Registerccccoiiiiiiiiiiiiiiiiiiieieee

Offset: 0x20210

Table 156: Main IRQ Interrupt Mask High Registerccccviiiiiiiiiiiiiiniiens

Offset: 0x20214

Table 157: Main FIQ Interrupt Mask High RegiSterccccooeeviiiieieiiiiieeeciiee e

Offset: 0x20218

Table 158: Endpoint Interrupt Mask High Registercccooveiiiiieeeiiciie e

Offset: 0x2021C

A.4 DDR SDRAM Controller RegiStersScuuuvvvvvverrvrrrrrnriinneenennnees.
Table 160: CPU CS Window0 Base Address RegiSterccccvcieiiiiiiiiinniiennns

Offset: 0x01500

Table 161: CPU CS WiIndowO0 Size RegiSterccccccviiiiiiiiiiiiiiciiiiiecieesee e

Offset: 0x01504

Table 162: CPU CS Windowl Base Address Registerccccoeveviiieeeiiiivieennnns

Offset: 0x01508

Table 163: CPU CS WINdow1 Size REQISErcoeiiiviieeiiiiiieeeiieee s sieee e nieea e

Offset: 0x0150C

Copyright © 2008 Marvell

December 2, 2008, Preliminary Document Classification: Proprietary Information

List of Registers

Doc. No. MV-S104860-U0 Rev. C
Page 325

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Table 164: CPU CS Window?2 Base Address RegiStercccccoovvvviiiiiieeenniieeennnnns

Offset: 0x01510

Table 165: CPU CS WINdoW2 Size ReQISIEIuvevieiiiiiieeiiiiiee e

Offset: 0x01514

Table 166: CPU CS Window3 Base Address RegiSterccccooovvvvvviiieeeniiineennnnns

Offset: 0x01518

Table 167: CPU CS WIndow3 Size RegiStercccccoieiiiiiiiiiiiiieiiie e

Offset: 0x0151C

Table 168: SDRAM Configuration REgIStercccccvviiiiiiiiiiieii e,

Offset: 0x01400

Table 169: DDR Controller Control (Low) Registerccccceiiiiiiiiiiiiiiniiieenieee,

Offset: 0x01404

Table 170: SDRAM Timing (LOW) REQISIEN ...ccviiieeeeiiiiie e eeee e sevae e

Offset: 0x01408

Table 171: SDRAM Timing (High) ReQIStercceiviiiiiieiiiiiiie e

Offset: 0x0140C

Table 172: SDRAM Address Control REQISIErccccviveeiiiiiee e siie e

Offset: 0x01410

Table 173: SDRAM Open Pages Control REQISIErccoccviveviiieeeeiniieeeesieee e

Offset: 0x01414

Table 174: SDRAM Operation REJISIEr coviiiiiiiie e ssee e see e

Offset: 0x01418

Table 175: SDRAM MO REGISIEN ovviiiiiieeiiiieeeeetiiee e e e s eeee e e s e e s seaeeeeenees

Offset: 0x0141C

Table 176: Extended DRAM Mode REQISIEN vevveiiiiiiieeiiiiiee e

Offset: 0x01420

Table 177: DDR Controller Control (High) Registerccccccovviiieriiiiiieeeiiiieeesies

Offset: 0x01424

Table 178: DDR2 SDRAM Timing (LOW) REQISLErc..coevviiiiieiiiiieeeiiiieee e

Offset: 0x01428

Table 179: SDRAM Operation Control REQIStErcccceiiiiiiiiiiiiiiciee e,

Offset: 0x0142C

Table 180: SDRAM Interface Mbus Control (Low) Registercccccoevvviiiieennen.

Offset: 0x01430

Table 181: SDRAM Interface Mbus Control (High) Registerccccocvviiiniinnnn.

Offset: 0x01434

Table 182: SDRAM Interface Mbus Timeout Registerccccovciiiiiiiiniieniieenen.

Offset: 0x01438

Table 183: DDR2 SDRAM Timing (High) RegiStercccccoeveiiiiieeeiiiiie e

Offset: 0x0147C

Table 184: SDRAM Initialization Control RegIiStercccccvvveiiiiieieiiiie e

Offset: 0x01480

Table 185: Extended DRAM Mode 2 REQISIEl cviiicuviieeeiiiie e eieee e eeiree e see e

Offset: 0x0148C

Table 186: Extended DRAM Mode 3 REQISIEI covvivuiiieeiiiiee e eee e e

Offset: 0x01490

Table 187: SDRAM ODT Control (LOW) REQISLErc.uvveeiiiiieeeeiieee e eeee e esiiie e

Offset: 0x01494

Table 188: SDRAM ODT Control (High) RegISterccccovvviveviiiiereiiieeeesiiee e

Offset: 0x01498

Table 189: DDR Controller ODT Control RegISterccovvuvieiiiiiiieeeiiiiieeesiieeee e

Offset: 0x0149C

Doc. No. MV-S104860-U0 Rev. C
Page 326 Document Classification: Proprietary Information

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Table 190:

Table 191:

Table 192:

Table 193:

List of Registers

Read BUFfer SEIECE REGISLETviiiiiiiiiie e e et e st e e s st e e e s nnne e e e e nnnneeeas 410
Offset: 0x014A4
DDR SDRAM Address/Control Pads Calibration REgISLErccueeiiiiiiiireiiiiiee et 410
Offset: 0x014CO0
DDR SDRAM DQ Pads Calibration REQISLErcoeiiuiiiiiiiiiiee it e 411
Offset: 0x014C4
DDR SDRAM DQS Pads Calibration REgISIErccciiiiiiiiiiiiii e 412

Offset: 0x014C8

A.5 Time Division Multiplexing (TDM) Unit ReQiSters ... 413
Table 195: CSU System CIOCK PreScaler REGISIEI coiiiiiieiiiiiie ettt e e e e e s sare e e s sneeeeeans 414
Offset: 0xD3100
Table 196: CSU GIobal CONIrOI REGISIETciiiiiiiiiiiiiiiie ettt e e st e e s s st e e e e ssb et e e s sntreee s snneeeeeans 415
Offset: 0xD3104
Table 197: SPI CONIOI REGISIET .ottt s e e e st e e e ettt e e s tteeeeaanbeeeessteeeessnteeeeeanneeeeeens 415
Offset: 0xD3108
Table 198: Codec Access Command LOW REJISIEIcooiuiiiiiiiiiiiiiii e 415
Offset: 0xD3130
Table 199: Codec Access Command High REGISIErcoocuiiiiiiiiii i 416
Offset: 0xD3134
Table 200: Codec RegiSters ACCESS CONIIOIc.eiiiiiiiiiiiiie e e 416
Offset: 0xD3138
Table 201: Codec Read Data REQISIENcciiiiiiiiiiiiiiieiitiie e e sttt e e st r e e s st e e e s sttaee s s staeeeasssseeeeasssaeaesssaeeeesnsseneeanns 417
Offset: 0xD313C
Table 202: Codec RegiStErs ACCESS CONIIOILciiiiiiiiieiiiiie e e st ee e e see e e s s e e e et e e e s taeeeeasbeeeeansaeaeessnaeeessnnseeeeans 417
Offset: 0xD3140
Table 203: PCM CONLIOl REGISTETuviiieiiiieee s it e sttt e e sttt e e s et e e e s steeeeeaaaaaeaeastaaeeasssaeeeaassaeesassssaaessnsaneessnssnneeanns 418
Offset: 0xD0000
Table 204: Channel Time SIot CONtrol REQISTENccvveiiiiiciiie ettt e e ee e e s e e e e s s e e e e enneeeeeerneeeenns 420
Offset: 0xD0004
Table 205: Channel 0 Delay CONtrol REGISIETciiiiiiieeiiiiee e e e e et e e et e e s st eeeenneeeessnnaeeessnneeeeeans 421
Offset: 0xD0008
Table 206: Channel 1 Delay CONtrol REGISIETciiiiiiiieeiiiie e e s et e et e e e teee e e s e e e e nneeeessteeeeeanneeeeeans 422
Offset: 0xD0O00C
Table 207: Channel 0/1 Enable and Disable RegisSter (N=0—1)ccccoiiiiiiiiiieeriiiiee e rieee et snneee e 422
Offset: Channel0: 0xD0010, Channell: 0xD0020
Table 208: Channel 0/1 Buffer Ownership Register (NT0—1)c..oooiiiiiieiiiiiee e e e 423
Offset: Channel0: 0xD0014, Channell: 0xD0024
Table 209: Channel 0 Transmit Data Start Address ReJISIEroiiiiiiiiiiiiiee e 423
Offset: 0xD0018
Table 210: Channel 0 Receive Data Start AddreSS REGISIET eeiiiiiiiieiiiiiee et e e 424
Offset: 0xD001C
Table 211: Channel 1 Transmit Data Start Address REQISIEr ccccocciiiiiiiiiii e 424
Offset: 0xD0028
Table 212: Channel 1 Receive Data Start Address RegiStercccocviiiiiiiiiiiiiii 424
Offset: 0xD002C
Table 213: Channel 0/1 Total Sample Count Register (NZ0—1)cccocoiiiiiiiiiiiiie s 425
Offset: Channel0: 0xD0030, Channell: 0xD0034
Table 214: Number of TIME SIOtS REGISIET ii.iiiiieiiiiieeeciir e e st e e e e s s e e e st e e e e steeeeassaeaaeasssaaaesssseeessnsseeeeanns 425
Offset: 0xD0038
Table 215: TDM PCM CIlock Rate DiViSOr REQISIENccccuiiieeiiiiieeiiiiee e e siteeesiieee e s staeeessssaeasssaaaaesssaeeessnsseneeans 426
Offset: 0xD003C
Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 327

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Table 216:

Table 217:

Table 218:

Table 219:

Table 220:

Table 221:

Table 222:

Table 223:

Table 224:

Table 225:

Table 226:

Table 227:

Table 228:

Table 229:

Table 230:

Table 231:

Table 232:

Table 233:

Table 234:

Table 235:

Table 236:

Table 237:

Table 238:

Table 239:

Table 240:

Table 241:

INterrupt EVENt MASK REGISIETeiiiiiiiiieiiiiiee ettt e st e e s st e e e s st e e e s nnne e e e e snnneeeas 426
Offset: 0xD0040

INterrupt StatUS MASK REGISIET coiiiiiiiieiiiie ettt e e e st e e e s ee e snnaeee s 426
Offset: 0xD0048

Interrupt Reset SeleCtion REQISLENoii it e st e e e e snneeees 427
Offset: 0xD004C

INterrupt StatuS REGISIETciiiiiiici e 427
Offset: 0xD0050

Dummy Data for Dummy RX Write€ REQISLEIcccuiiiiiiiiiiie i 428
Offset: 0xD0054

Miscellaneous Control REGISIETc.cooiiiiiiiiiiiie e 429
Offset: 0xD0058

Channel 0/1 Transmit Data Current Address Register (NZ0—1)ccccceviiiieeiiiiie e ceee e e eee e 429
Offset: Channel0: 0xD0060, Channell: 0xD0068

Channel 0/1 Receive Data Current Address Register (NZ0—1)cccceeiiiiieeriiiiee e sriie e e e 429
Offset: Channel0: 0xD0064, Channell: 0xDOO6C

CUIreNnt TIME SIOt REQISIET ...viiieiiiiiie ettt e e e e e e et e e e e st e e e steeeeeaasseeeesanssaeaeenssneeeennnnes 429
Offset: 0xD0070

QLI B oIS o T =T L3 (] S 429
Offset: 0xD0074

TDM Channel 0/1 Debug RegiSter (NZ0—1)c..oiieiiiiieeiiieieeeeiie e e e steeee s eeee e e s eeessnreeaessnaeeeessnneeeeeanns 430
Offset: Channel0: 0xD0078, Channell: 0xDO07C

QLI Y Y VY o To T (=T I3 (] S 431
Offset: 0xD0080

TDM DMA ADOI REQISIET 2 .. ettt et e ettt e e sttt e e s s bt e e e sbbe e e e s sntaeeeeenneeeeanns 431
Offset: 0xD0084

TDM Channel0 Wideband Delay COntrol REGISIErccoiiiiiiiiiiiiee e 431
Offset: 0xD0088

TDM Channel 1 Wideband Delay COontrol REQISIEIcoouuiiiiiiiiiieeiiiiee et 432
Offset: 0xD008C

SPI Interface Output Enable Control REJISLErcociiiiiiiiii i 432
Offset: 0xD4000

TDM-Mbus Configuration REJISLETccciiiiiiiiiii e 433
Offset: 0xD4010

WiINdOWO CONLrOl REGISIENoiiiiiiiiiiii i 433
Offset: 0xD4030

WiINAOWO BASE REQISIEr coiiiiiiiiiii e 433
Offset: 0xD4034

ATV g e fo N R @ o i fo I = =T £] SO 434
Offset: 0xD4040

WINAOWL BASE REGISTEI viiiiiiiiiieieitiiie e ettt e e s st e e e sttt e e e e sttt e e e ette e e e e sstaeeeessnaaeaesstaeeesessseeeeanssseeeeannseeens 434
Offset: 0xD4044

VYT Te fo N 2 @i fo I = =T £] SR 434
Offset: 0xD4050

WINAOW2 BASE REGISTEI eeiieiiieieeeiiiiee et e sttt e e sttt e e et e e e st e e e e st e e e e snnteeeesnteeeeeannaneeeaanneeeeesnnneees 435
Offset: 0xD4054

ViYL aTe To NV @])i fo Il = L=T o | =] S 435
Offset: 0xD4060

WINAOW3 BASE REGISLEI eeiieiiiiieeeiiiiee sttt s sttt e e sttt e e e st e e e st e e e e snte e e e e nnnteeeesnteeeeesnsaneeeaanseeeeeannneeens 436
Offset: 0xD4064

TDM-Mbus Configuration 1 REQISIEIcciuiiieiiiiiie ittt e e e e et e e e s e e e s nnae e e e s snnneeees 436

Offset: 0xD4070

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 328

Document Classification: Proprietary Information December 2, 2008, Preliminary

A.6 PCIl Express Interface RegiStersccovvvvveviieiiiviiieiiiiiieeieeeeee,
Table 243: PCI Express Window0 Control Registercccccvviiiiiiiiiiiiniiniiienee

Offset: 0x41820

Table 244: PCIl Express Window0 Base RegiStercccccviiiiiiiiiiiiiiesiiniieee

Offset: 0x41824

Table 245: PCI Express Window0 Remap REgISterccccverviiieeeeiiiiieeesiiieeeeens

Offset: 0x4182C

Table 246: PCI Express Windowl Control REQISLErccccveiiiiieeeeiiiieeesiiieeeeens

Offset: 0x41830

Table 247: PCI Express Windowl Base RegiStercccccvvveriiiieeeiiiieeesiiiiaeeeens

Offset: 0x41834

Table 248: PCI Express Windowl Remap RegiStercccocevviivereiniineenniieeennnns

Offset: 0x4183C

Table 249: PCI Express Window2 Control REgISLErcccvveriiiereeiiiineesnieeennens

Offset: 0x41840

Table 250: PCI Express Window2 Base RegiSterccccccvvveriiieeeeiiiieresniiieennees

Offset: 0x41844

Table 251: PCI Express Window2 Remap RegiSterccccccevviieeeeiiiieeeiiiieeennens

Offset: 0x4184C

Table 252: PCI Express Window3 Control REgIStercccccevviieeeeiiiieeeiiiieeennins

Offset: 0x41850

Table 253: PCI Express Window3 Base RegiStercccoccvveriiiiieeeiiiiieeeiiiieeennens

Offset: 0x41854

Table 254: PCI Express Window3 Remap Registerccccvoiiiiiiiiiiiiniiiniiienns

Offset: 0x4185C

Table 255: PCI Express Window4 Control Registerccccvviiiiiiiiiiiiniiniiienee

Offset: 0x41860

Table 256: PCIl Express Window4 Base RegiStercccooiiiiiiiiiiiiiiiiniieniienee

Offset: 0x41864

Table 257: PCI Express Window4 Remap RegIStercccccvevviieeeeiiiieeessiiieeenens

Offset: 0x4186C

Table 258: PCI Express Window4 Remap (High) Registercccccoovvvvveinciiieennnns

Offset: 0x41870

Table 259: PCI Express Window5 Control REQISLErccccvveriiiieeeeiiiieeessiiaee s

Offset: 0x41880

Table 260: PCI Express Window5 Base ReQISterccccoccvvveriiiiieeeiiiiieesniiee s

Offset: 0x41884

Table 261: PCI Express Window5 Remap RegiStercccccvviiivreiiiieeeiniiieennens

Offset: 0x4188C

Table 262: PCI Express Window5 Remap (High) Registercccccovvcveiiciiinennnns

Offset: 0x41890

Table 263: PCI Express Default Window Control Registercccccovvcvveincivneennns

Offset: 0x418B0

Table 264: PCI Express Expansion ROM Window Control Registerc......

Offset: 0x418CO0

Table 265: PCI Express Expansion ROM Window Remap Registercccccoeoue.

Offset: 0x418C4

Table 266: PCI Express BARL Control Registercccovvciveeiiiiiee e

Offset: 0x41804

Table 267: PCIl Express BAR2 Control Registerccccoviiiiiiiiiiiiiiiiiiencieee

Offset: 0x41808

Copyright © 2008 Marvell
December 2, 2008, Preliminary Document Classification: Proprietary Information

List of Registers

Doc. No. MV-S104860-U0 Rev. C
Page 329

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Table 268: PCI Express Expansion ROM BAR Control Register
Offset: 0x4180C

Table 269: PCI Express Configuration Address Registerc.ccceeeevnnen.
Offset: 0x418F8

Table 270: PCI Express Configuration Data Registerccccccovvvveeinnnnen.
Offset: 0x418FC

Table 271: PCI Express Device and Vendor ID Registercccccceevunnne
Offset: 0x40000

Table 272: PCI Express Command and Status Registercccccceeeunene
Offset: 0x40004

Table 273: PCI Express Class Code and Revision ID Register
Offset: 0x40008

Table 274: PCI Express BIST Header Type and Cache Line Size Register
Offset: 0x4000C

Table 275: PCI Express BARO Internal Registerccccccovvvveeviiveeeennnnnn.
Offset: 0x40010

Table 276: PCI Express BARO Internal (High) Registerccccceeeeeunnenn.
Offset: 0x40014

Table 277: PCIl Express BARL ReQISErcovvvviviiiieiiiieeeiiiee e
Offset: 0x40018

Table 278: PCI Express BAR1 (High) Registercccooovevviieeiiiiineeinnnnn.
Offset: 0x4001C

Table 279: PCI Express BAR2 ReQISErcovevvciiiieeiiiiee e
Offset: 0x40020

Table 280: PCI Express BAR2 (High) Registercccoccevviiieeiiiiieeeinnneen.
Offset: 0x40024

Table 281: PCI Express Subsystem Device and Vendor ID Register
Offset: 0x4002C

Table 282: PCI Express Expansion ROM BAR Registerccccccvevnunneen.
Offset: 0x40030

Table 283: PCI Express Capability List Pointer Registerccccceeeunene
Offset: 0x40034

Table 284: PCI Express Interrupt Pin and Line Registerccccocceeenene
Offset: 0x4003C

Table 285: PCI Express Power Management Capability Header Register
Offset: 0x40040

Table 286: PCI Express Power Management Control and Status Register
Offset: 0x40044

Table 287: PCIl Express MSI Message Control Registerc.cccceeevunnen..
Offset: 0x40050

Table 288: PCI Express MSI Message Address Registercccceeeunen..
Offset: 0x40054

Table 289: PCI Express MSI Message Address (High) Register
Offset: 0x40058

Table 290: PCI Express MSI Message Data Registercccccccovvvvreennnnn.
Offset: 0x4005C

Table 291: PCI Express Capability Registerccccoecviveviiiieeevriee e,
Offset: 0x40060

Table 292: PCI Express Device Capabilities Registercccccvvvveveeinnnnn.
Offset: 0x40064

Table 293: PCI Express Device Control Status Registercccccccevevnnee.
Offset: 0x40068

Doc. No. MV-S104860-U0 Rev. C
Page 330 Document Classification: Proprietary Information

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Table 294:

Table 295:

Table 296:

Table 297:

Table 298:

Table 299:

Table 300:

Table 301:

Table 302:

Table 303:

Table 304:

Table 305:

Table 306:

Table 307:

Table 308:

Table 309:

Table 310:

Table 311:

Table 312:

Table 313:

Table 314:

Table 315:

Table 316:

Table 317:

Table 318:

Table 319:

List of Registers

PCI Express Link CapabilitieS REGISIETeiiiiiiiiee ittt e e es 465
Offset: 0x4006C
PCIl Express Link Control Status REGISLEIcoiuiiiiiiiiiie ettt e e s 466
Offset: 0x40070
PCI Express Advanced Error Report Header REGISIErcc.uvviiiiiiiieiiiiiee e 468
Offset: 0x40100
PCI Express Uncorrectable Error Status REQISIErcocviiiiiiiiiiiiii e 468
Offset: 0x40104
PCI Express Uncorrectable Error Mask Register ... 469
Offset: 0x40108
PCI Express Uncorrectable Error Severity REQIStercccocoiiiiiiiiiiiiiiiiiiiie e 470
Offset: 0x4010C
PCI Express Correctable Error Status REQISIEr ccuviviiiiiiee et e e e e e nenneae s 471
Offset: 0x40110
PCI Express Correctable Error Mask REQISIEIcccccuiiiiiiiiiie e snaaa e e 472
Offset: 0x40114
PCI Express Advanced Error Capability and Control REQISLErc.cooiiiiiiiiiiieiiee e 473
Offset: 0x40118
PCIl Express Header Log First DWORD REQISIEI coiuviieeiiiiiieeeiiee et e s see e e s e e seee e e sneeneesnnneee s 473
Offset: 0x4011C
PCI Express Header Log Second DWORD REQISIET ccovviiieeiiiiieeeiiiieeesiieeessiieee e s seeeeesnneeeesnneneee s 474
Offset: 0x40120
PCI Express Header Log Third DWORD REQISIENeeviiiiiiiieeiiiieeeeiiiee e e s e e s seee e snnaee e e ennneee s 474
Offset: 0x40124
PCI Express Header Log Fourth DWORD REQISIEIoiiiiiiiiiiiiiiiee et 474
Offset: 0x40128
PCIl EXPress CONtrol REGISLEIiiiiiiiiieeiiiiee ettt ettt e e st e e e st e e s snbe e e e sntee e e s nnneeeeesnnneeeas 474
Offset: 0x41A00
PCl EXPress StatUS REGISIETuiiiiiiiiiieeiiiiee ettt et e e s st e e e st e e s snte e e e e sstee e e s anneeeeeannneeeas 476
Offset: 0x41A04
PCI Express Boot AJAress REJISLENccocuiiiiiiiiiiiiii e 477
Offset: 0x41A08
PCI Express Root Complex Set Slot Power Limit REgIStercccccoiiiiiiiiiiiiiiiicie e 477
Offset: 0x41A0C
PCI Express Completion TIMeout REGISIErcccoiiiiiiiiiiiiiiee s 478
Offset: 0x41A10
PCI Express Root Complex Power Management Event Registerccccooviiiiiiiiiiiiiicsien e, 478
Offset: 0x41A14
PCI Express Power Management EXtended REQISIETccueviiiiiiiieiiiiiie e s e e e e nnnaeae s 479
Offset: 0x41A18
PCl EXPress FIOW CONrOl REQISTETiiiiiiiiie i it e ettt e st e e et e e e et e e e st e e e e sntaa e e s snaeeeessnnneeeesnnneees 480
Offset: 0x41A20
PCI Express Acknowledge Timers (1X) REQISIENcccuuviiiiiviree e ciee e e e e eaee e e e e nnnaeee s 480
Offset: 0x41A40
PCIl Express RAM Parity Protection Control REGISIErccuviviiiiiiieeiiiee e 480
Offset: 0x41A50
PCl Express Debug CONtrol REQISIErc.eviiiiiiiiiie et s s e e e e e e e e e e e e e s nnneeeeennnneee s 481
Offset: 0x41A60
PCl EXPress TL CONrOl REGISIET ...oiueiiieeiiiiee e et e et e e stee e e s sttee e e e s e e e snaeeeessneeeeeesnaeeeesnnnneeeennnneeens 483
Offset: 0x41ABO
PCI Express PHY INdireCt ACCESS REGISIEI ...coiiiiiieiiiiiee ittt ettt e e e s s e e e snnneee s 484

Offset: 0x41B00

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 331

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Table 320: PCI Express Interrupt Cause RegiStercccoovvveviiiieeeeiiiiieeesiiee e

Offset: 0x41900

Table 321: PCI Express Interrupt Mask Registercccoovviiiiiiieeiiiiiee e

Offset: 0x41910

Table 322: PCI Express Mbus Adapter Control Registercccccevvvviveveniiiieeennnns

Offset: 0x418D0

Table 323: PCI Express Mbus Arbiter Control Register (LOW)ccccccveviieniiiennen.

Offset: 0x418E0

Table 324: PCI Express Mbus Arbiter Control Register (High)cccoceviiiiienen.

Offset: 0x418E4

Table 325: PCI Express Mbus Arbiter Timeout Registerc.cccoviiiiiiinniiennn.

Offset: 0x418E8

A.7 Serial-ATA Host Controller (SATAHC) Registerscccccvvueen.
Table 327: Basic DMA Command REJISIErc.eeieiiiiiieeiiiiiee e siieee e

Offset: Port0: 0x82224 Portl: 0x84224

Table 328: Basic DMA Status REJISErccccociiiiiiiiiiii e

Offset: Port0: 0x82228 Portl: 0x84228

Table 329: Descriptor Table Low Base Address Registerccccocviiiviieniieennen.

Offset: Port0: 0x8222C Portl: 0x8422C

Table 330: Descriptor Table High Base Address Registerccccccovviveieiniiieeennnns

Offset: Port0: 0x82230 Portl: 0x84230

Table 331: Data Region Low Address REQISErccccvvveeiviieeiiiiieeeesiiieeeesiiea e e

Offset: Port0: 0x82234 Portl: 0x84234

Table 332: Data Region High Address RegISterccccceeeiviieeiiiiieeesiieeessiiia e

Offset: Port0: 0x82238 Portl: 0x84238

Table 333: EDMA Configuration REQISIErcceeeeiiiiiieeiiiiie e eieeeessiree e sivee e enens

Offset: Port0: 0x82000 Port1: 0x84000

Table 334: EDMA Interrupt Error Cause REgISIErc.cvveviveereiiiiieeeeiiieeeesiie e

Offset: Port0: 0x82008 Port1: 0x84008

Table 335: EDMA Interrupt Error Mask REQISIErccvvvvveviiiieeiiiiee e

Offset: Port0: 0x8200C Port1: 0x8400C

Table 336: EDMA Request Queue Base Address High Registerccccoccvvevnnns

Offset: Port0: 0x82010 Portl: 0x84010

Table 337: EDMA Request Queue In-Pointer Registercccoovvveveiniieeeiiiineeeniens

Offset: Port0: 0x82014 Portl: 0x84014

Table 338: EDMA Request Queue Out-Pointer Registercccccvvvivveeeiiiieeennnnns

Offset: Port0: 0x82018 Portl: 0x84018

Table 339: EDMA Response Queue Base Address High Registercccccevvnne

Offset: Port0: 0x8201C Portl: 0x8401C

Table 340: EDMA Response Queue In-Pointer Registercccccvvviiieeeiiiieeenninns

Offset: Port0: 0x82020 Portl: 0x84020

Table 341: EDMA Response Queue Out-Pointer Registerccccovevcieeriieennen.

Offset: Port0: 0x82024 Portl: 0x84024

Table 342: EDMA Command REGISErccciiiiiiiiiiieiiie e

Offset: Port0: 0x82028 Portl: 0x84028

Table 343: EDMA Status RegISterccciiiiiiiiiiiii e

Offset: Port0: 0x82030 Portl: 0x84030

Table 344: EDMA IORdy Timeout REQISIErceeeeiiiiiieeiiiiee e eieee e esiee e siveea e

Offset: Port0: 0x82034 Portl: 0x84034

Table 345: EDMA Command Delay Threshold Registercccccccveviiiieeiiiiineeninns

Offset: Port0: 0x82040 Portl: 0x84040

Doc. No. MV-S104860-U0 Rev. C
Page 332 Document Classification: Proprietary Information

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Table 346: EDMA Halt Conditions REQISIEreeviiiiiiiieiiiiiee e

Offset: Port0: 0x82060 Portl: 0x84060

Table 347: EDMA NCQO Done/TCQO Outstanding Status Registercc.cccoou.e.

Offset: Port0: 0x82094 Portl: 0x84094

Table 348: SATAHC Configuration RegiStercccccceveiiiiiieeriiiiee e enieee e

Offset: 0x80000

Table 349: SATAHC Request Queue Out-Pointer Registercccocvvvvceiiiennne

Offset: 0x80004

Table 350: SATAHC Response Queue In-Pointer Registerccccecevvceiiiennne

Offset: 0x80008

Table 351: SATAHC Interrupt Coalescing Threshold Registerccccocceviieene

Offset: 0x8000C

Table 352: SATAHC Interrupt Time Threshold Registercccccvevviieeeinciiieeennns

Offset: 0x80010

Table 353: SATAHC Interrupt Cause REQISErcccvvveeicuiieeeiiiiee e esire e

Offset: 0x80014

Table 354: SATAHC Main Interrupt Cause RegiStercccccvviiveeeiiiieeessiiieeenens

Offset: 0x80020

Table 355: SATAHC Main Interrupt Mask RegIStercccccevviieereiiiieneiniiieennens

Offset: 0x80024

Table 356: SATAHC LED Configuration RegiSterccccccooveviiieeeeiiiieresniiieeenens

Offset: 0x8002C

Table 357: WIndow0 Control REGISIErc.vevveiiiieee e

Offset: 0x80030

Table 358: WINdow0 Base REQISIErccccueiiiiiiiiieiiiiiee e

Offset: 0x80034

Table 359: WIindowl Control REGISIEreeviiiiiiieiiiiie e

Offset: 0x80040

Table 360: WINdow1 Base REQISIErcoccueiiiiiiiiieiiiiiee e

Offset: 0x80044

Table 361: Window2 Control REgISIErccciviiiiiiiiiiiii e

Offset: 0x80050

Table 362: WIiNndow2 Base ReQISLErcccvcviiiiiieiiii i

Offset: 0x80054

Table 363: Window3 Control REgISIErccciviiiiiiiiiiiie e

Offset: 0x80060

Table 364: WIiNndow3 Base ReQISLErcccociiiiiiiiiii e

Offset: 0x80064

Table 365: Serial-ATA Interface Configuration Registerccccceevviiveeiiiiiieeennns

Offset: Port0: 0x82050 Portl: 0x84050

Table 366: Serial-ATA PLL Configuration RegIiSterccccceviiiieeeiiiiieeessiiieeeeens

Offset: Port0: 0x82054 Portl: 0x84054

Table 367: SStatus REQISIENciiiiiiiie e e e e saae e e e saaeeaeeees

Offset: Port0: 0x82300 Portl: 0x84300

Table 368: SEIMOr REQISIET ..ocoieiiie it s et e e s e e s seee e e s sneee e e s nneeeeeennes

Offset: Port0: 0x82304 Portl: 0x84304

Table 369: SCONLrOl REQISIET vviiiiiiiee e e e e e e e s e e e e e ennes

Offset: Port0: 0x82308 Portl: 0x84308

Table 370: LTMOAE REQISIETveieiiieiiiee et e e ee e s e e nnnaee e e e

Offset: Port0: 0x8230C Portl: 0x8430C

Table 371: PHY Mode 3 REQISIEIuvviiiiiiiiee s

Offset: Port0: 0x82310 Portl: 0x84310

Copyright © 2008 Marvell

December 2, 2008, Preliminary Document Classification: Proprietary Information

List of Registers

Doc. No. MV-S104860-U0 Rev. C
Page 333

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Table 372: PHY MOAE 4 REGISIEIeiiiiiiiiiie ittt ettt e e ettt e e e st e e e sttt e e s beeeeeaanss e e e e anbbeeeessntaeeesaneeeeeans 529
Offset: Port0: 0x82314 Portl: 0x84314

Table 373: PHY MOAE 1 REGISIEIviiiieiiiiiiee ittt et e e sttt e e e st e e e sttt e e e bt e eeeaansbeeeeabteeeessntaeeesaneeeeeans 531
Offset: Port0: 0x8232C Portl: 0x8432C

Table 374: PHY MOAE 2 REGISIEIuiiiiiiiiiie ettt ettt e sttt e e e st e e e sttt e e s bteeeeeansbeeeeabbeeeessntaeeessnneeeeeans 532
Offset: Port0: 0x82330 Portl: 0x84330

Table 375: BIST CONrOl REGISIEroiiiiiiiiiiiiie e s s e s 534
Offset: Port0: 0x82334 Portl: 0x84334

Table 376: BIST-DWOIAL REQISIENccoiiiiiiiiiiiecii e s b e e b e e sare e 534
Offset: Port0: 0x82338 Portl: 0x84338

Table 377: BIST-DWOIA2 REGISIENcciiiiiiiiiiiie i b e b e s e e saae e 535
Offset: Port0: 0x8233C Portl: 0x8433C

Table 378: SError INterrupt MasK REGISTETci.uiiiiiiiiiieeeciie e e sttt e e s e e e s e e e et e e e e s staeeeassseeeeeasssaeaesstaeeesannseneeanns 535
Offset: Port0: 0x82340 Portl: 0x84340

Table 379: Serial-ATA Interface CoNtrol REQISIErciiiiuiiee ettt e e e e e s e e e et a e e s staeeeessnreeeeans 535
Offset: Port0: 0x82344 Portl: 0x84344

Table 380: Serial-ATA Interface Test CONtrol REQISIErcciiiiiiiiiiiie e e e e e e srre e e s sneaeeeens 537
Offset: Port0: 0x82348 Portl: 0x84348

Table 381: Serial-ATA Interface StatUS REQISIErcc.uiiveiiiiiee e et e e e s s e e e et e e e s snaeeee e snneeeeeans 538
Offset: Port0: 0x8234C Portl: 0x8434C

Table 382: Vendor UNIQUE REGISTETciiiiieeiiiiiee e eiiee et e e e et e e st r e e e st e e e ssteee e e seeeeeaansseeeeanseeeaessnsaeeeesnnseneeanns 540
Offset: Port0: 0x8235C Portl: 0x8435C

Table 383: FIS Configuration REQISIEIociiiiiiieiiiiiie e e e e e s e e e st e e e et e e e s seeeeeaanneeeeeanseeeeessnsaeeessnnseneeanns 540
Offset: Port0: 0x82360 Portl: 0x84360

Table 384: FIS INterrupt CAUSE REQISETcciiiiiiiiiiiii ettt e e ettt e e st e e e e s st e e e s bbeeaessntaeeessnnreeeeaas 541
Offset: Port0: 0x82364 Portl: 0x84364

Table 385: FIS INterrupt Mask REGISLETccoiiiiiiiiiiiiie ettt e et e e st e e s aan e e e snbb e e e e s sntaeeeesnneeeeeans 543
Offset: Port0: 0x82368 Portl: 0x84368

Table 386: FIS DWOIAD REGISIEI eeiiiieiiiiie ettt e et e e et e e e e sb e e e st bt e e s sbeeeeaannbeeeeasbeeeessntteeeeennneeeeans 543
Offset: Port0: 0x82370 Portl: 0x84370

Table 387: FIS DWOIAL REGISLETooiiiiiiiiiii ittt e e e s et e e s b e e sb e e s sbaeesaes 543
Offset: Port0: 0x82374 Portl: 0x84374

Table 388: FIS DWOIA2 REJISLETcoiiiiiiiiiii ittt e s e s e e s et e e s a e e sab e e s ebaeeaaes 543
Offset: Port0: 0x82378 Portl: 0x84378

Table 389: FIS DWOIA3 REJISIETcoiiiiiiiiiieiiii ittt b e s e e s sb e e sba et e e a e e sb e e s sbaeeaaes 543
Offset: Port0: 0x8237C Portl: 0x8437C

Table 390: FIS DWOIT4 REGISIETcoiiiiiiiiiii ittt ettt a e s b e s e s b e sba e st e e s s b e e sab e e s abeeenaes 544
Offset: Port0: 0x82380 Port1: 0x84380

Table 391: FIS DWOIAS REQISIEI .ueviiieeiitiiiee e iieee e sttt e e s e e e st e e e e s teeeeeaasaaeaeastaaeeasstaeeeaanssaaeeanssseaessnsaneeesnnsnneeanns 544
Offset: Port0: 0x82384 Portl: 0x84384

Table 392: FIS DWOIAB REQISIEI uviiiieiiiiie e e iieee e sttt e e st e e e sttt e e e ssteeeeaasaeea e e staaeeastaeeeaasseeeeastseaessnssnaeesassnneeanns 544
Offset: Port0: 0x82388 Portl: 0x84388

Table 393: PHYMODEOQ _GENZ2 REQISIET vieiiiiieeiiiiieeeiieie e e sttt e s s steeeesssaaaaaessstaeeessstaneeasssesaeaasseeaesssaeeessnsseneeanns 544
Offset: Port0: 0x82398 Portl: 0x84398

Table 394: PHYMODEO_GENL REQISIET ...oiveiiiiieeiiiiieeesiiieeeesieeee s s seeeeeassnteaeesnseeeeessssaneesasseseeassseeeessseneessnnseneennns 545
Offset: Port0: 0x8239C Portl: 0x8439C

Table 395: PHY Configuration REGISIET ociiiiiiie et e e s s e e e s e e e s srtee e e e snteeeeesnnaeeessntaeeeesnnseeeeanns 546
Offset: Port0: 0x823A0 Portl: 0x843A0

Table 396: PHYTCTL REGISET ..eeiiiiiuiiieeiiiiee e s ietee e st eeeastteee s s tteeeessseeeeeaanseeeeeaseeeee s sseeeeaasseeeeansseeeessssneesannseneeaans 547
Offset: Port0: 0x823A4 Portl: Ox843A4

Table 397: PHY MOAE 10 REQISLENiiiiiiiiiieeiiiiiee ettt e et e e s s e e e sttt e e s baeeeeaansbeeeeanbeeeeesnnteeeeesnneeeeeans 547

Offset: Port0: 0x823A8 Portl: 0x843A8

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 334 Document Classification: Proprietary Information December 2, 2008, Preliminary

Table 398:

List of Registers

L o Y[To Lo 2 o L= o 1] (=] SRS 548
Offset: Port0: 0x823B0 Portl: 0x843B0

A.8 Gigabit Ethernet Controller REQISTEISuuiiiiiiiiiiii e 550

Table 401:

Table 402:

Table 403:

Table 404:

Table 405:

Table 406:

Table 407:

Table 408:

Table 409:

Table 410:

Table 411:

Table 412:

Table 413:

Table 414:

Table 415:

Table 416:

Table 417:

Table 418:

Table 419:

Table 420:

Table 421:

Table 422:

PHY Address Register
Offset: Port0: 0x72000 Portl: 0x76000

1YL =T £S5 (T RSOSSN 554
Offset: Port0: 0x72004 Portl: O0x76004
Ethernet Unit Default Address (EUDA) REQISIET ...c.ciiuiieeiieiiieeeiiiee e sie e e seee e snaee e e e nnnneee s 555
Offset: Port0: 0x72008 Portl: 0x76008
Ethernet Unit Default ID (EUDID) REQISIETcooiiiiiiiiiiiieeiiiiie ettt e e s 555
Offset: Port0: 0x7200C Portl: 0x7600C
Ethernet Unit Interrupt Cause (EUIC) REGISIEI ciiiiiiiieiiiiiiee et 556
Offset: Port0: 0x72080 Portl: 0x76080
Ethernet Unit Interrupt Mask (EUIM) REQISIEIciiiiiiiiieeiiice et s 557
Offset: Port0: 0x72084 Portl: Ox76084
Ethernet Unit Error Address (EUEA) REQISIETc.coiiiiiiiiiiiiii e 557
Offset: Port0: 0x72094 Portl: 0x76094
Ethernet Unit Internal Address Error (EUIAE) REQISLENccceiiiiiiiiiiiiii e 557
Offset: Port0: 0x72098 Portl: 0x76098
Ethernet Unit Control (EUC) REQISIErccuiiiiiiiiiiiiie i 557
Offset: Port0: 0x720B0 Port1: 0x760B0
Base Address ReQISIEr (NMT0-=5) ...iciiccuiiieiiiiiie et se e e e e e ee e e s et e e e e s e e e e sstaeeeeenseeeesnnnneeeesnnaeees 558

Offset: Port0: BAO: 0x72200, BA1: 0x72208, BA2: 0x72210, BA3: 0x72218, BA4: 0x72220,
BA5: 0x72228
Portl: BAO: 0x76200, BAL: 0x76208, BA2: 0x76210, BA3: 0x76218, BA4: 0x76220, BA5: 0x76228

Size (S) RegiSter (NT0-5)ciiiiiiiiii it s 559
Offset: Port0: SRO: 0x72204, SR1: 0x7220C, SR2: 0x72214, SR3: 0x7221C, SR4: 0x72224,

SR5: 0x7222C

Portl: SR0: 0x76204, SR1: 0x7620C, SR2: 0x76214, SR3: 0x7621C, SR4: 0x76224, SR5: 0x7622C

High Address Remap (HA)L RegiSter (NT=0—=3)cotiiiiiiieiiiiiiee et e seee e e e nnnaeee s 559
Offset: Port0: HARRO: 0x72280, HARR1: 0x72284, HARR2: 0x72288, HARR3: 0x7228C
Portl: HARRO: 0x76280, HARR1: 0x76284, HARR2: 0x76288, HARR3: 0x7628C

Base Address Enable (BARE) REQISIErc.cciuiiiiiiiiiiii i 559
Offset: Port0: 0x72290 Portl: 0x76290

Ethernet Port Access Protect (EPAP) REQISIErc..cociiiiiiiiiiii e 560
Offset: Port0: 0x72294 Portl: 0x76294

Port0/1 Mbus TOpP Arbiter REGISIETvviiieiiiiie et e e e e e s e e et a e e s enree e e s nnareaeesnnaeeees 560
Offset: Port0: 0OXE20CO Port1: 0OXE60CO

Port Configuration (PXC) REGISIETuiieiiiiiee e et e e sttt e e st e e e sae e e e st e e e st e e e e sstaaeeesestaeeesasnneeeeanaeeas 561
Offset: Port0: 0x72400 Portl: 0x76400

Port Configuration Extend (PXCX) REQISIET ciiuiiiieiiiiiie e st e eieee e s s e e e s ste e e s siae e e e s naae e e snsnneaeesnnaeee s 562
Offset: Port0: 0x72404 Portl: 0x76404

MII Serial Parameters REQISIET ciiuiiieiiiiii e eiie et s e e e e e s e e e st e e e e snteeeeeannaeeeesnnnneeeennnneeens 562
Offset: Port0: 0x72408 Portl: 0x76408

VLAN EtherType (EVLANE) REGISIEI ...ccoiiiiiieeiiiiie ettt e e s a e st e e s e e e e e nnneeaeesnneeees 563
Offset: Port0: 0x72410 Portl: 0x76410

MAC Address LOW (MACAL) REQISIETccceeiieeeiiieeeieiiie e e st e e et eee e e stee e e e snaeeeessneeeeesanneeeeesnnnneeeennnneees 563
Offset: Port0: 0x72414 Portl: Ox76414

MAC Address High (MACAH) REGISIEI uuiiiiiiiiiee ittt et e s e s s 563
Offset: Port0: 0x72418 Portl: Ox76418

SDMA Configuration (SDC) REGISIEI eciiiiiiiiieiiiiiie ettt st e e e st e e s snbb e e e e nteeeeeennnees 564

Offset: Port0: 0x7241C Portl: 0x7641C

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 335

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Table 423: IP Differentiated Services CodePoint 0 to Priority (DSCPO) RegISterccevviviiieeiiiiiiee e niieee e 565
Offset: Port0: 0x72420 Portl: 0x76420

Table 424: |P Differentiated Services CodePoint 1 to Priority (DSCP1) RegiSterccccoviviiieeiiiiiieeiiiieeesnieeeens 565
Offset: Port0: 0x72424 Portl: Ox76424

Table 425: |P Differentiated Services CodePoint 2 to Priority (DSCP2/3/4/5) Register (N=0—3)ccccccevevriuverrene 566

Offset: Port0: DSCPO: 0x72428, DSCP1: 0x7242C, DSCP2: 0x72430, DSCP3: 0x72434
Portl: DSCPO: 0x76428, DSCP1: 0x7642C, DSCP2: 0x76430, DSCP3: 0x76434

Table 426: |IP Differentiated Services CodePoint 6 to Priority (DSCP6) REQIStErcvvvveiiciiiieiiiiiie e eiee e 566
Offset: Port0: 0x72438 Portl: 0x76438

Table 427: Port Serial Control0 (PSCO) REGISIEIuviiieiiiiie e et e et et e e e e e et e e e s sareeaeessbaaeessreeeeesnnseeeeans 566
Offset: Port0: 0x7243C Portl: 0x7643C

Table 428: VLAN Priority Tag to Priority (VPT2P) REQISIEN ..eeviieeieeeiiiee e eeiee e sieee s steee s snee e e naee e e naeee s snneeeeanns 569
Offset: Port0: 0x72440 Portl: 0x76440

Table 429: Ethernet Port Status 0 (PS0) REQISTENiiieiiiiieee e e see e st e et ee e s st e e e e nnaeee e s snaeeeessnnneeeeans 569
Offset: Port0: 0x72444 Portl: Ox76444

Table 430: Port Serial Controll (PSCL) REGISIEI ...ccuuiiieiiiiieeeiciiee e e e see e e st e e s ee e s st e e e esnteeeessnaaeeessnneeeeeanns 571
Offset: Port0: 0x7244C Portl: 0x7644C

Table 431: Ethernet Port StatuSL (PSL1) REGISIENuuiiiiiiiiiiei ittt et s e e e st e e sare e e s sneeeeeans 573
Offset: Port0: 0x72450 Portl: 0x76450

Table 432: Marvell HEader REGISLEIcicuiiiiiiiiiee ettt s e e e sttt e e et e e e e anbe e e e asteeeessntteeeesnnreeeeans 575
Offset: Port0: 0x72454 Portl: Ox76454

Table 433: Port Interrupt Cause (IC) REGISENciiiiiiiiee ittt et e e s s e e e sbbe e e e s sntteeeesnneeeeeans 577
Offset: Port0: 0x72460 Portl: Ox76460

Table 434: Port Interrupt Cause Extend (ICE) REGISIEIcoiiiiiiiiiiiiii e 580
Offset: Port0: 0x72464 Portl: Ox76464

Table 435: Port Interrupt Mask (PIM) REJISIEIcccuiiiiiiiii e 582
Offset: Port0: 0x72468 Portl: Ox76468

Table 436: Port Extend Interrupt Mask (PEIM) REGISIENcoiiiiiiiiiiiiiii e 582
Offset: Port0: 0x7246C Portl: 0x7646C

Table 437: Port Tx FIFO Urgent Threshold (PXTFUT) REQISIEIcciiiiiiieiiiiiee e ciiee e cieee et e e see e s aae e e s nnaeee e 582
Offset: Port0: 0x72474 Portl: 0x76474

Table 438: Port Rx Minimal Frame Size (PXMFS) REJISIEIcuviiiiiiiiie et seee e e e ae e e tae e e snnaeeeeanes 583
Offset: Port0: 0x7247C Portl: 0x7647C

Table 439: Port Rx Discard Frame Counter (PXDFC) REQISIETcciiuiiieeiiiiieeeiiiieeesiieeeessireeeesssvaaesesnnaeeessnnnneeeanns 583
Offset: Port0: 0x72484 Portl: 0x76484

Table 440: Port Overrun Frame Counter (PXOFC) REQISIEIuviiiiiiiiieeiiiiie e et e e steee e s ste e e e e aaa e e e stae e e s snnaeeeeanns 583
Offset: Port0: 0x72488 Portl: 0x76488

Table 441: Port Internal Address Error (EUIAE) REGISIET ceviiieieeiiiieeeeeiiee e eiee s seee e e snee e e snnneee e e snaeeeessnneeeeanns 584
Offset: Port0: 0x72494 Portl: 0x76494

Table 442: Ethernet Type Priority REGISIETccuiiiiiiiiiieeeiiie e s sieeee e st e e e s st e e e st e e e s sneeeeeasneeeeeannsaeeessnaeeeesnnneneeanns 584
Offset: Port0: 0x724BC Portl: 0x764BC

Table 443: Ethernet Current Receive Descriptor Pointers (CRDP) Register (NZ0—7)oovivcivreeriiieeeeiieeeesniieeeeenes 585

Offset: Port0: QO: 0x7260C, Q1: 0x7261C, Q2: 0x7262C, Q3: 0x7263C, Q4: 0x7264C, Q5: 0x7265C,
Q6: 0X7266C, Q7: 0x7267C

Port1: Q0: 0x7660C, Q1: 0x7661C, Q2: 0x7662C, Q3: 0x7663C, Q4: 0x7664C, Q5: 0X7665C,

Q6: 0X7666C, Q7: OX7667C

Table 444: Receive Queue Command (RQC) REGISIEI uiiiiiiiiie ittt e e e st e s nnneeeeeanes 585
Offset: Port0: 0x72680 Portl: 0x76680
Table 445: Transmit Current Served Descriptor Pointer REQISLEIoviiiiiiiieiiiiiie e 586

Offset: Port0: 0x72684 Portl: 0x76684

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 336 Document Classification: Proprietary Information December 2, 2008, Preliminary

List of Registers

Table 446: Transmit Current Queue Descriptor Pointer (TCQDP) Register (N=0—7)ooviviiieieiiiiieeeiieeee e 586
Offset: Port0: QO0: 0x726C0, Q1: 0x726C4, Q2: 0x726C8, Q3: 0x726CC, Q4: 0x726D0, Q5: 0x726D4,
Q6: 0x726D8, Q7: 0x726DC
Portl: Q0: 0x766C0, Q1: 0x766C4, Q2: 0x766C8, Q3: 0x766CC, Q4: 0x766D0, Q5: 0x766D4,
Q6: 0x766D8, Q7: 0x766DC

Table 447: Destination Address Filter Special Multicast Table (DFSMT) Register (N=0—63)ccccovvvereiriieeeenne 586
Offset: Port0: Register0O: 0x73400, Registerl: 0x73404...Register63: 0x734FC
Portl: Register0: 0x77400, Registerl: 0x77404...Register63: 0x774FC

Table 448: Destination Address Filter Other Multicast Table (DFOMT) Register (N=0—63)ccccccevrivreeiicirreennns 587
Offset: Port0: Register0: 0x73500, Registerl: 0x73504...Register63: 0x735FC
Portl: Register0: 0x77500, Registerl: 0x77504...Register63: 0x775FC

Table 449: Destination Address Filter Unicast Table (DFUT) Register (N=0—3)cccccereiriiieeeiiiineeerieeeeeseeee e 589
Offset: Port0: Register0: 0x73600, Registerl: 0x73604, Register2: 0x73608, Register3: 0x7360C
Portl: Register0: 0x77600, Registerl: 0x77604, Register2: 0x77608, Register3: 0x7760C

Table 450: Transmit Queue Command (TQC) REGISIENc.cciiiiiiiiiiiiii s 590
Offset: Port0: 0x72448 Portl: 0x76448

Table 451: Transmit Queue Fixed Priority Configuration (TQFPC) RegiSterccccvciiiiiiiiiiiiiiiie e 501
Offset: Port0: 0x724DC Portl: 0x764DC

Table 452: Port Transmit Token-Bucket Rate Configuration (PTTBRC) ReQIStercccceivviiveiiiiiieeeiiieeeesiieeee s 591
Offset: Port0: 0x724EOQ Portl: 0x764E0

Table 453: Transmit Queue Commandl (TQCL) REQISIETccccueieeiiiiieee ittt e e eteee e st e e e s srre e e s s ssbaaeeesaaeeeesnnneeeaanns 591
Offset: Port0: 0x724E4 Portl: 0x764E4

Table 454: Port Maximum Transmit Unit (PMTU) REQISIENc.uuiiiiiiiiiee et seeee e st e e eaae e e tae e e e snnaeeeaanns 592
Offset: Port0: 0x724E8 Portl: Ox764E8

Table 455: Port Maximum Token Bucket Size (PMTBS) REQISIEIoovviiiiiiieiiiiiee e eciiee e e see e nneee e 592
Offset: Port0: 0x724EC Portl: Ox764EC

Table 456: Queue Transmit Token-Bucket Counter (QXTTBC) Register (NZ0—7) ...cooccveeveiiiiiee e eseeeeeeniee e 593
Offset: Port0: QO0: 0x72700, Q1: 0x72710, Q2: 0x72720, Q3: 0x72730, Q4: 0x72740, Q5: 0x72750,
Q6: 0x72760, Q7: 0x72770
Portl: Q0: 0x76700, Q1: 0x76710, Q2: 0x76720, Q3: 0x76730, Q4: 0x76740, Q5: 0x76750, Q6: 0x76760,
Q7: 0x76770

Table 457: Transmit Queue Token Bucket Configuration (TQXTBC) Register (N=0—7)ccccvveeriiereeeiieeeeeniieeeenns 593
Offset: Port0: QO0: 0x72704, Q1: 0x72714, Q2: 0x72724, Q3: 0x72734, Q4: 0x72744, Q5: 0x72754,
Q6: 0x72764, Q7: 0x72774
Portl: QO0: 0x76704, Q1: 0x76714, Q2: 0x76724, Q3: 0x76734, Q4: 0x76744, Q5: 0x76754, Q6: 0x76764,
Q7: 0x76774

Table 458: Transmit Queue Arbiter Configuration (TQXAC) Register (N=0—7)eeeviiiiiiiieiiiiiee e 594
Offset: Port0: QO0: 0x72708, Q1: 0x72718, Q2: 0x72728, Q3: 0x72738, Q4: 0x72748, Q5: 0x72758,
Q6: 0x72768, Q7: 0x72778
Portl: QO0: 0x76708, Q1: 0x76718, Q2: 0x76728, Q3: 0x76738, Q4: 0x76748, Q5: 0x76758, Q6: 0Xx76768,
Q7: 0x76778

Table 459: Port Transmit Token-Bucket Counter (PTTBC) REQISIEr ccoiiuiiiieiiiiiee et 595
Offset: Port0: 0x72780 Portl: O0x76780

Table 460: Transmission Queue IPG (TQXIPG) RegiSter (NT2—3)cuutiiiiiiiieiiiiiee e iieee e ssiiee e e stee e s sieeee e 595
Offset: Port0: Q2: 0x727A8, Q3: 0x727B8
Portl: Q2: 0x767A8, Q3: 0x767B8

Table 461: High Token in Low Packet (HITKNINLOPKT) REQISIENvviiiiiiiiieeiiiieeesiiieeessiteeeeeitee e e sieeeessnneeeeanes 595
Offset: Port0: 0x727CO0 Port1: 0x767CO

Table 462: High Token in Asynchronous Packet (HITKNINASYNCPKT) ReQIStercvvvveiviiieeiiiiiie e esiee e 595
Offset: Port0: 0x727C4 Portl: 0x767C4

Table 463: Low Token in Asynchronous Packet (LOTKNINASYNCPKT) ReQIStEr ...ccvvvveivciiieeeiiiie e 596
Offset: Port0: 0x727C8 Portl: 0x767C8

Table 464: Transmission SPeed (TS) REGISIEN ciicuiiiieiciiiee e e et e e st e e e s e e e e snneeeeesnteeeessnneeeeeans 596
Offset: Port0: 0x727DO0 Portl: 0x767D0

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 337

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Table 466: PTP Command REJISIEr........coiiuiiiiiiiiiee it

Offset: 0x7C000

Table 467: PTP Data REJISIEI......coiiiiiiiie et

Offset: 0x7C008

Table 468: PTP RESEt REQISIEIcciiiiiiiieiiiieie ettt e s e

Offset: 0x7C010

Table 469: PTP Clock Select RegiSter...........ccvviiiiiiiiiiiic e

Offset: 0x7C018

Table 470: PTP Global Configuration0 RegiSterccoccvvviiiiiiiiiiiiineeeeee,

Offset: 0x0, or Decimal 0

Table 471: PTP Global Configurationl RegiSterccccocceiiiiiiiiiiiiiiiiiieee e,

Offset: 0x1, or Decimal 1

Table 472: PTP Global Configuration2 REQISLENcc.ueeeiiivieeiiiiieeeesiieeeesiiea e

Offset: 0x2, or Decimal 2

Table 473: PTP Global Configuration3 REQISLENcc.uveeiiiiiieeiiiiieeeesiieeeesivie e

Offset: 0x3, or Decimal 3

Table 474: PTP Global StatusO REQISIEI........cccviiuiieeiiiiiiee e eee e ssrree e sree e

Offset: 0x8, or Decimal 8

Table 475: PTP Port Configuration0 REQIStErc.cccvviveiiiiiiee e eree e e

Offset: 0x0, or Decimal 0

Table 476: PTP Port Configurationl RegISterccccviuiveeiiiiieeiiiiee e esie e

Offset: 0x1, or Decimal 1

Table 477: PTP Port Configuration2 ReQISterccovuiveeiiiiieeiiieee e esie e

Offset: 0x 2, or Decimal 2

Table 478: PTP Port StatuSO REGISLENcc.vveeeiiiiiiee et

Offset: 0x8, or Decimal 8

Table 479: PTP Port StatuSL REJISLENcccuvviieiiiiieee e ee e

Offset: 0x9 and OxA, or Decimal 9 and Decimal 10

Table 480: PTP Port StatuS2 REGISLENccuvveeiiiiiieie ettt e e

Offset: 0xB, or Decimal 11

Table 481: PTP Port Status3 REQISIENcccoicviiiiiiiiiiie e

Offset: 0xC, or Decimal 12

Table 482: PTP Port Status4 REQISIENcccocviiiiiiiiiiie e

Offset: 0x D and OXE, or Decimal 13 and 14

Table 483: PTP Port Statusb REQISIENc.coocviiiiiiiiicie e

Offset: OxF, or Decimal 15

Table 484: PTP Port Statust REQISIENccocviiiiiiiiiiciee e

Offset: 0x10, or Decimal 16

Table 485: PTP Port StatuS7 REGISIENcccvviieeiiiieeeeciiiie e s e e e ssrree e e seaaae e enees

Offset: 0x11 and 0x12, or Decimal 17 and 18

Table 486: PTP Port StatuS8 REGISIENcc.vvvieeiiiiieeeciiii et e s eeee e e ssaeee e e seaaaa e enees

Offset: 0x13, or Decimal 19

Table 487: PTP Port StatuS9 REJISIENcc.vvieeeiiiieee e eee e e s nvree e e sevae e e enees

Offset: 0x15, or Decimal 21

Table 488: TAI Global Configuration, PTP POrt = OXEcccccveviiiiereiiieee e

Offset: 0x0, or Decimal 0

Table 489: TAI Global Configuration Register, PTP Port = OXE and OxF...................

Offset: 0x1, or Decimal 1

Table 490: TAI Global Configuration0 REgIStEN..........cccuvveeiiiiieee e eree e e

Offset: 0x2 and 0x3, or Decimal 2 and 3

Table 491: TAI Global Configurationl RegISter.........ccccuvviriiiiieeiiiiire e esiiiee e

Offset: 0x4, or Decimal 4

Doc. No. MV-S104860-U0 Rev. C
Page 338 Document Classification: Proprietary Information

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Table 492:

Table 493:

Table 494

Table 495:

Table 496:

Table 497:

Table 498:

Table 499:

Table 501:

Table 502:

Table 503:

Table 504:

Table 505:

Table 506:

Table 507:

Table 508:

Table 509:

Table 510:

Table 511:

Table 512:

Table 513:

List of Registers

TAI Global Configuration2 REGISTETciiuuiieiiiiiiee ettt e e s e e e st ee s srtaeeessnneeeeans 618
Offset: 0x5, or Decimal 5

TAI Global Configuration3 REGISTETc.ciiuuiiiiiiiiiee et e e e e s e e e snnare e e s sneaeeessnnseeeeans 619
Offset: 0x6, or Decimal 6

TAI Global Configurationd REGISTETciiuuiie ittt et e e e e s e e e snnne e e e s sntaeeessnnreeeeans 619
Offset: 0x7, or Decimal 7

TAI Global StatuSO REGISLETciiiiiiiiieiiii i 620
Offset: 0x8, or Decimal 8

TAI Global STAtUSL REGISTETeeiiiiiiiiiie it 621
Offset: 0x9, or Decimal 9

TAI Global STAatUS2 REGISIETciiiiiiiiie it bbb 621
Offset: OxA and 0xB, or Decimal 10 and 11

PTP Global StatUSL REQISIEI ... vviieiciiiie et e e ettt s et e e s e e e s ee e e e st e e e aaaa e e e e sstaeeeeastaeeesannneeeesnnaeees 622
Offset: OxE and OxF, or Decimal 14 and 15

MAC MIB COUNLEIS..... oottt eee e e e e e e e e e e et e e et e et eee s et e e eeeaeaaaaaaaeeesssee s st s aan s saaaeeaaaaaaeeessnssssssnnnnnnnnn 623

Offset: Port0: 0x73000-0x7307C, Portl: 0x77000-0x7707C

A9 USB 2.0 REQISTEIS . .uuuuutuuuuiitiiitiiiuiiutettteuutrereraaer e esaeessesseessassssessaessasssassesssesessanreeerees 625
USB 2.0 WIiNndow0 Control REGISLET coiiiiiiiiiiii i 625
Offset: 0x50320
USB 2.0 WINdow0 Base REGISIEIcccuiiiiiiiiiii i 626
Offset: 0x50324
USB 2.0 WIindOW1 CONtrol REGISIET eviiiiiiiie e st e ettt e et e et e e st e e e et e e e e sntae e e s snaeeeeannneees 626
Offset: 0x50330
USB 2.0 WINAOWL BASE REQISIETeviiieeiiiiie ettt s e ettt e st e e et e e e st e e e e nntae e e s nnnaeeeennnneees 627
Offset: 0x50334
USB 2.0 WIindoW2 CONtrol REJISIET eiieiiiiiie e sttt e ettt e e e e st e e e et e e e e entae e e s snaeeeeannneeeas 627
Offset: 0x50340
USB 2.0 WINAOW2 BASE REQISIET ...c.ueeiiieeiiiiie et s e e e s e e e s e e e e st e e e s nnaeeeesnnnneeeennnneees 628
Offset: 0x50344
USB 2.0 WIiNdOW3 CONLrol REGISIET eiiieiiiiiie ettt e e e e e e e s eneee e e s snneeeeennnnee s 628
Offset: 0x50350
USB 2.0 WINAOW3 BASE REQISIETueviiieeiiiiie ettt e e s e e e s e e e st e e e e nnneeeesnnnneeeesnnneeees 629
Offset: 0x50354
USB 2.0 Bridge CONrOl REGISIET ..ceeiiuiiiieeiiiiie ettt e e e st e e e s nnte e e e s nnne e e e e nnnneeees 629
Offset: 0x50300
USB 2.0 Bridge Interrupt Cause REGISLEIoiiiiiiiiieeiiiie et eee et e st e e s e e e s nee e e e nnnees 629
Offset: 0x50310
USB 2.0 Bridge Interrupt Mask REGISIET vuiiiiiiiiie ettt e e e s e tee e e s 630
Offset: 0x50314
USB 2.0 Bridge Error AddreSs REGISIEIcouviiiiiiiiiie ettt ettt e st e e e e e s tee e e ennneee 630
Offset: 0x5031C
USB 2.0 PHY Configuration0 REJISIENcocuiiiiiiiiiiieiiie et 630
Offset: 0x50360
USB 2.0 Power CONtrol REGISIEYccuuiiiiiiiiii it s 631

Table 514:

Table 517:

Offset: 0x50400

A.10 Cryptographic Engine and Security Accelerator (CESA) Registers.........ccceevvvvvnnnnn. 634
AES Decryption Key Column 7 REGISEIiiiiiiiiie ittt e et e e s e e e anne e e e snnneee s 636
Offset: 0x3DDCO
AES Decryption Key Column 6 REGISEIcoiiiiiieiiiiiiie et et e s e e e s e e e sneeee s 636

Table 518:

Offset: 0x3DDC4

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 339

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Table 519: AES Decryption Key Column 5 REQISLErcoovcvviveiiiiieieiiiiieeeiiiiee e

Offset: 0x3DDC8

Table 520: AES Decryption Key Column 4 REQISLErccoccuviveviiieeeeiiiiieeesiieeee s

Offset: 0x3DDCC

Table 521: AES Decryption Key Column 3 REJISLErcoovvviveriiiieieiiiiieeeiiieee s

Offset: 0x3DDDO

Table 522: AES Decryption Key Column 2 Registerccccoviiiiiiiiiniiiiieiieenn,

Offset: 0x3DDD4

Table 523: AES Decryption Key Column 1 Registercccovviiiiiiiiiiniiiiienieene,

Offset: 0x3DDD8

Table 524: AES Decryption Key Column 0 Registercccoviiiiiiiiiniiieenieene,

Offset: 0x3DDDC

Table 525: AES Decryption Data In/Out Column 3 RegiSterccccceevvvveeiivieeeninns

Offset: Ox3DDEO

Table 526: AES Decryption Data In/Out Column 2 RegiStercccccecvvvveeiivieeeninnns

Offset: 0x3DDE4

Table 527: AES Decryption Data In/Out Column 1 RegiStercccccvcvvveevivieeeninnns

Offset: 0x3DDES8

Table 528: AES Decryption Data In/Out Column 0 RegiSterccccovcvvveriivineennnnns

Offset: 0x3DDEC

Table 529: AES Decryption Command ReQISIErccoveeviiiieeiiiiiee e e esiiiee e

Offset: 0x3DDFO

Table 530: AES Encryption Key Column 7 ReQIStercccccveviiieereiiiiieeeneiieee s

Offset: 0x3DD80

Table 531: AES Encryption Key Column 6 RegiSterccccccevviieeieiiiiieeiniieeeeniens

Offset: 0x3DD84

Table 532: AES Encryption Key Column 5 RegiStercccccevviiiereiiiiieeiniiieeeniens

Offset: 0x3DD88

Table 533: AES Encryption Key Column 4 RegiSterccccceviiiiereiiiiieeeiiiieeeniens

Offset: 0x3DD8C

Table 534: AES Encryption Key Column 3 RegiSterccccovviiiiiiiiiniiiiciieenn,

Offset: 0x3DD90

Table 535: AES Encryption Key Column 2 RegiStercccovviiiiiiiiiniiiienieen,

Offset: 0x3DD94

Table 536: AES Encryption Key Column 1 Registerccccvviiiiiiiiiiiiiiciieen,

Offset: 0x3DD98

Table 537: AES Encryption Key Column 0 RegiSterccccoviiiiiiiiiiniiiienieee,

Offset: 0x3DD9C

Table 538: AES Encryption Data In/Out Column 3 Registerccccevcvvvveeiivieeeninns

Offset: 0x3DDAO

Table 539: AES Encryption Data In/Out Column 2 RegiSterccccevcvvvveeiivineeninns

Offset: 0x3DDA4

Table 540: AES Encryption Data In/Out Column 1 Registerccccovcvvveeiivieeeninnns

Offset: 0x3DDA8

Table 541: AES Encryption Data In/Out Column 0 Registercccccovcvvvevniiieeeninnns

Offset: 0x3DDAC

Table 542: AES Encryption Command RegISterccccvvivireviiiirreiiiiieeesiiinee e

Offset: 0x3DDBO

Table 543: DES Initial Value LOW REQISErcceevveiiiiiieeiiiiee e esee e e

Offset: 0x3DD40

Table 544: DES Initial Value High REQISIErc.coviiiiiiiiiiiiiie e

Offset: 0x3DD44

Doc. No. MV-S104860-U0 Rev. C
Page 340 Document Classification: Proprietary Information

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Table 545:

Table 546:

Table 547:

Table 548:

Table 549:

Table 550:

Table 551:

Table 552:

Table 553:

Table 554

Table 555:

Table 556:

Table 557:

Table 558:

Table 559:

Table 560:

Table 561:

Table 562:

Table 563:

Table 564:

Table 565:

Table 566:

Table 567:

Table 568:

Table 569:

Table 570:

List of Registers

DES KEYO LOW REQISIETeieiiiiiiiie ettt s ettt e e st e e st e e e st e e s sttt e e s s nte e e e s anneeeeesnnneeeas 642
Offset: 0x3DD48
DES KeYO High REQISLEI eeiiiiiiiiie ittt sttt e sttt e e e st e e st e e s e te e e e s nnne e e e e snnneeees 642
Offset: 0x3DD4C
DES KEYL LOW REQISIET ...eeieiiiiiiiiee ittt et e sttt e e sttt e e sttt e e e et e e s st e e e s anntee e e s nnneeeeesnnneeens 643
Offset: 0x3DD50
DES Keyl High REGISIEI ociiiiiiiiiiie e et 643
Offset: 0x3DD54
DES Command REGISIEI couiiiiiiiiiie e 643
Offset: 0x3DD58
DES KEY2 LOW REGISIEI .. .eiiiiiiiiiiecie st 644
Offset: 0x3DD60
DES KEY2 High REQISIET ...uveiiiiiiiiieieiite ettt e ettt e e st e e st e e e srtae e e e st e e e s saaaeaessnsaeeeeastaeeesannneeeeannaeeens 644
Offset: 0x3DD64
DES Data BUffer LOW REQISIEToiiiieiiiieeiiie ettt e s e e e st e e e et e e e e entaeeesannaeaeennnneees 644
Offset: 0x3DD70
DES Data BUffer High REGQISIET cccieiiiie ettt s e e e et e e e e entae e e s snan e e e e annaeees 645
Offset: 0x3DD74
DES Data OUL LOW REGISIEIeieieeeiciiii ettt s st s e e s e e e s e e e s nnaa e e e e annee e e e enteeeesannneeeennnneees 645
Offset: 0x3DD78
DES Data Out High REGISTETeeeieeiiiiiee ettt s e e e e s e e e st e e e snnee e e e snteeeesannneeeennnneees 645
Offset: 0x3DD7C
Cryptographic Engine/Security Accelerator/TDMA Interrupt Cause RegiStercccccvvvvveeeriineenninnns 645
Offset: 0x3DE20
Cryptographic Engines and Security Accelerator Interrupt Mask Registerccccccvcvveviiiieenniieee e, 647
Offset: 0x3DE24
Security Accelerator Command REGISIET uiiiiiiiiiee it e e e e e st ee e e 647
Offset: 0x3DEOO
Security Accelerator Descriptor POINtEr REGISLET ccoviiiiieiiiiiee et ee e 647
Offset: 0x3DEO0O4
Security Accelerator Configuration REJISLErceiiiiiiiiiiiiiii e 648
Offset: 0x3DEO8
Security Accelerator Status REGISIErcoiiiiiiiiiiiiic e 648
Offset: Ox3DEOC
SHA-1/MD5 Initial Value/Digest A REQISIErccciiiiiiiiiiiiesiis e 649
Offset: 0x3DDO00
SHA-1/MD5 Initial Value/Digest B REQISIErccciciiiiiiiiiiiiiii e 649
Offset: 0x3DD04
SHA-1/MD5 Initial Value/Digest C REQISIETcciiiuiieeiiiiieeeiiiiee e seiee e e e stee e s sieaeeesssteeeeasnraaasessenaeesnnnens 649
Offset: 0x3DD08
SHA-1/MD5 Initial Value/Digest D REQISIETcciiiuiieeiiiiie e e ciiiee sttt e see e e siee e e st e e e e snaaeaessseaaeeennnens 649
Offset: 0x3DDOC
SHA-1 Initial Value/Digest E REQISIET uiiiiiiiiie ettt e et e e e st e e e st ea e e snaneeesennseaeeans 650
Offset: 0x3DD10
SHA-1/MD5 Authentication Command REGISIETcoiuiiieiiiiiie e e sre e e e e e nneees 650
Offset: 0x3DD18
SHA-1/MD5 Bit COUNt LOW REQISLETeviiieeiiiiieeiiiiie e stiie e e stee e stee e e st e e e s ntee e e s snsaeeeeannneeeeesnneneeennees 651
Offset: 0x3DD20
SHA-1/MD5 Bit Count High REQISIET ...cc.eeiiieiiiiie ettt e e e e e e e nnaae e e s enneeeeanns 651
Offset: 0x3DD24
SHA-1/MD5 Data IN REGISTEE ..eiiiiiiieiiiiiie ettt eet ettt sb e e st e e e sttt e e e s snbeeeeeannbeeaeensbeeeeennnnes 652

Offset: 0x3DD38

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 341

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Table 571:

Table 572:

Table 573:

Table 574:

Table 575:

Table 576:

Table 577:

Table 578:

Table 579:

Table 580:

Base Address RegiSter (NT0—3) ...ooiiiuiiieiiiiiie e e e e st e e e st e e sttt e e s snae e e e s nnnr e e e e nnnneee s 652
Offset: BARO: 0x30A00, BAR1: 0x30A08, BAR2: 0x30A10, BAR3: 0x30A18

WiINdow Control REGISEr (NT0—3) ...uuiiiiiiiiiieeiiiiiee et et e et e e et e e e s e e e s snbb e e s snnee e e esnaneeeeesnnreeens 652
Offset: SRO: 0x30A04, SR1: 0x30A0C, SR2: 0x30A14, SR3: 0x30A1C

(] g1 70 I =T 11 (=] PSR SPN 653
Offset: 0x30840

TDMA Byte COoUNt REGISIEI ...ciiiiiiiiiieiiie e 654
Offset: 0x30800

TDMA Source Address REGISIEI coviiiiiiiiiiie e 655
Offset: 0x30810

TDMA Destination AJAress REQISIErccuiiiiiiiiiiiiiii e e 655
Offset: 0x30820

Next DesCriptor POINTEr REQISIENc.uiiieiiiiiee ettt e e e e e e e e e et e e e e sstae e e s snnreeeesannseaeesnnaeees 655
Offset: 0x30830

Current DescCriptor POINTEr REQISIET viiieiiiiiee ettt ste e e st e e e e sntae e e s e srea e e e snssaaaeesnnnaaeeennnes 655
Offset: 0x30870

TDMA EITOr CAUSE REQISIET ...uviiiiiiiiiee ettt e e ettt e e e st e e e et ee e e s st e e e e staeeeeesstaeeeaasseeeesassseaessnsaeeessnnseneeanns 656
Offset: 0x308C8

LI AN = g (o Y= 1] U= 1 T S 656

Offset: 0x308CC

A.L11XOR ENQINE REQISTEIS ..uuuuuiiiuiiiiiiiiiiiiiiiieiiiertuesueestesssresassrresrrreeeereeee————————————————. 657

Table 582:

Table 583:

Table 584:

Table 585:

Table 586:

Table 587:

Table 588:

Table 589:

Table 590:

XOR Engine [0..1] Window Control (XEXWCR) Register (NZ0—1)ccccceviiivireiriiieeesiiiee e rieeeessnneee e 659
Offset: Port0: XORO0: 0x60A40, XOR1: 0x60A44
Portl: XORO0: 0x60B40, XOR1: 0x60B44

XOR Engine Base Address (XEBARX) REQISIEr (NZ0—7) ..eevveviuireeiiiiieeeeiieeeessieeeeseeee e e s sneeneesenneneeanns 660
Offset: Port0: XEBARO: 0x60A50, XEBAR1: 0x60A54, XEBAR2: 0x60A58, XEBAR3: 0x60A5C,

XEBARA4: 0x60A60, XEBARS: 0x60A64, XEBARG6: 0x60A68, XEBAR7: 0Xx60A6C

Portl: XEBARO: 0x60B50, XEBAR1: 0x60B54, XEBAR2: 0x60B58, XEBAR3: 0x60B5C,

XEBARA4: 0x60B60, XEBARS: 0x60B64, XEBARG: 0x60B68, XEBAR7: 0x60B6C

XOR Engine Size Mask (XESMRX) ReQIStEr (NT0—7) ..eovueireeiiiiieeeiiieee et esie et ee e ieee e ee e 660
Offset: Port0: XESMRO: 0x60A70, XESMR1: 0x60A74, XESMR2: 0x60A78, XESMR3: 0X60A7C,

XESMR4: 0x60A80, XESMR5: 0x60A84, XESMR6: 0x60A88, XESMR7: 0x60A8C

Portl: XESMRO: 0x60B70, XESMR1: 0x60B74, XESMR2: 0x60B78, XESMR3: 0x60B7C,

XESMR4: 0x60B80, XESMR5: 0x60B84, XESMRG6: 0x60B88, XESMR7: 0x60B8C

XOR Engine High Address Remap (XEHARRX) Register (N=0—3)coeviiiirieiniiiee e erieeee e 661
Offset: Port0: XEHARRO: 0x60A90, XEHARR1: 0x60A94, XEHARRZ2: 0x60A98, XEHARR3: 0x60A9C
Portl: XEHARRO: 0x60B90, XEHARR1: 0x60B94, XEHARR2: 0x60B98, XEHARR3: 0x60B9C

XOR Engine [0..1] Address Override Control (XEAOCR) Register (N=0—1)cccceceuviviiiriiiiniiiininies 661
Offset: Port0: XEAOCRO: 0x60AA0, XEAOCR1: Ox60AA4
Portl: XEAOCRO: 0x60BAO, XEAOCR1: Ox60BA4

XOR Engine Channel Arbiter (XECHAR) REQISLENcciiieiiieiiiiieeeiiiie e eieee e s see e snee e eee e e s ee e 663
Offset: Port0: 0x60800 Portl: 0x60900
XOR Engine [0..1] Configuration (XEXCR) Register (N=0—1)cccoviuieeeriiieeeiriiieeesieeeeeneeeeessneeee e 664

Offset: Port0: XORO0: 0x60810, XOR1: 0x60814
Portl: XORO0: 0x60910, XOR1: 0x60914

XOR Engine [0..1] Activation (XEXACTR) Register (N=0—1)cccccoiviiiiiiiiiiiiiieiiie e 665
Offset: Port0: XORO0: 0x60820, XOR1: 0x60824
Portl: XORO0: 0x60920, XOR1: 0x60924

XOR Engine [0..1] Next Descriptor Pointer (XEXNDPR) Register (N=0—1)cccccevrvireeriiireerninneennns 666
Offset: Port0: XORO0: 0x60A00, XOR1: 0Xx60A04
Portl: XORO0: 0x60B00, XOR1: 0x60B04

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 342

Document Classification: Proprietary Information December 2, 2008, Preliminary

Table 591:

Table 592:

Table 593:

Table 594

Table 595:

Table 596:

Table 597:

Table 598:

Table 599:

Table 600:

Table 602:

Table 603:

Table 604:

Table 605:

Table 606:

Table 607:

Table 608:

Table 609:

List of Registers

XOR Engine [0..1] Current Descriptor Pointer (XEXCDPR) Register (N=0—1)ccccocvvverriiveeeniiieneenns 666
Offset: Port0: XORO0: 0x60A10, XOR1: 0x60A14
Portl: XORO0: 0x60B10, XOR1: 0x60B14

XOR Engine [0..1] Byte Count (XEXBCR) Register (N=0—1)ccccceiiiiiiiiiiiieiiie e 667
Offset: Port0: XORO0: 0x60A20, XOR1: 0x60A24
Portl: XORO0: 0x60B20, XOR1: 0x60B24

XOR Engine Interrupt Cause (XEICR1) REQISIETeiviiiiiieieiiiiiee et eseeee e see e e e e eae e e eeeeeeanes 667
Offset: Port0: 0x60830 Portl: 0x60930
XOR Engine Interrupt Mask (XEIMR) REQISIET ovviieeiiiieee e esie e teee e e e snee e e snaee e e s snneeeeeanes 668
Offset: Port0: 0x60840 Portl: 0x60940
XOR Engine Error Cause (XEECR) REGISIEIccoiiiiiiiiiiiiie ettt et e e st ee e 669
Offset: Port0: 0x60850 Portl: 0x60950
XOR Engine Error Address (XEEAR) REQISIEI ouiiiiiiiiiiee ettt e et ee e 669
Offset: Port0: 0x60860 Portl: 0x60960
XOR Engine 0 and 1 Destination Pointer (XEXDPRO) Register (N=0—1)ccccocviveeiiiiveeeriiieeeeiieeeeanns 670

Offset: Port0: XORO0: 0x60AB0, XOR1: 0x60AB4
Portl: XORO0: 0x60BB0, XOR1: 0x60BB4

XOR Engine 0 and 1 Block Size (XEXBSR) Register (NZ0—1)cccccveeiiiiieeeiiiiieeesiriraessineeessneeee e 670
Offset: Port0: XOR0: 0X60ACO, XOR1: Ox60AC4
Portl: XORO0: 0x60BCO, XOR1: 0x60BC4

XOR Engine Initial Value Low (XEIVRL) REQISENcoiiiiiiiiiiiiiiiee ettt 670
Offset: Port0: 0x60AEOQ Port1: 0X60BEO
XOR Engine Initial Value High (XEIVRH) REQISIEI coiiiiiiiiiiiiee et 670

Offset: Port0: 0X60AE4 Portl: OX60BE4

AL L2 TWSI REGISTEI'S oeiiiieiiiiite ettt ettt e e e s e et e e e e e e e r e e e e e e e a b neeeeeens 671
TWSI SIaVe AAAreSS REGISIET ...eeiiiiieieiiiiie et etee e et e e et e e e st e e e e naeeeeasnnteeeesanneeaesananeeesannneneeans 671
Offset: 0x11000
INTAT S I = L= Q=0 1] (= S 671
Offset: 0x11004
BITAT S O] o] L= o 1S (] PRSPPI 671
Offset: 0x11008
B AT S RS oL (0 LS =T o 1S (] PSR PPN 673
Offset: 0x1100C
TWSI BAUA RAE REGISIEI .ieiiieiiieie ettt et e e s et e e ettt e e s e ab e e e snbe e e e s sntaeeessnbeeeeanns 674
Offset: 0x1100C
TWSI Extended Slave AdAreSS REGISLEIcicuiiieiiiiiiee ittt e e e e e s sneaeee s snneeeeans 674
Offset: 0x11010
TWSI SOft RESEE REGISIEN ... 674
Offset: 0x1101C
TWSI Initialization Last Data REQISIErccciiiiiiiiiii e 674

Table 611:

Table 612:

Table 613:

Offset: 0x11098

A.L3NAND FIasSh REQISTEIS ..uuuiiiii et e et e e e e e e e et e e e e e e e e eeeaennaas 675
NAND Read Parameters REGISIEIiiiiiiiiiiiiiiie ettt e e e e e st e e s eeesnnneeees 675
Offset: 0x10418
NAND Write Parameters REGISEIiiiiiiiiieiiiiiee ettt e e et e st e e e s entee e e s nnneeeeesnnneeees 676
Offset: 0x1041C
NAND Flash Control REJISLETcccuiiiiiiiiiie i s 676

Offset: 0x10470

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 343

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

ALLAUART REQISTEIS .ouviiuiiiiiiiiiiiiitiiiiiieetiesuiestrestesrrerreereerreerteertttrtertttrttrtttaattattaaetaaeetaeeaeeeaeeens 678

Table 615: Transmit Holding (THR) REGISIEr oiiiiiiiiii e 678
Offset: UARTO: 0x12000 UART1: 0x12100

Table 616: Divisor Latch LOW (DLL) REQISIErcc.uiiiiiiiiiiiiei it 679
Offset: UARTO: 0x12000 UART1: 0x12100

Table 617: Receive BUffer (RBR) REJISIEIc.uuiiiiiiiiieeiiiie e e sttt e sttt e st e e e et ae e e sstaeeeasssaeaaessaaeaesstaeeeesnnseneeanns 679
Offset: UARTO: 0x12000 UART1: 0x12100

Table 618: Interrupt ENable (IER) REQISIEIo..veiiiiiiiie ettt e e e e e e eae e e s st e e e esbaeaessnsaneeesnnneeeeanns 679
Offset: UARTO: 0x12004 UART1: 0x12104

Table 619: Divisor Latch High (DLH) REQISIEI ceiiiiiiieeeciiie e e ecteee st stt e e st e et e e e s s e e e e ssaaaaessnaaeeessnneneeanns 680
Offset: UARTO: 0x12004 UART1: 0x12104

Table 620: Interrupt Identity (IIR) REGISIET ...cciiiiiiieiiiee et e e e e e et r e e s s st e e e esneeeeessntaeeeesnnseeeeans 680
Offset: UARTO: 0x12008 UART1: 0x12108

Table 621: FIFO CoNtrol (FCR) REGISIETeeiiiiiiiieeiiiieeeeeiee e e sttt e e st e e e s st e e e steeaeessrtaeeeaanseeeeaanneeaesasaeeeesansneeeanns 681
Offset: UARTO: 0x12008 UART1: 0x12108

Table 622: Line CoNtrol (LCR) REGISLEI viiiiiiiieeiiiee e esiie e e sttt e e s ee e e s st e e e et ee e s srteeeeaanseeeeansseeaessnsneeeesnnsnneeanns 681
Offset: UARTO: 0x1200C UART1: 0x1210C

Table 623: Modem Control (MCR) REGISLEIueiiiiiiiiee ittt e et e e st e e e st e e e s sb e e e s sntreeessneeeeeans 682
Offset: UARTO: 0x12010 UART1: 0x12110

Table 624: Line Status (LSR) REGISIEIeiiiiiiiiiie ettt e e st e e st ee e s aan e e e enbeeeeessntteeeesnneeeeeans 683
Offset: UARTO: 0x12014 UART1: 0x12114

Table 625: Modem Status (MSR) REGISIEIueeiiiiiiiiie ettt s et e e st e e s ab e e e e st e e e s sntteeessneeeeeans 684
Offset: UARTO: 0x12018 UART1: 0x12118

Table 626: Scratch Pad (SCR) REQISIErciciiiiiiiiiiiie it s e e s 684

Offset: UARTO: 0x1201C UART1: 0x1211C

ALLS SPIREGISTEIS .ttt e e e e e e e e e et e e e e e e e e e 685

Table 628: Serial Memory Interface CoNtrol REGISLET c.viiiiiiiiiie et e e e e s sneeeeeans 685
Offset: 0x10600

Table 629: Serial Memory Interface Configuration REeQISIErooiiiiiiiiiiiiiie e 686
Offset: 0x10604

Table 630: Serial Memory Data QUL REGISTETceiiiiiiiieeiiiiee et e et e e et e e s snr e e e ssbe e e e s sntreeeesnneeeeeans 687
Offset: 0x10608

Table 631: Serial Memory Data IN REGISIEr coiiiiiiiiii e 687
Offset: 0x1060C

Table 632: Serial Memory Interface Interrupt Cause REgISIErcccciiiiiiiiiiiiiiii e 687
Offset: 0x10610

Table 633: Serial Memory Interface Interrupt Mask Register ... 687
Offset: 0x10614

Table 634: Serial Memory Direct Write Configuration RegiSterccccoociiiiiiiiiiiiiiic e 688
Offset: 0x10620

Table 635: Serial Memory Direct Write Header REQISIEr ccouiiiieiiiiie ettt e e tee e e e e e snaaeeeenes 688

Offset: 0x10624

Y Rl AU o T o [N €= o = ToT =T =T 1] (=T 689

Table 637: DCO CONIol REGISIETcoiiiiiiiii it e e 691
Offset: 0xA1204

Table 638: SPCR and DCO Status REGISIENc.iiiiiiiiiiiiiie it 691
Offset: 0xA120C

Table 639: Sample Counters COoNtrol REJISIENccciiiiiiiiiiiiic e 692

Offset: 0xA1220

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 344 Document Classification: Proprietary Information December 2, 2008, Preliminary

List of Registers

Table 640: Playback Sample COUNtEr REGISIEIcicuiiiiiiiiiieee et e e e s e e s s b e e s staeee e snneeeeeans 693
Offset: 0xA1224

Table 641: Recording Sample COUNtEr REGISIETc..uiiiiiiiiieee et e s e e s s e e e s stre e e s sneeeeeanas 693
Offset: 0xA1228

Table 642: CIOCKS CONLIOI REQISTENciiiiiiieiiiieiee ettt e e s e e e st e e e st e e e e s nb e e e e eseeeeessntaeeeesnneneeeens 693
Offset: 0xA1230

Table 643: ReSEIVEd REGISIETcccuiiiiiiiiiiie it e s e e st e s s b e e s b e e e sb e e e sbaeeaies 694
Offset: 0xA1238

Table 644: Recording Window Base Address REJISIErciciiiiiiiiiiiiiii s 694
Offset: OxAOA00

Table 645: Recording Window Control REQISIEr coiiiiiiiiiiiie s 694
Offset: OxAO0A04

Table 646: Playback Window Base AdAreSS REQISIET uviiiiiiiieiiiiieeecriir e e e stee e e siee e e s sstreeeessaaeaeestaeeessnnneeeeanns 695
Offset: OxAOAO08

Table 647: Playback WIiNdOW CONrOl REGISIET ciiiiiiieeiiiiiee s icieee e st e e sttt e e e st ee e st e e e s snbaaeesssbaaaessnsaeeeesnnseeeeans 695
Offset: OXAOAOC

Table 648: AUdIO Error CaUSE REQISIETiiiiiiiiee it e ettt e e e ettt e e s e e e e sttt e e e s ttaaeesssteeeeaassseeeeasaeaaesstaeeeesnsseneeanns 695
Offset: 0xA1300

Table 649: AUdIO Error MAsk REGISIET uvviiiiiiiee et e s e e st e e e e st e e e et e e e e seeeeesanseeeeeanseeeeesentaeeeesnnneeneans 696
Offset: 0xA1304

Table 650: Audio INtErrUPt CaUSE REGISIET ...coveiieeiiiiie ettt s e s e e e e e e s rteeeeaanne e e e anseeeeesannaeeessnnneeeeanns 696
Offset: 0xA1308

Table 651: Audio INtErruPt MASK REQISIETcoiieeieiiiiiie ettt s e e et e e et r e e s st e e e enneeeessntaeeeeanneeeeeanns 698
Offset: 0xA130C

Table 652: Recorded Byte Count for INterrupt REQISIEroooiiiiiiieiiiiie e sneeee e 698
Offset: 0xA1310

Table 653: Playback Byte Count for INterrupt REGISIErvuiviiiiiiie i 699
Offset: 0xA1314

Table 654: Playback CONtrol REGISTEIuiiiiiiiiie ittt e ettt e e sttt e e s aan bt e e e s beeeeessntaeeeesnneeeeeanns 699
Offset: 0xA1100

Table 655: Playback Start ADAreSs REGISIErc..ccciiiiiiiiiiii i 702
Offset: 0xA1104

Table 656: Playback Buffer Size REQISLEIccciiiiiiiiiii i e 702
Offset: 0xA1108

Table 657: Playback Buffer Byte Counter REGISIENc.coiiiiiiiiiiiiii e e 703
Offset: 0xA110C

Table 658: Playback Byte Counter for Interrupt REQISIErcooiiiiiiiiiiiii e 703
Offset: 0xA1318

Table 659: 12S Playback CONrol REGISIEIcc.veiiiiiiiie ettt st e e e e e e et e e e s s st eaeessbaeaeesntaeeeesnnneeeeans 703
Offset: 0xA2508

Table 660: SPDIF Playback CONtrol REQISIErciiiiiiiieiciiieeeiieee sttt e st e et e e e e s tae e e s ssba e e e esbaaaessnnaeeessnnseeeeanns 704
Offset: 0xA2204

Table 661: SPDIF Playback Channel Status Left N Register (NZ0—5)ccccuvieiiiiiee e csiiee e e re e eeee e 705

Offset: status0: 0xA2280, statusl: 0xA2284, status2: 0xA2288, status3: 0xA228C, status4: 0xA2290,
status5: 0xA2294

Table 662: SPDIF Playback Channel Status Right n Register (N=0-5)ccoooviiiiiiiiiee e 705
Offset: status0: 0xA22A0, statusl: 0xA22A4, status2: 0xA22A8, status3: 0xA22AC, status4: 0xA22B0,
statusb: 0xA22B4

Table 663: SPDIF Playback User Bits Left N RegISter (NZ0—5)ccociuiiieiiiiieeeiiiiee s sieeeessre e e e sraee e e tane e s snaeeeeanes 705
Offset: User0: 0xA22C0, Userl: 0xA22C4, User2: 0xA22C8, User3: 0xA22CC, User4: 0xA22D0,
User5: 0xA22D4

Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C
December 2, 2008, Preliminary Document Classification: Proprietary Information Page 345

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Table 664:

Table 665:

Table 666:

Table 667:

Table 668:

Table 669:

Table 670:

Table 671:

Table 672:

Table 673:

Table 674:

Table 675:

Table 676:

Table 678:

Table 679:

Table 680:

Table 681:

Table 682:

Table 683:

Table 684:

Table 685:

Table 686:

SPDIF Playback User Bits Right n Register (N=0-5)cooiiiiiiiiiiiiee e 706
Offset: User0: 0xA22EQ, Userl: 0xA22E4, User2: 0xA22E8, User3: 0xA22EC, User4: 0xA22FO0,
User5: OxA22F4

Recording Control REQISIETc.uiiiiiiiiii e e e 706
Offset: 0xA1000
Recording Start AdAreSS REGISIETuiieiiiiie et r e s e e e e e st e e e s st e e e s sstae e e s asreeeesssnneeeesnnneees 708
Offset: 0xA1004
Recording BUFfer SIZ€ REQISIET ccciciiiie et e e e e e e e e et e e e e ssteeeesannaeeeesnnaeees 708
Offset: 0xA1008
Recording Buffer Byte COUNIEr REQISTETciviiiiiiiiie it ettt e s e e s e e e sae e e e e nnae e e s snareeeesnnaeees 709
Offset: 0xA100C
Recorded Byte Counter for INterrupt REGISIETcoviiiiiiee e e e 709
Offset: 0xA131C
(2SR = Lot] (o [1aTo IO o a1 1 {0 I =T 1) -] PSS 709
Offset: 0xA2408
SPDIF Recording General REGISIET oiieiiiiie e ee e s e e e asee e e et e e s ssae e e e s nnneeaeesnneeeeennees 710
Offset: 0xA2004
SPDIF Recording Interrupt Cause and Mask REQISLErccueiiiiiiiieiiiiiieiee e 711
Offset: 0xA2008
SPDIF Recording Channel Status Left n Register (N=0-5)ooviiiiiiiiiieee e 712

Offset: status0: 0xA2180, statusl: 0xA2184, status2: 0xA2188, status3: 0xA218C, status4: 0xA2190,
statusb: 0xA2194

SPDIF Recording Channel Status Right n Register (N=0-5)cccciiiiiiiiiieeiiieee e 713
Offset: statusO: 0xA21A0, statusl: 0xA21A4, status2: 0xA21A8, status3: 0OxA21AC, status4: 0xA21B0,
status5: 0xA21B4

SPDIF Recording User Bits Left N Register (NZ0-5)c.veveiiiiiiee e e e 713
Offset: User0: 0xA21CO0, Userl: 0xA21C4, User2: 0xA21C8, User3: 0xA21CC, User4: 0xA21DO,
User5: 0xA21D4

SPDIF Recording User Bits Right n Register (N=0-5)cccccociiiiiiiiiiiiii e 713
Offset: User0: 0XxA21EOQ, Userl: 0xA21E4, User2: OXxA21ES8, User3: 0xA21EC, User4: 0xA21FO0,
User5: OxA21F4

F N A B 1T @ B = To [1] =T = PP 714
DMA Buffer Address 16 LSB REGISIEIccociiiiiiiiiiiiie it 715
Offset: 0x90000
DMA Buffer Address 16 MSB REJISIENc.coiiuiiiiiiiiiieiiie s 715
Offset: 0x90004
DL\ W 2] (0Tt S P =T [(=] PSSP 716
Offset: 0x90008
Data BIOCK COUNE REQISTET ..eiiiiiiiieeiciiiie ettt s et e s e e e e ae e e e et e e e s aaa e e e s estaeeesastaeeesannneeeesnnaeees 716
Offset: 0x9000C
Argument in Command 16 LSB REQISIEI ccoiuiiieiiiiiieeeeiiie e e ettee st e e st e e e entae e e e snsan e e e anaenaesnnneeees 716
Offset: 0x90010
Argument in Command 16 MSB REQISIEr cocuuiieiiiiiieeeiiee e s eiiee e s seeee e s e e e eneee e e e snaaee e e snneeeeeennneeees 717
Offset: 0x90014
TransSfer MOOE REGISLETciiuiiie e e et e et e e e st e e et e e e sseeeeeaanneeeeesseeeaessnnaeeeeennneneeans 717
Offset: 0x90018
(] 4] = TaTo [=T 1] 1= S 719
Offset: 0x9001C
Response HalfWord O REGISLENc.iiiuiiiieiiiiiee et e e st e e st e e e s eeesnnneee s 720
Offset: 0x90020
ReSpoONSe HalfWOrd 1 REGISLENcciiiiiiieiiiiiie ettt e e sttt e e st e e e s nnne e e e nnnneee s 720

Table 687:

Offset: 0x90024

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 346

Document Classification: Proprietary Information December 2, 2008, Preliminary

Table 688: Response Halfword 2 REgISLErceevviiiiiieiiiiiee e

Offset: 0x90028

Table 689: Response Halfword 3 REQISLErccueevviiiiiieiiiiiiee e

Offset: 0x9002C

Table 690: Response Halfword 4 REGISLErcccveeviiiiiiieiiiiiee e

Offset: 0x90030

Table 691: Response Halfword 5 Registerccccocoiiiiiiiiiiiiiciiiceen e,

Offset: 0x90034

Table 692: Response Halfword 6 Registercccccoiiiiiiiiiiiiiciicen e

Offset: 0x90038

Table 693: Response Halfword 7 Registercccoocoiiiiiiiiiiiiiciicee e

Offset: 0x9003C

Table 694: 16-bit Data Word Accessed by CPU Registerccccccevviviiiieesicivieeniinns

Offset: 0x90040

Table 695: CRC7 of | ReESPONSE REQISIEr cceiiiiiiieiiiie et e e

Offset: 0x90044

Table 696: Host Present State 16 LSB ReQISIErccvvveeiiiiieeiiiieee e

Offset: 0x90048

Table 697: HOSt CONtrol REQISIErvviieeiieiee et e e

Offset: 0x90050

Table 698: Data Block Gap Control REQISIErcoviviiiieeiiiiee e

Offset: 0x90054

Table 699: CIock CoNtrol REGQISIETviveiiiiiiee e ee e e e e s e e s eeeeneee

Offset: 0x90058

Table 700: Software ReSet REJISIErcoiiiiiiiiiiiii e

Offset: 0x9005C

Table 701: Normal Interrupt Status REgISLErcvviiiiiiiieiiiiiiee e

Offset: 0x90060

Table 702: Error Interrupt Status REQISIErcoviiiiiiiiiiiiie e

Offset: 0x90064

Table 703: Normal Interrupt Status Enable Registerccccoiiiiiiiiiiiiiiiiiieene,

Offset: 0x90068

Table 704: Error Interrupt Status Enable Registercccccciiiiiiiiiiiniiinieee,

Offset: 0x9006C

Table 705: Normal Interrupt Status Interrupt Enable Registercccoceiiiiinnnen.

Offset: 0x90070

Table 706: Error Interrupt Status Interrupt Enable Registerccccocovviiiiiennnen.

Offset: 0x90074

Table 707: Auto CMD12 Interrupt Status REGISIEroeeeiiiiieeiiiiiee e

Offset: 0x90078

Table 708: Current Number of Bytes Remaining in Data Block Register

Offset: 0x9007C

Table 709: Current Number of Data Blocks Left to Be Transferred Register

Offset: 0x90080

Table 710: Argument in Auto Cmd12 Command 16 LSB Transferred Register
Offset: 0x90084

Table 711: Argument in Auto Cmd12 Command 16 MSB Transferred Register
Offset: 0x90088

Table 712: Index of Auto Cmd12 Commands Transferred Registercccccoeeneee.

Offset: 0x9008C

Table 713: Auto Cmd12 Response Halfword 0 Registercccooccveiiiiiieniiiiieeniinns

Offset: 0x90090

Copyright © 2008 Marvell

December 2, 2008, Preliminary Document Classification: Proprietary Information

List of Registers

Doc. No. MV-S104860-U0 Rev. C
Page 347

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Table 714: Auto Cmd12 Response Halfword 1 REQISIErccoiiuiiiiiiiiieiiiiiie ettt et e e e e 738
Offset: 0x90094

Table 715: Auto Cmd12 Response Halfword 2 REQISIErcoiouuiiiiiiiiiiieiiice ettt e e 738
Offset: 0x90098

Table 716: MbUS CONrol LOW REGISIET oiiiiiiiiiieiiie ittt ettt e s e ennneeaeee 739
Offset: 0x90100

Table 717: Mbus Control High REGISIEr couiiiiiii e 739
Offset: 0x90104

Table 718: WINdow0 Control REGISIETcoiiiiiiiiiiii e 740
Offset: 0x90108

Table 719: WINAOWO BaSE REJISIENccuiiiiiiiiiiiiies et e e e e s sba e 740
Offset: 0x9010C

Table 720: WINAOWL CONIOI REGISTET ...cc.eiiiee ittt e s e e e st e e e et e e e s staeeeaanbseeeesssaaaaessnnaeeeesnnsnneeans 741
Offset: 0x90110

Table 721: WINAOWL BASE REQISIET oieiiuiiiiei i ettt e e et e e e e e e e sttt e e e s tta e e e e steeeeaassseeeeassaaeaessntaeeeesnnsnneeans 741
Offset: 0x90114

Table 722: WINAOW2 CONIOI REGQISTET ...ciuiiie e ee et s e e e st e e e st e e e e eseeeeeaansaeeeeansaaaaessntaeeeesnnseneeans 741
Offset: 0x90118

Table 723: WINAOW2 BASE REQISIET oeeiiuiiiiei i eeieee et e s st e e st e e e e s e e e et e e e aseeeeeaanseeeeeanseeeaesantaeeeeannseeeeanns 742
Offset: 0x9011C

Table 724: WINAOW3 CONIOI REGISIET ...c.eiiiie et e e e s e e e et e e e e st e e e e s anseeeeeanseeeaessntaeeeeanneeeeeans 742
Offset: 0x90120

Table 725: WINAOW3 BASE REQISIET cceiiuiiieeiiiiiie e eieee et e st e e st e e e e st e e e et ee e e seeeeeaansteeeeanseeeeesentaeeesannneeeeanns 743
Offset: 0x90124

Table 726: CIloCk DivIder Value REQISLENcoiiiiiiiiiiiiie ettt e e ettt e e et e e e ssb e e e e bt e e e s sntaeeeesnneeeeeanns 743
Offset: 0x90128

Table 727: Address Decoder ErTOr REGISIETciiiiiiiieeiiiiiee ettt ettt e ettt e e st e e s anb e e e ssbeeeessntreeessnneeeeeanns 743
Offset: 0x9012C

Table 728: Address Decoder Error Mask REQISIErccoiiuiiieiiiiieee et e e aee e s sneeee e 743
Offset: 0x90130

A. 18 Transport Stream (TS) REQISTEISuuuuuuuiiiiiiiiiiiiiiieiieiiiees 744

Table 730: TSU MOUES REQISIEIeeiieieiiiiee e e eiiee et e e et e e e ettt e e e eeeaanseeee e s seeee e s seeeeeaansseeeeaseeeaessnsaneesannneneeanns 744
Offset: 0xB4000

Table 731: TSU-Mbus Configuration REGISIETiiuiiiiiiiiiee ettt eee e s s e e e s sbee e e s nareee s sneeeeeanas 745
Offset: 0xB4010

Table 732: WINAOWO CONIOI REGISIET ...c.eeiiiii et e e st e e e aan e e e snbt e e e s sntteeessneeeeeans 745
Offset: 0xB4030

Table 733: WINAOWO BASE REGISIET ccoiiiiiiiiiiiiie ettt e s e e e sttt e e sttt e e s aab et e e enbbreaessntaeeeesnnreeeeanns 746
Offset: 0xB4034

Table 734: WINAOWL CONIOI REGISIET ...c.eiiiiii et e et e e ettt e e e s b e e e snbbe e e e s sntteeeesnneeeeanns 746
Offset: 0xB4040

Table 735: WINAOWL BASE REJISIEIcciiiiiiiiiiiieii et e e e e s sba e 746
Offset: 0xB4044

Table 736: WINdow2 Control REGISIETcoiiiiiiiiiii e e 747
Offset: 0xB4050

Table 737: WINAOW2 BASE REJISIEIciiiiiiiiiiii et e e s e e sba e 747
Offset: 0xB4054

Table 738: WINAOW3 CONIOI REGISTET ...ccuviiiei e ciiee ettt e st e e e st e e e st e e e s steeeeaassseeaeassaaaaessnsaeeeesnnseneeans 747
Offset: 0xB4060

Table 739: WINAOW3 BASE REQISIET iiiiiiiiiiei i et e st e et e e e e e e e st e e e st e e e e steeeeaassseeeeansaaaaessnsaeeeesnssneeeans 748

Offset: 0xB4064

Doc. No. MV-S104860-U0 Rev. C
Page 348 Document Classification: Proprietary Information

Copyright © 2008 Marvell
December 2, 2008, Preliminary

Table 741: TS Interface Configuration REgISIErccevveiiiiieeiiiiiie e

Offset: Port0: 0xB8000 Portl: 0xB8800

Table 742: TS DMA Parameter REQISTEr........ccoiiuiiiiiiiiiieiiiiiee s

Offset: Port0: 0xB8004 Portl: 0xB8804

Table 743: Done Queue Base REQISIEI.........ccoviiuiiiiiiiiiee et

Offset: Port0: 0xB8008 Portl: 0xB8808

Table 744: Descriptor Queue Base RegiSter..........ccccciviciiiiiiiiiiiciiiiccieeee e

Offset: Port0: 0xB800C Portl: 0xB880C

Table 745: Done Queue Write Pointer RegISterccccciviiiiiiiiiiiiiiiicien e

Offset: Port0: 0xB8010 Portl: 0xB8810

Table 746: Done Queue Read Pointer REQIStEr..........cccocviiiiiiiiiiciiiiccciccie e

Offset: Port0: 0xB8014 Portl: 0xB8814

Table 747: Descriptor Queue Write Pointer REQISIENccccuvveriiiiieeeiiiiee e

Offset: Port0: 0xB8018 Portl: 0xB8818

Table 748: Descriptor Queue Read Pointer REQISter..........cccvveviiiiieeeiiiiieeeeiiiee e

Offset: Port0: 0xB801C Portl: 0xB881C

Table 749: Current DesCHPtor REJISIENvceiiiiiie e e e e a e

Offset: Port0: 0xB8020 Portl: 0xB8820

Table 750: Current DMA AddreSs REQISIENcvueveeiiiiie i eiee e sseee e see e

Offset: Port0: 0xB8024 Portl: 0xB8824

Table 751: Current DMA Length REQISIENccviviiireiiiiie e

Offset: Port0: 0xB8028 Portl: 0xB8828

Table 752: TSU Enable ACCESS REJISIENcccviiiiieiiiieeeesiieee st e s seee e siee e

Offset: Port0: 0xB802C Portl: 0xB882C

Table 753: TSU Timestamp REGISIENcoiuiiiiiiiiiie e

Offset: Port0: 0xB8030 Portl: 0xB8830

Table 754: TSU StatuS REQISIENcciuiiiieiiiie e

Offset: Port0: 0xB8034 Portl: 0xB8834

Table 755: TSU Timestamp Control REGISIEN........ccouiiiiiieiiiiiieeiiiiee s esiieee e

Offset: Port0: 0xB8038 Portl: 0xB8838

Table 756: TSU TeSt REQISIENcccciiiiiiiiiic e

Offset: Port0: 0xB803C Portl: 0xB883C

Table 757: TSU Interrupt Source RegIStercocvuiiviiiiiiiiiii e

Offset: Port0: 0xB8040 Portl: 0xB8840

Table 758: TSU Interrupt Mask Register..........cccocviiiiiiiiiiiic e

Offset: Port0: 0xB8044 Portl: 0xB8844

Table 759: IRQ Parameter REgISIErcociiiiiiiiiiiiii e

Offset: Port0: 0xB8048 Portl: 0xB8848

Table 760: TSU Next Descriptorl REJISIENcuuvieeiiiiieeciiiiee e eriee e e siea e

Offset: Port0: 0xB8050 Portl: 0xB8850

Table 761: TSU Next Descriptor2 REQISIENcuveeeeiiiiie e s reee e siaa e

Offset: Port0: 0xB8054 Portl: 0xB8854

Table 762: TSU SyncByte Detection REQISIEN.........cccccuiieiiiiiieeeiieee e srieeeeesieee e

Offset: Port0: 0xB8058 Port1: 0xB8858

Table 763: TSU Revision Register
Offset: Port0: 0xB805C Port1: 0xB885C

Table 764: TSU Aggregation Control REGIStErcccvvveiiiiieeiiiiee e

Offset: Port0: 0xB8060 Portl: 0OxB8860

Table 765: TSU Timestamp Interval REgISterccovviiiveiiiiieeeiieee e

Offset: Port0: 0xB8064 Portl: 0OxB8864

Copyright © 2008 Marvell
December 2, 2008, Preliminary Document Classification: Proprietary Information

List of Registers

Doc. No. MV-S104860-U0 Rev. C
Page 349

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

Table 767:

Table 768:

Table 769:

Table 770:

Table 771:

Table 772:

Table 773:

Table 774:

Table 775:

Table 776:

Table 777:

Table 778:

Table 779:

Table 780:

Table 781:

Table 782:

A.19 General PUrpPOSE POIt REQISTEIS ...uuuuiiiiiiiiiiiiiiiiiiiiiiiiieressiessirersesrerssresreesrrsreeereee———————. 762
GPIO Data QUL REQISEIcoiuiiiiiiiiiiiiic e e e 762
Offset: 0x10100
GPIO Data Out Enable Control REJISLErcccoiiiiiiiiiiiiiccc 762
Offset: 0x10104
GPIO BIiNK ENADIE REQISTET ...iiiiieiiieeiiiiie e ettt e ettt e ettt e e st e e e st e e e e s tae e e e steaeeeaansaeeeeanssaaaeesssneaennnnnns 763
Offset: 0x10108
GPIO Data IN PolArity REQISTEIuuiiiiiiiiieeiiiiiee et s sttt e e st tee e e st e e e e st e e e e straeeeaasseeeesansseeaeessseeeeeannnns 763
Offset: 0x1010C
GPIO DAta IN REQISIET ..veiieiiiiiiei e ittt e ettt e e e st e e ettt e e et e e e e staeeeeaasbaeaeasssaeeesasseeeeeaansaeaeeanssseaenannes 763
Offset: 0x10110
GPIO INterrupt CaUSE REQISIET veiieeiiiiie et e e ee et e e s e e e st e e e eteeeeeasnseeeeeannneeeeensseeeennnnnes 763
Offset: 0x10114
GPIO INterrupt MASK REGISIEI ...ueeiiiee ettt e s e e st e e e eteeeeessnteeeeeannneneeensnnenennnnnes 764
Offset: 0x10118
GPIO Interrupt Level Mask REQISIENvuiiiiiiiiie et ee e e e e e e s e e e snaeee e e e neeeeeans 764
Offset: 0x1011C
GPIO High Data OUL REGISTEI ..oiueeiieiiiiiie ettt eite et et e s e e e s st e e e sstee e e e s snbeeeeeannaeeeeensbeeeeennnnes 764
Offset: 0x10140
GPIO High Data Out Enable Control REQISIErcoiviiiiiiiiiiiie ettt ee e 764
Offset: 0x10144
GPIO High BIINK ENADIE REQISLETciiiiiiieiiiiee ettt et e e st e e s e e e e nee e e s nnneee 765
Offset: 0x10148
GPIO High Data In Polarity REGISIEIc.coiiiiiiiiiiiiie e 765
Offset: 0x1014C
GPIO High Data IN REJISLETooiiiiiiiiiiie et s e s 765
Offset: 0x10150
GPIO High Interrupt Cause REJISLEIc.coiiiiiiiiiiiiic i 765
Offset: 0x10154
GPIO High Interrupt Mask REQISIEIuiiiiiiiiee ettt s et e e e e iee e e s st e e e s snaraeaeesssnaeeennnees 766
Offset: 0x10158
GPIO High Interrupt Level Mask REQISIENciiiiviiieiiiiie e ciiiee st e e st e e ieee e e st e e e e snaaaaeesseaaeeennnees 766

Table 784:

Table 785:

Table 786:

Table 787:

Table 788:

Offset: 0x1015C

F N = O E = Te L1 =] PP 767
RTC TiME REGISIEI ..t ae e 767
Offset: 0x10300
RTC DAtE REGISIEI ...ttt e s b e sh b e e b e e s e s e s aae e 768
Offset: 0x10304
RTC Alarm Time Configuration REQISIErcciiiiiiiiiiiiii s 768
Offset: 0x10308
RTC Alarm Date Configuration REQISIETccoiiiiiieiiiiie et e e e e e s e e e s nsaneaeesnnaeee s 769
Offset: 0x1030C
RTC INtErrUPt MASK REGISIEIeviieiiiiiiie ettt e et e e e e e e e e st e e e e et e e e e s nsteeeesannaeeeeannaeeens 770
Offset: 0x10310
RTC INtErrUPt CaUSE REQISIETveiiiiciiiie ettt e e e e e e s e e e s saa et e e e sstteeessnntaeeesannneeeeannaeees 770

Table 789:

Offset: 0x10314

A. 21 BOOt ROM REQISTEIS ...uuuuuuuuuiiiiiiiuiiiiiiititutituetaueraraeaeeaererrees et

Table 791:

Boot ROM Routine and Error Code Register
Offset: 0x100DO0

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell

Page 350

Document Classification: Proprietary Information December 2, 2008, Preliminary

YN AV | o ol =T o 1] =T
Table 793: MPP Control 0 RegISterccciiiiiiiiiiiiiii e

Offset: 0x10000

Table 794: MPP Control 1 RegiSterccciiiiiiiiiiiiiii i

Offset: 0x10004

Table 795: MPP Control 2 REQISIENccccvvveeiiiieieeciiie e stiee e e see e s see e e snvae e

Offset: 0x10008

Table 796: MPP Control 3 REQISIENcccuiieeiiiiiieesiiie et e e e see e e snaae e

Offset: 0x1000C

Table 797: MPP Control 4 REQISIENccccviieeiiiieieeciiie e stiee e s seee e e svae e

Offset: 0x10010

Table 798: MPP Control 5 REQISErcocviieeiiiiiie e e e

Offset: 0x10014

Table 799: MPP Control 6 REQISErccccveiveviiiiie e e e

Offset: 0x10018

Table 800: Sample at ReSet REQISIErcc.ovveviiieiieiiiiie e e e

Offset: 0x10030

A.23EFUSE REQISTEIS ..ooiiiiiiiiiiiiee e

Table 802: eFuse Protection REQISIENc.eceviiiiieeiiiiie e et e e e see e e svae e

Offset: 0x1008C

Table 803: eFUSE0 LOW REQISLENuueveeiiiiiees e eieee e e e e e snea e

Offset: 0x100A4

Table 804: eFuse0 High REQISIEIccoiiiiiiiiiiiiie e

Offset: 0x100A8

Table 805: eFUSEL LOW REQISLENc..uivieiiiiieesiiiiee et e e e nee e e snee e

Offset: 0x100AC

Table 806: eFusel High ReQISIEIccoiiiiiiiiiiiie e

Offset: 0x100BO

Table 807: eFuse CoNtrol REGISIErcooiuiiiiiiiiiee e

Offset: 0x100B4

A.24 Miscellaneous ReQiSterS.........uuuuuuuuiuiiiuiieiiiiiiieieiiieeeeeeeeeeeeeeeeneee
Table 809: DeViCe ID REQISIEIccoiieiiie e et e e e e e e e enes

Offset: 0x10034

Table 810: Clock CoNtrol REGQISIETevviiiiiiieeeiieie e e see e reee e eeeee e s e e ees

Offset: 0x1004C

Table 811: SYSRSTn Length Counter REQIStErccvevviiiiiieeiiiiie e eieee e

Offset: 0x10050

Table 812: Analog Group Configuration RegiStercccccvveeviiiiieeeiiiiieee s

Offset: 0x1007C

Table 813: SSCG Configuration REQISIErccveviiiiiiiieiiiieee e

Offset: 0x100D8

Table 814: PTP Clock Configuration RegISterccccceviiiieeriiiiieeeiiiieeesnieeen s

Offset: 0x100DC

Table 815: 10 Configuration 0 REQISIErccoeeiiiiiiiiiiiiie e

Offset: 0x100EO

Copyright © 2008 Marvell

December 2, 2008, Preliminary Document Classification: Proprietary Information

List of Registers

Doc. No. MV-S104860-U0 Rev. C
Page 351

—

= 88F6180/88F619x/88F6281
M ARV EL L® Functional Specifications

A 88F6180/88F619x/88F6281 Register Set

A.l Registers Overview
This section details the 88F6180/88F619x/88F6281 registers.

A.l.l Register Description

The device internal registers are mapped into a 1 MB address window. However, only part of this
space is really populated with registers. The chip registers are distributed among the device’s
different units (distributed register file). Each unit has its own 64 KB register file space.

All registers are 32 bits wide [31:0]. The device registers use Little Endian byte orientation in which
the Most Significant Byte (MSB) of a multi-byte expression is located in the highest address. So, for
example, if a register value is 0OXAABBCCDD (bits[31:24] are 0xAA), a write of single byte Ox77 to
address 0x1, results in a new register value of OXAABB77DD. The bits within a given byte are
always ordered so that bit[7] is the Most Significant bit (MSb) and bit[0] is the Least Significant bit
(LSb).

Unless otherwise noted, the registers support byte, half-word, and word accesses.

A.l.2 Register Field Type Codes

The 88F6180/88F619x/88F6281 registers are made up of up to 32-bit fields, where each field is
associated with one or more bits. Each of these register fields have a unique programming
functionality and their operation is defined by the field’s type. The following list describes the function
of each type:

Table 87: Register Field Type Codes

Type Description
EXEC_HP Written to with 1 (high pulse) leads to the execution of an action (e.g., test step). Read value is always 0.
EXEC_RB Special function pair of bits (radio button). Write values Ob01 or 0b10 are possible (other values are ignored).

RO Read Only. Writing to this type of field may cause unpredictable results.

ROC Read Only Clear. After read, register field is cleared to zero.

RSVD Reserved for future use. All reserved bits are read as zero unless otherwise noted.

RW Read and Write.

RwWOC Read-only status, Write-0 to clear status register. Register bits indicate status when read, a set bit indicates a
status event may be cleared by writing a 0. Writing a 1 to RWOC bits have no effect.

RW1C Read-only status, Write-1 to clear status register. Register bits indicate status when read, a set bit indicates a
status event may be cleared by writing a 1. Writing a 0 to RW1C bits have no effect.

RWR Read, Write, and Reset. All bits are readable and writable. After reset the register field is cleared to zero.

RWS Read, Write, and Set. All bits are readable and writable. After reset the register field is set to a non-zero value, as
specified in the bit description.

SAR Sample at Reset

SC Self-Clear. Writing a one to this register causes the desired function to be immediately executed, then the register

field is cleared to zero when the function is complete.

Doc. No. MV-S104860-U0 Rev. C Copyright © 2008 Marvell
Page 352 Document Classification: Proprietary Information December 2, 2008, Preliminary

88F6180/88F619x/88F6281 Register Set
Registers Overview

Table 87: Register Field Type Codes (Continued)

Type Description

TO Writable for testing only.

WO Write Only. A write to the register field will trigger an internal function and a read will return an undefined value.
Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 353

M ARVELL®

A.2

—

= 88F6180/88F619x/88F6281

Functional Specifications

Internal Registers Address Map

The device Internal registers reside in a 1-MB address space. This address space is distributed
among the various device modules in 64-KB segments, as indicated in Table 88.

Table 88: Device Internal Registers Address Map

Unit
1D

0

1

Unit Name

DDR registers

TWSI, UART, SPI flash, NAND flash,
RTC, GPIO, and MPP registers

Mbus-L to Mbus Bridge registers

Cryptographic Engine and
Security Accelerator registers

PCI Express registers
USB registers

XOR engine registers
Gigabit Ethernet registers

SATA registers (88F619x and 88F6281

only)
NOTE: In the 88F6180, this address

space is reserved.
SDIO registers

Audio registers (88F6180, 88F6192,
and 88F6281 only)

MPEG Transport Stream registers
(88F6192 and 88F6281 only)
NOTE: In the 88F6180, and 88F6190

this address space is reserved.

Reserved

TDM registers (88F619x/88F6281

only)

NOTE: In the 88F6180, this address
space is reserved.

Reserved

Reserved

Doc. No. MV-S104860-U0 Rev. C

Page 354

Address Space
Size

64 KB

64 KB

64 KB

64 KB

64 KB
64 KB
64 KB
64 KB

64 KB

64 KB

64 KB

64 KB

64 KB

64 KB

64 KB

64 KB

Address
Range

0-64K

64K-128K

128K-192K

192K-256K

256K-320K
320K-384K
384K-448K
448K-512K

512K-576K

576K-640K

640K-704K

704K-768K

768K-832K

832K-896K

896K-960K

960K-1024K

Document Classification: Proprietary Information

Address Range in

Hexadecimal

0x00000—-0x0FFFF

0x10000-0x1FFFF

0x20000-0x2FFFF

0x30000-0x3FFFF

0x40000-0x4FFFF

0x50000-0x5FFFF

0x60000-0x6FFFF

0x70000-0x7FFFF

0x80000-0x8FFFF

0x90000-0x9FFFF

0xAO000—-OxAFFFF

0xB0O000—-OxBFFFF

0xC0000-0xCFFFF

0xD0000-OxDFFFF

0xEOO000-OXEFFFF

0xFO000-OxFFFFF

Copyright © 2008 Marvell
December 2, 2008, Preliminary

88F6180/88F619x/88F6281 Register Set
Mbus-L to Mbus Bridge Registers

A.3 Mbus-L to Mbus Bridge Registers

Refer to the "Mbus-L to Mbus Bridge" section of the "Internal Architecture" of this document.

The following table provides a summarized list of all of the Mbus-L to Mbus Bridge registers,
including the register names, their type, offset, and a reference to the corresponding table and page
for a detailed description of each register and its fields.

Table 89: Register Map Table for the Mbus-L to Mbus Bridge Registers

Register Name Offset Table and Page
CPU Address Map Registers
WindowO0 Control Register 0x20000 Table 90, p. 357
WindowO0 Base Register 0x20004 Table 91, p. 357
Window0 Remap Low Register 0x20008 Table 92, p. 358
Window0 Remap High Register 0x2000C Table 93, p. 358
Window1 Control Register 0x20010 Table 94, p. 358
Window1 Base Register 0x20014 Table 95, p. 359
Windowl Remap Low Register 0x20018 Table 96, p. 359
Windowl Remap High Register 0x2001C Table 97, p. 359
Window?2 Control Register 0x20020 Table 98, p. 359
Window?2 Base Register 0x20024 Table 99, p. 360
Window2 Remap Low Register 0x20028 Table 100, p. 360
Window2 Remap High Register 0x2002C Table 101, p. 360
Window3 Control Register 0x20030 Table 102, p. 361
Window3 Base Register 0x20034 Table 103, p. 361
Window3 Remap Low Register 0x20038 Table 104, p. 361
Window3 Remap High Register 0x2003C Table 105, p. 362
Window4 Control Register 0x20040 Table 106, p. 362
Window4 Base Register 0x20044 Table 107, p. 362
Window5 Control Register 0x20050 Table 108, p. 363
Window5 Base Register 0x20054 Table 109, p. 363
Window6 Control Register 0x20060 Table 110, p. 363
Window6 Base Register 0x20064 Table 111, p. 364
Window?7 Control Register 0x20070 Table 112, p. 364
Window?7 Base Register 0x20074 Table 113, p. 365
Device Internal Registers Base Address 0x20080 Table 114, p. 365
CPU Control and Status Registers
CPU Configuration Register 0x20100 Table 115, p. 365
CPU Control and Status Register 0x20104 Table 116, p. 368
RSTOUTnN Mask Register 0x20108 Table 117, p. 368
System Soft Reset Register 0x2010C Table 118, p. 369
Mbus-L to Mbus Bridge Interrupt Cause Register 0x20110 Table 119, p. 369
Mbus-L to Mbus Bridge Interrupt Mask Register 0x20114 Table 120, p. 370
Memory Power Management Control Register 0x20118 Table 121, p. 370
Clock Gating Control Register 0x2011C Table 122, p. 371
Copyright © 2008 Marvell Doc. No. MV-S104860-U0 Rev. C

December 2, 2008, Preliminary Document Classification: Proprietary Information Page 355

—

= 88F6180/88F619x/88F6281
M A R V EL L® Functional Specifications

Table 89: Register Map Table for the Mbus-L to Mbus Bridge Registers (Continued)

Register Name Offset Table and Page
BIU Configuration Register 0x20120 Table 123, p. 373
CPU L2 Configuration Register 0x20128 Table 124, p. 374
L2 RAM Timing 0 Register 0x20134 Table 125, p. 375
L2 RAM Timing 1 Register 0x20138 Table 126, p. 375
L2 RAM Power Management Control Register 0x20144 Table 127, p. 376
CPU RAM Management Control0 Register 0x20148 Table 128, p. 376
CPU RAM Management Controll Register 0x2014C Table 129, p. 376
CPU RAM Management Control2 Register 0x20150 Table 130, p. 377
CPU RAM Management Control3 Register 0x20154 Table 131, p. 377
CPU Doorbell Registers
Host-to-CPU Doorbell Register 0x20400 Table 132, p. 377
Host-to-CPU Doorbell Mask Register 0x20404 Table 133, p. 378
CPU-to-Host Doorbell Register 0x20408 Table 134, p. 378
CPU-to-Host Doorbell Mask Register 0x2040C Table 135, p. 378
CPU Timers Registers
CPU Timers Control Register 0x20300 Table 136, p. 378
CPU Timer0O Reload Register 0x20310 Table 137, p. 379
CPU Timer 0 Register 0x20314 Table 138, p. 380
CPU Timerl Reload Register 0x20318 Table 139, p. 380
CPU Timer 1 Register 0x2031C Table 140, p. 380
CPU Watchdog Timer Reload Register 0x20320 Table 141, p. 380
CPU Watchdog Timer Register 0x20324 Table 142, p. 381
L2 Non Cacheable Address
WindowO Base Address Register 0x20A00 Table 143, p. 381
WindowO Size Address Register 0x20A04 Table 144, p. 381
Window1 Base Address Register 0x20A08 Table 145, p. 381
Window1 Size Address Register 0x20A0C Table 146, p. 382
Window?2 Base Address Register 0x20A10 Table 147, p. 382
Window?2 Size Address Register 0x20A14 Table 148, p. 382
Window3 Base Address Register 0x20A18 Table 149, p. 383
Window3 Size Address Register 0x20A1C Table 150, p. 383
Main Interrupt Controller Registers
Main Interrupt Cause Low Register 0x20200 Table 151, p. 383
Main IRQ Interrupt Mask Low Register 0x20204 Table 152, p. 385
Main FIQ Interrupt Mask Low Register 0x20208 Table 153, p. 386
Endpoint Interrupt Mask Low Register 0x2020C Table 154, p. 386
Main Interrupt Cause High Register 0x20210 Table 155, p. 386
Main IRQ Interrupt Mask High Register 0x20214 Table 156, p. 387
Main FIQ Interrupt Mask High Register 0x20218 Table 157, p. 388
Endpo