|
--- /dev/null
|
|
+++ b/ext/sqlite/config.m4
|
|
@@ -0,0 +1,157 @@
|
|
+dnl $Id$
|
|
+dnl config.m4 for extension sqlite
|
|
+dnl vim:et:ts=2:sw=2
|
|
+
|
|
+PHP_ARG_WITH(sqlite, for sqlite support,
|
|
+[ --without-sqlite=DIR Do not include sqlite support. DIR is the sqlite base
|
|
+ install directory [BUNDLED]], yes)
|
|
+
|
|
+PHP_ARG_ENABLE(sqlite-utf8, whether to enable UTF-8 support in sqlite (default: ISO-8859-1),
|
|
+[ --enable-sqlite-utf8 SQLite: Enable UTF-8 support for SQLite], no, no)
|
|
+
|
|
+
|
|
+
|
|
+dnl
|
|
+dnl PHP_PROG_LEMON
|
|
+dnl
|
|
+dnl Search for lemon binary and check its version
|
|
+dnl
|
|
+AC_DEFUN([PHP_PROG_LEMON],[
|
|
+ # we only support certain lemon versions
|
|
+ lemon_version_list="1.0"
|
|
+
|
|
+ AC_CHECK_PROG(LEMON, lemon, lemon)
|
|
+ if test "$LEMON"; then
|
|
+ AC_CACHE_CHECK([for lemon version], php_cv_lemon_version, [
|
|
+ lemon_version=`$LEMON -x 2>/dev/null | $SED -e 's/^.* //'`
|
|
+ php_cv_lemon_version=invalid
|
|
+ for lemon_check_version in $lemon_version_list; do
|
|
+ if test "$lemon_version" = "$lemon_check_version"; then
|
|
+ php_cv_lemon_version="$lemon_check_version (ok)"
|
|
+ fi
|
|
+ done
|
|
+ ])
|
|
+ else
|
|
+ lemon_version=none
|
|
+ fi
|
|
+ case $php_cv_lemon_version in
|
|
+ ""|invalid[)]
|
|
+ lemon_msg="lemon versions supported for regeneration of libsqlite parsers: $lemon_version_list (found: $lemon_version)."
|
|
+ AC_MSG_WARN([$lemon_msg])
|
|
+ LEMON="exit 0;"
|
|
+ ;;
|
|
+ esac
|
|
+ PHP_SUBST(LEMON)
|
|
+])
|
|
+
|
|
+
|
|
+if test "$PHP_SQLITE" != "no"; then
|
|
+ if test "$PHP_PDO" != "no"; then
|
|
+ PHP_CHECK_PDO_INCLUDES([], [AC_MSG_WARN([Cannot find php_pdo_driver.h.])])
|
|
+ if test -n "$pdo_inc_path"; then
|
|
+ AC_DEFINE([PHP_SQLITE2_HAVE_PDO], [1], [Have PDO])
|
|
+ pdo_inc_path="-I$pdo_inc_path"
|
|
+ fi
|
|
+ fi
|
|
+
|
|
+ if test "$PHP_SQLITE" != "yes"; then
|
|
+ SEARCH_PATH="/usr/local /usr"
|
|
+ SEARCH_FOR="/include/sqlite.h"
|
|
+ if test -r $PHP_SQLITE/; then # path given as parameter
|
|
+ SQLITE_DIR=$PHP_SQLITE
|
|
+ else # search default path list
|
|
+ AC_MSG_CHECKING([for sqlite files in default path])
|
|
+ for i in $SEARCH_PATH ; do
|
|
+ if test -r $i/$SEARCH_FOR; then
|
|
+ SQLITE_DIR=$i
|
|
+ AC_MSG_RESULT(found in $i)
|
|
+ fi
|
|
+ done
|
|
+ fi
|
|
+
|
|
+ if test -z "$SQLITE_DIR"; then
|
|
+ AC_MSG_RESULT([not found])
|
|
+ AC_MSG_ERROR([Please reinstall the sqlite distribution from http://www.sqlite.org])
|
|
+ fi
|
|
+
|
|
+ PHP_CHECK_LIBRARY(sqlite, sqlite_open, [
|
|
+ PHP_ADD_LIBRARY_WITH_PATH(sqlite, $SQLITE_DIR/$PHP_LIBDIR, SQLITE_SHARED_LIBADD)
|
|
+ PHP_ADD_INCLUDE($SQLITE_DIR/include)
|
|
+ ],[
|
|
+ AC_MSG_ERROR([wrong sqlite lib version or lib not found])
|
|
+ ],[
|
|
+ -L$SQLITE_DIR/$PHP_LIBDIR -lm
|
|
+ ])
|
|
+ SQLITE_MODULE_TYPE=external
|
|
+ PHP_SQLITE_CFLAGS=$pdo_inc_path
|
|
+ sqlite_extra_sources="libsqlite/src/encode.c"
|
|
+ else
|
|
+ # use bundled library
|
|
+ PHP_PROG_LEMON
|
|
+ SQLITE_MODULE_TYPE=builtin
|
|
+ PHP_SQLITE_CFLAGS="-I@ext_srcdir@/libsqlite/src -I@ext_builddir@/libsqlite/src $pdo_inc_path"
|
|
+ sqlite_extra_sources="libsqlite/src/opcodes.c \
|
|
+ libsqlite/src/parse.c libsqlite/src/encode.c \
|
|
+ libsqlite/src/auth.c libsqlite/src/btree.c libsqlite/src/build.c \
|
|
+ libsqlite/src/delete.c libsqlite/src/expr.c libsqlite/src/func.c \
|
|
+ libsqlite/src/hash.c libsqlite/src/insert.c libsqlite/src/main.c \
|
|
+ libsqlite/src/os.c libsqlite/src/pager.c \
|
|
+ libsqlite/src/printf.c libsqlite/src/random.c \
|
|
+ libsqlite/src/select.c libsqlite/src/table.c libsqlite/src/tokenize.c \
|
|
+ libsqlite/src/update.c libsqlite/src/util.c libsqlite/src/vdbe.c \
|
|
+ libsqlite/src/attach.c libsqlite/src/btree_rb.c libsqlite/src/pragma.c \
|
|
+ libsqlite/src/vacuum.c libsqlite/src/copy.c \
|
|
+ libsqlite/src/vdbeaux.c libsqlite/src/date.c \
|
|
+ libsqlite/src/where.c libsqlite/src/trigger.c"
|
|
+ fi
|
|
+ dnl
|
|
+ dnl Common for both bundled/external
|
|
+ dnl
|
|
+ sqlite_sources="sqlite.c sess_sqlite.c pdo_sqlite2.c $sqlite_extra_sources"
|
|
+ PHP_NEW_EXTENSION(sqlite, $sqlite_sources, $ext_shared,,$PHP_SQLITE_CFLAGS)
|
|
+ PHP_ADD_EXTENSION_DEP(sqlite, spl, true)
|
|
+ PHP_ADD_EXTENSION_DEP(sqlite, pdo, true)
|
|
+
|
|
+ PHP_ADD_MAKEFILE_FRAGMENT
|
|
+ PHP_SUBST(SQLITE_SHARED_LIBADD)
|
|
+ PHP_INSTALL_HEADERS([$ext_builddir/libsqlite/src/sqlite.h])
|
|
+
|
|
+ if test "$SQLITE_MODULE_TYPE" = "builtin"; then
|
|
+ PHP_ADD_BUILD_DIR($ext_builddir/libsqlite/src, 1)
|
|
+ AC_CHECK_SIZEOF(char *, 4)
|
|
+ AC_DEFINE(SQLITE_PTR_SZ, SIZEOF_CHAR_P, [Size of a pointer])
|
|
+ dnl use latin 1 for SQLite older than 2.8.9; the utf-8 handling
|
|
+ dnl in funcs.c uses assert(), which is a bit silly and something
|
|
+ dnl we want to avoid. This assert() was removed in SQLite 2.8.9.
|
|
+ if test "$PHP_SQLITE_UTF8" = "yes"; then
|
|
+ SQLITE_ENCODING="UTF8"
|
|
+ AC_DEFINE(SQLITE_UTF8, 1, [ ])
|
|
+ else
|
|
+ SQLITE_ENCODING="ISO8859"
|
|
+ fi
|
|
+ PHP_SUBST(SQLITE_ENCODING)
|
|
+
|
|
+ SQLITE_VERSION=`cat $ext_srcdir/libsqlite/VERSION`
|
|
+ PHP_SUBST(SQLITE_VERSION)
|
|
+
|
|
+ sed -e s/--VERS--/$SQLITE_VERSION/ -e s/--ENCODING--/$SQLITE_ENCODING/ $ext_srcdir/libsqlite/src/sqlite.h.in > $ext_builddir/libsqlite/src/sqlite.h
|
|
+
|
|
+ if test "$ext_shared" = "no" || test "$ext_srcdir" != "$abs_srcdir"; then
|
|
+ echo '#include <php_config.h>' > $ext_builddir/libsqlite/src/config.h
|
|
+ else
|
|
+ echo "#include \"$abs_builddir/config.h\"" > $ext_builddir/libsqlite/src/config.h
|
|
+ fi
|
|
+
|
|
+ cat >> $ext_builddir/libsqlite/src/config.h <<EOF
|
|
+#if ZTS
|
|
+# define THREADSAFE 1
|
|
+#endif
|
|
+#if !ZEND_DEBUG
|
|
+# define NDEBUG
|
|
+#endif
|
|
+EOF
|
|
+ fi
|
|
+
|
|
+ AC_CHECK_FUNCS(usleep nanosleep)
|
|
+ AC_CHECK_HEADERS(time.h)
|
|
+fi
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/config.w32
|
|
@@ -0,0 +1,39 @@
|
|
+// $Id$
|
|
+// vim:ft=javascript
|
|
+
|
|
+ARG_WITH("sqlite", "SQLite support", "no");
|
|
+
|
|
+if (PHP_SQLITE != "no") {
|
|
+ copy_and_subst(configure_module_dirname + "\\libsqlite\\src\\sqlite.h.in",
|
|
+ configure_module_dirname + "\\libsqlite\\src\\sqlite.h", new Array(
|
|
+ "--VERS--", file_get_contents(configure_module_dirname + "\\libsqlite\\VERSION").replace(new RegExp("[\r\n]+", "g"), ""),
|
|
+ "--ENCODING--", "ISO8859"
|
|
+ ));
|
|
+
|
|
+ FSO.CopyFile(configure_module_dirname + "\\libsqlite\\src\\sqlite_config.w32.h",
|
|
+ configure_module_dirname + "\\libsqlite\\src\\config.h");
|
|
+
|
|
+ if (FSO.FileExists(configure_module_dirname + "\\..\\pdo\\php_pdo_driver.h")) {
|
|
+ PHP_SQLITE2_PDO_CFLAGS = " /DPHP_SQLITE2_HAVE_PDO=1 /I " + configure_module_dirname + "\\..";
|
|
+ ADD_EXTENSION_DEP('sqlite', 'pdo')
|
|
+ } else {
|
|
+ PHP_SQLITE2_PDO_CFLAGS = "";
|
|
+ }
|
|
+
|
|
+ EXTENSION("sqlite", "sqlite.c sess_sqlite.c pdo_sqlite2.c", null,
|
|
+ "/D PHP_SQLITE_EXPORTS /I " + configure_module_dirname + "/libsqlite/src" +
|
|
+ PHP_SQLITE2_PDO_CFLAGS);
|
|
+
|
|
+
|
|
+ ADD_SOURCES(configure_module_dirname + "/libsqlite/src", "opcodes.c parse.c encode.c \
|
|
+ auth.c btree.c build.c delete.c expr.c func.c hash.c insert.c \
|
|
+ main.c os.c pager.c printf.c random.c select.c table.c tokenize.c \
|
|
+ update.c util.c vdbe.c attach.c btree_rb.c pragma.c vacuum.c \
|
|
+ copy.c where.c trigger.c vdbeaux.c date.c", "sqlite");
|
|
+
|
|
+ AC_DEFINE("HAVE_SQLITE", 1, "SQLite support");
|
|
+ if (!PHP_SQLITE_SHARED) {
|
|
+ ADD_DEF_FILE(configure_module_dirname + "\\php_sqlite.def");
|
|
+ }
|
|
+ ADD_EXTENSION_DEP('sqlite', 'spl')
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/CREDITS
|
|
@@ -0,0 +1,2 @@
|
|
+SQLite
|
|
+Wez Furlong, Tal Peer, Marcus Boerger, Ilia Alshanetsky
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/README
|
|
@@ -0,0 +1,37 @@
|
|
+This directory contains source code to
|
|
+
|
|
+ SQLite: An Embeddable SQL Database Engine
|
|
+
|
|
+To compile the project, first create a directory in which to place
|
|
+the build products. It is recommended, but not required, that the
|
|
+build directory be separate from the source directory. Cd into the
|
|
+build directory and then from the build directory run the configure
|
|
+script found at the root of the source tree. Then run "make".
|
|
+
|
|
+For example:
|
|
+
|
|
+ tar xzf sqlite.tar.gz ;# Unpack the source tree into "sqlite"
|
|
+ mkdir bld ;# Build will occur in a sibling directory
|
|
+ cd bld ;# Change to the build directory
|
|
+ ../sqlite/configure ;# Run the configure script
|
|
+ make ;# Run the makefile.
|
|
+
|
|
+The configure script uses autoconf 2.50 and libtool. If the configure
|
|
+script does not work out for you, there is a generic makefile named
|
|
+"Makefile.linux-gcc" in the top directory of the source tree that you
|
|
+can copy and edit to suite your needs. Comments on the generic makefile
|
|
+show what changes are needed.
|
|
+
|
|
+The linux binaries on the website are created using the generic makefile,
|
|
+not the configure script. The configure script is unmaintained. (You
|
|
+can volunteer to take over maintenance of the configure script, if you want!)
|
|
+The windows binaries on the website are created using MinGW32 configured
|
|
+as a cross-compiler running under Linux. For details, see the ./publish.sh
|
|
+script at the top-level of the source tree.
|
|
+
|
|
+Contacts:
|
|
+
|
|
+ http://www.sqlite.org/
|
|
+ http://www.hwaci.com/sw/sqlite/
|
|
+ http://groups.yahoo.com/group/sqlite/
|
|
+ drh@hwaci.com
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/attach.c
|
|
@@ -0,0 +1,311 @@
|
|
+/*
|
|
+** 2003 April 6
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This file contains code used to implement the ATTACH and DETACH commands.
|
|
+**
|
|
+** $Id$
|
|
+*/
|
|
+#include "sqliteInt.h"
|
|
+
|
|
+/*
|
|
+** This routine is called by the parser to process an ATTACH statement:
|
|
+**
|
|
+** ATTACH DATABASE filename AS dbname
|
|
+**
|
|
+** The pFilename and pDbname arguments are the tokens that define the
|
|
+** filename and dbname in the ATTACH statement.
|
|
+*/
|
|
+void sqliteAttach(Parse *pParse, Token *pFilename, Token *pDbname, Token *pKey){
|
|
+ Db *aNew;
|
|
+ int rc, i;
|
|
+ char *zFile, *zName;
|
|
+ sqlite *db;
|
|
+ Vdbe *v;
|
|
+
|
|
+ v = sqliteGetVdbe(pParse);
|
|
+ sqliteVdbeAddOp(v, OP_Halt, 0, 0);
|
|
+ if( pParse->explain ) return;
|
|
+ db = pParse->db;
|
|
+ if( db->file_format<4 ){
|
|
+ sqliteErrorMsg(pParse, "cannot attach auxiliary databases to an "
|
|
+ "older format master database", 0);
|
|
+ pParse->rc = SQLITE_ERROR;
|
|
+ return;
|
|
+ }
|
|
+ if( db->nDb>=MAX_ATTACHED+2 ){
|
|
+ sqliteErrorMsg(pParse, "too many attached databases - max %d",
|
|
+ MAX_ATTACHED);
|
|
+ pParse->rc = SQLITE_ERROR;
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ zFile = 0;
|
|
+ sqliteSetNString(&zFile, pFilename->z, pFilename->n, 0);
|
|
+ if( zFile==0 ) return;
|
|
+ sqliteDequote(zFile);
|
|
+#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
+ if( sqliteAuthCheck(pParse, SQLITE_ATTACH, zFile, 0, 0)!=SQLITE_OK ){
|
|
+ sqliteFree(zFile);
|
|
+ return;
|
|
+ }
|
|
+#endif /* SQLITE_OMIT_AUTHORIZATION */
|
|
+
|
|
+ zName = 0;
|
|
+ sqliteSetNString(&zName, pDbname->z, pDbname->n, 0);
|
|
+ if( zName==0 ) return;
|
|
+ sqliteDequote(zName);
|
|
+ for(i=0; i<db->nDb; i++){
|
|
+ if( db->aDb[i].zName && sqliteStrICmp(db->aDb[i].zName, zName)==0 ){
|
|
+ sqliteErrorMsg(pParse, "database %z is already in use", zName);
|
|
+ pParse->rc = SQLITE_ERROR;
|
|
+ sqliteFree(zFile);
|
|
+ return;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ if( db->aDb==db->aDbStatic ){
|
|
+ aNew = sqliteMalloc( sizeof(db->aDb[0])*3 );
|
|
+ if( aNew==0 ) return;
|
|
+ memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2);
|
|
+ }else{
|
|
+ aNew = sqliteRealloc(db->aDb, sizeof(db->aDb[0])*(db->nDb+1) );
|
|
+ if( aNew==0 ) return;
|
|
+ }
|
|
+ db->aDb = aNew;
|
|
+ aNew = &db->aDb[db->nDb++];
|
|
+ memset(aNew, 0, sizeof(*aNew));
|
|
+ sqliteHashInit(&aNew->tblHash, SQLITE_HASH_STRING, 0);
|
|
+ sqliteHashInit(&aNew->idxHash, SQLITE_HASH_STRING, 0);
|
|
+ sqliteHashInit(&aNew->trigHash, SQLITE_HASH_STRING, 0);
|
|
+ sqliteHashInit(&aNew->aFKey, SQLITE_HASH_STRING, 1);
|
|
+ aNew->zName = zName;
|
|
+ rc = sqliteBtreeFactory(db, zFile, 0, MAX_PAGES, &aNew->pBt);
|
|
+ if( rc ){
|
|
+ sqliteErrorMsg(pParse, "unable to open database: %s", zFile);
|
|
+ }
|
|
+#if SQLITE_HAS_CODEC
|
|
+ {
|
|
+ extern int sqliteCodecAttach(sqlite*, int, void*, int);
|
|
+ char *zKey = 0;
|
|
+ int nKey;
|
|
+ if( pKey && pKey->z && pKey->n ){
|
|
+ sqliteSetNString(&zKey, pKey->z, pKey->n, 0);
|
|
+ sqliteDequote(zKey);
|
|
+ nKey = strlen(zKey);
|
|
+ }else{
|
|
+ zKey = 0;
|
|
+ nKey = 0;
|
|
+ }
|
|
+ sqliteCodecAttach(db, db->nDb-1, zKey, nKey);
|
|
+ }
|
|
+#endif
|
|
+ sqliteFree(zFile);
|
|
+ db->flags &= ~SQLITE_Initialized;
|
|
+ if( pParse->nErr ) return;
|
|
+ if( rc==SQLITE_OK ){
|
|
+ rc = sqliteInit(pParse->db, &pParse->zErrMsg);
|
|
+ }
|
|
+ if( rc ){
|
|
+ int i = db->nDb - 1;
|
|
+ assert( i>=2 );
|
|
+ if( db->aDb[i].pBt ){
|
|
+ sqliteBtreeClose(db->aDb[i].pBt);
|
|
+ db->aDb[i].pBt = 0;
|
|
+ }
|
|
+ sqliteResetInternalSchema(db, 0);
|
|
+ pParse->nErr++;
|
|
+ pParse->rc = SQLITE_ERROR;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine is called by the parser to process a DETACH statement:
|
|
+**
|
|
+** DETACH DATABASE dbname
|
|
+**
|
|
+** The pDbname argument is the name of the database in the DETACH statement.
|
|
+*/
|
|
+void sqliteDetach(Parse *pParse, Token *pDbname){
|
|
+ int i;
|
|
+ sqlite *db;
|
|
+ Vdbe *v;
|
|
+ Db *pDb;
|
|
+
|
|
+ v = sqliteGetVdbe(pParse);
|
|
+ sqliteVdbeAddOp(v, OP_Halt, 0, 0);
|
|
+ if( pParse->explain ) return;
|
|
+ db = pParse->db;
|
|
+ for(i=0; i<db->nDb; i++){
|
|
+ pDb = &db->aDb[i];
|
|
+ if( pDb->pBt==0 || pDb->zName==0 ) continue;
|
|
+ if( strlen(pDb->zName)!=pDbname->n ) continue;
|
|
+ if( sqliteStrNICmp(pDb->zName, pDbname->z, pDbname->n)==0 ) break;
|
|
+ }
|
|
+ if( i>=db->nDb ){
|
|
+ sqliteErrorMsg(pParse, "no such database: %T", pDbname);
|
|
+ return;
|
|
+ }
|
|
+ if( i<2 ){
|
|
+ sqliteErrorMsg(pParse, "cannot detach database %T", pDbname);
|
|
+ return;
|
|
+ }
|
|
+#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
+ if( sqliteAuthCheck(pParse,SQLITE_DETACH,db->aDb[i].zName,0,0)!=SQLITE_OK ){
|
|
+ return;
|
|
+ }
|
|
+#endif /* SQLITE_OMIT_AUTHORIZATION */
|
|
+ sqliteBtreeClose(pDb->pBt);
|
|
+ pDb->pBt = 0;
|
|
+ sqliteFree(pDb->zName);
|
|
+ sqliteResetInternalSchema(db, i);
|
|
+ if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
|
|
+ db->nDb--;
|
|
+ if( i<db->nDb ){
|
|
+ db->aDb[i] = db->aDb[db->nDb];
|
|
+ memset(&db->aDb[db->nDb], 0, sizeof(db->aDb[0]));
|
|
+ sqliteResetInternalSchema(db, i);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Initialize a DbFixer structure. This routine must be called prior
|
|
+** to passing the structure to one of the sqliteFixAAAA() routines below.
|
|
+**
|
|
+** The return value indicates whether or not fixation is required. TRUE
|
|
+** means we do need to fix the database references, FALSE means we do not.
|
|
+*/
|
|
+int sqliteFixInit(
|
|
+ DbFixer *pFix, /* The fixer to be initialized */
|
|
+ Parse *pParse, /* Error messages will be written here */
|
|
+ int iDb, /* This is the database that must must be used */
|
|
+ const char *zType, /* "view", "trigger", or "index" */
|
|
+ const Token *pName /* Name of the view, trigger, or index */
|
|
+){
|
|
+ sqlite *db;
|
|
+
|
|
+ if( iDb<0 || iDb==1 ) return 0;
|
|
+ db = pParse->db;
|
|
+ assert( db->nDb>iDb );
|
|
+ pFix->pParse = pParse;
|
|
+ pFix->zDb = db->aDb[iDb].zName;
|
|
+ pFix->zType = zType;
|
|
+ pFix->pName = pName;
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+/*
|
|
+** The following set of routines walk through the parse tree and assign
|
|
+** a specific database to all table references where the database name
|
|
+** was left unspecified in the original SQL statement. The pFix structure
|
|
+** must have been initialized by a prior call to sqliteFixInit().
|
|
+**
|
|
+** These routines are used to make sure that an index, trigger, or
|
|
+** view in one database does not refer to objects in a different database.
|
|
+** (Exception: indices, triggers, and views in the TEMP database are
|
|
+** allowed to refer to anything.) If a reference is explicitly made
|
|
+** to an object in a different database, an error message is added to
|
|
+** pParse->zErrMsg and these routines return non-zero. If everything
|
|
+** checks out, these routines return 0.
|
|
+*/
|
|
+int sqliteFixSrcList(
|
|
+ DbFixer *pFix, /* Context of the fixation */
|
|
+ SrcList *pList /* The Source list to check and modify */
|
|
+){
|
|
+ int i;
|
|
+ const char *zDb;
|
|
+
|
|
+ if( pList==0 ) return 0;
|
|
+ zDb = pFix->zDb;
|
|
+ for(i=0; i<pList->nSrc; i++){
|
|
+ if( pList->a[i].zDatabase==0 ){
|
|
+ pList->a[i].zDatabase = sqliteStrDup(zDb);
|
|
+ }else if( sqliteStrICmp(pList->a[i].zDatabase,zDb)!=0 ){
|
|
+ sqliteErrorMsg(pFix->pParse,
|
|
+ "%s %z cannot reference objects in database %s",
|
|
+ pFix->zType, sqliteStrNDup(pFix->pName->z, pFix->pName->n),
|
|
+ pList->a[i].zDatabase);
|
|
+ return 1;
|
|
+ }
|
|
+ if( sqliteFixSelect(pFix, pList->a[i].pSelect) ) return 1;
|
|
+ if( sqliteFixExpr(pFix, pList->a[i].pOn) ) return 1;
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+int sqliteFixSelect(
|
|
+ DbFixer *pFix, /* Context of the fixation */
|
|
+ Select *pSelect /* The SELECT statement to be fixed to one database */
|
|
+){
|
|
+ while( pSelect ){
|
|
+ if( sqliteFixExprList(pFix, pSelect->pEList) ){
|
|
+ return 1;
|
|
+ }
|
|
+ if( sqliteFixSrcList(pFix, pSelect->pSrc) ){
|
|
+ return 1;
|
|
+ }
|
|
+ if( sqliteFixExpr(pFix, pSelect->pWhere) ){
|
|
+ return 1;
|
|
+ }
|
|
+ if( sqliteFixExpr(pFix, pSelect->pHaving) ){
|
|
+ return 1;
|
|
+ }
|
|
+ pSelect = pSelect->pPrior;
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+int sqliteFixExpr(
|
|
+ DbFixer *pFix, /* Context of the fixation */
|
|
+ Expr *pExpr /* The expression to be fixed to one database */
|
|
+){
|
|
+ while( pExpr ){
|
|
+ if( sqliteFixSelect(pFix, pExpr->pSelect) ){
|
|
+ return 1;
|
|
+ }
|
|
+ if( sqliteFixExprList(pFix, pExpr->pList) ){
|
|
+ return 1;
|
|
+ }
|
|
+ if( sqliteFixExpr(pFix, pExpr->pRight) ){
|
|
+ return 1;
|
|
+ }
|
|
+ pExpr = pExpr->pLeft;
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+int sqliteFixExprList(
|
|
+ DbFixer *pFix, /* Context of the fixation */
|
|
+ ExprList *pList /* The expression to be fixed to one database */
|
|
+){
|
|
+ int i;
|
|
+ if( pList==0 ) return 0;
|
|
+ for(i=0; i<pList->nExpr; i++){
|
|
+ if( sqliteFixExpr(pFix, pList->a[i].pExpr) ){
|
|
+ return 1;
|
|
+ }
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+int sqliteFixTriggerStep(
|
|
+ DbFixer *pFix, /* Context of the fixation */
|
|
+ TriggerStep *pStep /* The trigger step be fixed to one database */
|
|
+){
|
|
+ while( pStep ){
|
|
+ if( sqliteFixSelect(pFix, pStep->pSelect) ){
|
|
+ return 1;
|
|
+ }
|
|
+ if( sqliteFixExpr(pFix, pStep->pWhere) ){
|
|
+ return 1;
|
|
+ }
|
|
+ if( sqliteFixExprList(pFix, pStep->pExprList) ){
|
|
+ return 1;
|
|
+ }
|
|
+ pStep = pStep->pNext;
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/auth.c
|
|
@@ -0,0 +1,219 @@
|
|
+/*
|
|
+** 2003 January 11
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This file contains code used to implement the sqlite_set_authorizer()
|
|
+** API. This facility is an optional feature of the library. Embedded
|
|
+** systems that do not need this facility may omit it by recompiling
|
|
+** the library with -DSQLITE_OMIT_AUTHORIZATION=1
|
|
+**
|
|
+** $Id$
|
|
+*/
|
|
+#include "sqliteInt.h"
|
|
+
|
|
+/*
|
|
+** All of the code in this file may be omitted by defining a single
|
|
+** macro.
|
|
+*/
|
|
+#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
+
|
|
+/*
|
|
+** Set or clear the access authorization function.
|
|
+**
|
|
+** The access authorization function is be called during the compilation
|
|
+** phase to verify that the user has read and/or write access permission on
|
|
+** various fields of the database. The first argument to the auth function
|
|
+** is a copy of the 3rd argument to this routine. The second argument
|
|
+** to the auth function is one of these constants:
|
|
+**
|
|
+** SQLITE_COPY
|
|
+** SQLITE_CREATE_INDEX
|
|
+** SQLITE_CREATE_TABLE
|
|
+** SQLITE_CREATE_TEMP_INDEX
|
|
+** SQLITE_CREATE_TEMP_TABLE
|
|
+** SQLITE_CREATE_TEMP_TRIGGER
|
|
+** SQLITE_CREATE_TEMP_VIEW
|
|
+** SQLITE_CREATE_TRIGGER
|
|
+** SQLITE_CREATE_VIEW
|
|
+** SQLITE_DELETE
|
|
+** SQLITE_DROP_INDEX
|
|
+** SQLITE_DROP_TABLE
|
|
+** SQLITE_DROP_TEMP_INDEX
|
|
+** SQLITE_DROP_TEMP_TABLE
|
|
+** SQLITE_DROP_TEMP_TRIGGER
|
|
+** SQLITE_DROP_TEMP_VIEW
|
|
+** SQLITE_DROP_TRIGGER
|
|
+** SQLITE_DROP_VIEW
|
|
+** SQLITE_INSERT
|
|
+** SQLITE_PRAGMA
|
|
+** SQLITE_READ
|
|
+** SQLITE_SELECT
|
|
+** SQLITE_TRANSACTION
|
|
+** SQLITE_UPDATE
|
|
+**
|
|
+** The third and fourth arguments to the auth function are the name of
|
|
+** the table and the column that are being accessed. The auth function
|
|
+** should return either SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE. If
|
|
+** SQLITE_OK is returned, it means that access is allowed. SQLITE_DENY
|
|
+** means that the SQL statement will never-run - the sqlite_exec() call
|
|
+** will return with an error. SQLITE_IGNORE means that the SQL statement
|
|
+** should run but attempts to read the specified column will return NULL
|
|
+** and attempts to write the column will be ignored.
|
|
+**
|
|
+** Setting the auth function to NULL disables this hook. The default
|
|
+** setting of the auth function is NULL.
|
|
+*/
|
|
+int sqlite_set_authorizer(
|
|
+ sqlite *db,
|
|
+ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
|
|
+ void *pArg
|
|
+){
|
|
+ db->xAuth = xAuth;
|
|
+ db->pAuthArg = pArg;
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Write an error message into pParse->zErrMsg that explains that the
|
|
+** user-supplied authorization function returned an illegal value.
|
|
+*/
|
|
+static void sqliteAuthBadReturnCode(Parse *pParse, int rc){
|
|
+ sqliteErrorMsg(pParse, "illegal return value (%d) from the "
|
|
+ "authorization function - should be SQLITE_OK, SQLITE_IGNORE, "
|
|
+ "or SQLITE_DENY", rc);
|
|
+ pParse->rc = SQLITE_MISUSE;
|
|
+}
|
|
+
|
|
+/*
|
|
+** The pExpr should be a TK_COLUMN expression. The table referred to
|
|
+** is in pTabList or else it is the NEW or OLD table of a trigger.
|
|
+** Check to see if it is OK to read this particular column.
|
|
+**
|
|
+** If the auth function returns SQLITE_IGNORE, change the TK_COLUMN
|
|
+** instruction into a TK_NULL. If the auth function returns SQLITE_DENY,
|
|
+** then generate an error.
|
|
+*/
|
|
+void sqliteAuthRead(
|
|
+ Parse *pParse, /* The parser context */
|
|
+ Expr *pExpr, /* The expression to check authorization on */
|
|
+ SrcList *pTabList /* All table that pExpr might refer to */
|
|
+){
|
|
+ sqlite *db = pParse->db;
|
|
+ int rc;
|
|
+ Table *pTab; /* The table being read */
|
|
+ const char *zCol; /* Name of the column of the table */
|
|
+ int iSrc; /* Index in pTabList->a[] of table being read */
|
|
+ const char *zDBase; /* Name of database being accessed */
|
|
+ TriggerStack *pStack; /* The stack of current triggers */
|
|
+
|
|
+ if( db->xAuth==0 ) return;
|
|
+ assert( pExpr->op==TK_COLUMN );
|
|
+ for(iSrc=0; iSrc<pTabList->nSrc; iSrc++){
|
|
+ if( pExpr->iTable==pTabList->a[iSrc].iCursor ) break;
|
|
+ }
|
|
+ if( iSrc>=0 && iSrc<pTabList->nSrc ){
|
|
+ pTab = pTabList->a[iSrc].pTab;
|
|
+ }else if( (pStack = pParse->trigStack)!=0 ){
|
|
+ /* This must be an attempt to read the NEW or OLD pseudo-tables
|
|
+ ** of a trigger.
|
|
+ */
|
|
+ assert( pExpr->iTable==pStack->newIdx || pExpr->iTable==pStack->oldIdx );
|
|
+ pTab = pStack->pTab;
|
|
+ }else{
|
|
+ return;
|
|
+ }
|
|
+ if( pTab==0 ) return;
|
|
+ if( pExpr->iColumn>=0 ){
|
|
+ assert( pExpr->iColumn<pTab->nCol );
|
|
+ zCol = pTab->aCol[pExpr->iColumn].zName;
|
|
+ }else if( pTab->iPKey>=0 ){
|
|
+ assert( pTab->iPKey<pTab->nCol );
|
|
+ zCol = pTab->aCol[pTab->iPKey].zName;
|
|
+ }else{
|
|
+ zCol = "ROWID";
|
|
+ }
|
|
+ assert( pExpr->iDb<db->nDb );
|
|
+ zDBase = db->aDb[pExpr->iDb].zName;
|
|
+ rc = db->xAuth(db->pAuthArg, SQLITE_READ, pTab->zName, zCol, zDBase,
|
|
+ pParse->zAuthContext);
|
|
+ if( rc==SQLITE_IGNORE ){
|
|
+ pExpr->op = TK_NULL;
|
|
+ }else if( rc==SQLITE_DENY ){
|
|
+ if( db->nDb>2 || pExpr->iDb!=0 ){
|
|
+ sqliteErrorMsg(pParse, "access to %s.%s.%s is prohibited",
|
|
+ zDBase, pTab->zName, zCol);
|
|
+ }else{
|
|
+ sqliteErrorMsg(pParse, "access to %s.%s is prohibited", pTab->zName,zCol);
|
|
+ }
|
|
+ pParse->rc = SQLITE_AUTH;
|
|
+ }else if( rc!=SQLITE_OK ){
|
|
+ sqliteAuthBadReturnCode(pParse, rc);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Do an authorization check using the code and arguments given. Return
|
|
+** either SQLITE_OK (zero) or SQLITE_IGNORE or SQLITE_DENY. If SQLITE_DENY
|
|
+** is returned, then the error count and error message in pParse are
|
|
+** modified appropriately.
|
|
+*/
|
|
+int sqliteAuthCheck(
|
|
+ Parse *pParse,
|
|
+ int code,
|
|
+ const char *zArg1,
|
|
+ const char *zArg2,
|
|
+ const char *zArg3
|
|
+){
|
|
+ sqlite *db = pParse->db;
|
|
+ int rc;
|
|
+
|
|
+ if( db->init.busy || db->xAuth==0 ){
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext);
|
|
+ if( rc==SQLITE_DENY ){
|
|
+ sqliteErrorMsg(pParse, "not authorized");
|
|
+ pParse->rc = SQLITE_AUTH;
|
|
+ }else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){
|
|
+ rc = SQLITE_DENY;
|
|
+ sqliteAuthBadReturnCode(pParse, rc);
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Push an authorization context. After this routine is called, the
|
|
+** zArg3 argument to authorization callbacks will be zContext until
|
|
+** popped. Or if pParse==0, this routine is a no-op.
|
|
+*/
|
|
+void sqliteAuthContextPush(
|
|
+ Parse *pParse,
|
|
+ AuthContext *pContext,
|
|
+ const char *zContext
|
|
+){
|
|
+ pContext->pParse = pParse;
|
|
+ if( pParse ){
|
|
+ pContext->zAuthContext = pParse->zAuthContext;
|
|
+ pParse->zAuthContext = zContext;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Pop an authorization context that was previously pushed
|
|
+** by sqliteAuthContextPush
|
|
+*/
|
|
+void sqliteAuthContextPop(AuthContext *pContext){
|
|
+ if( pContext->pParse ){
|
|
+ pContext->pParse->zAuthContext = pContext->zAuthContext;
|
|
+ pContext->pParse = 0;
|
|
+ }
|
|
+}
|
|
+
|
|
+#endif /* SQLITE_OMIT_AUTHORIZATION */
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/btree.c
|
|
@@ -0,0 +1,3584 @@
|
|
+/*
|
|
+** 2001 September 15
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** $Id$
|
|
+**
|
|
+** This file implements a external (disk-based) database using BTrees.
|
|
+** For a detailed discussion of BTrees, refer to
|
|
+**
|
|
+** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
|
|
+** "Sorting And Searching", pages 473-480. Addison-Wesley
|
|
+** Publishing Company, Reading, Massachusetts.
|
|
+**
|
|
+** The basic idea is that each page of the file contains N database
|
|
+** entries and N+1 pointers to subpages.
|
|
+**
|
|
+** ----------------------------------------------------------------
|
|
+** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) |
|
|
+** ----------------------------------------------------------------
|
|
+**
|
|
+** All of the keys on the page that Ptr(0) points to have values less
|
|
+** than Key(0). All of the keys on page Ptr(1) and its subpages have
|
|
+** values greater than Key(0) and less than Key(1). All of the keys
|
|
+** on Ptr(N+1) and its subpages have values greater than Key(N). And
|
|
+** so forth.
|
|
+**
|
|
+** Finding a particular key requires reading O(log(M)) pages from the
|
|
+** disk where M is the number of entries in the tree.
|
|
+**
|
|
+** In this implementation, a single file can hold one or more separate
|
|
+** BTrees. Each BTree is identified by the index of its root page. The
|
|
+** key and data for any entry are combined to form the "payload". Up to
|
|
+** MX_LOCAL_PAYLOAD bytes of payload can be carried directly on the
|
|
+** database page. If the payload is larger than MX_LOCAL_PAYLOAD bytes
|
|
+** then surplus bytes are stored on overflow pages. The payload for an
|
|
+** entry and the preceding pointer are combined to form a "Cell". Each
|
|
+** page has a small header which contains the Ptr(N+1) pointer.
|
|
+**
|
|
+** The first page of the file contains a magic string used to verify that
|
|
+** the file really is a valid BTree database, a pointer to a list of unused
|
|
+** pages in the file, and some meta information. The root of the first
|
|
+** BTree begins on page 2 of the file. (Pages are numbered beginning with
|
|
+** 1, not 0.) Thus a minimum database contains 2 pages.
|
|
+*/
|
|
+#include "sqliteInt.h"
|
|
+#include "pager.h"
|
|
+#include "btree.h"
|
|
+#include <assert.h>
|
|
+
|
|
+/* Forward declarations */
|
|
+static BtOps sqliteBtreeOps;
|
|
+static BtCursorOps sqliteBtreeCursorOps;
|
|
+
|
|
+/*
|
|
+** Macros used for byteswapping. B is a pointer to the Btree
|
|
+** structure. This is needed to access the Btree.needSwab boolean
|
|
+** in order to tell if byte swapping is needed or not.
|
|
+** X is an unsigned integer. SWAB16 byte swaps a 16-bit integer.
|
|
+** SWAB32 byteswaps a 32-bit integer.
|
|
+*/
|
|
+#define SWAB16(B,X) ((B)->needSwab? swab16((u16)X) : ((u16)X))
|
|
+#define SWAB32(B,X) ((B)->needSwab? swab32(X) : (X))
|
|
+#define SWAB_ADD(B,X,A) \
|
|
+ if((B)->needSwab){ X=swab32(swab32(X)+A); }else{ X += (A); }
|
|
+
|
|
+/*
|
|
+** The following global variable - available only if SQLITE_TEST is
|
|
+** defined - is used to determine whether new databases are created in
|
|
+** native byte order or in non-native byte order. Non-native byte order
|
|
+** databases are created for testing purposes only. Under normal operation,
|
|
+** only native byte-order databases should be created, but we should be
|
|
+** able to read or write existing databases regardless of the byteorder.
|
|
+*/
|
|
+#ifdef SQLITE_TEST
|
|
+int btree_native_byte_order = 1;
|
|
+#else
|
|
+# define btree_native_byte_order 1
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** Forward declarations of structures used only in this file.
|
|
+*/
|
|
+typedef struct PageOne PageOne;
|
|
+typedef struct MemPage MemPage;
|
|
+typedef struct PageHdr PageHdr;
|
|
+typedef struct Cell Cell;
|
|
+typedef struct CellHdr CellHdr;
|
|
+typedef struct FreeBlk FreeBlk;
|
|
+typedef struct OverflowPage OverflowPage;
|
|
+typedef struct FreelistInfo FreelistInfo;
|
|
+
|
|
+/*
|
|
+** All structures on a database page are aligned to 4-byte boundries.
|
|
+** This routine rounds up a number of bytes to the next multiple of 4.
|
|
+**
|
|
+** This might need to change for computer architectures that require
|
|
+** and 8-byte alignment boundry for structures.
|
|
+*/
|
|
+#define ROUNDUP(X) ((X+3) & ~3)
|
|
+
|
|
+/*
|
|
+** This is a magic string that appears at the beginning of every
|
|
+** SQLite database in order to identify the file as a real database.
|
|
+*/
|
|
+static const char zMagicHeader[] =
|
|
+ "** This file contains an SQLite 2.1 database **";
|
|
+#define MAGIC_SIZE (sizeof(zMagicHeader))
|
|
+
|
|
+/*
|
|
+** This is a magic integer also used to test the integrity of the database
|
|
+** file. This integer is used in addition to the string above so that
|
|
+** if the file is written on a little-endian architecture and read
|
|
+** on a big-endian architectures (or vice versa) we can detect the
|
|
+** problem.
|
|
+**
|
|
+** The number used was obtained at random and has no special
|
|
+** significance other than the fact that it represents a different
|
|
+** integer on little-endian and big-endian machines.
|
|
+*/
|
|
+#define MAGIC 0xdae37528
|
|
+
|
|
+/*
|
|
+** The first page of the database file contains a magic header string
|
|
+** to identify the file as an SQLite database file. It also contains
|
|
+** a pointer to the first free page of the file. Page 2 contains the
|
|
+** root of the principle BTree. The file might contain other BTrees
|
|
+** rooted on pages above 2.
|
|
+**
|
|
+** The first page also contains SQLITE_N_BTREE_META integers that
|
|
+** can be used by higher-level routines.
|
|
+**
|
|
+** Remember that pages are numbered beginning with 1. (See pager.c
|
|
+** for additional information.) Page 0 does not exist and a page
|
|
+** number of 0 is used to mean "no such page".
|
|
+*/
|
|
+struct PageOne {
|
|
+ char zMagic[MAGIC_SIZE]; /* String that identifies the file as a database */
|
|
+ int iMagic; /* Integer to verify correct byte order */
|
|
+ Pgno freeList; /* First free page in a list of all free pages */
|
|
+ int nFree; /* Number of pages on the free list */
|
|
+ int aMeta[SQLITE_N_BTREE_META-1]; /* User defined integers */
|
|
+};
|
|
+
|
|
+/*
|
|
+** Each database page has a header that is an instance of this
|
|
+** structure.
|
|
+**
|
|
+** PageHdr.firstFree is 0 if there is no free space on this page.
|
|
+** Otherwise, PageHdr.firstFree is the index in MemPage.u.aDisk[] of a
|
|
+** FreeBlk structure that describes the first block of free space.
|
|
+** All free space is defined by a linked list of FreeBlk structures.
|
|
+**
|
|
+** Data is stored in a linked list of Cell structures. PageHdr.firstCell
|
|
+** is the index into MemPage.u.aDisk[] of the first cell on the page. The
|
|
+** Cells are kept in sorted order.
|
|
+**
|
|
+** A Cell contains all information about a database entry and a pointer
|
|
+** to a child page that contains other entries less than itself. In
|
|
+** other words, the i-th Cell contains both Ptr(i) and Key(i). The
|
|
+** right-most pointer of the page is contained in PageHdr.rightChild.
|
|
+*/
|
|
+struct PageHdr {
|
|
+ Pgno rightChild; /* Child page that comes after all cells on this page */
|
|
+ u16 firstCell; /* Index in MemPage.u.aDisk[] of the first cell */
|
|
+ u16 firstFree; /* Index in MemPage.u.aDisk[] of the first free block */
|
|
+};
|
|
+
|
|
+/*
|
|
+** Entries on a page of the database are called "Cells". Each Cell
|
|
+** has a header and data. This structure defines the header. The
|
|
+** key and data (collectively the "payload") follow this header on
|
|
+** the database page.
|
|
+**
|
|
+** A definition of the complete Cell structure is given below. The
|
|
+** header for the cell must be defined first in order to do some
|
|
+** of the sizing #defines that follow.
|
|
+*/
|
|
+struct CellHdr {
|
|
+ Pgno leftChild; /* Child page that comes before this cell */
|
|
+ u16 nKey; /* Number of bytes in the key */
|
|
+ u16 iNext; /* Index in MemPage.u.aDisk[] of next cell in sorted order */
|
|
+ u8 nKeyHi; /* Upper 8 bits of key size for keys larger than 64K bytes */
|
|
+ u8 nDataHi; /* Upper 8 bits of data size when the size is more than 64K */
|
|
+ u16 nData; /* Number of bytes of data */
|
|
+};
|
|
+
|
|
+/*
|
|
+** The key and data size are split into a lower 16-bit segment and an
|
|
+** upper 8-bit segment in order to pack them together into a smaller
|
|
+** space. The following macros reassembly a key or data size back
|
|
+** into an integer.
|
|
+*/
|
|
+#define NKEY(b,h) (SWAB16(b,h.nKey) + h.nKeyHi*65536)
|
|
+#define NDATA(b,h) (SWAB16(b,h.nData) + h.nDataHi*65536)
|
|
+
|
|
+/*
|
|
+** The minimum size of a complete Cell. The Cell must contain a header
|
|
+** and at least 4 bytes of payload.
|
|
+*/
|
|
+#define MIN_CELL_SIZE (sizeof(CellHdr)+4)
|
|
+
|
|
+/*
|
|
+** The maximum number of database entries that can be held in a single
|
|
+** page of the database.
|
|
+*/
|
|
+#define MX_CELL ((SQLITE_USABLE_SIZE-sizeof(PageHdr))/MIN_CELL_SIZE)
|
|
+
|
|
+/*
|
|
+** The amount of usable space on a single page of the BTree. This is the
|
|
+** page size minus the overhead of the page header.
|
|
+*/
|
|
+#define USABLE_SPACE (SQLITE_USABLE_SIZE - sizeof(PageHdr))
|
|
+
|
|
+/*
|
|
+** The maximum amount of payload (in bytes) that can be stored locally for
|
|
+** a database entry. If the entry contains more data than this, the
|
|
+** extra goes onto overflow pages.
|
|
+**
|
|
+** This number is chosen so that at least 4 cells will fit on every page.
|
|
+*/
|
|
+#define MX_LOCAL_PAYLOAD ((USABLE_SPACE/4-(sizeof(CellHdr)+sizeof(Pgno)))&~3)
|
|
+
|
|
+/*
|
|
+** Data on a database page is stored as a linked list of Cell structures.
|
|
+** Both the key and the data are stored in aPayload[]. The key always comes
|
|
+** first. The aPayload[] field grows as necessary to hold the key and data,
|
|
+** up to a maximum of MX_LOCAL_PAYLOAD bytes. If the size of the key and
|
|
+** data combined exceeds MX_LOCAL_PAYLOAD bytes, then Cell.ovfl is the
|
|
+** page number of the first overflow page.
|
|
+**
|
|
+** Though this structure is fixed in size, the Cell on the database
|
|
+** page varies in size. Every cell has a CellHdr and at least 4 bytes
|
|
+** of payload space. Additional payload bytes (up to the maximum of
|
|
+** MX_LOCAL_PAYLOAD) and the Cell.ovfl value are allocated only as
|
|
+** needed.
|
|
+*/
|
|
+struct Cell {
|
|
+ CellHdr h; /* The cell header */
|
|
+ char aPayload[MX_LOCAL_PAYLOAD]; /* Key and data */
|
|
+ Pgno ovfl; /* The first overflow page */
|
|
+};
|
|
+
|
|
+/*
|
|
+** Free space on a page is remembered using a linked list of the FreeBlk
|
|
+** structures. Space on a database page is allocated in increments of
|
|
+** at least 4 bytes and is always aligned to a 4-byte boundry. The
|
|
+** linked list of FreeBlks is always kept in order by address.
|
|
+*/
|
|
+struct FreeBlk {
|
|
+ u16 iSize; /* Number of bytes in this block of free space */
|
|
+ u16 iNext; /* Index in MemPage.u.aDisk[] of the next free block */
|
|
+};
|
|
+
|
|
+/*
|
|
+** The number of bytes of payload that will fit on a single overflow page.
|
|
+*/
|
|
+#define OVERFLOW_SIZE (SQLITE_USABLE_SIZE-sizeof(Pgno))
|
|
+
|
|
+/*
|
|
+** When the key and data for a single entry in the BTree will not fit in
|
|
+** the MX_LOCAL_PAYLOAD bytes of space available on the database page,
|
|
+** then all extra bytes are written to a linked list of overflow pages.
|
|
+** Each overflow page is an instance of the following structure.
|
|
+**
|
|
+** Unused pages in the database are also represented by instances of
|
|
+** the OverflowPage structure. The PageOne.freeList field is the
|
|
+** page number of the first page in a linked list of unused database
|
|
+** pages.
|
|
+*/
|
|
+struct OverflowPage {
|
|
+ Pgno iNext;
|
|
+ char aPayload[OVERFLOW_SIZE];
|
|
+};
|
|
+
|
|
+/*
|
|
+** The PageOne.freeList field points to a linked list of overflow pages
|
|
+** hold information about free pages. The aPayload section of each
|
|
+** overflow page contains an instance of the following structure. The
|
|
+** aFree[] array holds the page number of nFree unused pages in the disk
|
|
+** file.
|
|
+*/
|
|
+struct FreelistInfo {
|
|
+ int nFree;
|
|
+ Pgno aFree[(OVERFLOW_SIZE-sizeof(int))/sizeof(Pgno)];
|
|
+};
|
|
+
|
|
+/*
|
|
+** For every page in the database file, an instance of the following structure
|
|
+** is stored in memory. The u.aDisk[] array contains the raw bits read from
|
|
+** the disk. The rest is auxiliary information held in memory only. The
|
|
+** auxiliary info is only valid for regular database pages - it is not
|
|
+** used for overflow pages and pages on the freelist.
|
|
+**
|
|
+** Of particular interest in the auxiliary info is the apCell[] entry. Each
|
|
+** apCell[] entry is a pointer to a Cell structure in u.aDisk[]. The cells are
|
|
+** put in this array so that they can be accessed in constant time, rather
|
|
+** than in linear time which would be needed if we had to walk the linked
|
|
+** list on every access.
|
|
+**
|
|
+** Note that apCell[] contains enough space to hold up to two more Cells
|
|
+** than can possibly fit on one page. In the steady state, every apCell[]
|
|
+** points to memory inside u.aDisk[]. But in the middle of an insert
|
|
+** operation, some apCell[] entries may temporarily point to data space
|
|
+** outside of u.aDisk[]. This is a transient situation that is quickly
|
|
+** resolved. But while it is happening, it is possible for a database
|
|
+** page to hold as many as two more cells than it might otherwise hold.
|
|
+** The extra two entries in apCell[] are an allowance for this situation.
|
|
+**
|
|
+** The pParent field points back to the parent page. This allows us to
|
|
+** walk up the BTree from any leaf to the root. Care must be taken to
|
|
+** unref() the parent page pointer when this page is no longer referenced.
|
|
+** The pageDestructor() routine handles that chore.
|
|
+*/
|
|
+struct MemPage {
|
|
+ union u_page_data {
|
|
+ char aDisk[SQLITE_PAGE_SIZE]; /* Page data stored on disk */
|
|
+ PageHdr hdr; /* Overlay page header */
|
|
+ } u;
|
|
+ u8 isInit; /* True if auxiliary data is initialized */
|
|
+ u8 idxShift; /* True if apCell[] indices have changed */
|
|
+ u8 isOverfull; /* Some apCell[] points outside u.aDisk[] */
|
|
+ MemPage *pParent; /* The parent of this page. NULL for root */
|
|
+ int idxParent; /* Index in pParent->apCell[] of this node */
|
|
+ int nFree; /* Number of free bytes in u.aDisk[] */
|
|
+ int nCell; /* Number of entries on this page */
|
|
+ Cell *apCell[MX_CELL+2]; /* All data entires in sorted order */
|
|
+};
|
|
+
|
|
+/*
|
|
+** The in-memory image of a disk page has the auxiliary information appended
|
|
+** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
|
|
+** that extra information.
|
|
+*/
|
|
+#define EXTRA_SIZE (sizeof(MemPage)-sizeof(union u_page_data))
|
|
+
|
|
+/*
|
|
+** Everything we need to know about an open database
|
|
+*/
|
|
+struct Btree {
|
|
+ BtOps *pOps; /* Function table */
|
|
+ Pager *pPager; /* The page cache */
|
|
+ BtCursor *pCursor; /* A list of all open cursors */
|
|
+ PageOne *page1; /* First page of the database */
|
|
+ u8 inTrans; /* True if a transaction is in progress */
|
|
+ u8 inCkpt; /* True if there is a checkpoint on the transaction */
|
|
+ u8 readOnly; /* True if the underlying file is readonly */
|
|
+ u8 needSwab; /* Need to byte-swapping */
|
|
+};
|
|
+typedef Btree Bt;
|
|
+
|
|
+/*
|
|
+** A cursor is a pointer to a particular entry in the BTree.
|
|
+** The entry is identified by its MemPage and the index in
|
|
+** MemPage.apCell[] of the entry.
|
|
+*/
|
|
+struct BtCursor {
|
|
+ BtCursorOps *pOps; /* Function table */
|
|
+ Btree *pBt; /* The Btree to which this cursor belongs */
|
|
+ BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
|
|
+ BtCursor *pShared; /* Loop of cursors with the same root page */
|
|
+ Pgno pgnoRoot; /* The root page of this tree */
|
|
+ MemPage *pPage; /* Page that contains the entry */
|
|
+ int idx; /* Index of the entry in pPage->apCell[] */
|
|
+ u8 wrFlag; /* True if writable */
|
|
+ u8 eSkip; /* Determines if next step operation is a no-op */
|
|
+ u8 iMatch; /* compare result from last sqliteBtreeMoveto() */
|
|
+};
|
|
+
|
|
+/*
|
|
+** Legal values for BtCursor.eSkip.
|
|
+*/
|
|
+#define SKIP_NONE 0 /* Always step the cursor */
|
|
+#define SKIP_NEXT 1 /* The next sqliteBtreeNext() is a no-op */
|
|
+#define SKIP_PREV 2 /* The next sqliteBtreePrevious() is a no-op */
|
|
+#define SKIP_INVALID 3 /* Calls to Next() and Previous() are invalid */
|
|
+
|
|
+/* Forward declarations */
|
|
+static int fileBtreeCloseCursor(BtCursor *pCur);
|
|
+
|
|
+/*
|
|
+** Routines for byte swapping.
|
|
+*/
|
|
+u16 swab16(u16 x){
|
|
+ return ((x & 0xff)<<8) | ((x>>8)&0xff);
|
|
+}
|
|
+u32 swab32(u32 x){
|
|
+ return ((x & 0xff)<<24) | ((x & 0xff00)<<8) |
|
|
+ ((x>>8) & 0xff00) | ((x>>24)&0xff);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Compute the total number of bytes that a Cell needs on the main
|
|
+** database page. The number returned includes the Cell header,
|
|
+** local payload storage, and the pointer to overflow pages (if
|
|
+** applicable). Additional space allocated on overflow pages
|
|
+** is NOT included in the value returned from this routine.
|
|
+*/
|
|
+static int cellSize(Btree *pBt, Cell *pCell){
|
|
+ int n = NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h);
|
|
+ if( n>MX_LOCAL_PAYLOAD ){
|
|
+ n = MX_LOCAL_PAYLOAD + sizeof(Pgno);
|
|
+ }else{
|
|
+ n = ROUNDUP(n);
|
|
+ }
|
|
+ n += sizeof(CellHdr);
|
|
+ return n;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Defragment the page given. All Cells are moved to the
|
|
+** beginning of the page and all free space is collected
|
|
+** into one big FreeBlk at the end of the page.
|
|
+*/
|
|
+static void defragmentPage(Btree *pBt, MemPage *pPage){
|
|
+ int pc, i, n;
|
|
+ FreeBlk *pFBlk;
|
|
+ char newPage[SQLITE_USABLE_SIZE];
|
|
+
|
|
+ assert( sqlitepager_iswriteable(pPage) );
|
|
+ assert( pPage->isInit );
|
|
+ pc = sizeof(PageHdr);
|
|
+ pPage->u.hdr.firstCell = SWAB16(pBt, pc);
|
|
+ memcpy(newPage, pPage->u.aDisk, pc);
|
|
+ for(i=0; i<pPage->nCell; i++){
|
|
+ Cell *pCell = pPage->apCell[i];
|
|
+
|
|
+ /* This routine should never be called on an overfull page. The
|
|
+ ** following asserts verify that constraint. */
|
|
+ assert( Addr(pCell) > Addr(pPage) );
|
|
+ assert( Addr(pCell) < Addr(pPage) + SQLITE_USABLE_SIZE );
|
|
+
|
|
+ n = cellSize(pBt, pCell);
|
|
+ pCell->h.iNext = SWAB16(pBt, pc + n);
|
|
+ memcpy(&newPage[pc], pCell, n);
|
|
+ pPage->apCell[i] = (Cell*)&pPage->u.aDisk[pc];
|
|
+ pc += n;
|
|
+ }
|
|
+ assert( pPage->nFree==SQLITE_USABLE_SIZE-pc );
|
|
+ memcpy(pPage->u.aDisk, newPage, pc);
|
|
+ if( pPage->nCell>0 ){
|
|
+ pPage->apCell[pPage->nCell-1]->h.iNext = 0;
|
|
+ }
|
|
+ pFBlk = (FreeBlk*)&pPage->u.aDisk[pc];
|
|
+ pFBlk->iSize = SWAB16(pBt, SQLITE_USABLE_SIZE - pc);
|
|
+ pFBlk->iNext = 0;
|
|
+ pPage->u.hdr.firstFree = SWAB16(pBt, pc);
|
|
+ memset(&pFBlk[1], 0, SQLITE_USABLE_SIZE - pc - sizeof(FreeBlk));
|
|
+}
|
|
+
|
|
+/*
|
|
+** Allocate nByte bytes of space on a page. nByte must be a
|
|
+** multiple of 4.
|
|
+**
|
|
+** Return the index into pPage->u.aDisk[] of the first byte of
|
|
+** the new allocation. Or return 0 if there is not enough free
|
|
+** space on the page to satisfy the allocation request.
|
|
+**
|
|
+** If the page contains nBytes of free space but does not contain
|
|
+** nBytes of contiguous free space, then this routine automatically
|
|
+** calls defragementPage() to consolidate all free space before
|
|
+** allocating the new chunk.
|
|
+*/
|
|
+static int allocateSpace(Btree *pBt, MemPage *pPage, int nByte){
|
|
+ FreeBlk *p;
|
|
+ u16 *pIdx;
|
|
+ int start;
|
|
+ int iSize;
|
|
+#ifndef NDEBUG
|
|
+ int cnt = 0;
|
|
+#endif
|
|
+
|
|
+ assert( sqlitepager_iswriteable(pPage) );
|
|
+ assert( nByte==ROUNDUP(nByte) );
|
|
+ assert( pPage->isInit );
|
|
+ if( pPage->nFree<nByte || pPage->isOverfull ) return 0;
|
|
+ pIdx = &pPage->u.hdr.firstFree;
|
|
+ p = (FreeBlk*)&pPage->u.aDisk[SWAB16(pBt, *pIdx)];
|
|
+ while( (iSize = SWAB16(pBt, p->iSize))<nByte ){
|
|
+ assert( cnt++ < SQLITE_USABLE_SIZE/4 );
|
|
+ if( p->iNext==0 ){
|
|
+ defragmentPage(pBt, pPage);
|
|
+ pIdx = &pPage->u.hdr.firstFree;
|
|
+ }else{
|
|
+ pIdx = &p->iNext;
|
|
+ }
|
|
+ p = (FreeBlk*)&pPage->u.aDisk[SWAB16(pBt, *pIdx)];
|
|
+ }
|
|
+ if( iSize==nByte ){
|
|
+ start = SWAB16(pBt, *pIdx);
|
|
+ *pIdx = p->iNext;
|
|
+ }else{
|
|
+ FreeBlk *pNew;
|
|
+ start = SWAB16(pBt, *pIdx);
|
|
+ pNew = (FreeBlk*)&pPage->u.aDisk[start + nByte];
|
|
+ pNew->iNext = p->iNext;
|
|
+ pNew->iSize = SWAB16(pBt, iSize - nByte);
|
|
+ *pIdx = SWAB16(pBt, start + nByte);
|
|
+ }
|
|
+ pPage->nFree -= nByte;
|
|
+ return start;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return a section of the MemPage.u.aDisk[] to the freelist.
|
|
+** The first byte of the new free block is pPage->u.aDisk[start]
|
|
+** and the size of the block is "size" bytes. Size must be
|
|
+** a multiple of 4.
|
|
+**
|
|
+** Most of the effort here is involved in coalesing adjacent
|
|
+** free blocks into a single big free block.
|
|
+*/
|
|
+static void freeSpace(Btree *pBt, MemPage *pPage, int start, int size){
|
|
+ int end = start + size;
|
|
+ u16 *pIdx, idx;
|
|
+ FreeBlk *pFBlk;
|
|
+ FreeBlk *pNew;
|
|
+ FreeBlk *pNext;
|
|
+ int iSize;
|
|
+
|
|
+ assert( sqlitepager_iswriteable(pPage) );
|
|
+ assert( size == ROUNDUP(size) );
|
|
+ assert( start == ROUNDUP(start) );
|
|
+ assert( pPage->isInit );
|
|
+ pIdx = &pPage->u.hdr.firstFree;
|
|
+ idx = SWAB16(pBt, *pIdx);
|
|
+ while( idx!=0 && idx<start ){
|
|
+ pFBlk = (FreeBlk*)&pPage->u.aDisk[idx];
|
|
+ iSize = SWAB16(pBt, pFBlk->iSize);
|
|
+ if( idx + iSize == start ){
|
|
+ pFBlk->iSize = SWAB16(pBt, iSize + size);
|
|
+ if( idx + iSize + size == SWAB16(pBt, pFBlk->iNext) ){
|
|
+ pNext = (FreeBlk*)&pPage->u.aDisk[idx + iSize + size];
|
|
+ if( pBt->needSwab ){
|
|
+ pFBlk->iSize = swab16((u16)swab16(pNext->iSize)+iSize+size);
|
|
+ }else{
|
|
+ pFBlk->iSize += pNext->iSize;
|
|
+ }
|
|
+ pFBlk->iNext = pNext->iNext;
|
|
+ }
|
|
+ pPage->nFree += size;
|
|
+ return;
|
|
+ }
|
|
+ pIdx = &pFBlk->iNext;
|
|
+ idx = SWAB16(pBt, *pIdx);
|
|
+ }
|
|
+ pNew = (FreeBlk*)&pPage->u.aDisk[start];
|
|
+ if( idx != end ){
|
|
+ pNew->iSize = SWAB16(pBt, size);
|
|
+ pNew->iNext = SWAB16(pBt, idx);
|
|
+ }else{
|
|
+ pNext = (FreeBlk*)&pPage->u.aDisk[idx];
|
|
+ pNew->iSize = SWAB16(pBt, size + SWAB16(pBt, pNext->iSize));
|
|
+ pNew->iNext = pNext->iNext;
|
|
+ }
|
|
+ *pIdx = SWAB16(pBt, start);
|
|
+ pPage->nFree += size;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Initialize the auxiliary information for a disk block.
|
|
+**
|
|
+** The pParent parameter must be a pointer to the MemPage which
|
|
+** is the parent of the page being initialized. The root of the
|
|
+** BTree (usually page 2) has no parent and so for that page,
|
|
+** pParent==NULL.
|
|
+**
|
|
+** Return SQLITE_OK on success. If we see that the page does
|
|
+** not contain a well-formed database page, then return
|
|
+** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
|
|
+** guarantee that the page is well-formed. It only shows that
|
|
+** we failed to detect any corruption.
|
|
+*/
|
|
+static int initPage(Bt *pBt, MemPage *pPage, Pgno pgnoThis, MemPage *pParent){
|
|
+ int idx; /* An index into pPage->u.aDisk[] */
|
|
+ Cell *pCell; /* A pointer to a Cell in pPage->u.aDisk[] */
|
|
+ FreeBlk *pFBlk; /* A pointer to a free block in pPage->u.aDisk[] */
|
|
+ int sz; /* The size of a Cell in bytes */
|
|
+ int freeSpace; /* Amount of free space on the page */
|
|
+
|
|
+ if( pPage->pParent ){
|
|
+ assert( pPage->pParent==pParent );
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ if( pParent ){
|
|
+ pPage->pParent = pParent;
|
|
+ sqlitepager_ref(pParent);
|
|
+ }
|
|
+ if( pPage->isInit ) return SQLITE_OK;
|
|
+ pPage->isInit = 1;
|
|
+ pPage->nCell = 0;
|
|
+ freeSpace = USABLE_SPACE;
|
|
+ idx = SWAB16(pBt, pPage->u.hdr.firstCell);
|
|
+ while( idx!=0 ){
|
|
+ if( idx>SQLITE_USABLE_SIZE-MIN_CELL_SIZE ) goto page_format_error;
|
|
+ if( idx<sizeof(PageHdr) ) goto page_format_error;
|
|
+ if( idx!=ROUNDUP(idx) ) goto page_format_error;
|
|
+ pCell = (Cell*)&pPage->u.aDisk[idx];
|
|
+ sz = cellSize(pBt, pCell);
|
|
+ if( idx+sz > SQLITE_USABLE_SIZE ) goto page_format_error;
|
|
+ freeSpace -= sz;
|
|
+ pPage->apCell[pPage->nCell++] = pCell;
|
|
+ idx = SWAB16(pBt, pCell->h.iNext);
|
|
+ }
|
|
+ pPage->nFree = 0;
|
|
+ idx = SWAB16(pBt, pPage->u.hdr.firstFree);
|
|
+ while( idx!=0 ){
|
|
+ int iNext;
|
|
+ if( idx>SQLITE_USABLE_SIZE-sizeof(FreeBlk) ) goto page_format_error;
|
|
+ if( idx<sizeof(PageHdr) ) goto page_format_error;
|
|
+ pFBlk = (FreeBlk*)&pPage->u.aDisk[idx];
|
|
+ pPage->nFree += SWAB16(pBt, pFBlk->iSize);
|
|
+ iNext = SWAB16(pBt, pFBlk->iNext);
|
|
+ if( iNext>0 && iNext <= idx ) goto page_format_error;
|
|
+ idx = iNext;
|
|
+ }
|
|
+ if( pPage->nCell==0 && pPage->nFree==0 ){
|
|
+ /* As a special case, an uninitialized root page appears to be
|
|
+ ** an empty database */
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ if( pPage->nFree!=freeSpace ) goto page_format_error;
|
|
+ return SQLITE_OK;
|
|
+
|
|
+page_format_error:
|
|
+ return SQLITE_CORRUPT;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Set up a raw page so that it looks like a database page holding
|
|
+** no entries.
|
|
+*/
|
|
+static void zeroPage(Btree *pBt, MemPage *pPage){
|
|
+ PageHdr *pHdr;
|
|
+ FreeBlk *pFBlk;
|
|
+ assert( sqlitepager_iswriteable(pPage) );
|
|
+ memset(pPage, 0, SQLITE_USABLE_SIZE);
|
|
+ pHdr = &pPage->u.hdr;
|
|
+ pHdr->firstCell = 0;
|
|
+ pHdr->firstFree = SWAB16(pBt, sizeof(*pHdr));
|
|
+ pFBlk = (FreeBlk*)&pHdr[1];
|
|
+ pFBlk->iNext = 0;
|
|
+ pPage->nFree = SQLITE_USABLE_SIZE - sizeof(*pHdr);
|
|
+ pFBlk->iSize = SWAB16(pBt, pPage->nFree);
|
|
+ pPage->nCell = 0;
|
|
+ pPage->isOverfull = 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine is called when the reference count for a page
|
|
+** reaches zero. We need to unref the pParent pointer when that
|
|
+** happens.
|
|
+*/
|
|
+static void pageDestructor(void *pData){
|
|
+ MemPage *pPage = (MemPage*)pData;
|
|
+ if( pPage->pParent ){
|
|
+ MemPage *pParent = pPage->pParent;
|
|
+ pPage->pParent = 0;
|
|
+ sqlitepager_unref(pParent);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Open a new database.
|
|
+**
|
|
+** Actually, this routine just sets up the internal data structures
|
|
+** for accessing the database. We do not open the database file
|
|
+** until the first page is loaded.
|
|
+**
|
|
+** zFilename is the name of the database file. If zFilename is NULL
|
|
+** a new database with a random name is created. This randomly named
|
|
+** database file will be deleted when sqliteBtreeClose() is called.
|
|
+*/
|
|
+int sqliteBtreeOpen(
|
|
+ const char *zFilename, /* Name of the file containing the BTree database */
|
|
+ int omitJournal, /* if TRUE then do not journal this file */
|
|
+ int nCache, /* How many pages in the page cache */
|
|
+ Btree **ppBtree /* Pointer to new Btree object written here */
|
|
+){
|
|
+ Btree *pBt;
|
|
+ int rc;
|
|
+
|
|
+ /*
|
|
+ ** The following asserts make sure that structures used by the btree are
|
|
+ ** the right size. This is to guard against size changes that result
|
|
+ ** when compiling on a different architecture.
|
|
+ */
|
|
+ assert( sizeof(u32)==4 );
|
|
+ assert( sizeof(u16)==2 );
|
|
+ assert( sizeof(Pgno)==4 );
|
|
+ assert( sizeof(PageHdr)==8 );
|
|
+ assert( sizeof(CellHdr)==12 );
|
|
+ assert( sizeof(FreeBlk)==4 );
|
|
+ assert( sizeof(OverflowPage)==SQLITE_USABLE_SIZE );
|
|
+ assert( sizeof(FreelistInfo)==OVERFLOW_SIZE );
|
|
+ assert( sizeof(ptr)==sizeof(char*) );
|
|
+ assert( sizeof(uptr)==sizeof(ptr) );
|
|
+
|
|
+ pBt = sqliteMalloc( sizeof(*pBt) );
|
|
+ if( pBt==0 ){
|
|
+ *ppBtree = 0;
|
|
+ return SQLITE_NOMEM;
|
|
+ }
|
|
+ if( nCache<10 ) nCache = 10;
|
|
+ rc = sqlitepager_open(&pBt->pPager, zFilename, nCache, EXTRA_SIZE,
|
|
+ !omitJournal);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ if( pBt->pPager ) sqlitepager_close(pBt->pPager);
|
|
+ sqliteFree(pBt);
|
|
+ *ppBtree = 0;
|
|
+ return rc;
|
|
+ }
|
|
+ sqlitepager_set_destructor(pBt->pPager, pageDestructor);
|
|
+ pBt->pCursor = 0;
|
|
+ pBt->page1 = 0;
|
|
+ pBt->readOnly = sqlitepager_isreadonly(pBt->pPager);
|
|
+ pBt->pOps = &sqliteBtreeOps;
|
|
+ *ppBtree = pBt;
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Close an open database and invalidate all cursors.
|
|
+*/
|
|
+static int fileBtreeClose(Btree *pBt){
|
|
+ while( pBt->pCursor ){
|
|
+ fileBtreeCloseCursor(pBt->pCursor);
|
|
+ }
|
|
+ sqlitepager_close(pBt->pPager);
|
|
+ sqliteFree(pBt);
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Change the limit on the number of pages allowed in the cache.
|
|
+**
|
|
+** The maximum number of cache pages is set to the absolute
|
|
+** value of mxPage. If mxPage is negative, the pager will
|
|
+** operate asynchronously - it will not stop to do fsync()s
|
|
+** to insure data is written to the disk surface before
|
|
+** continuing. Transactions still work if synchronous is off,
|
|
+** and the database cannot be corrupted if this program
|
|
+** crashes. But if the operating system crashes or there is
|
|
+** an abrupt power failure when synchronous is off, the database
|
|
+** could be left in an inconsistent and unrecoverable state.
|
|
+** Synchronous is on by default so database corruption is not
|
|
+** normally a worry.
|
|
+*/
|
|
+static int fileBtreeSetCacheSize(Btree *pBt, int mxPage){
|
|
+ sqlitepager_set_cachesize(pBt->pPager, mxPage);
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Change the way data is synced to disk in order to increase or decrease
|
|
+** how well the database resists damage due to OS crashes and power
|
|
+** failures. Level 1 is the same as asynchronous (no syncs() occur and
|
|
+** there is a high probability of damage) Level 2 is the default. There
|
|
+** is a very low but non-zero probability of damage. Level 3 reduces the
|
|
+** probability of damage to near zero but with a write performance reduction.
|
|
+*/
|
|
+static int fileBtreeSetSafetyLevel(Btree *pBt, int level){
|
|
+ sqlitepager_set_safety_level(pBt->pPager, level);
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Get a reference to page1 of the database file. This will
|
|
+** also acquire a readlock on that file.
|
|
+**
|
|
+** SQLITE_OK is returned on success. If the file is not a
|
|
+** well-formed database file, then SQLITE_CORRUPT is returned.
|
|
+** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
|
|
+** is returned if we run out of memory. SQLITE_PROTOCOL is returned
|
|
+** if there is a locking protocol violation.
|
|
+*/
|
|
+static int lockBtree(Btree *pBt){
|
|
+ int rc;
|
|
+ if( pBt->page1 ) return SQLITE_OK;
|
|
+ rc = sqlitepager_get(pBt->pPager, 1, (void**)&pBt->page1);
|
|
+ if( rc!=SQLITE_OK ) return rc;
|
|
+
|
|
+ /* Do some checking to help insure the file we opened really is
|
|
+ ** a valid database file.
|
|
+ */
|
|
+ if( sqlitepager_pagecount(pBt->pPager)>0 ){
|
|
+ PageOne *pP1 = pBt->page1;
|
|
+ if( strcmp(pP1->zMagic,zMagicHeader)!=0 ||
|
|
+ (pP1->iMagic!=MAGIC && swab32(pP1->iMagic)!=MAGIC) ){
|
|
+ rc = SQLITE_NOTADB;
|
|
+ goto page1_init_failed;
|
|
+ }
|
|
+ pBt->needSwab = pP1->iMagic!=MAGIC;
|
|
+ }
|
|
+ return rc;
|
|
+
|
|
+page1_init_failed:
|
|
+ sqlitepager_unref(pBt->page1);
|
|
+ pBt->page1 = 0;
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** If there are no outstanding cursors and we are not in the middle
|
|
+** of a transaction but there is a read lock on the database, then
|
|
+** this routine unrefs the first page of the database file which
|
|
+** has the effect of releasing the read lock.
|
|
+**
|
|
+** If there are any outstanding cursors, this routine is a no-op.
|
|
+**
|
|
+** If there is a transaction in progress, this routine is a no-op.
|
|
+*/
|
|
+static void unlockBtreeIfUnused(Btree *pBt){
|
|
+ if( pBt->inTrans==0 && pBt->pCursor==0 && pBt->page1!=0 ){
|
|
+ sqlitepager_unref(pBt->page1);
|
|
+ pBt->page1 = 0;
|
|
+ pBt->inTrans = 0;
|
|
+ pBt->inCkpt = 0;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Create a new database by initializing the first two pages of the
|
|
+** file.
|
|
+*/
|
|
+static int newDatabase(Btree *pBt){
|
|
+ MemPage *pRoot;
|
|
+ PageOne *pP1;
|
|
+ int rc;
|
|
+ if( sqlitepager_pagecount(pBt->pPager)>1 ) return SQLITE_OK;
|
|
+ pP1 = pBt->page1;
|
|
+ rc = sqlitepager_write(pBt->page1);
|
|
+ if( rc ) return rc;
|
|
+ rc = sqlitepager_get(pBt->pPager, 2, (void**)&pRoot);
|
|
+ if( rc ) return rc;
|
|
+ rc = sqlitepager_write(pRoot);
|
|
+ if( rc ){
|
|
+ sqlitepager_unref(pRoot);
|
|
+ return rc;
|
|
+ }
|
|
+ strcpy(pP1->zMagic, zMagicHeader);
|
|
+ if( btree_native_byte_order ){
|
|
+ pP1->iMagic = MAGIC;
|
|
+ pBt->needSwab = 0;
|
|
+ }else{
|
|
+ pP1->iMagic = swab32(MAGIC);
|
|
+ pBt->needSwab = 1;
|
|
+ }
|
|
+ zeroPage(pBt, pRoot);
|
|
+ sqlitepager_unref(pRoot);
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Attempt to start a new transaction.
|
|
+**
|
|
+** A transaction must be started before attempting any changes
|
|
+** to the database. None of the following routines will work
|
|
+** unless a transaction is started first:
|
|
+**
|
|
+** sqliteBtreeCreateTable()
|
|
+** sqliteBtreeCreateIndex()
|
|
+** sqliteBtreeClearTable()
|
|
+** sqliteBtreeDropTable()
|
|
+** sqliteBtreeInsert()
|
|
+** sqliteBtreeDelete()
|
|
+** sqliteBtreeUpdateMeta()
|
|
+*/
|
|
+static int fileBtreeBeginTrans(Btree *pBt){
|
|
+ int rc;
|
|
+ if( pBt->inTrans ) return SQLITE_ERROR;
|
|
+ if( pBt->readOnly ) return SQLITE_READONLY;
|
|
+ if( pBt->page1==0 ){
|
|
+ rc = lockBtree(pBt);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ return rc;
|
|
+ }
|
|
+ }
|
|
+ rc = sqlitepager_begin(pBt->page1);
|
|
+ if( rc==SQLITE_OK ){
|
|
+ rc = newDatabase(pBt);
|
|
+ }
|
|
+ if( rc==SQLITE_OK ){
|
|
+ pBt->inTrans = 1;
|
|
+ pBt->inCkpt = 0;
|
|
+ }else{
|
|
+ unlockBtreeIfUnused(pBt);
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Commit the transaction currently in progress.
|
|
+**
|
|
+** This will release the write lock on the database file. If there
|
|
+** are no active cursors, it also releases the read lock.
|
|
+*/
|
|
+static int fileBtreeCommit(Btree *pBt){
|
|
+ int rc;
|
|
+ rc = pBt->readOnly ? SQLITE_OK : sqlitepager_commit(pBt->pPager);
|
|
+ pBt->inTrans = 0;
|
|
+ pBt->inCkpt = 0;
|
|
+ unlockBtreeIfUnused(pBt);
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Rollback the transaction in progress. All cursors will be
|
|
+** invalided by this operation. Any attempt to use a cursor
|
|
+** that was open at the beginning of this operation will result
|
|
+** in an error.
|
|
+**
|
|
+** This will release the write lock on the database file. If there
|
|
+** are no active cursors, it also releases the read lock.
|
|
+*/
|
|
+static int fileBtreeRollback(Btree *pBt){
|
|
+ int rc;
|
|
+ BtCursor *pCur;
|
|
+ if( pBt->inTrans==0 ) return SQLITE_OK;
|
|
+ pBt->inTrans = 0;
|
|
+ pBt->inCkpt = 0;
|
|
+ rc = pBt->readOnly ? SQLITE_OK : sqlitepager_rollback(pBt->pPager);
|
|
+ for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
|
|
+ if( pCur->pPage && pCur->pPage->isInit==0 ){
|
|
+ sqlitepager_unref(pCur->pPage);
|
|
+ pCur->pPage = 0;
|
|
+ }
|
|
+ }
|
|
+ unlockBtreeIfUnused(pBt);
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Set the checkpoint for the current transaction. The checkpoint serves
|
|
+** as a sub-transaction that can be rolled back independently of the
|
|
+** main transaction. You must start a transaction before starting a
|
|
+** checkpoint. The checkpoint is ended automatically if the transaction
|
|
+** commits or rolls back.
|
|
+**
|
|
+** Only one checkpoint may be active at a time. It is an error to try
|
|
+** to start a new checkpoint if another checkpoint is already active.
|
|
+*/
|
|
+static int fileBtreeBeginCkpt(Btree *pBt){
|
|
+ int rc;
|
|
+ if( !pBt->inTrans || pBt->inCkpt ){
|
|
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
|
+ }
|
|
+ rc = pBt->readOnly ? SQLITE_OK : sqlitepager_ckpt_begin(pBt->pPager);
|
|
+ pBt->inCkpt = 1;
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+
|
|
+/*
|
|
+** Commit a checkpoint to transaction currently in progress. If no
|
|
+** checkpoint is active, this is a no-op.
|
|
+*/
|
|
+static int fileBtreeCommitCkpt(Btree *pBt){
|
|
+ int rc;
|
|
+ if( pBt->inCkpt && !pBt->readOnly ){
|
|
+ rc = sqlitepager_ckpt_commit(pBt->pPager);
|
|
+ }else{
|
|
+ rc = SQLITE_OK;
|
|
+ }
|
|
+ pBt->inCkpt = 0;
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Rollback the checkpoint to the current transaction. If there
|
|
+** is no active checkpoint or transaction, this routine is a no-op.
|
|
+**
|
|
+** All cursors will be invalided by this operation. Any attempt
|
|
+** to use a cursor that was open at the beginning of this operation
|
|
+** will result in an error.
|
|
+*/
|
|
+static int fileBtreeRollbackCkpt(Btree *pBt){
|
|
+ int rc;
|
|
+ BtCursor *pCur;
|
|
+ if( pBt->inCkpt==0 || pBt->readOnly ) return SQLITE_OK;
|
|
+ rc = sqlitepager_ckpt_rollback(pBt->pPager);
|
|
+ for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
|
|
+ if( pCur->pPage && pCur->pPage->isInit==0 ){
|
|
+ sqlitepager_unref(pCur->pPage);
|
|
+ pCur->pPage = 0;
|
|
+ }
|
|
+ }
|
|
+ pBt->inCkpt = 0;
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Create a new cursor for the BTree whose root is on the page
|
|
+** iTable. The act of acquiring a cursor gets a read lock on
|
|
+** the database file.
|
|
+**
|
|
+** If wrFlag==0, then the cursor can only be used for reading.
|
|
+** If wrFlag==1, then the cursor can be used for reading or for
|
|
+** writing if other conditions for writing are also met. These
|
|
+** are the conditions that must be met in order for writing to
|
|
+** be allowed:
|
|
+**
|
|
+** 1: The cursor must have been opened with wrFlag==1
|
|
+**
|
|
+** 2: No other cursors may be open with wrFlag==0 on the same table
|
|
+**
|
|
+** 3: The database must be writable (not on read-only media)
|
|
+**
|
|
+** 4: There must be an active transaction.
|
|
+**
|
|
+** Condition 2 warrants further discussion. If any cursor is opened
|
|
+** on a table with wrFlag==0, that prevents all other cursors from
|
|
+** writing to that table. This is a kind of "read-lock". When a cursor
|
|
+** is opened with wrFlag==0 it is guaranteed that the table will not
|
|
+** change as long as the cursor is open. This allows the cursor to
|
|
+** do a sequential scan of the table without having to worry about
|
|
+** entries being inserted or deleted during the scan. Cursors should
|
|
+** be opened with wrFlag==0 only if this read-lock property is needed.
|
|
+** That is to say, cursors should be opened with wrFlag==0 only if they
|
|
+** intend to use the sqliteBtreeNext() system call. All other cursors
|
|
+** should be opened with wrFlag==1 even if they never really intend
|
|
+** to write.
|
|
+**
|
|
+** No checking is done to make sure that page iTable really is the
|
|
+** root page of a b-tree. If it is not, then the cursor acquired
|
|
+** will not work correctly.
|
|
+*/
|
|
+static
|
|
+int fileBtreeCursor(Btree *pBt, int iTable, int wrFlag, BtCursor **ppCur){
|
|
+ int rc;
|
|
+ BtCursor *pCur, *pRing;
|
|
+
|
|
+ if( pBt->readOnly && wrFlag ){
|
|
+ *ppCur = 0;
|
|
+ return SQLITE_READONLY;
|
|
+ }
|
|
+ if( pBt->page1==0 ){
|
|
+ rc = lockBtree(pBt);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ *ppCur = 0;
|
|
+ return rc;
|
|
+ }
|
|
+ }
|
|
+ pCur = sqliteMalloc( sizeof(*pCur) );
|
|
+ if( pCur==0 ){
|
|
+ rc = SQLITE_NOMEM;
|
|
+ goto create_cursor_exception;
|
|
+ }
|
|
+ pCur->pgnoRoot = (Pgno)iTable;
|
|
+ rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pCur->pPage);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ goto create_cursor_exception;
|
|
+ }
|
|
+ rc = initPage(pBt, pCur->pPage, pCur->pgnoRoot, 0);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ goto create_cursor_exception;
|
|
+ }
|
|
+ pCur->pOps = &sqliteBtreeCursorOps;
|
|
+ pCur->pBt = pBt;
|
|
+ pCur->wrFlag = wrFlag;
|
|
+ pCur->idx = 0;
|
|
+ pCur->eSkip = SKIP_INVALID;
|
|
+ pCur->pNext = pBt->pCursor;
|
|
+ if( pCur->pNext ){
|
|
+ pCur->pNext->pPrev = pCur;
|
|
+ }
|
|
+ pCur->pPrev = 0;
|
|
+ pRing = pBt->pCursor;
|
|
+ while( pRing && pRing->pgnoRoot!=pCur->pgnoRoot ){ pRing = pRing->pNext; }
|
|
+ if( pRing ){
|
|
+ pCur->pShared = pRing->pShared;
|
|
+ pRing->pShared = pCur;
|
|
+ }else{
|
|
+ pCur->pShared = pCur;
|
|
+ }
|
|
+ pBt->pCursor = pCur;
|
|
+ *ppCur = pCur;
|
|
+ return SQLITE_OK;
|
|
+
|
|
+create_cursor_exception:
|
|
+ *ppCur = 0;
|
|
+ if( pCur ){
|
|
+ if( pCur->pPage ) sqlitepager_unref(pCur->pPage);
|
|
+ sqliteFree(pCur);
|
|
+ }
|
|
+ unlockBtreeIfUnused(pBt);
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Close a cursor. The read lock on the database file is released
|
|
+** when the last cursor is closed.
|
|
+*/
|
|
+static int fileBtreeCloseCursor(BtCursor *pCur){
|
|
+ Btree *pBt = pCur->pBt;
|
|
+ if( pCur->pPrev ){
|
|
+ pCur->pPrev->pNext = pCur->pNext;
|
|
+ }else{
|
|
+ pBt->pCursor = pCur->pNext;
|
|
+ }
|
|
+ if( pCur->pNext ){
|
|
+ pCur->pNext->pPrev = pCur->pPrev;
|
|
+ }
|
|
+ if( pCur->pPage ){
|
|
+ sqlitepager_unref(pCur->pPage);
|
|
+ }
|
|
+ if( pCur->pShared!=pCur ){
|
|
+ BtCursor *pRing = pCur->pShared;
|
|
+ while( pRing->pShared!=pCur ){ pRing = pRing->pShared; }
|
|
+ pRing->pShared = pCur->pShared;
|
|
+ }
|
|
+ unlockBtreeIfUnused(pBt);
|
|
+ sqliteFree(pCur);
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Make a temporary cursor by filling in the fields of pTempCur.
|
|
+** The temporary cursor is not on the cursor list for the Btree.
|
|
+*/
|
|
+static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){
|
|
+ memcpy(pTempCur, pCur, sizeof(*pCur));
|
|
+ pTempCur->pNext = 0;
|
|
+ pTempCur->pPrev = 0;
|
|
+ if( pTempCur->pPage ){
|
|
+ sqlitepager_ref(pTempCur->pPage);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
|
|
+** function above.
|
|
+*/
|
|
+static void releaseTempCursor(BtCursor *pCur){
|
|
+ if( pCur->pPage ){
|
|
+ sqlitepager_unref(pCur->pPage);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Set *pSize to the number of bytes of key in the entry the
|
|
+** cursor currently points to. Always return SQLITE_OK.
|
|
+** Failure is not possible. If the cursor is not currently
|
|
+** pointing to an entry (which can happen, for example, if
|
|
+** the database is empty) then *pSize is set to 0.
|
|
+*/
|
|
+static int fileBtreeKeySize(BtCursor *pCur, int *pSize){
|
|
+ Cell *pCell;
|
|
+ MemPage *pPage;
|
|
+
|
|
+ pPage = pCur->pPage;
|
|
+ assert( pPage!=0 );
|
|
+ if( pCur->idx >= pPage->nCell ){
|
|
+ *pSize = 0;
|
|
+ }else{
|
|
+ pCell = pPage->apCell[pCur->idx];
|
|
+ *pSize = NKEY(pCur->pBt, pCell->h);
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Read payload information from the entry that the pCur cursor is
|
|
+** pointing to. Begin reading the payload at "offset" and read
|
|
+** a total of "amt" bytes. Put the result in zBuf.
|
|
+**
|
|
+** This routine does not make a distinction between key and data.
|
|
+** It just reads bytes from the payload area.
|
|
+*/
|
|
+static int getPayload(BtCursor *pCur, int offset, int amt, char *zBuf){
|
|
+ char *aPayload;
|
|
+ Pgno nextPage;
|
|
+ int rc;
|
|
+ Btree *pBt = pCur->pBt;
|
|
+ assert( pCur!=0 && pCur->pPage!=0 );
|
|
+ assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
|
|
+ aPayload = pCur->pPage->apCell[pCur->idx]->aPayload;
|
|
+ if( offset<MX_LOCAL_PAYLOAD ){
|
|
+ int a = amt;
|
|
+ if( a+offset>MX_LOCAL_PAYLOAD ){
|
|
+ a = MX_LOCAL_PAYLOAD - offset;
|
|
+ }
|
|
+ memcpy(zBuf, &aPayload[offset], a);
|
|
+ if( a==amt ){
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ offset = 0;
|
|
+ zBuf += a;
|
|
+ amt -= a;
|
|
+ }else{
|
|
+ offset -= MX_LOCAL_PAYLOAD;
|
|
+ }
|
|
+ if( amt>0 ){
|
|
+ nextPage = SWAB32(pBt, pCur->pPage->apCell[pCur->idx]->ovfl);
|
|
+ }
|
|
+ while( amt>0 && nextPage ){
|
|
+ OverflowPage *pOvfl;
|
|
+ rc = sqlitepager_get(pBt->pPager, nextPage, (void**)&pOvfl);
|
|
+ if( rc!=0 ){
|
|
+ return rc;
|
|
+ }
|
|
+ nextPage = SWAB32(pBt, pOvfl->iNext);
|
|
+ if( offset<OVERFLOW_SIZE ){
|
|
+ int a = amt;
|
|
+ if( a + offset > OVERFLOW_SIZE ){
|
|
+ a = OVERFLOW_SIZE - offset;
|
|
+ }
|
|
+ memcpy(zBuf, &pOvfl->aPayload[offset], a);
|
|
+ offset = 0;
|
|
+ amt -= a;
|
|
+ zBuf += a;
|
|
+ }else{
|
|
+ offset -= OVERFLOW_SIZE;
|
|
+ }
|
|
+ sqlitepager_unref(pOvfl);
|
|
+ }
|
|
+ if( amt>0 ){
|
|
+ return SQLITE_CORRUPT;
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Read part of the key associated with cursor pCur. A maximum
|
|
+** of "amt" bytes will be transfered into zBuf[]. The transfer
|
|
+** begins at "offset". The number of bytes actually read is
|
|
+** returned.
|
|
+**
|
|
+** Change: It used to be that the amount returned will be smaller
|
|
+** than the amount requested if there are not enough bytes in the key
|
|
+** to satisfy the request. But now, it must be the case that there
|
|
+** is enough data available to satisfy the request. If not, an exception
|
|
+** is raised. The change was made in an effort to boost performance
|
|
+** by eliminating unneeded tests.
|
|
+*/
|
|
+static int fileBtreeKey(BtCursor *pCur, int offset, int amt, char *zBuf){
|
|
+ MemPage *pPage;
|
|
+
|
|
+ assert( amt>=0 );
|
|
+ assert( offset>=0 );
|
|
+ assert( pCur->pPage!=0 );
|
|
+ pPage = pCur->pPage;
|
|
+ if( pCur->idx >= pPage->nCell ){
|
|
+ return 0;
|
|
+ }
|
|
+ assert( amt+offset <= NKEY(pCur->pBt, pPage->apCell[pCur->idx]->h) );
|
|
+ getPayload(pCur, offset, amt, zBuf);
|
|
+ return amt;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Set *pSize to the number of bytes of data in the entry the
|
|
+** cursor currently points to. Always return SQLITE_OK.
|
|
+** Failure is not possible. If the cursor is not currently
|
|
+** pointing to an entry (which can happen, for example, if
|
|
+** the database is empty) then *pSize is set to 0.
|
|
+*/
|
|
+static int fileBtreeDataSize(BtCursor *pCur, int *pSize){
|
|
+ Cell *pCell;
|
|
+ MemPage *pPage;
|
|
+
|
|
+ pPage = pCur->pPage;
|
|
+ assert( pPage!=0 );
|
|
+ if( pCur->idx >= pPage->nCell ){
|
|
+ *pSize = 0;
|
|
+ }else{
|
|
+ pCell = pPage->apCell[pCur->idx];
|
|
+ *pSize = NDATA(pCur->pBt, pCell->h);
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Read part of the data associated with cursor pCur. A maximum
|
|
+** of "amt" bytes will be transfered into zBuf[]. The transfer
|
|
+** begins at "offset". The number of bytes actually read is
|
|
+** returned. The amount returned will be smaller than the
|
|
+** amount requested if there are not enough bytes in the data
|
|
+** to satisfy the request.
|
|
+*/
|
|
+static int fileBtreeData(BtCursor *pCur, int offset, int amt, char *zBuf){
|
|
+ Cell *pCell;
|
|
+ MemPage *pPage;
|
|
+
|
|
+ assert( amt>=0 );
|
|
+ assert( offset>=0 );
|
|
+ assert( pCur->pPage!=0 );
|
|
+ pPage = pCur->pPage;
|
|
+ if( pCur->idx >= pPage->nCell ){
|
|
+ return 0;
|
|
+ }
|
|
+ pCell = pPage->apCell[pCur->idx];
|
|
+ assert( amt+offset <= NDATA(pCur->pBt, pCell->h) );
|
|
+ getPayload(pCur, offset + NKEY(pCur->pBt, pCell->h), amt, zBuf);
|
|
+ return amt;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Compare an external key against the key on the entry that pCur points to.
|
|
+**
|
|
+** The external key is pKey and is nKey bytes long. The last nIgnore bytes
|
|
+** of the key associated with pCur are ignored, as if they do not exist.
|
|
+** (The normal case is for nIgnore to be zero in which case the entire
|
|
+** internal key is used in the comparison.)
|
|
+**
|
|
+** The comparison result is written to *pRes as follows:
|
|
+**
|
|
+** *pRes<0 This means pCur<pKey
|
|
+**
|
|
+** *pRes==0 This means pCur==pKey for all nKey bytes
|
|
+**
|
|
+** *pRes>0 This means pCur>pKey
|
|
+**
|
|
+** When one key is an exact prefix of the other, the shorter key is
|
|
+** considered less than the longer one. In order to be equal the
|
|
+** keys must be exactly the same length. (The length of the pCur key
|
|
+** is the actual key length minus nIgnore bytes.)
|
|
+*/
|
|
+static int fileBtreeKeyCompare(
|
|
+ BtCursor *pCur, /* Pointer to entry to compare against */
|
|
+ const void *pKey, /* Key to compare against entry that pCur points to */
|
|
+ int nKey, /* Number of bytes in pKey */
|
|
+ int nIgnore, /* Ignore this many bytes at the end of pCur */
|
|
+ int *pResult /* Write the result here */
|
|
+){
|
|
+ Pgno nextPage;
|
|
+ int n, c, rc, nLocal;
|
|
+ Cell *pCell;
|
|
+ Btree *pBt = pCur->pBt;
|
|
+ const char *zKey = (const char*)pKey;
|
|
+
|
|
+ assert( pCur->pPage );
|
|
+ assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
|
|
+ pCell = pCur->pPage->apCell[pCur->idx];
|
|
+ nLocal = NKEY(pBt, pCell->h) - nIgnore;
|
|
+ if( nLocal<0 ) nLocal = 0;
|
|
+ n = nKey<nLocal ? nKey : nLocal;
|
|
+ if( n>MX_LOCAL_PAYLOAD ){
|
|
+ n = MX_LOCAL_PAYLOAD;
|
|
+ }
|
|
+ c = memcmp(pCell->aPayload, zKey, n);
|
|
+ if( c!=0 ){
|
|
+ *pResult = c;
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ zKey += n;
|
|
+ nKey -= n;
|
|
+ nLocal -= n;
|
|
+ nextPage = SWAB32(pBt, pCell->ovfl);
|
|
+ while( nKey>0 && nLocal>0 ){
|
|
+ OverflowPage *pOvfl;
|
|
+ if( nextPage==0 ){
|
|
+ return SQLITE_CORRUPT;
|
|
+ }
|
|
+ rc = sqlitepager_get(pBt->pPager, nextPage, (void**)&pOvfl);
|
|
+ if( rc ){
|
|
+ return rc;
|
|
+ }
|
|
+ nextPage = SWAB32(pBt, pOvfl->iNext);
|
|
+ n = nKey<nLocal ? nKey : nLocal;
|
|
+ if( n>OVERFLOW_SIZE ){
|
|
+ n = OVERFLOW_SIZE;
|
|
+ }
|
|
+ c = memcmp(pOvfl->aPayload, zKey, n);
|
|
+ sqlitepager_unref(pOvfl);
|
|
+ if( c!=0 ){
|
|
+ *pResult = c;
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ nKey -= n;
|
|
+ nLocal -= n;
|
|
+ zKey += n;
|
|
+ }
|
|
+ if( c==0 ){
|
|
+ c = nLocal - nKey;
|
|
+ }
|
|
+ *pResult = c;
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Move the cursor down to a new child page. The newPgno argument is the
|
|
+** page number of the child page in the byte order of the disk image.
|
|
+*/
|
|
+static int moveToChild(BtCursor *pCur, int newPgno){
|
|
+ int rc;
|
|
+ MemPage *pNewPage;
|
|
+ Btree *pBt = pCur->pBt;
|
|
+
|
|
+ newPgno = SWAB32(pBt, newPgno);
|
|
+ rc = sqlitepager_get(pBt->pPager, newPgno, (void**)&pNewPage);
|
|
+ if( rc ) return rc;
|
|
+ rc = initPage(pBt, pNewPage, newPgno, pCur->pPage);
|
|
+ if( rc ) return rc;
|
|
+ assert( pCur->idx>=pCur->pPage->nCell
|
|
+ || pCur->pPage->apCell[pCur->idx]->h.leftChild==SWAB32(pBt,newPgno) );
|
|
+ assert( pCur->idx<pCur->pPage->nCell
|
|
+ || pCur->pPage->u.hdr.rightChild==SWAB32(pBt,newPgno) );
|
|
+ pNewPage->idxParent = pCur->idx;
|
|
+ pCur->pPage->idxShift = 0;
|
|
+ sqlitepager_unref(pCur->pPage);
|
|
+ pCur->pPage = pNewPage;
|
|
+ pCur->idx = 0;
|
|
+ if( pNewPage->nCell<1 ){
|
|
+ return SQLITE_CORRUPT;
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Move the cursor up to the parent page.
|
|
+**
|
|
+** pCur->idx is set to the cell index that contains the pointer
|
|
+** to the page we are coming from. If we are coming from the
|
|
+** right-most child page then pCur->idx is set to one more than
|
|
+** the largest cell index.
|
|
+*/
|
|
+static void moveToParent(BtCursor *pCur){
|
|
+ Pgno oldPgno;
|
|
+ MemPage *pParent;
|
|
+ MemPage *pPage;
|
|
+ int idxParent;
|
|
+ pPage = pCur->pPage;
|
|
+ assert( pPage!=0 );
|
|
+ pParent = pPage->pParent;
|
|
+ assert( pParent!=0 );
|
|
+ idxParent = pPage->idxParent;
|
|
+ sqlitepager_ref(pParent);
|
|
+ sqlitepager_unref(pPage);
|
|
+ pCur->pPage = pParent;
|
|
+ assert( pParent->idxShift==0 );
|
|
+ if( pParent->idxShift==0 ){
|
|
+ pCur->idx = idxParent;
|
|
+#ifndef NDEBUG
|
|
+ /* Verify that pCur->idx is the correct index to point back to the child
|
|
+ ** page we just came from
|
|
+ */
|
|
+ oldPgno = SWAB32(pCur->pBt, sqlitepager_pagenumber(pPage));
|
|
+ if( pCur->idx<pParent->nCell ){
|
|
+ assert( pParent->apCell[idxParent]->h.leftChild==oldPgno );
|
|
+ }else{
|
|
+ assert( pParent->u.hdr.rightChild==oldPgno );
|
|
+ }
|
|
+#endif
|
|
+ }else{
|
|
+ /* The MemPage.idxShift flag indicates that cell indices might have
|
|
+ ** changed since idxParent was set and hence idxParent might be out
|
|
+ ** of date. So recompute the parent cell index by scanning all cells
|
|
+ ** and locating the one that points to the child we just came from.
|
|
+ */
|
|
+ int i;
|
|
+ pCur->idx = pParent->nCell;
|
|
+ oldPgno = SWAB32(pCur->pBt, sqlitepager_pagenumber(pPage));
|
|
+ for(i=0; i<pParent->nCell; i++){
|
|
+ if( pParent->apCell[i]->h.leftChild==oldPgno ){
|
|
+ pCur->idx = i;
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Move the cursor to the root page
|
|
+*/
|
|
+static int moveToRoot(BtCursor *pCur){
|
|
+ MemPage *pNew;
|
|
+ int rc;
|
|
+ Btree *pBt = pCur->pBt;
|
|
+
|
|
+ rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pNew);
|
|
+ if( rc ) return rc;
|
|
+ rc = initPage(pBt, pNew, pCur->pgnoRoot, 0);
|
|
+ if( rc ) return rc;
|
|
+ sqlitepager_unref(pCur->pPage);
|
|
+ pCur->pPage = pNew;
|
|
+ pCur->idx = 0;
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Move the cursor down to the left-most leaf entry beneath the
|
|
+** entry to which it is currently pointing.
|
|
+*/
|
|
+static int moveToLeftmost(BtCursor *pCur){
|
|
+ Pgno pgno;
|
|
+ int rc;
|
|
+
|
|
+ while( (pgno = pCur->pPage->apCell[pCur->idx]->h.leftChild)!=0 ){
|
|
+ rc = moveToChild(pCur, pgno);
|
|
+ if( rc ) return rc;
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Move the cursor down to the right-most leaf entry beneath the
|
|
+** page to which it is currently pointing. Notice the difference
|
|
+** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
|
|
+** finds the left-most entry beneath the *entry* whereas moveToRightmost()
|
|
+** finds the right-most entry beneath the *page*.
|
|
+*/
|
|
+static int moveToRightmost(BtCursor *pCur){
|
|
+ Pgno pgno;
|
|
+ int rc;
|
|
+
|
|
+ while( (pgno = pCur->pPage->u.hdr.rightChild)!=0 ){
|
|
+ pCur->idx = pCur->pPage->nCell;
|
|
+ rc = moveToChild(pCur, pgno);
|
|
+ if( rc ) return rc;
|
|
+ }
|
|
+ pCur->idx = pCur->pPage->nCell - 1;
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/* Move the cursor to the first entry in the table. Return SQLITE_OK
|
|
+** on success. Set *pRes to 0 if the cursor actually points to something
|
|
+** or set *pRes to 1 if the table is empty.
|
|
+*/
|
|
+static int fileBtreeFirst(BtCursor *pCur, int *pRes){
|
|
+ int rc;
|
|
+ if( pCur->pPage==0 ) return SQLITE_ABORT;
|
|
+ rc = moveToRoot(pCur);
|
|
+ if( rc ) return rc;
|
|
+ if( pCur->pPage->nCell==0 ){
|
|
+ *pRes = 1;
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ *pRes = 0;
|
|
+ rc = moveToLeftmost(pCur);
|
|
+ pCur->eSkip = SKIP_NONE;
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/* Move the cursor to the last entry in the table. Return SQLITE_OK
|
|
+** on success. Set *pRes to 0 if the cursor actually points to something
|
|
+** or set *pRes to 1 if the table is empty.
|
|
+*/
|
|
+static int fileBtreeLast(BtCursor *pCur, int *pRes){
|
|
+ int rc;
|
|
+ if( pCur->pPage==0 ) return SQLITE_ABORT;
|
|
+ rc = moveToRoot(pCur);
|
|
+ if( rc ) return rc;
|
|
+ assert( pCur->pPage->isInit );
|
|
+ if( pCur->pPage->nCell==0 ){
|
|
+ *pRes = 1;
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ *pRes = 0;
|
|
+ rc = moveToRightmost(pCur);
|
|
+ pCur->eSkip = SKIP_NONE;
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/* Move the cursor so that it points to an entry near pKey.
|
|
+** Return a success code.
|
|
+**
|
|
+** If an exact match is not found, then the cursor is always
|
|
+** left pointing at a leaf page which would hold the entry if it
|
|
+** were present. The cursor might point to an entry that comes
|
|
+** before or after the key.
|
|
+**
|
|
+** The result of comparing the key with the entry to which the
|
|
+** cursor is left pointing is stored in pCur->iMatch. The same
|
|
+** value is also written to *pRes if pRes!=NULL. The meaning of
|
|
+** this value is as follows:
|
|
+**
|
|
+** *pRes<0 The cursor is left pointing at an entry that
|
|
+** is smaller than pKey or if the table is empty
|
|
+** and the cursor is therefore left point to nothing.
|
|
+**
|
|
+** *pRes==0 The cursor is left pointing at an entry that
|
|
+** exactly matches pKey.
|
|
+**
|
|
+** *pRes>0 The cursor is left pointing at an entry that
|
|
+** is larger than pKey.
|
|
+*/
|
|
+static
|
|
+int fileBtreeMoveto(BtCursor *pCur, const void *pKey, int nKey, int *pRes){
|
|
+ int rc;
|
|
+ if( pCur->pPage==0 ) return SQLITE_ABORT;
|
|
+ pCur->eSkip = SKIP_NONE;
|
|
+ rc = moveToRoot(pCur);
|
|
+ if( rc ) return rc;
|
|
+ for(;;){
|
|
+ int lwr, upr;
|
|
+ Pgno chldPg;
|
|
+ MemPage *pPage = pCur->pPage;
|
|
+ int c = -1; /* pRes return if table is empty must be -1 */
|
|
+ lwr = 0;
|
|
+ upr = pPage->nCell-1;
|
|
+ while( lwr<=upr ){
|
|
+ pCur->idx = (lwr+upr)/2;
|
|
+ rc = fileBtreeKeyCompare(pCur, pKey, nKey, 0, &c);
|
|
+ if( rc ) return rc;
|
|
+ if( c==0 ){
|
|
+ pCur->iMatch = c;
|
|
+ if( pRes ) *pRes = 0;
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ if( c<0 ){
|
|
+ lwr = pCur->idx+1;
|
|
+ }else{
|
|
+ upr = pCur->idx-1;
|
|
+ }
|
|
+ }
|
|
+ assert( lwr==upr+1 );
|
|
+ assert( pPage->isInit );
|
|
+ if( lwr>=pPage->nCell ){
|
|
+ chldPg = pPage->u.hdr.rightChild;
|
|
+ }else{
|
|
+ chldPg = pPage->apCell[lwr]->h.leftChild;
|
|
+ }
|
|
+ if( chldPg==0 ){
|
|
+ pCur->iMatch = c;
|
|
+ if( pRes ) *pRes = c;
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ pCur->idx = lwr;
|
|
+ rc = moveToChild(pCur, chldPg);
|
|
+ if( rc ) return rc;
|
|
+ }
|
|
+ /* NOT REACHED */
|
|
+}
|
|
+
|
|
+/*
|
|
+** Advance the cursor to the next entry in the database. If
|
|
+** successful then set *pRes=0. If the cursor
|
|
+** was already pointing to the last entry in the database before
|
|
+** this routine was called, then set *pRes=1.
|
|
+*/
|
|
+static int fileBtreeNext(BtCursor *pCur, int *pRes){
|
|
+ int rc;
|
|
+ MemPage *pPage = pCur->pPage;
|
|
+ assert( pRes!=0 );
|
|
+ if( pPage==0 ){
|
|
+ *pRes = 1;
|
|
+ return SQLITE_ABORT;
|
|
+ }
|
|
+ assert( pPage->isInit );
|
|
+ assert( pCur->eSkip!=SKIP_INVALID );
|
|
+ if( pPage->nCell==0 ){
|
|
+ *pRes = 1;
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ assert( pCur->idx<pPage->nCell );
|
|
+ if( pCur->eSkip==SKIP_NEXT ){
|
|
+ pCur->eSkip = SKIP_NONE;
|
|
+ *pRes = 0;
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ pCur->eSkip = SKIP_NONE;
|
|
+ pCur->idx++;
|
|
+ if( pCur->idx>=pPage->nCell ){
|
|
+ if( pPage->u.hdr.rightChild ){
|
|
+ rc = moveToChild(pCur, pPage->u.hdr.rightChild);
|
|
+ if( rc ) return rc;
|
|
+ rc = moveToLeftmost(pCur);
|
|
+ *pRes = 0;
|
|
+ return rc;
|
|
+ }
|
|
+ do{
|
|
+ if( pPage->pParent==0 ){
|
|
+ *pRes = 1;
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ moveToParent(pCur);
|
|
+ pPage = pCur->pPage;
|
|
+ }while( pCur->idx>=pPage->nCell );
|
|
+ *pRes = 0;
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ *pRes = 0;
|
|
+ if( pPage->u.hdr.rightChild==0 ){
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ rc = moveToLeftmost(pCur);
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Step the cursor to the back to the previous entry in the database. If
|
|
+** successful then set *pRes=0. If the cursor
|
|
+** was already pointing to the first entry in the database before
|
|
+** this routine was called, then set *pRes=1.
|
|
+*/
|
|
+static int fileBtreePrevious(BtCursor *pCur, int *pRes){
|
|
+ int rc;
|
|
+ Pgno pgno;
|
|
+ MemPage *pPage;
|
|
+ pPage = pCur->pPage;
|
|
+ if( pPage==0 ){
|
|
+ *pRes = 1;
|
|
+ return SQLITE_ABORT;
|
|
+ }
|
|
+ assert( pPage->isInit );
|
|
+ assert( pCur->eSkip!=SKIP_INVALID );
|
|
+ if( pPage->nCell==0 ){
|
|
+ *pRes = 1;
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ if( pCur->eSkip==SKIP_PREV ){
|
|
+ pCur->eSkip = SKIP_NONE;
|
|
+ *pRes = 0;
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ pCur->eSkip = SKIP_NONE;
|
|
+ assert( pCur->idx>=0 );
|
|
+ if( (pgno = pPage->apCell[pCur->idx]->h.leftChild)!=0 ){
|
|
+ rc = moveToChild(pCur, pgno);
|
|
+ if( rc ) return rc;
|
|
+ rc = moveToRightmost(pCur);
|
|
+ }else{
|
|
+ while( pCur->idx==0 ){
|
|
+ if( pPage->pParent==0 ){
|
|
+ if( pRes ) *pRes = 1;
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ moveToParent(pCur);
|
|
+ pPage = pCur->pPage;
|
|
+ }
|
|
+ pCur->idx--;
|
|
+ rc = SQLITE_OK;
|
|
+ }
|
|
+ *pRes = 0;
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Allocate a new page from the database file.
|
|
+**
|
|
+** The new page is marked as dirty. (In other words, sqlitepager_write()
|
|
+** has already been called on the new page.) The new page has also
|
|
+** been referenced and the calling routine is responsible for calling
|
|
+** sqlitepager_unref() on the new page when it is done.
|
|
+**
|
|
+** SQLITE_OK is returned on success. Any other return value indicates
|
|
+** an error. *ppPage and *pPgno are undefined in the event of an error.
|
|
+** Do not invoke sqlitepager_unref() on *ppPage if an error is returned.
|
|
+**
|
|
+** If the "nearby" parameter is not 0, then a (feeble) effort is made to
|
|
+** locate a page close to the page number "nearby". This can be used in an
|
|
+** attempt to keep related pages close to each other in the database file,
|
|
+** which in turn can make database access faster.
|
|
+*/
|
|
+static int allocatePage(Btree *pBt, MemPage **ppPage, Pgno *pPgno, Pgno nearby){
|
|
+ PageOne *pPage1 = pBt->page1;
|
|
+ int rc;
|
|
+ if( pPage1->freeList ){
|
|
+ OverflowPage *pOvfl;
|
|
+ FreelistInfo *pInfo;
|
|
+
|
|
+ rc = sqlitepager_write(pPage1);
|
|
+ if( rc ) return rc;
|
|
+ SWAB_ADD(pBt, pPage1->nFree, -1);
|
|
+ rc = sqlitepager_get(pBt->pPager, SWAB32(pBt, pPage1->freeList),
|
|
+ (void**)&pOvfl);
|
|
+ if( rc ) return rc;
|
|
+ rc = sqlitepager_write(pOvfl);
|
|
+ if( rc ){
|
|
+ sqlitepager_unref(pOvfl);
|
|
+ return rc;
|
|
+ }
|
|
+ pInfo = (FreelistInfo*)pOvfl->aPayload;
|
|
+ if( pInfo->nFree==0 ){
|
|
+ *pPgno = SWAB32(pBt, pPage1->freeList);
|
|
+ pPage1->freeList = pOvfl->iNext;
|
|
+ *ppPage = (MemPage*)pOvfl;
|
|
+ }else{
|
|
+ int closest, n;
|
|
+ n = SWAB32(pBt, pInfo->nFree);
|
|
+ if( n>1 && nearby>0 ){
|
|
+ int i, dist;
|
|
+ closest = 0;
|
|
+ dist = SWAB32(pBt, pInfo->aFree[0]) - nearby;
|
|
+ if( dist<0 ) dist = -dist;
|
|
+ for(i=1; i<n; i++){
|
|
+ int d2 = SWAB32(pBt, pInfo->aFree[i]) - nearby;
|
|
+ if( d2<0 ) d2 = -d2;
|
|
+ if( d2<dist ) closest = i;
|
|
+ }
|
|
+ }else{
|
|
+ closest = 0;
|
|
+ }
|
|
+ SWAB_ADD(pBt, pInfo->nFree, -1);
|
|
+ *pPgno = SWAB32(pBt, pInfo->aFree[closest]);
|
|
+ pInfo->aFree[closest] = pInfo->aFree[n-1];
|
|
+ rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage);
|
|
+ sqlitepager_unref(pOvfl);
|
|
+ if( rc==SQLITE_OK ){
|
|
+ sqlitepager_dont_rollback(*ppPage);
|
|
+ rc = sqlitepager_write(*ppPage);
|
|
+ }
|
|
+ }
|
|
+ }else{
|
|
+ *pPgno = sqlitepager_pagecount(pBt->pPager) + 1;
|
|
+ rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage);
|
|
+ if( rc ) return rc;
|
|
+ rc = sqlitepager_write(*ppPage);
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Add a page of the database file to the freelist. Either pgno or
|
|
+** pPage but not both may be 0.
|
|
+**
|
|
+** sqlitepager_unref() is NOT called for pPage.
|
|
+*/
|
|
+static int freePage(Btree *pBt, void *pPage, Pgno pgno){
|
|
+ PageOne *pPage1 = pBt->page1;
|
|
+ OverflowPage *pOvfl = (OverflowPage*)pPage;
|
|
+ int rc;
|
|
+ int needUnref = 0;
|
|
+ MemPage *pMemPage;
|
|
+
|
|
+ if( pgno==0 ){
|
|
+ assert( pOvfl!=0 );
|
|
+ pgno = sqlitepager_pagenumber(pOvfl);
|
|
+ }
|
|
+ assert( pgno>2 );
|
|
+ assert( sqlitepager_pagenumber(pOvfl)==pgno );
|
|
+ pMemPage = (MemPage*)pPage;
|
|
+ pMemPage->isInit = 0;
|
|
+ if( pMemPage->pParent ){
|
|
+ sqlitepager_unref(pMemPage->pParent);
|
|
+ pMemPage->pParent = 0;
|
|
+ }
|
|
+ rc = sqlitepager_write(pPage1);
|
|
+ if( rc ){
|
|
+ return rc;
|
|
+ }
|
|
+ SWAB_ADD(pBt, pPage1->nFree, 1);
|
|
+ if( pPage1->nFree!=0 && pPage1->freeList!=0 ){
|
|
+ OverflowPage *pFreeIdx;
|
|
+ rc = sqlitepager_get(pBt->pPager, SWAB32(pBt, pPage1->freeList),
|
|
+ (void**)&pFreeIdx);
|
|
+ if( rc==SQLITE_OK ){
|
|
+ FreelistInfo *pInfo = (FreelistInfo*)pFreeIdx->aPayload;
|
|
+ int n = SWAB32(pBt, pInfo->nFree);
|
|
+ if( n<(sizeof(pInfo->aFree)/sizeof(pInfo->aFree[0])) ){
|
|
+ rc = sqlitepager_write(pFreeIdx);
|
|
+ if( rc==SQLITE_OK ){
|
|
+ pInfo->aFree[n] = SWAB32(pBt, pgno);
|
|
+ SWAB_ADD(pBt, pInfo->nFree, 1);
|
|
+ sqlitepager_unref(pFreeIdx);
|
|
+ sqlitepager_dont_write(pBt->pPager, pgno);
|
|
+ return rc;
|
|
+ }
|
|
+ }
|
|
+ sqlitepager_unref(pFreeIdx);
|
|
+ }
|
|
+ }
|
|
+ if( pOvfl==0 ){
|
|
+ assert( pgno>0 );
|
|
+ rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pOvfl);
|
|
+ if( rc ) return rc;
|
|
+ needUnref = 1;
|
|
+ }
|
|
+ rc = sqlitepager_write(pOvfl);
|
|
+ if( rc ){
|
|
+ if( needUnref ) sqlitepager_unref(pOvfl);
|
|
+ return rc;
|
|
+ }
|
|
+ pOvfl->iNext = pPage1->freeList;
|
|
+ pPage1->freeList = SWAB32(pBt, pgno);
|
|
+ memset(pOvfl->aPayload, 0, OVERFLOW_SIZE);
|
|
+ if( needUnref ) rc = sqlitepager_unref(pOvfl);
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Erase all the data out of a cell. This involves returning overflow
|
|
+** pages back the freelist.
|
|
+*/
|
|
+static int clearCell(Btree *pBt, Cell *pCell){
|
|
+ Pager *pPager = pBt->pPager;
|
|
+ OverflowPage *pOvfl;
|
|
+ Pgno ovfl, nextOvfl;
|
|
+ int rc;
|
|
+
|
|
+ if( NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h) <= MX_LOCAL_PAYLOAD ){
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ ovfl = SWAB32(pBt, pCell->ovfl);
|
|
+ pCell->ovfl = 0;
|
|
+ while( ovfl ){
|
|
+ rc = sqlitepager_get(pPager, ovfl, (void**)&pOvfl);
|
|
+ if( rc ) return rc;
|
|
+ nextOvfl = SWAB32(pBt, pOvfl->iNext);
|
|
+ rc = freePage(pBt, pOvfl, ovfl);
|
|
+ if( rc ) return rc;
|
|
+ sqlitepager_unref(pOvfl);
|
|
+ ovfl = nextOvfl;
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Create a new cell from key and data. Overflow pages are allocated as
|
|
+** necessary and linked to this cell.
|
|
+*/
|
|
+static int fillInCell(
|
|
+ Btree *pBt, /* The whole Btree. Needed to allocate pages */
|
|
+ Cell *pCell, /* Populate this Cell structure */
|
|
+ const void *pKey, int nKey, /* The key */
|
|
+ const void *pData,int nData /* The data */
|
|
+){
|
|
+ OverflowPage *pOvfl, *pPrior;
|
|
+ Pgno *pNext;
|
|
+ int spaceLeft;
|
|
+ int n, rc;
|
|
+ int nPayload;
|
|
+ const char *pPayload;
|
|
+ char *pSpace;
|
|
+ Pgno nearby = 0;
|
|
+
|
|
+ pCell->h.leftChild = 0;
|
|
+ pCell->h.nKey = SWAB16(pBt, nKey & 0xffff);
|
|
+ pCell->h.nKeyHi = nKey >> 16;
|
|
+ pCell->h.nData = SWAB16(pBt, nData & 0xffff);
|
|
+ pCell->h.nDataHi = nData >> 16;
|
|
+ pCell->h.iNext = 0;
|
|
+
|
|
+ pNext = &pCell->ovfl;
|
|
+ pSpace = pCell->aPayload;
|
|
+ spaceLeft = MX_LOCAL_PAYLOAD;
|
|
+ pPayload = pKey;
|
|
+ pKey = 0;
|
|
+ nPayload = nKey;
|
|
+ pPrior = 0;
|
|
+ while( nPayload>0 ){
|
|
+ if( spaceLeft==0 ){
|
|
+ rc = allocatePage(pBt, (MemPage**)&pOvfl, pNext, nearby);
|
|
+ if( rc ){
|
|
+ *pNext = 0;
|
|
+ }else{
|
|
+ nearby = *pNext;
|
|
+ }
|
|
+ if( pPrior ) sqlitepager_unref(pPrior);
|
|
+ if( rc ){
|
|
+ clearCell(pBt, pCell);
|
|
+ return rc;
|
|
+ }
|
|
+ if( pBt->needSwab ) *pNext = swab32(*pNext);
|
|
+ pPrior = pOvfl;
|
|
+ spaceLeft = OVERFLOW_SIZE;
|
|
+ pSpace = pOvfl->aPayload;
|
|
+ pNext = &pOvfl->iNext;
|
|
+ }
|
|
+ n = nPayload;
|
|
+ if( n>spaceLeft ) n = spaceLeft;
|
|
+ memcpy(pSpace, pPayload, n);
|
|
+ nPayload -= n;
|
|
+ if( nPayload==0 && pData ){
|
|
+ pPayload = pData;
|
|
+ nPayload = nData;
|
|
+ pData = 0;
|
|
+ }else{
|
|
+ pPayload += n;
|
|
+ }
|
|
+ spaceLeft -= n;
|
|
+ pSpace += n;
|
|
+ }
|
|
+ *pNext = 0;
|
|
+ if( pPrior ){
|
|
+ sqlitepager_unref(pPrior);
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Change the MemPage.pParent pointer on the page whose number is
|
|
+** given in the second argument so that MemPage.pParent holds the
|
|
+** pointer in the third argument.
|
|
+*/
|
|
+static void reparentPage(Pager *pPager, Pgno pgno, MemPage *pNewParent,int idx){
|
|
+ MemPage *pThis;
|
|
+
|
|
+ if( pgno==0 ) return;
|
|
+ assert( pPager!=0 );
|
|
+ pThis = sqlitepager_lookup(pPager, pgno);
|
|
+ if( pThis && pThis->isInit ){
|
|
+ if( pThis->pParent!=pNewParent ){
|
|
+ if( pThis->pParent ) sqlitepager_unref(pThis->pParent);
|
|
+ pThis->pParent = pNewParent;
|
|
+ if( pNewParent ) sqlitepager_ref(pNewParent);
|
|
+ }
|
|
+ pThis->idxParent = idx;
|
|
+ sqlitepager_unref(pThis);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Reparent all children of the given page to be the given page.
|
|
+** In other words, for every child of pPage, invoke reparentPage()
|
|
+** to make sure that each child knows that pPage is its parent.
|
|
+**
|
|
+** This routine gets called after you memcpy() one page into
|
|
+** another.
|
|
+*/
|
|
+static void reparentChildPages(Btree *pBt, MemPage *pPage){
|
|
+ int i;
|
|
+ Pager *pPager = pBt->pPager;
|
|
+ for(i=0; i<pPage->nCell; i++){
|
|
+ reparentPage(pPager, SWAB32(pBt, pPage->apCell[i]->h.leftChild), pPage, i);
|
|
+ }
|
|
+ reparentPage(pPager, SWAB32(pBt, pPage->u.hdr.rightChild), pPage, i);
|
|
+ pPage->idxShift = 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Remove the i-th cell from pPage. This routine effects pPage only.
|
|
+** The cell content is not freed or deallocated. It is assumed that
|
|
+** the cell content has been copied someplace else. This routine just
|
|
+** removes the reference to the cell from pPage.
|
|
+**
|
|
+** "sz" must be the number of bytes in the cell.
|
|
+**
|
|
+** Do not bother maintaining the integrity of the linked list of Cells.
|
|
+** Only the pPage->apCell[] array is important. The relinkCellList()
|
|
+** routine will be called soon after this routine in order to rebuild
|
|
+** the linked list.
|
|
+*/
|
|
+static void dropCell(Btree *pBt, MemPage *pPage, int idx, int sz){
|
|
+ int j;
|
|
+ assert( idx>=0 && idx<pPage->nCell );
|
|
+ assert( sz==cellSize(pBt, pPage->apCell[idx]) );
|
|
+ assert( sqlitepager_iswriteable(pPage) );
|
|
+ freeSpace(pBt, pPage, Addr(pPage->apCell[idx]) - Addr(pPage), sz);
|
|
+ for(j=idx; j<pPage->nCell-1; j++){
|
|
+ pPage->apCell[j] = pPage->apCell[j+1];
|
|
+ }
|
|
+ pPage->nCell--;
|
|
+ pPage->idxShift = 1;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Insert a new cell on pPage at cell index "i". pCell points to the
|
|
+** content of the cell.
|
|
+**
|
|
+** If the cell content will fit on the page, then put it there. If it
|
|
+** will not fit, then just make pPage->apCell[i] point to the content
|
|
+** and set pPage->isOverfull.
|
|
+**
|
|
+** Do not bother maintaining the integrity of the linked list of Cells.
|
|
+** Only the pPage->apCell[] array is important. The relinkCellList()
|
|
+** routine will be called soon after this routine in order to rebuild
|
|
+** the linked list.
|
|
+*/
|
|
+static void insertCell(Btree *pBt, MemPage *pPage, int i, Cell *pCell, int sz){
|
|
+ int idx, j;
|
|
+ assert( i>=0 && i<=pPage->nCell );
|
|
+ assert( sz==cellSize(pBt, pCell) );
|
|
+ assert( sqlitepager_iswriteable(pPage) );
|
|
+ idx = allocateSpace(pBt, pPage, sz);
|
|
+ for(j=pPage->nCell; j>i; j--){
|
|
+ pPage->apCell[j] = pPage->apCell[j-1];
|
|
+ }
|
|
+ pPage->nCell++;
|
|
+ if( idx<=0 ){
|
|
+ pPage->isOverfull = 1;
|
|
+ pPage->apCell[i] = pCell;
|
|
+ }else{
|
|
+ memcpy(&pPage->u.aDisk[idx], pCell, sz);
|
|
+ pPage->apCell[i] = (Cell*)&pPage->u.aDisk[idx];
|
|
+ }
|
|
+ pPage->idxShift = 1;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Rebuild the linked list of cells on a page so that the cells
|
|
+** occur in the order specified by the pPage->apCell[] array.
|
|
+** Invoke this routine once to repair damage after one or more
|
|
+** invocations of either insertCell() or dropCell().
|
|
+*/
|
|
+static void relinkCellList(Btree *pBt, MemPage *pPage){
|
|
+ int i;
|
|
+ u16 *pIdx;
|
|
+ assert( sqlitepager_iswriteable(pPage) );
|
|
+ pIdx = &pPage->u.hdr.firstCell;
|
|
+ for(i=0; i<pPage->nCell; i++){
|
|
+ int idx = Addr(pPage->apCell[i]) - Addr(pPage);
|
|
+ assert( idx>0 && idx<SQLITE_USABLE_SIZE );
|
|
+ *pIdx = SWAB16(pBt, idx);
|
|
+ pIdx = &pPage->apCell[i]->h.iNext;
|
|
+ }
|
|
+ *pIdx = 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Make a copy of the contents of pFrom into pTo. The pFrom->apCell[]
|
|
+** pointers that point into pFrom->u.aDisk[] must be adjusted to point
|
|
+** into pTo->u.aDisk[] instead. But some pFrom->apCell[] entries might
|
|
+** not point to pFrom->u.aDisk[]. Those are unchanged.
|
|
+*/
|
|
+static void copyPage(MemPage *pTo, MemPage *pFrom){
|
|
+ uptr from, to;
|
|
+ int i;
|
|
+ memcpy(pTo->u.aDisk, pFrom->u.aDisk, SQLITE_USABLE_SIZE);
|
|
+ pTo->pParent = 0;
|
|
+ pTo->isInit = 1;
|
|
+ pTo->nCell = pFrom->nCell;
|
|
+ pTo->nFree = pFrom->nFree;
|
|
+ pTo->isOverfull = pFrom->isOverfull;
|
|
+ to = Addr(pTo);
|
|
+ from = Addr(pFrom);
|
|
+ for(i=0; i<pTo->nCell; i++){
|
|
+ uptr x = Addr(pFrom->apCell[i]);
|
|
+ if( x>from && x<from+SQLITE_USABLE_SIZE ){
|
|
+ *((uptr*)&pTo->apCell[i]) = x + to - from;
|
|
+ }else{
|
|
+ pTo->apCell[i] = pFrom->apCell[i];
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** The following parameters determine how many adjacent pages get involved
|
|
+** in a balancing operation. NN is the number of neighbors on either side
|
|
+** of the page that participate in the balancing operation. NB is the
|
|
+** total number of pages that participate, including the target page and
|
|
+** NN neighbors on either side.
|
|
+**
|
|
+** The minimum value of NN is 1 (of course). Increasing NN above 1
|
|
+** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
|
|
+** in exchange for a larger degradation in INSERT and UPDATE performance.
|
|
+** The value of NN appears to give the best results overall.
|
|
+*/
|
|
+#define NN 1 /* Number of neighbors on either side of pPage */
|
|
+#define NB (NN*2+1) /* Total pages involved in the balance */
|
|
+
|
|
+/*
|
|
+** This routine redistributes Cells on pPage and up to two siblings
|
|
+** of pPage so that all pages have about the same amount of free space.
|
|
+** Usually one sibling on either side of pPage is used in the balancing,
|
|
+** though both siblings might come from one side if pPage is the first
|
|
+** or last child of its parent. If pPage has fewer than two siblings
|
|
+** (something which can only happen if pPage is the root page or a
|
|
+** child of root) then all available siblings participate in the balancing.
|
|
+**
|
|
+** The number of siblings of pPage might be increased or decreased by
|
|
+** one in an effort to keep pages between 66% and 100% full. The root page
|
|
+** is special and is allowed to be less than 66% full. If pPage is
|
|
+** the root page, then the depth of the tree might be increased
|
|
+** or decreased by one, as necessary, to keep the root page from being
|
|
+** overfull or empty.
|
|
+**
|
|
+** This routine calls relinkCellList() on its input page regardless of
|
|
+** whether or not it does any real balancing. Client routines will typically
|
|
+** invoke insertCell() or dropCell() before calling this routine, so we
|
|
+** need to call relinkCellList() to clean up the mess that those other
|
|
+** routines left behind.
|
|
+**
|
|
+** pCur is left pointing to the same cell as when this routine was called
|
|
+** even if that cell gets moved to a different page. pCur may be NULL.
|
|
+** Set the pCur parameter to NULL if you do not care about keeping track
|
|
+** of a cell as that will save this routine the work of keeping track of it.
|
|
+**
|
|
+** Note that when this routine is called, some of the Cells on pPage
|
|
+** might not actually be stored in pPage->u.aDisk[]. This can happen
|
|
+** if the page is overfull. Part of the job of this routine is to
|
|
+** make sure all Cells for pPage once again fit in pPage->u.aDisk[].
|
|
+**
|
|
+** In the course of balancing the siblings of pPage, the parent of pPage
|
|
+** might become overfull or underfull. If that happens, then this routine
|
|
+** is called recursively on the parent.
|
|
+**
|
|
+** If this routine fails for any reason, it might leave the database
|
|
+** in a corrupted state. So if this routine fails, the database should
|
|
+** be rolled back.
|
|
+*/
|
|
+static int balance(Btree *pBt, MemPage *pPage, BtCursor *pCur){
|
|
+ MemPage *pParent; /* The parent of pPage */
|
|
+ int nCell; /* Number of cells in apCell[] */
|
|
+ int nOld; /* Number of pages in apOld[] */
|
|
+ int nNew; /* Number of pages in apNew[] */
|
|
+ int nDiv; /* Number of cells in apDiv[] */
|
|
+ int i, j, k; /* Loop counters */
|
|
+ int idx; /* Index of pPage in pParent->apCell[] */
|
|
+ int nxDiv; /* Next divider slot in pParent->apCell[] */
|
|
+ int rc; /* The return code */
|
|
+ int iCur; /* apCell[iCur] is the cell of the cursor */
|
|
+ MemPage *pOldCurPage; /* The cursor originally points to this page */
|
|
+ int subtotal; /* Subtotal of bytes in cells on one page */
|
|
+ MemPage *extraUnref = 0; /* A page that needs to be unref-ed */
|
|
+ MemPage *apOld[NB]; /* pPage and up to two siblings */
|
|
+ Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
|
|
+ MemPage *apNew[NB+1]; /* pPage and up to NB siblings after balancing */
|
|
+ Pgno pgnoNew[NB+1]; /* Page numbers for each page in apNew[] */
|
|
+ int idxDiv[NB]; /* Indices of divider cells in pParent */
|
|
+ Cell *apDiv[NB]; /* Divider cells in pParent */
|
|
+ Cell aTemp[NB]; /* Temporary holding area for apDiv[] */
|
|
+ int cntNew[NB+1]; /* Index in apCell[] of cell after i-th page */
|
|
+ int szNew[NB+1]; /* Combined size of cells place on i-th page */
|
|
+ MemPage aOld[NB]; /* Temporary copies of pPage and its siblings */
|
|
+ Cell *apCell[(MX_CELL+2)*NB]; /* All cells from pages being balanced */
|
|
+ int szCell[(MX_CELL+2)*NB]; /* Local size of all cells */
|
|
+
|
|
+ /*
|
|
+ ** Return without doing any work if pPage is neither overfull nor
|
|
+ ** underfull.
|
|
+ */
|
|
+ assert( sqlitepager_iswriteable(pPage) );
|
|
+ if( !pPage->isOverfull && pPage->nFree<SQLITE_USABLE_SIZE/2
|
|
+ && pPage->nCell>=2){
|
|
+ relinkCellList(pBt, pPage);
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ ** Find the parent of the page to be balanceed.
|
|
+ ** If there is no parent, it means this page is the root page and
|
|
+ ** special rules apply.
|
|
+ */
|
|
+ pParent = pPage->pParent;
|
|
+ if( pParent==0 ){
|
|
+ Pgno pgnoChild;
|
|
+ MemPage *pChild;
|
|
+ assert( pPage->isInit );
|
|
+ if( pPage->nCell==0 ){
|
|
+ if( pPage->u.hdr.rightChild ){
|
|
+ /*
|
|
+ ** The root page is empty. Copy the one child page
|
|
+ ** into the root page and return. This reduces the depth
|
|
+ ** of the BTree by one.
|
|
+ */
|
|
+ pgnoChild = SWAB32(pBt, pPage->u.hdr.rightChild);
|
|
+ rc = sqlitepager_get(pBt->pPager, pgnoChild, (void**)&pChild);
|
|
+ if( rc ) return rc;
|
|
+ memcpy(pPage, pChild, SQLITE_USABLE_SIZE);
|
|
+ pPage->isInit = 0;
|
|
+ rc = initPage(pBt, pPage, sqlitepager_pagenumber(pPage), 0);
|
|
+ assert( rc==SQLITE_OK );
|
|
+ reparentChildPages(pBt, pPage);
|
|
+ if( pCur && pCur->pPage==pChild ){
|
|
+ sqlitepager_unref(pChild);
|
|
+ pCur->pPage = pPage;
|
|
+ sqlitepager_ref(pPage);
|
|
+ }
|
|
+ freePage(pBt, pChild, pgnoChild);
|
|
+ sqlitepager_unref(pChild);
|
|
+ }else{
|
|
+ relinkCellList(pBt, pPage);
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ if( !pPage->isOverfull ){
|
|
+ /* It is OK for the root page to be less than half full.
|
|
+ */
|
|
+ relinkCellList(pBt, pPage);
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ /*
|
|
+ ** If we get to here, it means the root page is overfull.
|
|
+ ** When this happens, Create a new child page and copy the
|
|
+ ** contents of the root into the child. Then make the root
|
|
+ ** page an empty page with rightChild pointing to the new
|
|
+ ** child. Then fall thru to the code below which will cause
|
|
+ ** the overfull child page to be split.
|
|
+ */
|
|
+ rc = sqlitepager_write(pPage);
|
|
+ if( rc ) return rc;
|
|
+ rc = allocatePage(pBt, &pChild, &pgnoChild, sqlitepager_pagenumber(pPage));
|
|
+ if( rc ) return rc;
|
|
+ assert( sqlitepager_iswriteable(pChild) );
|
|
+ copyPage(pChild, pPage);
|
|
+ pChild->pParent = pPage;
|
|
+ pChild->idxParent = 0;
|
|
+ sqlitepager_ref(pPage);
|
|
+ pChild->isOverfull = 1;
|
|
+ if( pCur && pCur->pPage==pPage ){
|
|
+ sqlitepager_unref(pPage);
|
|
+ pCur->pPage = pChild;
|
|
+ }else{
|
|
+ extraUnref = pChild;
|
|
+ }
|
|
+ zeroPage(pBt, pPage);
|
|
+ pPage->u.hdr.rightChild = SWAB32(pBt, pgnoChild);
|
|
+ pParent = pPage;
|
|
+ pPage = pChild;
|
|
+ }
|
|
+ rc = sqlitepager_write(pParent);
|
|
+ if( rc ) return rc;
|
|
+ assert( pParent->isInit );
|
|
+
|
|
+ /*
|
|
+ ** Find the Cell in the parent page whose h.leftChild points back
|
|
+ ** to pPage. The "idx" variable is the index of that cell. If pPage
|
|
+ ** is the rightmost child of pParent then set idx to pParent->nCell
|
|
+ */
|
|
+ if( pParent->idxShift ){
|
|
+ Pgno pgno, swabPgno;
|
|
+ pgno = sqlitepager_pagenumber(pPage);
|
|
+ swabPgno = SWAB32(pBt, pgno);
|
|
+ for(idx=0; idx<pParent->nCell; idx++){
|
|
+ if( pParent->apCell[idx]->h.leftChild==swabPgno ){
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ assert( idx<pParent->nCell || pParent->u.hdr.rightChild==swabPgno );
|
|
+ }else{
|
|
+ idx = pPage->idxParent;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ ** Initialize variables so that it will be safe to jump
|
|
+ ** directly to balance_cleanup at any moment.
|
|
+ */
|
|
+ nOld = nNew = 0;
|
|
+ sqlitepager_ref(pParent);
|
|
+
|
|
+ /*
|
|
+ ** Find sibling pages to pPage and the Cells in pParent that divide
|
|
+ ** the siblings. An attempt is made to find NN siblings on either
|
|
+ ** side of pPage. More siblings are taken from one side, however, if
|
|
+ ** pPage there are fewer than NN siblings on the other side. If pParent
|
|
+ ** has NB or fewer children then all children of pParent are taken.
|
|
+ */
|
|
+ nxDiv = idx - NN;
|
|
+ if( nxDiv + NB > pParent->nCell ){
|
|
+ nxDiv = pParent->nCell - NB + 1;
|
|
+ }
|
|
+ if( nxDiv<0 ){
|
|
+ nxDiv = 0;
|
|
+ }
|
|
+ nDiv = 0;
|
|
+ for(i=0, k=nxDiv; i<NB; i++, k++){
|
|
+ if( k<pParent->nCell ){
|
|
+ idxDiv[i] = k;
|
|
+ apDiv[i] = pParent->apCell[k];
|
|
+ nDiv++;
|
|
+ pgnoOld[i] = SWAB32(pBt, apDiv[i]->h.leftChild);
|
|
+ }else if( k==pParent->nCell ){
|
|
+ pgnoOld[i] = SWAB32(pBt, pParent->u.hdr.rightChild);
|
|
+ }else{
|
|
+ break;
|
|
+ }
|
|
+ rc = sqlitepager_get(pBt->pPager, pgnoOld[i], (void**)&apOld[i]);
|
|
+ if( rc ) goto balance_cleanup;
|
|
+ rc = initPage(pBt, apOld[i], pgnoOld[i], pParent);
|
|
+ if( rc ) goto balance_cleanup;
|
|
+ apOld[i]->idxParent = k;
|
|
+ nOld++;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ ** Set iCur to be the index in apCell[] of the cell that the cursor
|
|
+ ** is pointing to. We will need this later on in order to keep the
|
|
+ ** cursor pointing at the same cell. If pCur points to a page that
|
|
+ ** has no involvement with this rebalancing, then set iCur to a large
|
|
+ ** number so that the iCur==j tests always fail in the main cell
|
|
+ ** distribution loop below.
|
|
+ */
|
|
+ if( pCur ){
|
|
+ iCur = 0;
|
|
+ for(i=0; i<nOld; i++){
|
|
+ if( pCur->pPage==apOld[i] ){
|
|
+ iCur += pCur->idx;
|
|
+ break;
|
|
+ }
|
|
+ iCur += apOld[i]->nCell;
|
|
+ if( i<nOld-1 && pCur->pPage==pParent && pCur->idx==idxDiv[i] ){
|
|
+ break;
|
|
+ }
|
|
+ iCur++;
|
|
+ }
|
|
+ pOldCurPage = pCur->pPage;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ ** Make copies of the content of pPage and its siblings into aOld[].
|
|
+ ** The rest of this function will use data from the copies rather
|
|
+ ** that the original pages since the original pages will be in the
|
|
+ ** process of being overwritten.
|
|
+ */
|
|
+ for(i=0; i<nOld; i++){
|
|
+ copyPage(&aOld[i], apOld[i]);
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ ** Load pointers to all cells on sibling pages and the divider cells
|
|
+ ** into the local apCell[] array. Make copies of the divider cells
|
|
+ ** into aTemp[] and remove the the divider Cells from pParent.
|
|
+ */
|
|
+ nCell = 0;
|
|
+ for(i=0; i<nOld; i++){
|
|
+ MemPage *pOld = &aOld[i];
|
|
+ for(j=0; j<pOld->nCell; j++){
|
|
+ apCell[nCell] = pOld->apCell[j];
|
|
+ szCell[nCell] = cellSize(pBt, apCell[nCell]);
|
|
+ nCell++;
|
|
+ }
|
|
+ if( i<nOld-1 ){
|
|
+ szCell[nCell] = cellSize(pBt, apDiv[i]);
|
|
+ memcpy(&aTemp[i], apDiv[i], szCell[nCell]);
|
|
+ apCell[nCell] = &aTemp[i];
|
|
+ dropCell(pBt, pParent, nxDiv, szCell[nCell]);
|
|
+ assert( SWAB32(pBt, apCell[nCell]->h.leftChild)==pgnoOld[i] );
|
|
+ apCell[nCell]->h.leftChild = pOld->u.hdr.rightChild;
|
|
+ nCell++;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ ** Figure out the number of pages needed to hold all nCell cells.
|
|
+ ** Store this number in "k". Also compute szNew[] which is the total
|
|
+ ** size of all cells on the i-th page and cntNew[] which is the index
|
|
+ ** in apCell[] of the cell that divides path i from path i+1.
|
|
+ ** cntNew[k] should equal nCell.
|
|
+ **
|
|
+ ** This little patch of code is critical for keeping the tree
|
|
+ ** balanced.
|
|
+ */
|
|
+ for(subtotal=k=i=0; i<nCell; i++){
|
|
+ subtotal += szCell[i];
|
|
+ if( subtotal > USABLE_SPACE ){
|
|
+ szNew[k] = subtotal - szCell[i];
|
|
+ cntNew[k] = i;
|
|
+ subtotal = 0;
|
|
+ k++;
|
|
+ }
|
|
+ }
|
|
+ szNew[k] = subtotal;
|
|
+ cntNew[k] = nCell;
|
|
+ k++;
|
|
+ for(i=k-1; i>0; i--){
|
|
+ while( szNew[i]<USABLE_SPACE/2 ){
|
|
+ cntNew[i-1]--;
|
|
+ assert( cntNew[i-1]>0 );
|
|
+ szNew[i] += szCell[cntNew[i-1]];
|
|
+ szNew[i-1] -= szCell[cntNew[i-1]-1];
|
|
+ }
|
|
+ }
|
|
+ assert( cntNew[0]>0 );
|
|
+
|
|
+ /*
|
|
+ ** Allocate k new pages. Reuse old pages where possible.
|
|
+ */
|
|
+ for(i=0; i<k; i++){
|
|
+ if( i<nOld ){
|
|
+ apNew[i] = apOld[i];
|
|
+ pgnoNew[i] = pgnoOld[i];
|
|
+ apOld[i] = 0;
|
|
+ sqlitepager_write(apNew[i]);
|
|
+ }else{
|
|
+ rc = allocatePage(pBt, &apNew[i], &pgnoNew[i], pgnoNew[i-1]);
|
|
+ if( rc ) goto balance_cleanup;
|
|
+ }
|
|
+ nNew++;
|
|
+ zeroPage(pBt, apNew[i]);
|
|
+ apNew[i]->isInit = 1;
|
|
+ }
|
|
+
|
|
+ /* Free any old pages that were not reused as new pages.
|
|
+ */
|
|
+ while( i<nOld ){
|
|
+ rc = freePage(pBt, apOld[i], pgnoOld[i]);
|
|
+ if( rc ) goto balance_cleanup;
|
|
+ sqlitepager_unref(apOld[i]);
|
|
+ apOld[i] = 0;
|
|
+ i++;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ ** Put the new pages in accending order. This helps to
|
|
+ ** keep entries in the disk file in order so that a scan
|
|
+ ** of the table is a linear scan through the file. That
|
|
+ ** in turn helps the operating system to deliver pages
|
|
+ ** from the disk more rapidly.
|
|
+ **
|
|
+ ** An O(n^2) insertion sort algorithm is used, but since
|
|
+ ** n is never more than NB (a small constant), that should
|
|
+ ** not be a problem.
|
|
+ **
|
|
+ ** When NB==3, this one optimization makes the database
|
|
+ ** about 25% faster for large insertions and deletions.
|
|
+ */
|
|
+ for(i=0; i<k-1; i++){
|
|
+ int minV = pgnoNew[i];
|
|
+ int minI = i;
|
|
+ for(j=i+1; j<k; j++){
|
|
+ if( pgnoNew[j]<(unsigned)minV ){
|
|
+ minI = j;
|
|
+ minV = pgnoNew[j];
|
|
+ }
|
|
+ }
|
|
+ if( minI>i ){
|
|
+ int t;
|
|
+ MemPage *pT;
|
|
+ t = pgnoNew[i];
|
|
+ pT = apNew[i];
|
|
+ pgnoNew[i] = pgnoNew[minI];
|
|
+ apNew[i] = apNew[minI];
|
|
+ pgnoNew[minI] = t;
|
|
+ apNew[minI] = pT;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ ** Evenly distribute the data in apCell[] across the new pages.
|
|
+ ** Insert divider cells into pParent as necessary.
|
|
+ */
|
|
+ j = 0;
|
|
+ for(i=0; i<nNew; i++){
|
|
+ MemPage *pNew = apNew[i];
|
|
+ while( j<cntNew[i] ){
|
|
+ assert( pNew->nFree>=szCell[j] );
|
|
+ if( pCur && iCur==j ){ pCur->pPage = pNew; pCur->idx = pNew->nCell; }
|
|
+ insertCell(pBt, pNew, pNew->nCell, apCell[j], szCell[j]);
|
|
+ j++;
|
|
+ }
|
|
+ assert( pNew->nCell>0 );
|
|
+ assert( !pNew->isOverfull );
|
|
+ relinkCellList(pBt, pNew);
|
|
+ if( i<nNew-1 && j<nCell ){
|
|
+ pNew->u.hdr.rightChild = apCell[j]->h.leftChild;
|
|
+ apCell[j]->h.leftChild = SWAB32(pBt, pgnoNew[i]);
|
|
+ if( pCur && iCur==j ){ pCur->pPage = pParent; pCur->idx = nxDiv; }
|
|
+ insertCell(pBt, pParent, nxDiv, apCell[j], szCell[j]);
|
|
+ j++;
|
|
+ nxDiv++;
|
|
+ }
|
|
+ }
|
|
+ assert( j==nCell );
|
|
+ apNew[nNew-1]->u.hdr.rightChild = aOld[nOld-1].u.hdr.rightChild;
|
|
+ if( nxDiv==pParent->nCell ){
|
|
+ pParent->u.hdr.rightChild = SWAB32(pBt, pgnoNew[nNew-1]);
|
|
+ }else{
|
|
+ pParent->apCell[nxDiv]->h.leftChild = SWAB32(pBt, pgnoNew[nNew-1]);
|
|
+ }
|
|
+ if( pCur ){
|
|
+ if( j<=iCur && pCur->pPage==pParent && pCur->idx>idxDiv[nOld-1] ){
|
|
+ assert( pCur->pPage==pOldCurPage );
|
|
+ pCur->idx += nNew - nOld;
|
|
+ }else{
|
|
+ assert( pOldCurPage!=0 );
|
|
+ sqlitepager_ref(pCur->pPage);
|
|
+ sqlitepager_unref(pOldCurPage);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ ** Reparent children of all cells.
|
|
+ */
|
|
+ for(i=0; i<nNew; i++){
|
|
+ reparentChildPages(pBt, apNew[i]);
|
|
+ }
|
|
+ reparentChildPages(pBt, pParent);
|
|
+
|
|
+ /*
|
|
+ ** balance the parent page.
|
|
+ */
|
|
+ rc = balance(pBt, pParent, pCur);
|
|
+
|
|
+ /*
|
|
+ ** Cleanup before returning.
|
|
+ */
|
|
+balance_cleanup:
|
|
+ if( extraUnref ){
|
|
+ sqlitepager_unref(extraUnref);
|
|
+ }
|
|
+ for(i=0; i<nOld; i++){
|
|
+ if( apOld[i]!=0 && apOld[i]!=&aOld[i] ) sqlitepager_unref(apOld[i]);
|
|
+ }
|
|
+ for(i=0; i<nNew; i++){
|
|
+ sqlitepager_unref(apNew[i]);
|
|
+ }
|
|
+ if( pCur && pCur->pPage==0 ){
|
|
+ pCur->pPage = pParent;
|
|
+ pCur->idx = 0;
|
|
+ }else{
|
|
+ sqlitepager_unref(pParent);
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine checks all cursors that point to the same table
|
|
+** as pCur points to. If any of those cursors were opened with
|
|
+** wrFlag==0 then this routine returns SQLITE_LOCKED. If all
|
|
+** cursors point to the same table were opened with wrFlag==1
|
|
+** then this routine returns SQLITE_OK.
|
|
+**
|
|
+** In addition to checking for read-locks (where a read-lock
|
|
+** means a cursor opened with wrFlag==0) this routine also moves
|
|
+** all cursors other than pCur so that they are pointing to the
|
|
+** first Cell on root page. This is necessary because an insert
|
|
+** or delete might change the number of cells on a page or delete
|
|
+** a page entirely and we do not want to leave any cursors
|
|
+** pointing to non-existant pages or cells.
|
|
+*/
|
|
+static int checkReadLocks(BtCursor *pCur){
|
|
+ BtCursor *p;
|
|
+ assert( pCur->wrFlag );
|
|
+ for(p=pCur->pShared; p!=pCur; p=p->pShared){
|
|
+ assert( p );
|
|
+ assert( p->pgnoRoot==pCur->pgnoRoot );
|
|
+ if( p->wrFlag==0 ) return SQLITE_LOCKED;
|
|
+ if( sqlitepager_pagenumber(p->pPage)!=p->pgnoRoot ){
|
|
+ moveToRoot(p);
|
|
+ }
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Insert a new record into the BTree. The key is given by (pKey,nKey)
|
|
+** and the data is given by (pData,nData). The cursor is used only to
|
|
+** define what database the record should be inserted into. The cursor
|
|
+** is left pointing at the new record.
|
|
+*/
|
|
+static int fileBtreeInsert(
|
|
+ BtCursor *pCur, /* Insert data into the table of this cursor */
|
|
+ const void *pKey, int nKey, /* The key of the new record */
|
|
+ const void *pData, int nData /* The data of the new record */
|
|
+){
|
|
+ Cell newCell;
|
|
+ int rc;
|
|
+ int loc;
|
|
+ int szNew;
|
|
+ MemPage *pPage;
|
|
+ Btree *pBt = pCur->pBt;
|
|
+
|
|
+ if( pCur->pPage==0 ){
|
|
+ return SQLITE_ABORT; /* A rollback destroyed this cursor */
|
|
+ }
|
|
+ if( !pBt->inTrans || nKey+nData==0 ){
|
|
+ /* Must start a transaction before doing an insert */
|
|
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
|
+ }
|
|
+ assert( !pBt->readOnly );
|
|
+ if( !pCur->wrFlag ){
|
|
+ return SQLITE_PERM; /* Cursor not open for writing */
|
|
+ }
|
|
+ if( checkReadLocks(pCur) ){
|
|
+ return SQLITE_LOCKED; /* The table pCur points to has a read lock */
|
|
+ }
|
|
+ rc = fileBtreeMoveto(pCur, pKey, nKey, &loc);
|
|
+ if( rc ) return rc;
|
|
+ pPage = pCur->pPage;
|
|
+ assert( pPage->isInit );
|
|
+ rc = sqlitepager_write(pPage);
|
|
+ if( rc ) return rc;
|
|
+ rc = fillInCell(pBt, &newCell, pKey, nKey, pData, nData);
|
|
+ if( rc ) return rc;
|
|
+ szNew = cellSize(pBt, &newCell);
|
|
+ if( loc==0 ){
|
|
+ newCell.h.leftChild = pPage->apCell[pCur->idx]->h.leftChild;
|
|
+ rc = clearCell(pBt, pPage->apCell[pCur->idx]);
|
|
+ if( rc ) return rc;
|
|
+ dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pPage->apCell[pCur->idx]));
|
|
+ }else if( loc<0 && pPage->nCell>0 ){
|
|
+ assert( pPage->u.hdr.rightChild==0 ); /* Must be a leaf page */
|
|
+ pCur->idx++;
|
|
+ }else{
|
|
+ assert( pPage->u.hdr.rightChild==0 ); /* Must be a leaf page */
|
|
+ }
|
|
+ insertCell(pBt, pPage, pCur->idx, &newCell, szNew);
|
|
+ rc = balance(pCur->pBt, pPage, pCur);
|
|
+ /* sqliteBtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
|
|
+ /* fflush(stdout); */
|
|
+ pCur->eSkip = SKIP_INVALID;
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Delete the entry that the cursor is pointing to.
|
|
+**
|
|
+** The cursor is left pointing at either the next or the previous
|
|
+** entry. If the cursor is left pointing to the next entry, then
|
|
+** the pCur->eSkip flag is set to SKIP_NEXT which forces the next call to
|
|
+** sqliteBtreeNext() to be a no-op. That way, you can always call
|
|
+** sqliteBtreeNext() after a delete and the cursor will be left
|
|
+** pointing to the first entry after the deleted entry. Similarly,
|
|
+** pCur->eSkip is set to SKIP_PREV is the cursor is left pointing to
|
|
+** the entry prior to the deleted entry so that a subsequent call to
|
|
+** sqliteBtreePrevious() will always leave the cursor pointing at the
|
|
+** entry immediately before the one that was deleted.
|
|
+*/
|
|
+static int fileBtreeDelete(BtCursor *pCur){
|
|
+ MemPage *pPage = pCur->pPage;
|
|
+ Cell *pCell;
|
|
+ int rc;
|
|
+ Pgno pgnoChild;
|
|
+ Btree *pBt = pCur->pBt;
|
|
+
|
|
+ assert( pPage->isInit );
|
|
+ if( pCur->pPage==0 ){
|
|
+ return SQLITE_ABORT; /* A rollback destroyed this cursor */
|
|
+ }
|
|
+ if( !pBt->inTrans ){
|
|
+ /* Must start a transaction before doing a delete */
|
|
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
|
+ }
|
|
+ assert( !pBt->readOnly );
|
|
+ if( pCur->idx >= pPage->nCell ){
|
|
+ return SQLITE_ERROR; /* The cursor is not pointing to anything */
|
|
+ }
|
|
+ if( !pCur->wrFlag ){
|
|
+ return SQLITE_PERM; /* Did not open this cursor for writing */
|
|
+ }
|
|
+ if( checkReadLocks(pCur) ){
|
|
+ return SQLITE_LOCKED; /* The table pCur points to has a read lock */
|
|
+ }
|
|
+ rc = sqlitepager_write(pPage);
|
|
+ if( rc ) return rc;
|
|
+ pCell = pPage->apCell[pCur->idx];
|
|
+ pgnoChild = SWAB32(pBt, pCell->h.leftChild);
|
|
+ clearCell(pBt, pCell);
|
|
+ if( pgnoChild ){
|
|
+ /*
|
|
+ ** The entry we are about to delete is not a leaf so if we do not
|
|
+ ** do something we will leave a hole on an internal page.
|
|
+ ** We have to fill the hole by moving in a cell from a leaf. The
|
|
+ ** next Cell after the one to be deleted is guaranteed to exist and
|
|
+ ** to be a leaf so we can use it.
|
|
+ */
|
|
+ BtCursor leafCur;
|
|
+ Cell *pNext;
|
|
+ int szNext;
|
|
+ int notUsed;
|
|
+ getTempCursor(pCur, &leafCur);
|
|
+ rc = fileBtreeNext(&leafCur, ¬Used);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ if( rc!=SQLITE_NOMEM ) rc = SQLITE_CORRUPT;
|
|
+ return rc;
|
|
+ }
|
|
+ rc = sqlitepager_write(leafCur.pPage);
|
|
+ if( rc ) return rc;
|
|
+ dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pCell));
|
|
+ pNext = leafCur.pPage->apCell[leafCur.idx];
|
|
+ szNext = cellSize(pBt, pNext);
|
|
+ pNext->h.leftChild = SWAB32(pBt, pgnoChild);
|
|
+ insertCell(pBt, pPage, pCur->idx, pNext, szNext);
|
|
+ rc = balance(pBt, pPage, pCur);
|
|
+ if( rc ) return rc;
|
|
+ pCur->eSkip = SKIP_NEXT;
|
|
+ dropCell(pBt, leafCur.pPage, leafCur.idx, szNext);
|
|
+ rc = balance(pBt, leafCur.pPage, pCur);
|
|
+ releaseTempCursor(&leafCur);
|
|
+ }else{
|
|
+ dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pCell));
|
|
+ if( pCur->idx>=pPage->nCell ){
|
|
+ pCur->idx = pPage->nCell-1;
|
|
+ if( pCur->idx<0 ){
|
|
+ pCur->idx = 0;
|
|
+ pCur->eSkip = SKIP_NEXT;
|
|
+ }else{
|
|
+ pCur->eSkip = SKIP_PREV;
|
|
+ }
|
|
+ }else{
|
|
+ pCur->eSkip = SKIP_NEXT;
|
|
+ }
|
|
+ rc = balance(pBt, pPage, pCur);
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Create a new BTree table. Write into *piTable the page
|
|
+** number for the root page of the new table.
|
|
+**
|
|
+** In the current implementation, BTree tables and BTree indices are the
|
|
+** the same. In the future, we may change this so that BTree tables
|
|
+** are restricted to having a 4-byte integer key and arbitrary data and
|
|
+** BTree indices are restricted to having an arbitrary key and no data.
|
|
+** But for now, this routine also serves to create indices.
|
|
+*/
|
|
+static int fileBtreeCreateTable(Btree *pBt, int *piTable){
|
|
+ MemPage *pRoot;
|
|
+ Pgno pgnoRoot;
|
|
+ int rc;
|
|
+ if( !pBt->inTrans ){
|
|
+ /* Must start a transaction first */
|
|
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
|
+ }
|
|
+ if( pBt->readOnly ){
|
|
+ return SQLITE_READONLY;
|
|
+ }
|
|
+ rc = allocatePage(pBt, &pRoot, &pgnoRoot, 0);
|
|
+ if( rc ) return rc;
|
|
+ assert( sqlitepager_iswriteable(pRoot) );
|
|
+ zeroPage(pBt, pRoot);
|
|
+ sqlitepager_unref(pRoot);
|
|
+ *piTable = (int)pgnoRoot;
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Erase the given database page and all its children. Return
|
|
+** the page to the freelist.
|
|
+*/
|
|
+static int clearDatabasePage(Btree *pBt, Pgno pgno, int freePageFlag){
|
|
+ MemPage *pPage;
|
|
+ int rc;
|
|
+ Cell *pCell;
|
|
+ int idx;
|
|
+
|
|
+ rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pPage);
|
|
+ if( rc ) return rc;
|
|
+ rc = sqlitepager_write(pPage);
|
|
+ if( rc ) return rc;
|
|
+ rc = initPage(pBt, pPage, pgno, 0);
|
|
+ if( rc ) return rc;
|
|
+ idx = SWAB16(pBt, pPage->u.hdr.firstCell);
|
|
+ while( idx>0 ){
|
|
+ pCell = (Cell*)&pPage->u.aDisk[idx];
|
|
+ idx = SWAB16(pBt, pCell->h.iNext);
|
|
+ if( pCell->h.leftChild ){
|
|
+ rc = clearDatabasePage(pBt, SWAB32(pBt, pCell->h.leftChild), 1);
|
|
+ if( rc ) return rc;
|
|
+ }
|
|
+ rc = clearCell(pBt, pCell);
|
|
+ if( rc ) return rc;
|
|
+ }
|
|
+ if( pPage->u.hdr.rightChild ){
|
|
+ rc = clearDatabasePage(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1);
|
|
+ if( rc ) return rc;
|
|
+ }
|
|
+ if( freePageFlag ){
|
|
+ rc = freePage(pBt, pPage, pgno);
|
|
+ }else{
|
|
+ zeroPage(pBt, pPage);
|
|
+ }
|
|
+ sqlitepager_unref(pPage);
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Delete all information from a single table in the database.
|
|
+*/
|
|
+static int fileBtreeClearTable(Btree *pBt, int iTable){
|
|
+ int rc;
|
|
+ BtCursor *pCur;
|
|
+ if( !pBt->inTrans ){
|
|
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
|
+ }
|
|
+ for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
|
|
+ if( pCur->pgnoRoot==(Pgno)iTable ){
|
|
+ if( pCur->wrFlag==0 ) return SQLITE_LOCKED;
|
|
+ moveToRoot(pCur);
|
|
+ }
|
|
+ }
|
|
+ rc = clearDatabasePage(pBt, (Pgno)iTable, 0);
|
|
+ if( rc ){
|
|
+ fileBtreeRollback(pBt);
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Erase all information in a table and add the root of the table to
|
|
+** the freelist. Except, the root of the principle table (the one on
|
|
+** page 2) is never added to the freelist.
|
|
+*/
|
|
+static int fileBtreeDropTable(Btree *pBt, int iTable){
|
|
+ int rc;
|
|
+ MemPage *pPage;
|
|
+ BtCursor *pCur;
|
|
+ if( !pBt->inTrans ){
|
|
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
|
+ }
|
|
+ for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
|
|
+ if( pCur->pgnoRoot==(Pgno)iTable ){
|
|
+ return SQLITE_LOCKED; /* Cannot drop a table that has a cursor */
|
|
+ }
|
|
+ }
|
|
+ rc = sqlitepager_get(pBt->pPager, (Pgno)iTable, (void**)&pPage);
|
|
+ if( rc ) return rc;
|
|
+ rc = fileBtreeClearTable(pBt, iTable);
|
|
+ if( rc ) return rc;
|
|
+ if( iTable>2 ){
|
|
+ rc = freePage(pBt, pPage, iTable);
|
|
+ }else{
|
|
+ zeroPage(pBt, pPage);
|
|
+ }
|
|
+ sqlitepager_unref(pPage);
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+#if 0 /* UNTESTED */
|
|
+/*
|
|
+** Copy all cell data from one database file into another.
|
|
+** pages back the freelist.
|
|
+*/
|
|
+static int copyCell(Btree *pBtFrom, BTree *pBtTo, Cell *pCell){
|
|
+ Pager *pFromPager = pBtFrom->pPager;
|
|
+ OverflowPage *pOvfl;
|
|
+ Pgno ovfl, nextOvfl;
|
|
+ Pgno *pPrev;
|
|
+ int rc = SQLITE_OK;
|
|
+ MemPage *pNew, *pPrevPg;
|
|
+ Pgno new;
|
|
+
|
|
+ if( NKEY(pBtTo, pCell->h) + NDATA(pBtTo, pCell->h) <= MX_LOCAL_PAYLOAD ){
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ pPrev = &pCell->ovfl;
|
|
+ pPrevPg = 0;
|
|
+ ovfl = SWAB32(pBtTo, pCell->ovfl);
|
|
+ while( ovfl && rc==SQLITE_OK ){
|
|
+ rc = sqlitepager_get(pFromPager, ovfl, (void**)&pOvfl);
|
|
+ if( rc ) return rc;
|
|
+ nextOvfl = SWAB32(pBtFrom, pOvfl->iNext);
|
|
+ rc = allocatePage(pBtTo, &pNew, &new, 0);
|
|
+ if( rc==SQLITE_OK ){
|
|
+ rc = sqlitepager_write(pNew);
|
|
+ if( rc==SQLITE_OK ){
|
|
+ memcpy(pNew, pOvfl, SQLITE_USABLE_SIZE);
|
|
+ *pPrev = SWAB32(pBtTo, new);
|
|
+ if( pPrevPg ){
|
|
+ sqlitepager_unref(pPrevPg);
|
|
+ }
|
|
+ pPrev = &pOvfl->iNext;
|
|
+ pPrevPg = pNew;
|
|
+ }
|
|
+ }
|
|
+ sqlitepager_unref(pOvfl);
|
|
+ ovfl = nextOvfl;
|
|
+ }
|
|
+ if( pPrevPg ){
|
|
+ sqlitepager_unref(pPrevPg);
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+#endif
|
|
+
|
|
+
|
|
+#if 0 /* UNTESTED */
|
|
+/*
|
|
+** Copy a page of data from one database over to another.
|
|
+*/
|
|
+static int copyDatabasePage(
|
|
+ Btree *pBtFrom,
|
|
+ Pgno pgnoFrom,
|
|
+ Btree *pBtTo,
|
|
+ Pgno *pTo
|
|
+){
|
|
+ MemPage *pPageFrom, *pPage;
|
|
+ Pgno to;
|
|
+ int rc;
|
|
+ Cell *pCell;
|
|
+ int idx;
|
|
+
|
|
+ rc = sqlitepager_get(pBtFrom->pPager, pgno, (void**)&pPageFrom);
|
|
+ if( rc ) return rc;
|
|
+ rc = allocatePage(pBt, &pPage, pTo, 0);
|
|
+ if( rc==SQLITE_OK ){
|
|
+ rc = sqlitepager_write(pPage);
|
|
+ }
|
|
+ if( rc==SQLITE_OK ){
|
|
+ memcpy(pPage, pPageFrom, SQLITE_USABLE_SIZE);
|
|
+ idx = SWAB16(pBt, pPage->u.hdr.firstCell);
|
|
+ while( idx>0 ){
|
|
+ pCell = (Cell*)&pPage->u.aDisk[idx];
|
|
+ idx = SWAB16(pBt, pCell->h.iNext);
|
|
+ if( pCell->h.leftChild ){
|
|
+ Pgno newChld;
|
|
+ rc = copyDatabasePage(pBtFrom, SWAB32(pBtFrom, pCell->h.leftChild),
|
|
+ pBtTo, &newChld);
|
|
+ if( rc ) return rc;
|
|
+ pCell->h.leftChild = SWAB32(pBtFrom, newChld);
|
|
+ }
|
|
+ rc = copyCell(pBtFrom, pBtTo, pCell);
|
|
+ if( rc ) return rc;
|
|
+ }
|
|
+ if( pPage->u.hdr.rightChild ){
|
|
+ Pgno newChld;
|
|
+ rc = copyDatabasePage(pBtFrom, SWAB32(pBtFrom, pPage->u.hdr.rightChild),
|
|
+ pBtTo, &newChld);
|
|
+ if( rc ) return rc;
|
|
+ pPage->u.hdr.rightChild = SWAB32(pBtTo, newChild);
|
|
+ }
|
|
+ }
|
|
+ sqlitepager_unref(pPage);
|
|
+ return rc;
|
|
+}
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** Read the meta-information out of a database file.
|
|
+*/
|
|
+static int fileBtreeGetMeta(Btree *pBt, int *aMeta){
|
|
+ PageOne *pP1;
|
|
+ int rc;
|
|
+ int i;
|
|
+
|
|
+ rc = sqlitepager_get(pBt->pPager, 1, (void**)&pP1);
|
|
+ if( rc ) return rc;
|
|
+ aMeta[0] = SWAB32(pBt, pP1->nFree);
|
|
+ for(i=0; i<sizeof(pP1->aMeta)/sizeof(pP1->aMeta[0]); i++){
|
|
+ aMeta[i+1] = SWAB32(pBt, pP1->aMeta[i]);
|
|
+ }
|
|
+ sqlitepager_unref(pP1);
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Write meta-information back into the database.
|
|
+*/
|
|
+static int fileBtreeUpdateMeta(Btree *pBt, int *aMeta){
|
|
+ PageOne *pP1;
|
|
+ int rc, i;
|
|
+ if( !pBt->inTrans ){
|
|
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
|
+ }
|
|
+ pP1 = pBt->page1;
|
|
+ rc = sqlitepager_write(pP1);
|
|
+ if( rc ) return rc;
|
|
+ for(i=0; i<sizeof(pP1->aMeta)/sizeof(pP1->aMeta[0]); i++){
|
|
+ pP1->aMeta[i] = SWAB32(pBt, aMeta[i+1]);
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/******************************************************************************
|
|
+** The complete implementation of the BTree subsystem is above this line.
|
|
+** All the code the follows is for testing and troubleshooting the BTree
|
|
+** subsystem. None of the code that follows is used during normal operation.
|
|
+******************************************************************************/
|
|
+
|
|
+/*
|
|
+** Print a disassembly of the given page on standard output. This routine
|
|
+** is used for debugging and testing only.
|
|
+*/
|
|
+#ifdef SQLITE_TEST
|
|
+static int fileBtreePageDump(Btree *pBt, int pgno, int recursive){
|
|
+ int rc;
|
|
+ MemPage *pPage;
|
|
+ int i, j;
|
|
+ int nFree;
|
|
+ u16 idx;
|
|
+ char range[20];
|
|
+ unsigned char payload[20];
|
|
+ rc = sqlitepager_get(pBt->pPager, (Pgno)pgno, (void**)&pPage);
|
|
+ if( rc ){
|
|
+ return rc;
|
|
+ }
|
|
+ if( recursive ) printf("PAGE %d:\n", pgno);
|
|
+ i = 0;
|
|
+ idx = SWAB16(pBt, pPage->u.hdr.firstCell);
|
|
+ while( idx>0 && idx<=SQLITE_USABLE_SIZE-MIN_CELL_SIZE ){
|
|
+ Cell *pCell = (Cell*)&pPage->u.aDisk[idx];
|
|
+ int sz = cellSize(pBt, pCell);
|
|
+ sprintf(range,"%d..%d", idx, idx+sz-1);
|
|
+ sz = NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h);
|
|
+ if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1;
|
|
+ memcpy(payload, pCell->aPayload, sz);
|
|
+ for(j=0; j<sz; j++){
|
|
+ if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.';
|
|
+ }
|
|
+ payload[sz] = 0;
|
|
+ printf(
|
|
+ "cell %2d: i=%-10s chld=%-4d nk=%-4d nd=%-4d payload=%s\n",
|
|
+ i, range, (int)pCell->h.leftChild,
|
|
+ NKEY(pBt, pCell->h), NDATA(pBt, pCell->h),
|
|
+ payload
|
|
+ );
|
|
+ if( pPage->isInit && pPage->apCell[i]!=pCell ){
|
|
+ printf("**** apCell[%d] does not match on prior entry ****\n", i);
|
|
+ }
|
|
+ i++;
|
|
+ idx = SWAB16(pBt, pCell->h.iNext);
|
|
+ }
|
|
+ if( idx!=0 ){
|
|
+ printf("ERROR: next cell index out of range: %d\n", idx);
|
|
+ }
|
|
+ printf("right_child: %d\n", SWAB32(pBt, pPage->u.hdr.rightChild));
|
|
+ nFree = 0;
|
|
+ i = 0;
|
|
+ idx = SWAB16(pBt, pPage->u.hdr.firstFree);
|
|
+ while( idx>0 && idx<SQLITE_USABLE_SIZE ){
|
|
+ FreeBlk *p = (FreeBlk*)&pPage->u.aDisk[idx];
|
|
+ sprintf(range,"%d..%d", idx, idx+p->iSize-1);
|
|
+ nFree += SWAB16(pBt, p->iSize);
|
|
+ printf("freeblock %2d: i=%-10s size=%-4d total=%d\n",
|
|
+ i, range, SWAB16(pBt, p->iSize), nFree);
|
|
+ idx = SWAB16(pBt, p->iNext);
|
|
+ i++;
|
|
+ }
|
|
+ if( idx!=0 ){
|
|
+ printf("ERROR: next freeblock index out of range: %d\n", idx);
|
|
+ }
|
|
+ if( recursive && pPage->u.hdr.rightChild!=0 ){
|
|
+ idx = SWAB16(pBt, pPage->u.hdr.firstCell);
|
|
+ while( idx>0 && idx<SQLITE_USABLE_SIZE-MIN_CELL_SIZE ){
|
|
+ Cell *pCell = (Cell*)&pPage->u.aDisk[idx];
|
|
+ fileBtreePageDump(pBt, SWAB32(pBt, pCell->h.leftChild), 1);
|
|
+ idx = SWAB16(pBt, pCell->h.iNext);
|
|
+ }
|
|
+ fileBtreePageDump(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1);
|
|
+ }
|
|
+ sqlitepager_unref(pPage);
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+#endif
|
|
+
|
|
+#ifdef SQLITE_TEST
|
|
+/*
|
|
+** Fill aResult[] with information about the entry and page that the
|
|
+** cursor is pointing to.
|
|
+**
|
|
+** aResult[0] = The page number
|
|
+** aResult[1] = The entry number
|
|
+** aResult[2] = Total number of entries on this page
|
|
+** aResult[3] = Size of this entry
|
|
+** aResult[4] = Number of free bytes on this page
|
|
+** aResult[5] = Number of free blocks on the page
|
|
+** aResult[6] = Page number of the left child of this entry
|
|
+** aResult[7] = Page number of the right child for the whole page
|
|
+**
|
|
+** This routine is used for testing and debugging only.
|
|
+*/
|
|
+static int fileBtreeCursorDump(BtCursor *pCur, int *aResult){
|
|
+ int cnt, idx;
|
|
+ MemPage *pPage = pCur->pPage;
|
|
+ Btree *pBt = pCur->pBt;
|
|
+ aResult[0] = sqlitepager_pagenumber(pPage);
|
|
+ aResult[1] = pCur->idx;
|
|
+ aResult[2] = pPage->nCell;
|
|
+ if( pCur->idx>=0 && pCur->idx<pPage->nCell ){
|
|
+ aResult[3] = cellSize(pBt, pPage->apCell[pCur->idx]);
|
|
+ aResult[6] = SWAB32(pBt, pPage->apCell[pCur->idx]->h.leftChild);
|
|
+ }else{
|
|
+ aResult[3] = 0;
|
|
+ aResult[6] = 0;
|
|
+ }
|
|
+ aResult[4] = pPage->nFree;
|
|
+ cnt = 0;
|
|
+ idx = SWAB16(pBt, pPage->u.hdr.firstFree);
|
|
+ while( idx>0 && idx<SQLITE_USABLE_SIZE ){
|
|
+ cnt++;
|
|
+ idx = SWAB16(pBt, ((FreeBlk*)&pPage->u.aDisk[idx])->iNext);
|
|
+ }
|
|
+ aResult[5] = cnt;
|
|
+ aResult[7] = SWAB32(pBt, pPage->u.hdr.rightChild);
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** Return the pager associated with a BTree. This routine is used for
|
|
+** testing and debugging only.
|
|
+*/
|
|
+static Pager *fileBtreePager(Btree *pBt){
|
|
+ return pBt->pPager;
|
|
+}
|
|
+
|
|
+/*
|
|
+** This structure is passed around through all the sanity checking routines
|
|
+** in order to keep track of some global state information.
|
|
+*/
|
|
+typedef struct IntegrityCk IntegrityCk;
|
|
+struct IntegrityCk {
|
|
+ Btree *pBt; /* The tree being checked out */
|
|
+ Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
|
|
+ int nPage; /* Number of pages in the database */
|
|
+ int *anRef; /* Number of times each page is referenced */
|
|
+ char *zErrMsg; /* An error message. NULL of no errors seen. */
|
|
+};
|
|
+
|
|
+/*
|
|
+** Append a message to the error message string.
|
|
+*/
|
|
+static void checkAppendMsg(IntegrityCk *pCheck, char *zMsg1, char *zMsg2){
|
|
+ if( pCheck->zErrMsg ){
|
|
+ char *zOld = pCheck->zErrMsg;
|
|
+ pCheck->zErrMsg = 0;
|
|
+ sqliteSetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
|
|
+ sqliteFree(zOld);
|
|
+ }else{
|
|
+ sqliteSetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Add 1 to the reference count for page iPage. If this is the second
|
|
+** reference to the page, add an error message to pCheck->zErrMsg.
|
|
+** Return 1 if there are 2 ore more references to the page and 0 if
|
|
+** if this is the first reference to the page.
|
|
+**
|
|
+** Also check that the page number is in bounds.
|
|
+*/
|
|
+static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
|
|
+ if( iPage==0 ) return 1;
|
|
+ if( iPage>pCheck->nPage || iPage<0 ){
|
|
+ char zBuf[100];
|
|
+ sprintf(zBuf, "invalid page number %d", iPage);
|
|
+ checkAppendMsg(pCheck, zContext, zBuf);
|
|
+ return 1;
|
|
+ }
|
|
+ if( pCheck->anRef[iPage]==1 ){
|
|
+ char zBuf[100];
|
|
+ sprintf(zBuf, "2nd reference to page %d", iPage);
|
|
+ checkAppendMsg(pCheck, zContext, zBuf);
|
|
+ return 1;
|
|
+ }
|
|
+ return (pCheck->anRef[iPage]++)>1;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Check the integrity of the freelist or of an overflow page list.
|
|
+** Verify that the number of pages on the list is N.
|
|
+*/
|
|
+static void checkList(
|
|
+ IntegrityCk *pCheck, /* Integrity checking context */
|
|
+ int isFreeList, /* True for a freelist. False for overflow page list */
|
|
+ int iPage, /* Page number for first page in the list */
|
|
+ int N, /* Expected number of pages in the list */
|
|
+ char *zContext /* Context for error messages */
|
|
+){
|
|
+ int i;
|
|
+ char zMsg[100];
|
|
+ while( N-- > 0 ){
|
|
+ OverflowPage *pOvfl;
|
|
+ if( iPage<1 ){
|
|
+ sprintf(zMsg, "%d pages missing from overflow list", N+1);
|
|
+ checkAppendMsg(pCheck, zContext, zMsg);
|
|
+ break;
|
|
+ }
|
|
+ if( checkRef(pCheck, iPage, zContext) ) break;
|
|
+ if( sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){
|
|
+ sprintf(zMsg, "failed to get page %d", iPage);
|
|
+ checkAppendMsg(pCheck, zContext, zMsg);
|
|
+ break;
|
|
+ }
|
|
+ if( isFreeList ){
|
|
+ FreelistInfo *pInfo = (FreelistInfo*)pOvfl->aPayload;
|
|
+ int n = SWAB32(pCheck->pBt, pInfo->nFree);
|
|
+ for(i=0; i<n; i++){
|
|
+ checkRef(pCheck, SWAB32(pCheck->pBt, pInfo->aFree[i]), zContext);
|
|
+ }
|
|
+ N -= n;
|
|
+ }
|
|
+ iPage = SWAB32(pCheck->pBt, pOvfl->iNext);
|
|
+ sqlitepager_unref(pOvfl);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return negative if zKey1<zKey2.
|
|
+** Return zero if zKey1==zKey2.
|
|
+** Return positive if zKey1>zKey2.
|
|
+*/
|
|
+static int keyCompare(
|
|
+ const char *zKey1, int nKey1,
|
|
+ const char *zKey2, int nKey2
|
|
+){
|
|
+ int min = nKey1>nKey2 ? nKey2 : nKey1;
|
|
+ int c = memcmp(zKey1, zKey2, min);
|
|
+ if( c==0 ){
|
|
+ c = nKey1 - nKey2;
|
|
+ }
|
|
+ return c;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Do various sanity checks on a single page of a tree. Return
|
|
+** the tree depth. Root pages return 0. Parents of root pages
|
|
+** return 1, and so forth.
|
|
+**
|
|
+** These checks are done:
|
|
+**
|
|
+** 1. Make sure that cells and freeblocks do not overlap
|
|
+** but combine to completely cover the page.
|
|
+** 2. Make sure cell keys are in order.
|
|
+** 3. Make sure no key is less than or equal to zLowerBound.
|
|
+** 4. Make sure no key is greater than or equal to zUpperBound.
|
|
+** 5. Check the integrity of overflow pages.
|
|
+** 6. Recursively call checkTreePage on all children.
|
|
+** 7. Verify that the depth of all children is the same.
|
|
+** 8. Make sure this page is at least 33% full or else it is
|
|
+** the root of the tree.
|
|
+*/
|
|
+static int checkTreePage(
|
|
+ IntegrityCk *pCheck, /* Context for the sanity check */
|
|
+ int iPage, /* Page number of the page to check */
|
|
+ MemPage *pParent, /* Parent page */
|
|
+ char *zParentContext, /* Parent context */
|
|
+ char *zLowerBound, /* All keys should be greater than this, if not NULL */
|
|
+ int nLower, /* Number of characters in zLowerBound */
|
|
+ char *zUpperBound, /* All keys should be less than this, if not NULL */
|
|
+ int nUpper /* Number of characters in zUpperBound */
|
|
+){
|
|
+ MemPage *pPage;
|
|
+ int i, rc, depth, d2, pgno;
|
|
+ char *zKey1, *zKey2;
|
|
+ int nKey1, nKey2;
|
|
+ BtCursor cur;
|
|
+ Btree *pBt;
|
|
+ char zMsg[100];
|
|
+ char zContext[100];
|
|
+ char hit[SQLITE_USABLE_SIZE];
|
|
+
|
|
+ /* Check that the page exists
|
|
+ */
|
|
+ cur.pBt = pBt = pCheck->pBt;
|
|
+ if( iPage==0 ) return 0;
|
|
+ if( checkRef(pCheck, iPage, zParentContext) ) return 0;
|
|
+ sprintf(zContext, "On tree page %d: ", iPage);
|
|
+ if( (rc = sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pPage))!=0 ){
|
|
+ sprintf(zMsg, "unable to get the page. error code=%d", rc);
|
|
+ checkAppendMsg(pCheck, zContext, zMsg);
|
|
+ return 0;
|
|
+ }
|
|
+ if( (rc = initPage(pBt, pPage, (Pgno)iPage, pParent))!=0 ){
|
|
+ sprintf(zMsg, "initPage() returns error code %d", rc);
|
|
+ checkAppendMsg(pCheck, zContext, zMsg);
|
|
+ sqlitepager_unref(pPage);
|
|
+ return 0;
|
|
+ }
|
|
+
|
|
+ /* Check out all the cells.
|
|
+ */
|
|
+ depth = 0;
|
|
+ if( zLowerBound ){
|
|
+ zKey1 = sqliteMalloc( nLower+1 );
|
|
+ memcpy(zKey1, zLowerBound, nLower);
|
|
+ zKey1[nLower] = 0;
|
|
+ }else{
|
|
+ zKey1 = 0;
|
|
+ }
|
|
+ nKey1 = nLower;
|
|
+ cur.pPage = pPage;
|
|
+ for(i=0; i<pPage->nCell; i++){
|
|
+ Cell *pCell = pPage->apCell[i];
|
|
+ int sz;
|
|
+
|
|
+ /* Check payload overflow pages
|
|
+ */
|
|
+ nKey2 = NKEY(pBt, pCell->h);
|
|
+ sz = nKey2 + NDATA(pBt, pCell->h);
|
|
+ sprintf(zContext, "On page %d cell %d: ", iPage, i);
|
|
+ if( sz>MX_LOCAL_PAYLOAD ){
|
|
+ int nPage = (sz - MX_LOCAL_PAYLOAD + OVERFLOW_SIZE - 1)/OVERFLOW_SIZE;
|
|
+ checkList(pCheck, 0, SWAB32(pBt, pCell->ovfl), nPage, zContext);
|
|
+ }
|
|
+
|
|
+ /* Check that keys are in the right order
|
|
+ */
|
|
+ cur.idx = i;
|
|
+ zKey2 = sqliteMallocRaw( nKey2+1 );
|
|
+ getPayload(&cur, 0, nKey2, zKey2);
|
|
+ if( zKey1 && keyCompare(zKey1, nKey1, zKey2, nKey2)>=0 ){
|
|
+ checkAppendMsg(pCheck, zContext, "Key is out of order");
|
|
+ }
|
|
+
|
|
+ /* Check sanity of left child page.
|
|
+ */
|
|
+ pgno = SWAB32(pBt, pCell->h.leftChild);
|
|
+ d2 = checkTreePage(pCheck, pgno, pPage, zContext, zKey1,nKey1,zKey2,nKey2);
|
|
+ if( i>0 && d2!=depth ){
|
|
+ checkAppendMsg(pCheck, zContext, "Child page depth differs");
|
|
+ }
|
|
+ depth = d2;
|
|
+ sqliteFree(zKey1);
|
|
+ zKey1 = zKey2;
|
|
+ nKey1 = nKey2;
|
|
+ }
|
|
+ pgno = SWAB32(pBt, pPage->u.hdr.rightChild);
|
|
+ sprintf(zContext, "On page %d at right child: ", iPage);
|
|
+ checkTreePage(pCheck, pgno, pPage, zContext, zKey1,nKey1,zUpperBound,nUpper);
|
|
+ sqliteFree(zKey1);
|
|
+
|
|
+ /* Check for complete coverage of the page
|
|
+ */
|
|
+ memset(hit, 0, sizeof(hit));
|
|
+ memset(hit, 1, sizeof(PageHdr));
|
|
+ for(i=SWAB16(pBt, pPage->u.hdr.firstCell); i>0 && i<SQLITE_USABLE_SIZE; ){
|
|
+ Cell *pCell = (Cell*)&pPage->u.aDisk[i];
|
|
+ int j;
|
|
+ for(j=i+cellSize(pBt, pCell)-1; j>=i; j--) hit[j]++;
|
|
+ i = SWAB16(pBt, pCell->h.iNext);
|
|
+ }
|
|
+ for(i=SWAB16(pBt,pPage->u.hdr.firstFree); i>0 && i<SQLITE_USABLE_SIZE; ){
|
|
+ FreeBlk *pFBlk = (FreeBlk*)&pPage->u.aDisk[i];
|
|
+ int j;
|
|
+ for(j=i+SWAB16(pBt,pFBlk->iSize)-1; j>=i; j--) hit[j]++;
|
|
+ i = SWAB16(pBt,pFBlk->iNext);
|
|
+ }
|
|
+ for(i=0; i<SQLITE_USABLE_SIZE; i++){
|
|
+ if( hit[i]==0 ){
|
|
+ sprintf(zMsg, "Unused space at byte %d of page %d", i, iPage);
|
|
+ checkAppendMsg(pCheck, zMsg, 0);
|
|
+ break;
|
|
+ }else if( hit[i]>1 ){
|
|
+ sprintf(zMsg, "Multiple uses for byte %d of page %d", i, iPage);
|
|
+ checkAppendMsg(pCheck, zMsg, 0);
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Check that free space is kept to a minimum
|
|
+ */
|
|
+#if 0
|
|
+ if( pParent && pParent->nCell>2 && pPage->nFree>3*SQLITE_USABLE_SIZE/4 ){
|
|
+ sprintf(zMsg, "free space (%d) greater than max (%d)", pPage->nFree,
|
|
+ SQLITE_USABLE_SIZE/3);
|
|
+ checkAppendMsg(pCheck, zContext, zMsg);
|
|
+ }
|
|
+#endif
|
|
+
|
|
+ sqlitepager_unref(pPage);
|
|
+ return depth;
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine does a complete check of the given BTree file. aRoot[] is
|
|
+** an array of pages numbers were each page number is the root page of
|
|
+** a table. nRoot is the number of entries in aRoot.
|
|
+**
|
|
+** If everything checks out, this routine returns NULL. If something is
|
|
+** amiss, an error message is written into memory obtained from malloc()
|
|
+** and a pointer to that error message is returned. The calling function
|
|
+** is responsible for freeing the error message when it is done.
|
|
+*/
|
|
+char *fileBtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot){
|
|
+ int i;
|
|
+ int nRef;
|
|
+ IntegrityCk sCheck;
|
|
+
|
|
+ nRef = *sqlitepager_stats(pBt->pPager);
|
|
+ if( lockBtree(pBt)!=SQLITE_OK ){
|
|
+ return sqliteStrDup("Unable to acquire a read lock on the database");
|
|
+ }
|
|
+ sCheck.pBt = pBt;
|
|
+ sCheck.pPager = pBt->pPager;
|
|
+ sCheck.nPage = sqlitepager_pagecount(sCheck.pPager);
|
|
+ if( sCheck.nPage==0 ){
|
|
+ unlockBtreeIfUnused(pBt);
|
|
+ return 0;
|
|
+ }
|
|
+ sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
|
|
+ sCheck.anRef[1] = 1;
|
|
+ for(i=2; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
|
|
+ sCheck.zErrMsg = 0;
|
|
+
|
|
+ /* Check the integrity of the freelist
|
|
+ */
|
|
+ checkList(&sCheck, 1, SWAB32(pBt, pBt->page1->freeList),
|
|
+ SWAB32(pBt, pBt->page1->nFree), "Main freelist: ");
|
|
+
|
|
+ /* Check all the tables.
|
|
+ */
|
|
+ for(i=0; i<nRoot; i++){
|
|
+ if( aRoot[i]==0 ) continue;
|
|
+ checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ", 0,0,0,0);
|
|
+ }
|
|
+
|
|
+ /* Make sure every page in the file is referenced
|
|
+ */
|
|
+ for(i=1; i<=sCheck.nPage; i++){
|
|
+ if( sCheck.anRef[i]==0 ){
|
|
+ char zBuf[100];
|
|
+ sprintf(zBuf, "Page %d is never used", i);
|
|
+ checkAppendMsg(&sCheck, zBuf, 0);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Make sure this analysis did not leave any unref() pages
|
|
+ */
|
|
+ unlockBtreeIfUnused(pBt);
|
|
+ if( nRef != *sqlitepager_stats(pBt->pPager) ){
|
|
+ char zBuf[100];
|
|
+ sprintf(zBuf,
|
|
+ "Outstanding page count goes from %d to %d during this analysis",
|
|
+ nRef, *sqlitepager_stats(pBt->pPager)
|
|
+ );
|
|
+ checkAppendMsg(&sCheck, zBuf, 0);
|
|
+ }
|
|
+
|
|
+ /* Clean up and report errors.
|
|
+ */
|
|
+ sqliteFree(sCheck.anRef);
|
|
+ return sCheck.zErrMsg;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return the full pathname of the underlying database file.
|
|
+*/
|
|
+static const char *fileBtreeGetFilename(Btree *pBt){
|
|
+ assert( pBt->pPager!=0 );
|
|
+ return sqlitepager_filename(pBt->pPager);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Copy the complete content of pBtFrom into pBtTo. A transaction
|
|
+** must be active for both files.
|
|
+**
|
|
+** The size of file pBtFrom may be reduced by this operation.
|
|
+** If anything goes wrong, the transaction on pBtFrom is rolled back.
|
|
+*/
|
|
+static int fileBtreeCopyFile(Btree *pBtTo, Btree *pBtFrom){
|
|
+ int rc = SQLITE_OK;
|
|
+ Pgno i, nPage, nToPage;
|
|
+
|
|
+ if( !pBtTo->inTrans || !pBtFrom->inTrans ) return SQLITE_ERROR;
|
|
+ if( pBtTo->needSwab!=pBtFrom->needSwab ) return SQLITE_ERROR;
|
|
+ if( pBtTo->pCursor ) return SQLITE_BUSY;
|
|
+ memcpy(pBtTo->page1, pBtFrom->page1, SQLITE_USABLE_SIZE);
|
|
+ rc = sqlitepager_overwrite(pBtTo->pPager, 1, pBtFrom->page1);
|
|
+ nToPage = sqlitepager_pagecount(pBtTo->pPager);
|
|
+ nPage = sqlitepager_pagecount(pBtFrom->pPager);
|
|
+ for(i=2; rc==SQLITE_OK && i<=nPage; i++){
|
|
+ void *pPage;
|
|
+ rc = sqlitepager_get(pBtFrom->pPager, i, &pPage);
|
|
+ if( rc ) break;
|
|
+ rc = sqlitepager_overwrite(pBtTo->pPager, i, pPage);
|
|
+ if( rc ) break;
|
|
+ sqlitepager_unref(pPage);
|
|
+ }
|
|
+ for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
|
|
+ void *pPage;
|
|
+ rc = sqlitepager_get(pBtTo->pPager, i, &pPage);
|
|
+ if( rc ) break;
|
|
+ rc = sqlitepager_write(pPage);
|
|
+ sqlitepager_unref(pPage);
|
|
+ sqlitepager_dont_write(pBtTo->pPager, i);
|
|
+ }
|
|
+ if( !rc && nPage<nToPage ){
|
|
+ rc = sqlitepager_truncate(pBtTo->pPager, nPage);
|
|
+ }
|
|
+ if( rc ){
|
|
+ fileBtreeRollback(pBtTo);
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** The following tables contain pointers to all of the interface
|
|
+** routines for this implementation of the B*Tree backend. To
|
|
+** substitute a different implemention of the backend, one has merely
|
|
+** to provide pointers to alternative functions in similar tables.
|
|
+*/
|
|
+static BtOps sqliteBtreeOps = {
|
|
+ fileBtreeClose,
|
|
+ fileBtreeSetCacheSize,
|
|
+ fileBtreeSetSafetyLevel,
|
|
+ fileBtreeBeginTrans,
|
|
+ fileBtreeCommit,
|
|
+ fileBtreeRollback,
|
|
+ fileBtreeBeginCkpt,
|
|
+ fileBtreeCommitCkpt,
|
|
+ fileBtreeRollbackCkpt,
|
|
+ fileBtreeCreateTable,
|
|
+ fileBtreeCreateTable, /* Really sqliteBtreeCreateIndex() */
|
|
+ fileBtreeDropTable,
|
|
+ fileBtreeClearTable,
|
|
+ fileBtreeCursor,
|
|
+ fileBtreeGetMeta,
|
|
+ fileBtreeUpdateMeta,
|
|
+ fileBtreeIntegrityCheck,
|
|
+ fileBtreeGetFilename,
|
|
+ fileBtreeCopyFile,
|
|
+ fileBtreePager,
|
|
+#ifdef SQLITE_TEST
|
|
+ fileBtreePageDump,
|
|
+#endif
|
|
+};
|
|
+static BtCursorOps sqliteBtreeCursorOps = {
|
|
+ fileBtreeMoveto,
|
|
+ fileBtreeDelete,
|
|
+ fileBtreeInsert,
|
|
+ fileBtreeFirst,
|
|
+ fileBtreeLast,
|
|
+ fileBtreeNext,
|
|
+ fileBtreePrevious,
|
|
+ fileBtreeKeySize,
|
|
+ fileBtreeKey,
|
|
+ fileBtreeKeyCompare,
|
|
+ fileBtreeDataSize,
|
|
+ fileBtreeData,
|
|
+ fileBtreeCloseCursor,
|
|
+#ifdef SQLITE_TEST
|
|
+ fileBtreeCursorDump,
|
|
+#endif
|
|
+};
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/btree.h
|
|
@@ -0,0 +1,156 @@
|
|
+/*
|
|
+** 2001 September 15
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This header file defines the interface that the sqlite B-Tree file
|
|
+** subsystem. See comments in the source code for a detailed description
|
|
+** of what each interface routine does.
|
|
+**
|
|
+** @(#) $Id$
|
|
+*/
|
|
+#ifndef _BTREE_H_
|
|
+#define _BTREE_H_
|
|
+
|
|
+/*
|
|
+** Forward declarations of structure
|
|
+*/
|
|
+typedef struct Btree Btree;
|
|
+typedef struct BtCursor BtCursor;
|
|
+typedef struct BtOps BtOps;
|
|
+typedef struct BtCursorOps BtCursorOps;
|
|
+
|
|
+
|
|
+/*
|
|
+** An instance of the following structure contains pointers to all
|
|
+** methods against an open BTree. Alternative BTree implementations
|
|
+** (examples: file based versus in-memory) can be created by substituting
|
|
+** different methods. Users of the BTree cannot tell the difference.
|
|
+**
|
|
+** In C++ we could do this by defining a virtual base class and then
|
|
+** creating subclasses for each different implementation. But this is
|
|
+** C not C++ so we have to be a little more explicit.
|
|
+*/
|
|
+struct BtOps {
|
|
+ int (*Close)(Btree*);
|
|
+ int (*SetCacheSize)(Btree*, int);
|
|
+ int (*SetSafetyLevel)(Btree*, int);
|
|
+ int (*BeginTrans)(Btree*);
|
|
+ int (*Commit)(Btree*);
|
|
+ int (*Rollback)(Btree*);
|
|
+ int (*BeginCkpt)(Btree*);
|
|
+ int (*CommitCkpt)(Btree*);
|
|
+ int (*RollbackCkpt)(Btree*);
|
|
+ int (*CreateTable)(Btree*, int*);
|
|
+ int (*CreateIndex)(Btree*, int*);
|
|
+ int (*DropTable)(Btree*, int);
|
|
+ int (*ClearTable)(Btree*, int);
|
|
+ int (*Cursor)(Btree*, int iTable, int wrFlag, BtCursor **ppCur);
|
|
+ int (*GetMeta)(Btree*, int*);
|
|
+ int (*UpdateMeta)(Btree*, int*);
|
|
+ char *(*IntegrityCheck)(Btree*, int*, int);
|
|
+ const char *(*GetFilename)(Btree*);
|
|
+ int (*Copyfile)(Btree*,Btree*);
|
|
+ struct Pager *(*Pager)(Btree*);
|
|
+#ifdef SQLITE_TEST
|
|
+ int (*PageDump)(Btree*, int, int);
|
|
+#endif
|
|
+};
|
|
+
|
|
+/*
|
|
+** An instance of this structure defines all of the methods that can
|
|
+** be executed against a cursor.
|
|
+*/
|
|
+struct BtCursorOps {
|
|
+ int (*Moveto)(BtCursor*, const void *pKey, int nKey, int *pRes);
|
|
+ int (*Delete)(BtCursor*);
|
|
+ int (*Insert)(BtCursor*, const void *pKey, int nKey,
|
|
+ const void *pData, int nData);
|
|
+ int (*First)(BtCursor*, int *pRes);
|
|
+ int (*Last)(BtCursor*, int *pRes);
|
|
+ int (*Next)(BtCursor*, int *pRes);
|
|
+ int (*Previous)(BtCursor*, int *pRes);
|
|
+ int (*KeySize)(BtCursor*, int *pSize);
|
|
+ int (*Key)(BtCursor*, int offset, int amt, char *zBuf);
|
|
+ int (*KeyCompare)(BtCursor*, const void *pKey, int nKey,
|
|
+ int nIgnore, int *pRes);
|
|
+ int (*DataSize)(BtCursor*, int *pSize);
|
|
+ int (*Data)(BtCursor*, int offset, int amt, char *zBuf);
|
|
+ int (*CloseCursor)(BtCursor*);
|
|
+#ifdef SQLITE_TEST
|
|
+ int (*CursorDump)(BtCursor*, int*);
|
|
+#endif
|
|
+};
|
|
+
|
|
+/*
|
|
+** The number of 4-byte "meta" values contained on the first page of each
|
|
+** database file.
|
|
+*/
|
|
+#define SQLITE_N_BTREE_META 10
|
|
+
|
|
+int sqliteBtreeOpen(const char *zFilename, int mode, int nPg, Btree **ppBtree);
|
|
+int sqliteRbtreeOpen(const char *zFilename, int mode, int nPg, Btree **ppBtree);
|
|
+
|
|
+#define btOps(pBt) (*((BtOps **)(pBt)))
|
|
+#define btCOps(pCur) (*((BtCursorOps **)(pCur)))
|
|
+
|
|
+#define sqliteBtreeClose(pBt) (btOps(pBt)->Close(pBt))
|
|
+#define sqliteBtreeSetCacheSize(pBt, sz) (btOps(pBt)->SetCacheSize(pBt, sz))
|
|
+#define sqliteBtreeSetSafetyLevel(pBt, sl) (btOps(pBt)->SetSafetyLevel(pBt, sl))
|
|
+#define sqliteBtreeBeginTrans(pBt) (btOps(pBt)->BeginTrans(pBt))
|
|
+#define sqliteBtreeCommit(pBt) (btOps(pBt)->Commit(pBt))
|
|
+#define sqliteBtreeRollback(pBt) (btOps(pBt)->Rollback(pBt))
|
|
+#define sqliteBtreeBeginCkpt(pBt) (btOps(pBt)->BeginCkpt(pBt))
|
|
+#define sqliteBtreeCommitCkpt(pBt) (btOps(pBt)->CommitCkpt(pBt))
|
|
+#define sqliteBtreeRollbackCkpt(pBt) (btOps(pBt)->RollbackCkpt(pBt))
|
|
+#define sqliteBtreeCreateTable(pBt,piTable)\
|
|
+ (btOps(pBt)->CreateTable(pBt,piTable))
|
|
+#define sqliteBtreeCreateIndex(pBt, piIndex)\
|
|
+ (btOps(pBt)->CreateIndex(pBt, piIndex))
|
|
+#define sqliteBtreeDropTable(pBt, iTable) (btOps(pBt)->DropTable(pBt, iTable))
|
|
+#define sqliteBtreeClearTable(pBt, iTable)\
|
|
+ (btOps(pBt)->ClearTable(pBt, iTable))
|
|
+#define sqliteBtreeCursor(pBt, iTable, wrFlag, ppCur)\
|
|
+ (btOps(pBt)->Cursor(pBt, iTable, wrFlag, ppCur))
|
|
+#define sqliteBtreeMoveto(pCur, pKey, nKey, pRes)\
|
|
+ (btCOps(pCur)->Moveto(pCur, pKey, nKey, pRes))
|
|
+#define sqliteBtreeDelete(pCur) (btCOps(pCur)->Delete(pCur))
|
|
+#define sqliteBtreeInsert(pCur, pKey, nKey, pData, nData) \
|
|
+ (btCOps(pCur)->Insert(pCur, pKey, nKey, pData, nData))
|
|
+#define sqliteBtreeFirst(pCur, pRes) (btCOps(pCur)->First(pCur, pRes))
|
|
+#define sqliteBtreeLast(pCur, pRes) (btCOps(pCur)->Last(pCur, pRes))
|
|
+#define sqliteBtreeNext(pCur, pRes) (btCOps(pCur)->Next(pCur, pRes))
|
|
+#define sqliteBtreePrevious(pCur, pRes) (btCOps(pCur)->Previous(pCur, pRes))
|
|
+#define sqliteBtreeKeySize(pCur, pSize) (btCOps(pCur)->KeySize(pCur, pSize) )
|
|
+#define sqliteBtreeKey(pCur, offset, amt, zBuf)\
|
|
+ (btCOps(pCur)->Key(pCur, offset, amt, zBuf))
|
|
+#define sqliteBtreeKeyCompare(pCur, pKey, nKey, nIgnore, pRes)\
|
|
+ (btCOps(pCur)->KeyCompare(pCur, pKey, nKey, nIgnore, pRes))
|
|
+#define sqliteBtreeDataSize(pCur, pSize) (btCOps(pCur)->DataSize(pCur, pSize))
|
|
+#define sqliteBtreeData(pCur, offset, amt, zBuf)\
|
|
+ (btCOps(pCur)->Data(pCur, offset, amt, zBuf))
|
|
+#define sqliteBtreeCloseCursor(pCur) (btCOps(pCur)->CloseCursor(pCur))
|
|
+#define sqliteBtreeGetMeta(pBt, aMeta) (btOps(pBt)->GetMeta(pBt, aMeta))
|
|
+#define sqliteBtreeUpdateMeta(pBt, aMeta) (btOps(pBt)->UpdateMeta(pBt, aMeta))
|
|
+#define sqliteBtreeIntegrityCheck(pBt, aRoot, nRoot)\
|
|
+ (btOps(pBt)->IntegrityCheck(pBt, aRoot, nRoot))
|
|
+#define sqliteBtreeGetFilename(pBt) (btOps(pBt)->GetFilename(pBt))
|
|
+#define sqliteBtreeCopyFile(pBt1, pBt2) (btOps(pBt1)->Copyfile(pBt1, pBt2))
|
|
+#define sqliteBtreePager(pBt) (btOps(pBt)->Pager(pBt))
|
|
+
|
|
+#ifdef SQLITE_TEST
|
|
+#define sqliteBtreePageDump(pBt, pgno, recursive)\
|
|
+ (btOps(pBt)->PageDump(pBt, pgno, recursive))
|
|
+#define sqliteBtreeCursorDump(pCur, aResult)\
|
|
+ (btCOps(pCur)->CursorDump(pCur, aResult))
|
|
+int btree_native_byte_order;
|
|
+#endif /* SQLITE_TEST */
|
|
+
|
|
+
|
|
+#endif /* _BTREE_H_ */
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/btree_rb.c
|
|
@@ -0,0 +1,1488 @@
|
|
+/*
|
|
+** 2003 Feb 4
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** $Id$
|
|
+**
|
|
+** This file implements an in-core database using Red-Black balanced
|
|
+** binary trees.
|
|
+**
|
|
+** It was contributed to SQLite by anonymous on 2003-Feb-04 23:24:49 UTC.
|
|
+*/
|
|
+#include "btree.h"
|
|
+#include "sqliteInt.h"
|
|
+#include <assert.h>
|
|
+
|
|
+/*
|
|
+** Omit this whole file if the SQLITE_OMIT_INMEMORYDB macro is
|
|
+** defined. This allows a lot of code to be omitted for installations
|
|
+** that do not need it.
|
|
+*/
|
|
+#ifndef SQLITE_OMIT_INMEMORYDB
|
|
+
|
|
+
|
|
+typedef struct BtRbTree BtRbTree;
|
|
+typedef struct BtRbNode BtRbNode;
|
|
+typedef struct BtRollbackOp BtRollbackOp;
|
|
+typedef struct Rbtree Rbtree;
|
|
+typedef struct RbtCursor RbtCursor;
|
|
+
|
|
+/* Forward declarations */
|
|
+static BtOps sqliteRbtreeOps;
|
|
+static BtCursorOps sqliteRbtreeCursorOps;
|
|
+
|
|
+/*
|
|
+ * During each transaction (or checkpoint), a linked-list of
|
|
+ * "rollback-operations" is accumulated. If the transaction is rolled back,
|
|
+ * then the list of operations must be executed (to restore the database to
|
|
+ * it's state before the transaction started). If the transaction is to be
|
|
+ * committed, just delete the list.
|
|
+ *
|
|
+ * Each operation is represented as follows, depending on the value of eOp:
|
|
+ *
|
|
+ * ROLLBACK_INSERT -> Need to insert (pKey, pData) into table iTab.
|
|
+ * ROLLBACK_DELETE -> Need to delete the record (pKey) into table iTab.
|
|
+ * ROLLBACK_CREATE -> Need to create table iTab.
|
|
+ * ROLLBACK_DROP -> Need to drop table iTab.
|
|
+ */
|
|
+struct BtRollbackOp {
|
|
+ u8 eOp;
|
|
+ int iTab;
|
|
+ int nKey;
|
|
+ void *pKey;
|
|
+ int nData;
|
|
+ void *pData;
|
|
+ BtRollbackOp *pNext;
|
|
+};
|
|
+
|
|
+/*
|
|
+** Legal values for BtRollbackOp.eOp:
|
|
+*/
|
|
+#define ROLLBACK_INSERT 1 /* Insert a record */
|
|
+#define ROLLBACK_DELETE 2 /* Delete a record */
|
|
+#define ROLLBACK_CREATE 3 /* Create a table */
|
|
+#define ROLLBACK_DROP 4 /* Drop a table */
|
|
+
|
|
+struct Rbtree {
|
|
+ BtOps *pOps; /* Function table */
|
|
+ int aMetaData[SQLITE_N_BTREE_META];
|
|
+
|
|
+ int next_idx; /* next available table index */
|
|
+ Hash tblHash; /* All created tables, by index */
|
|
+ u8 isAnonymous; /* True if this Rbtree is to be deleted when closed */
|
|
+ u8 eTransState; /* State of this Rbtree wrt transactions */
|
|
+
|
|
+ BtRollbackOp *pTransRollback;
|
|
+ BtRollbackOp *pCheckRollback;
|
|
+ BtRollbackOp *pCheckRollbackTail;
|
|
+};
|
|
+
|
|
+/*
|
|
+** Legal values for Rbtree.eTransState.
|
|
+*/
|
|
+#define TRANS_NONE 0 /* No transaction is in progress */
|
|
+#define TRANS_INTRANSACTION 1 /* A transaction is in progress */
|
|
+#define TRANS_INCHECKPOINT 2 /* A checkpoint is in progress */
|
|
+#define TRANS_ROLLBACK 3 /* We are currently rolling back a checkpoint or
|
|
+ * transaction. */
|
|
+
|
|
+struct RbtCursor {
|
|
+ BtCursorOps *pOps; /* Function table */
|
|
+ Rbtree *pRbtree;
|
|
+ BtRbTree *pTree;
|
|
+ int iTree; /* Index of pTree in pRbtree */
|
|
+ BtRbNode *pNode;
|
|
+ RbtCursor *pShared; /* List of all cursors on the same Rbtree */
|
|
+ u8 eSkip; /* Determines if next step operation is a no-op */
|
|
+ u8 wrFlag; /* True if this cursor is open for writing */
|
|
+};
|
|
+
|
|
+/*
|
|
+** Legal values for RbtCursor.eSkip.
|
|
+*/
|
|
+#define SKIP_NONE 0 /* Always step the cursor */
|
|
+#define SKIP_NEXT 1 /* The next sqliteRbtreeNext() is a no-op */
|
|
+#define SKIP_PREV 2 /* The next sqliteRbtreePrevious() is a no-op */
|
|
+#define SKIP_INVALID 3 /* Calls to Next() and Previous() are invalid */
|
|
+
|
|
+struct BtRbTree {
|
|
+ RbtCursor *pCursors; /* All cursors pointing to this tree */
|
|
+ BtRbNode *pHead; /* Head of the tree, or NULL */
|
|
+};
|
|
+
|
|
+struct BtRbNode {
|
|
+ int nKey;
|
|
+ void *pKey;
|
|
+ int nData;
|
|
+ void *pData;
|
|
+ u8 isBlack; /* true for a black node, 0 for a red node */
|
|
+ BtRbNode *pParent; /* Nodes parent node, NULL for the tree head */
|
|
+ BtRbNode *pLeft; /* Nodes left child, or NULL */
|
|
+ BtRbNode *pRight; /* Nodes right child, or NULL */
|
|
+
|
|
+ int nBlackHeight; /* Only used during the red-black integrity check */
|
|
+};
|
|
+
|
|
+/* Forward declarations */
|
|
+static int memRbtreeMoveto(
|
|
+ RbtCursor* pCur,
|
|
+ const void *pKey,
|
|
+ int nKey,
|
|
+ int *pRes
|
|
+);
|
|
+static int memRbtreeClearTable(Rbtree* tree, int n);
|
|
+static int memRbtreeNext(RbtCursor* pCur, int *pRes);
|
|
+static int memRbtreeLast(RbtCursor* pCur, int *pRes);
|
|
+static int memRbtreePrevious(RbtCursor* pCur, int *pRes);
|
|
+
|
|
+
|
|
+/*
|
|
+** This routine checks all cursors that point to the same table
|
|
+** as pCur points to. If any of those cursors were opened with
|
|
+** wrFlag==0 then this routine returns SQLITE_LOCKED. If all
|
|
+** cursors point to the same table were opened with wrFlag==1
|
|
+** then this routine returns SQLITE_OK.
|
|
+**
|
|
+** In addition to checking for read-locks (where a read-lock
|
|
+** means a cursor opened with wrFlag==0) this routine also NULLs
|
|
+** out the pNode field of all other cursors.
|
|
+** This is necessary because an insert
|
|
+** or delete might change erase the node out from under
|
|
+** another cursor.
|
|
+*/
|
|
+static int checkReadLocks(RbtCursor *pCur){
|
|
+ RbtCursor *p;
|
|
+ assert( pCur->wrFlag );
|
|
+ for(p=pCur->pTree->pCursors; p; p=p->pShared){
|
|
+ if( p!=pCur ){
|
|
+ if( p->wrFlag==0 ) return SQLITE_LOCKED;
|
|
+ p->pNode = 0;
|
|
+ }
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * The key-compare function for the red-black trees. Returns as follows:
|
|
+ *
|
|
+ * (key1 < key2) -1
|
|
+ * (key1 == key2) 0
|
|
+ * (key1 > key2) 1
|
|
+ *
|
|
+ * Keys are compared using memcmp(). If one key is an exact prefix of the
|
|
+ * other, then the shorter key is less than the longer key.
|
|
+ */
|
|
+static int key_compare(void const*pKey1, int nKey1, void const*pKey2, int nKey2)
|
|
+{
|
|
+ int mcmp = memcmp(pKey1, pKey2, (nKey1 <= nKey2)?nKey1:nKey2);
|
|
+ if( mcmp == 0){
|
|
+ if( nKey1 == nKey2 ) return 0;
|
|
+ return ((nKey1 < nKey2)?-1:1);
|
|
+ }
|
|
+ return ((mcmp>0)?1:-1);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Perform the LEFT-rotate transformation on node X of tree pTree. This
|
|
+ * transform is part of the red-black balancing code.
|
|
+ *
|
|
+ * | |
|
|
+ * X Y
|
|
+ * / \ / \
|
|
+ * a Y X c
|
|
+ * / \ / \
|
|
+ * b c a b
|
|
+ *
|
|
+ * BEFORE AFTER
|
|
+ */
|
|
+static void leftRotate(BtRbTree *pTree, BtRbNode *pX)
|
|
+{
|
|
+ BtRbNode *pY;
|
|
+ BtRbNode *pb;
|
|
+ pY = pX->pRight;
|
|
+ pb = pY->pLeft;
|
|
+
|
|
+ pY->pParent = pX->pParent;
|
|
+ if( pX->pParent ){
|
|
+ if( pX->pParent->pLeft == pX ) pX->pParent->pLeft = pY;
|
|
+ else pX->pParent->pRight = pY;
|
|
+ }
|
|
+ pY->pLeft = pX;
|
|
+ pX->pParent = pY;
|
|
+ pX->pRight = pb;
|
|
+ if( pb ) pb->pParent = pX;
|
|
+ if( pTree->pHead == pX ) pTree->pHead = pY;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Perform the RIGHT-rotate transformation on node X of tree pTree. This
|
|
+ * transform is part of the red-black balancing code.
|
|
+ *
|
|
+ * | |
|
|
+ * X Y
|
|
+ * / \ / \
|
|
+ * Y c a X
|
|
+ * / \ / \
|
|
+ * a b b c
|
|
+ *
|
|
+ * BEFORE AFTER
|
|
+ */
|
|
+static void rightRotate(BtRbTree *pTree, BtRbNode *pX)
|
|
+{
|
|
+ BtRbNode *pY;
|
|
+ BtRbNode *pb;
|
|
+ pY = pX->pLeft;
|
|
+ pb = pY->pRight;
|
|
+
|
|
+ pY->pParent = pX->pParent;
|
|
+ if( pX->pParent ){
|
|
+ if( pX->pParent->pLeft == pX ) pX->pParent->pLeft = pY;
|
|
+ else pX->pParent->pRight = pY;
|
|
+ }
|
|
+ pY->pRight = pX;
|
|
+ pX->pParent = pY;
|
|
+ pX->pLeft = pb;
|
|
+ if( pb ) pb->pParent = pX;
|
|
+ if( pTree->pHead == pX ) pTree->pHead = pY;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * A string-manipulation helper function for check_redblack_tree(). If (orig ==
|
|
+ * NULL) a copy of val is returned. If (orig != NULL) then a copy of the *
|
|
+ * concatenation of orig and val is returned. The original orig is deleted
|
|
+ * (using sqliteFree()).
|
|
+ */
|
|
+static char *append_val(char * orig, char const * val){
|
|
+ char *z;
|
|
+ if( !orig ){
|
|
+ z = sqliteStrDup( val );
|
|
+ } else{
|
|
+ z = 0;
|
|
+ sqliteSetString(&z, orig, val, (char*)0);
|
|
+ sqliteFree( orig );
|
|
+ }
|
|
+ return z;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Append a string representation of the entire node to orig and return it.
|
|
+ * This is used to produce debugging information if check_redblack_tree() finds
|
|
+ * a problem with a red-black binary tree.
|
|
+ */
|
|
+static char *append_node(char * orig, BtRbNode *pNode, int indent)
|
|
+{
|
|
+ char buf[128];
|
|
+ int i;
|
|
+
|
|
+ for( i=0; i<indent; i++ ){
|
|
+ orig = append_val(orig, " ");
|
|
+ }
|
|
+
|
|
+ sprintf(buf, "%p", pNode);
|
|
+ orig = append_val(orig, buf);
|
|
+
|
|
+ if( pNode ){
|
|
+ indent += 3;
|
|
+ if( pNode->isBlack ){
|
|
+ orig = append_val(orig, " B \n");
|
|
+ }else{
|
|
+ orig = append_val(orig, " R \n");
|
|
+ }
|
|
+ orig = append_node( orig, pNode->pLeft, indent );
|
|
+ orig = append_node( orig, pNode->pRight, indent );
|
|
+ }else{
|
|
+ orig = append_val(orig, "\n");
|
|
+ }
|
|
+ return orig;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Print a representation of a node to stdout. This function is only included
|
|
+ * so you can call it from within a debugger if things get really bad. It
|
|
+ * is not called from anyplace in the code.
|
|
+ */
|
|
+static void print_node(BtRbNode *pNode)
|
|
+{
|
|
+ char * str = append_node(0, pNode, 0);
|
|
+ printf("%s", str);
|
|
+
|
|
+ /* Suppress a warning message about print_node() being unused */
|
|
+ (void)print_node;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Check the following properties of the red-black tree:
|
|
+ * (1) - If a node is red, both of it's children are black
|
|
+ * (2) - Each path from a given node to a leaf (NULL) node passes thru the
|
|
+ * same number of black nodes
|
|
+ *
|
|
+ * If there is a problem, append a description (using append_val() ) to *msg.
|
|
+ */
|
|
+static void check_redblack_tree(BtRbTree * tree, char ** msg)
|
|
+{
|
|
+ BtRbNode *pNode;
|
|
+
|
|
+ /* 0 -> came from parent
|
|
+ * 1 -> came from left
|
|
+ * 2 -> came from right */
|
|
+ int prev_step = 0;
|
|
+
|
|
+ pNode = tree->pHead;
|
|
+ while( pNode ){
|
|
+ switch( prev_step ){
|
|
+ case 0:
|
|
+ if( pNode->pLeft ){
|
|
+ pNode = pNode->pLeft;
|
|
+ }else{
|
|
+ prev_step = 1;
|
|
+ }
|
|
+ break;
|
|
+ case 1:
|
|
+ if( pNode->pRight ){
|
|
+ pNode = pNode->pRight;
|
|
+ prev_step = 0;
|
|
+ }else{
|
|
+ prev_step = 2;
|
|
+ }
|
|
+ break;
|
|
+ case 2:
|
|
+ /* Check red-black property (1) */
|
|
+ if( !pNode->isBlack &&
|
|
+ ( (pNode->pLeft && !pNode->pLeft->isBlack) ||
|
|
+ (pNode->pRight && !pNode->pRight->isBlack) )
|
|
+ ){
|
|
+ char buf[128];
|
|
+ sprintf(buf, "Red node with red child at %p\n", pNode);
|
|
+ *msg = append_val(*msg, buf);
|
|
+ *msg = append_node(*msg, tree->pHead, 0);
|
|
+ *msg = append_val(*msg, "\n");
|
|
+ }
|
|
+
|
|
+ /* Check red-black property (2) */
|
|
+ {
|
|
+ int leftHeight = 0;
|
|
+ int rightHeight = 0;
|
|
+ if( pNode->pLeft ){
|
|
+ leftHeight += pNode->pLeft->nBlackHeight;
|
|
+ leftHeight += (pNode->pLeft->isBlack?1:0);
|
|
+ }
|
|
+ if( pNode->pRight ){
|
|
+ rightHeight += pNode->pRight->nBlackHeight;
|
|
+ rightHeight += (pNode->pRight->isBlack?1:0);
|
|
+ }
|
|
+ if( leftHeight != rightHeight ){
|
|
+ char buf[128];
|
|
+ sprintf(buf, "Different black-heights at %p\n", pNode);
|
|
+ *msg = append_val(*msg, buf);
|
|
+ *msg = append_node(*msg, tree->pHead, 0);
|
|
+ *msg = append_val(*msg, "\n");
|
|
+ }
|
|
+ pNode->nBlackHeight = leftHeight;
|
|
+ }
|
|
+
|
|
+ if( pNode->pParent ){
|
|
+ if( pNode == pNode->pParent->pLeft ) prev_step = 1;
|
|
+ else prev_step = 2;
|
|
+ }
|
|
+ pNode = pNode->pParent;
|
|
+ break;
|
|
+ default: assert(0);
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Node pX has just been inserted into pTree (by code in sqliteRbtreeInsert()).
|
|
+ * It is possible that pX is a red node with a red parent, which is a violation
|
|
+ * of the red-black tree properties. This function performs rotations and
|
|
+ * color changes to rebalance the tree
|
|
+ */
|
|
+static void do_insert_balancing(BtRbTree *pTree, BtRbNode *pX)
|
|
+{
|
|
+ /* In the first iteration of this loop, pX points to the red node just
|
|
+ * inserted in the tree. If the parent of pX exists (pX is not the root
|
|
+ * node) and is red, then the properties of the red-black tree are
|
|
+ * violated.
|
|
+ *
|
|
+ * At the start of any subsequent iterations, pX points to a red node
|
|
+ * with a red parent. In all other respects the tree is a legal red-black
|
|
+ * binary tree. */
|
|
+ while( pX != pTree->pHead && !pX->pParent->isBlack ){
|
|
+ BtRbNode *pUncle;
|
|
+ BtRbNode *pGrandparent;
|
|
+
|
|
+ /* Grandparent of pX must exist and must be black. */
|
|
+ pGrandparent = pX->pParent->pParent;
|
|
+ assert( pGrandparent );
|
|
+ assert( pGrandparent->isBlack );
|
|
+
|
|
+ /* Uncle of pX may or may not exist. */
|
|
+ if( pX->pParent == pGrandparent->pLeft )
|
|
+ pUncle = pGrandparent->pRight;
|
|
+ else
|
|
+ pUncle = pGrandparent->pLeft;
|
|
+
|
|
+ /* If the uncle of pX exists and is red, we do the following:
|
|
+ * | |
|
|
+ * G(b) G(r)
|
|
+ * / \ / \
|
|
+ * U(r) P(r) U(b) P(b)
|
|
+ * \ \
|
|
+ * X(r) X(r)
|
|
+ *
|
|
+ * BEFORE AFTER
|
|
+ * pX is then set to G. If the parent of G is red, then the while loop
|
|
+ * will run again. */
|
|
+ if( pUncle && !pUncle->isBlack ){
|
|
+ pGrandparent->isBlack = 0;
|
|
+ pUncle->isBlack = 1;
|
|
+ pX->pParent->isBlack = 1;
|
|
+ pX = pGrandparent;
|
|
+ }else{
|
|
+
|
|
+ if( pX->pParent == pGrandparent->pLeft ){
|
|
+ if( pX == pX->pParent->pRight ){
|
|
+ /* If pX is a right-child, do the following transform, essentially
|
|
+ * to change pX into a left-child:
|
|
+ * | |
|
|
+ * G(b) G(b)
|
|
+ * / \ / \
|
|
+ * P(r) U(b) X(r) U(b)
|
|
+ * \ /
|
|
+ * X(r) P(r) <-- new X
|
|
+ *
|
|
+ * BEFORE AFTER
|
|
+ */
|
|
+ pX = pX->pParent;
|
|
+ leftRotate(pTree, pX);
|
|
+ }
|
|
+
|
|
+ /* Do the following transform, which balances the tree :)
|
|
+ * | |
|
|
+ * G(b) P(b)
|
|
+ * / \ / \
|
|
+ * P(r) U(b) X(r) G(r)
|
|
+ * / \
|
|
+ * X(r) U(b)
|
|
+ *
|
|
+ * BEFORE AFTER
|
|
+ */
|
|
+ assert( pGrandparent == pX->pParent->pParent );
|
|
+ pGrandparent->isBlack = 0;
|
|
+ pX->pParent->isBlack = 1;
|
|
+ rightRotate( pTree, pGrandparent );
|
|
+
|
|
+ }else{
|
|
+ /* This code is symetric to the illustrated case above. */
|
|
+ if( pX == pX->pParent->pLeft ){
|
|
+ pX = pX->pParent;
|
|
+ rightRotate(pTree, pX);
|
|
+ }
|
|
+ assert( pGrandparent == pX->pParent->pParent );
|
|
+ pGrandparent->isBlack = 0;
|
|
+ pX->pParent->isBlack = 1;
|
|
+ leftRotate( pTree, pGrandparent );
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ pTree->pHead->isBlack = 1;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * A child of pParent, which in turn had child pX, has just been removed from
|
|
+ * pTree (the figure below depicts the operation, Z is being removed). pParent
|
|
+ * or pX, or both may be NULL.
|
|
+ * | |
|
|
+ * P P
|
|
+ * / \ / \
|
|
+ * Z X
|
|
+ * / \
|
|
+ * X nil
|
|
+ *
|
|
+ * This function is only called if Z was black. In this case the red-black tree
|
|
+ * properties have been violated, and pX has an "extra black". This function
|
|
+ * performs rotations and color-changes to re-balance the tree.
|
|
+ */
|
|
+static
|
|
+void do_delete_balancing(BtRbTree *pTree, BtRbNode *pX, BtRbNode *pParent)
|
|
+{
|
|
+ BtRbNode *pSib;
|
|
+
|
|
+ /* TODO: Comment this code! */
|
|
+ while( pX != pTree->pHead && (!pX || pX->isBlack) ){
|
|
+ if( pX == pParent->pLeft ){
|
|
+ pSib = pParent->pRight;
|
|
+ if( pSib && !(pSib->isBlack) ){
|
|
+ pSib->isBlack = 1;
|
|
+ pParent->isBlack = 0;
|
|
+ leftRotate(pTree, pParent);
|
|
+ pSib = pParent->pRight;
|
|
+ }
|
|
+ if( !pSib ){
|
|
+ pX = pParent;
|
|
+ }else if(
|
|
+ (!pSib->pLeft || pSib->pLeft->isBlack) &&
|
|
+ (!pSib->pRight || pSib->pRight->isBlack) ) {
|
|
+ pSib->isBlack = 0;
|
|
+ pX = pParent;
|
|
+ }else{
|
|
+ if( (!pSib->pRight || pSib->pRight->isBlack) ){
|
|
+ if( pSib->pLeft ) pSib->pLeft->isBlack = 1;
|
|
+ pSib->isBlack = 0;
|
|
+ rightRotate( pTree, pSib );
|
|
+ pSib = pParent->pRight;
|
|
+ }
|
|
+ pSib->isBlack = pParent->isBlack;
|
|
+ pParent->isBlack = 1;
|
|
+ if( pSib->pRight ) pSib->pRight->isBlack = 1;
|
|
+ leftRotate(pTree, pParent);
|
|
+ pX = pTree->pHead;
|
|
+ }
|
|
+ }else{
|
|
+ pSib = pParent->pLeft;
|
|
+ if( pSib && !(pSib->isBlack) ){
|
|
+ pSib->isBlack = 1;
|
|
+ pParent->isBlack = 0;
|
|
+ rightRotate(pTree, pParent);
|
|
+ pSib = pParent->pLeft;
|
|
+ }
|
|
+ if( !pSib ){
|
|
+ pX = pParent;
|
|
+ }else if(
|
|
+ (!pSib->pLeft || pSib->pLeft->isBlack) &&
|
|
+ (!pSib->pRight || pSib->pRight->isBlack) ){
|
|
+ pSib->isBlack = 0;
|
|
+ pX = pParent;
|
|
+ }else{
|
|
+ if( (!pSib->pLeft || pSib->pLeft->isBlack) ){
|
|
+ if( pSib->pRight ) pSib->pRight->isBlack = 1;
|
|
+ pSib->isBlack = 0;
|
|
+ leftRotate( pTree, pSib );
|
|
+ pSib = pParent->pLeft;
|
|
+ }
|
|
+ pSib->isBlack = pParent->isBlack;
|
|
+ pParent->isBlack = 1;
|
|
+ if( pSib->pLeft ) pSib->pLeft->isBlack = 1;
|
|
+ rightRotate(pTree, pParent);
|
|
+ pX = pTree->pHead;
|
|
+ }
|
|
+ }
|
|
+ pParent = pX->pParent;
|
|
+ }
|
|
+ if( pX ) pX->isBlack = 1;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Create table n in tree pRbtree. Table n must not exist.
|
|
+ */
|
|
+static void btreeCreateTable(Rbtree* pRbtree, int n)
|
|
+{
|
|
+ BtRbTree *pNewTbl = sqliteMalloc(sizeof(BtRbTree));
|
|
+ sqliteHashInsert(&pRbtree->tblHash, 0, n, pNewTbl);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Log a single "rollback-op" for the given Rbtree. See comments for struct
|
|
+ * BtRollbackOp.
|
|
+ */
|
|
+static void btreeLogRollbackOp(Rbtree* pRbtree, BtRollbackOp *pRollbackOp)
|
|
+{
|
|
+ assert( pRbtree->eTransState == TRANS_INCHECKPOINT ||
|
|
+ pRbtree->eTransState == TRANS_INTRANSACTION );
|
|
+ if( pRbtree->eTransState == TRANS_INTRANSACTION ){
|
|
+ pRollbackOp->pNext = pRbtree->pTransRollback;
|
|
+ pRbtree->pTransRollback = pRollbackOp;
|
|
+ }
|
|
+ if( pRbtree->eTransState == TRANS_INCHECKPOINT ){
|
|
+ if( !pRbtree->pCheckRollback ){
|
|
+ pRbtree->pCheckRollbackTail = pRollbackOp;
|
|
+ }
|
|
+ pRollbackOp->pNext = pRbtree->pCheckRollback;
|
|
+ pRbtree->pCheckRollback = pRollbackOp;
|
|
+ }
|
|
+}
|
|
+
|
|
+int sqliteRbtreeOpen(
|
|
+ const char *zFilename,
|
|
+ int mode,
|
|
+ int nPg,
|
|
+ Btree **ppBtree
|
|
+){
|
|
+ Rbtree **ppRbtree = (Rbtree**)ppBtree;
|
|
+ *ppRbtree = (Rbtree *)sqliteMalloc(sizeof(Rbtree));
|
|
+ if( sqlite_malloc_failed ) goto open_no_mem;
|
|
+ sqliteHashInit(&(*ppRbtree)->tblHash, SQLITE_HASH_INT, 0);
|
|
+
|
|
+ /* Create a binary tree for the SQLITE_MASTER table at location 2 */
|
|
+ btreeCreateTable(*ppRbtree, 2);
|
|
+ if( sqlite_malloc_failed ) goto open_no_mem;
|
|
+ (*ppRbtree)->next_idx = 3;
|
|
+ (*ppRbtree)->pOps = &sqliteRbtreeOps;
|
|
+ /* Set file type to 4; this is so that "attach ':memory:' as ...." does not
|
|
+ ** think that the database in uninitialised and refuse to attach
|
|
+ */
|
|
+ (*ppRbtree)->aMetaData[2] = 4;
|
|
+
|
|
+ return SQLITE_OK;
|
|
+
|
|
+open_no_mem:
|
|
+ *ppBtree = 0;
|
|
+ return SQLITE_NOMEM;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Create a new table in the supplied Rbtree. Set *n to the new table number.
|
|
+ * Return SQLITE_OK if the operation is a success.
|
|
+ */
|
|
+static int memRbtreeCreateTable(Rbtree* tree, int* n)
|
|
+{
|
|
+ assert( tree->eTransState != TRANS_NONE );
|
|
+
|
|
+ *n = tree->next_idx++;
|
|
+ btreeCreateTable(tree, *n);
|
|
+ if( sqlite_malloc_failed ) return SQLITE_NOMEM;
|
|
+
|
|
+ /* Set up the rollback structure (if we are not doing this as part of a
|
|
+ * rollback) */
|
|
+ if( tree->eTransState != TRANS_ROLLBACK ){
|
|
+ BtRollbackOp *pRollbackOp = sqliteMalloc(sizeof(BtRollbackOp));
|
|
+ if( pRollbackOp==0 ) return SQLITE_NOMEM;
|
|
+ pRollbackOp->eOp = ROLLBACK_DROP;
|
|
+ pRollbackOp->iTab = *n;
|
|
+ btreeLogRollbackOp(tree, pRollbackOp);
|
|
+ }
|
|
+
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Delete table n from the supplied Rbtree.
|
|
+ */
|
|
+static int memRbtreeDropTable(Rbtree* tree, int n)
|
|
+{
|
|
+ BtRbTree *pTree;
|
|
+ assert( tree->eTransState != TRANS_NONE );
|
|
+
|
|
+ memRbtreeClearTable(tree, n);
|
|
+ pTree = sqliteHashInsert(&tree->tblHash, 0, n, 0);
|
|
+ assert(pTree);
|
|
+ assert( pTree->pCursors==0 );
|
|
+ sqliteFree(pTree);
|
|
+
|
|
+ if( tree->eTransState != TRANS_ROLLBACK ){
|
|
+ BtRollbackOp *pRollbackOp = sqliteMalloc(sizeof(BtRollbackOp));
|
|
+ if( pRollbackOp==0 ) return SQLITE_NOMEM;
|
|
+ pRollbackOp->eOp = ROLLBACK_CREATE;
|
|
+ pRollbackOp->iTab = n;
|
|
+ btreeLogRollbackOp(tree, pRollbackOp);
|
|
+ }
|
|
+
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+static int memRbtreeKeyCompare(RbtCursor* pCur, const void *pKey, int nKey,
|
|
+ int nIgnore, int *pRes)
|
|
+{
|
|
+ assert(pCur);
|
|
+
|
|
+ if( !pCur->pNode ) {
|
|
+ *pRes = -1;
|
|
+ } else {
|
|
+ if( (pCur->pNode->nKey - nIgnore) < 0 ){
|
|
+ *pRes = -1;
|
|
+ }else{
|
|
+ *pRes = key_compare(pCur->pNode->pKey, pCur->pNode->nKey-nIgnore,
|
|
+ pKey, nKey);
|
|
+ }
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Get a new cursor for table iTable of the supplied Rbtree. The wrFlag
|
|
+ * parameter indicates that the cursor is open for writing.
|
|
+ *
|
|
+ * Note that RbtCursor.eSkip and RbtCursor.pNode both initialize to 0.
|
|
+ */
|
|
+static int memRbtreeCursor(
|
|
+ Rbtree* tree,
|
|
+ int iTable,
|
|
+ int wrFlag,
|
|
+ RbtCursor **ppCur
|
|
+){
|
|
+ RbtCursor *pCur;
|
|
+ assert(tree);
|
|
+ pCur = *ppCur = sqliteMalloc(sizeof(RbtCursor));
|
|
+ if( sqlite_malloc_failed ) return SQLITE_NOMEM;
|
|
+ pCur->pTree = sqliteHashFind(&tree->tblHash, 0, iTable);
|
|
+ assert( pCur->pTree );
|
|
+ pCur->pRbtree = tree;
|
|
+ pCur->iTree = iTable;
|
|
+ pCur->pOps = &sqliteRbtreeCursorOps;
|
|
+ pCur->wrFlag = wrFlag;
|
|
+ pCur->pShared = pCur->pTree->pCursors;
|
|
+ pCur->pTree->pCursors = pCur;
|
|
+
|
|
+ assert( (*ppCur)->pTree );
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Insert a new record into the Rbtree. The key is given by (pKey,nKey)
|
|
+ * and the data is given by (pData,nData). The cursor is used only to
|
|
+ * define what database the record should be inserted into. The cursor
|
|
+ * is left pointing at the new record.
|
|
+ *
|
|
+ * If the key exists already in the tree, just replace the data.
|
|
+ */
|
|
+static int memRbtreeInsert(
|
|
+ RbtCursor* pCur,
|
|
+ const void *pKey,
|
|
+ int nKey,
|
|
+ const void *pDataInput,
|
|
+ int nData
|
|
+){
|
|
+ void * pData;
|
|
+ int match;
|
|
+
|
|
+ /* It is illegal to call sqliteRbtreeInsert() if we are
|
|
+ ** not in a transaction */
|
|
+ assert( pCur->pRbtree->eTransState != TRANS_NONE );
|
|
+
|
|
+ /* Make sure some other cursor isn't trying to read this same table */
|
|
+ if( checkReadLocks(pCur) ){
|
|
+ return SQLITE_LOCKED; /* The table pCur points to has a read lock */
|
|
+ }
|
|
+
|
|
+ /* Take a copy of the input data now, in case we need it for the
|
|
+ * replace case */
|
|
+ pData = sqliteMallocRaw(nData);
|
|
+ if( sqlite_malloc_failed ) return SQLITE_NOMEM;
|
|
+ memcpy(pData, pDataInput, nData);
|
|
+
|
|
+ /* Move the cursor to a node near the key to be inserted. If the key already
|
|
+ * exists in the table, then (match == 0). In this case we can just replace
|
|
+ * the data associated with the entry, we don't need to manipulate the tree.
|
|
+ *
|
|
+ * If there is no exact match, then the cursor points at what would be either
|
|
+ * the predecessor (match == -1) or successor (match == 1) of the
|
|
+ * searched-for key, were it to be inserted. The new node becomes a child of
|
|
+ * this node.
|
|
+ *
|
|
+ * The new node is initially red.
|
|
+ */
|
|
+ memRbtreeMoveto( pCur, pKey, nKey, &match);
|
|
+ if( match ){
|
|
+ BtRbNode *pNode = sqliteMalloc(sizeof(BtRbNode));
|
|
+ if( pNode==0 ) return SQLITE_NOMEM;
|
|
+ pNode->nKey = nKey;
|
|
+ pNode->pKey = sqliteMallocRaw(nKey);
|
|
+ if( sqlite_malloc_failed ) return SQLITE_NOMEM;
|
|
+ memcpy(pNode->pKey, pKey, nKey);
|
|
+ pNode->nData = nData;
|
|
+ pNode->pData = pData;
|
|
+ if( pCur->pNode ){
|
|
+ switch( match ){
|
|
+ case -1:
|
|
+ assert( !pCur->pNode->pRight );
|
|
+ pNode->pParent = pCur->pNode;
|
|
+ pCur->pNode->pRight = pNode;
|
|
+ break;
|
|
+ case 1:
|
|
+ assert( !pCur->pNode->pLeft );
|
|
+ pNode->pParent = pCur->pNode;
|
|
+ pCur->pNode->pLeft = pNode;
|
|
+ break;
|
|
+ default:
|
|
+ assert(0);
|
|
+ }
|
|
+ }else{
|
|
+ pCur->pTree->pHead = pNode;
|
|
+ }
|
|
+
|
|
+ /* Point the cursor at the node just inserted, as per SQLite requirements */
|
|
+ pCur->pNode = pNode;
|
|
+
|
|
+ /* A new node has just been inserted, so run the balancing code */
|
|
+ do_insert_balancing(pCur->pTree, pNode);
|
|
+
|
|
+ /* Set up a rollback-op in case we have to roll this operation back */
|
|
+ if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){
|
|
+ BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) );
|
|
+ if( pOp==0 ) return SQLITE_NOMEM;
|
|
+ pOp->eOp = ROLLBACK_DELETE;
|
|
+ pOp->iTab = pCur->iTree;
|
|
+ pOp->nKey = pNode->nKey;
|
|
+ pOp->pKey = sqliteMallocRaw( pOp->nKey );
|
|
+ if( sqlite_malloc_failed ) return SQLITE_NOMEM;
|
|
+ memcpy( pOp->pKey, pNode->pKey, pOp->nKey );
|
|
+ btreeLogRollbackOp(pCur->pRbtree, pOp);
|
|
+ }
|
|
+
|
|
+ }else{
|
|
+ /* No need to insert a new node in the tree, as the key already exists.
|
|
+ * Just clobber the current nodes data. */
|
|
+
|
|
+ /* Set up a rollback-op in case we have to roll this operation back */
|
|
+ if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){
|
|
+ BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) );
|
|
+ if( pOp==0 ) return SQLITE_NOMEM;
|
|
+ pOp->iTab = pCur->iTree;
|
|
+ pOp->nKey = pCur->pNode->nKey;
|
|
+ pOp->pKey = sqliteMallocRaw( pOp->nKey );
|
|
+ if( sqlite_malloc_failed ) return SQLITE_NOMEM;
|
|
+ memcpy( pOp->pKey, pCur->pNode->pKey, pOp->nKey );
|
|
+ pOp->nData = pCur->pNode->nData;
|
|
+ pOp->pData = pCur->pNode->pData;
|
|
+ pOp->eOp = ROLLBACK_INSERT;
|
|
+ btreeLogRollbackOp(pCur->pRbtree, pOp);
|
|
+ }else{
|
|
+ sqliteFree( pCur->pNode->pData );
|
|
+ }
|
|
+
|
|
+ /* Actually clobber the nodes data */
|
|
+ pCur->pNode->pData = pData;
|
|
+ pCur->pNode->nData = nData;
|
|
+ }
|
|
+
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/* Move the cursor so that it points to an entry near pKey.
|
|
+** Return a success code.
|
|
+**
|
|
+** *pRes<0 The cursor is left pointing at an entry that
|
|
+** is smaller than pKey or if the table is empty
|
|
+** and the cursor is therefore left point to nothing.
|
|
+**
|
|
+** *pRes==0 The cursor is left pointing at an entry that
|
|
+** exactly matches pKey.
|
|
+**
|
|
+** *pRes>0 The cursor is left pointing at an entry that
|
|
+** is larger than pKey.
|
|
+*/
|
|
+static int memRbtreeMoveto(
|
|
+ RbtCursor* pCur,
|
|
+ const void *pKey,
|
|
+ int nKey,
|
|
+ int *pRes
|
|
+){
|
|
+ BtRbNode *pTmp = 0;
|
|
+
|
|
+ pCur->pNode = pCur->pTree->pHead;
|
|
+ *pRes = -1;
|
|
+ while( pCur->pNode && *pRes ) {
|
|
+ *pRes = key_compare(pCur->pNode->pKey, pCur->pNode->nKey, pKey, nKey);
|
|
+ pTmp = pCur->pNode;
|
|
+ switch( *pRes ){
|
|
+ case 1: /* cursor > key */
|
|
+ pCur->pNode = pCur->pNode->pLeft;
|
|
+ break;
|
|
+ case -1: /* cursor < key */
|
|
+ pCur->pNode = pCur->pNode->pRight;
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* If (pCur->pNode == NULL), then we have failed to find a match. Set
|
|
+ * pCur->pNode to pTmp, which is either NULL (if the tree is empty) or the
|
|
+ * last node traversed in the search. In either case the relation ship
|
|
+ * between pTmp and the searched for key is already stored in *pRes. pTmp is
|
|
+ * either the successor or predecessor of the key we tried to move to. */
|
|
+ if( !pCur->pNode ) pCur->pNode = pTmp;
|
|
+ pCur->eSkip = SKIP_NONE;
|
|
+
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+
|
|
+/*
|
|
+** Delete the entry that the cursor is pointing to.
|
|
+**
|
|
+** The cursor is left pointing at either the next or the previous
|
|
+** entry. If the cursor is left pointing to the next entry, then
|
|
+** the pCur->eSkip flag is set to SKIP_NEXT which forces the next call to
|
|
+** sqliteRbtreeNext() to be a no-op. That way, you can always call
|
|
+** sqliteRbtreeNext() after a delete and the cursor will be left
|
|
+** pointing to the first entry after the deleted entry. Similarly,
|
|
+** pCur->eSkip is set to SKIP_PREV is the cursor is left pointing to
|
|
+** the entry prior to the deleted entry so that a subsequent call to
|
|
+** sqliteRbtreePrevious() will always leave the cursor pointing at the
|
|
+** entry immediately before the one that was deleted.
|
|
+*/
|
|
+static int memRbtreeDelete(RbtCursor* pCur)
|
|
+{
|
|
+ BtRbNode *pZ; /* The one being deleted */
|
|
+ BtRbNode *pChild; /* The child of the spliced out node */
|
|
+
|
|
+ /* It is illegal to call sqliteRbtreeDelete() if we are
|
|
+ ** not in a transaction */
|
|
+ assert( pCur->pRbtree->eTransState != TRANS_NONE );
|
|
+
|
|
+ /* Make sure some other cursor isn't trying to read this same table */
|
|
+ if( checkReadLocks(pCur) ){
|
|
+ return SQLITE_LOCKED; /* The table pCur points to has a read lock */
|
|
+ }
|
|
+
|
|
+ pZ = pCur->pNode;
|
|
+ if( !pZ ){
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+
|
|
+ /* If we are not currently doing a rollback, set up a rollback op for this
|
|
+ * deletion */
|
|
+ if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){
|
|
+ BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) );
|
|
+ if( pOp==0 ) return SQLITE_NOMEM;
|
|
+ pOp->iTab = pCur->iTree;
|
|
+ pOp->nKey = pZ->nKey;
|
|
+ pOp->pKey = pZ->pKey;
|
|
+ pOp->nData = pZ->nData;
|
|
+ pOp->pData = pZ->pData;
|
|
+ pOp->eOp = ROLLBACK_INSERT;
|
|
+ btreeLogRollbackOp(pCur->pRbtree, pOp);
|
|
+ }
|
|
+
|
|
+ /* First do a standard binary-tree delete (node pZ is to be deleted). How
|
|
+ * to do this depends on how many children pZ has:
|
|
+ *
|
|
+ * If pZ has no children or one child, then splice out pZ. If pZ has two
|
|
+ * children, splice out the successor of pZ and replace the key and data of
|
|
+ * pZ with the key and data of the spliced out successor. */
|
|
+ if( pZ->pLeft && pZ->pRight ){
|
|
+ BtRbNode *pTmp;
|
|
+ int dummy;
|
|
+ pCur->eSkip = SKIP_NONE;
|
|
+ memRbtreeNext(pCur, &dummy);
|
|
+ assert( dummy == 0 );
|
|
+ if( pCur->pRbtree->eTransState == TRANS_ROLLBACK ){
|
|
+ sqliteFree(pZ->pKey);
|
|
+ sqliteFree(pZ->pData);
|
|
+ }
|
|
+ pZ->pData = pCur->pNode->pData;
|
|
+ pZ->nData = pCur->pNode->nData;
|
|
+ pZ->pKey = pCur->pNode->pKey;
|
|
+ pZ->nKey = pCur->pNode->nKey;
|
|
+ pTmp = pZ;
|
|
+ pZ = pCur->pNode;
|
|
+ pCur->pNode = pTmp;
|
|
+ pCur->eSkip = SKIP_NEXT;
|
|
+ }else{
|
|
+ int res;
|
|
+ pCur->eSkip = SKIP_NONE;
|
|
+ memRbtreeNext(pCur, &res);
|
|
+ pCur->eSkip = SKIP_NEXT;
|
|
+ if( res ){
|
|
+ memRbtreeLast(pCur, &res);
|
|
+ memRbtreePrevious(pCur, &res);
|
|
+ pCur->eSkip = SKIP_PREV;
|
|
+ }
|
|
+ if( pCur->pRbtree->eTransState == TRANS_ROLLBACK ){
|
|
+ sqliteFree(pZ->pKey);
|
|
+ sqliteFree(pZ->pData);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* pZ now points at the node to be spliced out. This block does the
|
|
+ * splicing. */
|
|
+ {
|
|
+ BtRbNode **ppParentSlot = 0;
|
|
+ assert( !pZ->pLeft || !pZ->pRight ); /* pZ has at most one child */
|
|
+ pChild = ((pZ->pLeft)?pZ->pLeft:pZ->pRight);
|
|
+ if( pZ->pParent ){
|
|
+ assert( pZ == pZ->pParent->pLeft || pZ == pZ->pParent->pRight );
|
|
+ ppParentSlot = ((pZ == pZ->pParent->pLeft)
|
|
+ ?&pZ->pParent->pLeft:&pZ->pParent->pRight);
|
|
+ *ppParentSlot = pChild;
|
|
+ }else{
|
|
+ pCur->pTree->pHead = pChild;
|
|
+ }
|
|
+ if( pChild ) pChild->pParent = pZ->pParent;
|
|
+ }
|
|
+
|
|
+ /* pZ now points at the spliced out node. pChild is the only child of pZ, or
|
|
+ * NULL if pZ has no children. If pZ is black, and not the tree root, then we
|
|
+ * will have violated the "same number of black nodes in every path to a
|
|
+ * leaf" property of the red-black tree. The code in do_delete_balancing()
|
|
+ * repairs this. */
|
|
+ if( pZ->isBlack ){
|
|
+ do_delete_balancing(pCur->pTree, pChild, pZ->pParent);
|
|
+ }
|
|
+
|
|
+ sqliteFree(pZ);
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Empty table n of the Rbtree.
|
|
+ */
|
|
+static int memRbtreeClearTable(Rbtree* tree, int n)
|
|
+{
|
|
+ BtRbTree *pTree;
|
|
+ BtRbNode *pNode;
|
|
+
|
|
+ pTree = sqliteHashFind(&tree->tblHash, 0, n);
|
|
+ assert(pTree);
|
|
+
|
|
+ pNode = pTree->pHead;
|
|
+ while( pNode ){
|
|
+ if( pNode->pLeft ){
|
|
+ pNode = pNode->pLeft;
|
|
+ }
|
|
+ else if( pNode->pRight ){
|
|
+ pNode = pNode->pRight;
|
|
+ }
|
|
+ else {
|
|
+ BtRbNode *pTmp = pNode->pParent;
|
|
+ if( tree->eTransState == TRANS_ROLLBACK ){
|
|
+ sqliteFree( pNode->pKey );
|
|
+ sqliteFree( pNode->pData );
|
|
+ }else{
|
|
+ BtRollbackOp *pRollbackOp = sqliteMallocRaw(sizeof(BtRollbackOp));
|
|
+ if( pRollbackOp==0 ) return SQLITE_NOMEM;
|
|
+ pRollbackOp->eOp = ROLLBACK_INSERT;
|
|
+ pRollbackOp->iTab = n;
|
|
+ pRollbackOp->nKey = pNode->nKey;
|
|
+ pRollbackOp->pKey = pNode->pKey;
|
|
+ pRollbackOp->nData = pNode->nData;
|
|
+ pRollbackOp->pData = pNode->pData;
|
|
+ btreeLogRollbackOp(tree, pRollbackOp);
|
|
+ }
|
|
+ sqliteFree( pNode );
|
|
+ if( pTmp ){
|
|
+ if( pTmp->pLeft == pNode ) pTmp->pLeft = 0;
|
|
+ else if( pTmp->pRight == pNode ) pTmp->pRight = 0;
|
|
+ }
|
|
+ pNode = pTmp;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ pTree->pHead = 0;
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+static int memRbtreeFirst(RbtCursor* pCur, int *pRes)
|
|
+{
|
|
+ if( pCur->pTree->pHead ){
|
|
+ pCur->pNode = pCur->pTree->pHead;
|
|
+ while( pCur->pNode->pLeft ){
|
|
+ pCur->pNode = pCur->pNode->pLeft;
|
|
+ }
|
|
+ }
|
|
+ if( pCur->pNode ){
|
|
+ *pRes = 0;
|
|
+ }else{
|
|
+ *pRes = 1;
|
|
+ }
|
|
+ pCur->eSkip = SKIP_NONE;
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+static int memRbtreeLast(RbtCursor* pCur, int *pRes)
|
|
+{
|
|
+ if( pCur->pTree->pHead ){
|
|
+ pCur->pNode = pCur->pTree->pHead;
|
|
+ while( pCur->pNode->pRight ){
|
|
+ pCur->pNode = pCur->pNode->pRight;
|
|
+ }
|
|
+ }
|
|
+ if( pCur->pNode ){
|
|
+ *pRes = 0;
|
|
+ }else{
|
|
+ *pRes = 1;
|
|
+ }
|
|
+ pCur->eSkip = SKIP_NONE;
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Advance the cursor to the next entry in the database. If
|
|
+** successful then set *pRes=0. If the cursor
|
|
+** was already pointing to the last entry in the database before
|
|
+** this routine was called, then set *pRes=1.
|
|
+*/
|
|
+static int memRbtreeNext(RbtCursor* pCur, int *pRes)
|
|
+{
|
|
+ if( pCur->pNode && pCur->eSkip != SKIP_NEXT ){
|
|
+ if( pCur->pNode->pRight ){
|
|
+ pCur->pNode = pCur->pNode->pRight;
|
|
+ while( pCur->pNode->pLeft )
|
|
+ pCur->pNode = pCur->pNode->pLeft;
|
|
+ }else{
|
|
+ BtRbNode * pX = pCur->pNode;
|
|
+ pCur->pNode = pX->pParent;
|
|
+ while( pCur->pNode && (pCur->pNode->pRight == pX) ){
|
|
+ pX = pCur->pNode;
|
|
+ pCur->pNode = pX->pParent;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ pCur->eSkip = SKIP_NONE;
|
|
+
|
|
+ if( !pCur->pNode ){
|
|
+ *pRes = 1;
|
|
+ }else{
|
|
+ *pRes = 0;
|
|
+ }
|
|
+
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+static int memRbtreePrevious(RbtCursor* pCur, int *pRes)
|
|
+{
|
|
+ if( pCur->pNode && pCur->eSkip != SKIP_PREV ){
|
|
+ if( pCur->pNode->pLeft ){
|
|
+ pCur->pNode = pCur->pNode->pLeft;
|
|
+ while( pCur->pNode->pRight )
|
|
+ pCur->pNode = pCur->pNode->pRight;
|
|
+ }else{
|
|
+ BtRbNode * pX = pCur->pNode;
|
|
+ pCur->pNode = pX->pParent;
|
|
+ while( pCur->pNode && (pCur->pNode->pLeft == pX) ){
|
|
+ pX = pCur->pNode;
|
|
+ pCur->pNode = pX->pParent;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ pCur->eSkip = SKIP_NONE;
|
|
+
|
|
+ if( !pCur->pNode ){
|
|
+ *pRes = 1;
|
|
+ }else{
|
|
+ *pRes = 0;
|
|
+ }
|
|
+
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+static int memRbtreeKeySize(RbtCursor* pCur, int *pSize)
|
|
+{
|
|
+ if( pCur->pNode ){
|
|
+ *pSize = pCur->pNode->nKey;
|
|
+ }else{
|
|
+ *pSize = 0;
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+static int memRbtreeKey(RbtCursor* pCur, int offset, int amt, char *zBuf)
|
|
+{
|
|
+ if( !pCur->pNode ) return 0;
|
|
+ if( !pCur->pNode->pKey || ((amt + offset) <= pCur->pNode->nKey) ){
|
|
+ memcpy(zBuf, ((char*)pCur->pNode->pKey)+offset, amt);
|
|
+ }else{
|
|
+ memcpy(zBuf, ((char*)pCur->pNode->pKey)+offset, pCur->pNode->nKey-offset);
|
|
+ amt = pCur->pNode->nKey-offset;
|
|
+ }
|
|
+ return amt;
|
|
+}
|
|
+
|
|
+static int memRbtreeDataSize(RbtCursor* pCur, int *pSize)
|
|
+{
|
|
+ if( pCur->pNode ){
|
|
+ *pSize = pCur->pNode->nData;
|
|
+ }else{
|
|
+ *pSize = 0;
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+static int memRbtreeData(RbtCursor *pCur, int offset, int amt, char *zBuf)
|
|
+{
|
|
+ if( !pCur->pNode ) return 0;
|
|
+ if( (amt + offset) <= pCur->pNode->nData ){
|
|
+ memcpy(zBuf, ((char*)pCur->pNode->pData)+offset, amt);
|
|
+ }else{
|
|
+ memcpy(zBuf, ((char*)pCur->pNode->pData)+offset ,pCur->pNode->nData-offset);
|
|
+ amt = pCur->pNode->nData-offset;
|
|
+ }
|
|
+ return amt;
|
|
+}
|
|
+
|
|
+static int memRbtreeCloseCursor(RbtCursor* pCur)
|
|
+{
|
|
+ if( pCur->pTree->pCursors==pCur ){
|
|
+ pCur->pTree->pCursors = pCur->pShared;
|
|
+ }else{
|
|
+ RbtCursor *p = pCur->pTree->pCursors;
|
|
+ while( p && p->pShared!=pCur ){ p = p->pShared; }
|
|
+ assert( p!=0 );
|
|
+ if( p ){
|
|
+ p->pShared = pCur->pShared;
|
|
+ }
|
|
+ }
|
|
+ sqliteFree(pCur);
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+static int memRbtreeGetMeta(Rbtree* tree, int* aMeta)
|
|
+{
|
|
+ memcpy( aMeta, tree->aMetaData, sizeof(int) * SQLITE_N_BTREE_META );
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+static int memRbtreeUpdateMeta(Rbtree* tree, int* aMeta)
|
|
+{
|
|
+ memcpy( tree->aMetaData, aMeta, sizeof(int) * SQLITE_N_BTREE_META );
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Check that each table in the Rbtree meets the requirements for a red-black
|
|
+ * binary tree. If an error is found, return an explanation of the problem in
|
|
+ * memory obtained from sqliteMalloc(). Parameters aRoot and nRoot are ignored.
|
|
+ */
|
|
+static char *memRbtreeIntegrityCheck(Rbtree* tree, int* aRoot, int nRoot)
|
|
+{
|
|
+ char * msg = 0;
|
|
+ HashElem *p;
|
|
+
|
|
+ for(p=sqliteHashFirst(&tree->tblHash); p; p=sqliteHashNext(p)){
|
|
+ BtRbTree *pTree = sqliteHashData(p);
|
|
+ check_redblack_tree(pTree, &msg);
|
|
+ }
|
|
+
|
|
+ return msg;
|
|
+}
|
|
+
|
|
+static int memRbtreeSetCacheSize(Rbtree* tree, int sz)
|
|
+{
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+static int memRbtreeSetSafetyLevel(Rbtree *pBt, int level){
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+static int memRbtreeBeginTrans(Rbtree* tree)
|
|
+{
|
|
+ if( tree->eTransState != TRANS_NONE )
|
|
+ return SQLITE_ERROR;
|
|
+
|
|
+ assert( tree->pTransRollback == 0 );
|
|
+ tree->eTransState = TRANS_INTRANSACTION;
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Delete a linked list of BtRollbackOp structures.
|
|
+*/
|
|
+static void deleteRollbackList(BtRollbackOp *pOp){
|
|
+ while( pOp ){
|
|
+ BtRollbackOp *pTmp = pOp->pNext;
|
|
+ sqliteFree(pOp->pData);
|
|
+ sqliteFree(pOp->pKey);
|
|
+ sqliteFree(pOp);
|
|
+ pOp = pTmp;
|
|
+ }
|
|
+}
|
|
+
|
|
+static int memRbtreeCommit(Rbtree* tree){
|
|
+ /* Just delete pTransRollback and pCheckRollback */
|
|
+ deleteRollbackList(tree->pCheckRollback);
|
|
+ deleteRollbackList(tree->pTransRollback);
|
|
+ tree->pTransRollback = 0;
|
|
+ tree->pCheckRollback = 0;
|
|
+ tree->pCheckRollbackTail = 0;
|
|
+ tree->eTransState = TRANS_NONE;
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Close the supplied Rbtree. Delete everything associated with it.
|
|
+ */
|
|
+static int memRbtreeClose(Rbtree* tree)
|
|
+{
|
|
+ HashElem *p;
|
|
+ memRbtreeCommit(tree);
|
|
+ while( (p=sqliteHashFirst(&tree->tblHash))!=0 ){
|
|
+ tree->eTransState = TRANS_ROLLBACK;
|
|
+ memRbtreeDropTable(tree, sqliteHashKeysize(p));
|
|
+ }
|
|
+ sqliteHashClear(&tree->tblHash);
|
|
+ sqliteFree(tree);
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Execute and delete the supplied rollback-list on pRbtree.
|
|
+ */
|
|
+static void execute_rollback_list(Rbtree *pRbtree, BtRollbackOp *pList)
|
|
+{
|
|
+ BtRollbackOp *pTmp;
|
|
+ RbtCursor cur;
|
|
+ int res;
|
|
+
|
|
+ cur.pRbtree = pRbtree;
|
|
+ cur.wrFlag = 1;
|
|
+ while( pList ){
|
|
+ switch( pList->eOp ){
|
|
+ case ROLLBACK_INSERT:
|
|
+ cur.pTree = sqliteHashFind( &pRbtree->tblHash, 0, pList->iTab );
|
|
+ assert(cur.pTree);
|
|
+ cur.iTree = pList->iTab;
|
|
+ cur.eSkip = SKIP_NONE;
|
|
+ memRbtreeInsert( &cur, pList->pKey,
|
|
+ pList->nKey, pList->pData, pList->nData );
|
|
+ break;
|
|
+ case ROLLBACK_DELETE:
|
|
+ cur.pTree = sqliteHashFind( &pRbtree->tblHash, 0, pList->iTab );
|
|
+ assert(cur.pTree);
|
|
+ cur.iTree = pList->iTab;
|
|
+ cur.eSkip = SKIP_NONE;
|
|
+ memRbtreeMoveto(&cur, pList->pKey, pList->nKey, &res);
|
|
+ assert(res == 0);
|
|
+ memRbtreeDelete( &cur );
|
|
+ break;
|
|
+ case ROLLBACK_CREATE:
|
|
+ btreeCreateTable(pRbtree, pList->iTab);
|
|
+ break;
|
|
+ case ROLLBACK_DROP:
|
|
+ memRbtreeDropTable(pRbtree, pList->iTab);
|
|
+ break;
|
|
+ default:
|
|
+ assert(0);
|
|
+ }
|
|
+ sqliteFree(pList->pKey);
|
|
+ sqliteFree(pList->pData);
|
|
+ pTmp = pList->pNext;
|
|
+ sqliteFree(pList);
|
|
+ pList = pTmp;
|
|
+ }
|
|
+}
|
|
+
|
|
+static int memRbtreeRollback(Rbtree* tree)
|
|
+{
|
|
+ tree->eTransState = TRANS_ROLLBACK;
|
|
+ execute_rollback_list(tree, tree->pCheckRollback);
|
|
+ execute_rollback_list(tree, tree->pTransRollback);
|
|
+ tree->pTransRollback = 0;
|
|
+ tree->pCheckRollback = 0;
|
|
+ tree->pCheckRollbackTail = 0;
|
|
+ tree->eTransState = TRANS_NONE;
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+static int memRbtreeBeginCkpt(Rbtree* tree)
|
|
+{
|
|
+ if( tree->eTransState != TRANS_INTRANSACTION )
|
|
+ return SQLITE_ERROR;
|
|
+
|
|
+ assert( tree->pCheckRollback == 0 );
|
|
+ assert( tree->pCheckRollbackTail == 0 );
|
|
+ tree->eTransState = TRANS_INCHECKPOINT;
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+static int memRbtreeCommitCkpt(Rbtree* tree)
|
|
+{
|
|
+ if( tree->eTransState == TRANS_INCHECKPOINT ){
|
|
+ if( tree->pCheckRollback ){
|
|
+ tree->pCheckRollbackTail->pNext = tree->pTransRollback;
|
|
+ tree->pTransRollback = tree->pCheckRollback;
|
|
+ tree->pCheckRollback = 0;
|
|
+ tree->pCheckRollbackTail = 0;
|
|
+ }
|
|
+ tree->eTransState = TRANS_INTRANSACTION;
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+static int memRbtreeRollbackCkpt(Rbtree* tree)
|
|
+{
|
|
+ if( tree->eTransState != TRANS_INCHECKPOINT ) return SQLITE_OK;
|
|
+ tree->eTransState = TRANS_ROLLBACK;
|
|
+ execute_rollback_list(tree, tree->pCheckRollback);
|
|
+ tree->pCheckRollback = 0;
|
|
+ tree->pCheckRollbackTail = 0;
|
|
+ tree->eTransState = TRANS_INTRANSACTION;
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+#ifdef SQLITE_TEST
|
|
+static int memRbtreePageDump(Rbtree* tree, int pgno, int rec)
|
|
+{
|
|
+ assert(!"Cannot call sqliteRbtreePageDump");
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+static int memRbtreeCursorDump(RbtCursor* pCur, int* aRes)
|
|
+{
|
|
+ assert(!"Cannot call sqliteRbtreeCursorDump");
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+#endif
|
|
+
|
|
+static struct Pager *memRbtreePager(Rbtree* tree)
|
|
+{
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return the full pathname of the underlying database file.
|
|
+*/
|
|
+static const char *memRbtreeGetFilename(Rbtree *pBt){
|
|
+ return 0; /* A NULL return indicates there is no underlying file */
|
|
+}
|
|
+
|
|
+/*
|
|
+** The copy file function is not implemented for the in-memory database
|
|
+*/
|
|
+static int memRbtreeCopyFile(Rbtree *pBt, Rbtree *pBt2){
|
|
+ return SQLITE_INTERNAL; /* Not implemented */
|
|
+}
|
|
+
|
|
+static BtOps sqliteRbtreeOps = {
|
|
+ (int(*)(Btree*)) memRbtreeClose,
|
|
+ (int(*)(Btree*,int)) memRbtreeSetCacheSize,
|
|
+ (int(*)(Btree*,int)) memRbtreeSetSafetyLevel,
|
|
+ (int(*)(Btree*)) memRbtreeBeginTrans,
|
|
+ (int(*)(Btree*)) memRbtreeCommit,
|
|
+ (int(*)(Btree*)) memRbtreeRollback,
|
|
+ (int(*)(Btree*)) memRbtreeBeginCkpt,
|
|
+ (int(*)(Btree*)) memRbtreeCommitCkpt,
|
|
+ (int(*)(Btree*)) memRbtreeRollbackCkpt,
|
|
+ (int(*)(Btree*,int*)) memRbtreeCreateTable,
|
|
+ (int(*)(Btree*,int*)) memRbtreeCreateTable,
|
|
+ (int(*)(Btree*,int)) memRbtreeDropTable,
|
|
+ (int(*)(Btree*,int)) memRbtreeClearTable,
|
|
+ (int(*)(Btree*,int,int,BtCursor**)) memRbtreeCursor,
|
|
+ (int(*)(Btree*,int*)) memRbtreeGetMeta,
|
|
+ (int(*)(Btree*,int*)) memRbtreeUpdateMeta,
|
|
+ (char*(*)(Btree*,int*,int)) memRbtreeIntegrityCheck,
|
|
+ (const char*(*)(Btree*)) memRbtreeGetFilename,
|
|
+ (int(*)(Btree*,Btree*)) memRbtreeCopyFile,
|
|
+ (struct Pager*(*)(Btree*)) memRbtreePager,
|
|
+#ifdef SQLITE_TEST
|
|
+ (int(*)(Btree*,int,int)) memRbtreePageDump,
|
|
+#endif
|
|
+};
|
|
+
|
|
+static BtCursorOps sqliteRbtreeCursorOps = {
|
|
+ (int(*)(BtCursor*,const void*,int,int*)) memRbtreeMoveto,
|
|
+ (int(*)(BtCursor*)) memRbtreeDelete,
|
|
+ (int(*)(BtCursor*,const void*,int,const void*,int)) memRbtreeInsert,
|
|
+ (int(*)(BtCursor*,int*)) memRbtreeFirst,
|
|
+ (int(*)(BtCursor*,int*)) memRbtreeLast,
|
|
+ (int(*)(BtCursor*,int*)) memRbtreeNext,
|
|
+ (int(*)(BtCursor*,int*)) memRbtreePrevious,
|
|
+ (int(*)(BtCursor*,int*)) memRbtreeKeySize,
|
|
+ (int(*)(BtCursor*,int,int,char*)) memRbtreeKey,
|
|
+ (int(*)(BtCursor*,const void*,int,int,int*)) memRbtreeKeyCompare,
|
|
+ (int(*)(BtCursor*,int*)) memRbtreeDataSize,
|
|
+ (int(*)(BtCursor*,int,int,char*)) memRbtreeData,
|
|
+ (int(*)(BtCursor*)) memRbtreeCloseCursor,
|
|
+#ifdef SQLITE_TEST
|
|
+ (int(*)(BtCursor*,int*)) memRbtreeCursorDump,
|
|
+#endif
|
|
+
|
|
+};
|
|
+
|
|
+#endif /* SQLITE_OMIT_INMEMORYDB */
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/build.c
|
|
@@ -0,0 +1,2156 @@
|
|
+/*
|
|
+** 2001 September 15
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This file contains C code routines that are called by the SQLite parser
|
|
+** when syntax rules are reduced. The routines in this file handle the
|
|
+** following kinds of SQL syntax:
|
|
+**
|
|
+** CREATE TABLE
|
|
+** DROP TABLE
|
|
+** CREATE INDEX
|
|
+** DROP INDEX
|
|
+** creating ID lists
|
|
+** BEGIN TRANSACTION
|
|
+** COMMIT
|
|
+** ROLLBACK
|
|
+** PRAGMA
|
|
+**
|
|
+** $Id$
|
|
+*/
|
|
+#include "sqliteInt.h"
|
|
+#include <ctype.h>
|
|
+
|
|
+/*
|
|
+** This routine is called when a new SQL statement is beginning to
|
|
+** be parsed. Check to see if the schema for the database needs
|
|
+** to be read from the SQLITE_MASTER and SQLITE_TEMP_MASTER tables.
|
|
+** If it does, then read it.
|
|
+*/
|
|
+void sqliteBeginParse(Parse *pParse, int explainFlag){
|
|
+ sqlite *db = pParse->db;
|
|
+ int i;
|
|
+ pParse->explain = explainFlag;
|
|
+ if((db->flags & SQLITE_Initialized)==0 && db->init.busy==0 ){
|
|
+ int rc = sqliteInit(db, &pParse->zErrMsg);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ pParse->rc = rc;
|
|
+ pParse->nErr++;
|
|
+ }
|
|
+ }
|
|
+ for(i=0; i<db->nDb; i++){
|
|
+ DbClearProperty(db, i, DB_Locked);
|
|
+ if( !db->aDb[i].inTrans ){
|
|
+ DbClearProperty(db, i, DB_Cookie);
|
|
+ }
|
|
+ }
|
|
+ pParse->nVar = 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine is called after a single SQL statement has been
|
|
+** parsed and we want to execute the VDBE code to implement
|
|
+** that statement. Prior action routines should have already
|
|
+** constructed VDBE code to do the work of the SQL statement.
|
|
+** This routine just has to execute the VDBE code.
|
|
+**
|
|
+** Note that if an error occurred, it might be the case that
|
|
+** no VDBE code was generated.
|
|
+*/
|
|
+void sqliteExec(Parse *pParse){
|
|
+ sqlite *db = pParse->db;
|
|
+ Vdbe *v = pParse->pVdbe;
|
|
+
|
|
+ if( v==0 && (v = sqliteGetVdbe(pParse))!=0 ){
|
|
+ sqliteVdbeAddOp(v, OP_Halt, 0, 0);
|
|
+ }
|
|
+ if( sqlite_malloc_failed ) return;
|
|
+ if( v && pParse->nErr==0 ){
|
|
+ FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
|
|
+ sqliteVdbeTrace(v, trace);
|
|
+ sqliteVdbeMakeReady(v, pParse->nVar, pParse->explain);
|
|
+ pParse->rc = pParse->nErr ? SQLITE_ERROR : SQLITE_DONE;
|
|
+ pParse->colNamesSet = 0;
|
|
+ }else if( pParse->rc==SQLITE_OK ){
|
|
+ pParse->rc = SQLITE_ERROR;
|
|
+ }
|
|
+ pParse->nTab = 0;
|
|
+ pParse->nMem = 0;
|
|
+ pParse->nSet = 0;
|
|
+ pParse->nAgg = 0;
|
|
+ pParse->nVar = 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Locate the in-memory structure that describes
|
|
+** a particular database table given the name
|
|
+** of that table and (optionally) the name of the database
|
|
+** containing the table. Return NULL if not found.
|
|
+**
|
|
+** If zDatabase is 0, all databases are searched for the
|
|
+** table and the first matching table is returned. (No checking
|
|
+** for duplicate table names is done.) The search order is
|
|
+** TEMP first, then MAIN, then any auxiliary databases added
|
|
+** using the ATTACH command.
|
|
+**
|
|
+** See also sqliteLocateTable().
|
|
+*/
|
|
+Table *sqliteFindTable(sqlite *db, const char *zName, const char *zDatabase){
|
|
+ Table *p = 0;
|
|
+ int i;
|
|
+ for(i=0; i<db->nDb; i++){
|
|
+ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
|
+ if( zDatabase!=0 && sqliteStrICmp(zDatabase, db->aDb[j].zName) ) continue;
|
|
+ p = sqliteHashFind(&db->aDb[j].tblHash, zName, strlen(zName)+1);
|
|
+ if( p ) break;
|
|
+ }
|
|
+ return p;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Locate the in-memory structure that describes
|
|
+** a particular database table given the name
|
|
+** of that table and (optionally) the name of the database
|
|
+** containing the table. Return NULL if not found.
|
|
+** Also leave an error message in pParse->zErrMsg.
|
|
+**
|
|
+** The difference between this routine and sqliteFindTable()
|
|
+** is that this routine leaves an error message in pParse->zErrMsg
|
|
+** where sqliteFindTable() does not.
|
|
+*/
|
|
+Table *sqliteLocateTable(Parse *pParse, const char *zName, const char *zDbase){
|
|
+ Table *p;
|
|
+
|
|
+ p = sqliteFindTable(pParse->db, zName, zDbase);
|
|
+ if( p==0 ){
|
|
+ if( zDbase ){
|
|
+ sqliteErrorMsg(pParse, "no such table: %s.%s", zDbase, zName);
|
|
+ }else if( sqliteFindTable(pParse->db, zName, 0)!=0 ){
|
|
+ sqliteErrorMsg(pParse, "table \"%s\" is not in database \"%s\"",
|
|
+ zName, zDbase);
|
|
+ }else{
|
|
+ sqliteErrorMsg(pParse, "no such table: %s", zName);
|
|
+ }
|
|
+ }
|
|
+ return p;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Locate the in-memory structure that describes
|
|
+** a particular index given the name of that index
|
|
+** and the name of the database that contains the index.
|
|
+** Return NULL if not found.
|
|
+**
|
|
+** If zDatabase is 0, all databases are searched for the
|
|
+** table and the first matching index is returned. (No checking
|
|
+** for duplicate index names is done.) The search order is
|
|
+** TEMP first, then MAIN, then any auxiliary databases added
|
|
+** using the ATTACH command.
|
|
+*/
|
|
+Index *sqliteFindIndex(sqlite *db, const char *zName, const char *zDb){
|
|
+ Index *p = 0;
|
|
+ int i;
|
|
+ for(i=0; i<db->nDb; i++){
|
|
+ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
|
+ if( zDb && sqliteStrICmp(zDb, db->aDb[j].zName) ) continue;
|
|
+ p = sqliteHashFind(&db->aDb[j].idxHash, zName, strlen(zName)+1);
|
|
+ if( p ) break;
|
|
+ }
|
|
+ return p;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Remove the given index from the index hash table, and free
|
|
+** its memory structures.
|
|
+**
|
|
+** The index is removed from the database hash tables but
|
|
+** it is not unlinked from the Table that it indexes.
|
|
+** Unlinking from the Table must be done by the calling function.
|
|
+*/
|
|
+static void sqliteDeleteIndex(sqlite *db, Index *p){
|
|
+ Index *pOld;
|
|
+
|
|
+ assert( db!=0 && p->zName!=0 );
|
|
+ pOld = sqliteHashInsert(&db->aDb[p->iDb].idxHash, p->zName,
|
|
+ strlen(p->zName)+1, 0);
|
|
+ if( pOld!=0 && pOld!=p ){
|
|
+ sqliteHashInsert(&db->aDb[p->iDb].idxHash, pOld->zName,
|
|
+ strlen(pOld->zName)+1, pOld);
|
|
+ }
|
|
+ sqliteFree(p);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Unlink the given index from its table, then remove
|
|
+** the index from the index hash table and free its memory
|
|
+** structures.
|
|
+*/
|
|
+void sqliteUnlinkAndDeleteIndex(sqlite *db, Index *pIndex){
|
|
+ if( pIndex->pTable->pIndex==pIndex ){
|
|
+ pIndex->pTable->pIndex = pIndex->pNext;
|
|
+ }else{
|
|
+ Index *p;
|
|
+ for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
|
|
+ if( p && p->pNext==pIndex ){
|
|
+ p->pNext = pIndex->pNext;
|
|
+ }
|
|
+ }
|
|
+ sqliteDeleteIndex(db, pIndex);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Erase all schema information from the in-memory hash tables of
|
|
+** database connection. This routine is called to reclaim memory
|
|
+** before the connection closes. It is also called during a rollback
|
|
+** if there were schema changes during the transaction.
|
|
+**
|
|
+** If iDb<=0 then reset the internal schema tables for all database
|
|
+** files. If iDb>=2 then reset the internal schema for only the
|
|
+** single file indicated.
|
|
+*/
|
|
+void sqliteResetInternalSchema(sqlite *db, int iDb){
|
|
+ HashElem *pElem;
|
|
+ Hash temp1;
|
|
+ Hash temp2;
|
|
+ int i, j;
|
|
+
|
|
+ assert( iDb>=0 && iDb<db->nDb );
|
|
+ db->flags &= ~SQLITE_Initialized;
|
|
+ for(i=iDb; i<db->nDb; i++){
|
|
+ Db *pDb = &db->aDb[i];
|
|
+ temp1 = pDb->tblHash;
|
|
+ temp2 = pDb->trigHash;
|
|
+ sqliteHashInit(&pDb->trigHash, SQLITE_HASH_STRING, 0);
|
|
+ sqliteHashClear(&pDb->aFKey);
|
|
+ sqliteHashClear(&pDb->idxHash);
|
|
+ for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
|
|
+ Trigger *pTrigger = sqliteHashData(pElem);
|
|
+ sqliteDeleteTrigger(pTrigger);
|
|
+ }
|
|
+ sqliteHashClear(&temp2);
|
|
+ sqliteHashInit(&pDb->tblHash, SQLITE_HASH_STRING, 0);
|
|
+ for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
|
|
+ Table *pTab = sqliteHashData(pElem);
|
|
+ sqliteDeleteTable(db, pTab);
|
|
+ }
|
|
+ sqliteHashClear(&temp1);
|
|
+ DbClearProperty(db, i, DB_SchemaLoaded);
|
|
+ if( iDb>0 ) return;
|
|
+ }
|
|
+ assert( iDb==0 );
|
|
+ db->flags &= ~SQLITE_InternChanges;
|
|
+
|
|
+ /* If one or more of the auxiliary database files has been closed,
|
|
+ ** then remove then from the auxiliary database list. We take the
|
|
+ ** opportunity to do this here since we have just deleted all of the
|
|
+ ** schema hash tables and therefore do not have to make any changes
|
|
+ ** to any of those tables.
|
|
+ */
|
|
+ for(i=0; i<db->nDb; i++){
|
|
+ struct Db *pDb = &db->aDb[i];
|
|
+ if( pDb->pBt==0 ){
|
|
+ if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
|
|
+ pDb->pAux = 0;
|
|
+ }
|
|
+ }
|
|
+ for(i=j=2; i<db->nDb; i++){
|
|
+ struct Db *pDb = &db->aDb[i];
|
|
+ if( pDb->pBt==0 ){
|
|
+ sqliteFree(pDb->zName);
|
|
+ pDb->zName = 0;
|
|
+ continue;
|
|
+ }
|
|
+ if( j<i ){
|
|
+ db->aDb[j] = db->aDb[i];
|
|
+ }
|
|
+ j++;
|
|
+ }
|
|
+ memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
|
|
+ db->nDb = j;
|
|
+ if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
|
|
+ memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
|
|
+ sqliteFree(db->aDb);
|
|
+ db->aDb = db->aDbStatic;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine is called whenever a rollback occurs. If there were
|
|
+** schema changes during the transaction, then we have to reset the
|
|
+** internal hash tables and reload them from disk.
|
|
+*/
|
|
+void sqliteRollbackInternalChanges(sqlite *db){
|
|
+ if( db->flags & SQLITE_InternChanges ){
|
|
+ sqliteResetInternalSchema(db, 0);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine is called when a commit occurs.
|
|
+*/
|
|
+void sqliteCommitInternalChanges(sqlite *db){
|
|
+ db->aDb[0].schema_cookie = db->next_cookie;
|
|
+ db->flags &= ~SQLITE_InternChanges;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Remove the memory data structures associated with the given
|
|
+** Table. No changes are made to disk by this routine.
|
|
+**
|
|
+** This routine just deletes the data structure. It does not unlink
|
|
+** the table data structure from the hash table. Nor does it remove
|
|
+** foreign keys from the sqlite.aFKey hash table. But it does destroy
|
|
+** memory structures of the indices and foreign keys associated with
|
|
+** the table.
|
|
+**
|
|
+** Indices associated with the table are unlinked from the "db"
|
|
+** data structure if db!=NULL. If db==NULL, indices attached to
|
|
+** the table are deleted, but it is assumed they have already been
|
|
+** unlinked.
|
|
+*/
|
|
+void sqliteDeleteTable(sqlite *db, Table *pTable){
|
|
+ int i;
|
|
+ Index *pIndex, *pNext;
|
|
+ FKey *pFKey, *pNextFKey;
|
|
+
|
|
+ if( pTable==0 ) return;
|
|
+
|
|
+ /* Delete all indices associated with this table
|
|
+ */
|
|
+ for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
|
|
+ pNext = pIndex->pNext;
|
|
+ assert( pIndex->iDb==pTable->iDb || (pTable->iDb==0 && pIndex->iDb==1) );
|
|
+ sqliteDeleteIndex(db, pIndex);
|
|
+ }
|
|
+
|
|
+ /* Delete all foreign keys associated with this table. The keys
|
|
+ ** should have already been unlinked from the db->aFKey hash table
|
|
+ */
|
|
+ for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
|
|
+ pNextFKey = pFKey->pNextFrom;
|
|
+ assert( pTable->iDb<db->nDb );
|
|
+ assert( sqliteHashFind(&db->aDb[pTable->iDb].aFKey,
|
|
+ pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
|
|
+ sqliteFree(pFKey);
|
|
+ }
|
|
+
|
|
+ /* Delete the Table structure itself.
|
|
+ */
|
|
+ for(i=0; i<pTable->nCol; i++){
|
|
+ sqliteFree(pTable->aCol[i].zName);
|
|
+ sqliteFree(pTable->aCol[i].zDflt);
|
|
+ sqliteFree(pTable->aCol[i].zType);
|
|
+ }
|
|
+ sqliteFree(pTable->zName);
|
|
+ sqliteFree(pTable->aCol);
|
|
+ sqliteSelectDelete(pTable->pSelect);
|
|
+ sqliteFree(pTable);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Unlink the given table from the hash tables and the delete the
|
|
+** table structure with all its indices and foreign keys.
|
|
+*/
|
|
+static void sqliteUnlinkAndDeleteTable(sqlite *db, Table *p){
|
|
+ Table *pOld;
|
|
+ FKey *pF1, *pF2;
|
|
+ int i = p->iDb;
|
|
+ assert( db!=0 );
|
|
+ pOld = sqliteHashInsert(&db->aDb[i].tblHash, p->zName, strlen(p->zName)+1, 0);
|
|
+ assert( pOld==0 || pOld==p );
|
|
+ for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
|
|
+ int nTo = strlen(pF1->zTo) + 1;
|
|
+ pF2 = sqliteHashFind(&db->aDb[i].aFKey, pF1->zTo, nTo);
|
|
+ if( pF2==pF1 ){
|
|
+ sqliteHashInsert(&db->aDb[i].aFKey, pF1->zTo, nTo, pF1->pNextTo);
|
|
+ }else{
|
|
+ while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
|
|
+ if( pF2 ){
|
|
+ pF2->pNextTo = pF1->pNextTo;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ sqliteDeleteTable(db, p);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Construct the name of a user table or index from a token.
|
|
+**
|
|
+** Space to hold the name is obtained from sqliteMalloc() and must
|
|
+** be freed by the calling function.
|
|
+*/
|
|
+char *sqliteTableNameFromToken(Token *pName){
|
|
+ char *zName = sqliteStrNDup(pName->z, pName->n);
|
|
+ sqliteDequote(zName);
|
|
+ return zName;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Generate code to open the appropriate master table. The table
|
|
+** opened will be SQLITE_MASTER for persistent tables and
|
|
+** SQLITE_TEMP_MASTER for temporary tables. The table is opened
|
|
+** on cursor 0.
|
|
+*/
|
|
+void sqliteOpenMasterTable(Vdbe *v, int isTemp){
|
|
+ sqliteVdbeAddOp(v, OP_Integer, isTemp, 0);
|
|
+ sqliteVdbeAddOp(v, OP_OpenWrite, 0, 2);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Begin constructing a new table representation in memory. This is
|
|
+** the first of several action routines that get called in response
|
|
+** to a CREATE TABLE statement. In particular, this routine is called
|
|
+** after seeing tokens "CREATE" and "TABLE" and the table name. The
|
|
+** pStart token is the CREATE and pName is the table name. The isTemp
|
|
+** flag is true if the table should be stored in the auxiliary database
|
|
+** file instead of in the main database file. This is normally the case
|
|
+** when the "TEMP" or "TEMPORARY" keyword occurs in between
|
|
+** CREATE and TABLE.
|
|
+**
|
|
+** The new table record is initialized and put in pParse->pNewTable.
|
|
+** As more of the CREATE TABLE statement is parsed, additional action
|
|
+** routines will be called to add more information to this record.
|
|
+** At the end of the CREATE TABLE statement, the sqliteEndTable() routine
|
|
+** is called to complete the construction of the new table record.
|
|
+*/
|
|
+void sqliteStartTable(
|
|
+ Parse *pParse, /* Parser context */
|
|
+ Token *pStart, /* The "CREATE" token */
|
|
+ Token *pName, /* Name of table or view to create */
|
|
+ int isTemp, /* True if this is a TEMP table */
|
|
+ int isView /* True if this is a VIEW */
|
|
+){
|
|
+ Table *pTable;
|
|
+ Index *pIdx;
|
|
+ char *zName;
|
|
+ sqlite *db = pParse->db;
|
|
+ Vdbe *v;
|
|
+ int iDb;
|
|
+
|
|
+ pParse->sFirstToken = *pStart;
|
|
+ zName = sqliteTableNameFromToken(pName);
|
|
+ if( zName==0 ) return;
|
|
+ if( db->init.iDb==1 ) isTemp = 1;
|
|
+#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
+ assert( (isTemp & 1)==isTemp );
|
|
+ {
|
|
+ int code;
|
|
+ char *zDb = isTemp ? "temp" : "main";
|
|
+ if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
|
|
+ sqliteFree(zName);
|
|
+ return;
|
|
+ }
|
|
+ if( isView ){
|
|
+ if( isTemp ){
|
|
+ code = SQLITE_CREATE_TEMP_VIEW;
|
|
+ }else{
|
|
+ code = SQLITE_CREATE_VIEW;
|
|
+ }
|
|
+ }else{
|
|
+ if( isTemp ){
|
|
+ code = SQLITE_CREATE_TEMP_TABLE;
|
|
+ }else{
|
|
+ code = SQLITE_CREATE_TABLE;
|
|
+ }
|
|
+ }
|
|
+ if( sqliteAuthCheck(pParse, code, zName, 0, zDb) ){
|
|
+ sqliteFree(zName);
|
|
+ return;
|
|
+ }
|
|
+ }
|
|
+#endif
|
|
+
|
|
+
|
|
+ /* Before trying to create a temporary table, make sure the Btree for
|
|
+ ** holding temporary tables is open.
|
|
+ */
|
|
+ if( isTemp && db->aDb[1].pBt==0 && !pParse->explain ){
|
|
+ int rc = sqliteBtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ sqliteErrorMsg(pParse, "unable to open a temporary database "
|
|
+ "file for storing temporary tables");
|
|
+ pParse->nErr++;
|
|
+ return;
|
|
+ }
|
|
+ if( db->flags & SQLITE_InTrans ){
|
|
+ rc = sqliteBtreeBeginTrans(db->aDb[1].pBt);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ sqliteErrorMsg(pParse, "unable to get a write lock on "
|
|
+ "the temporary database file");
|
|
+ return;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Make sure the new table name does not collide with an existing
|
|
+ ** index or table name. Issue an error message if it does.
|
|
+ **
|
|
+ ** If we are re-reading the sqlite_master table because of a schema
|
|
+ ** change and a new permanent table is found whose name collides with
|
|
+ ** an existing temporary table, that is not an error.
|
|
+ */
|
|
+ pTable = sqliteFindTable(db, zName, 0);
|
|
+ iDb = isTemp ? 1 : db->init.iDb;
|
|
+ if( pTable!=0 && (pTable->iDb==iDb || !db->init.busy) ){
|
|
+ sqliteErrorMsg(pParse, "table %T already exists", pName);
|
|
+ sqliteFree(zName);
|
|
+ return;
|
|
+ }
|
|
+ if( (pIdx = sqliteFindIndex(db, zName, 0))!=0 &&
|
|
+ (pIdx->iDb==0 || !db->init.busy) ){
|
|
+ sqliteErrorMsg(pParse, "there is already an index named %s", zName);
|
|
+ sqliteFree(zName);
|
|
+ return;
|
|
+ }
|
|
+ pTable = sqliteMalloc( sizeof(Table) );
|
|
+ if( pTable==0 ){
|
|
+ sqliteFree(zName);
|
|
+ return;
|
|
+ }
|
|
+ pTable->zName = zName;
|
|
+ pTable->nCol = 0;
|
|
+ pTable->aCol = 0;
|
|
+ pTable->iPKey = -1;
|
|
+ pTable->pIndex = 0;
|
|
+ pTable->iDb = iDb;
|
|
+ if( pParse->pNewTable ) sqliteDeleteTable(db, pParse->pNewTable);
|
|
+ pParse->pNewTable = pTable;
|
|
+
|
|
+ /* Begin generating the code that will insert the table record into
|
|
+ ** the SQLITE_MASTER table. Note in particular that we must go ahead
|
|
+ ** and allocate the record number for the table entry now. Before any
|
|
+ ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
|
|
+ ** indices to be created and the table record must come before the
|
|
+ ** indices. Hence, the record number for the table must be allocated
|
|
+ ** now.
|
|
+ */
|
|
+ if( !db->init.busy && (v = sqliteGetVdbe(pParse))!=0 ){
|
|
+ sqliteBeginWriteOperation(pParse, 0, isTemp);
|
|
+ if( !isTemp ){
|
|
+ sqliteVdbeAddOp(v, OP_Integer, db->file_format, 0);
|
|
+ sqliteVdbeAddOp(v, OP_SetCookie, 0, 1);
|
|
+ }
|
|
+ sqliteOpenMasterTable(v, isTemp);
|
|
+ sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Add a new column to the table currently being constructed.
|
|
+**
|
|
+** The parser calls this routine once for each column declaration
|
|
+** in a CREATE TABLE statement. sqliteStartTable() gets called
|
|
+** first to get things going. Then this routine is called for each
|
|
+** column.
|
|
+*/
|
|
+void sqliteAddColumn(Parse *pParse, Token *pName){
|
|
+ Table *p;
|
|
+ int i;
|
|
+ char *z = 0;
|
|
+ Column *pCol;
|
|
+ if( (p = pParse->pNewTable)==0 ) return;
|
|
+ sqliteSetNString(&z, pName->z, pName->n, 0);
|
|
+ if( z==0 ) return;
|
|
+ sqliteDequote(z);
|
|
+ for(i=0; i<p->nCol; i++){
|
|
+ if( sqliteStrICmp(z, p->aCol[i].zName)==0 ){
|
|
+ sqliteErrorMsg(pParse, "duplicate column name: %s", z);
|
|
+ sqliteFree(z);
|
|
+ return;
|
|
+ }
|
|
+ }
|
|
+ if( (p->nCol & 0x7)==0 ){
|
|
+ Column *aNew;
|
|
+ aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0]));
|
|
+ if( aNew==0 ) return;
|
|
+ p->aCol = aNew;
|
|
+ }
|
|
+ pCol = &p->aCol[p->nCol];
|
|
+ memset(pCol, 0, sizeof(p->aCol[0]));
|
|
+ pCol->zName = z;
|
|
+ pCol->sortOrder = SQLITE_SO_NUM;
|
|
+ p->nCol++;
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine is called by the parser while in the middle of
|
|
+** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
|
|
+** been seen on a column. This routine sets the notNull flag on
|
|
+** the column currently under construction.
|
|
+*/
|
|
+void sqliteAddNotNull(Parse *pParse, int onError){
|
|
+ Table *p;
|
|
+ int i;
|
|
+ if( (p = pParse->pNewTable)==0 ) return;
|
|
+ i = p->nCol-1;
|
|
+ if( i>=0 ) p->aCol[i].notNull = onError;
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine is called by the parser while in the middle of
|
|
+** parsing a CREATE TABLE statement. The pFirst token is the first
|
|
+** token in the sequence of tokens that describe the type of the
|
|
+** column currently under construction. pLast is the last token
|
|
+** in the sequence. Use this information to construct a string
|
|
+** that contains the typename of the column and store that string
|
|
+** in zType.
|
|
+*/
|
|
+void sqliteAddColumnType(Parse *pParse, Token *pFirst, Token *pLast){
|
|
+ Table *p;
|
|
+ int i, j;
|
|
+ int n;
|
|
+ char *z, **pz;
|
|
+ Column *pCol;
|
|
+ if( (p = pParse->pNewTable)==0 ) return;
|
|
+ i = p->nCol-1;
|
|
+ if( i<0 ) return;
|
|
+ pCol = &p->aCol[i];
|
|
+ pz = &pCol->zType;
|
|
+ n = pLast->n + Addr(pLast->z) - Addr(pFirst->z);
|
|
+ sqliteSetNString(pz, pFirst->z, n, 0);
|
|
+ z = *pz;
|
|
+ if( z==0 ) return;
|
|
+ for(i=j=0; z[i]; i++){
|
|
+ int c = z[i];
|
|
+ if( isspace(c) ) continue;
|
|
+ z[j++] = c;
|
|
+ }
|
|
+ z[j] = 0;
|
|
+ if( pParse->db->file_format>=4 ){
|
|
+ pCol->sortOrder = sqliteCollateType(z, n);
|
|
+ }else{
|
|
+ pCol->sortOrder = SQLITE_SO_NUM;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** The given token is the default value for the last column added to
|
|
+** the table currently under construction. If "minusFlag" is true, it
|
|
+** means the value token was preceded by a minus sign.
|
|
+**
|
|
+** This routine is called by the parser while in the middle of
|
|
+** parsing a CREATE TABLE statement.
|
|
+*/
|
|
+void sqliteAddDefaultValue(Parse *pParse, Token *pVal, int minusFlag){
|
|
+ Table *p;
|
|
+ int i;
|
|
+ char **pz;
|
|
+ if( (p = pParse->pNewTable)==0 ) return;
|
|
+ i = p->nCol-1;
|
|
+ if( i<0 ) return;
|
|
+ pz = &p->aCol[i].zDflt;
|
|
+ if( minusFlag ){
|
|
+ sqliteSetNString(pz, "-", 1, pVal->z, pVal->n, 0);
|
|
+ }else{
|
|
+ sqliteSetNString(pz, pVal->z, pVal->n, 0);
|
|
+ }
|
|
+ sqliteDequote(*pz);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Designate the PRIMARY KEY for the table. pList is a list of names
|
|
+** of columns that form the primary key. If pList is NULL, then the
|
|
+** most recently added column of the table is the primary key.
|
|
+**
|
|
+** A table can have at most one primary key. If the table already has
|
|
+** a primary key (and this is the second primary key) then create an
|
|
+** error.
|
|
+**
|
|
+** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
|
|
+** then we will try to use that column as the row id. (Exception:
|
|
+** For backwards compatibility with older databases, do not do this
|
|
+** if the file format version number is less than 1.) Set the Table.iPKey
|
|
+** field of the table under construction to be the index of the
|
|
+** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
|
|
+** no INTEGER PRIMARY KEY.
|
|
+**
|
|
+** If the key is not an INTEGER PRIMARY KEY, then create a unique
|
|
+** index for the key. No index is created for INTEGER PRIMARY KEYs.
|
|
+*/
|
|
+void sqliteAddPrimaryKey(Parse *pParse, IdList *pList, int onError){
|
|
+ Table *pTab = pParse->pNewTable;
|
|
+ char *zType = 0;
|
|
+ int iCol = -1, i;
|
|
+ if( pTab==0 ) goto primary_key_exit;
|
|
+ if( pTab->hasPrimKey ){
|
|
+ sqliteErrorMsg(pParse,
|
|
+ "table \"%s\" has more than one primary key", pTab->zName);
|
|
+ goto primary_key_exit;
|
|
+ }
|
|
+ pTab->hasPrimKey = 1;
|
|
+ if( pList==0 ){
|
|
+ iCol = pTab->nCol - 1;
|
|
+ pTab->aCol[iCol].isPrimKey = 1;
|
|
+ }else{
|
|
+ for(i=0; i<pList->nId; i++){
|
|
+ for(iCol=0; iCol<pTab->nCol; iCol++){
|
|
+ if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ) break;
|
|
+ }
|
|
+ if( iCol<pTab->nCol ) pTab->aCol[iCol].isPrimKey = 1;
|
|
+ }
|
|
+ if( pList->nId>1 ) iCol = -1;
|
|
+ }
|
|
+ if( iCol>=0 && iCol<pTab->nCol ){
|
|
+ zType = pTab->aCol[iCol].zType;
|
|
+ }
|
|
+ if( pParse->db->file_format>=1 &&
|
|
+ zType && sqliteStrICmp(zType, "INTEGER")==0 ){
|
|
+ pTab->iPKey = iCol;
|
|
+ pTab->keyConf = onError;
|
|
+ }else{
|
|
+ sqliteCreateIndex(pParse, 0, 0, pList, onError, 0, 0);
|
|
+ pList = 0;
|
|
+ }
|
|
+
|
|
+primary_key_exit:
|
|
+ sqliteIdListDelete(pList);
|
|
+ return;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return the appropriate collating type given a type name.
|
|
+**
|
|
+** The collation type is text (SQLITE_SO_TEXT) if the type
|
|
+** name contains the character stream "text" or "blob" or
|
|
+** "clob". Any other type name is collated as numeric
|
|
+** (SQLITE_SO_NUM).
|
|
+*/
|
|
+int sqliteCollateType(const char *zType, int nType){
|
|
+ int i;
|
|
+ for(i=0; i<nType-3; i++){
|
|
+ int c = *(zType++) | 0x60;
|
|
+ if( (c=='b' || c=='c') && sqliteStrNICmp(zType, "lob", 3)==0 ){
|
|
+ return SQLITE_SO_TEXT;
|
|
+ }
|
|
+ if( c=='c' && sqliteStrNICmp(zType, "har", 3)==0 ){
|
|
+ return SQLITE_SO_TEXT;
|
|
+ }
|
|
+ if( c=='t' && sqliteStrNICmp(zType, "ext", 3)==0 ){
|
|
+ return SQLITE_SO_TEXT;
|
|
+ }
|
|
+ }
|
|
+ return SQLITE_SO_NUM;
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine is called by the parser while in the middle of
|
|
+** parsing a CREATE TABLE statement. A "COLLATE" clause has
|
|
+** been seen on a column. This routine sets the Column.sortOrder on
|
|
+** the column currently under construction.
|
|
+*/
|
|
+void sqliteAddCollateType(Parse *pParse, int collType){
|
|
+ Table *p;
|
|
+ int i;
|
|
+ if( (p = pParse->pNewTable)==0 ) return;
|
|
+ i = p->nCol-1;
|
|
+ if( i>=0 ) p->aCol[i].sortOrder = collType;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Come up with a new random value for the schema cookie. Make sure
|
|
+** the new value is different from the old.
|
|
+**
|
|
+** The schema cookie is used to determine when the schema for the
|
|
+** database changes. After each schema change, the cookie value
|
|
+** changes. When a process first reads the schema it records the
|
|
+** cookie. Thereafter, whenever it goes to access the database,
|
|
+** it checks the cookie to make sure the schema has not changed
|
|
+** since it was last read.
|
|
+**
|
|
+** This plan is not completely bullet-proof. It is possible for
|
|
+** the schema to change multiple times and for the cookie to be
|
|
+** set back to prior value. But schema changes are infrequent
|
|
+** and the probability of hitting the same cookie value is only
|
|
+** 1 chance in 2^32. So we're safe enough.
|
|
+*/
|
|
+void sqliteChangeCookie(sqlite *db, Vdbe *v){
|
|
+ if( db->next_cookie==db->aDb[0].schema_cookie ){
|
|
+ unsigned char r;
|
|
+ sqliteRandomness(1, &r);
|
|
+ db->next_cookie = db->aDb[0].schema_cookie + r + 1;
|
|
+ db->flags |= SQLITE_InternChanges;
|
|
+ sqliteVdbeAddOp(v, OP_Integer, db->next_cookie, 0);
|
|
+ sqliteVdbeAddOp(v, OP_SetCookie, 0, 0);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Measure the number of characters needed to output the given
|
|
+** identifier. The number returned includes any quotes used
|
|
+** but does not include the null terminator.
|
|
+*/
|
|
+static int identLength(const char *z){
|
|
+ int n;
|
|
+ int needQuote = 0;
|
|
+ for(n=0; *z; n++, z++){
|
|
+ if( *z=='\'' ){ n++; needQuote=1; }
|
|
+ }
|
|
+ return n + needQuote*2;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Write an identifier onto the end of the given string. Add
|
|
+** quote characters as needed.
|
|
+*/
|
|
+static void identPut(char *z, int *pIdx, char *zIdent){
|
|
+ int i, j, needQuote;
|
|
+ i = *pIdx;
|
|
+ for(j=0; zIdent[j]; j++){
|
|
+ if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
|
|
+ }
|
|
+ needQuote = zIdent[j]!=0 || isdigit(zIdent[0])
|
|
+ || sqliteKeywordCode(zIdent, j)!=TK_ID;
|
|
+ if( needQuote ) z[i++] = '\'';
|
|
+ for(j=0; zIdent[j]; j++){
|
|
+ z[i++] = zIdent[j];
|
|
+ if( zIdent[j]=='\'' ) z[i++] = '\'';
|
|
+ }
|
|
+ if( needQuote ) z[i++] = '\'';
|
|
+ z[i] = 0;
|
|
+ *pIdx = i;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Generate a CREATE TABLE statement appropriate for the given
|
|
+** table. Memory to hold the text of the statement is obtained
|
|
+** from sqliteMalloc() and must be freed by the calling function.
|
|
+*/
|
|
+static char *createTableStmt(Table *p){
|
|
+ int i, k, n;
|
|
+ char *zStmt;
|
|
+ char *zSep, *zSep2, *zEnd;
|
|
+ n = 0;
|
|
+ for(i=0; i<p->nCol; i++){
|
|
+ n += identLength(p->aCol[i].zName);
|
|
+ }
|
|
+ n += identLength(p->zName);
|
|
+ if( n<40 ){
|
|
+ zSep = "";
|
|
+ zSep2 = ",";
|
|
+ zEnd = ")";
|
|
+ }else{
|
|
+ zSep = "\n ";
|
|
+ zSep2 = ",\n ";
|
|
+ zEnd = "\n)";
|
|
+ }
|
|
+ n += 35 + 6*p->nCol;
|
|
+ zStmt = sqliteMallocRaw( n );
|
|
+ if( zStmt==0 ) return 0;
|
|
+ strcpy(zStmt, p->iDb==1 ? "CREATE TEMP TABLE " : "CREATE TABLE ");
|
|
+ k = strlen(zStmt);
|
|
+ identPut(zStmt, &k, p->zName);
|
|
+ zStmt[k++] = '(';
|
|
+ for(i=0; i<p->nCol; i++){
|
|
+ strcpy(&zStmt[k], zSep);
|
|
+ k += strlen(&zStmt[k]);
|
|
+ zSep = zSep2;
|
|
+ identPut(zStmt, &k, p->aCol[i].zName);
|
|
+ }
|
|
+ strcpy(&zStmt[k], zEnd);
|
|
+ return zStmt;
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine is called to report the final ")" that terminates
|
|
+** a CREATE TABLE statement.
|
|
+**
|
|
+** The table structure that other action routines have been building
|
|
+** is added to the internal hash tables, assuming no errors have
|
|
+** occurred.
|
|
+**
|
|
+** An entry for the table is made in the master table on disk, unless
|
|
+** this is a temporary table or db->init.busy==1. When db->init.busy==1
|
|
+** it means we are reading the sqlite_master table because we just
|
|
+** connected to the database or because the sqlite_master table has
|
|
+** recently changes, so the entry for this table already exists in
|
|
+** the sqlite_master table. We do not want to create it again.
|
|
+**
|
|
+** If the pSelect argument is not NULL, it means that this routine
|
|
+** was called to create a table generated from a
|
|
+** "CREATE TABLE ... AS SELECT ..." statement. The column names of
|
|
+** the new table will match the result set of the SELECT.
|
|
+*/
|
|
+void sqliteEndTable(Parse *pParse, Token *pEnd, Select *pSelect){
|
|
+ Table *p;
|
|
+ sqlite *db = pParse->db;
|
|
+
|
|
+ if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite_malloc_failed ) return;
|
|
+ p = pParse->pNewTable;
|
|
+ if( p==0 ) return;
|
|
+
|
|
+ /* If the table is generated from a SELECT, then construct the
|
|
+ ** list of columns and the text of the table.
|
|
+ */
|
|
+ if( pSelect ){
|
|
+ Table *pSelTab = sqliteResultSetOfSelect(pParse, 0, pSelect);
|
|
+ if( pSelTab==0 ) return;
|
|
+ assert( p->aCol==0 );
|
|
+ p->nCol = pSelTab->nCol;
|
|
+ p->aCol = pSelTab->aCol;
|
|
+ pSelTab->nCol = 0;
|
|
+ pSelTab->aCol = 0;
|
|
+ sqliteDeleteTable(0, pSelTab);
|
|
+ }
|
|
+
|
|
+ /* If the db->init.busy is 1 it means we are reading the SQL off the
|
|
+ ** "sqlite_master" or "sqlite_temp_master" table on the disk.
|
|
+ ** So do not write to the disk again. Extract the root page number
|
|
+ ** for the table from the db->init.newTnum field. (The page number
|
|
+ ** should have been put there by the sqliteOpenCb routine.)
|
|
+ */
|
|
+ if( db->init.busy ){
|
|
+ p->tnum = db->init.newTnum;
|
|
+ }
|
|
+
|
|
+ /* If not initializing, then create a record for the new table
|
|
+ ** in the SQLITE_MASTER table of the database. The record number
|
|
+ ** for the new table entry should already be on the stack.
|
|
+ **
|
|
+ ** If this is a TEMPORARY table, write the entry into the auxiliary
|
|
+ ** file instead of into the main database file.
|
|
+ */
|
|
+ if( !db->init.busy ){
|
|
+ int n;
|
|
+ Vdbe *v;
|
|
+
|
|
+ v = sqliteGetVdbe(pParse);
|
|
+ if( v==0 ) return;
|
|
+ if( p->pSelect==0 ){
|
|
+ /* A regular table */
|
|
+ sqliteVdbeOp3(v, OP_CreateTable, 0, p->iDb, (char*)&p->tnum, P3_POINTER);
|
|
+ }else{
|
|
+ /* A view */
|
|
+ sqliteVdbeAddOp(v, OP_Integer, 0, 0);
|
|
+ }
|
|
+ p->tnum = 0;
|
|
+ sqliteVdbeAddOp(v, OP_Pull, 1, 0);
|
|
+ sqliteVdbeOp3(v, OP_String, 0, 0, p->pSelect==0?"table":"view", P3_STATIC);
|
|
+ sqliteVdbeOp3(v, OP_String, 0, 0, p->zName, 0);
|
|
+ sqliteVdbeOp3(v, OP_String, 0, 0, p->zName, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Dup, 4, 0);
|
|
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
+ if( pSelect ){
|
|
+ char *z = createTableStmt(p);
|
|
+ n = z ? strlen(z) : 0;
|
|
+ sqliteVdbeChangeP3(v, -1, z, n);
|
|
+ sqliteFree(z);
|
|
+ }else{
|
|
+ assert( pEnd!=0 );
|
|
+ n = Addr(pEnd->z) - Addr(pParse->sFirstToken.z) + 1;
|
|
+ sqliteVdbeChangeP3(v, -1, pParse->sFirstToken.z, n);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
|
|
+ sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
|
|
+ if( !p->iDb ){
|
|
+ sqliteChangeCookie(db, v);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_Close, 0, 0);
|
|
+ if( pSelect ){
|
|
+ sqliteVdbeAddOp(v, OP_Integer, p->iDb, 0);
|
|
+ sqliteVdbeAddOp(v, OP_OpenWrite, 1, 0);
|
|
+ pParse->nTab = 2;
|
|
+ sqliteSelect(pParse, pSelect, SRT_Table, 1, 0, 0, 0);
|
|
+ }
|
|
+ sqliteEndWriteOperation(pParse);
|
|
+ }
|
|
+
|
|
+ /* Add the table to the in-memory representation of the database.
|
|
+ */
|
|
+ if( pParse->explain==0 && pParse->nErr==0 ){
|
|
+ Table *pOld;
|
|
+ FKey *pFKey;
|
|
+ pOld = sqliteHashInsert(&db->aDb[p->iDb].tblHash,
|
|
+ p->zName, strlen(p->zName)+1, p);
|
|
+ if( pOld ){
|
|
+ assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
|
|
+ return;
|
|
+ }
|
|
+ for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
|
|
+ int nTo = strlen(pFKey->zTo) + 1;
|
|
+ pFKey->pNextTo = sqliteHashFind(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo);
|
|
+ sqliteHashInsert(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo, pFKey);
|
|
+ }
|
|
+ pParse->pNewTable = 0;
|
|
+ db->nTable++;
|
|
+ db->flags |= SQLITE_InternChanges;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** The parser calls this routine in order to create a new VIEW
|
|
+*/
|
|
+void sqliteCreateView(
|
|
+ Parse *pParse, /* The parsing context */
|
|
+ Token *pBegin, /* The CREATE token that begins the statement */
|
|
+ Token *pName, /* The token that holds the name of the view */
|
|
+ Select *pSelect, /* A SELECT statement that will become the new view */
|
|
+ int isTemp /* TRUE for a TEMPORARY view */
|
|
+){
|
|
+ Table *p;
|
|
+ int n;
|
|
+ const char *z;
|
|
+ Token sEnd;
|
|
+ DbFixer sFix;
|
|
+
|
|
+ sqliteStartTable(pParse, pBegin, pName, isTemp, 1);
|
|
+ p = pParse->pNewTable;
|
|
+ if( p==0 || pParse->nErr ){
|
|
+ sqliteSelectDelete(pSelect);
|
|
+ return;
|
|
+ }
|
|
+ if( sqliteFixInit(&sFix, pParse, p->iDb, "view", pName)
|
|
+ && sqliteFixSelect(&sFix, pSelect)
|
|
+ ){
|
|
+ sqliteSelectDelete(pSelect);
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ /* Make a copy of the entire SELECT statement that defines the view.
|
|
+ ** This will force all the Expr.token.z values to be dynamically
|
|
+ ** allocated rather than point to the input string - which means that
|
|
+ ** they will persist after the current sqlite_exec() call returns.
|
|
+ */
|
|
+ p->pSelect = sqliteSelectDup(pSelect);
|
|
+ sqliteSelectDelete(pSelect);
|
|
+ if( !pParse->db->init.busy ){
|
|
+ sqliteViewGetColumnNames(pParse, p);
|
|
+ }
|
|
+
|
|
+ /* Locate the end of the CREATE VIEW statement. Make sEnd point to
|
|
+ ** the end.
|
|
+ */
|
|
+ sEnd = pParse->sLastToken;
|
|
+ if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
|
|
+ sEnd.z += sEnd.n;
|
|
+ }
|
|
+ sEnd.n = 0;
|
|
+ n = sEnd.z - pBegin->z;
|
|
+ z = pBegin->z;
|
|
+ while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
|
|
+ sEnd.z = &z[n-1];
|
|
+ sEnd.n = 1;
|
|
+
|
|
+ /* Use sqliteEndTable() to add the view to the SQLITE_MASTER table */
|
|
+ sqliteEndTable(pParse, &sEnd, 0);
|
|
+ return;
|
|
+}
|
|
+
|
|
+/*
|
|
+** The Table structure pTable is really a VIEW. Fill in the names of
|
|
+** the columns of the view in the pTable structure. Return the number
|
|
+** of errors. If an error is seen leave an error message in pParse->zErrMsg.
|
|
+*/
|
|
+int sqliteViewGetColumnNames(Parse *pParse, Table *pTable){
|
|
+ ExprList *pEList;
|
|
+ Select *pSel;
|
|
+ Table *pSelTab;
|
|
+ int nErr = 0;
|
|
+
|
|
+ assert( pTable );
|
|
+
|
|
+ /* A positive nCol means the columns names for this view are
|
|
+ ** already known.
|
|
+ */
|
|
+ if( pTable->nCol>0 ) return 0;
|
|
+
|
|
+ /* A negative nCol is a special marker meaning that we are currently
|
|
+ ** trying to compute the column names. If we enter this routine with
|
|
+ ** a negative nCol, it means two or more views form a loop, like this:
|
|
+ **
|
|
+ ** CREATE VIEW one AS SELECT * FROM two;
|
|
+ ** CREATE VIEW two AS SELECT * FROM one;
|
|
+ **
|
|
+ ** Actually, this error is caught previously and so the following test
|
|
+ ** should always fail. But we will leave it in place just to be safe.
|
|
+ */
|
|
+ if( pTable->nCol<0 ){
|
|
+ sqliteErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
|
|
+ return 1;
|
|
+ }
|
|
+
|
|
+ /* If we get this far, it means we need to compute the table names.
|
|
+ */
|
|
+ assert( pTable->pSelect ); /* If nCol==0, then pTable must be a VIEW */
|
|
+ pSel = pTable->pSelect;
|
|
+
|
|
+ /* Note that the call to sqliteResultSetOfSelect() will expand any
|
|
+ ** "*" elements in this list. But we will need to restore the list
|
|
+ ** back to its original configuration afterwards, so we save a copy of
|
|
+ ** the original in pEList.
|
|
+ */
|
|
+ pEList = pSel->pEList;
|
|
+ pSel->pEList = sqliteExprListDup(pEList);
|
|
+ if( pSel->pEList==0 ){
|
|
+ pSel->pEList = pEList;
|
|
+ return 1; /* Malloc failed */
|
|
+ }
|
|
+ pTable->nCol = -1;
|
|
+ pSelTab = sqliteResultSetOfSelect(pParse, 0, pSel);
|
|
+ if( pSelTab ){
|
|
+ assert( pTable->aCol==0 );
|
|
+ pTable->nCol = pSelTab->nCol;
|
|
+ pTable->aCol = pSelTab->aCol;
|
|
+ pSelTab->nCol = 0;
|
|
+ pSelTab->aCol = 0;
|
|
+ sqliteDeleteTable(0, pSelTab);
|
|
+ DbSetProperty(pParse->db, pTable->iDb, DB_UnresetViews);
|
|
+ }else{
|
|
+ pTable->nCol = 0;
|
|
+ nErr++;
|
|
+ }
|
|
+ sqliteSelectUnbind(pSel);
|
|
+ sqliteExprListDelete(pSel->pEList);
|
|
+ pSel->pEList = pEList;
|
|
+ return nErr;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Clear the column names from the VIEW pTable.
|
|
+**
|
|
+** This routine is called whenever any other table or view is modified.
|
|
+** The view passed into this routine might depend directly or indirectly
|
|
+** on the modified or deleted table so we need to clear the old column
|
|
+** names so that they will be recomputed.
|
|
+*/
|
|
+static void sqliteViewResetColumnNames(Table *pTable){
|
|
+ int i;
|
|
+ Column *pCol;
|
|
+ assert( pTable!=0 && pTable->pSelect!=0 );
|
|
+ for(i=0, pCol=pTable->aCol; i<pTable->nCol; i++, pCol++){
|
|
+ sqliteFree(pCol->zName);
|
|
+ sqliteFree(pCol->zDflt);
|
|
+ sqliteFree(pCol->zType);
|
|
+ }
|
|
+ sqliteFree(pTable->aCol);
|
|
+ pTable->aCol = 0;
|
|
+ pTable->nCol = 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Clear the column names from every VIEW in database idx.
|
|
+*/
|
|
+static void sqliteViewResetAll(sqlite *db, int idx){
|
|
+ HashElem *i;
|
|
+ if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
|
|
+ for(i=sqliteHashFirst(&db->aDb[idx].tblHash); i; i=sqliteHashNext(i)){
|
|
+ Table *pTab = sqliteHashData(i);
|
|
+ if( pTab->pSelect ){
|
|
+ sqliteViewResetColumnNames(pTab);
|
|
+ }
|
|
+ }
|
|
+ DbClearProperty(db, idx, DB_UnresetViews);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Given a token, look up a table with that name. If not found, leave
|
|
+** an error for the parser to find and return NULL.
|
|
+*/
|
|
+Table *sqliteTableFromToken(Parse *pParse, Token *pTok){
|
|
+ char *zName;
|
|
+ Table *pTab;
|
|
+ zName = sqliteTableNameFromToken(pTok);
|
|
+ if( zName==0 ) return 0;
|
|
+ pTab = sqliteFindTable(pParse->db, zName, 0);
|
|
+ sqliteFree(zName);
|
|
+ if( pTab==0 ){
|
|
+ sqliteErrorMsg(pParse, "no such table: %T", pTok);
|
|
+ }
|
|
+ return pTab;
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine is called to do the work of a DROP TABLE statement.
|
|
+** pName is the name of the table to be dropped.
|
|
+*/
|
|
+void sqliteDropTable(Parse *pParse, Token *pName, int isView){
|
|
+ Table *pTable;
|
|
+ Vdbe *v;
|
|
+ int base;
|
|
+ sqlite *db = pParse->db;
|
|
+ int iDb;
|
|
+
|
|
+ if( pParse->nErr || sqlite_malloc_failed ) return;
|
|
+ pTable = sqliteTableFromToken(pParse, pName);
|
|
+ if( pTable==0 ) return;
|
|
+ iDb = pTable->iDb;
|
|
+ assert( iDb>=0 && iDb<db->nDb );
|
|
+#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
+ {
|
|
+ int code;
|
|
+ const char *zTab = SCHEMA_TABLE(pTable->iDb);
|
|
+ const char *zDb = db->aDb[pTable->iDb].zName;
|
|
+ if( sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
|
|
+ return;
|
|
+ }
|
|
+ if( isView ){
|
|
+ if( iDb==1 ){
|
|
+ code = SQLITE_DROP_TEMP_VIEW;
|
|
+ }else{
|
|
+ code = SQLITE_DROP_VIEW;
|
|
+ }
|
|
+ }else{
|
|
+ if( iDb==1 ){
|
|
+ code = SQLITE_DROP_TEMP_TABLE;
|
|
+ }else{
|
|
+ code = SQLITE_DROP_TABLE;
|
|
+ }
|
|
+ }
|
|
+ if( sqliteAuthCheck(pParse, code, pTable->zName, 0, zDb) ){
|
|
+ return;
|
|
+ }
|
|
+ if( sqliteAuthCheck(pParse, SQLITE_DELETE, pTable->zName, 0, zDb) ){
|
|
+ return;
|
|
+ }
|
|
+ }
|
|
+#endif
|
|
+ if( pTable->readOnly ){
|
|
+ sqliteErrorMsg(pParse, "table %s may not be dropped", pTable->zName);
|
|
+ pParse->nErr++;
|
|
+ return;
|
|
+ }
|
|
+ if( isView && pTable->pSelect==0 ){
|
|
+ sqliteErrorMsg(pParse, "use DROP TABLE to delete table %s", pTable->zName);
|
|
+ return;
|
|
+ }
|
|
+ if( !isView && pTable->pSelect ){
|
|
+ sqliteErrorMsg(pParse, "use DROP VIEW to delete view %s", pTable->zName);
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ /* Generate code to remove the table from the master table
|
|
+ ** on disk.
|
|
+ */
|
|
+ v = sqliteGetVdbe(pParse);
|
|
+ if( v ){
|
|
+ static VdbeOpList dropTable[] = {
|
|
+ { OP_Rewind, 0, ADDR(8), 0},
|
|
+ { OP_String, 0, 0, 0}, /* 1 */
|
|
+ { OP_MemStore, 1, 1, 0},
|
|
+ { OP_MemLoad, 1, 0, 0}, /* 3 */
|
|
+ { OP_Column, 0, 2, 0},
|
|
+ { OP_Ne, 0, ADDR(7), 0},
|
|
+ { OP_Delete, 0, 0, 0},
|
|
+ { OP_Next, 0, ADDR(3), 0}, /* 7 */
|
|
+ };
|
|
+ Index *pIdx;
|
|
+ Trigger *pTrigger;
|
|
+ sqliteBeginWriteOperation(pParse, 0, pTable->iDb);
|
|
+
|
|
+ /* Drop all triggers associated with the table being dropped */
|
|
+ pTrigger = pTable->pTrigger;
|
|
+ while( pTrigger ){
|
|
+ assert( pTrigger->iDb==pTable->iDb || pTrigger->iDb==1 );
|
|
+ sqliteDropTriggerPtr(pParse, pTrigger, 1);
|
|
+ if( pParse->explain ){
|
|
+ pTrigger = pTrigger->pNext;
|
|
+ }else{
|
|
+ pTrigger = pTable->pTrigger;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Drop all SQLITE_MASTER entries that refer to the table */
|
|
+ sqliteOpenMasterTable(v, pTable->iDb);
|
|
+ base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable);
|
|
+ sqliteVdbeChangeP3(v, base+1, pTable->zName, 0);
|
|
+
|
|
+ /* Drop all SQLITE_TEMP_MASTER entries that refer to the table */
|
|
+ if( pTable->iDb!=1 ){
|
|
+ sqliteOpenMasterTable(v, 1);
|
|
+ base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable);
|
|
+ sqliteVdbeChangeP3(v, base+1, pTable->zName, 0);
|
|
+ }
|
|
+
|
|
+ if( pTable->iDb==0 ){
|
|
+ sqliteChangeCookie(db, v);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_Close, 0, 0);
|
|
+ if( !isView ){
|
|
+ sqliteVdbeAddOp(v, OP_Destroy, pTable->tnum, pTable->iDb);
|
|
+ for(pIdx=pTable->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
+ sqliteVdbeAddOp(v, OP_Destroy, pIdx->tnum, pIdx->iDb);
|
|
+ }
|
|
+ }
|
|
+ sqliteEndWriteOperation(pParse);
|
|
+ }
|
|
+
|
|
+ /* Delete the in-memory description of the table.
|
|
+ **
|
|
+ ** Exception: if the SQL statement began with the EXPLAIN keyword,
|
|
+ ** then no changes should be made.
|
|
+ */
|
|
+ if( !pParse->explain ){
|
|
+ sqliteUnlinkAndDeleteTable(db, pTable);
|
|
+ db->flags |= SQLITE_InternChanges;
|
|
+ }
|
|
+ sqliteViewResetAll(db, iDb);
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine constructs a P3 string suitable for an OP_MakeIdxKey
|
|
+** opcode and adds that P3 string to the most recently inserted instruction
|
|
+** in the virtual machine. The P3 string consists of a single character
|
|
+** for each column in the index pIdx of table pTab. If the column uses
|
|
+** a numeric sort order, then the P3 string character corresponding to
|
|
+** that column is 'n'. If the column uses a text sort order, then the
|
|
+** P3 string is 't'. See the OP_MakeIdxKey opcode documentation for
|
|
+** additional information. See also the sqliteAddKeyType() routine.
|
|
+*/
|
|
+void sqliteAddIdxKeyType(Vdbe *v, Index *pIdx){
|
|
+ char *zType;
|
|
+ Table *pTab;
|
|
+ int i, n;
|
|
+ assert( pIdx!=0 && pIdx->pTable!=0 );
|
|
+ pTab = pIdx->pTable;
|
|
+ n = pIdx->nColumn;
|
|
+ zType = sqliteMallocRaw( n+1 );
|
|
+ if( zType==0 ) return;
|
|
+ for(i=0; i<n; i++){
|
|
+ int iCol = pIdx->aiColumn[i];
|
|
+ assert( iCol>=0 && iCol<pTab->nCol );
|
|
+ if( (pTab->aCol[iCol].sortOrder & SQLITE_SO_TYPEMASK)==SQLITE_SO_TEXT ){
|
|
+ zType[i] = 't';
|
|
+ }else{
|
|
+ zType[i] = 'n';
|
|
+ }
|
|
+ }
|
|
+ zType[n] = 0;
|
|
+ sqliteVdbeChangeP3(v, -1, zType, n);
|
|
+ sqliteFree(zType);
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine is called to create a new foreign key on the table
|
|
+** currently under construction. pFromCol determines which columns
|
|
+** in the current table point to the foreign key. If pFromCol==0 then
|
|
+** connect the key to the last column inserted. pTo is the name of
|
|
+** the table referred to. pToCol is a list of tables in the other
|
|
+** pTo table that the foreign key points to. flags contains all
|
|
+** information about the conflict resolution algorithms specified
|
|
+** in the ON DELETE, ON UPDATE and ON INSERT clauses.
|
|
+**
|
|
+** An FKey structure is created and added to the table currently
|
|
+** under construction in the pParse->pNewTable field. The new FKey
|
|
+** is not linked into db->aFKey at this point - that does not happen
|
|
+** until sqliteEndTable().
|
|
+**
|
|
+** The foreign key is set for IMMEDIATE processing. A subsequent call
|
|
+** to sqliteDeferForeignKey() might change this to DEFERRED.
|
|
+*/
|
|
+void sqliteCreateForeignKey(
|
|
+ Parse *pParse, /* Parsing context */
|
|
+ IdList *pFromCol, /* Columns in this table that point to other table */
|
|
+ Token *pTo, /* Name of the other table */
|
|
+ IdList *pToCol, /* Columns in the other table */
|
|
+ int flags /* Conflict resolution algorithms. */
|
|
+){
|
|
+ Table *p = pParse->pNewTable;
|
|
+ int nByte;
|
|
+ int i;
|
|
+ int nCol;
|
|
+ char *z;
|
|
+ FKey *pFKey = 0;
|
|
+
|
|
+ assert( pTo!=0 );
|
|
+ if( p==0 || pParse->nErr ) goto fk_end;
|
|
+ if( pFromCol==0 ){
|
|
+ int iCol = p->nCol-1;
|
|
+ if( iCol<0 ) goto fk_end;
|
|
+ if( pToCol && pToCol->nId!=1 ){
|
|
+ sqliteErrorMsg(pParse, "foreign key on %s"
|
|
+ " should reference only one column of table %T",
|
|
+ p->aCol[iCol].zName, pTo);
|
|
+ goto fk_end;
|
|
+ }
|
|
+ nCol = 1;
|
|
+ }else if( pToCol && pToCol->nId!=pFromCol->nId ){
|
|
+ sqliteErrorMsg(pParse,
|
|
+ "number of columns in foreign key does not match the number of "
|
|
+ "columns in the referenced table");
|
|
+ goto fk_end;
|
|
+ }else{
|
|
+ nCol = pFromCol->nId;
|
|
+ }
|
|
+ nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
|
|
+ if( pToCol ){
|
|
+ for(i=0; i<pToCol->nId; i++){
|
|
+ nByte += strlen(pToCol->a[i].zName) + 1;
|
|
+ }
|
|
+ }
|
|
+ pFKey = sqliteMalloc( nByte );
|
|
+ if( pFKey==0 ) goto fk_end;
|
|
+ pFKey->pFrom = p;
|
|
+ pFKey->pNextFrom = p->pFKey;
|
|
+ z = (char*)&pFKey[1];
|
|
+ pFKey->aCol = (struct sColMap*)z;
|
|
+ z += sizeof(struct sColMap)*nCol;
|
|
+ pFKey->zTo = z;
|
|
+ memcpy(z, pTo->z, pTo->n);
|
|
+ z[pTo->n] = 0;
|
|
+ z += pTo->n+1;
|
|
+ pFKey->pNextTo = 0;
|
|
+ pFKey->nCol = nCol;
|
|
+ if( pFromCol==0 ){
|
|
+ pFKey->aCol[0].iFrom = p->nCol-1;
|
|
+ }else{
|
|
+ for(i=0; i<nCol; i++){
|
|
+ int j;
|
|
+ for(j=0; j<p->nCol; j++){
|
|
+ if( sqliteStrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
|
|
+ pFKey->aCol[i].iFrom = j;
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ if( j>=p->nCol ){
|
|
+ sqliteErrorMsg(pParse,
|
|
+ "unknown column \"%s\" in foreign key definition",
|
|
+ pFromCol->a[i].zName);
|
|
+ goto fk_end;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ if( pToCol ){
|
|
+ for(i=0; i<nCol; i++){
|
|
+ int n = strlen(pToCol->a[i].zName);
|
|
+ pFKey->aCol[i].zCol = z;
|
|
+ memcpy(z, pToCol->a[i].zName, n);
|
|
+ z[n] = 0;
|
|
+ z += n+1;
|
|
+ }
|
|
+ }
|
|
+ pFKey->isDeferred = 0;
|
|
+ pFKey->deleteConf = flags & 0xff;
|
|
+ pFKey->updateConf = (flags >> 8 ) & 0xff;
|
|
+ pFKey->insertConf = (flags >> 16 ) & 0xff;
|
|
+
|
|
+ /* Link the foreign key to the table as the last step.
|
|
+ */
|
|
+ p->pFKey = pFKey;
|
|
+ pFKey = 0;
|
|
+
|
|
+fk_end:
|
|
+ sqliteFree(pFKey);
|
|
+ sqliteIdListDelete(pFromCol);
|
|
+ sqliteIdListDelete(pToCol);
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
|
|
+** clause is seen as part of a foreign key definition. The isDeferred
|
|
+** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
|
|
+** The behavior of the most recently created foreign key is adjusted
|
|
+** accordingly.
|
|
+*/
|
|
+void sqliteDeferForeignKey(Parse *pParse, int isDeferred){
|
|
+ Table *pTab;
|
|
+ FKey *pFKey;
|
|
+ if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
|
|
+ pFKey->isDeferred = isDeferred;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Create a new index for an SQL table. pIndex is the name of the index
|
|
+** and pTable is the name of the table that is to be indexed. Both will
|
|
+** be NULL for a primary key or an index that is created to satisfy a
|
|
+** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
|
|
+** as the table to be indexed. pParse->pNewTable is a table that is
|
|
+** currently being constructed by a CREATE TABLE statement.
|
|
+**
|
|
+** pList is a list of columns to be indexed. pList will be NULL if this
|
|
+** is a primary key or unique-constraint on the most recent column added
|
|
+** to the table currently under construction.
|
|
+*/
|
|
+void sqliteCreateIndex(
|
|
+ Parse *pParse, /* All information about this parse */
|
|
+ Token *pName, /* Name of the index. May be NULL */
|
|
+ SrcList *pTable, /* Name of the table to index. Use pParse->pNewTable if 0 */
|
|
+ IdList *pList, /* A list of columns to be indexed */
|
|
+ int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
|
|
+ Token *pStart, /* The CREATE token that begins a CREATE TABLE statement */
|
|
+ Token *pEnd /* The ")" that closes the CREATE INDEX statement */
|
|
+){
|
|
+ Table *pTab; /* Table to be indexed */
|
|
+ Index *pIndex; /* The index to be created */
|
|
+ char *zName = 0;
|
|
+ int i, j;
|
|
+ Token nullId; /* Fake token for an empty ID list */
|
|
+ DbFixer sFix; /* For assigning database names to pTable */
|
|
+ int isTemp; /* True for a temporary index */
|
|
+ sqlite *db = pParse->db;
|
|
+
|
|
+ if( pParse->nErr || sqlite_malloc_failed ) goto exit_create_index;
|
|
+ if( db->init.busy
|
|
+ && sqliteFixInit(&sFix, pParse, db->init.iDb, "index", pName)
|
|
+ && sqliteFixSrcList(&sFix, pTable)
|
|
+ ){
|
|
+ goto exit_create_index;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ ** Find the table that is to be indexed. Return early if not found.
|
|
+ */
|
|
+ if( pTable!=0 ){
|
|
+ assert( pName!=0 );
|
|
+ assert( pTable->nSrc==1 );
|
|
+ pTab = sqliteSrcListLookup(pParse, pTable);
|
|
+ }else{
|
|
+ assert( pName==0 );
|
|
+ pTab = pParse->pNewTable;
|
|
+ }
|
|
+ if( pTab==0 || pParse->nErr ) goto exit_create_index;
|
|
+ if( pTab->readOnly ){
|
|
+ sqliteErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
|
|
+ goto exit_create_index;
|
|
+ }
|
|
+ if( pTab->iDb>=2 && db->init.busy==0 ){
|
|
+ sqliteErrorMsg(pParse, "table %s may not have indices added", pTab->zName);
|
|
+ goto exit_create_index;
|
|
+ }
|
|
+ if( pTab->pSelect ){
|
|
+ sqliteErrorMsg(pParse, "views may not be indexed");
|
|
+ goto exit_create_index;
|
|
+ }
|
|
+ isTemp = pTab->iDb==1;
|
|
+
|
|
+ /*
|
|
+ ** Find the name of the index. Make sure there is not already another
|
|
+ ** index or table with the same name.
|
|
+ **
|
|
+ ** Exception: If we are reading the names of permanent indices from the
|
|
+ ** sqlite_master table (because some other process changed the schema) and
|
|
+ ** one of the index names collides with the name of a temporary table or
|
|
+ ** index, then we will continue to process this index.
|
|
+ **
|
|
+ ** If pName==0 it means that we are
|
|
+ ** dealing with a primary key or UNIQUE constraint. We have to invent our
|
|
+ ** own name.
|
|
+ */
|
|
+ if( pName && !db->init.busy ){
|
|
+ Index *pISameName; /* Another index with the same name */
|
|
+ Table *pTSameName; /* A table with same name as the index */
|
|
+ zName = sqliteTableNameFromToken(pName);
|
|
+ if( zName==0 ) goto exit_create_index;
|
|
+ if( (pISameName = sqliteFindIndex(db, zName, 0))!=0 ){
|
|
+ sqliteErrorMsg(pParse, "index %s already exists", zName);
|
|
+ goto exit_create_index;
|
|
+ }
|
|
+ if( (pTSameName = sqliteFindTable(db, zName, 0))!=0 ){
|
|
+ sqliteErrorMsg(pParse, "there is already a table named %s", zName);
|
|
+ goto exit_create_index;
|
|
+ }
|
|
+ }else if( pName==0 ){
|
|
+ char zBuf[30];
|
|
+ int n;
|
|
+ Index *pLoop;
|
|
+ for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
|
|
+ sprintf(zBuf,"%d)",n);
|
|
+ zName = 0;
|
|
+ sqliteSetString(&zName, "(", pTab->zName, " autoindex ", zBuf, (char*)0);
|
|
+ if( zName==0 ) goto exit_create_index;
|
|
+ }else{
|
|
+ zName = sqliteTableNameFromToken(pName);
|
|
+ }
|
|
+
|
|
+ /* Check for authorization to create an index.
|
|
+ */
|
|
+#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
+ {
|
|
+ const char *zDb = db->aDb[pTab->iDb].zName;
|
|
+
|
|
+ assert( pTab->iDb==db->init.iDb || isTemp );
|
|
+ if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
|
|
+ goto exit_create_index;
|
|
+ }
|
|
+ i = SQLITE_CREATE_INDEX;
|
|
+ if( isTemp ) i = SQLITE_CREATE_TEMP_INDEX;
|
|
+ if( sqliteAuthCheck(pParse, i, zName, pTab->zName, zDb) ){
|
|
+ goto exit_create_index;
|
|
+ }
|
|
+ }
|
|
+#endif
|
|
+
|
|
+ /* If pList==0, it means this routine was called to make a primary
|
|
+ ** key out of the last column added to the table under construction.
|
|
+ ** So create a fake list to simulate this.
|
|
+ */
|
|
+ if( pList==0 ){
|
|
+ nullId.z = pTab->aCol[pTab->nCol-1].zName;
|
|
+ nullId.n = strlen(nullId.z);
|
|
+ pList = sqliteIdListAppend(0, &nullId);
|
|
+ if( pList==0 ) goto exit_create_index;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ ** Allocate the index structure.
|
|
+ */
|
|
+ pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 +
|
|
+ sizeof(int)*pList->nId );
|
|
+ if( pIndex==0 ) goto exit_create_index;
|
|
+ pIndex->aiColumn = (int*)&pIndex[1];
|
|
+ pIndex->zName = (char*)&pIndex->aiColumn[pList->nId];
|
|
+ strcpy(pIndex->zName, zName);
|
|
+ pIndex->pTable = pTab;
|
|
+ pIndex->nColumn = pList->nId;
|
|
+ pIndex->onError = onError;
|
|
+ pIndex->autoIndex = pName==0;
|
|
+ pIndex->iDb = isTemp ? 1 : db->init.iDb;
|
|
+
|
|
+ /* Scan the names of the columns of the table to be indexed and
|
|
+ ** load the column indices into the Index structure. Report an error
|
|
+ ** if any column is not found.
|
|
+ */
|
|
+ for(i=0; i<pList->nId; i++){
|
|
+ for(j=0; j<pTab->nCol; j++){
|
|
+ if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[j].zName)==0 ) break;
|
|
+ }
|
|
+ if( j>=pTab->nCol ){
|
|
+ sqliteErrorMsg(pParse, "table %s has no column named %s",
|
|
+ pTab->zName, pList->a[i].zName);
|
|
+ sqliteFree(pIndex);
|
|
+ goto exit_create_index;
|
|
+ }
|
|
+ pIndex->aiColumn[i] = j;
|
|
+ }
|
|
+
|
|
+ /* Link the new Index structure to its table and to the other
|
|
+ ** in-memory database structures.
|
|
+ */
|
|
+ if( !pParse->explain ){
|
|
+ Index *p;
|
|
+ p = sqliteHashInsert(&db->aDb[pIndex->iDb].idxHash,
|
|
+ pIndex->zName, strlen(pIndex->zName)+1, pIndex);
|
|
+ if( p ){
|
|
+ assert( p==pIndex ); /* Malloc must have failed */
|
|
+ sqliteFree(pIndex);
|
|
+ goto exit_create_index;
|
|
+ }
|
|
+ db->flags |= SQLITE_InternChanges;
|
|
+ }
|
|
+
|
|
+ /* When adding an index to the list of indices for a table, make
|
|
+ ** sure all indices labeled OE_Replace come after all those labeled
|
|
+ ** OE_Ignore. This is necessary for the correct operation of UPDATE
|
|
+ ** and INSERT.
|
|
+ */
|
|
+ if( onError!=OE_Replace || pTab->pIndex==0
|
|
+ || pTab->pIndex->onError==OE_Replace){
|
|
+ pIndex->pNext = pTab->pIndex;
|
|
+ pTab->pIndex = pIndex;
|
|
+ }else{
|
|
+ Index *pOther = pTab->pIndex;
|
|
+ while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
|
|
+ pOther = pOther->pNext;
|
|
+ }
|
|
+ pIndex->pNext = pOther->pNext;
|
|
+ pOther->pNext = pIndex;
|
|
+ }
|
|
+
|
|
+ /* If the db->init.busy is 1 it means we are reading the SQL off the
|
|
+ ** "sqlite_master" table on the disk. So do not write to the disk
|
|
+ ** again. Extract the table number from the db->init.newTnum field.
|
|
+ */
|
|
+ if( db->init.busy && pTable!=0 ){
|
|
+ pIndex->tnum = db->init.newTnum;
|
|
+ }
|
|
+
|
|
+ /* If the db->init.busy is 0 then create the index on disk. This
|
|
+ ** involves writing the index into the master table and filling in the
|
|
+ ** index with the current table contents.
|
|
+ **
|
|
+ ** The db->init.busy is 0 when the user first enters a CREATE INDEX
|
|
+ ** command. db->init.busy is 1 when a database is opened and
|
|
+ ** CREATE INDEX statements are read out of the master table. In
|
|
+ ** the latter case the index already exists on disk, which is why
|
|
+ ** we don't want to recreate it.
|
|
+ **
|
|
+ ** If pTable==0 it means this index is generated as a primary key
|
|
+ ** or UNIQUE constraint of a CREATE TABLE statement. Since the table
|
|
+ ** has just been created, it contains no data and the index initialization
|
|
+ ** step can be skipped.
|
|
+ */
|
|
+ else if( db->init.busy==0 ){
|
|
+ int n;
|
|
+ Vdbe *v;
|
|
+ int lbl1, lbl2;
|
|
+ int i;
|
|
+ int addr;
|
|
+
|
|
+ v = sqliteGetVdbe(pParse);
|
|
+ if( v==0 ) goto exit_create_index;
|
|
+ if( pTable!=0 ){
|
|
+ sqliteBeginWriteOperation(pParse, 0, isTemp);
|
|
+ sqliteOpenMasterTable(v, isTemp);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
|
|
+ sqliteVdbeOp3(v, OP_String, 0, 0, "index", P3_STATIC);
|
|
+ sqliteVdbeOp3(v, OP_String, 0, 0, pIndex->zName, 0);
|
|
+ sqliteVdbeOp3(v, OP_String, 0, 0, pTab->zName, 0);
|
|
+ sqliteVdbeOp3(v, OP_CreateIndex, 0, isTemp,(char*)&pIndex->tnum,P3_POINTER);
|
|
+ pIndex->tnum = 0;
|
|
+ if( pTable ){
|
|
+ sqliteVdbeCode(v,
|
|
+ OP_Dup, 0, 0,
|
|
+ OP_Integer, isTemp, 0,
|
|
+ OP_OpenWrite, 1, 0,
|
|
+ 0);
|
|
+ }
|
|
+ addr = sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
+ if( pStart && pEnd ){
|
|
+ n = Addr(pEnd->z) - Addr(pStart->z) + 1;
|
|
+ sqliteVdbeChangeP3(v, addr, pStart->z, n);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
|
|
+ sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
|
|
+ if( pTable ){
|
|
+ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
|
|
+ sqliteVdbeOp3(v, OP_OpenRead, 2, pTab->tnum, pTab->zName, 0);
|
|
+ lbl2 = sqliteVdbeMakeLabel(v);
|
|
+ sqliteVdbeAddOp(v, OP_Rewind, 2, lbl2);
|
|
+ lbl1 = sqliteVdbeAddOp(v, OP_Recno, 2, 0);
|
|
+ for(i=0; i<pIndex->nColumn; i++){
|
|
+ int iCol = pIndex->aiColumn[i];
|
|
+ if( pTab->iPKey==iCol ){
|
|
+ sqliteVdbeAddOp(v, OP_Dup, i, 0);
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_Column, 2, iCol);
|
|
+ }
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_MakeIdxKey, pIndex->nColumn, 0);
|
|
+ if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIndex);
|
|
+ sqliteVdbeOp3(v, OP_IdxPut, 1, pIndex->onError!=OE_None,
|
|
+ "indexed columns are not unique", P3_STATIC);
|
|
+ sqliteVdbeAddOp(v, OP_Next, 2, lbl1);
|
|
+ sqliteVdbeResolveLabel(v, lbl2);
|
|
+ sqliteVdbeAddOp(v, OP_Close, 2, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Close, 1, 0);
|
|
+ }
|
|
+ if( pTable!=0 ){
|
|
+ if( !isTemp ){
|
|
+ sqliteChangeCookie(db, v);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_Close, 0, 0);
|
|
+ sqliteEndWriteOperation(pParse);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Clean up before exiting */
|
|
+exit_create_index:
|
|
+ sqliteIdListDelete(pList);
|
|
+ sqliteSrcListDelete(pTable);
|
|
+ sqliteFree(zName);
|
|
+ return;
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine will drop an existing named index. This routine
|
|
+** implements the DROP INDEX statement.
|
|
+*/
|
|
+void sqliteDropIndex(Parse *pParse, SrcList *pName){
|
|
+ Index *pIndex;
|
|
+ Vdbe *v;
|
|
+ sqlite *db = pParse->db;
|
|
+
|
|
+ if( pParse->nErr || sqlite_malloc_failed ) return;
|
|
+ assert( pName->nSrc==1 );
|
|
+ pIndex = sqliteFindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
|
|
+ if( pIndex==0 ){
|
|
+ sqliteErrorMsg(pParse, "no such index: %S", pName, 0);
|
|
+ goto exit_drop_index;
|
|
+ }
|
|
+ if( pIndex->autoIndex ){
|
|
+ sqliteErrorMsg(pParse, "index associated with UNIQUE "
|
|
+ "or PRIMARY KEY constraint cannot be dropped", 0);
|
|
+ goto exit_drop_index;
|
|
+ }
|
|
+ if( pIndex->iDb>1 ){
|
|
+ sqliteErrorMsg(pParse, "cannot alter schema of attached "
|
|
+ "databases", 0);
|
|
+ goto exit_drop_index;
|
|
+ }
|
|
+#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
+ {
|
|
+ int code = SQLITE_DROP_INDEX;
|
|
+ Table *pTab = pIndex->pTable;
|
|
+ const char *zDb = db->aDb[pIndex->iDb].zName;
|
|
+ const char *zTab = SCHEMA_TABLE(pIndex->iDb);
|
|
+ if( sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
|
|
+ goto exit_drop_index;
|
|
+ }
|
|
+ if( pIndex->iDb ) code = SQLITE_DROP_TEMP_INDEX;
|
|
+ if( sqliteAuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
|
|
+ goto exit_drop_index;
|
|
+ }
|
|
+ }
|
|
+#endif
|
|
+
|
|
+ /* Generate code to remove the index and from the master table */
|
|
+ v = sqliteGetVdbe(pParse);
|
|
+ if( v ){
|
|
+ static VdbeOpList dropIndex[] = {
|
|
+ { OP_Rewind, 0, ADDR(9), 0},
|
|
+ { OP_String, 0, 0, 0}, /* 1 */
|
|
+ { OP_MemStore, 1, 1, 0},
|
|
+ { OP_MemLoad, 1, 0, 0}, /* 3 */
|
|
+ { OP_Column, 0, 1, 0},
|
|
+ { OP_Eq, 0, ADDR(8), 0},
|
|
+ { OP_Next, 0, ADDR(3), 0},
|
|
+ { OP_Goto, 0, ADDR(9), 0},
|
|
+ { OP_Delete, 0, 0, 0}, /* 8 */
|
|
+ };
|
|
+ int base;
|
|
+
|
|
+ sqliteBeginWriteOperation(pParse, 0, pIndex->iDb);
|
|
+ sqliteOpenMasterTable(v, pIndex->iDb);
|
|
+ base = sqliteVdbeAddOpList(v, ArraySize(dropIndex), dropIndex);
|
|
+ sqliteVdbeChangeP3(v, base+1, pIndex->zName, 0);
|
|
+ if( pIndex->iDb==0 ){
|
|
+ sqliteChangeCookie(db, v);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_Close, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Destroy, pIndex->tnum, pIndex->iDb);
|
|
+ sqliteEndWriteOperation(pParse);
|
|
+ }
|
|
+
|
|
+ /* Delete the in-memory description of this index.
|
|
+ */
|
|
+ if( !pParse->explain ){
|
|
+ sqliteUnlinkAndDeleteIndex(db, pIndex);
|
|
+ db->flags |= SQLITE_InternChanges;
|
|
+ }
|
|
+
|
|
+exit_drop_index:
|
|
+ sqliteSrcListDelete(pName);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Append a new element to the given IdList. Create a new IdList if
|
|
+** need be.
|
|
+**
|
|
+** A new IdList is returned, or NULL if malloc() fails.
|
|
+*/
|
|
+IdList *sqliteIdListAppend(IdList *pList, Token *pToken){
|
|
+ if( pList==0 ){
|
|
+ pList = sqliteMalloc( sizeof(IdList) );
|
|
+ if( pList==0 ) return 0;
|
|
+ pList->nAlloc = 0;
|
|
+ }
|
|
+ if( pList->nId>=pList->nAlloc ){
|
|
+ struct IdList_item *a;
|
|
+ pList->nAlloc = pList->nAlloc*2 + 5;
|
|
+ a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]) );
|
|
+ if( a==0 ){
|
|
+ sqliteIdListDelete(pList);
|
|
+ return 0;
|
|
+ }
|
|
+ pList->a = a;
|
|
+ }
|
|
+ memset(&pList->a[pList->nId], 0, sizeof(pList->a[0]));
|
|
+ if( pToken ){
|
|
+ char **pz = &pList->a[pList->nId].zName;
|
|
+ sqliteSetNString(pz, pToken->z, pToken->n, 0);
|
|
+ if( *pz==0 ){
|
|
+ sqliteIdListDelete(pList);
|
|
+ return 0;
|
|
+ }else{
|
|
+ sqliteDequote(*pz);
|
|
+ }
|
|
+ }
|
|
+ pList->nId++;
|
|
+ return pList;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Append a new table name to the given SrcList. Create a new SrcList if
|
|
+** need be. A new entry is created in the SrcList even if pToken is NULL.
|
|
+**
|
|
+** A new SrcList is returned, or NULL if malloc() fails.
|
|
+**
|
|
+** If pDatabase is not null, it means that the table has an optional
|
|
+** database name prefix. Like this: "database.table". The pDatabase
|
|
+** points to the table name and the pTable points to the database name.
|
|
+** The SrcList.a[].zName field is filled with the table name which might
|
|
+** come from pTable (if pDatabase is NULL) or from pDatabase.
|
|
+** SrcList.a[].zDatabase is filled with the database name from pTable,
|
|
+** or with NULL if no database is specified.
|
|
+**
|
|
+** In other words, if call like this:
|
|
+**
|
|
+** sqliteSrcListAppend(A,B,0);
|
|
+**
|
|
+** Then B is a table name and the database name is unspecified. If called
|
|
+** like this:
|
|
+**
|
|
+** sqliteSrcListAppend(A,B,C);
|
|
+**
|
|
+** Then C is the table name and B is the database name.
|
|
+*/
|
|
+SrcList *sqliteSrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){
|
|
+ if( pList==0 ){
|
|
+ pList = sqliteMalloc( sizeof(SrcList) );
|
|
+ if( pList==0 ) return 0;
|
|
+ pList->nAlloc = 1;
|
|
+ }
|
|
+ if( pList->nSrc>=pList->nAlloc ){
|
|
+ SrcList *pNew;
|
|
+ pList->nAlloc *= 2;
|
|
+ pNew = sqliteRealloc(pList,
|
|
+ sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
|
|
+ if( pNew==0 ){
|
|
+ sqliteSrcListDelete(pList);
|
|
+ return 0;
|
|
+ }
|
|
+ pList = pNew;
|
|
+ }
|
|
+ memset(&pList->a[pList->nSrc], 0, sizeof(pList->a[0]));
|
|
+ if( pDatabase && pDatabase->z==0 ){
|
|
+ pDatabase = 0;
|
|
+ }
|
|
+ if( pDatabase && pTable ){
|
|
+ Token *pTemp = pDatabase;
|
|
+ pDatabase = pTable;
|
|
+ pTable = pTemp;
|
|
+ }
|
|
+ if( pTable ){
|
|
+ char **pz = &pList->a[pList->nSrc].zName;
|
|
+ sqliteSetNString(pz, pTable->z, pTable->n, 0);
|
|
+ if( *pz==0 ){
|
|
+ sqliteSrcListDelete(pList);
|
|
+ return 0;
|
|
+ }else{
|
|
+ sqliteDequote(*pz);
|
|
+ }
|
|
+ }
|
|
+ if( pDatabase ){
|
|
+ char **pz = &pList->a[pList->nSrc].zDatabase;
|
|
+ sqliteSetNString(pz, pDatabase->z, pDatabase->n, 0);
|
|
+ if( *pz==0 ){
|
|
+ sqliteSrcListDelete(pList);
|
|
+ return 0;
|
|
+ }else{
|
|
+ sqliteDequote(*pz);
|
|
+ }
|
|
+ }
|
|
+ pList->a[pList->nSrc].iCursor = -1;
|
|
+ pList->nSrc++;
|
|
+ return pList;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Assign cursors to all tables in a SrcList
|
|
+*/
|
|
+void sqliteSrcListAssignCursors(Parse *pParse, SrcList *pList){
|
|
+ int i;
|
|
+ for(i=0; i<pList->nSrc; i++){
|
|
+ if( pList->a[i].iCursor<0 ){
|
|
+ pList->a[i].iCursor = pParse->nTab++;
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Add an alias to the last identifier on the given identifier list.
|
|
+*/
|
|
+void sqliteSrcListAddAlias(SrcList *pList, Token *pToken){
|
|
+ if( pList && pList->nSrc>0 ){
|
|
+ int i = pList->nSrc - 1;
|
|
+ sqliteSetNString(&pList->a[i].zAlias, pToken->z, pToken->n, 0);
|
|
+ sqliteDequote(pList->a[i].zAlias);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Delete an IdList.
|
|
+*/
|
|
+void sqliteIdListDelete(IdList *pList){
|
|
+ int i;
|
|
+ if( pList==0 ) return;
|
|
+ for(i=0; i<pList->nId; i++){
|
|
+ sqliteFree(pList->a[i].zName);
|
|
+ }
|
|
+ sqliteFree(pList->a);
|
|
+ sqliteFree(pList);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return the index in pList of the identifier named zId. Return -1
|
|
+** if not found.
|
|
+*/
|
|
+int sqliteIdListIndex(IdList *pList, const char *zName){
|
|
+ int i;
|
|
+ if( pList==0 ) return -1;
|
|
+ for(i=0; i<pList->nId; i++){
|
|
+ if( sqliteStrICmp(pList->a[i].zName, zName)==0 ) return i;
|
|
+ }
|
|
+ return -1;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Delete an entire SrcList including all its substructure.
|
|
+*/
|
|
+void sqliteSrcListDelete(SrcList *pList){
|
|
+ int i;
|
|
+ if( pList==0 ) return;
|
|
+ for(i=0; i<pList->nSrc; i++){
|
|
+ sqliteFree(pList->a[i].zDatabase);
|
|
+ sqliteFree(pList->a[i].zName);
|
|
+ sqliteFree(pList->a[i].zAlias);
|
|
+ if( pList->a[i].pTab && pList->a[i].pTab->isTransient ){
|
|
+ sqliteDeleteTable(0, pList->a[i].pTab);
|
|
+ }
|
|
+ sqliteSelectDelete(pList->a[i].pSelect);
|
|
+ sqliteExprDelete(pList->a[i].pOn);
|
|
+ sqliteIdListDelete(pList->a[i].pUsing);
|
|
+ }
|
|
+ sqliteFree(pList);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Begin a transaction
|
|
+*/
|
|
+void sqliteBeginTransaction(Parse *pParse, int onError){
|
|
+ sqlite *db;
|
|
+
|
|
+ if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
|
|
+ if( pParse->nErr || sqlite_malloc_failed ) return;
|
|
+ if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
|
|
+ if( db->flags & SQLITE_InTrans ){
|
|
+ sqliteErrorMsg(pParse, "cannot start a transaction within a transaction");
|
|
+ return;
|
|
+ }
|
|
+ sqliteBeginWriteOperation(pParse, 0, 0);
|
|
+ if( !pParse->explain ){
|
|
+ db->flags |= SQLITE_InTrans;
|
|
+ db->onError = onError;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Commit a transaction
|
|
+*/
|
|
+void sqliteCommitTransaction(Parse *pParse){
|
|
+ sqlite *db;
|
|
+
|
|
+ if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
|
|
+ if( pParse->nErr || sqlite_malloc_failed ) return;
|
|
+ if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
|
|
+ if( (db->flags & SQLITE_InTrans)==0 ){
|
|
+ sqliteErrorMsg(pParse, "cannot commit - no transaction is active");
|
|
+ return;
|
|
+ }
|
|
+ if( !pParse->explain ){
|
|
+ db->flags &= ~SQLITE_InTrans;
|
|
+ }
|
|
+ sqliteEndWriteOperation(pParse);
|
|
+ if( !pParse->explain ){
|
|
+ db->onError = OE_Default;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Rollback a transaction
|
|
+*/
|
|
+void sqliteRollbackTransaction(Parse *pParse){
|
|
+ sqlite *db;
|
|
+ Vdbe *v;
|
|
+
|
|
+ if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
|
|
+ if( pParse->nErr || sqlite_malloc_failed ) return;
|
|
+ if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
|
|
+ if( (db->flags & SQLITE_InTrans)==0 ){
|
|
+ sqliteErrorMsg(pParse, "cannot rollback - no transaction is active");
|
|
+ return;
|
|
+ }
|
|
+ v = sqliteGetVdbe(pParse);
|
|
+ if( v ){
|
|
+ sqliteVdbeAddOp(v, OP_Rollback, 0, 0);
|
|
+ }
|
|
+ if( !pParse->explain ){
|
|
+ db->flags &= ~SQLITE_InTrans;
|
|
+ db->onError = OE_Default;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Generate VDBE code that will verify the schema cookie for all
|
|
+** named database files.
|
|
+*/
|
|
+void sqliteCodeVerifySchema(Parse *pParse, int iDb){
|
|
+ sqlite *db = pParse->db;
|
|
+ Vdbe *v = sqliteGetVdbe(pParse);
|
|
+ assert( iDb>=0 && iDb<db->nDb );
|
|
+ assert( db->aDb[iDb].pBt!=0 );
|
|
+ if( iDb!=1 && !DbHasProperty(db, iDb, DB_Cookie) ){
|
|
+ sqliteVdbeAddOp(v, OP_VerifyCookie, iDb, db->aDb[iDb].schema_cookie);
|
|
+ DbSetProperty(db, iDb, DB_Cookie);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Generate VDBE code that prepares for doing an operation that
|
|
+** might change the database.
|
|
+**
|
|
+** This routine starts a new transaction if we are not already within
|
|
+** a transaction. If we are already within a transaction, then a checkpoint
|
|
+** is set if the setCheckpoint parameter is true. A checkpoint should
|
|
+** be set for operations that might fail (due to a constraint) part of
|
|
+** the way through and which will need to undo some writes without having to
|
|
+** rollback the whole transaction. For operations where all constraints
|
|
+** can be checked before any changes are made to the database, it is never
|
|
+** necessary to undo a write and the checkpoint should not be set.
|
|
+**
|
|
+** Only database iDb and the temp database are made writable by this call.
|
|
+** If iDb==0, then the main and temp databases are made writable. If
|
|
+** iDb==1 then only the temp database is made writable. If iDb>1 then the
|
|
+** specified auxiliary database and the temp database are made writable.
|
|
+*/
|
|
+void sqliteBeginWriteOperation(Parse *pParse, int setCheckpoint, int iDb){
|
|
+ Vdbe *v;
|
|
+ sqlite *db = pParse->db;
|
|
+ if( DbHasProperty(db, iDb, DB_Locked) ) return;
|
|
+ v = sqliteGetVdbe(pParse);
|
|
+ if( v==0 ) return;
|
|
+ if( !db->aDb[iDb].inTrans ){
|
|
+ sqliteVdbeAddOp(v, OP_Transaction, iDb, 0);
|
|
+ DbSetProperty(db, iDb, DB_Locked);
|
|
+ sqliteCodeVerifySchema(pParse, iDb);
|
|
+ if( iDb!=1 ){
|
|
+ sqliteBeginWriteOperation(pParse, setCheckpoint, 1);
|
|
+ }
|
|
+ }else if( setCheckpoint ){
|
|
+ sqliteVdbeAddOp(v, OP_Checkpoint, iDb, 0);
|
|
+ DbSetProperty(db, iDb, DB_Locked);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Generate code that concludes an operation that may have changed
|
|
+** the database. If a statement transaction was started, then emit
|
|
+** an OP_Commit that will cause the changes to be committed to disk.
|
|
+**
|
|
+** Note that checkpoints are automatically committed at the end of
|
|
+** a statement. Note also that there can be multiple calls to
|
|
+** sqliteBeginWriteOperation() but there should only be a single
|
|
+** call to sqliteEndWriteOperation() at the conclusion of the statement.
|
|
+*/
|
|
+void sqliteEndWriteOperation(Parse *pParse){
|
|
+ Vdbe *v;
|
|
+ sqlite *db = pParse->db;
|
|
+ if( pParse->trigStack ) return; /* if this is in a trigger */
|
|
+ v = sqliteGetVdbe(pParse);
|
|
+ if( v==0 ) return;
|
|
+ if( db->flags & SQLITE_InTrans ){
|
|
+ /* A BEGIN has executed. Do not commit until we see an explicit
|
|
+ ** COMMIT statement. */
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_Commit, 0, 0);
|
|
+ }
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/config_static.w32.h
|
|
@@ -0,0 +1 @@
|
|
+#define SQLITE_PTR_SZ 4
|
|
\ No newline at end of file
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/copy.c
|
|
@@ -0,0 +1,110 @@
|
|
+/*
|
|
+** 2003 April 6
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This file contains code used to implement the COPY command.
|
|
+**
|
|
+** $Id$
|
|
+*/
|
|
+#include "sqliteInt.h"
|
|
+
|
|
+/*
|
|
+** The COPY command is for compatibility with PostgreSQL and specificially
|
|
+** for the ability to read the output of pg_dump. The format is as
|
|
+** follows:
|
|
+**
|
|
+** COPY table FROM file [USING DELIMITERS string]
|
|
+**
|
|
+** "table" is an existing table name. We will read lines of code from
|
|
+** file to fill this table with data. File might be "stdin". The optional
|
|
+** delimiter string identifies the field separators. The default is a tab.
|
|
+*/
|
|
+void sqliteCopy(
|
|
+ Parse *pParse, /* The parser context */
|
|
+ SrcList *pTableName, /* The name of the table into which we will insert */
|
|
+ Token *pFilename, /* The file from which to obtain information */
|
|
+ Token *pDelimiter, /* Use this as the field delimiter */
|
|
+ int onError /* What to do if a constraint fails */
|
|
+){
|
|
+ Table *pTab;
|
|
+ int i;
|
|
+ Vdbe *v;
|
|
+ int addr, end;
|
|
+ char *zFile = 0;
|
|
+ const char *zDb;
|
|
+ sqlite *db = pParse->db;
|
|
+
|
|
+
|
|
+ if( sqlite_malloc_failed ) goto copy_cleanup;
|
|
+ assert( pTableName->nSrc==1 );
|
|
+ pTab = sqliteSrcListLookup(pParse, pTableName);
|
|
+ if( pTab==0 || sqliteIsReadOnly(pParse, pTab, 0) ) goto copy_cleanup;
|
|
+ zFile = sqliteStrNDup(pFilename->z, pFilename->n);
|
|
+ sqliteDequote(zFile);
|
|
+ assert( pTab->iDb<db->nDb );
|
|
+ zDb = db->aDb[pTab->iDb].zName;
|
|
+ if( sqliteAuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb)
|
|
+ || sqliteAuthCheck(pParse, SQLITE_COPY, pTab->zName, zFile, zDb) ){
|
|
+ goto copy_cleanup;
|
|
+ }
|
|
+ v = sqliteGetVdbe(pParse);
|
|
+ if( v ){
|
|
+ sqliteBeginWriteOperation(pParse, 1, pTab->iDb);
|
|
+ addr = sqliteVdbeOp3(v, OP_FileOpen, 0, 0, pFilename->z, pFilename->n);
|
|
+ sqliteVdbeDequoteP3(v, addr);
|
|
+ sqliteOpenTableAndIndices(pParse, pTab, 0);
|
|
+ if( db->flags & SQLITE_CountRows ){
|
|
+ sqliteVdbeAddOp(v, OP_Integer, 0, 0); /* Initialize the row count */
|
|
+ }
|
|
+ end = sqliteVdbeMakeLabel(v);
|
|
+ addr = sqliteVdbeAddOp(v, OP_FileRead, pTab->nCol, end);
|
|
+ if( pDelimiter ){
|
|
+ sqliteVdbeChangeP3(v, addr, pDelimiter->z, pDelimiter->n);
|
|
+ sqliteVdbeDequoteP3(v, addr);
|
|
+ }else{
|
|
+ sqliteVdbeChangeP3(v, addr, "\t", 1);
|
|
+ }
|
|
+ if( pTab->iPKey>=0 ){
|
|
+ sqliteVdbeAddOp(v, OP_FileColumn, pTab->iPKey, 0);
|
|
+ sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0);
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
|
|
+ }
|
|
+ for(i=0; i<pTab->nCol; i++){
|
|
+ if( i==pTab->iPKey ){
|
|
+ /* The integer primary key column is filled with NULL since its
|
|
+ ** value is always pulled from the record number */
|
|
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_FileColumn, i, 0);
|
|
+ }
|
|
+ }
|
|
+ sqliteGenerateConstraintChecks(pParse, pTab, 0, 0, pTab->iPKey>=0,
|
|
+ 0, onError, addr);
|
|
+ sqliteCompleteInsertion(pParse, pTab, 0, 0, 0, 0, -1);
|
|
+ if( (db->flags & SQLITE_CountRows)!=0 ){
|
|
+ sqliteVdbeAddOp(v, OP_AddImm, 1, 0); /* Increment row count */
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, addr);
|
|
+ sqliteVdbeResolveLabel(v, end);
|
|
+ sqliteVdbeAddOp(v, OP_Noop, 0, 0);
|
|
+ sqliteEndWriteOperation(pParse);
|
|
+ if( db->flags & SQLITE_CountRows ){
|
|
+ sqliteVdbeAddOp(v, OP_ColumnName, 0, 1);
|
|
+ sqliteVdbeChangeP3(v, -1, "rows inserted", P3_STATIC);
|
|
+ sqliteVdbeAddOp(v, OP_Callback, 1, 0);
|
|
+ }
|
|
+ }
|
|
+
|
|
+copy_cleanup:
|
|
+ sqliteSrcListDelete(pTableName);
|
|
+ sqliteFree(zFile);
|
|
+ return;
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/date.c
|
|
@@ -0,0 +1,881 @@
|
|
+/*
|
|
+** 2003 October 31
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This file contains the C functions that implement date and time
|
|
+** functions for SQLite.
|
|
+**
|
|
+** There is only one exported symbol in this file - the function
|
|
+** sqliteRegisterDateTimeFunctions() found at the bottom of the file.
|
|
+** All other code has file scope.
|
|
+**
|
|
+** $Id$
|
|
+**
|
|
+** NOTES:
|
|
+**
|
|
+** SQLite processes all times and dates as Julian Day numbers. The
|
|
+** dates and times are stored as the number of days since noon
|
|
+** in Greenwich on November 24, 4714 B.C. according to the Gregorian
|
|
+** calendar system.
|
|
+**
|
|
+** 1970-01-01 00:00:00 is JD 2440587.5
|
|
+** 2000-01-01 00:00:00 is JD 2451544.5
|
|
+**
|
|
+** This implemention requires years to be expressed as a 4-digit number
|
|
+** which means that only dates between 0000-01-01 and 9999-12-31 can
|
|
+** be represented, even though julian day numbers allow a much wider
|
|
+** range of dates.
|
|
+**
|
|
+** The Gregorian calendar system is used for all dates and times,
|
|
+** even those that predate the Gregorian calendar. Historians usually
|
|
+** use the Julian calendar for dates prior to 1582-10-15 and for some
|
|
+** dates afterwards, depending on locale. Beware of this difference.
|
|
+**
|
|
+** The conversion algorithms are implemented based on descriptions
|
|
+** in the following text:
|
|
+**
|
|
+** Jean Meeus
|
|
+** Astronomical Algorithms, 2nd Edition, 1998
|
|
+** ISBM 0-943396-61-1
|
|
+** Willmann-Bell, Inc
|
|
+** Richmond, Virginia (USA)
|
|
+*/
|
|
+#include "os.h"
|
|
+#include "sqliteInt.h"
|
|
+#include <ctype.h>
|
|
+#include <stdlib.h>
|
|
+#include <assert.h>
|
|
+#include <time.h>
|
|
+#ifndef PHP_WIN32
|
|
+#include "main/php_reentrancy.h"
|
|
+#endif
|
|
+
|
|
+#ifndef SQLITE_OMIT_DATETIME_FUNCS
|
|
+
|
|
+/*
|
|
+** A structure for holding a single date and time.
|
|
+*/
|
|
+typedef struct DateTime DateTime;
|
|
+struct DateTime {
|
|
+ double rJD; /* The julian day number */
|
|
+ int Y, M, D; /* Year, month, and day */
|
|
+ int h, m; /* Hour and minutes */
|
|
+ int tz; /* Timezone offset in minutes */
|
|
+ double s; /* Seconds */
|
|
+ char validYMD; /* True if Y,M,D are valid */
|
|
+ char validHMS; /* True if h,m,s are valid */
|
|
+ char validJD; /* True if rJD is valid */
|
|
+ char validTZ; /* True if tz is valid */
|
|
+};
|
|
+
|
|
+
|
|
+/*
|
|
+** Convert zDate into one or more integers. Additional arguments
|
|
+** come in groups of 5 as follows:
|
|
+**
|
|
+** N number of digits in the integer
|
|
+** min minimum allowed value of the integer
|
|
+** max maximum allowed value of the integer
|
|
+** nextC first character after the integer
|
|
+** pVal where to write the integers value.
|
|
+**
|
|
+** Conversions continue until one with nextC==0 is encountered.
|
|
+** The function returns the number of successful conversions.
|
|
+*/
|
|
+static int getDigits(const char *zDate, ...){
|
|
+ va_list ap;
|
|
+ int val;
|
|
+ int N;
|
|
+ int min;
|
|
+ int max;
|
|
+ int nextC;
|
|
+ int *pVal;
|
|
+ int cnt = 0;
|
|
+ va_start(ap, zDate);
|
|
+ do{
|
|
+ N = va_arg(ap, int);
|
|
+ min = va_arg(ap, int);
|
|
+ max = va_arg(ap, int);
|
|
+ nextC = va_arg(ap, int);
|
|
+ pVal = va_arg(ap, int*);
|
|
+ val = 0;
|
|
+ while( N-- ){
|
|
+ if( !isdigit(*zDate) ){
|
|
+ return cnt;
|
|
+ }
|
|
+ val = val*10 + *zDate - '0';
|
|
+ zDate++;
|
|
+ }
|
|
+ if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
|
|
+ return cnt;
|
|
+ }
|
|
+ *pVal = val;
|
|
+ zDate++;
|
|
+ cnt++;
|
|
+ }while( nextC );
|
|
+ return cnt;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Read text from z[] and convert into a floating point number. Return
|
|
+** the number of digits converted.
|
|
+*/
|
|
+static int getValue(const char *z, double *pR){
|
|
+ const char *zEnd;
|
|
+ *pR = sqliteAtoF(z, &zEnd);
|
|
+ return zEnd - z;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Parse a timezone extension on the end of a date-time.
|
|
+** The extension is of the form:
|
|
+**
|
|
+** (+/-)HH:MM
|
|
+**
|
|
+** If the parse is successful, write the number of minutes
|
|
+** of change in *pnMin and return 0. If a parser error occurs,
|
|
+** return 0.
|
|
+**
|
|
+** A missing specifier is not considered an error.
|
|
+*/
|
|
+static int parseTimezone(const char *zDate, DateTime *p){
|
|
+ int sgn = 0;
|
|
+ int nHr, nMn;
|
|
+ while( isspace(*zDate) ){ zDate++; }
|
|
+ p->tz = 0;
|
|
+ if( *zDate=='-' ){
|
|
+ sgn = -1;
|
|
+ }else if( *zDate=='+' ){
|
|
+ sgn = +1;
|
|
+ }else{
|
|
+ return *zDate!=0;
|
|
+ }
|
|
+ zDate++;
|
|
+ if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
|
|
+ return 1;
|
|
+ }
|
|
+ zDate += 5;
|
|
+ p->tz = sgn*(nMn + nHr*60);
|
|
+ while( isspace(*zDate) ){ zDate++; }
|
|
+ return *zDate!=0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
|
|
+** The HH, MM, and SS must each be exactly 2 digits. The
|
|
+** fractional seconds FFFF can be one or more digits.
|
|
+**
|
|
+** Return 1 if there is a parsing error and 0 on success.
|
|
+*/
|
|
+static int parseHhMmSs(const char *zDate, DateTime *p){
|
|
+ int h, m, s;
|
|
+ double ms = 0.0;
|
|
+ if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
|
|
+ return 1;
|
|
+ }
|
|
+ zDate += 5;
|
|
+ if( *zDate==':' ){
|
|
+ zDate++;
|
|
+ if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
|
|
+ return 1;
|
|
+ }
|
|
+ zDate += 2;
|
|
+ if( *zDate=='.' && isdigit(zDate[1]) ){
|
|
+ double rScale = 1.0;
|
|
+ zDate++;
|
|
+ while( isdigit(*zDate) ){
|
|
+ ms = ms*10.0 + *zDate - '0';
|
|
+ rScale *= 10.0;
|
|
+ zDate++;
|
|
+ }
|
|
+ ms /= rScale;
|
|
+ }
|
|
+ }else{
|
|
+ s = 0;
|
|
+ }
|
|
+ p->validJD = 0;
|
|
+ p->validHMS = 1;
|
|
+ p->h = h;
|
|
+ p->m = m;
|
|
+ p->s = s + ms;
|
|
+ if( parseTimezone(zDate, p) ) return 1;
|
|
+ p->validTZ = p->tz!=0;
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
|
|
+** that the YYYY-MM-DD is according to the Gregorian calendar.
|
|
+**
|
|
+** Reference: Meeus page 61
|
|
+*/
|
|
+static void computeJD(DateTime *p){
|
|
+ int Y, M, D, A, B, X1, X2;
|
|
+
|
|
+ if( p->validJD ) return;
|
|
+ if( p->validYMD ){
|
|
+ Y = p->Y;
|
|
+ M = p->M;
|
|
+ D = p->D;
|
|
+ }else{
|
|
+ Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */
|
|
+ M = 1;
|
|
+ D = 1;
|
|
+ }
|
|
+ if( M<=2 ){
|
|
+ Y--;
|
|
+ M += 12;
|
|
+ }
|
|
+ A = Y/100;
|
|
+ B = 2 - A + (A/4);
|
|
+ X1 = 365.25*(Y+4716);
|
|
+ X2 = 30.6001*(M+1);
|
|
+ p->rJD = X1 + X2 + D + B - 1524.5;
|
|
+ p->validJD = 1;
|
|
+ p->validYMD = 0;
|
|
+ if( p->validHMS ){
|
|
+ p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0;
|
|
+ if( p->validTZ ){
|
|
+ p->rJD += p->tz*60/86400.0;
|
|
+ p->validHMS = 0;
|
|
+ p->validTZ = 0;
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Parse dates of the form
|
|
+**
|
|
+** YYYY-MM-DD HH:MM:SS.FFF
|
|
+** YYYY-MM-DD HH:MM:SS
|
|
+** YYYY-MM-DD HH:MM
|
|
+** YYYY-MM-DD
|
|
+**
|
|
+** Write the result into the DateTime structure and return 0
|
|
+** on success and 1 if the input string is not a well-formed
|
|
+** date.
|
|
+*/
|
|
+static int parseYyyyMmDd(const char *zDate, DateTime *p){
|
|
+ int Y, M, D, neg;
|
|
+
|
|
+ if( zDate[0]=='-' ){
|
|
+ zDate++;
|
|
+ neg = 1;
|
|
+ }else{
|
|
+ neg = 0;
|
|
+ }
|
|
+ if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
|
|
+ return 1;
|
|
+ }
|
|
+ zDate += 10;
|
|
+ while( isspace(*zDate) ){ zDate++; }
|
|
+ if( parseHhMmSs(zDate, p)==0 ){
|
|
+ /* We got the time */
|
|
+ }else if( *zDate==0 ){
|
|
+ p->validHMS = 0;
|
|
+ }else{
|
|
+ return 1;
|
|
+ }
|
|
+ p->validJD = 0;
|
|
+ p->validYMD = 1;
|
|
+ p->Y = neg ? -Y : Y;
|
|
+ p->M = M;
|
|
+ p->D = D;
|
|
+ if( p->validTZ ){
|
|
+ computeJD(p);
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Attempt to parse the given string into a Julian Day Number. Return
|
|
+** the number of errors.
|
|
+**
|
|
+** The following are acceptable forms for the input string:
|
|
+**
|
|
+** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
|
|
+** DDDD.DD
|
|
+** now
|
|
+**
|
|
+** In the first form, the +/-HH:MM is always optional. The fractional
|
|
+** seconds extension (the ".FFF") is optional. The seconds portion
|
|
+** (":SS.FFF") is option. The year and date can be omitted as long
|
|
+** as there is a time string. The time string can be omitted as long
|
|
+** as there is a year and date.
|
|
+*/
|
|
+static int parseDateOrTime(const char *zDate, DateTime *p){
|
|
+ memset(p, 0, sizeof(*p));
|
|
+ if( parseYyyyMmDd(zDate,p)==0 ){
|
|
+ return 0;
|
|
+ }else if( parseHhMmSs(zDate, p)==0 ){
|
|
+ return 0;
|
|
+ }else if( sqliteStrICmp(zDate,"now")==0){
|
|
+ double r;
|
|
+ if( sqliteOsCurrentTime(&r)==0 ){
|
|
+ p->rJD = r;
|
|
+ p->validJD = 1;
|
|
+ return 0;
|
|
+ }
|
|
+ return 1;
|
|
+ }else if( sqliteIsNumber(zDate) ){
|
|
+ p->rJD = sqliteAtoF(zDate, 0);
|
|
+ p->validJD = 1;
|
|
+ return 0;
|
|
+ }
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Compute the Year, Month, and Day from the julian day number.
|
|
+*/
|
|
+static void computeYMD(DateTime *p){
|
|
+ int Z, A, B, C, D, E, X1;
|
|
+ if( p->validYMD ) return;
|
|
+ if( !p->validJD ){
|
|
+ p->Y = 2000;
|
|
+ p->M = 1;
|
|
+ p->D = 1;
|
|
+ }else{
|
|
+ Z = p->rJD + 0.5;
|
|
+ A = (Z - 1867216.25)/36524.25;
|
|
+ A = Z + 1 + A - (A/4);
|
|
+ B = A + 1524;
|
|
+ C = (B - 122.1)/365.25;
|
|
+ D = 365.25*C;
|
|
+ E = (B-D)/30.6001;
|
|
+ X1 = 30.6001*E;
|
|
+ p->D = B - D - X1;
|
|
+ p->M = E<14 ? E-1 : E-13;
|
|
+ p->Y = p->M>2 ? C - 4716 : C - 4715;
|
|
+ }
|
|
+ p->validYMD = 1;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Compute the Hour, Minute, and Seconds from the julian day number.
|
|
+*/
|
|
+static void computeHMS(DateTime *p){
|
|
+ int Z, s;
|
|
+ if( p->validHMS ) return;
|
|
+ Z = p->rJD + 0.5;
|
|
+ s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5;
|
|
+ p->s = 0.001*s;
|
|
+ s = p->s;
|
|
+ p->s -= s;
|
|
+ p->h = s/3600;
|
|
+ s -= p->h*3600;
|
|
+ p->m = s/60;
|
|
+ p->s += s - p->m*60;
|
|
+ p->validHMS = 1;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Compute both YMD and HMS
|
|
+*/
|
|
+static void computeYMD_HMS(DateTime *p){
|
|
+ computeYMD(p);
|
|
+ computeHMS(p);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Clear the YMD and HMS and the TZ
|
|
+*/
|
|
+static void clearYMD_HMS_TZ(DateTime *p){
|
|
+ p->validYMD = 0;
|
|
+ p->validHMS = 0;
|
|
+ p->validTZ = 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Compute the difference (in days) between localtime and UTC (a.k.a. GMT)
|
|
+** for the time value p where p is in UTC.
|
|
+*/
|
|
+static double localtimeOffset(DateTime *p){
|
|
+ DateTime x, y;
|
|
+ time_t t;
|
|
+ struct tm *pTm, tmbuf;
|
|
+ x = *p;
|
|
+ computeYMD_HMS(&x);
|
|
+ if( x.Y<1971 || x.Y>=2038 ){
|
|
+ x.Y = 2000;
|
|
+ x.M = 1;
|
|
+ x.D = 1;
|
|
+ x.h = 0;
|
|
+ x.m = 0;
|
|
+ x.s = 0.0;
|
|
+ } else {
|
|
+ int s = x.s + 0.5;
|
|
+ x.s = s;
|
|
+ }
|
|
+ x.tz = 0;
|
|
+ x.validJD = 0;
|
|
+ computeJD(&x);
|
|
+ t = (x.rJD-2440587.5)*86400.0 + 0.5;
|
|
+ sqliteOsEnterMutex();
|
|
+ pTm = php_localtime_r(&t, &tmbuf);
|
|
+ if (!pTm) {
|
|
+ return 0;
|
|
+ }
|
|
+ y.Y = pTm->tm_year + 1900;
|
|
+ y.M = pTm->tm_mon + 1;
|
|
+ y.D = pTm->tm_mday;
|
|
+ y.h = pTm->tm_hour;
|
|
+ y.m = pTm->tm_min;
|
|
+ y.s = pTm->tm_sec;
|
|
+ sqliteOsLeaveMutex();
|
|
+ y.validYMD = 1;
|
|
+ y.validHMS = 1;
|
|
+ y.validJD = 0;
|
|
+ y.validTZ = 0;
|
|
+ computeJD(&y);
|
|
+ return y.rJD - x.rJD;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Process a modifier to a date-time stamp. The modifiers are
|
|
+** as follows:
|
|
+**
|
|
+** NNN days
|
|
+** NNN hours
|
|
+** NNN minutes
|
|
+** NNN.NNNN seconds
|
|
+** NNN months
|
|
+** NNN years
|
|
+** start of month
|
|
+** start of year
|
|
+** start of week
|
|
+** start of day
|
|
+** weekday N
|
|
+** unixepoch
|
|
+** localtime
|
|
+** utc
|
|
+**
|
|
+** Return 0 on success and 1 if there is any kind of error.
|
|
+*/
|
|
+static int parseModifier(const char *zMod, DateTime *p){
|
|
+ int rc = 1;
|
|
+ int n;
|
|
+ double r;
|
|
+ char *z, zBuf[30];
|
|
+ z = zBuf;
|
|
+ for(n=0; n<sizeof(zBuf)-1 && zMod[n]; n++){
|
|
+ z[n] = tolower(zMod[n]);
|
|
+ }
|
|
+ z[n] = 0;
|
|
+ switch( z[0] ){
|
|
+ case 'l': {
|
|
+ /* localtime
|
|
+ **
|
|
+ ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
|
|
+ ** show local time.
|
|
+ */
|
|
+ if( strcmp(z, "localtime")==0 ){
|
|
+ computeJD(p);
|
|
+ p->rJD += localtimeOffset(p);
|
|
+ clearYMD_HMS_TZ(p);
|
|
+ rc = 0;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ case 'u': {
|
|
+ /*
|
|
+ ** unixepoch
|
|
+ **
|
|
+ ** Treat the current value of p->rJD as the number of
|
|
+ ** seconds since 1970. Convert to a real julian day number.
|
|
+ */
|
|
+ if( strcmp(z, "unixepoch")==0 && p->validJD ){
|
|
+ p->rJD = p->rJD/86400.0 + 2440587.5;
|
|
+ clearYMD_HMS_TZ(p);
|
|
+ rc = 0;
|
|
+ }else if( strcmp(z, "utc")==0 ){
|
|
+ double c1;
|
|
+ computeJD(p);
|
|
+ c1 = localtimeOffset(p);
|
|
+ p->rJD -= c1;
|
|
+ clearYMD_HMS_TZ(p);
|
|
+ p->rJD += c1 - localtimeOffset(p);
|
|
+ rc = 0;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ case 'w': {
|
|
+ /*
|
|
+ ** weekday N
|
|
+ **
|
|
+ ** Move the date to the same time on the next occurrance of
|
|
+ ** weekday N where 0==Sunday, 1==Monday, and so forth. If the
|
|
+ ** date is already on the appropriate weekday, this is a no-op.
|
|
+ */
|
|
+ if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0
|
|
+ && (n=r)==r && n>=0 && r<7 ){
|
|
+ int Z;
|
|
+ computeYMD_HMS(p);
|
|
+ p->validTZ = 0;
|
|
+ p->validJD = 0;
|
|
+ computeJD(p);
|
|
+ Z = p->rJD + 1.5;
|
|
+ Z %= 7;
|
|
+ if( Z>n ) Z -= 7;
|
|
+ p->rJD += n - Z;
|
|
+ clearYMD_HMS_TZ(p);
|
|
+ rc = 0;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ case 's': {
|
|
+ /*
|
|
+ ** start of TTTTT
|
|
+ **
|
|
+ ** Move the date backwards to the beginning of the current day,
|
|
+ ** or month or year.
|
|
+ */
|
|
+ if( strncmp(z, "start of ", 9)!=0 ) break;
|
|
+ z += 9;
|
|
+ computeYMD(p);
|
|
+ p->validHMS = 1;
|
|
+ p->h = p->m = 0;
|
|
+ p->s = 0.0;
|
|
+ p->validTZ = 0;
|
|
+ p->validJD = 0;
|
|
+ if( strcmp(z,"month")==0 ){
|
|
+ p->D = 1;
|
|
+ rc = 0;
|
|
+ }else if( strcmp(z,"year")==0 ){
|
|
+ computeYMD(p);
|
|
+ p->M = 1;
|
|
+ p->D = 1;
|
|
+ rc = 0;
|
|
+ }else if( strcmp(z,"day")==0 ){
|
|
+ rc = 0;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ case '+':
|
|
+ case '-':
|
|
+ case '0':
|
|
+ case '1':
|
|
+ case '2':
|
|
+ case '3':
|
|
+ case '4':
|
|
+ case '5':
|
|
+ case '6':
|
|
+ case '7':
|
|
+ case '8':
|
|
+ case '9': {
|
|
+ n = getValue(z, &r);
|
|
+ if( n<=0 ) break;
|
|
+ if( z[n]==':' ){
|
|
+ /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
|
|
+ ** specified number of hours, minutes, seconds, and fractional seconds
|
|
+ ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
|
|
+ ** omitted.
|
|
+ */
|
|
+ const char *z2 = z;
|
|
+ DateTime tx;
|
|
+ int day;
|
|
+ if( !isdigit(*z2) ) z2++;
|
|
+ memset(&tx, 0, sizeof(tx));
|
|
+ if( parseHhMmSs(z2, &tx) ) break;
|
|
+ computeJD(&tx);
|
|
+ tx.rJD -= 0.5;
|
|
+ day = (int)tx.rJD;
|
|
+ tx.rJD -= day;
|
|
+ if( z[0]=='-' ) tx.rJD = -tx.rJD;
|
|
+ computeJD(p);
|
|
+ clearYMD_HMS_TZ(p);
|
|
+ p->rJD += tx.rJD;
|
|
+ rc = 0;
|
|
+ break;
|
|
+ }
|
|
+ z += n;
|
|
+ while( isspace(z[0]) ) z++;
|
|
+ n = strlen(z);
|
|
+ if( n>10 || n<3 ) break;
|
|
+ if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
|
|
+ computeJD(p);
|
|
+ rc = 0;
|
|
+ if( n==3 && strcmp(z,"day")==0 ){
|
|
+ p->rJD += r;
|
|
+ }else if( n==4 && strcmp(z,"hour")==0 ){
|
|
+ p->rJD += r/24.0;
|
|
+ }else if( n==6 && strcmp(z,"minute")==0 ){
|
|
+ p->rJD += r/(24.0*60.0);
|
|
+ }else if( n==6 && strcmp(z,"second")==0 ){
|
|
+ p->rJD += r/(24.0*60.0*60.0);
|
|
+ }else if( n==5 && strcmp(z,"month")==0 ){
|
|
+ int x, y;
|
|
+ computeYMD_HMS(p);
|
|
+ p->M += r;
|
|
+ x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
|
|
+ p->Y += x;
|
|
+ p->M -= x*12;
|
|
+ p->validJD = 0;
|
|
+ computeJD(p);
|
|
+ y = r;
|
|
+ if( y!=r ){
|
|
+ p->rJD += (r - y)*30.0;
|
|
+ }
|
|
+ }else if( n==4 && strcmp(z,"year")==0 ){
|
|
+ computeYMD_HMS(p);
|
|
+ p->Y += r;
|
|
+ p->validJD = 0;
|
|
+ computeJD(p);
|
|
+ }else{
|
|
+ rc = 1;
|
|
+ }
|
|
+ clearYMD_HMS_TZ(p);
|
|
+ break;
|
|
+ }
|
|
+ default: {
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Process time function arguments. argv[0] is a date-time stamp.
|
|
+** argv[1] and following are modifiers. Parse them all and write
|
|
+** the resulting time into the DateTime structure p. Return 0
|
|
+** on success and 1 if there are any errors.
|
|
+*/
|
|
+static int isDate(int argc, const char **argv, DateTime *p){
|
|
+ int i;
|
|
+ if( argc==0 ) return 1;
|
|
+ if( argv[0]==0 || parseDateOrTime(argv[0], p) ) return 1;
|
|
+ for(i=1; i<argc; i++){
|
|
+ if( argv[i]==0 || parseModifier(argv[i], p) ) return 1;
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+
|
|
+/*
|
|
+** The following routines implement the various date and time functions
|
|
+** of SQLite.
|
|
+*/
|
|
+
|
|
+/*
|
|
+** julianday( TIMESTRING, MOD, MOD, ...)
|
|
+**
|
|
+** Return the julian day number of the date specified in the arguments
|
|
+*/
|
|
+static void juliandayFunc(sqlite_func *context, int argc, const char **argv){
|
|
+ DateTime x;
|
|
+ if( isDate(argc, argv, &x)==0 ){
|
|
+ computeJD(&x);
|
|
+ sqlite_set_result_double(context, x.rJD);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** datetime( TIMESTRING, MOD, MOD, ...)
|
|
+**
|
|
+** Return YYYY-MM-DD HH:MM:SS
|
|
+*/
|
|
+static void datetimeFunc(sqlite_func *context, int argc, const char **argv){
|
|
+ DateTime x;
|
|
+ if( isDate(argc, argv, &x)==0 ){
|
|
+ char zBuf[100];
|
|
+ computeYMD_HMS(&x);
|
|
+ sprintf(zBuf, "%04d-%02d-%02d %02d:%02d:%02d",x.Y, x.M, x.D, x.h, x.m,
|
|
+ (int)(x.s));
|
|
+ sqlite_set_result_string(context, zBuf, -1);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** time( TIMESTRING, MOD, MOD, ...)
|
|
+**
|
|
+** Return HH:MM:SS
|
|
+*/
|
|
+static void timeFunc(sqlite_func *context, int argc, const char **argv){
|
|
+ DateTime x;
|
|
+ if( isDate(argc, argv, &x)==0 ){
|
|
+ char zBuf[100];
|
|
+ computeHMS(&x);
|
|
+ sprintf(zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
|
|
+ sqlite_set_result_string(context, zBuf, -1);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** date( TIMESTRING, MOD, MOD, ...)
|
|
+**
|
|
+** Return YYYY-MM-DD
|
|
+*/
|
|
+static void dateFunc(sqlite_func *context, int argc, const char **argv){
|
|
+ DateTime x;
|
|
+ if( isDate(argc, argv, &x)==0 ){
|
|
+ char zBuf[100];
|
|
+ computeYMD(&x);
|
|
+ sprintf(zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
|
|
+ sqlite_set_result_string(context, zBuf, -1);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
|
|
+**
|
|
+** Return a string described by FORMAT. Conversions as follows:
|
|
+**
|
|
+** %d day of month
|
|
+** %f ** fractional seconds SS.SSS
|
|
+** %H hour 00-24
|
|
+** %j day of year 000-366
|
|
+** %J ** Julian day number
|
|
+** %m month 01-12
|
|
+** %M minute 00-59
|
|
+** %s seconds since 1970-01-01
|
|
+** %S seconds 00-59
|
|
+** %w day of week 0-6 sunday==0
|
|
+** %W week of year 00-53
|
|
+** %Y year 0000-9999
|
|
+** %% %
|
|
+*/
|
|
+static void strftimeFunc(sqlite_func *context, int argc, const char **argv){
|
|
+ DateTime x;
|
|
+ int n, i, j;
|
|
+ char *z;
|
|
+ const char *zFmt = argv[0];
|
|
+ char zBuf[100];
|
|
+ if( argv[0]==0 || isDate(argc-1, argv+1, &x) ) return;
|
|
+ for(i=0, n=1; zFmt[i]; i++, n++){
|
|
+ if( zFmt[i]=='%' ){
|
|
+ switch( zFmt[i+1] ){
|
|
+ case 'd':
|
|
+ case 'H':
|
|
+ case 'm':
|
|
+ case 'M':
|
|
+ case 'S':
|
|
+ case 'W':
|
|
+ n++;
|
|
+ /* fall thru */
|
|
+ case 'w':
|
|
+ case '%':
|
|
+ break;
|
|
+ case 'f':
|
|
+ n += 8;
|
|
+ break;
|
|
+ case 'j':
|
|
+ n += 3;
|
|
+ break;
|
|
+ case 'Y':
|
|
+ n += 8;
|
|
+ break;
|
|
+ case 's':
|
|
+ case 'J':
|
|
+ n += 50;
|
|
+ break;
|
|
+ default:
|
|
+ return; /* ERROR. return a NULL */
|
|
+ }
|
|
+ i++;
|
|
+ }
|
|
+ }
|
|
+ if( n<sizeof(zBuf) ){
|
|
+ z = zBuf;
|
|
+ }else{
|
|
+ z = sqliteMalloc( n );
|
|
+ if( z==0 ) return;
|
|
+ }
|
|
+ computeJD(&x);
|
|
+ computeYMD_HMS(&x);
|
|
+ for(i=j=0; zFmt[i]; i++){
|
|
+ if( zFmt[i]!='%' ){
|
|
+ z[j++] = zFmt[i];
|
|
+ }else{
|
|
+ i++;
|
|
+ switch( zFmt[i] ){
|
|
+ case 'd': sprintf(&z[j],"%02d",x.D); j+=2; break;
|
|
+ case 'f': {
|
|
+ int s = x.s;
|
|
+ int ms = (x.s - s)*1000.0;
|
|
+ sprintf(&z[j],"%02d.%03d",s,ms);
|
|
+ j += strlen(&z[j]);
|
|
+ break;
|
|
+ }
|
|
+ case 'H': sprintf(&z[j],"%02d",x.h); j+=2; break;
|
|
+ case 'W': /* Fall thru */
|
|
+ case 'j': {
|
|
+ int n; /* Number of days since 1st day of year */
|
|
+ DateTime y = x;
|
|
+ y.validJD = 0;
|
|
+ y.M = 1;
|
|
+ y.D = 1;
|
|
+ computeJD(&y);
|
|
+ n = x.rJD - y.rJD;
|
|
+ if( zFmt[i]=='W' ){
|
|
+ int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
|
|
+ wd = ((int)(x.rJD+0.5)) % 7;
|
|
+ sprintf(&z[j],"%02d",(n+7-wd)/7);
|
|
+ j += 2;
|
|
+ }else{
|
|
+ sprintf(&z[j],"%03d",n+1);
|
|
+ j += 3;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ case 'J': sprintf(&z[j],"%.16g",x.rJD); j+=strlen(&z[j]); break;
|
|
+ case 'm': sprintf(&z[j],"%02d",x.M); j+=2; break;
|
|
+ case 'M': sprintf(&z[j],"%02d",x.m); j+=2; break;
|
|
+ case 's': {
|
|
+ sprintf(&z[j],"%d",(int)((x.rJD-2440587.5)*86400.0 + 0.5));
|
|
+ j += strlen(&z[j]);
|
|
+ break;
|
|
+ }
|
|
+ case 'S': sprintf(&z[j],"%02d",(int)(x.s+0.5)); j+=2; break;
|
|
+ case 'w': z[j++] = (((int)(x.rJD+1.5)) % 7) + '0'; break;
|
|
+ case 'Y': sprintf(&z[j],"%04d",x.Y); j+=strlen(&z[j]); break;
|
|
+ case '%': z[j++] = '%'; break;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ z[j] = 0;
|
|
+ sqlite_set_result_string(context, z, -1);
|
|
+ if( z!=zBuf ){
|
|
+ sqliteFree(z);
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
|
|
+
|
|
+/*
|
|
+** This function registered all of the above C functions as SQL
|
|
+** functions. This should be the only routine in this file with
|
|
+** external linkage.
|
|
+*/
|
|
+void sqliteRegisterDateTimeFunctions(sqlite *db){
|
|
+#ifndef SQLITE_OMIT_DATETIME_FUNCS
|
|
+ static struct {
|
|
+ char *zName;
|
|
+ int nArg;
|
|
+ int dataType;
|
|
+ void (*xFunc)(sqlite_func*,int,const char**);
|
|
+ } aFuncs[] = {
|
|
+ { "julianday", -1, SQLITE_NUMERIC, juliandayFunc },
|
|
+ { "date", -1, SQLITE_TEXT, dateFunc },
|
|
+ { "time", -1, SQLITE_TEXT, timeFunc },
|
|
+ { "datetime", -1, SQLITE_TEXT, datetimeFunc },
|
|
+ { "strftime", -1, SQLITE_TEXT, strftimeFunc },
|
|
+ };
|
|
+ int i;
|
|
+
|
|
+ for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
|
|
+ sqlite_create_function(db, aFuncs[i].zName,
|
|
+ aFuncs[i].nArg, aFuncs[i].xFunc, 0);
|
|
+ if( aFuncs[i].xFunc ){
|
|
+ sqlite_function_type(db, aFuncs[i].zName, aFuncs[i].dataType);
|
|
+ }
|
|
+ }
|
|
+#endif
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/delete.c
|
|
@@ -0,0 +1,393 @@
|
|
+/*
|
|
+** 2001 September 15
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This file contains C code routines that are called by the parser
|
|
+** to handle DELETE FROM statements.
|
|
+**
|
|
+** $Id$
|
|
+*/
|
|
+#include "sqliteInt.h"
|
|
+
|
|
+/*
|
|
+** Look up every table that is named in pSrc. If any table is not found,
|
|
+** add an error message to pParse->zErrMsg and return NULL. If all tables
|
|
+** are found, return a pointer to the last table.
|
|
+*/
|
|
+Table *sqliteSrcListLookup(Parse *pParse, SrcList *pSrc){
|
|
+ Table *pTab = 0;
|
|
+ int i;
|
|
+ for(i=0; i<pSrc->nSrc; i++){
|
|
+ const char *zTab = pSrc->a[i].zName;
|
|
+ const char *zDb = pSrc->a[i].zDatabase;
|
|
+ pTab = sqliteLocateTable(pParse, zTab, zDb);
|
|
+ pSrc->a[i].pTab = pTab;
|
|
+ }
|
|
+ return pTab;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Check to make sure the given table is writable. If it is not
|
|
+** writable, generate an error message and return 1. If it is
|
|
+** writable return 0;
|
|
+*/
|
|
+int sqliteIsReadOnly(Parse *pParse, Table *pTab, int viewOk){
|
|
+ if( pTab->readOnly ){
|
|
+ sqliteErrorMsg(pParse, "table %s may not be modified", pTab->zName);
|
|
+ return 1;
|
|
+ }
|
|
+ if( !viewOk && pTab->pSelect ){
|
|
+ sqliteErrorMsg(pParse, "cannot modify %s because it is a view",pTab->zName);
|
|
+ return 1;
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Process a DELETE FROM statement.
|
|
+*/
|
|
+void sqliteDeleteFrom(
|
|
+ Parse *pParse, /* The parser context */
|
|
+ SrcList *pTabList, /* The table from which we should delete things */
|
|
+ Expr *pWhere /* The WHERE clause. May be null */
|
|
+){
|
|
+ Vdbe *v; /* The virtual database engine */
|
|
+ Table *pTab; /* The table from which records will be deleted */
|
|
+ const char *zDb; /* Name of database holding pTab */
|
|
+ int end, addr; /* A couple addresses of generated code */
|
|
+ int i; /* Loop counter */
|
|
+ WhereInfo *pWInfo; /* Information about the WHERE clause */
|
|
+ Index *pIdx; /* For looping over indices of the table */
|
|
+ int iCur; /* VDBE Cursor number for pTab */
|
|
+ sqlite *db; /* Main database structure */
|
|
+ int isView; /* True if attempting to delete from a view */
|
|
+ AuthContext sContext; /* Authorization context */
|
|
+
|
|
+ int row_triggers_exist = 0; /* True if any triggers exist */
|
|
+ int before_triggers; /* True if there are BEFORE triggers */
|
|
+ int after_triggers; /* True if there are AFTER triggers */
|
|
+ int oldIdx = -1; /* Cursor for the OLD table of AFTER triggers */
|
|
+
|
|
+ sContext.pParse = 0;
|
|
+ if( pParse->nErr || sqlite_malloc_failed ){
|
|
+ pTabList = 0;
|
|
+ goto delete_from_cleanup;
|
|
+ }
|
|
+ db = pParse->db;
|
|
+ assert( pTabList->nSrc==1 );
|
|
+
|
|
+ /* Locate the table which we want to delete. This table has to be
|
|
+ ** put in an SrcList structure because some of the subroutines we
|
|
+ ** will be calling are designed to work with multiple tables and expect
|
|
+ ** an SrcList* parameter instead of just a Table* parameter.
|
|
+ */
|
|
+ pTab = sqliteSrcListLookup(pParse, pTabList);
|
|
+ if( pTab==0 ) goto delete_from_cleanup;
|
|
+ before_triggers = sqliteTriggersExist(pParse, pTab->pTrigger,
|
|
+ TK_DELETE, TK_BEFORE, TK_ROW, 0);
|
|
+ after_triggers = sqliteTriggersExist(pParse, pTab->pTrigger,
|
|
+ TK_DELETE, TK_AFTER, TK_ROW, 0);
|
|
+ row_triggers_exist = before_triggers || after_triggers;
|
|
+ isView = pTab->pSelect!=0;
|
|
+ if( sqliteIsReadOnly(pParse, pTab, before_triggers) ){
|
|
+ goto delete_from_cleanup;
|
|
+ }
|
|
+ assert( pTab->iDb<db->nDb );
|
|
+ zDb = db->aDb[pTab->iDb].zName;
|
|
+ if( sqliteAuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
|
|
+ goto delete_from_cleanup;
|
|
+ }
|
|
+
|
|
+ /* If pTab is really a view, make sure it has been initialized.
|
|
+ */
|
|
+ if( isView && sqliteViewGetColumnNames(pParse, pTab) ){
|
|
+ goto delete_from_cleanup;
|
|
+ }
|
|
+
|
|
+ /* Allocate a cursor used to store the old.* data for a trigger.
|
|
+ */
|
|
+ if( row_triggers_exist ){
|
|
+ oldIdx = pParse->nTab++;
|
|
+ }
|
|
+
|
|
+ /* Resolve the column names in all the expressions.
|
|
+ */
|
|
+ assert( pTabList->nSrc==1 );
|
|
+ iCur = pTabList->a[0].iCursor = pParse->nTab++;
|
|
+ if( pWhere ){
|
|
+ if( sqliteExprResolveIds(pParse, pTabList, 0, pWhere) ){
|
|
+ goto delete_from_cleanup;
|
|
+ }
|
|
+ if( sqliteExprCheck(pParse, pWhere, 0, 0) ){
|
|
+ goto delete_from_cleanup;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Start the view context
|
|
+ */
|
|
+ if( isView ){
|
|
+ sqliteAuthContextPush(pParse, &sContext, pTab->zName);
|
|
+ }
|
|
+
|
|
+ /* Begin generating code.
|
|
+ */
|
|
+ v = sqliteGetVdbe(pParse);
|
|
+ if( v==0 ){
|
|
+ goto delete_from_cleanup;
|
|
+ }
|
|
+ sqliteBeginWriteOperation(pParse, row_triggers_exist, pTab->iDb);
|
|
+
|
|
+ /* If we are trying to delete from a view, construct that view into
|
|
+ ** a temporary table.
|
|
+ */
|
|
+ if( isView ){
|
|
+ Select *pView = sqliteSelectDup(pTab->pSelect);
|
|
+ sqliteSelect(pParse, pView, SRT_TempTable, iCur, 0, 0, 0);
|
|
+ sqliteSelectDelete(pView);
|
|
+ }
|
|
+
|
|
+ /* Initialize the counter of the number of rows deleted, if
|
|
+ ** we are counting rows.
|
|
+ */
|
|
+ if( db->flags & SQLITE_CountRows ){
|
|
+ sqliteVdbeAddOp(v, OP_Integer, 0, 0);
|
|
+ }
|
|
+
|
|
+ /* Special case: A DELETE without a WHERE clause deletes everything.
|
|
+ ** It is easier just to erase the whole table. Note, however, that
|
|
+ ** this means that the row change count will be incorrect.
|
|
+ */
|
|
+ if( pWhere==0 && !row_triggers_exist ){
|
|
+ if( db->flags & SQLITE_CountRows ){
|
|
+ /* If counting rows deleted, just count the total number of
|
|
+ ** entries in the table. */
|
|
+ int endOfLoop = sqliteVdbeMakeLabel(v);
|
|
+ int addr;
|
|
+ if( !isView ){
|
|
+ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
|
|
+ sqliteVdbeAddOp(v, OP_OpenRead, iCur, pTab->tnum);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_Rewind, iCur, sqliteVdbeCurrentAddr(v)+2);
|
|
+ addr = sqliteVdbeAddOp(v, OP_AddImm, 1, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Next, iCur, addr);
|
|
+ sqliteVdbeResolveLabel(v, endOfLoop);
|
|
+ sqliteVdbeAddOp(v, OP_Close, iCur, 0);
|
|
+ }
|
|
+ if( !isView ){
|
|
+ sqliteVdbeAddOp(v, OP_Clear, pTab->tnum, pTab->iDb);
|
|
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
+ sqliteVdbeAddOp(v, OP_Clear, pIdx->tnum, pIdx->iDb);
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* The usual case: There is a WHERE clause so we have to scan through
|
|
+ ** the table and pick which records to delete.
|
|
+ */
|
|
+ else{
|
|
+ /* Begin the database scan
|
|
+ */
|
|
+ pWInfo = sqliteWhereBegin(pParse, pTabList, pWhere, 1, 0);
|
|
+ if( pWInfo==0 ) goto delete_from_cleanup;
|
|
+
|
|
+ /* Remember the key of every item to be deleted.
|
|
+ */
|
|
+ sqliteVdbeAddOp(v, OP_ListWrite, 0, 0);
|
|
+ if( db->flags & SQLITE_CountRows ){
|
|
+ sqliteVdbeAddOp(v, OP_AddImm, 1, 0);
|
|
+ }
|
|
+
|
|
+ /* End the database scan loop.
|
|
+ */
|
|
+ sqliteWhereEnd(pWInfo);
|
|
+
|
|
+ /* Open the pseudo-table used to store OLD if there are triggers.
|
|
+ */
|
|
+ if( row_triggers_exist ){
|
|
+ sqliteVdbeAddOp(v, OP_OpenPseudo, oldIdx, 0);
|
|
+ }
|
|
+
|
|
+ /* Delete every item whose key was written to the list during the
|
|
+ ** database scan. We have to delete items after the scan is complete
|
|
+ ** because deleting an item can change the scan order.
|
|
+ */
|
|
+ sqliteVdbeAddOp(v, OP_ListRewind, 0, 0);
|
|
+ end = sqliteVdbeMakeLabel(v);
|
|
+
|
|
+ /* This is the beginning of the delete loop when there are
|
|
+ ** row triggers.
|
|
+ */
|
|
+ if( row_triggers_exist ){
|
|
+ addr = sqliteVdbeAddOp(v, OP_ListRead, 0, end);
|
|
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
|
+ if( !isView ){
|
|
+ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
|
|
+ sqliteVdbeAddOp(v, OP_OpenRead, iCur, pTab->tnum);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
|
|
+
|
|
+ sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
|
|
+ sqliteVdbeAddOp(v, OP_RowData, iCur, 0);
|
|
+ sqliteVdbeAddOp(v, OP_PutIntKey, oldIdx, 0);
|
|
+ if( !isView ){
|
|
+ sqliteVdbeAddOp(v, OP_Close, iCur, 0);
|
|
+ }
|
|
+
|
|
+ sqliteCodeRowTrigger(pParse, TK_DELETE, 0, TK_BEFORE, pTab, -1,
|
|
+ oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default,
|
|
+ addr);
|
|
+ }
|
|
+
|
|
+ if( !isView ){
|
|
+ /* Open cursors for the table we are deleting from and all its
|
|
+ ** indices. If there are row triggers, this happens inside the
|
|
+ ** OP_ListRead loop because the cursor have to all be closed
|
|
+ ** before the trigger fires. If there are no row triggers, the
|
|
+ ** cursors are opened only once on the outside the loop.
|
|
+ */
|
|
+ pParse->nTab = iCur + 1;
|
|
+ sqliteOpenTableAndIndices(pParse, pTab, iCur);
|
|
+
|
|
+ /* This is the beginning of the delete loop when there are no
|
|
+ ** row triggers */
|
|
+ if( !row_triggers_exist ){
|
|
+ addr = sqliteVdbeAddOp(v, OP_ListRead, 0, end);
|
|
+ }
|
|
+
|
|
+ /* Delete the row */
|
|
+ sqliteGenerateRowDelete(db, v, pTab, iCur, pParse->trigStack==0);
|
|
+ }
|
|
+
|
|
+ /* If there are row triggers, close all cursors then invoke
|
|
+ ** the AFTER triggers
|
|
+ */
|
|
+ if( row_triggers_exist ){
|
|
+ if( !isView ){
|
|
+ for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
|
|
+ sqliteVdbeAddOp(v, OP_Close, iCur + i, pIdx->tnum);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_Close, iCur, 0);
|
|
+ }
|
|
+ sqliteCodeRowTrigger(pParse, TK_DELETE, 0, TK_AFTER, pTab, -1,
|
|
+ oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default,
|
|
+ addr);
|
|
+ }
|
|
+
|
|
+ /* End of the delete loop */
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, addr);
|
|
+ sqliteVdbeResolveLabel(v, end);
|
|
+ sqliteVdbeAddOp(v, OP_ListReset, 0, 0);
|
|
+
|
|
+ /* Close the cursors after the loop if there are no row triggers */
|
|
+ if( !row_triggers_exist ){
|
|
+ for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
|
|
+ sqliteVdbeAddOp(v, OP_Close, iCur + i, pIdx->tnum);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_Close, iCur, 0);
|
|
+ pParse->nTab = iCur;
|
|
+ }
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_SetCounts, 0, 0);
|
|
+ sqliteEndWriteOperation(pParse);
|
|
+
|
|
+ /*
|
|
+ ** Return the number of rows that were deleted.
|
|
+ */
|
|
+ if( db->flags & SQLITE_CountRows ){
|
|
+ sqliteVdbeAddOp(v, OP_ColumnName, 0, 1);
|
|
+ sqliteVdbeChangeP3(v, -1, "rows deleted", P3_STATIC);
|
|
+ sqliteVdbeAddOp(v, OP_Callback, 1, 0);
|
|
+ }
|
|
+
|
|
+delete_from_cleanup:
|
|
+ sqliteAuthContextPop(&sContext);
|
|
+ sqliteSrcListDelete(pTabList);
|
|
+ sqliteExprDelete(pWhere);
|
|
+ return;
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine generates VDBE code that causes a single row of a
|
|
+** single table to be deleted.
|
|
+**
|
|
+** The VDBE must be in a particular state when this routine is called.
|
|
+** These are the requirements:
|
|
+**
|
|
+** 1. A read/write cursor pointing to pTab, the table containing the row
|
|
+** to be deleted, must be opened as cursor number "base".
|
|
+**
|
|
+** 2. Read/write cursors for all indices of pTab must be open as
|
|
+** cursor number base+i for the i-th index.
|
|
+**
|
|
+** 3. The record number of the row to be deleted must be on the top
|
|
+** of the stack.
|
|
+**
|
|
+** This routine pops the top of the stack to remove the record number
|
|
+** and then generates code to remove both the table record and all index
|
|
+** entries that point to that record.
|
|
+*/
|
|
+void sqliteGenerateRowDelete(
|
|
+ sqlite *db, /* The database containing the index */
|
|
+ Vdbe *v, /* Generate code into this VDBE */
|
|
+ Table *pTab, /* Table containing the row to be deleted */
|
|
+ int iCur, /* Cursor number for the table */
|
|
+ int count /* Increment the row change counter */
|
|
+){
|
|
+ int addr;
|
|
+ addr = sqliteVdbeAddOp(v, OP_NotExists, iCur, 0);
|
|
+ sqliteGenerateRowIndexDelete(db, v, pTab, iCur, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Delete, iCur,
|
|
+ (count?OPFLAG_NCHANGE:0) | OPFLAG_CSCHANGE);
|
|
+ sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine generates VDBE code that causes the deletion of all
|
|
+** index entries associated with a single row of a single table.
|
|
+**
|
|
+** The VDBE must be in a particular state when this routine is called.
|
|
+** These are the requirements:
|
|
+**
|
|
+** 1. A read/write cursor pointing to pTab, the table containing the row
|
|
+** to be deleted, must be opened as cursor number "iCur".
|
|
+**
|
|
+** 2. Read/write cursors for all indices of pTab must be open as
|
|
+** cursor number iCur+i for the i-th index.
|
|
+**
|
|
+** 3. The "iCur" cursor must be pointing to the row that is to be
|
|
+** deleted.
|
|
+*/
|
|
+void sqliteGenerateRowIndexDelete(
|
|
+ sqlite *db, /* The database containing the index */
|
|
+ Vdbe *v, /* Generate code into this VDBE */
|
|
+ Table *pTab, /* Table containing the row to be deleted */
|
|
+ int iCur, /* Cursor number for the table */
|
|
+ char *aIdxUsed /* Only delete if aIdxUsed!=0 && aIdxUsed[i]!=0 */
|
|
+){
|
|
+ int i;
|
|
+ Index *pIdx;
|
|
+
|
|
+ for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
|
|
+ int j;
|
|
+ if( aIdxUsed!=0 && aIdxUsed[i-1]==0 ) continue;
|
|
+ sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
|
|
+ for(j=0; j<pIdx->nColumn; j++){
|
|
+ int idx = pIdx->aiColumn[j];
|
|
+ if( idx==pTab->iPKey ){
|
|
+ sqliteVdbeAddOp(v, OP_Dup, j, 0);
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_Column, iCur, idx);
|
|
+ }
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0);
|
|
+ if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIdx);
|
|
+ sqliteVdbeAddOp(v, OP_IdxDelete, iCur+i, 0);
|
|
+ }
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/encode.c
|
|
@@ -0,0 +1,257 @@
|
|
+/*
|
|
+** 2002 April 25
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This file contains helper routines used to translate binary data into
|
|
+** a null-terminated string (suitable for use in SQLite) and back again.
|
|
+** These are convenience routines for use by people who want to store binary
|
|
+** data in an SQLite database. The code in this file is not used by any other
|
|
+** part of the SQLite library.
|
|
+**
|
|
+** $Id$
|
|
+*/
|
|
+#include <string.h>
|
|
+#include <assert.h>
|
|
+
|
|
+/*
|
|
+** How This Encoder Works
|
|
+**
|
|
+** The output is allowed to contain any character except 0x27 (') and
|
|
+** 0x00. This is accomplished by using an escape character to encode
|
|
+** 0x27 and 0x00 as a two-byte sequence. The escape character is always
|
|
+** 0x01. An 0x00 is encoded as the two byte sequence 0x01 0x01. The
|
|
+** 0x27 character is encoded as the two byte sequence 0x01 0x28. Finally,
|
|
+** the escape character itself is encoded as the two-character sequence
|
|
+** 0x01 0x02.
|
|
+**
|
|
+** To summarize, the encoder works by using an escape sequences as follows:
|
|
+**
|
|
+** 0x00 -> 0x01 0x01
|
|
+** 0x01 -> 0x01 0x02
|
|
+** 0x27 -> 0x01 0x28
|
|
+**
|
|
+** If that were all the encoder did, it would work, but in certain cases
|
|
+** it could double the size of the encoded string. For example, to
|
|
+** encode a string of 100 0x27 characters would require 100 instances of
|
|
+** the 0x01 0x03 escape sequence resulting in a 200-character output.
|
|
+** We would prefer to keep the size of the encoded string smaller than
|
|
+** this.
|
|
+**
|
|
+** To minimize the encoding size, we first add a fixed offset value to each
|
|
+** byte in the sequence. The addition is modulo 256. (That is to say, if
|
|
+** the sum of the original character value and the offset exceeds 256, then
|
|
+** the higher order bits are truncated.) The offset is chosen to minimize
|
|
+** the number of characters in the string that need to be escaped. For
|
|
+** example, in the case above where the string was composed of 100 0x27
|
|
+** characters, the offset might be 0x01. Each of the 0x27 characters would
|
|
+** then be converted into an 0x28 character which would not need to be
|
|
+** escaped at all and so the 100 character input string would be converted
|
|
+** into just 100 characters of output. Actually 101 characters of output -
|
|
+** we have to record the offset used as the first byte in the sequence so
|
|
+** that the string can be decoded. Since the offset value is stored as
|
|
+** part of the output string and the output string is not allowed to contain
|
|
+** characters 0x00 or 0x27, the offset cannot be 0x00 or 0x27.
|
|
+**
|
|
+** Here, then, are the encoding steps:
|
|
+**
|
|
+** (1) Choose an offset value and make it the first character of
|
|
+** output.
|
|
+**
|
|
+** (2) Copy each input character into the output buffer, one by
|
|
+** one, adding the offset value as you copy.
|
|
+**
|
|
+** (3) If the value of an input character plus offset is 0x00, replace
|
|
+** that one character by the two-character sequence 0x01 0x01.
|
|
+** If the sum is 0x01, replace it with 0x01 0x02. If the sum
|
|
+** is 0x27, replace it with 0x01 0x03.
|
|
+**
|
|
+** (4) Put a 0x00 terminator at the end of the output.
|
|
+**
|
|
+** Decoding is obvious:
|
|
+**
|
|
+** (5) Copy encoded characters except the first into the decode
|
|
+** buffer. Set the first encoded character aside for use as
|
|
+** the offset in step 7 below.
|
|
+**
|
|
+** (6) Convert each 0x01 0x01 sequence into a single character 0x00.
|
|
+** Convert 0x01 0x02 into 0x01. Convert 0x01 0x28 into 0x27.
|
|
+**
|
|
+** (7) Subtract the offset value that was the first character of
|
|
+** the encoded buffer from all characters in the output buffer.
|
|
+**
|
|
+** The only tricky part is step (1) - how to compute an offset value to
|
|
+** minimize the size of the output buffer. This is accomplished by testing
|
|
+** all offset values and picking the one that results in the fewest number
|
|
+** of escapes. To do that, we first scan the entire input and count the
|
|
+** number of occurances of each character value in the input. Suppose
|
|
+** the number of 0x00 characters is N(0), the number of occurances of 0x01
|
|
+** is N(1), and so forth up to the number of occurances of 0xff is N(255).
|
|
+** An offset of 0 is not allowed so we don't have to test it. The number
|
|
+** of escapes required for an offset of 1 is N(1)+N(2)+N(40). The number
|
|
+** of escapes required for an offset of 2 is N(2)+N(3)+N(41). And so forth.
|
|
+** In this way we find the offset that gives the minimum number of escapes,
|
|
+** and thus minimizes the length of the output string.
|
|
+*/
|
|
+
|
|
+/*
|
|
+** Encode a binary buffer "in" of size n bytes so that it contains
|
|
+** no instances of characters '\'' or '\000'. The output is
|
|
+** null-terminated and can be used as a string value in an INSERT
|
|
+** or UPDATE statement. Use sqlite_decode_binary() to convert the
|
|
+** string back into its original binary.
|
|
+**
|
|
+** The result is written into a preallocated output buffer "out".
|
|
+** "out" must be able to hold at least 2 +(257*n)/254 bytes.
|
|
+** In other words, the output will be expanded by as much as 3
|
|
+** bytes for every 254 bytes of input plus 2 bytes of fixed overhead.
|
|
+** (This is approximately 2 + 1.0118*n or about a 1.2% size increase.)
|
|
+**
|
|
+** The return value is the number of characters in the encoded
|
|
+** string, excluding the "\000" terminator.
|
|
+**
|
|
+** If out==NULL then no output is generated but the routine still returns
|
|
+** the number of characters that would have been generated if out had
|
|
+** not been NULL.
|
|
+*/
|
|
+int sqlite_encode_binary(const unsigned char *in, int n, unsigned char *out){
|
|
+ int i, j, e, m;
|
|
+ unsigned char x;
|
|
+ int cnt[256];
|
|
+ if( n<=0 ){
|
|
+ if( out ){
|
|
+ out[0] = 'x';
|
|
+ out[1] = 0;
|
|
+ }
|
|
+ return 1;
|
|
+ }
|
|
+ memset(cnt, 0, sizeof(cnt));
|
|
+ for(i=n-1; i>=0; i--){ cnt[in[i]]++; }
|
|
+ m = n;
|
|
+ for(i=1; i<256; i++){
|
|
+ int sum;
|
|
+ if( i=='\'' ) continue;
|
|
+ sum = cnt[i] + cnt[(i+1)&0xff] + cnt[(i+'\'')&0xff];
|
|
+ if( sum<m ){
|
|
+ m = sum;
|
|
+ e = i;
|
|
+ if( m==0 ) break;
|
|
+ }
|
|
+ }
|
|
+ if( out==0 ){
|
|
+ return n+m+1;
|
|
+ }
|
|
+ out[0] = e;
|
|
+ j = 1;
|
|
+ for(i=0; i<n; i++){
|
|
+ x = in[i] - e;
|
|
+ if( x==0 || x==1 || x=='\''){
|
|
+ out[j++] = 1;
|
|
+ x++;
|
|
+ }
|
|
+ out[j++] = x;
|
|
+ }
|
|
+ out[j] = 0;
|
|
+ assert( j==n+m+1 );
|
|
+ return j;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Decode the string "in" into binary data and write it into "out".
|
|
+** This routine reverses the encoding created by sqlite_encode_binary().
|
|
+** The output will always be a few bytes less than the input. The number
|
|
+** of bytes of output is returned. If the input is not a well-formed
|
|
+** encoding, -1 is returned.
|
|
+**
|
|
+** The "in" and "out" parameters may point to the same buffer in order
|
|
+** to decode a string in place.
|
|
+*/
|
|
+int sqlite_decode_binary(const unsigned char *in, unsigned char *out){
|
|
+ int i, e;
|
|
+ unsigned char c;
|
|
+ e = *(in++);
|
|
+ if (e == 0) {
|
|
+ return 0;
|
|
+ }
|
|
+ i = 0;
|
|
+ while( (c = *(in++))!=0 ){
|
|
+ if (c == 1) {
|
|
+ c = *(in++) - 1;
|
|
+ }
|
|
+ out[i++] = c + e;
|
|
+ }
|
|
+ return i;
|
|
+}
|
|
+
|
|
+#ifdef ENCODER_TEST
|
|
+#include <stdio.h>
|
|
+/*
|
|
+** The subroutines above are not tested by the usual test suite. To test
|
|
+** these routines, compile just this one file with a -DENCODER_TEST=1 option
|
|
+** and run the result.
|
|
+*/
|
|
+int main(int argc, char **argv){
|
|
+ int i, j, n, m, nOut, nByteIn, nByteOut;
|
|
+ unsigned char in[30000];
|
|
+ unsigned char out[33000];
|
|
+
|
|
+ nByteIn = nByteOut = 0;
|
|
+ for(i=0; i<sizeof(in); i++){
|
|
+ printf("Test %d: ", i+1);
|
|
+ n = rand() % (i+1);
|
|
+ if( i%100==0 ){
|
|
+ int k;
|
|
+ for(j=k=0; j<n; j++){
|
|
+ /* if( k==0 || k=='\'' ) k++; */
|
|
+ in[j] = k;
|
|
+ k = (k+1)&0xff;
|
|
+ }
|
|
+ }else{
|
|
+ for(j=0; j<n; j++) in[j] = rand() & 0xff;
|
|
+ }
|
|
+ nByteIn += n;
|
|
+ nOut = sqlite_encode_binary(in, n, out);
|
|
+ nByteOut += nOut;
|
|
+ if( nOut!=strlen(out) ){
|
|
+ printf(" ERROR return value is %d instead of %d\n", nOut, strlen(out));
|
|
+ exit(1);
|
|
+ }
|
|
+ if( nOut!=sqlite_encode_binary(in, n, 0) ){
|
|
+ printf(" ERROR actual output size disagrees with predicted size\n");
|
|
+ exit(1);
|
|
+ }
|
|
+ m = (256*n + 1262)/253;
|
|
+ printf("size %d->%d (max %d)", n, strlen(out)+1, m);
|
|
+ if( strlen(out)+1>m ){
|
|
+ printf(" ERROR output too big\n");
|
|
+ exit(1);
|
|
+ }
|
|
+ for(j=0; out[j]; j++){
|
|
+ if( out[j]=='\'' ){
|
|
+ printf(" ERROR contains (')\n");
|
|
+ exit(1);
|
|
+ }
|
|
+ }
|
|
+ j = sqlite_decode_binary(out, out);
|
|
+ if( j!=n ){
|
|
+ printf(" ERROR decode size %d\n", j);
|
|
+ exit(1);
|
|
+ }
|
|
+ if( memcmp(in, out, n)!=0 ){
|
|
+ printf(" ERROR decode mismatch\n");
|
|
+ exit(1);
|
|
+ }
|
|
+ printf(" OK\n");
|
|
+ }
|
|
+ fprintf(stderr,"Finished. Total encoding: %d->%d bytes\n",
|
|
+ nByteIn, nByteOut);
|
|
+ fprintf(stderr,"Avg size increase: %.3f%%\n",
|
|
+ (nByteOut-nByteIn)*100.0/(double)nByteIn);
|
|
+}
|
|
+#endif /* ENCODER_TEST */
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/expr.c
|
|
@@ -0,0 +1,1662 @@
|
|
+/*
|
|
+** 2001 September 15
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This file contains routines used for analyzing expressions and
|
|
+** for generating VDBE code that evaluates expressions in SQLite.
|
|
+**
|
|
+** $Id$
|
|
+*/
|
|
+#include "sqliteInt.h"
|
|
+#include <ctype.h>
|
|
+
|
|
+/*
|
|
+** Construct a new expression node and return a pointer to it. Memory
|
|
+** for this node is obtained from sqliteMalloc(). The calling function
|
|
+** is responsible for making sure the node eventually gets freed.
|
|
+*/
|
|
+Expr *sqliteExpr(int op, Expr *pLeft, Expr *pRight, Token *pToken){
|
|
+ Expr *pNew;
|
|
+ pNew = sqliteMalloc( sizeof(Expr) );
|
|
+ if( pNew==0 ){
|
|
+ /* When malloc fails, we leak memory from pLeft and pRight */
|
|
+ return 0;
|
|
+ }
|
|
+ pNew->op = op;
|
|
+ pNew->pLeft = pLeft;
|
|
+ pNew->pRight = pRight;
|
|
+ if( pToken ){
|
|
+ assert( pToken->dyn==0 );
|
|
+ pNew->token = *pToken;
|
|
+ pNew->span = *pToken;
|
|
+ }else{
|
|
+ assert( pNew->token.dyn==0 );
|
|
+ assert( pNew->token.z==0 );
|
|
+ assert( pNew->token.n==0 );
|
|
+ if( pLeft && pRight ){
|
|
+ sqliteExprSpan(pNew, &pLeft->span, &pRight->span);
|
|
+ }else{
|
|
+ pNew->span = pNew->token;
|
|
+ }
|
|
+ }
|
|
+ return pNew;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Set the Expr.span field of the given expression to span all
|
|
+** text between the two given tokens.
|
|
+*/
|
|
+void sqliteExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
|
|
+ assert( pRight!=0 );
|
|
+ assert( pLeft!=0 );
|
|
+ /* Note: pExpr might be NULL due to a prior malloc failure */
|
|
+ if( pExpr && pRight->z && pLeft->z ){
|
|
+ if( pLeft->dyn==0 && pRight->dyn==0 ){
|
|
+ pExpr->span.z = pLeft->z;
|
|
+ pExpr->span.n = pRight->n + Addr(pRight->z) - Addr(pLeft->z);
|
|
+ }else{
|
|
+ pExpr->span.z = 0;
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Construct a new expression node for a function with multiple
|
|
+** arguments.
|
|
+*/
|
|
+Expr *sqliteExprFunction(ExprList *pList, Token *pToken){
|
|
+ Expr *pNew;
|
|
+ pNew = sqliteMalloc( sizeof(Expr) );
|
|
+ if( pNew==0 ){
|
|
+ /* sqliteExprListDelete(pList); // Leak pList when malloc fails */
|
|
+ return 0;
|
|
+ }
|
|
+ pNew->op = TK_FUNCTION;
|
|
+ pNew->pList = pList;
|
|
+ if( pToken ){
|
|
+ assert( pToken->dyn==0 );
|
|
+ pNew->token = *pToken;
|
|
+ }else{
|
|
+ pNew->token.z = 0;
|
|
+ }
|
|
+ pNew->span = pNew->token;
|
|
+ return pNew;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Recursively delete an expression tree.
|
|
+*/
|
|
+void sqliteExprDelete(Expr *p){
|
|
+ if( p==0 ) return;
|
|
+ if( p->span.dyn ) sqliteFree((char*)p->span.z);
|
|
+ if( p->token.dyn ) sqliteFree((char*)p->token.z);
|
|
+ sqliteExprDelete(p->pLeft);
|
|
+ sqliteExprDelete(p->pRight);
|
|
+ sqliteExprListDelete(p->pList);
|
|
+ sqliteSelectDelete(p->pSelect);
|
|
+ sqliteFree(p);
|
|
+}
|
|
+
|
|
+
|
|
+/*
|
|
+** The following group of routines make deep copies of expressions,
|
|
+** expression lists, ID lists, and select statements. The copies can
|
|
+** be deleted (by being passed to their respective ...Delete() routines)
|
|
+** without effecting the originals.
|
|
+**
|
|
+** The expression list, ID, and source lists return by sqliteExprListDup(),
|
|
+** sqliteIdListDup(), and sqliteSrcListDup() can not be further expanded
|
|
+** by subsequent calls to sqlite*ListAppend() routines.
|
|
+**
|
|
+** Any tables that the SrcList might point to are not duplicated.
|
|
+*/
|
|
+Expr *sqliteExprDup(Expr *p){
|
|
+ Expr *pNew;
|
|
+ if( p==0 ) return 0;
|
|
+ pNew = sqliteMallocRaw( sizeof(*p) );
|
|
+ if( pNew==0 ) return 0;
|
|
+ memcpy(pNew, p, sizeof(*pNew));
|
|
+ if( p->token.z!=0 ){
|
|
+ pNew->token.z = sqliteStrNDup(p->token.z, p->token.n);
|
|
+ pNew->token.dyn = 1;
|
|
+ }else{
|
|
+ assert( pNew->token.z==0 );
|
|
+ }
|
|
+ pNew->span.z = 0;
|
|
+ pNew->pLeft = sqliteExprDup(p->pLeft);
|
|
+ pNew->pRight = sqliteExprDup(p->pRight);
|
|
+ pNew->pList = sqliteExprListDup(p->pList);
|
|
+ pNew->pSelect = sqliteSelectDup(p->pSelect);
|
|
+ return pNew;
|
|
+}
|
|
+void sqliteTokenCopy(Token *pTo, Token *pFrom){
|
|
+ if( pTo->dyn ) sqliteFree((char*)pTo->z);
|
|
+ if( pFrom->z ){
|
|
+ pTo->n = pFrom->n;
|
|
+ pTo->z = sqliteStrNDup(pFrom->z, pFrom->n);
|
|
+ pTo->dyn = 1;
|
|
+ }else{
|
|
+ pTo->z = 0;
|
|
+ }
|
|
+}
|
|
+ExprList *sqliteExprListDup(ExprList *p){
|
|
+ ExprList *pNew;
|
|
+ struct ExprList_item *pItem;
|
|
+ int i;
|
|
+ if( p==0 ) return 0;
|
|
+ pNew = sqliteMalloc( sizeof(*pNew) );
|
|
+ if( pNew==0 ) return 0;
|
|
+ pNew->nExpr = pNew->nAlloc = p->nExpr;
|
|
+ pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) );
|
|
+ if( pItem==0 ){
|
|
+ sqliteFree(pNew);
|
|
+ return 0;
|
|
+ }
|
|
+ for(i=0; i<p->nExpr; i++, pItem++){
|
|
+ Expr *pNewExpr, *pOldExpr;
|
|
+ pItem->pExpr = pNewExpr = sqliteExprDup(pOldExpr = p->a[i].pExpr);
|
|
+ if( pOldExpr->span.z!=0 && pNewExpr ){
|
|
+ /* Always make a copy of the span for top-level expressions in the
|
|
+ ** expression list. The logic in SELECT processing that determines
|
|
+ ** the names of columns in the result set needs this information */
|
|
+ sqliteTokenCopy(&pNewExpr->span, &pOldExpr->span);
|
|
+ }
|
|
+ assert( pNewExpr==0 || pNewExpr->span.z!=0
|
|
+ || pOldExpr->span.z==0 || sqlite_malloc_failed );
|
|
+ pItem->zName = sqliteStrDup(p->a[i].zName);
|
|
+ pItem->sortOrder = p->a[i].sortOrder;
|
|
+ pItem->isAgg = p->a[i].isAgg;
|
|
+ pItem->done = 0;
|
|
+ }
|
|
+ return pNew;
|
|
+}
|
|
+SrcList *sqliteSrcListDup(SrcList *p){
|
|
+ SrcList *pNew;
|
|
+ int i;
|
|
+ int nByte;
|
|
+ if( p==0 ) return 0;
|
|
+ nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
|
|
+ pNew = sqliteMallocRaw( nByte );
|
|
+ if( pNew==0 ) return 0;
|
|
+ pNew->nSrc = pNew->nAlloc = p->nSrc;
|
|
+ for(i=0; i<p->nSrc; i++){
|
|
+ struct SrcList_item *pNewItem = &pNew->a[i];
|
|
+ struct SrcList_item *pOldItem = &p->a[i];
|
|
+ pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase);
|
|
+ pNewItem->zName = sqliteStrDup(pOldItem->zName);
|
|
+ pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias);
|
|
+ pNewItem->jointype = pOldItem->jointype;
|
|
+ pNewItem->iCursor = pOldItem->iCursor;
|
|
+ pNewItem->pTab = 0;
|
|
+ pNewItem->pSelect = sqliteSelectDup(pOldItem->pSelect);
|
|
+ pNewItem->pOn = sqliteExprDup(pOldItem->pOn);
|
|
+ pNewItem->pUsing = sqliteIdListDup(pOldItem->pUsing);
|
|
+ }
|
|
+ return pNew;
|
|
+}
|
|
+IdList *sqliteIdListDup(IdList *p){
|
|
+ IdList *pNew;
|
|
+ int i;
|
|
+ if( p==0 ) return 0;
|
|
+ pNew = sqliteMallocRaw( sizeof(*pNew) );
|
|
+ if( pNew==0 ) return 0;
|
|
+ pNew->nId = pNew->nAlloc = p->nId;
|
|
+ pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) );
|
|
+ if( pNew->a==0 ) return 0;
|
|
+ for(i=0; i<p->nId; i++){
|
|
+ struct IdList_item *pNewItem = &pNew->a[i];
|
|
+ struct IdList_item *pOldItem = &p->a[i];
|
|
+ pNewItem->zName = sqliteStrDup(pOldItem->zName);
|
|
+ pNewItem->idx = pOldItem->idx;
|
|
+ }
|
|
+ return pNew;
|
|
+}
|
|
+Select *sqliteSelectDup(Select *p){
|
|
+ Select *pNew;
|
|
+ if( p==0 ) return 0;
|
|
+ pNew = sqliteMallocRaw( sizeof(*p) );
|
|
+ if( pNew==0 ) return 0;
|
|
+ pNew->isDistinct = p->isDistinct;
|
|
+ pNew->pEList = sqliteExprListDup(p->pEList);
|
|
+ pNew->pSrc = sqliteSrcListDup(p->pSrc);
|
|
+ pNew->pWhere = sqliteExprDup(p->pWhere);
|
|
+ pNew->pGroupBy = sqliteExprListDup(p->pGroupBy);
|
|
+ pNew->pHaving = sqliteExprDup(p->pHaving);
|
|
+ pNew->pOrderBy = sqliteExprListDup(p->pOrderBy);
|
|
+ pNew->op = p->op;
|
|
+ pNew->pPrior = sqliteSelectDup(p->pPrior);
|
|
+ pNew->nLimit = p->nLimit;
|
|
+ pNew->nOffset = p->nOffset;
|
|
+ pNew->zSelect = 0;
|
|
+ pNew->iLimit = -1;
|
|
+ pNew->iOffset = -1;
|
|
+ return pNew;
|
|
+}
|
|
+
|
|
+
|
|
+/*
|
|
+** Add a new element to the end of an expression list. If pList is
|
|
+** initially NULL, then create a new expression list.
|
|
+*/
|
|
+ExprList *sqliteExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){
|
|
+ if( pList==0 ){
|
|
+ pList = sqliteMalloc( sizeof(ExprList) );
|
|
+ if( pList==0 ){
|
|
+ /* sqliteExprDelete(pExpr); // Leak memory if malloc fails */
|
|
+ return 0;
|
|
+ }
|
|
+ assert( pList->nAlloc==0 );
|
|
+ }
|
|
+ if( pList->nAlloc<=pList->nExpr ){
|
|
+ pList->nAlloc = pList->nAlloc*2 + 4;
|
|
+ pList->a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]));
|
|
+ if( pList->a==0 ){
|
|
+ /* sqliteExprDelete(pExpr); // Leak memory if malloc fails */
|
|
+ pList->nExpr = pList->nAlloc = 0;
|
|
+ return pList;
|
|
+ }
|
|
+ }
|
|
+ assert( pList->a!=0 );
|
|
+ if( pExpr || pName ){
|
|
+ struct ExprList_item *pItem = &pList->a[pList->nExpr++];
|
|
+ memset(pItem, 0, sizeof(*pItem));
|
|
+ pItem->pExpr = pExpr;
|
|
+ if( pName ){
|
|
+ sqliteSetNString(&pItem->zName, pName->z, pName->n, 0);
|
|
+ sqliteDequote(pItem->zName);
|
|
+ }
|
|
+ }
|
|
+ return pList;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Delete an entire expression list.
|
|
+*/
|
|
+void sqliteExprListDelete(ExprList *pList){
|
|
+ int i;
|
|
+ if( pList==0 ) return;
|
|
+ assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
|
|
+ assert( pList->nExpr<=pList->nAlloc );
|
|
+ for(i=0; i<pList->nExpr; i++){
|
|
+ sqliteExprDelete(pList->a[i].pExpr);
|
|
+ sqliteFree(pList->a[i].zName);
|
|
+ }
|
|
+ sqliteFree(pList->a);
|
|
+ sqliteFree(pList);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Walk an expression tree. Return 1 if the expression is constant
|
|
+** and 0 if it involves variables.
|
|
+**
|
|
+** For the purposes of this function, a double-quoted string (ex: "abc")
|
|
+** is considered a variable but a single-quoted string (ex: 'abc') is
|
|
+** a constant.
|
|
+*/
|
|
+int sqliteExprIsConstant(Expr *p){
|
|
+ switch( p->op ){
|
|
+ case TK_ID:
|
|
+ case TK_COLUMN:
|
|
+ case TK_DOT:
|
|
+ case TK_FUNCTION:
|
|
+ return 0;
|
|
+ case TK_NULL:
|
|
+ case TK_STRING:
|
|
+ case TK_INTEGER:
|
|
+ case TK_FLOAT:
|
|
+ case TK_VARIABLE:
|
|
+ return 1;
|
|
+ default: {
|
|
+ if( p->pLeft && !sqliteExprIsConstant(p->pLeft) ) return 0;
|
|
+ if( p->pRight && !sqliteExprIsConstant(p->pRight) ) return 0;
|
|
+ if( p->pList ){
|
|
+ int i;
|
|
+ for(i=0; i<p->pList->nExpr; i++){
|
|
+ if( !sqliteExprIsConstant(p->pList->a[i].pExpr) ) return 0;
|
|
+ }
|
|
+ }
|
|
+ return p->pLeft!=0 || p->pRight!=0 || (p->pList && p->pList->nExpr>0);
|
|
+ }
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** If the given expression codes a constant integer that is small enough
|
|
+** to fit in a 32-bit integer, return 1 and put the value of the integer
|
|
+** in *pValue. If the expression is not an integer or if it is too big
|
|
+** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
|
|
+*/
|
|
+int sqliteExprIsInteger(Expr *p, int *pValue){
|
|
+ switch( p->op ){
|
|
+ case TK_INTEGER: {
|
|
+ if( sqliteFitsIn32Bits(p->token.z) ){
|
|
+ *pValue = atoi(p->token.z);
|
|
+ return 1;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ case TK_STRING: {
|
|
+ const char *z = p->token.z;
|
|
+ int n = p->token.n;
|
|
+ if( n>0 && z[0]=='-' ){ z++; n--; }
|
|
+ while( n>0 && *z && isdigit(*z) ){ z++; n--; }
|
|
+ if( n==0 && sqliteFitsIn32Bits(p->token.z) ){
|
|
+ *pValue = atoi(p->token.z);
|
|
+ return 1;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ case TK_UPLUS: {
|
|
+ return sqliteExprIsInteger(p->pLeft, pValue);
|
|
+ }
|
|
+ case TK_UMINUS: {
|
|
+ int v;
|
|
+ if( sqliteExprIsInteger(p->pLeft, &v) ){
|
|
+ *pValue = -v;
|
|
+ return 1;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ default: break;
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return TRUE if the given string is a row-id column name.
|
|
+*/
|
|
+int sqliteIsRowid(const char *z){
|
|
+ if( sqliteStrICmp(z, "_ROWID_")==0 ) return 1;
|
|
+ if( sqliteStrICmp(z, "ROWID")==0 ) return 1;
|
|
+ if( sqliteStrICmp(z, "OID")==0 ) return 1;
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
|
|
+** that name in the set of source tables in pSrcList and make the pExpr
|
|
+** expression node refer back to that source column. The following changes
|
|
+** are made to pExpr:
|
|
+**
|
|
+** pExpr->iDb Set the index in db->aDb[] of the database holding
|
|
+** the table.
|
|
+** pExpr->iTable Set to the cursor number for the table obtained
|
|
+** from pSrcList.
|
|
+** pExpr->iColumn Set to the column number within the table.
|
|
+** pExpr->dataType Set to the appropriate data type for the column.
|
|
+** pExpr->op Set to TK_COLUMN.
|
|
+** pExpr->pLeft Any expression this points to is deleted
|
|
+** pExpr->pRight Any expression this points to is deleted.
|
|
+**
|
|
+** The pDbToken is the name of the database (the "X"). This value may be
|
|
+** NULL meaning that name is of the form Y.Z or Z. Any available database
|
|
+** can be used. The pTableToken is the name of the table (the "Y"). This
|
|
+** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it
|
|
+** means that the form of the name is Z and that columns from any table
|
|
+** can be used.
|
|
+**
|
|
+** If the name cannot be resolved unambiguously, leave an error message
|
|
+** in pParse and return non-zero. Return zero on success.
|
|
+*/
|
|
+static int lookupName(
|
|
+ Parse *pParse, /* The parsing context */
|
|
+ Token *pDbToken, /* Name of the database containing table, or NULL */
|
|
+ Token *pTableToken, /* Name of table containing column, or NULL */
|
|
+ Token *pColumnToken, /* Name of the column. */
|
|
+ SrcList *pSrcList, /* List of tables used to resolve column names */
|
|
+ ExprList *pEList, /* List of expressions used to resolve "AS" */
|
|
+ Expr *pExpr /* Make this EXPR node point to the selected column */
|
|
+){
|
|
+ char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */
|
|
+ char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */
|
|
+ char *zCol = 0; /* Name of the column. The "Z" */
|
|
+ int i, j; /* Loop counters */
|
|
+ int cnt = 0; /* Number of matching column names */
|
|
+ int cntTab = 0; /* Number of matching table names */
|
|
+ sqlite *db = pParse->db; /* The database */
|
|
+
|
|
+ assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
|
|
+ if( pDbToken && pDbToken->z ){
|
|
+ zDb = sqliteStrNDup(pDbToken->z, pDbToken->n);
|
|
+ sqliteDequote(zDb);
|
|
+ }else{
|
|
+ zDb = 0;
|
|
+ }
|
|
+ if( pTableToken && pTableToken->z ){
|
|
+ zTab = sqliteStrNDup(pTableToken->z, pTableToken->n);
|
|
+ sqliteDequote(zTab);
|
|
+ }else{
|
|
+ assert( zDb==0 );
|
|
+ zTab = 0;
|
|
+ }
|
|
+ zCol = sqliteStrNDup(pColumnToken->z, pColumnToken->n);
|
|
+ sqliteDequote(zCol);
|
|
+ if( sqlite_malloc_failed ){
|
|
+ return 1; /* Leak memory (zDb and zTab) if malloc fails */
|
|
+ }
|
|
+ assert( zTab==0 || pEList==0 );
|
|
+
|
|
+ pExpr->iTable = -1;
|
|
+ for(i=0; i<pSrcList->nSrc; i++){
|
|
+ struct SrcList_item *pItem = &pSrcList->a[i];
|
|
+ Table *pTab = pItem->pTab;
|
|
+ Column *pCol;
|
|
+
|
|
+ if( pTab==0 ) continue;
|
|
+ assert( pTab->nCol>0 );
|
|
+ if( zTab ){
|
|
+ if( pItem->zAlias ){
|
|
+ char *zTabName = pItem->zAlias;
|
|
+ if( sqliteStrICmp(zTabName, zTab)!=0 ) continue;
|
|
+ }else{
|
|
+ char *zTabName = pTab->zName;
|
|
+ if( zTabName==0 || sqliteStrICmp(zTabName, zTab)!=0 ) continue;
|
|
+ if( zDb!=0 && sqliteStrICmp(db->aDb[pTab->iDb].zName, zDb)!=0 ){
|
|
+ continue;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ if( 0==(cntTab++) ){
|
|
+ pExpr->iTable = pItem->iCursor;
|
|
+ pExpr->iDb = pTab->iDb;
|
|
+ }
|
|
+ for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
|
|
+ if( sqliteStrICmp(pCol->zName, zCol)==0 ){
|
|
+ cnt++;
|
|
+ pExpr->iTable = pItem->iCursor;
|
|
+ pExpr->iDb = pTab->iDb;
|
|
+ /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
|
|
+ pExpr->iColumn = j==pTab->iPKey ? -1 : j;
|
|
+ pExpr->dataType = pCol->sortOrder & SQLITE_SO_TYPEMASK;
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* If we have not already resolved the name, then maybe
|
|
+ ** it is a new.* or old.* trigger argument reference
|
|
+ */
|
|
+ if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
|
|
+ TriggerStack *pTriggerStack = pParse->trigStack;
|
|
+ Table *pTab = 0;
|
|
+ if( pTriggerStack->newIdx != -1 && sqliteStrICmp("new", zTab) == 0 ){
|
|
+ pExpr->iTable = pTriggerStack->newIdx;
|
|
+ assert( pTriggerStack->pTab );
|
|
+ pTab = pTriggerStack->pTab;
|
|
+ }else if( pTriggerStack->oldIdx != -1 && sqliteStrICmp("old", zTab) == 0 ){
|
|
+ pExpr->iTable = pTriggerStack->oldIdx;
|
|
+ assert( pTriggerStack->pTab );
|
|
+ pTab = pTriggerStack->pTab;
|
|
+ }
|
|
+
|
|
+ if( pTab ){
|
|
+ int j;
|
|
+ Column *pCol = pTab->aCol;
|
|
+
|
|
+ pExpr->iDb = pTab->iDb;
|
|
+ cntTab++;
|
|
+ for(j=0; j < pTab->nCol; j++, pCol++) {
|
|
+ if( sqliteStrICmp(pCol->zName, zCol)==0 ){
|
|
+ cnt++;
|
|
+ pExpr->iColumn = j==pTab->iPKey ? -1 : j;
|
|
+ pExpr->dataType = pCol->sortOrder & SQLITE_SO_TYPEMASK;
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ ** Perhaps the name is a reference to the ROWID
|
|
+ */
|
|
+ if( cnt==0 && cntTab==1 && sqliteIsRowid(zCol) ){
|
|
+ cnt = 1;
|
|
+ pExpr->iColumn = -1;
|
|
+ pExpr->dataType = SQLITE_SO_NUM;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
|
|
+ ** might refer to an result-set alias. This happens, for example, when
|
|
+ ** we are resolving names in the WHERE clause of the following command:
|
|
+ **
|
|
+ ** SELECT a+b AS x FROM table WHERE x<10;
|
|
+ **
|
|
+ ** In cases like this, replace pExpr with a copy of the expression that
|
|
+ ** forms the result set entry ("a+b" in the example) and return immediately.
|
|
+ ** Note that the expression in the result set should have already been
|
|
+ ** resolved by the time the WHERE clause is resolved.
|
|
+ */
|
|
+ if( cnt==0 && pEList!=0 ){
|
|
+ for(j=0; j<pEList->nExpr; j++){
|
|
+ char *zAs = pEList->a[j].zName;
|
|
+ if( zAs!=0 && sqliteStrICmp(zAs, zCol)==0 ){
|
|
+ assert( pExpr->pLeft==0 && pExpr->pRight==0 );
|
|
+ pExpr->op = TK_AS;
|
|
+ pExpr->iColumn = j;
|
|
+ pExpr->pLeft = sqliteExprDup(pEList->a[j].pExpr);
|
|
+ sqliteFree(zCol);
|
|
+ assert( zTab==0 && zDb==0 );
|
|
+ return 0;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ ** If X and Y are NULL (in other words if only the column name Z is
|
|
+ ** supplied) and the value of Z is enclosed in double-quotes, then
|
|
+ ** Z is a string literal if it doesn't match any column names. In that
|
|
+ ** case, we need to return right away and not make any changes to
|
|
+ ** pExpr.
|
|
+ */
|
|
+ if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
|
|
+ sqliteFree(zCol);
|
|
+ return 0;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ ** cnt==0 means there was not match. cnt>1 means there were two or
|
|
+ ** more matches. Either way, we have an error.
|
|
+ */
|
|
+ if( cnt!=1 ){
|
|
+ char *z = 0;
|
|
+ char *zErr;
|
|
+ zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s";
|
|
+ if( zDb ){
|
|
+ sqliteSetString(&z, zDb, ".", zTab, ".", zCol, 0);
|
|
+ }else if( zTab ){
|
|
+ sqliteSetString(&z, zTab, ".", zCol, 0);
|
|
+ }else{
|
|
+ z = sqliteStrDup(zCol);
|
|
+ }
|
|
+ sqliteErrorMsg(pParse, zErr, z);
|
|
+ sqliteFree(z);
|
|
+ }
|
|
+
|
|
+ /* Clean up and return
|
|
+ */
|
|
+ sqliteFree(zDb);
|
|
+ sqliteFree(zTab);
|
|
+ sqliteFree(zCol);
|
|
+ sqliteExprDelete(pExpr->pLeft);
|
|
+ pExpr->pLeft = 0;
|
|
+ sqliteExprDelete(pExpr->pRight);
|
|
+ pExpr->pRight = 0;
|
|
+ pExpr->op = TK_COLUMN;
|
|
+ sqliteAuthRead(pParse, pExpr, pSrcList);
|
|
+ return cnt!=1;
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine walks an expression tree and resolves references to
|
|
+** table columns. Nodes of the form ID.ID or ID resolve into an
|
|
+** index to the table in the table list and a column offset. The
|
|
+** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable
|
|
+** value is changed to the index of the referenced table in pTabList
|
|
+** plus the "base" value. The base value will ultimately become the
|
|
+** VDBE cursor number for a cursor that is pointing into the referenced
|
|
+** table. The Expr.iColumn value is changed to the index of the column
|
|
+** of the referenced table. The Expr.iColumn value for the special
|
|
+** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an
|
|
+** alias for ROWID.
|
|
+**
|
|
+** We also check for instances of the IN operator. IN comes in two
|
|
+** forms:
|
|
+**
|
|
+** expr IN (exprlist)
|
|
+** and
|
|
+** expr IN (SELECT ...)
|
|
+**
|
|
+** The first form is handled by creating a set holding the list
|
|
+** of allowed values. The second form causes the SELECT to generate
|
|
+** a temporary table.
|
|
+**
|
|
+** This routine also looks for scalar SELECTs that are part of an expression.
|
|
+** If it finds any, it generates code to write the value of that select
|
|
+** into a memory cell.
|
|
+**
|
|
+** Unknown columns or tables provoke an error. The function returns
|
|
+** the number of errors seen and leaves an error message on pParse->zErrMsg.
|
|
+*/
|
|
+int sqliteExprResolveIds(
|
|
+ Parse *pParse, /* The parser context */
|
|
+ SrcList *pSrcList, /* List of tables used to resolve column names */
|
|
+ ExprList *pEList, /* List of expressions used to resolve "AS" */
|
|
+ Expr *pExpr /* The expression to be analyzed. */
|
|
+){
|
|
+ int i;
|
|
+
|
|
+ if( pExpr==0 || pSrcList==0 ) return 0;
|
|
+ for(i=0; i<pSrcList->nSrc; i++){
|
|
+ assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab );
|
|
+ }
|
|
+ switch( pExpr->op ){
|
|
+ /* Double-quoted strings (ex: "abc") are used as identifiers if
|
|
+ ** possible. Otherwise they remain as strings. Single-quoted
|
|
+ ** strings (ex: 'abc') are always string literals.
|
|
+ */
|
|
+ case TK_STRING: {
|
|
+ if( pExpr->token.z[0]=='\'' ) break;
|
|
+ /* Fall thru into the TK_ID case if this is a double-quoted string */
|
|
+ }
|
|
+ /* A lone identifier is the name of a columnd.
|
|
+ */
|
|
+ case TK_ID: {
|
|
+ if( lookupName(pParse, 0, 0, &pExpr->token, pSrcList, pEList, pExpr) ){
|
|
+ return 1;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ /* A table name and column name: ID.ID
|
|
+ ** Or a database, table and column: ID.ID.ID
|
|
+ */
|
|
+ case TK_DOT: {
|
|
+ Token *pColumn;
|
|
+ Token *pTable;
|
|
+ Token *pDb;
|
|
+ Expr *pRight;
|
|
+
|
|
+ pRight = pExpr->pRight;
|
|
+ if( pRight->op==TK_ID ){
|
|
+ pDb = 0;
|
|
+ pTable = &pExpr->pLeft->token;
|
|
+ pColumn = &pRight->token;
|
|
+ }else{
|
|
+ assert( pRight->op==TK_DOT );
|
|
+ pDb = &pExpr->pLeft->token;
|
|
+ pTable = &pRight->pLeft->token;
|
|
+ pColumn = &pRight->pRight->token;
|
|
+ }
|
|
+ if( lookupName(pParse, pDb, pTable, pColumn, pSrcList, 0, pExpr) ){
|
|
+ return 1;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ case TK_IN: {
|
|
+ Vdbe *v = sqliteGetVdbe(pParse);
|
|
+ if( v==0 ) return 1;
|
|
+ if( sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){
|
|
+ return 1;
|
|
+ }
|
|
+ if( pExpr->pSelect ){
|
|
+ /* Case 1: expr IN (SELECT ...)
|
|
+ **
|
|
+ ** Generate code to write the results of the select into a temporary
|
|
+ ** table. The cursor number of the temporary table has already
|
|
+ ** been put in iTable by sqliteExprResolveInSelect().
|
|
+ */
|
|
+ pExpr->iTable = pParse->nTab++;
|
|
+ sqliteVdbeAddOp(v, OP_OpenTemp, pExpr->iTable, 1);
|
|
+ sqliteSelect(pParse, pExpr->pSelect, SRT_Set, pExpr->iTable, 0,0,0);
|
|
+ }else if( pExpr->pList ){
|
|
+ /* Case 2: expr IN (exprlist)
|
|
+ **
|
|
+ ** Create a set to put the exprlist values in. The Set id is stored
|
|
+ ** in iTable.
|
|
+ */
|
|
+ int i, iSet;
|
|
+ for(i=0; i<pExpr->pList->nExpr; i++){
|
|
+ Expr *pE2 = pExpr->pList->a[i].pExpr;
|
|
+ if( !sqliteExprIsConstant(pE2) ){
|
|
+ sqliteErrorMsg(pParse,
|
|
+ "right-hand side of IN operator must be constant");
|
|
+ return 1;
|
|
+ }
|
|
+ if( sqliteExprCheck(pParse, pE2, 0, 0) ){
|
|
+ return 1;
|
|
+ }
|
|
+ }
|
|
+ iSet = pExpr->iTable = pParse->nSet++;
|
|
+ for(i=0; i<pExpr->pList->nExpr; i++){
|
|
+ Expr *pE2 = pExpr->pList->a[i].pExpr;
|
|
+ switch( pE2->op ){
|
|
+ case TK_FLOAT:
|
|
+ case TK_INTEGER:
|
|
+ case TK_STRING: {
|
|
+ int addr;
|
|
+ assert( pE2->token.z );
|
|
+ addr = sqliteVdbeOp3(v, OP_SetInsert, iSet, 0,
|
|
+ pE2->token.z, pE2->token.n);
|
|
+ sqliteVdbeDequoteP3(v, addr);
|
|
+ break;
|
|
+ }
|
|
+ default: {
|
|
+ sqliteExprCode(pParse, pE2);
|
|
+ sqliteVdbeAddOp(v, OP_SetInsert, iSet, 0);
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ case TK_SELECT: {
|
|
+ /* This has to be a scalar SELECT. Generate code to put the
|
|
+ ** value of this select in a memory cell and record the number
|
|
+ ** of the memory cell in iColumn.
|
|
+ */
|
|
+ pExpr->iColumn = pParse->nMem++;
|
|
+ if( sqliteSelect(pParse, pExpr->pSelect, SRT_Mem, pExpr->iColumn,0,0,0) ){
|
|
+ return 1;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ /* For all else, just recursively walk the tree */
|
|
+ default: {
|
|
+ if( pExpr->pLeft
|
|
+ && sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){
|
|
+ return 1;
|
|
+ }
|
|
+ if( pExpr->pRight
|
|
+ && sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pRight) ){
|
|
+ return 1;
|
|
+ }
|
|
+ if( pExpr->pList ){
|
|
+ int i;
|
|
+ ExprList *pList = pExpr->pList;
|
|
+ for(i=0; i<pList->nExpr; i++){
|
|
+ Expr *pArg = pList->a[i].pExpr;
|
|
+ if( sqliteExprResolveIds(pParse, pSrcList, pEList, pArg) ){
|
|
+ return 1;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** pExpr is a node that defines a function of some kind. It might
|
|
+** be a syntactic function like "count(x)" or it might be a function
|
|
+** that implements an operator, like "a LIKE b".
|
|
+**
|
|
+** This routine makes *pzName point to the name of the function and
|
|
+** *pnName hold the number of characters in the function name.
|
|
+*/
|
|
+static void getFunctionName(Expr *pExpr, const char **pzName, int *pnName){
|
|
+ switch( pExpr->op ){
|
|
+ case TK_FUNCTION: {
|
|
+ *pzName = pExpr->token.z;
|
|
+ *pnName = pExpr->token.n;
|
|
+ break;
|
|
+ }
|
|
+ case TK_LIKE: {
|
|
+ *pzName = "like";
|
|
+ *pnName = 4;
|
|
+ break;
|
|
+ }
|
|
+ case TK_GLOB: {
|
|
+ *pzName = "glob";
|
|
+ *pnName = 4;
|
|
+ break;
|
|
+ }
|
|
+ default: {
|
|
+ *pzName = "can't happen";
|
|
+ *pnName = 12;
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Error check the functions in an expression. Make sure all
|
|
+** function names are recognized and all functions have the correct
|
|
+** number of arguments. Leave an error message in pParse->zErrMsg
|
|
+** if anything is amiss. Return the number of errors.
|
|
+**
|
|
+** if pIsAgg is not null and this expression is an aggregate function
|
|
+** (like count(*) or max(value)) then write a 1 into *pIsAgg.
|
|
+*/
|
|
+int sqliteExprCheck(Parse *pParse, Expr *pExpr, int allowAgg, int *pIsAgg){
|
|
+ int nErr = 0;
|
|
+ if( pExpr==0 ) return 0;
|
|
+ switch( pExpr->op ){
|
|
+ case TK_GLOB:
|
|
+ case TK_LIKE:
|
|
+ case TK_FUNCTION: {
|
|
+ int n = pExpr->pList ? pExpr->pList->nExpr : 0; /* Number of arguments */
|
|
+ int no_such_func = 0; /* True if no such function exists */
|
|
+ int wrong_num_args = 0; /* True if wrong number of arguments */
|
|
+ int is_agg = 0; /* True if is an aggregate function */
|
|
+ int i;
|
|
+ int nId; /* Number of characters in function name */
|
|
+ const char *zId; /* The function name. */
|
|
+ FuncDef *pDef;
|
|
+
|
|
+ getFunctionName(pExpr, &zId, &nId);
|
|
+ pDef = sqliteFindFunction(pParse->db, zId, nId, n, 0);
|
|
+ if( pDef==0 ){
|
|
+ pDef = sqliteFindFunction(pParse->db, zId, nId, -1, 0);
|
|
+ if( pDef==0 ){
|
|
+ no_such_func = 1;
|
|
+ }else{
|
|
+ wrong_num_args = 1;
|
|
+ }
|
|
+ }else{
|
|
+ is_agg = pDef->xFunc==0;
|
|
+ }
|
|
+ if( is_agg && !allowAgg ){
|
|
+ sqliteErrorMsg(pParse, "misuse of aggregate function %.*s()", nId, zId);
|
|
+ nErr++;
|
|
+ is_agg = 0;
|
|
+ }else if( no_such_func ){
|
|
+ sqliteErrorMsg(pParse, "no such function: %.*s", nId, zId);
|
|
+ nErr++;
|
|
+ }else if( wrong_num_args ){
|
|
+ sqliteErrorMsg(pParse,"wrong number of arguments to function %.*s()",
|
|
+ nId, zId);
|
|
+ nErr++;
|
|
+ }
|
|
+ if( is_agg ){
|
|
+ pExpr->op = TK_AGG_FUNCTION;
|
|
+ if( pIsAgg ) *pIsAgg = 1;
|
|
+ }
|
|
+ for(i=0; nErr==0 && i<n; i++){
|
|
+ nErr = sqliteExprCheck(pParse, pExpr->pList->a[i].pExpr,
|
|
+ allowAgg && !is_agg, pIsAgg);
|
|
+ }
|
|
+ if( pDef==0 ){
|
|
+ /* Already reported an error */
|
|
+ }else if( pDef->dataType>=0 ){
|
|
+ if( pDef->dataType<n ){
|
|
+ pExpr->dataType =
|
|
+ sqliteExprType(pExpr->pList->a[pDef->dataType].pExpr);
|
|
+ }else{
|
|
+ pExpr->dataType = SQLITE_SO_NUM;
|
|
+ }
|
|
+ }else if( pDef->dataType==SQLITE_ARGS ){
|
|
+ pDef->dataType = SQLITE_SO_TEXT;
|
|
+ for(i=0; i<n; i++){
|
|
+ if( sqliteExprType(pExpr->pList->a[i].pExpr)==SQLITE_SO_NUM ){
|
|
+ pExpr->dataType = SQLITE_SO_NUM;
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ }else if( pDef->dataType==SQLITE_NUMERIC ){
|
|
+ pExpr->dataType = SQLITE_SO_NUM;
|
|
+ }else{
|
|
+ pExpr->dataType = SQLITE_SO_TEXT;
|
|
+ }
|
|
+ }
|
|
+ default: {
|
|
+ if( pExpr->pLeft ){
|
|
+ nErr = sqliteExprCheck(pParse, pExpr->pLeft, allowAgg, pIsAgg);
|
|
+ }
|
|
+ if( nErr==0 && pExpr->pRight ){
|
|
+ nErr = sqliteExprCheck(pParse, pExpr->pRight, allowAgg, pIsAgg);
|
|
+ }
|
|
+ if( nErr==0 && pExpr->pList ){
|
|
+ int n = pExpr->pList->nExpr;
|
|
+ int i;
|
|
+ for(i=0; nErr==0 && i<n; i++){
|
|
+ Expr *pE2 = pExpr->pList->a[i].pExpr;
|
|
+ nErr = sqliteExprCheck(pParse, pE2, allowAgg, pIsAgg);
|
|
+ }
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ return nErr;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return either SQLITE_SO_NUM or SQLITE_SO_TEXT to indicate whether the
|
|
+** given expression should sort as numeric values or as text.
|
|
+**
|
|
+** The sqliteExprResolveIds() and sqliteExprCheck() routines must have
|
|
+** both been called on the expression before it is passed to this routine.
|
|
+*/
|
|
+int sqliteExprType(Expr *p){
|
|
+ if( p==0 ) return SQLITE_SO_NUM;
|
|
+ while( p ) switch( p->op ){
|
|
+ case TK_PLUS:
|
|
+ case TK_MINUS:
|
|
+ case TK_STAR:
|
|
+ case TK_SLASH:
|
|
+ case TK_AND:
|
|
+ case TK_OR:
|
|
+ case TK_ISNULL:
|
|
+ case TK_NOTNULL:
|
|
+ case TK_NOT:
|
|
+ case TK_UMINUS:
|
|
+ case TK_UPLUS:
|
|
+ case TK_BITAND:
|
|
+ case TK_BITOR:
|
|
+ case TK_BITNOT:
|
|
+ case TK_LSHIFT:
|
|
+ case TK_RSHIFT:
|
|
+ case TK_REM:
|
|
+ case TK_INTEGER:
|
|
+ case TK_FLOAT:
|
|
+ case TK_IN:
|
|
+ case TK_BETWEEN:
|
|
+ case TK_GLOB:
|
|
+ case TK_LIKE:
|
|
+ return SQLITE_SO_NUM;
|
|
+
|
|
+ case TK_STRING:
|
|
+ case TK_NULL:
|
|
+ case TK_CONCAT:
|
|
+ case TK_VARIABLE:
|
|
+ return SQLITE_SO_TEXT;
|
|
+
|
|
+ case TK_LT:
|
|
+ case TK_LE:
|
|
+ case TK_GT:
|
|
+ case TK_GE:
|
|
+ case TK_NE:
|
|
+ case TK_EQ:
|
|
+ if( sqliteExprType(p->pLeft)==SQLITE_SO_NUM ){
|
|
+ return SQLITE_SO_NUM;
|
|
+ }
|
|
+ p = p->pRight;
|
|
+ break;
|
|
+
|
|
+ case TK_AS:
|
|
+ p = p->pLeft;
|
|
+ break;
|
|
+
|
|
+ case TK_COLUMN:
|
|
+ case TK_FUNCTION:
|
|
+ case TK_AGG_FUNCTION:
|
|
+ return p->dataType;
|
|
+
|
|
+ case TK_SELECT:
|
|
+ assert( p->pSelect );
|
|
+ assert( p->pSelect->pEList );
|
|
+ assert( p->pSelect->pEList->nExpr>0 );
|
|
+ p = p->pSelect->pEList->a[0].pExpr;
|
|
+ break;
|
|
+
|
|
+ case TK_CASE: {
|
|
+ if( p->pRight && sqliteExprType(p->pRight)==SQLITE_SO_NUM ){
|
|
+ return SQLITE_SO_NUM;
|
|
+ }
|
|
+ if( p->pList ){
|
|
+ int i;
|
|
+ ExprList *pList = p->pList;
|
|
+ for(i=1; i<pList->nExpr; i+=2){
|
|
+ if( sqliteExprType(pList->a[i].pExpr)==SQLITE_SO_NUM ){
|
|
+ return SQLITE_SO_NUM;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ return SQLITE_SO_TEXT;
|
|
+ }
|
|
+
|
|
+ default:
|
|
+ assert( p->op==TK_ABORT ); /* Can't Happen */
|
|
+ break;
|
|
+ }
|
|
+ return SQLITE_SO_NUM;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Generate code into the current Vdbe to evaluate the given
|
|
+** expression and leave the result on the top of stack.
|
|
+*/
|
|
+void sqliteExprCode(Parse *pParse, Expr *pExpr){
|
|
+ Vdbe *v = pParse->pVdbe;
|
|
+ int op;
|
|
+ if( v==0 || pExpr==0 ) return;
|
|
+ switch( pExpr->op ){
|
|
+ case TK_PLUS: op = OP_Add; break;
|
|
+ case TK_MINUS: op = OP_Subtract; break;
|
|
+ case TK_STAR: op = OP_Multiply; break;
|
|
+ case TK_SLASH: op = OP_Divide; break;
|
|
+ case TK_AND: op = OP_And; break;
|
|
+ case TK_OR: op = OP_Or; break;
|
|
+ case TK_LT: op = OP_Lt; break;
|
|
+ case TK_LE: op = OP_Le; break;
|
|
+ case TK_GT: op = OP_Gt; break;
|
|
+ case TK_GE: op = OP_Ge; break;
|
|
+ case TK_NE: op = OP_Ne; break;
|
|
+ case TK_EQ: op = OP_Eq; break;
|
|
+ case TK_ISNULL: op = OP_IsNull; break;
|
|
+ case TK_NOTNULL: op = OP_NotNull; break;
|
|
+ case TK_NOT: op = OP_Not; break;
|
|
+ case TK_UMINUS: op = OP_Negative; break;
|
|
+ case TK_BITAND: op = OP_BitAnd; break;
|
|
+ case TK_BITOR: op = OP_BitOr; break;
|
|
+ case TK_BITNOT: op = OP_BitNot; break;
|
|
+ case TK_LSHIFT: op = OP_ShiftLeft; break;
|
|
+ case TK_RSHIFT: op = OP_ShiftRight; break;
|
|
+ case TK_REM: op = OP_Remainder; break;
|
|
+ default: break;
|
|
+ }
|
|
+ switch( pExpr->op ){
|
|
+ case TK_COLUMN: {
|
|
+ if( pParse->useAgg ){
|
|
+ sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg);
|
|
+ }else if( pExpr->iColumn>=0 ){
|
|
+ sqliteVdbeAddOp(v, OP_Column, pExpr->iTable, pExpr->iColumn);
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_Recno, pExpr->iTable, 0);
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ case TK_STRING:
|
|
+ case TK_FLOAT:
|
|
+ case TK_INTEGER: {
|
|
+ if( pExpr->op==TK_INTEGER && sqliteFitsIn32Bits(pExpr->token.z) ){
|
|
+ sqliteVdbeAddOp(v, OP_Integer, atoi(pExpr->token.z), 0);
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
+ }
|
|
+ assert( pExpr->token.z );
|
|
+ sqliteVdbeChangeP3(v, -1, pExpr->token.z, pExpr->token.n);
|
|
+ sqliteVdbeDequoteP3(v, -1);
|
|
+ break;
|
|
+ }
|
|
+ case TK_NULL: {
|
|
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
+ break;
|
|
+ }
|
|
+ case TK_VARIABLE: {
|
|
+ sqliteVdbeAddOp(v, OP_Variable, pExpr->iTable, 0);
|
|
+ break;
|
|
+ }
|
|
+ case TK_LT:
|
|
+ case TK_LE:
|
|
+ case TK_GT:
|
|
+ case TK_GE:
|
|
+ case TK_NE:
|
|
+ case TK_EQ: {
|
|
+ if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
|
|
+ op += 6; /* Convert numeric opcodes to text opcodes */
|
|
+ }
|
|
+ /* Fall through into the next case */
|
|
+ }
|
|
+ case TK_AND:
|
|
+ case TK_OR:
|
|
+ case TK_PLUS:
|
|
+ case TK_STAR:
|
|
+ case TK_MINUS:
|
|
+ case TK_REM:
|
|
+ case TK_BITAND:
|
|
+ case TK_BITOR:
|
|
+ case TK_SLASH: {
|
|
+ sqliteExprCode(pParse, pExpr->pLeft);
|
|
+ sqliteExprCode(pParse, pExpr->pRight);
|
|
+ sqliteVdbeAddOp(v, op, 0, 0);
|
|
+ break;
|
|
+ }
|
|
+ case TK_LSHIFT:
|
|
+ case TK_RSHIFT: {
|
|
+ sqliteExprCode(pParse, pExpr->pRight);
|
|
+ sqliteExprCode(pParse, pExpr->pLeft);
|
|
+ sqliteVdbeAddOp(v, op, 0, 0);
|
|
+ break;
|
|
+ }
|
|
+ case TK_CONCAT: {
|
|
+ sqliteExprCode(pParse, pExpr->pLeft);
|
|
+ sqliteExprCode(pParse, pExpr->pRight);
|
|
+ sqliteVdbeAddOp(v, OP_Concat, 2, 0);
|
|
+ break;
|
|
+ }
|
|
+ case TK_UMINUS: {
|
|
+ assert( pExpr->pLeft );
|
|
+ if( pExpr->pLeft->op==TK_FLOAT || pExpr->pLeft->op==TK_INTEGER ){
|
|
+ Token *p = &pExpr->pLeft->token;
|
|
+ char *z = sqliteMalloc( p->n + 2 );
|
|
+ sprintf(z, "-%.*s", p->n, p->z);
|
|
+ if( pExpr->pLeft->op==TK_INTEGER && sqliteFitsIn32Bits(z) ){
|
|
+ sqliteVdbeAddOp(v, OP_Integer, atoi(z), 0);
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
+ }
|
|
+ sqliteVdbeChangeP3(v, -1, z, p->n+1);
|
|
+ sqliteFree(z);
|
|
+ break;
|
|
+ }
|
|
+ /* Fall through into TK_NOT */
|
|
+ }
|
|
+ case TK_BITNOT:
|
|
+ case TK_NOT: {
|
|
+ sqliteExprCode(pParse, pExpr->pLeft);
|
|
+ sqliteVdbeAddOp(v, op, 0, 0);
|
|
+ break;
|
|
+ }
|
|
+ case TK_ISNULL:
|
|
+ case TK_NOTNULL: {
|
|
+ int dest;
|
|
+ sqliteVdbeAddOp(v, OP_Integer, 1, 0);
|
|
+ sqliteExprCode(pParse, pExpr->pLeft);
|
|
+ dest = sqliteVdbeCurrentAddr(v) + 2;
|
|
+ sqliteVdbeAddOp(v, op, 1, dest);
|
|
+ sqliteVdbeAddOp(v, OP_AddImm, -1, 0);
|
|
+ break;
|
|
+ }
|
|
+ case TK_AGG_FUNCTION: {
|
|
+ sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg);
|
|
+ break;
|
|
+ }
|
|
+ case TK_GLOB:
|
|
+ case TK_LIKE:
|
|
+ case TK_FUNCTION: {
|
|
+ ExprList *pList = pExpr->pList;
|
|
+ int nExpr = pList ? pList->nExpr : 0;
|
|
+ FuncDef *pDef;
|
|
+ int nId;
|
|
+ const char *zId;
|
|
+ getFunctionName(pExpr, &zId, &nId);
|
|
+ pDef = sqliteFindFunction(pParse->db, zId, nId, nExpr, 0);
|
|
+ assert( pDef!=0 );
|
|
+ nExpr = sqliteExprCodeExprList(pParse, pList, pDef->includeTypes);
|
|
+ sqliteVdbeOp3(v, OP_Function, nExpr, 0, (char*)pDef, P3_POINTER);
|
|
+ break;
|
|
+ }
|
|
+ case TK_SELECT: {
|
|
+ sqliteVdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
|
|
+ break;
|
|
+ }
|
|
+ case TK_IN: {
|
|
+ int addr;
|
|
+ sqliteVdbeAddOp(v, OP_Integer, 1, 0);
|
|
+ sqliteExprCode(pParse, pExpr->pLeft);
|
|
+ addr = sqliteVdbeCurrentAddr(v);
|
|
+ sqliteVdbeAddOp(v, OP_NotNull, -1, addr+4);
|
|
+ sqliteVdbeAddOp(v, OP_Pop, 2, 0);
|
|
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, addr+6);
|
|
+ if( pExpr->pSelect ){
|
|
+ sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, addr+6);
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, addr+6);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_AddImm, -1, 0);
|
|
+ break;
|
|
+ }
|
|
+ case TK_BETWEEN: {
|
|
+ sqliteExprCode(pParse, pExpr->pLeft);
|
|
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
|
+ sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
|
|
+ sqliteVdbeAddOp(v, OP_Ge, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Pull, 1, 0);
|
|
+ sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
|
|
+ sqliteVdbeAddOp(v, OP_Le, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_And, 0, 0);
|
|
+ break;
|
|
+ }
|
|
+ case TK_UPLUS:
|
|
+ case TK_AS: {
|
|
+ sqliteExprCode(pParse, pExpr->pLeft);
|
|
+ break;
|
|
+ }
|
|
+ case TK_CASE: {
|
|
+ int expr_end_label;
|
|
+ int jumpInst;
|
|
+ int addr;
|
|
+ int nExpr;
|
|
+ int i;
|
|
+
|
|
+ assert(pExpr->pList);
|
|
+ assert((pExpr->pList->nExpr % 2) == 0);
|
|
+ assert(pExpr->pList->nExpr > 0);
|
|
+ nExpr = pExpr->pList->nExpr;
|
|
+ expr_end_label = sqliteVdbeMakeLabel(v);
|
|
+ if( pExpr->pLeft ){
|
|
+ sqliteExprCode(pParse, pExpr->pLeft);
|
|
+ }
|
|
+ for(i=0; i<nExpr; i=i+2){
|
|
+ sqliteExprCode(pParse, pExpr->pList->a[i].pExpr);
|
|
+ if( pExpr->pLeft ){
|
|
+ sqliteVdbeAddOp(v, OP_Dup, 1, 1);
|
|
+ jumpInst = sqliteVdbeAddOp(v, OP_Ne, 1, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
|
+ }else{
|
|
+ jumpInst = sqliteVdbeAddOp(v, OP_IfNot, 1, 0);
|
|
+ }
|
|
+ sqliteExprCode(pParse, pExpr->pList->a[i+1].pExpr);
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, expr_end_label);
|
|
+ addr = sqliteVdbeCurrentAddr(v);
|
|
+ sqliteVdbeChangeP2(v, jumpInst, addr);
|
|
+ }
|
|
+ if( pExpr->pLeft ){
|
|
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
|
+ }
|
|
+ if( pExpr->pRight ){
|
|
+ sqliteExprCode(pParse, pExpr->pRight);
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
+ }
|
|
+ sqliteVdbeResolveLabel(v, expr_end_label);
|
|
+ break;
|
|
+ }
|
|
+ case TK_RAISE: {
|
|
+ if( !pParse->trigStack ){
|
|
+ sqliteErrorMsg(pParse,
|
|
+ "RAISE() may only be used within a trigger-program");
|
|
+ pParse->nErr++;
|
|
+ return;
|
|
+ }
|
|
+ if( pExpr->iColumn == OE_Rollback ||
|
|
+ pExpr->iColumn == OE_Abort ||
|
|
+ pExpr->iColumn == OE_Fail ){
|
|
+ sqliteVdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn,
|
|
+ pExpr->token.z, pExpr->token.n);
|
|
+ sqliteVdbeDequoteP3(v, -1);
|
|
+ } else {
|
|
+ assert( pExpr->iColumn == OE_Ignore );
|
|
+ sqliteVdbeOp3(v, OP_Goto, 0, pParse->trigStack->ignoreJump,
|
|
+ "(IGNORE jump)", 0);
|
|
+ }
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Generate code that pushes the value of every element of the given
|
|
+** expression list onto the stack. If the includeTypes flag is true,
|
|
+** then also push a string that is the datatype of each element onto
|
|
+** the stack after the value.
|
|
+**
|
|
+** Return the number of elements pushed onto the stack.
|
|
+*/
|
|
+int sqliteExprCodeExprList(
|
|
+ Parse *pParse, /* Parsing context */
|
|
+ ExprList *pList, /* The expression list to be coded */
|
|
+ int includeTypes /* TRUE to put datatypes on the stack too */
|
|
+){
|
|
+ struct ExprList_item *pItem;
|
|
+ int i, n;
|
|
+ Vdbe *v;
|
|
+ if( pList==0 ) return 0;
|
|
+ v = sqliteGetVdbe(pParse);
|
|
+ n = pList->nExpr;
|
|
+ for(pItem=pList->a, i=0; i<n; i++, pItem++){
|
|
+ sqliteExprCode(pParse, pItem->pExpr);
|
|
+ if( includeTypes ){
|
|
+ sqliteVdbeOp3(v, OP_String, 0, 0,
|
|
+ sqliteExprType(pItem->pExpr)==SQLITE_SO_NUM ? "numeric" : "text",
|
|
+ P3_STATIC);
|
|
+ }
|
|
+ }
|
|
+ return includeTypes ? n*2 : n;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Generate code for a boolean expression such that a jump is made
|
|
+** to the label "dest" if the expression is true but execution
|
|
+** continues straight thru if the expression is false.
|
|
+**
|
|
+** If the expression evaluates to NULL (neither true nor false), then
|
|
+** take the jump if the jumpIfNull flag is true.
|
|
+*/
|
|
+void sqliteExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
|
+ Vdbe *v = pParse->pVdbe;
|
|
+ int op = 0;
|
|
+ if( v==0 || pExpr==0 ) return;
|
|
+ switch( pExpr->op ){
|
|
+ case TK_LT: op = OP_Lt; break;
|
|
+ case TK_LE: op = OP_Le; break;
|
|
+ case TK_GT: op = OP_Gt; break;
|
|
+ case TK_GE: op = OP_Ge; break;
|
|
+ case TK_NE: op = OP_Ne; break;
|
|
+ case TK_EQ: op = OP_Eq; break;
|
|
+ case TK_ISNULL: op = OP_IsNull; break;
|
|
+ case TK_NOTNULL: op = OP_NotNull; break;
|
|
+ default: break;
|
|
+ }
|
|
+ switch( pExpr->op ){
|
|
+ case TK_AND: {
|
|
+ int d2 = sqliteVdbeMakeLabel(v);
|
|
+ sqliteExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull);
|
|
+ sqliteExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
|
|
+ sqliteVdbeResolveLabel(v, d2);
|
|
+ break;
|
|
+ }
|
|
+ case TK_OR: {
|
|
+ sqliteExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
|
|
+ sqliteExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
|
|
+ break;
|
|
+ }
|
|
+ case TK_NOT: {
|
|
+ sqliteExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
|
|
+ break;
|
|
+ }
|
|
+ case TK_LT:
|
|
+ case TK_LE:
|
|
+ case TK_GT:
|
|
+ case TK_GE:
|
|
+ case TK_NE:
|
|
+ case TK_EQ: {
|
|
+ sqliteExprCode(pParse, pExpr->pLeft);
|
|
+ sqliteExprCode(pParse, pExpr->pRight);
|
|
+ if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
|
|
+ op += 6; /* Convert numeric opcodes to text opcodes */
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, op, jumpIfNull, dest);
|
|
+ break;
|
|
+ }
|
|
+ case TK_ISNULL:
|
|
+ case TK_NOTNULL: {
|
|
+ sqliteExprCode(pParse, pExpr->pLeft);
|
|
+ sqliteVdbeAddOp(v, op, 1, dest);
|
|
+ break;
|
|
+ }
|
|
+ case TK_IN: {
|
|
+ int addr;
|
|
+ sqliteExprCode(pParse, pExpr->pLeft);
|
|
+ addr = sqliteVdbeCurrentAddr(v);
|
|
+ sqliteVdbeAddOp(v, OP_NotNull, -1, addr+3);
|
|
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, jumpIfNull ? dest : addr+4);
|
|
+ if( pExpr->pSelect ){
|
|
+ sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, dest);
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, dest);
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ case TK_BETWEEN: {
|
|
+ int addr;
|
|
+ sqliteExprCode(pParse, pExpr->pLeft);
|
|
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
|
+ sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
|
|
+ addr = sqliteVdbeAddOp(v, OP_Lt, !jumpIfNull, 0);
|
|
+ sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
|
|
+ sqliteVdbeAddOp(v, OP_Le, jumpIfNull, dest);
|
|
+ sqliteVdbeAddOp(v, OP_Integer, 0, 0);
|
|
+ sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
|
|
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
|
+ break;
|
|
+ }
|
|
+ default: {
|
|
+ sqliteExprCode(pParse, pExpr);
|
|
+ sqliteVdbeAddOp(v, OP_If, jumpIfNull, dest);
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Generate code for a boolean expression such that a jump is made
|
|
+** to the label "dest" if the expression is false but execution
|
|
+** continues straight thru if the expression is true.
|
|
+**
|
|
+** If the expression evaluates to NULL (neither true nor false) then
|
|
+** jump if jumpIfNull is true or fall through if jumpIfNull is false.
|
|
+*/
|
|
+void sqliteExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
|
+ Vdbe *v = pParse->pVdbe;
|
|
+ int op = 0;
|
|
+ if( v==0 || pExpr==0 ) return;
|
|
+ switch( pExpr->op ){
|
|
+ case TK_LT: op = OP_Ge; break;
|
|
+ case TK_LE: op = OP_Gt; break;
|
|
+ case TK_GT: op = OP_Le; break;
|
|
+ case TK_GE: op = OP_Lt; break;
|
|
+ case TK_NE: op = OP_Eq; break;
|
|
+ case TK_EQ: op = OP_Ne; break;
|
|
+ case TK_ISNULL: op = OP_NotNull; break;
|
|
+ case TK_NOTNULL: op = OP_IsNull; break;
|
|
+ default: break;
|
|
+ }
|
|
+ switch( pExpr->op ){
|
|
+ case TK_AND: {
|
|
+ sqliteExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
|
|
+ sqliteExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
|
|
+ break;
|
|
+ }
|
|
+ case TK_OR: {
|
|
+ int d2 = sqliteVdbeMakeLabel(v);
|
|
+ sqliteExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull);
|
|
+ sqliteExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
|
|
+ sqliteVdbeResolveLabel(v, d2);
|
|
+ break;
|
|
+ }
|
|
+ case TK_NOT: {
|
|
+ sqliteExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
|
|
+ break;
|
|
+ }
|
|
+ case TK_LT:
|
|
+ case TK_LE:
|
|
+ case TK_GT:
|
|
+ case TK_GE:
|
|
+ case TK_NE:
|
|
+ case TK_EQ: {
|
|
+ if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
|
|
+ /* Convert numeric comparison opcodes into text comparison opcodes.
|
|
+ ** This step depends on the fact that the text comparision opcodes are
|
|
+ ** always 6 greater than their corresponding numeric comparison
|
|
+ ** opcodes.
|
|
+ */
|
|
+ assert( OP_Eq+6 == OP_StrEq );
|
|
+ op += 6;
|
|
+ }
|
|
+ sqliteExprCode(pParse, pExpr->pLeft);
|
|
+ sqliteExprCode(pParse, pExpr->pRight);
|
|
+ sqliteVdbeAddOp(v, op, jumpIfNull, dest);
|
|
+ break;
|
|
+ }
|
|
+ case TK_ISNULL:
|
|
+ case TK_NOTNULL: {
|
|
+ sqliteExprCode(pParse, pExpr->pLeft);
|
|
+ sqliteVdbeAddOp(v, op, 1, dest);
|
|
+ break;
|
|
+ }
|
|
+ case TK_IN: {
|
|
+ int addr;
|
|
+ sqliteExprCode(pParse, pExpr->pLeft);
|
|
+ addr = sqliteVdbeCurrentAddr(v);
|
|
+ sqliteVdbeAddOp(v, OP_NotNull, -1, addr+3);
|
|
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, jumpIfNull ? dest : addr+4);
|
|
+ if( pExpr->pSelect ){
|
|
+ sqliteVdbeAddOp(v, OP_NotFound, pExpr->iTable, dest);
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_SetNotFound, pExpr->iTable, dest);
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ case TK_BETWEEN: {
|
|
+ int addr;
|
|
+ sqliteExprCode(pParse, pExpr->pLeft);
|
|
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
|
+ sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
|
|
+ addr = sqliteVdbeCurrentAddr(v);
|
|
+ sqliteVdbeAddOp(v, OP_Ge, !jumpIfNull, addr+3);
|
|
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, dest);
|
|
+ sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
|
|
+ sqliteVdbeAddOp(v, OP_Gt, jumpIfNull, dest);
|
|
+ break;
|
|
+ }
|
|
+ default: {
|
|
+ sqliteExprCode(pParse, pExpr);
|
|
+ sqliteVdbeAddOp(v, OP_IfNot, jumpIfNull, dest);
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Do a deep comparison of two expression trees. Return TRUE (non-zero)
|
|
+** if they are identical and return FALSE if they differ in any way.
|
|
+*/
|
|
+int sqliteExprCompare(Expr *pA, Expr *pB){
|
|
+ int i;
|
|
+ if( pA==0 ){
|
|
+ return pB==0;
|
|
+ }else if( pB==0 ){
|
|
+ return 0;
|
|
+ }
|
|
+ if( pA->op!=pB->op ) return 0;
|
|
+ if( !sqliteExprCompare(pA->pLeft, pB->pLeft) ) return 0;
|
|
+ if( !sqliteExprCompare(pA->pRight, pB->pRight) ) return 0;
|
|
+ if( pA->pList ){
|
|
+ if( pB->pList==0 ) return 0;
|
|
+ if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
|
|
+ for(i=0; i<pA->pList->nExpr; i++){
|
|
+ if( !sqliteExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
|
|
+ return 0;
|
|
+ }
|
|
+ }
|
|
+ }else if( pB->pList ){
|
|
+ return 0;
|
|
+ }
|
|
+ if( pA->pSelect || pB->pSelect ) return 0;
|
|
+ if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
|
|
+ if( pA->token.z ){
|
|
+ if( pB->token.z==0 ) return 0;
|
|
+ if( pB->token.n!=pA->token.n ) return 0;
|
|
+ if( sqliteStrNICmp(pA->token.z, pB->token.z, pB->token.n)!=0 ) return 0;
|
|
+ }
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Add a new element to the pParse->aAgg[] array and return its index.
|
|
+*/
|
|
+static int appendAggInfo(Parse *pParse){
|
|
+ if( (pParse->nAgg & 0x7)==0 ){
|
|
+ int amt = pParse->nAgg + 8;
|
|
+ AggExpr *aAgg = sqliteRealloc(pParse->aAgg, amt*sizeof(pParse->aAgg[0]));
|
|
+ if( aAgg==0 ){
|
|
+ return -1;
|
|
+ }
|
|
+ pParse->aAgg = aAgg;
|
|
+ }
|
|
+ memset(&pParse->aAgg[pParse->nAgg], 0, sizeof(pParse->aAgg[0]));
|
|
+ return pParse->nAgg++;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Analyze the given expression looking for aggregate functions and
|
|
+** for variables that need to be added to the pParse->aAgg[] array.
|
|
+** Make additional entries to the pParse->aAgg[] array as necessary.
|
|
+**
|
|
+** This routine should only be called after the expression has been
|
|
+** analyzed by sqliteExprResolveIds() and sqliteExprCheck().
|
|
+**
|
|
+** If errors are seen, leave an error message in zErrMsg and return
|
|
+** the number of errors.
|
|
+*/
|
|
+int sqliteExprAnalyzeAggregates(Parse *pParse, Expr *pExpr){
|
|
+ int i;
|
|
+ AggExpr *aAgg;
|
|
+ int nErr = 0;
|
|
+
|
|
+ if( pExpr==0 ) return 0;
|
|
+ switch( pExpr->op ){
|
|
+ case TK_COLUMN: {
|
|
+ aAgg = pParse->aAgg;
|
|
+ for(i=0; i<pParse->nAgg; i++){
|
|
+ if( aAgg[i].isAgg ) continue;
|
|
+ if( aAgg[i].pExpr->iTable==pExpr->iTable
|
|
+ && aAgg[i].pExpr->iColumn==pExpr->iColumn ){
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ if( i>=pParse->nAgg ){
|
|
+ i = appendAggInfo(pParse);
|
|
+ if( i<0 ) return 1;
|
|
+ pParse->aAgg[i].isAgg = 0;
|
|
+ pParse->aAgg[i].pExpr = pExpr;
|
|
+ }
|
|
+ pExpr->iAgg = i;
|
|
+ break;
|
|
+ }
|
|
+ case TK_AGG_FUNCTION: {
|
|
+ aAgg = pParse->aAgg;
|
|
+ for(i=0; i<pParse->nAgg; i++){
|
|
+ if( !aAgg[i].isAgg ) continue;
|
|
+ if( sqliteExprCompare(aAgg[i].pExpr, pExpr) ){
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ if( i>=pParse->nAgg ){
|
|
+ i = appendAggInfo(pParse);
|
|
+ if( i<0 ) return 1;
|
|
+ pParse->aAgg[i].isAgg = 1;
|
|
+ pParse->aAgg[i].pExpr = pExpr;
|
|
+ pParse->aAgg[i].pFunc = sqliteFindFunction(pParse->db,
|
|
+ pExpr->token.z, pExpr->token.n,
|
|
+ pExpr->pList ? pExpr->pList->nExpr : 0, 0);
|
|
+ }
|
|
+ pExpr->iAgg = i;
|
|
+ break;
|
|
+ }
|
|
+ default: {
|
|
+ if( pExpr->pLeft ){
|
|
+ nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pLeft);
|
|
+ }
|
|
+ if( nErr==0 && pExpr->pRight ){
|
|
+ nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pRight);
|
|
+ }
|
|
+ if( nErr==0 && pExpr->pList ){
|
|
+ int n = pExpr->pList->nExpr;
|
|
+ int i;
|
|
+ for(i=0; nErr==0 && i<n; i++){
|
|
+ nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pList->a[i].pExpr);
|
|
+ }
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ return nErr;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Locate a user function given a name and a number of arguments.
|
|
+** Return a pointer to the FuncDef structure that defines that
|
|
+** function, or return NULL if the function does not exist.
|
|
+**
|
|
+** If the createFlag argument is true, then a new (blank) FuncDef
|
|
+** structure is created and liked into the "db" structure if a
|
|
+** no matching function previously existed. When createFlag is true
|
|
+** and the nArg parameter is -1, then only a function that accepts
|
|
+** any number of arguments will be returned.
|
|
+**
|
|
+** If createFlag is false and nArg is -1, then the first valid
|
|
+** function found is returned. A function is valid if either xFunc
|
|
+** or xStep is non-zero.
|
|
+*/
|
|
+FuncDef *sqliteFindFunction(
|
|
+ sqlite *db, /* An open database */
|
|
+ const char *zName, /* Name of the function. Not null-terminated */
|
|
+ int nName, /* Number of characters in the name */
|
|
+ int nArg, /* Number of arguments. -1 means any number */
|
|
+ int createFlag /* Create new entry if true and does not otherwise exist */
|
|
+){
|
|
+ FuncDef *pFirst, *p, *pMaybe;
|
|
+ pFirst = p = (FuncDef*)sqliteHashFind(&db->aFunc, zName, nName);
|
|
+ if( p && !createFlag && nArg<0 ){
|
|
+ while( p && p->xFunc==0 && p->xStep==0 ){ p = p->pNext; }
|
|
+ return p;
|
|
+ }
|
|
+ pMaybe = 0;
|
|
+ while( p && p->nArg!=nArg ){
|
|
+ if( p->nArg<0 && !createFlag && (p->xFunc || p->xStep) ) pMaybe = p;
|
|
+ p = p->pNext;
|
|
+ }
|
|
+ if( p && !createFlag && p->xFunc==0 && p->xStep==0 ){
|
|
+ return 0;
|
|
+ }
|
|
+ if( p==0 && pMaybe ){
|
|
+ assert( createFlag==0 );
|
|
+ return pMaybe;
|
|
+ }
|
|
+ if( p==0 && createFlag && (p = sqliteMalloc(sizeof(*p)))!=0 ){
|
|
+ p->nArg = nArg;
|
|
+ p->pNext = pFirst;
|
|
+ p->dataType = pFirst ? pFirst->dataType : SQLITE_NUMERIC;
|
|
+ sqliteHashInsert(&db->aFunc, zName, nName, (void*)p);
|
|
+ }
|
|
+ return p;
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/func.c
|
|
@@ -0,0 +1,658 @@
|
|
+/*
|
|
+** 2002 February 23
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This file contains the C functions that implement various SQL
|
|
+** functions of SQLite.
|
|
+**
|
|
+** There is only one exported symbol in this file - the function
|
|
+** sqliteRegisterBuildinFunctions() found at the bottom of the file.
|
|
+** All other code has file scope.
|
|
+**
|
|
+** $Id$
|
|
+*/
|
|
+#include <ctype.h>
|
|
+#include <math.h>
|
|
+#include <stdlib.h>
|
|
+#include <assert.h>
|
|
+#include "sqliteInt.h"
|
|
+#include "os.h"
|
|
+
|
|
+/*
|
|
+** Implementation of the non-aggregate min() and max() functions
|
|
+*/
|
|
+static void minmaxFunc(sqlite_func *context, int argc, const char **argv){
|
|
+ const char *zBest;
|
|
+ int i;
|
|
+ int (*xCompare)(const char*, const char*);
|
|
+ int mask; /* 0 for min() or 0xffffffff for max() */
|
|
+
|
|
+ if( argc==0 ) return;
|
|
+ mask = (int)sqlite_user_data(context);
|
|
+ zBest = argv[0];
|
|
+ if( zBest==0 ) return;
|
|
+ if( argv[1][0]=='n' ){
|
|
+ xCompare = sqliteCompare;
|
|
+ }else{
|
|
+ xCompare = strcmp;
|
|
+ }
|
|
+ for(i=2; i<argc; i+=2){
|
|
+ if( argv[i]==0 ) return;
|
|
+ if( (xCompare(argv[i], zBest)^mask)<0 ){
|
|
+ zBest = argv[i];
|
|
+ }
|
|
+ }
|
|
+ sqlite_set_result_string(context, zBest, -1);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return the type of the argument.
|
|
+*/
|
|
+static void typeofFunc(sqlite_func *context, int argc, const char **argv){
|
|
+ assert( argc==2 );
|
|
+ sqlite_set_result_string(context, argv[1], -1);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Implementation of the length() function
|
|
+*/
|
|
+static void lengthFunc(sqlite_func *context, int argc, const char **argv){
|
|
+ const char *z;
|
|
+ int len;
|
|
+
|
|
+ assert( argc==1 );
|
|
+ z = argv[0];
|
|
+ if( z==0 ) return;
|
|
+#ifdef SQLITE_UTF8
|
|
+ for(len=0; *z; z++){ if( (0xc0&*z)!=0x80 ) len++; }
|
|
+#else
|
|
+ len = strlen(z);
|
|
+#endif
|
|
+ sqlite_set_result_int(context, len);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Implementation of the abs() function
|
|
+*/
|
|
+static void absFunc(sqlite_func *context, int argc, const char **argv){
|
|
+ const char *z;
|
|
+ assert( argc==1 );
|
|
+ z = argv[0];
|
|
+ if( z==0 ) return;
|
|
+ if( z[0]=='-' && isdigit(z[1]) ) z++;
|
|
+ sqlite_set_result_string(context, z, -1);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Implementation of the substr() function
|
|
+*/
|
|
+static void substrFunc(sqlite_func *context, int argc, const char **argv){
|
|
+ const char *z;
|
|
+#ifdef SQLITE_UTF8
|
|
+ const char *z2;
|
|
+ int i;
|
|
+#endif
|
|
+ int p1, p2, len;
|
|
+ assert( argc==3 );
|
|
+ z = argv[0];
|
|
+ if( z==0 ) return;
|
|
+ p1 = atoi(argv[1]?argv[1]:0);
|
|
+ p2 = atoi(argv[2]?argv[2]:0);
|
|
+#ifdef SQLITE_UTF8
|
|
+ for(len=0, z2=z; *z2; z2++){ if( (0xc0&*z2)!=0x80 ) len++; }
|
|
+#else
|
|
+ len = strlen(z);
|
|
+#endif
|
|
+ if( p1<0 ){
|
|
+ p1 += len;
|
|
+ if( p1<0 ){
|
|
+ p2 += p1;
|
|
+ p1 = 0;
|
|
+ }
|
|
+ }else if( p1>0 ){
|
|
+ p1--;
|
|
+ }
|
|
+ if( p1+p2>len ){
|
|
+ p2 = len-p1;
|
|
+ }
|
|
+#ifdef SQLITE_UTF8
|
|
+ for(i=0; i<p1 && z[i]; i++){
|
|
+ if( (z[i]&0xc0)==0x80 ) p1++;
|
|
+ }
|
|
+ while( z[i] && (z[i]&0xc0)==0x80 ){ i++; p1++; }
|
|
+ for(; i<p1+p2 && z[i]; i++){
|
|
+ if( (z[i]&0xc0)==0x80 ) p2++;
|
|
+ }
|
|
+ while( z[i] && (z[i]&0xc0)==0x80 ){ i++; p2++; }
|
|
+#endif
|
|
+ if( p2<0 ) p2 = 0;
|
|
+ sqlite_set_result_string(context, &z[p1], p2);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Implementation of the round() function
|
|
+*/
|
|
+static void roundFunc(sqlite_func *context, int argc, const char **argv){
|
|
+ int n;
|
|
+ double r;
|
|
+ char zBuf[100];
|
|
+ assert( argc==1 || argc==2 );
|
|
+ if( argv[0]==0 || (argc==2 && argv[1]==0) ) return;
|
|
+ n = argc==2 ? atoi(argv[1]) : 0;
|
|
+ if( n>30 ) n = 30;
|
|
+ if( n<0 ) n = 0;
|
|
+ r = sqliteAtoF(argv[0], 0);
|
|
+ sprintf(zBuf,"%.*f",n,r);
|
|
+ sqlite_set_result_string(context, zBuf, -1);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Implementation of the upper() and lower() SQL functions.
|
|
+*/
|
|
+static void upperFunc(sqlite_func *context, int argc, const char **argv){
|
|
+ unsigned char *z;
|
|
+ int i;
|
|
+ if( argc<1 || argv[0]==0 ) return;
|
|
+ z = (unsigned char*)sqlite_set_result_string(context, argv[0], -1);
|
|
+ if( z==0 ) return;
|
|
+ for(i=0; z[i]; i++){
|
|
+ if( islower(z[i]) ) z[i] = toupper(z[i]);
|
|
+ }
|
|
+}
|
|
+static void lowerFunc(sqlite_func *context, int argc, const char **argv){
|
|
+ unsigned char *z;
|
|
+ int i;
|
|
+ if( argc<1 || argv[0]==0 ) return;
|
|
+ z = (unsigned char*)sqlite_set_result_string(context, argv[0], -1);
|
|
+ if( z==0 ) return;
|
|
+ for(i=0; z[i]; i++){
|
|
+ if( isupper(z[i]) ) z[i] = tolower(z[i]);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Implementation of the IFNULL(), NVL(), and COALESCE() functions.
|
|
+** All three do the same thing. They return the first non-NULL
|
|
+** argument.
|
|
+*/
|
|
+static void ifnullFunc(sqlite_func *context, int argc, const char **argv){
|
|
+ int i;
|
|
+ for(i=0; i<argc; i++){
|
|
+ if( argv[i] ){
|
|
+ sqlite_set_result_string(context, argv[i], -1);
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Implementation of random(). Return a random integer.
|
|
+*/
|
|
+static void randomFunc(sqlite_func *context, int argc, const char **argv){
|
|
+ int r;
|
|
+ sqliteRandomness(sizeof(r), &r);
|
|
+ sqlite_set_result_int(context, r);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Implementation of the last_insert_rowid() SQL function. The return
|
|
+** value is the same as the sqlite_last_insert_rowid() API function.
|
|
+*/
|
|
+static void last_insert_rowid(sqlite_func *context, int arg, const char **argv){
|
|
+ sqlite *db = sqlite_user_data(context);
|
|
+ sqlite_set_result_int(context, sqlite_last_insert_rowid(db));
|
|
+}
|
|
+
|
|
+/*
|
|
+** Implementation of the change_count() SQL function. The return
|
|
+** value is the same as the sqlite_changes() API function.
|
|
+*/
|
|
+static void change_count(sqlite_func *context, int arg, const char **argv){
|
|
+ sqlite *db = sqlite_user_data(context);
|
|
+ sqlite_set_result_int(context, sqlite_changes(db));
|
|
+}
|
|
+
|
|
+/*
|
|
+** Implementation of the last_statement_change_count() SQL function. The
|
|
+** return value is the same as the sqlite_last_statement_changes() API function.
|
|
+*/
|
|
+static void last_statement_change_count(sqlite_func *context, int arg,
|
|
+ const char **argv){
|
|
+ sqlite *db = sqlite_user_data(context);
|
|
+ sqlite_set_result_int(context, sqlite_last_statement_changes(db));
|
|
+}
|
|
+
|
|
+/*
|
|
+** Implementation of the like() SQL function. This function implements
|
|
+** the build-in LIKE operator. The first argument to the function is the
|
|
+** string and the second argument is the pattern. So, the SQL statements:
|
|
+**
|
|
+** A LIKE B
|
|
+**
|
|
+** is implemented as like(A,B).
|
|
+*/
|
|
+static void likeFunc(sqlite_func *context, int arg, const char **argv){
|
|
+ if( argv[0]==0 || argv[1]==0 ) return;
|
|
+ sqlite_set_result_int(context,
|
|
+ sqliteLikeCompare((const unsigned char*)argv[0],
|
|
+ (const unsigned char*)argv[1]));
|
|
+}
|
|
+
|
|
+/*
|
|
+** Implementation of the glob() SQL function. This function implements
|
|
+** the build-in GLOB operator. The first argument to the function is the
|
|
+** string and the second argument is the pattern. So, the SQL statements:
|
|
+**
|
|
+** A GLOB B
|
|
+**
|
|
+** is implemented as glob(A,B).
|
|
+*/
|
|
+static void globFunc(sqlite_func *context, int arg, const char **argv){
|
|
+ if( argv[0]==0 || argv[1]==0 ) return;
|
|
+ sqlite_set_result_int(context,
|
|
+ sqliteGlobCompare((const unsigned char*)argv[0],
|
|
+ (const unsigned char*)argv[1]));
|
|
+}
|
|
+
|
|
+/*
|
|
+** Implementation of the NULLIF(x,y) function. The result is the first
|
|
+** argument if the arguments are different. The result is NULL if the
|
|
+** arguments are equal to each other.
|
|
+*/
|
|
+static void nullifFunc(sqlite_func *context, int argc, const char **argv){
|
|
+ if( argv[0]!=0 && sqliteCompare(argv[0],argv[1])!=0 ){
|
|
+ sqlite_set_result_string(context, argv[0], -1);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Implementation of the VERSION(*) function. The result is the version
|
|
+** of the SQLite library that is running.
|
|
+*/
|
|
+static void versionFunc(sqlite_func *context, int argc, const char **argv){
|
|
+ sqlite_set_result_string(context, sqlite_version, -1);
|
|
+}
|
|
+
|
|
+/*
|
|
+** EXPERIMENTAL - This is not an official function. The interface may
|
|
+** change. This function may disappear. Do not write code that depends
|
|
+** on this function.
|
|
+**
|
|
+** Implementation of the QUOTE() function. This function takes a single
|
|
+** argument. If the argument is numeric, the return value is the same as
|
|
+** the argument. If the argument is NULL, the return value is the string
|
|
+** "NULL". Otherwise, the argument is enclosed in single quotes with
|
|
+** single-quote escapes.
|
|
+*/
|
|
+static void quoteFunc(sqlite_func *context, int argc, const char **argv){
|
|
+ if( argc<1 ) return;
|
|
+ if( argv[0]==0 ){
|
|
+ sqlite_set_result_string(context, "NULL", 4);
|
|
+ }else if( sqliteIsNumber(argv[0]) ){
|
|
+ sqlite_set_result_string(context, argv[0], -1);
|
|
+ }else{
|
|
+ int i,j,n;
|
|
+ char *z;
|
|
+ for(i=n=0; argv[0][i]; i++){ if( argv[0][i]=='\'' ) n++; }
|
|
+ z = sqliteMalloc( i+n+3 );
|
|
+ if( z==0 ) return;
|
|
+ z[0] = '\'';
|
|
+ for(i=0, j=1; argv[0][i]; i++){
|
|
+ z[j++] = argv[0][i];
|
|
+ if( argv[0][i]=='\'' ){
|
|
+ z[j++] = '\'';
|
|
+ }
|
|
+ }
|
|
+ z[j++] = '\'';
|
|
+ z[j] = 0;
|
|
+ sqlite_set_result_string(context, z, j);
|
|
+ sqliteFree(z);
|
|
+ }
|
|
+}
|
|
+
|
|
+#ifdef SQLITE_SOUNDEX
|
|
+/*
|
|
+** Compute the soundex encoding of a word.
|
|
+*/
|
|
+static void soundexFunc(sqlite_func *context, int argc, const char **argv){
|
|
+ char zResult[8];
|
|
+ const char *zIn;
|
|
+ int i, j;
|
|
+ static const unsigned char iCode[] = {
|
|
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
+ 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
|
|
+ 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
|
|
+ 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
|
|
+ 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
|
|
+ };
|
|
+ assert( argc==1 );
|
|
+ zIn = argv[0];
|
|
+ for(i=0; zIn[i] && !isalpha(zIn[i]); i++){}
|
|
+ if( zIn[i] ){
|
|
+ zResult[0] = toupper(zIn[i]);
|
|
+ for(j=1; j<4 && zIn[i]; i++){
|
|
+ int code = iCode[zIn[i]&0x7f];
|
|
+ if( code>0 ){
|
|
+ zResult[j++] = code + '0';
|
|
+ }
|
|
+ }
|
|
+ while( j<4 ){
|
|
+ zResult[j++] = '0';
|
|
+ }
|
|
+ zResult[j] = 0;
|
|
+ sqlite_set_result_string(context, zResult, 4);
|
|
+ }else{
|
|
+ sqlite_set_result_string(context, "?000", 4);
|
|
+ }
|
|
+}
|
|
+#endif
|
|
+
|
|
+#ifdef SQLITE_TEST
|
|
+/*
|
|
+** This function generates a string of random characters. Used for
|
|
+** generating test data.
|
|
+*/
|
|
+static void randStr(sqlite_func *context, int argc, const char **argv){
|
|
+ static const unsigned char zSrc[] =
|
|
+ "abcdefghijklmnopqrstuvwxyz"
|
|
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
|
+ "0123456789"
|
|
+ ".-!,:*^+=_|?/<> ";
|
|
+ int iMin, iMax, n, r, i;
|
|
+ unsigned char zBuf[1000];
|
|
+ if( argc>=1 ){
|
|
+ iMin = atoi(argv[0]);
|
|
+ if( iMin<0 ) iMin = 0;
|
|
+ if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1;
|
|
+ }else{
|
|
+ iMin = 1;
|
|
+ }
|
|
+ if( argc>=2 ){
|
|
+ iMax = atoi(argv[1]);
|
|
+ if( iMax<iMin ) iMax = iMin;
|
|
+ if( iMax>=sizeof(zBuf) ) iMax = sizeof(zBuf)-1;
|
|
+ }else{
|
|
+ iMax = 50;
|
|
+ }
|
|
+ n = iMin;
|
|
+ if( iMax>iMin ){
|
|
+ sqliteRandomness(sizeof(r), &r);
|
|
+ r &= 0x7fffffff;
|
|
+ n += r%(iMax + 1 - iMin);
|
|
+ }
|
|
+ assert( n<sizeof(zBuf) );
|
|
+ sqliteRandomness(n, zBuf);
|
|
+ for(i=0; i<n; i++){
|
|
+ zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];
|
|
+ }
|
|
+ zBuf[n] = 0;
|
|
+ sqlite_set_result_string(context, zBuf, n);
|
|
+}
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** An instance of the following structure holds the context of a
|
|
+** sum() or avg() aggregate computation.
|
|
+*/
|
|
+typedef struct SumCtx SumCtx;
|
|
+struct SumCtx {
|
|
+ double sum; /* Sum of terms */
|
|
+ int cnt; /* Number of elements summed */
|
|
+};
|
|
+
|
|
+/*
|
|
+** Routines used to compute the sum or average.
|
|
+*/
|
|
+static void sumStep(sqlite_func *context, int argc, const char **argv){
|
|
+ SumCtx *p;
|
|
+ if( argc<1 ) return;
|
|
+ p = sqlite_aggregate_context(context, sizeof(*p));
|
|
+ if( p && argv[0] ){
|
|
+ p->sum += sqliteAtoF(argv[0], 0);
|
|
+ p->cnt++;
|
|
+ }
|
|
+}
|
|
+static void sumFinalize(sqlite_func *context){
|
|
+ SumCtx *p;
|
|
+ p = sqlite_aggregate_context(context, sizeof(*p));
|
|
+ sqlite_set_result_double(context, p ? p->sum : 0.0);
|
|
+}
|
|
+static void avgFinalize(sqlite_func *context){
|
|
+ SumCtx *p;
|
|
+ p = sqlite_aggregate_context(context, sizeof(*p));
|
|
+ if( p && p->cnt>0 ){
|
|
+ sqlite_set_result_double(context, p->sum/(double)p->cnt);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** An instance of the following structure holds the context of a
|
|
+** variance or standard deviation computation.
|
|
+*/
|
|
+typedef struct StdDevCtx StdDevCtx;
|
|
+struct StdDevCtx {
|
|
+ double sum; /* Sum of terms */
|
|
+ double sum2; /* Sum of the squares of terms */
|
|
+ int cnt; /* Number of terms counted */
|
|
+};
|
|
+
|
|
+#if 0 /* Omit because math library is required */
|
|
+/*
|
|
+** Routines used to compute the standard deviation as an aggregate.
|
|
+*/
|
|
+static void stdDevStep(sqlite_func *context, int argc, const char **argv){
|
|
+ StdDevCtx *p;
|
|
+ double x;
|
|
+ if( argc<1 ) return;
|
|
+ p = sqlite_aggregate_context(context, sizeof(*p));
|
|
+ if( p && argv[0] ){
|
|
+ x = sqliteAtoF(argv[0], 0);
|
|
+ p->sum += x;
|
|
+ p->sum2 += x*x;
|
|
+ p->cnt++;
|
|
+ }
|
|
+}
|
|
+static void stdDevFinalize(sqlite_func *context){
|
|
+ double rN = sqlite_aggregate_count(context);
|
|
+ StdDevCtx *p = sqlite_aggregate_context(context, sizeof(*p));
|
|
+ if( p && p->cnt>1 ){
|
|
+ double rCnt = cnt;
|
|
+ sqlite_set_result_double(context,
|
|
+ sqrt((p->sum2 - p->sum*p->sum/rCnt)/(rCnt-1.0)));
|
|
+ }
|
|
+}
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** The following structure keeps track of state information for the
|
|
+** count() aggregate function.
|
|
+*/
|
|
+typedef struct CountCtx CountCtx;
|
|
+struct CountCtx {
|
|
+ int n;
|
|
+};
|
|
+
|
|
+/*
|
|
+** Routines to implement the count() aggregate function.
|
|
+*/
|
|
+static void countStep(sqlite_func *context, int argc, const char **argv){
|
|
+ CountCtx *p;
|
|
+ p = sqlite_aggregate_context(context, sizeof(*p));
|
|
+ if( (argc==0 || argv[0]) && p ){
|
|
+ p->n++;
|
|
+ }
|
|
+}
|
|
+static void countFinalize(sqlite_func *context){
|
|
+ CountCtx *p;
|
|
+ p = sqlite_aggregate_context(context, sizeof(*p));
|
|
+ sqlite_set_result_int(context, p ? p->n : 0);
|
|
+}
|
|
+
|
|
+/*
|
|
+** This function tracks state information for the min() and max()
|
|
+** aggregate functions.
|
|
+*/
|
|
+typedef struct MinMaxCtx MinMaxCtx;
|
|
+struct MinMaxCtx {
|
|
+ char *z; /* The best so far */
|
|
+ char zBuf[28]; /* Space that can be used for storage */
|
|
+};
|
|
+
|
|
+/*
|
|
+** Routines to implement min() and max() aggregate functions.
|
|
+*/
|
|
+static void minmaxStep(sqlite_func *context, int argc, const char **argv){
|
|
+ MinMaxCtx *p;
|
|
+ int (*xCompare)(const char*, const char*);
|
|
+ int mask; /* 0 for min() or 0xffffffff for max() */
|
|
+
|
|
+ assert( argc==2 );
|
|
+ if( argv[0]==0 ) return; /* Ignore NULL values */
|
|
+ if( argv[1][0]=='n' ){
|
|
+ xCompare = sqliteCompare;
|
|
+ }else{
|
|
+ xCompare = strcmp;
|
|
+ }
|
|
+ mask = (int)sqlite_user_data(context);
|
|
+ assert( mask==0 || mask==-1 );
|
|
+ p = sqlite_aggregate_context(context, sizeof(*p));
|
|
+ if( p==0 || argc<1 ) return;
|
|
+ if( p->z==0 || (xCompare(argv[0],p->z)^mask)<0 ){
|
|
+ int len;
|
|
+ if( p->zBuf[0] ){
|
|
+ sqliteFree(p->z);
|
|
+ }
|
|
+ len = strlen(argv[0]);
|
|
+ if( len < sizeof(p->zBuf)-1 ){
|
|
+ p->z = &p->zBuf[1];
|
|
+ p->zBuf[0] = 0;
|
|
+ }else{
|
|
+ p->z = sqliteMalloc( len+1 );
|
|
+ p->zBuf[0] = 1;
|
|
+ if( p->z==0 ) return;
|
|
+ }
|
|
+ strcpy(p->z, argv[0]);
|
|
+ }
|
|
+}
|
|
+static void minMaxFinalize(sqlite_func *context){
|
|
+ MinMaxCtx *p;
|
|
+ p = sqlite_aggregate_context(context, sizeof(*p));
|
|
+ if( p && p->z && p->zBuf[0]<2 ){
|
|
+ sqlite_set_result_string(context, p->z, strlen(p->z));
|
|
+ }
|
|
+ if( p && p->zBuf[0] ){
|
|
+ sqliteFree(p->z);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** This function registered all of the above C functions as SQL
|
|
+** functions. This should be the only routine in this file with
|
|
+** external linkage.
|
|
+*/
|
|
+void sqliteRegisterBuiltinFunctions(sqlite *db){
|
|
+ static struct {
|
|
+ char *zName;
|
|
+ signed char nArg;
|
|
+ signed char dataType;
|
|
+ u8 argType; /* 0: none. 1: db 2: (-1) */
|
|
+ void (*xFunc)(sqlite_func*,int,const char**);
|
|
+ } aFuncs[] = {
|
|
+ { "min", -1, SQLITE_ARGS, 0, minmaxFunc },
|
|
+ { "min", 0, 0, 0, 0 },
|
|
+ { "max", -1, SQLITE_ARGS, 2, minmaxFunc },
|
|
+ { "max", 0, 0, 2, 0 },
|
|
+ { "typeof", 1, SQLITE_TEXT, 0, typeofFunc },
|
|
+ { "length", 1, SQLITE_NUMERIC, 0, lengthFunc },
|
|
+ { "substr", 3, SQLITE_TEXT, 0, substrFunc },
|
|
+ { "abs", 1, SQLITE_NUMERIC, 0, absFunc },
|
|
+ { "round", 1, SQLITE_NUMERIC, 0, roundFunc },
|
|
+ { "round", 2, SQLITE_NUMERIC, 0, roundFunc },
|
|
+ { "upper", 1, SQLITE_TEXT, 0, upperFunc },
|
|
+ { "lower", 1, SQLITE_TEXT, 0, lowerFunc },
|
|
+ { "coalesce", -1, SQLITE_ARGS, 0, ifnullFunc },
|
|
+ { "coalesce", 0, 0, 0, 0 },
|
|
+ { "coalesce", 1, 0, 0, 0 },
|
|
+ { "ifnull", 2, SQLITE_ARGS, 0, ifnullFunc },
|
|
+ { "random", -1, SQLITE_NUMERIC, 0, randomFunc },
|
|
+ { "like", 2, SQLITE_NUMERIC, 0, likeFunc },
|
|
+ { "glob", 2, SQLITE_NUMERIC, 0, globFunc },
|
|
+ { "nullif", 2, SQLITE_ARGS, 0, nullifFunc },
|
|
+ { "sqlite_version",0,SQLITE_TEXT, 0, versionFunc},
|
|
+ { "quote", 1, SQLITE_ARGS, 0, quoteFunc },
|
|
+ { "last_insert_rowid", 0, SQLITE_NUMERIC, 1, last_insert_rowid },
|
|
+ { "change_count", 0, SQLITE_NUMERIC, 1, change_count },
|
|
+ { "last_statement_change_count",
|
|
+ 0, SQLITE_NUMERIC, 1, last_statement_change_count },
|
|
+#ifdef SQLITE_SOUNDEX
|
|
+ { "soundex", 1, SQLITE_TEXT, 0, soundexFunc},
|
|
+#endif
|
|
+#ifdef SQLITE_TEST
|
|
+ { "randstr", 2, SQLITE_TEXT, 0, randStr },
|
|
+#endif
|
|
+ };
|
|
+ static struct {
|
|
+ char *zName;
|
|
+ signed char nArg;
|
|
+ signed char dataType;
|
|
+ u8 argType;
|
|
+ void (*xStep)(sqlite_func*,int,const char**);
|
|
+ void (*xFinalize)(sqlite_func*);
|
|
+ } aAggs[] = {
|
|
+ { "min", 1, 0, 0, minmaxStep, minMaxFinalize },
|
|
+ { "max", 1, 0, 2, minmaxStep, minMaxFinalize },
|
|
+ { "sum", 1, SQLITE_NUMERIC, 0, sumStep, sumFinalize },
|
|
+ { "avg", 1, SQLITE_NUMERIC, 0, sumStep, avgFinalize },
|
|
+ { "count", 0, SQLITE_NUMERIC, 0, countStep, countFinalize },
|
|
+ { "count", 1, SQLITE_NUMERIC, 0, countStep, countFinalize },
|
|
+#if 0
|
|
+ { "stddev", 1, SQLITE_NUMERIC, 0, stdDevStep, stdDevFinalize },
|
|
+#endif
|
|
+ };
|
|
+ static const char *azTypeFuncs[] = { "min", "max", "typeof" };
|
|
+ int i;
|
|
+
|
|
+ for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
|
|
+ void *pArg;
|
|
+ switch( aFuncs[i].argType ){
|
|
+ case 0: pArg = 0; break;
|
|
+ case 1: pArg = db; break;
|
|
+ case 2: pArg = (void*)(-1); break;
|
|
+ }
|
|
+ sqlite_create_function(db, aFuncs[i].zName,
|
|
+ aFuncs[i].nArg, aFuncs[i].xFunc, pArg);
|
|
+ if( aFuncs[i].xFunc ){
|
|
+ sqlite_function_type(db, aFuncs[i].zName, aFuncs[i].dataType);
|
|
+ }
|
|
+ }
|
|
+ for(i=0; i<sizeof(aAggs)/sizeof(aAggs[0]); i++){
|
|
+ void *pArg;
|
|
+ switch( aAggs[i].argType ){
|
|
+ case 0: pArg = 0; break;
|
|
+ case 1: pArg = db; break;
|
|
+ case 2: pArg = (void*)(-1); break;
|
|
+ }
|
|
+ sqlite_create_aggregate(db, aAggs[i].zName,
|
|
+ aAggs[i].nArg, aAggs[i].xStep, aAggs[i].xFinalize, pArg);
|
|
+ sqlite_function_type(db, aAggs[i].zName, aAggs[i].dataType);
|
|
+ }
|
|
+ for(i=0; i<sizeof(azTypeFuncs)/sizeof(azTypeFuncs[0]); i++){
|
|
+ int n = strlen(azTypeFuncs[i]);
|
|
+ FuncDef *p = sqliteHashFind(&db->aFunc, azTypeFuncs[i], n);
|
|
+ while( p ){
|
|
+ p->includeTypes = 1;
|
|
+ p = p->pNext;
|
|
+ }
|
|
+ }
|
|
+ sqliteRegisterDateTimeFunctions(db);
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/hash.c
|
|
@@ -0,0 +1,356 @@
|
|
+/*
|
|
+** 2001 September 22
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This is the implementation of generic hash-tables
|
|
+** used in SQLite.
|
|
+**
|
|
+** $Id$
|
|
+*/
|
|
+#include "sqliteInt.h"
|
|
+#include <assert.h>
|
|
+
|
|
+/* Turn bulk memory into a hash table object by initializing the
|
|
+** fields of the Hash structure.
|
|
+**
|
|
+** "new" is a pointer to the hash table that is to be initialized.
|
|
+** keyClass is one of the constants SQLITE_HASH_INT, SQLITE_HASH_POINTER,
|
|
+** SQLITE_HASH_BINARY, or SQLITE_HASH_STRING. The value of keyClass
|
|
+** determines what kind of key the hash table will use. "copyKey" is
|
|
+** true if the hash table should make its own private copy of keys and
|
|
+** false if it should just use the supplied pointer. CopyKey only makes
|
|
+** sense for SQLITE_HASH_STRING and SQLITE_HASH_BINARY and is ignored
|
|
+** for other key classes.
|
|
+*/
|
|
+void sqliteHashInit(Hash *new, int keyClass, int copyKey){
|
|
+ assert( new!=0 );
|
|
+ assert( keyClass>=SQLITE_HASH_INT && keyClass<=SQLITE_HASH_BINARY );
|
|
+ new->keyClass = keyClass;
|
|
+ new->copyKey = copyKey &&
|
|
+ (keyClass==SQLITE_HASH_STRING || keyClass==SQLITE_HASH_BINARY);
|
|
+ new->first = 0;
|
|
+ new->count = 0;
|
|
+ new->htsize = 0;
|
|
+ new->ht = 0;
|
|
+}
|
|
+
|
|
+/* Remove all entries from a hash table. Reclaim all memory.
|
|
+** Call this routine to delete a hash table or to reset a hash table
|
|
+** to the empty state.
|
|
+*/
|
|
+void sqliteHashClear(Hash *pH){
|
|
+ HashElem *elem; /* For looping over all elements of the table */
|
|
+
|
|
+ assert( pH!=0 );
|
|
+ elem = pH->first;
|
|
+ pH->first = 0;
|
|
+ if( pH->ht ) sqliteFree(pH->ht);
|
|
+ pH->ht = 0;
|
|
+ pH->htsize = 0;
|
|
+ while( elem ){
|
|
+ HashElem *next_elem = elem->next;
|
|
+ if( pH->copyKey && elem->pKey ){
|
|
+ sqliteFree(elem->pKey);
|
|
+ }
|
|
+ sqliteFree(elem);
|
|
+ elem = next_elem;
|
|
+ }
|
|
+ pH->count = 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Hash and comparison functions when the mode is SQLITE_HASH_INT
|
|
+*/
|
|
+static int intHash(const void *pKey, int nKey){
|
|
+ return nKey ^ (nKey<<8) ^ (nKey>>8);
|
|
+}
|
|
+static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
|
+ return n2 - n1;
|
|
+}
|
|
+
|
|
+#if 0 /* NOT USED */
|
|
+/*
|
|
+** Hash and comparison functions when the mode is SQLITE_HASH_POINTER
|
|
+*/
|
|
+static int ptrHash(const void *pKey, int nKey){
|
|
+ uptr x = Addr(pKey);
|
|
+ return x ^ (x<<8) ^ (x>>8);
|
|
+}
|
|
+static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
|
+ if( pKey1==pKey2 ) return 0;
|
|
+ if( pKey1<pKey2 ) return -1;
|
|
+ return 1;
|
|
+}
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** Hash and comparison functions when the mode is SQLITE_HASH_STRING
|
|
+*/
|
|
+static int strHash(const void *pKey, int nKey){
|
|
+ return sqliteHashNoCase((const char*)pKey, nKey);
|
|
+}
|
|
+static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
|
+ if( n1!=n2 ) return n2-n1;
|
|
+ return sqliteStrNICmp((const char*)pKey1,(const char*)pKey2,n1);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Hash and comparison functions when the mode is SQLITE_HASH_BINARY
|
|
+*/
|
|
+static int binHash(const void *pKey, int nKey){
|
|
+ int h = 0;
|
|
+ const char *z = (const char *)pKey;
|
|
+ while( nKey-- > 0 ){
|
|
+ h = (h<<3) ^ h ^ *(z++);
|
|
+ }
|
|
+ return h & 0x7fffffff;
|
|
+}
|
|
+static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
|
+ if( n1!=n2 ) return n2-n1;
|
|
+ return memcmp(pKey1,pKey2,n1);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return a pointer to the appropriate hash function given the key class.
|
|
+**
|
|
+** The C syntax in this function definition may be unfamilar to some
|
|
+** programmers, so we provide the following additional explanation:
|
|
+**
|
|
+** The name of the function is "hashFunction". The function takes a
|
|
+** single parameter "keyClass". The return value of hashFunction()
|
|
+** is a pointer to another function. Specifically, the return value
|
|
+** of hashFunction() is a pointer to a function that takes two parameters
|
|
+** with types "const void*" and "int" and returns an "int".
|
|
+*/
|
|
+static int (*hashFunction(int keyClass))(const void*,int){
|
|
+ switch( keyClass ){
|
|
+ case SQLITE_HASH_INT: return &intHash;
|
|
+ /* case SQLITE_HASH_POINTER: return &ptrHash; // NOT USED */
|
|
+ case SQLITE_HASH_STRING: return &strHash;
|
|
+ case SQLITE_HASH_BINARY: return &binHash;;
|
|
+ default: break;
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return a pointer to the appropriate hash function given the key class.
|
|
+**
|
|
+** For help in interpreted the obscure C code in the function definition,
|
|
+** see the header comment on the previous function.
|
|
+*/
|
|
+static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
|
|
+ switch( keyClass ){
|
|
+ case SQLITE_HASH_INT: return &intCompare;
|
|
+ /* case SQLITE_HASH_POINTER: return &ptrCompare; // NOT USED */
|
|
+ case SQLITE_HASH_STRING: return &strCompare;
|
|
+ case SQLITE_HASH_BINARY: return &binCompare;
|
|
+ default: break;
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+
|
|
+/* Resize the hash table so that it cantains "new_size" buckets.
|
|
+** "new_size" must be a power of 2. The hash table might fail
|
|
+** to resize if sqliteMalloc() fails.
|
|
+*/
|
|
+static void rehash(Hash *pH, int new_size){
|
|
+ struct _ht *new_ht; /* The new hash table */
|
|
+ HashElem *elem, *next_elem; /* For looping over existing elements */
|
|
+ HashElem *x; /* Element being copied to new hash table */
|
|
+ int (*xHash)(const void*,int); /* The hash function */
|
|
+
|
|
+ assert( (new_size & (new_size-1))==0 );
|
|
+ new_ht = (struct _ht *)sqliteMalloc( new_size*sizeof(struct _ht) );
|
|
+ if( new_ht==0 ) return;
|
|
+ if( pH->ht ) sqliteFree(pH->ht);
|
|
+ pH->ht = new_ht;
|
|
+ pH->htsize = new_size;
|
|
+ xHash = hashFunction(pH->keyClass);
|
|
+ for(elem=pH->first, pH->first=0; elem; elem = next_elem){
|
|
+ int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
|
|
+ next_elem = elem->next;
|
|
+ x = new_ht[h].chain;
|
|
+ if( x ){
|
|
+ elem->next = x;
|
|
+ elem->prev = x->prev;
|
|
+ if( x->prev ) x->prev->next = elem;
|
|
+ else pH->first = elem;
|
|
+ x->prev = elem;
|
|
+ }else{
|
|
+ elem->next = pH->first;
|
|
+ if( pH->first ) pH->first->prev = elem;
|
|
+ elem->prev = 0;
|
|
+ pH->first = elem;
|
|
+ }
|
|
+ new_ht[h].chain = elem;
|
|
+ new_ht[h].count++;
|
|
+ }
|
|
+}
|
|
+
|
|
+/* This function (for internal use only) locates an element in an
|
|
+** hash table that matches the given key. The hash for this key has
|
|
+** already been computed and is passed as the 4th parameter.
|
|
+*/
|
|
+static HashElem *findElementGivenHash(
|
|
+ const Hash *pH, /* The pH to be searched */
|
|
+ const void *pKey, /* The key we are searching for */
|
|
+ int nKey,
|
|
+ int h /* The hash for this key. */
|
|
+){
|
|
+ HashElem *elem; /* Used to loop thru the element list */
|
|
+ int count; /* Number of elements left to test */
|
|
+ int (*xCompare)(const void*,int,const void*,int); /* comparison function */
|
|
+
|
|
+ if( pH->ht ){
|
|
+ elem = pH->ht[h].chain;
|
|
+ count = pH->ht[h].count;
|
|
+ xCompare = compareFunction(pH->keyClass);
|
|
+ while( count-- && elem ){
|
|
+ if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
|
|
+ return elem;
|
|
+ }
|
|
+ elem = elem->next;
|
|
+ }
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/* Remove a single entry from the hash table given a pointer to that
|
|
+** element and a hash on the element's key.
|
|
+*/
|
|
+static void removeElementGivenHash(
|
|
+ Hash *pH, /* The pH containing "elem" */
|
|
+ HashElem* elem, /* The element to be removed from the pH */
|
|
+ int h /* Hash value for the element */
|
|
+){
|
|
+ if( elem->prev ){
|
|
+ elem->prev->next = elem->next;
|
|
+ }else{
|
|
+ pH->first = elem->next;
|
|
+ }
|
|
+ if( elem->next ){
|
|
+ elem->next->prev = elem->prev;
|
|
+ }
|
|
+ if( pH->ht[h].chain==elem ){
|
|
+ pH->ht[h].chain = elem->next;
|
|
+ }
|
|
+ pH->ht[h].count--;
|
|
+ if( pH->ht[h].count<=0 ){
|
|
+ pH->ht[h].chain = 0;
|
|
+ }
|
|
+ if( pH->copyKey && elem->pKey ){
|
|
+ sqliteFree(elem->pKey);
|
|
+ }
|
|
+ sqliteFree( elem );
|
|
+ pH->count--;
|
|
+}
|
|
+
|
|
+/* Attempt to locate an element of the hash table pH with a key
|
|
+** that matches pKey,nKey. Return the data for this element if it is
|
|
+** found, or NULL if there is no match.
|
|
+*/
|
|
+void *sqliteHashFind(const Hash *pH, const void *pKey, int nKey){
|
|
+ int h; /* A hash on key */
|
|
+ HashElem *elem; /* The element that matches key */
|
|
+ int (*xHash)(const void*,int); /* The hash function */
|
|
+
|
|
+ if( pH==0 || pH->ht==0 ) return 0;
|
|
+ xHash = hashFunction(pH->keyClass);
|
|
+ assert( xHash!=0 );
|
|
+ h = (*xHash)(pKey,nKey);
|
|
+ assert( (pH->htsize & (pH->htsize-1))==0 );
|
|
+ elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
|
|
+ return elem ? elem->data : 0;
|
|
+}
|
|
+
|
|
+/* Insert an element into the hash table pH. The key is pKey,nKey
|
|
+** and the data is "data".
|
|
+**
|
|
+** If no element exists with a matching key, then a new
|
|
+** element is created. A copy of the key is made if the copyKey
|
|
+** flag is set. NULL is returned.
|
|
+**
|
|
+** If another element already exists with the same key, then the
|
|
+** new data replaces the old data and the old data is returned.
|
|
+** The key is not copied in this instance. If a malloc fails, then
|
|
+** the new data is returned and the hash table is unchanged.
|
|
+**
|
|
+** If the "data" parameter to this function is NULL, then the
|
|
+** element corresponding to "key" is removed from the hash table.
|
|
+*/
|
|
+void *sqliteHashInsert(Hash *pH, const void *pKey, int nKey, void *data){
|
|
+ int hraw; /* Raw hash value of the key */
|
|
+ int h; /* the hash of the key modulo hash table size */
|
|
+ HashElem *elem; /* Used to loop thru the element list */
|
|
+ HashElem *new_elem; /* New element added to the pH */
|
|
+ int (*xHash)(const void*,int); /* The hash function */
|
|
+
|
|
+ assert( pH!=0 );
|
|
+ xHash = hashFunction(pH->keyClass);
|
|
+ assert( xHash!=0 );
|
|
+ hraw = (*xHash)(pKey, nKey);
|
|
+ assert( (pH->htsize & (pH->htsize-1))==0 );
|
|
+ h = hraw & (pH->htsize-1);
|
|
+ elem = findElementGivenHash(pH,pKey,nKey,h);
|
|
+ if( elem ){
|
|
+ void *old_data = elem->data;
|
|
+ if( data==0 ){
|
|
+ removeElementGivenHash(pH,elem,h);
|
|
+ }else{
|
|
+ elem->data = data;
|
|
+ }
|
|
+ return old_data;
|
|
+ }
|
|
+ if( data==0 ) return 0;
|
|
+ new_elem = (HashElem*)sqliteMalloc( sizeof(HashElem) );
|
|
+ if( new_elem==0 ) return data;
|
|
+ if( pH->copyKey && pKey!=0 ){
|
|
+ new_elem->pKey = sqliteMallocRaw( nKey );
|
|
+ if( new_elem->pKey==0 ){
|
|
+ sqliteFree(new_elem);
|
|
+ return data;
|
|
+ }
|
|
+ memcpy((void*)new_elem->pKey, pKey, nKey);
|
|
+ }else{
|
|
+ new_elem->pKey = (void*)pKey;
|
|
+ }
|
|
+ new_elem->nKey = nKey;
|
|
+ pH->count++;
|
|
+ if( pH->htsize==0 ) rehash(pH,8);
|
|
+ if( pH->htsize==0 ){
|
|
+ pH->count = 0;
|
|
+ sqliteFree(new_elem);
|
|
+ return data;
|
|
+ }
|
|
+ if( pH->count > pH->htsize ){
|
|
+ rehash(pH,pH->htsize*2);
|
|
+ }
|
|
+ assert( (pH->htsize & (pH->htsize-1))==0 );
|
|
+ h = hraw & (pH->htsize-1);
|
|
+ elem = pH->ht[h].chain;
|
|
+ if( elem ){
|
|
+ new_elem->next = elem;
|
|
+ new_elem->prev = elem->prev;
|
|
+ if( elem->prev ){ elem->prev->next = new_elem; }
|
|
+ else { pH->first = new_elem; }
|
|
+ elem->prev = new_elem;
|
|
+ }else{
|
|
+ new_elem->next = pH->first;
|
|
+ new_elem->prev = 0;
|
|
+ if( pH->first ){ pH->first->prev = new_elem; }
|
|
+ pH->first = new_elem;
|
|
+ }
|
|
+ pH->ht[h].count++;
|
|
+ pH->ht[h].chain = new_elem;
|
|
+ new_elem->data = data;
|
|
+ return 0;
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/hash.h
|
|
@@ -0,0 +1,109 @@
|
|
+/*
|
|
+** 2001 September 22
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This is the header file for the generic hash-table implemenation
|
|
+** used in SQLite.
|
|
+**
|
|
+** $Id$
|
|
+*/
|
|
+#ifndef _SQLITE_HASH_H_
|
|
+#define _SQLITE_HASH_H_
|
|
+
|
|
+/* Forward declarations of structures. */
|
|
+typedef struct Hash Hash;
|
|
+typedef struct HashElem HashElem;
|
|
+
|
|
+/* A complete hash table is an instance of the following structure.
|
|
+** The internals of this structure are intended to be opaque -- client
|
|
+** code should not attempt to access or modify the fields of this structure
|
|
+** directly. Change this structure only by using the routines below.
|
|
+** However, many of the "procedures" and "functions" for modifying and
|
|
+** accessing this structure are really macros, so we can't really make
|
|
+** this structure opaque.
|
|
+*/
|
|
+struct Hash {
|
|
+ char keyClass; /* SQLITE_HASH_INT, _POINTER, _STRING, _BINARY */
|
|
+ char copyKey; /* True if copy of key made on insert */
|
|
+ int count; /* Number of entries in this table */
|
|
+ HashElem *first; /* The first element of the array */
|
|
+ int htsize; /* Number of buckets in the hash table */
|
|
+ struct _ht { /* the hash table */
|
|
+ int count; /* Number of entries with this hash */
|
|
+ HashElem *chain; /* Pointer to first entry with this hash */
|
|
+ } *ht;
|
|
+};
|
|
+
|
|
+/* Each element in the hash table is an instance of the following
|
|
+** structure. All elements are stored on a single doubly-linked list.
|
|
+**
|
|
+** Again, this structure is intended to be opaque, but it can't really
|
|
+** be opaque because it is used by macros.
|
|
+*/
|
|
+struct HashElem {
|
|
+ HashElem *next, *prev; /* Next and previous elements in the table */
|
|
+ void *data; /* Data associated with this element */
|
|
+ void *pKey; int nKey; /* Key associated with this element */
|
|
+};
|
|
+
|
|
+/*
|
|
+** There are 4 different modes of operation for a hash table:
|
|
+**
|
|
+** SQLITE_HASH_INT nKey is used as the key and pKey is ignored.
|
|
+**
|
|
+** SQLITE_HASH_POINTER pKey is used as the key and nKey is ignored.
|
|
+**
|
|
+** SQLITE_HASH_STRING pKey points to a string that is nKey bytes long
|
|
+** (including the null-terminator, if any). Case
|
|
+** is ignored in comparisons.
|
|
+**
|
|
+** SQLITE_HASH_BINARY pKey points to binary data nKey bytes long.
|
|
+** memcmp() is used to compare keys.
|
|
+**
|
|
+** A copy of the key is made for SQLITE_HASH_STRING and SQLITE_HASH_BINARY
|
|
+** if the copyKey parameter to HashInit is 1.
|
|
+*/
|
|
+#define SQLITE_HASH_INT 1
|
|
+/* #define SQLITE_HASH_POINTER 2 // NOT USED */
|
|
+#define SQLITE_HASH_STRING 3
|
|
+#define SQLITE_HASH_BINARY 4
|
|
+
|
|
+/*
|
|
+** Access routines. To delete, insert a NULL pointer.
|
|
+*/
|
|
+void sqliteHashInit(Hash*, int keytype, int copyKey);
|
|
+void *sqliteHashInsert(Hash*, const void *pKey, int nKey, void *pData);
|
|
+void *sqliteHashFind(const Hash*, const void *pKey, int nKey);
|
|
+void sqliteHashClear(Hash*);
|
|
+
|
|
+/*
|
|
+** Macros for looping over all elements of a hash table. The idiom is
|
|
+** like this:
|
|
+**
|
|
+** Hash h;
|
|
+** HashElem *p;
|
|
+** ...
|
|
+** for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){
|
|
+** SomeStructure *pData = sqliteHashData(p);
|
|
+** // do something with pData
|
|
+** }
|
|
+*/
|
|
+#define sqliteHashFirst(H) ((H)->first)
|
|
+#define sqliteHashNext(E) ((E)->next)
|
|
+#define sqliteHashData(E) ((E)->data)
|
|
+#define sqliteHashKey(E) ((E)->pKey)
|
|
+#define sqliteHashKeysize(E) ((E)->nKey)
|
|
+
|
|
+/*
|
|
+** Number of entries in a hash table
|
|
+*/
|
|
+#define sqliteHashCount(H) ((H)->count)
|
|
+
|
|
+#endif /* _SQLITE_HASH_H_ */
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/insert.c
|
|
@@ -0,0 +1,919 @@
|
|
+/*
|
|
+** 2001 September 15
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This file contains C code routines that are called by the parser
|
|
+** to handle INSERT statements in SQLite.
|
|
+**
|
|
+** $Id$
|
|
+*/
|
|
+#include "sqliteInt.h"
|
|
+
|
|
+/*
|
|
+** This routine is call to handle SQL of the following forms:
|
|
+**
|
|
+** insert into TABLE (IDLIST) values(EXPRLIST)
|
|
+** insert into TABLE (IDLIST) select
|
|
+**
|
|
+** The IDLIST following the table name is always optional. If omitted,
|
|
+** then a list of all columns for the table is substituted. The IDLIST
|
|
+** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted.
|
|
+**
|
|
+** The pList parameter holds EXPRLIST in the first form of the INSERT
|
|
+** statement above, and pSelect is NULL. For the second form, pList is
|
|
+** NULL and pSelect is a pointer to the select statement used to generate
|
|
+** data for the insert.
|
|
+**
|
|
+** The code generated follows one of three templates. For a simple
|
|
+** select with data coming from a VALUES clause, the code executes
|
|
+** once straight down through. The template looks like this:
|
|
+**
|
|
+** open write cursor to <table> and its indices
|
|
+** puts VALUES clause expressions onto the stack
|
|
+** write the resulting record into <table>
|
|
+** cleanup
|
|
+**
|
|
+** If the statement is of the form
|
|
+**
|
|
+** INSERT INTO <table> SELECT ...
|
|
+**
|
|
+** And the SELECT clause does not read from <table> at any time, then
|
|
+** the generated code follows this template:
|
|
+**
|
|
+** goto B
|
|
+** A: setup for the SELECT
|
|
+** loop over the tables in the SELECT
|
|
+** gosub C
|
|
+** end loop
|
|
+** cleanup after the SELECT
|
|
+** goto D
|
|
+** B: open write cursor to <table> and its indices
|
|
+** goto A
|
|
+** C: insert the select result into <table>
|
|
+** return
|
|
+** D: cleanup
|
|
+**
|
|
+** The third template is used if the insert statement takes its
|
|
+** values from a SELECT but the data is being inserted into a table
|
|
+** that is also read as part of the SELECT. In the third form,
|
|
+** we have to use a intermediate table to store the results of
|
|
+** the select. The template is like this:
|
|
+**
|
|
+** goto B
|
|
+** A: setup for the SELECT
|
|
+** loop over the tables in the SELECT
|
|
+** gosub C
|
|
+** end loop
|
|
+** cleanup after the SELECT
|
|
+** goto D
|
|
+** C: insert the select result into the intermediate table
|
|
+** return
|
|
+** B: open a cursor to an intermediate table
|
|
+** goto A
|
|
+** D: open write cursor to <table> and its indices
|
|
+** loop over the intermediate table
|
|
+** transfer values form intermediate table into <table>
|
|
+** end the loop
|
|
+** cleanup
|
|
+*/
|
|
+void sqliteInsert(
|
|
+ Parse *pParse, /* Parser context */
|
|
+ SrcList *pTabList, /* Name of table into which we are inserting */
|
|
+ ExprList *pList, /* List of values to be inserted */
|
|
+ Select *pSelect, /* A SELECT statement to use as the data source */
|
|
+ IdList *pColumn, /* Column names corresponding to IDLIST. */
|
|
+ int onError /* How to handle constraint errors */
|
|
+){
|
|
+ Table *pTab; /* The table to insert into */
|
|
+ char *zTab; /* Name of the table into which we are inserting */
|
|
+ const char *zDb; /* Name of the database holding this table */
|
|
+ int i, j, idx; /* Loop counters */
|
|
+ Vdbe *v; /* Generate code into this virtual machine */
|
|
+ Index *pIdx; /* For looping over indices of the table */
|
|
+ int nColumn; /* Number of columns in the data */
|
|
+ int base; /* VDBE Cursor number for pTab */
|
|
+ int iCont, iBreak; /* Beginning and end of the loop over srcTab */
|
|
+ sqlite *db; /* The main database structure */
|
|
+ int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
|
|
+ int endOfLoop; /* Label for the end of the insertion loop */
|
|
+ int useTempTable; /* Store SELECT results in intermediate table */
|
|
+ int srcTab; /* Data comes from this temporary cursor if >=0 */
|
|
+ int iSelectLoop; /* Address of code that implements the SELECT */
|
|
+ int iCleanup; /* Address of the cleanup code */
|
|
+ int iInsertBlock; /* Address of the subroutine used to insert data */
|
|
+ int iCntMem; /* Memory cell used for the row counter */
|
|
+ int isView; /* True if attempting to insert into a view */
|
|
+
|
|
+ int row_triggers_exist = 0; /* True if there are FOR EACH ROW triggers */
|
|
+ int before_triggers; /* True if there are BEFORE triggers */
|
|
+ int after_triggers; /* True if there are AFTER triggers */
|
|
+ int newIdx = -1; /* Cursor for the NEW table */
|
|
+
|
|
+ if( pParse->nErr || sqlite_malloc_failed ) goto insert_cleanup;
|
|
+ db = pParse->db;
|
|
+
|
|
+ /* Locate the table into which we will be inserting new information.
|
|
+ */
|
|
+ assert( pTabList->nSrc==1 );
|
|
+ zTab = pTabList->a[0].zName;
|
|
+ if( zTab==0 ) goto insert_cleanup;
|
|
+ pTab = sqliteSrcListLookup(pParse, pTabList);
|
|
+ if( pTab==0 ){
|
|
+ goto insert_cleanup;
|
|
+ }
|
|
+ assert( pTab->iDb<db->nDb );
|
|
+ zDb = db->aDb[pTab->iDb].zName;
|
|
+ if( sqliteAuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
|
|
+ goto insert_cleanup;
|
|
+ }
|
|
+
|
|
+ /* Ensure that:
|
|
+ * (a) the table is not read-only,
|
|
+ * (b) that if it is a view then ON INSERT triggers exist
|
|
+ */
|
|
+ before_triggers = sqliteTriggersExist(pParse, pTab->pTrigger, TK_INSERT,
|
|
+ TK_BEFORE, TK_ROW, 0);
|
|
+ after_triggers = sqliteTriggersExist(pParse, pTab->pTrigger, TK_INSERT,
|
|
+ TK_AFTER, TK_ROW, 0);
|
|
+ row_triggers_exist = before_triggers || after_triggers;
|
|
+ isView = pTab->pSelect!=0;
|
|
+ if( sqliteIsReadOnly(pParse, pTab, before_triggers) ){
|
|
+ goto insert_cleanup;
|
|
+ }
|
|
+ if( pTab==0 ) goto insert_cleanup;
|
|
+
|
|
+ /* If pTab is really a view, make sure it has been initialized.
|
|
+ */
|
|
+ if( isView && sqliteViewGetColumnNames(pParse, pTab) ){
|
|
+ goto insert_cleanup;
|
|
+ }
|
|
+
|
|
+ /* Allocate a VDBE
|
|
+ */
|
|
+ v = sqliteGetVdbe(pParse);
|
|
+ if( v==0 ) goto insert_cleanup;
|
|
+ sqliteBeginWriteOperation(pParse, pSelect || row_triggers_exist, pTab->iDb);
|
|
+
|
|
+ /* if there are row triggers, allocate a temp table for new.* references. */
|
|
+ if( row_triggers_exist ){
|
|
+ newIdx = pParse->nTab++;
|
|
+ }
|
|
+
|
|
+ /* Figure out how many columns of data are supplied. If the data
|
|
+ ** is coming from a SELECT statement, then this step also generates
|
|
+ ** all the code to implement the SELECT statement and invoke a subroutine
|
|
+ ** to process each row of the result. (Template 2.) If the SELECT
|
|
+ ** statement uses the the table that is being inserted into, then the
|
|
+ ** subroutine is also coded here. That subroutine stores the SELECT
|
|
+ ** results in a temporary table. (Template 3.)
|
|
+ */
|
|
+ if( pSelect ){
|
|
+ /* Data is coming from a SELECT. Generate code to implement that SELECT
|
|
+ */
|
|
+ int rc, iInitCode;
|
|
+ iInitCode = sqliteVdbeAddOp(v, OP_Goto, 0, 0);
|
|
+ iSelectLoop = sqliteVdbeCurrentAddr(v);
|
|
+ iInsertBlock = sqliteVdbeMakeLabel(v);
|
|
+ rc = sqliteSelect(pParse, pSelect, SRT_Subroutine, iInsertBlock, 0,0,0);
|
|
+ if( rc || pParse->nErr || sqlite_malloc_failed ) goto insert_cleanup;
|
|
+ iCleanup = sqliteVdbeMakeLabel(v);
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, iCleanup);
|
|
+ assert( pSelect->pEList );
|
|
+ nColumn = pSelect->pEList->nExpr;
|
|
+
|
|
+ /* Set useTempTable to TRUE if the result of the SELECT statement
|
|
+ ** should be written into a temporary table. Set to FALSE if each
|
|
+ ** row of the SELECT can be written directly into the result table.
|
|
+ **
|
|
+ ** A temp table must be used if the table being updated is also one
|
|
+ ** of the tables being read by the SELECT statement. Also use a
|
|
+ ** temp table in the case of row triggers.
|
|
+ */
|
|
+ if( row_triggers_exist ){
|
|
+ useTempTable = 1;
|
|
+ }else{
|
|
+ int addr = sqliteVdbeFindOp(v, OP_OpenRead, pTab->tnum);
|
|
+ useTempTable = 0;
|
|
+ if( addr>0 ){
|
|
+ VdbeOp *pOp = sqliteVdbeGetOp(v, addr-2);
|
|
+ if( pOp->opcode==OP_Integer && pOp->p1==pTab->iDb ){
|
|
+ useTempTable = 1;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+
|
|
+ if( useTempTable ){
|
|
+ /* Generate the subroutine that SELECT calls to process each row of
|
|
+ ** the result. Store the result in a temporary table
|
|
+ */
|
|
+ srcTab = pParse->nTab++;
|
|
+ sqliteVdbeResolveLabel(v, iInsertBlock);
|
|
+ sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
|
|
+ sqliteVdbeAddOp(v, OP_NewRecno, srcTab, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Pull, 1, 0);
|
|
+ sqliteVdbeAddOp(v, OP_PutIntKey, srcTab, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Return, 0, 0);
|
|
+
|
|
+ /* The following code runs first because the GOTO at the very top
|
|
+ ** of the program jumps to it. Create the temporary table, then jump
|
|
+ ** back up and execute the SELECT code above.
|
|
+ */
|
|
+ sqliteVdbeChangeP2(v, iInitCode, sqliteVdbeCurrentAddr(v));
|
|
+ sqliteVdbeAddOp(v, OP_OpenTemp, srcTab, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, iSelectLoop);
|
|
+ sqliteVdbeResolveLabel(v, iCleanup);
|
|
+ }else{
|
|
+ sqliteVdbeChangeP2(v, iInitCode, sqliteVdbeCurrentAddr(v));
|
|
+ }
|
|
+ }else{
|
|
+ /* This is the case if the data for the INSERT is coming from a VALUES
|
|
+ ** clause
|
|
+ */
|
|
+ SrcList dummy;
|
|
+ assert( pList!=0 );
|
|
+ srcTab = -1;
|
|
+ useTempTable = 0;
|
|
+ assert( pList );
|
|
+ nColumn = pList->nExpr;
|
|
+ dummy.nSrc = 0;
|
|
+ for(i=0; i<nColumn; i++){
|
|
+ if( sqliteExprResolveIds(pParse, &dummy, 0, pList->a[i].pExpr) ){
|
|
+ goto insert_cleanup;
|
|
+ }
|
|
+ if( sqliteExprCheck(pParse, pList->a[i].pExpr, 0, 0) ){
|
|
+ goto insert_cleanup;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Make sure the number of columns in the source data matches the number
|
|
+ ** of columns to be inserted into the table.
|
|
+ */
|
|
+ if( pColumn==0 && nColumn!=pTab->nCol ){
|
|
+ sqliteErrorMsg(pParse,
|
|
+ "table %S has %d columns but %d values were supplied",
|
|
+ pTabList, 0, pTab->nCol, nColumn);
|
|
+ goto insert_cleanup;
|
|
+ }
|
|
+ if( pColumn!=0 && nColumn!=pColumn->nId ){
|
|
+ sqliteErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
|
|
+ goto insert_cleanup;
|
|
+ }
|
|
+
|
|
+ /* If the INSERT statement included an IDLIST term, then make sure
|
|
+ ** all elements of the IDLIST really are columns of the table and
|
|
+ ** remember the column indices.
|
|
+ **
|
|
+ ** If the table has an INTEGER PRIMARY KEY column and that column
|
|
+ ** is named in the IDLIST, then record in the keyColumn variable
|
|
+ ** the index into IDLIST of the primary key column. keyColumn is
|
|
+ ** the index of the primary key as it appears in IDLIST, not as
|
|
+ ** is appears in the original table. (The index of the primary
|
|
+ ** key in the original table is pTab->iPKey.)
|
|
+ */
|
|
+ if( pColumn ){
|
|
+ for(i=0; i<pColumn->nId; i++){
|
|
+ pColumn->a[i].idx = -1;
|
|
+ }
|
|
+ for(i=0; i<pColumn->nId; i++){
|
|
+ for(j=0; j<pTab->nCol; j++){
|
|
+ if( sqliteStrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
|
|
+ pColumn->a[i].idx = j;
|
|
+ if( j==pTab->iPKey ){
|
|
+ keyColumn = i;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ if( j>=pTab->nCol ){
|
|
+ if( sqliteIsRowid(pColumn->a[i].zName) ){
|
|
+ keyColumn = i;
|
|
+ }else{
|
|
+ sqliteErrorMsg(pParse, "table %S has no column named %s",
|
|
+ pTabList, 0, pColumn->a[i].zName);
|
|
+ pParse->nErr++;
|
|
+ goto insert_cleanup;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* If there is no IDLIST term but the table has an integer primary
|
|
+ ** key, the set the keyColumn variable to the primary key column index
|
|
+ ** in the original table definition.
|
|
+ */
|
|
+ if( pColumn==0 ){
|
|
+ keyColumn = pTab->iPKey;
|
|
+ }
|
|
+
|
|
+ /* Open the temp table for FOR EACH ROW triggers
|
|
+ */
|
|
+ if( row_triggers_exist ){
|
|
+ sqliteVdbeAddOp(v, OP_OpenPseudo, newIdx, 0);
|
|
+ }
|
|
+
|
|
+ /* Initialize the count of rows to be inserted
|
|
+ */
|
|
+ if( db->flags & SQLITE_CountRows ){
|
|
+ iCntMem = pParse->nMem++;
|
|
+ sqliteVdbeAddOp(v, OP_Integer, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_MemStore, iCntMem, 1);
|
|
+ }
|
|
+
|
|
+ /* Open tables and indices if there are no row triggers */
|
|
+ if( !row_triggers_exist ){
|
|
+ base = pParse->nTab;
|
|
+ idx = sqliteOpenTableAndIndices(pParse, pTab, base);
|
|
+ pParse->nTab += idx;
|
|
+ }
|
|
+
|
|
+ /* If the data source is a temporary table, then we have to create
|
|
+ ** a loop because there might be multiple rows of data. If the data
|
|
+ ** source is a subroutine call from the SELECT statement, then we need
|
|
+ ** to launch the SELECT statement processing.
|
|
+ */
|
|
+ if( useTempTable ){
|
|
+ iBreak = sqliteVdbeMakeLabel(v);
|
|
+ sqliteVdbeAddOp(v, OP_Rewind, srcTab, iBreak);
|
|
+ iCont = sqliteVdbeCurrentAddr(v);
|
|
+ }else if( pSelect ){
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, iSelectLoop);
|
|
+ sqliteVdbeResolveLabel(v, iInsertBlock);
|
|
+ }
|
|
+
|
|
+ /* Run the BEFORE and INSTEAD OF triggers, if there are any
|
|
+ */
|
|
+ endOfLoop = sqliteVdbeMakeLabel(v);
|
|
+ if( before_triggers ){
|
|
+
|
|
+ /* build the NEW.* reference row. Note that if there is an INTEGER
|
|
+ ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
|
|
+ ** translated into a unique ID for the row. But on a BEFORE trigger,
|
|
+ ** we do not know what the unique ID will be (because the insert has
|
|
+ ** not happened yet) so we substitute a rowid of -1
|
|
+ */
|
|
+ if( keyColumn<0 ){
|
|
+ sqliteVdbeAddOp(v, OP_Integer, -1, 0);
|
|
+ }else if( useTempTable ){
|
|
+ sqliteVdbeAddOp(v, OP_Column, srcTab, keyColumn);
|
|
+ }else if( pSelect ){
|
|
+ sqliteVdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1);
|
|
+ }else{
|
|
+ sqliteExprCode(pParse, pList->a[keyColumn].pExpr);
|
|
+ sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3);
|
|
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Integer, -1, 0);
|
|
+ sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0);
|
|
+ }
|
|
+
|
|
+ /* Create the new column data
|
|
+ */
|
|
+ for(i=0; i<pTab->nCol; i++){
|
|
+ if( pColumn==0 ){
|
|
+ j = i;
|
|
+ }else{
|
|
+ for(j=0; j<pColumn->nId; j++){
|
|
+ if( pColumn->a[j].idx==i ) break;
|
|
+ }
|
|
+ }
|
|
+ if( pColumn && j>=pColumn->nId ){
|
|
+ sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zDflt, P3_STATIC);
|
|
+ }else if( useTempTable ){
|
|
+ sqliteVdbeAddOp(v, OP_Column, srcTab, j);
|
|
+ }else if( pSelect ){
|
|
+ sqliteVdbeAddOp(v, OP_Dup, nColumn-j-1, 1);
|
|
+ }else{
|
|
+ sqliteExprCode(pParse, pList->a[j].pExpr);
|
|
+ }
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
|
|
+ sqliteVdbeAddOp(v, OP_PutIntKey, newIdx, 0);
|
|
+
|
|
+ /* Fire BEFORE or INSTEAD OF triggers */
|
|
+ if( sqliteCodeRowTrigger(pParse, TK_INSERT, 0, TK_BEFORE, pTab,
|
|
+ newIdx, -1, onError, endOfLoop) ){
|
|
+ goto insert_cleanup;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* If any triggers exists, the opening of tables and indices is deferred
|
|
+ ** until now.
|
|
+ */
|
|
+ if( row_triggers_exist && !isView ){
|
|
+ base = pParse->nTab;
|
|
+ idx = sqliteOpenTableAndIndices(pParse, pTab, base);
|
|
+ pParse->nTab += idx;
|
|
+ }
|
|
+
|
|
+ /* Push the record number for the new entry onto the stack. The
|
|
+ ** record number is a randomly generate integer created by NewRecno
|
|
+ ** except when the table has an INTEGER PRIMARY KEY column, in which
|
|
+ ** case the record number is the same as that column.
|
|
+ */
|
|
+ if( !isView ){
|
|
+ if( keyColumn>=0 ){
|
|
+ if( useTempTable ){
|
|
+ sqliteVdbeAddOp(v, OP_Column, srcTab, keyColumn);
|
|
+ }else if( pSelect ){
|
|
+ sqliteVdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1);
|
|
+ }else{
|
|
+ sqliteExprCode(pParse, pList->a[keyColumn].pExpr);
|
|
+ }
|
|
+ /* If the PRIMARY KEY expression is NULL, then use OP_NewRecno
|
|
+ ** to generate a unique primary key value.
|
|
+ */
|
|
+ sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3);
|
|
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
|
+ sqliteVdbeAddOp(v, OP_NewRecno, base, 0);
|
|
+ sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0);
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_NewRecno, base, 0);
|
|
+ }
|
|
+
|
|
+ /* Push onto the stack, data for all columns of the new entry, beginning
|
|
+ ** with the first column.
|
|
+ */
|
|
+ for(i=0; i<pTab->nCol; i++){
|
|
+ if( i==pTab->iPKey ){
|
|
+ /* The value of the INTEGER PRIMARY KEY column is always a NULL.
|
|
+ ** Whenever this column is read, the record number will be substituted
|
|
+ ** in its place. So will fill this column with a NULL to avoid
|
|
+ ** taking up data space with information that will never be used. */
|
|
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
+ continue;
|
|
+ }
|
|
+ if( pColumn==0 ){
|
|
+ j = i;
|
|
+ }else{
|
|
+ for(j=0; j<pColumn->nId; j++){
|
|
+ if( pColumn->a[j].idx==i ) break;
|
|
+ }
|
|
+ }
|
|
+ if( pColumn && j>=pColumn->nId ){
|
|
+ sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zDflt, P3_STATIC);
|
|
+ }else if( useTempTable ){
|
|
+ sqliteVdbeAddOp(v, OP_Column, srcTab, j);
|
|
+ }else if( pSelect ){
|
|
+ sqliteVdbeAddOp(v, OP_Dup, i+nColumn-j, 1);
|
|
+ }else{
|
|
+ sqliteExprCode(pParse, pList->a[j].pExpr);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Generate code to check constraints and generate index keys and
|
|
+ ** do the insertion.
|
|
+ */
|
|
+ sqliteGenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0,
|
|
+ 0, onError, endOfLoop);
|
|
+ sqliteCompleteInsertion(pParse, pTab, base, 0,0,0,
|
|
+ after_triggers ? newIdx : -1);
|
|
+ }
|
|
+
|
|
+ /* Update the count of rows that are inserted
|
|
+ */
|
|
+ if( (db->flags & SQLITE_CountRows)!=0 ){
|
|
+ sqliteVdbeAddOp(v, OP_MemIncr, iCntMem, 0);
|
|
+ }
|
|
+
|
|
+ if( row_triggers_exist ){
|
|
+ /* Close all tables opened */
|
|
+ if( !isView ){
|
|
+ sqliteVdbeAddOp(v, OP_Close, base, 0);
|
|
+ for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
|
|
+ sqliteVdbeAddOp(v, OP_Close, idx+base, 0);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Code AFTER triggers */
|
|
+ if( sqliteCodeRowTrigger(pParse, TK_INSERT, 0, TK_AFTER, pTab, newIdx, -1,
|
|
+ onError, endOfLoop) ){
|
|
+ goto insert_cleanup;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* The bottom of the loop, if the data source is a SELECT statement
|
|
+ */
|
|
+ sqliteVdbeResolveLabel(v, endOfLoop);
|
|
+ if( useTempTable ){
|
|
+ sqliteVdbeAddOp(v, OP_Next, srcTab, iCont);
|
|
+ sqliteVdbeResolveLabel(v, iBreak);
|
|
+ sqliteVdbeAddOp(v, OP_Close, srcTab, 0);
|
|
+ }else if( pSelect ){
|
|
+ sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Return, 0, 0);
|
|
+ sqliteVdbeResolveLabel(v, iCleanup);
|
|
+ }
|
|
+
|
|
+ if( !row_triggers_exist ){
|
|
+ /* Close all tables opened */
|
|
+ sqliteVdbeAddOp(v, OP_Close, base, 0);
|
|
+ for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
|
|
+ sqliteVdbeAddOp(v, OP_Close, idx+base, 0);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ sqliteVdbeAddOp(v, OP_SetCounts, 0, 0);
|
|
+ sqliteEndWriteOperation(pParse);
|
|
+
|
|
+ /*
|
|
+ ** Return the number of rows inserted.
|
|
+ */
|
|
+ if( db->flags & SQLITE_CountRows ){
|
|
+ sqliteVdbeOp3(v, OP_ColumnName, 0, 1, "rows inserted", P3_STATIC);
|
|
+ sqliteVdbeAddOp(v, OP_MemLoad, iCntMem, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Callback, 1, 0);
|
|
+ }
|
|
+
|
|
+insert_cleanup:
|
|
+ sqliteSrcListDelete(pTabList);
|
|
+ if( pList ) sqliteExprListDelete(pList);
|
|
+ if( pSelect ) sqliteSelectDelete(pSelect);
|
|
+ sqliteIdListDelete(pColumn);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Generate code to do a constraint check prior to an INSERT or an UPDATE.
|
|
+**
|
|
+** When this routine is called, the stack contains (from bottom to top)
|
|
+** the following values:
|
|
+**
|
|
+** 1. The recno of the row to be updated before the update. This
|
|
+** value is omitted unless we are doing an UPDATE that involves a
|
|
+** change to the record number.
|
|
+**
|
|
+** 2. The recno of the row after the update.
|
|
+**
|
|
+** 3. The data in the first column of the entry after the update.
|
|
+**
|
|
+** i. Data from middle columns...
|
|
+**
|
|
+** N. The data in the last column of the entry after the update.
|
|
+**
|
|
+** The old recno shown as entry (1) above is omitted unless both isUpdate
|
|
+** and recnoChng are 1. isUpdate is true for UPDATEs and false for
|
|
+** INSERTs and recnoChng is true if the record number is being changed.
|
|
+**
|
|
+** The code generated by this routine pushes additional entries onto
|
|
+** the stack which are the keys for new index entries for the new record.
|
|
+** The order of index keys is the same as the order of the indices on
|
|
+** the pTable->pIndex list. A key is only created for index i if
|
|
+** aIdxUsed!=0 and aIdxUsed[i]!=0.
|
|
+**
|
|
+** This routine also generates code to check constraints. NOT NULL,
|
|
+** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
|
|
+** then the appropriate action is performed. There are five possible
|
|
+** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
|
|
+**
|
|
+** Constraint type Action What Happens
|
|
+** --------------- ---------- ----------------------------------------
|
|
+** any ROLLBACK The current transaction is rolled back and
|
|
+** sqlite_exec() returns immediately with a
|
|
+** return code of SQLITE_CONSTRAINT.
|
|
+**
|
|
+** any ABORT Back out changes from the current command
|
|
+** only (do not do a complete rollback) then
|
|
+** cause sqlite_exec() to return immediately
|
|
+** with SQLITE_CONSTRAINT.
|
|
+**
|
|
+** any FAIL Sqlite_exec() returns immediately with a
|
|
+** return code of SQLITE_CONSTRAINT. The
|
|
+** transaction is not rolled back and any
|
|
+** prior changes are retained.
|
|
+**
|
|
+** any IGNORE The record number and data is popped from
|
|
+** the stack and there is an immediate jump
|
|
+** to label ignoreDest.
|
|
+**
|
|
+** NOT NULL REPLACE The NULL value is replace by the default
|
|
+** value for that column. If the default value
|
|
+** is NULL, the action is the same as ABORT.
|
|
+**
|
|
+** UNIQUE REPLACE The other row that conflicts with the row
|
|
+** being inserted is removed.
|
|
+**
|
|
+** CHECK REPLACE Illegal. The results in an exception.
|
|
+**
|
|
+** Which action to take is determined by the overrideError parameter.
|
|
+** Or if overrideError==OE_Default, then the pParse->onError parameter
|
|
+** is used. Or if pParse->onError==OE_Default then the onError value
|
|
+** for the constraint is used.
|
|
+**
|
|
+** The calling routine must open a read/write cursor for pTab with
|
|
+** cursor number "base". All indices of pTab must also have open
|
|
+** read/write cursors with cursor number base+i for the i-th cursor.
|
|
+** Except, if there is no possibility of a REPLACE action then
|
|
+** cursors do not need to be open for indices where aIdxUsed[i]==0.
|
|
+**
|
|
+** If the isUpdate flag is true, it means that the "base" cursor is
|
|
+** initially pointing to an entry that is being updated. The isUpdate
|
|
+** flag causes extra code to be generated so that the "base" cursor
|
|
+** is still pointing at the same entry after the routine returns.
|
|
+** Without the isUpdate flag, the "base" cursor might be moved.
|
|
+*/
|
|
+void sqliteGenerateConstraintChecks(
|
|
+ Parse *pParse, /* The parser context */
|
|
+ Table *pTab, /* the table into which we are inserting */
|
|
+ int base, /* Index of a read/write cursor pointing at pTab */
|
|
+ char *aIdxUsed, /* Which indices are used. NULL means all are used */
|
|
+ int recnoChng, /* True if the record number will change */
|
|
+ int isUpdate, /* True for UPDATE, False for INSERT */
|
|
+ int overrideError, /* Override onError to this if not OE_Default */
|
|
+ int ignoreDest /* Jump to this label on an OE_Ignore resolution */
|
|
+){
|
|
+ int i;
|
|
+ Vdbe *v;
|
|
+ int nCol;
|
|
+ int onError;
|
|
+ int addr;
|
|
+ int extra;
|
|
+ int iCur;
|
|
+ Index *pIdx;
|
|
+ int seenReplace = 0;
|
|
+ int jumpInst1, jumpInst2;
|
|
+ int contAddr;
|
|
+ int hasTwoRecnos = (isUpdate && recnoChng);
|
|
+
|
|
+ v = sqliteGetVdbe(pParse);
|
|
+ assert( v!=0 );
|
|
+ assert( pTab->pSelect==0 ); /* This table is not a VIEW */
|
|
+ nCol = pTab->nCol;
|
|
+
|
|
+ /* Test all NOT NULL constraints.
|
|
+ */
|
|
+ for(i=0; i<nCol; i++){
|
|
+ if( i==pTab->iPKey ){
|
|
+ continue;
|
|
+ }
|
|
+ onError = pTab->aCol[i].notNull;
|
|
+ if( onError==OE_None ) continue;
|
|
+ if( overrideError!=OE_Default ){
|
|
+ onError = overrideError;
|
|
+ }else if( pParse->db->onError!=OE_Default ){
|
|
+ onError = pParse->db->onError;
|
|
+ }else if( onError==OE_Default ){
|
|
+ onError = OE_Abort;
|
|
+ }
|
|
+ if( onError==OE_Replace && pTab->aCol[i].zDflt==0 ){
|
|
+ onError = OE_Abort;
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_Dup, nCol-1-i, 1);
|
|
+ addr = sqliteVdbeAddOp(v, OP_NotNull, 1, 0);
|
|
+ switch( onError ){
|
|
+ case OE_Rollback:
|
|
+ case OE_Abort:
|
|
+ case OE_Fail: {
|
|
+ char *zMsg = 0;
|
|
+ sqliteVdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
|
|
+ sqliteSetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
|
|
+ " may not be NULL", (char*)0);
|
|
+ sqliteVdbeChangeP3(v, -1, zMsg, P3_DYNAMIC);
|
|
+ break;
|
|
+ }
|
|
+ case OE_Ignore: {
|
|
+ sqliteVdbeAddOp(v, OP_Pop, nCol+1+hasTwoRecnos, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest);
|
|
+ break;
|
|
+ }
|
|
+ case OE_Replace: {
|
|
+ sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zDflt, P3_STATIC);
|
|
+ sqliteVdbeAddOp(v, OP_Push, nCol-i, 0);
|
|
+ break;
|
|
+ }
|
|
+ default: assert(0);
|
|
+ }
|
|
+ sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
|
|
+ }
|
|
+
|
|
+ /* Test all CHECK constraints
|
|
+ */
|
|
+ /**** TBD ****/
|
|
+
|
|
+ /* If we have an INTEGER PRIMARY KEY, make sure the primary key
|
|
+ ** of the new record does not previously exist. Except, if this
|
|
+ ** is an UPDATE and the primary key is not changing, that is OK.
|
|
+ */
|
|
+ if( recnoChng ){
|
|
+ onError = pTab->keyConf;
|
|
+ if( overrideError!=OE_Default ){
|
|
+ onError = overrideError;
|
|
+ }else if( pParse->db->onError!=OE_Default ){
|
|
+ onError = pParse->db->onError;
|
|
+ }else if( onError==OE_Default ){
|
|
+ onError = OE_Abort;
|
|
+ }
|
|
+
|
|
+ if( isUpdate ){
|
|
+ sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1);
|
|
+ sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1);
|
|
+ jumpInst1 = sqliteVdbeAddOp(v, OP_Eq, 0, 0);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_Dup, nCol, 1);
|
|
+ jumpInst2 = sqliteVdbeAddOp(v, OP_NotExists, base, 0);
|
|
+ switch( onError ){
|
|
+ default: {
|
|
+ onError = OE_Abort;
|
|
+ /* Fall thru into the next case */
|
|
+ }
|
|
+ case OE_Rollback:
|
|
+ case OE_Abort:
|
|
+ case OE_Fail: {
|
|
+ sqliteVdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError,
|
|
+ "PRIMARY KEY must be unique", P3_STATIC);
|
|
+ break;
|
|
+ }
|
|
+ case OE_Replace: {
|
|
+ sqliteGenerateRowIndexDelete(pParse->db, v, pTab, base, 0);
|
|
+ if( isUpdate ){
|
|
+ sqliteVdbeAddOp(v, OP_Dup, nCol+hasTwoRecnos, 1);
|
|
+ sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
|
|
+ }
|
|
+ seenReplace = 1;
|
|
+ break;
|
|
+ }
|
|
+ case OE_Ignore: {
|
|
+ assert( seenReplace==0 );
|
|
+ sqliteVdbeAddOp(v, OP_Pop, nCol+1+hasTwoRecnos, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest);
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ contAddr = sqliteVdbeCurrentAddr(v);
|
|
+ sqliteVdbeChangeP2(v, jumpInst2, contAddr);
|
|
+ if( isUpdate ){
|
|
+ sqliteVdbeChangeP2(v, jumpInst1, contAddr);
|
|
+ sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1);
|
|
+ sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Test all UNIQUE constraints by creating entries for each UNIQUE
|
|
+ ** index and making sure that duplicate entries do not already exist.
|
|
+ ** Add the new records to the indices as we go.
|
|
+ */
|
|
+ extra = -1;
|
|
+ for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
|
|
+ if( aIdxUsed && aIdxUsed[iCur]==0 ) continue; /* Skip unused indices */
|
|
+ extra++;
|
|
+
|
|
+ /* Create a key for accessing the index entry */
|
|
+ sqliteVdbeAddOp(v, OP_Dup, nCol+extra, 1);
|
|
+ for(i=0; i<pIdx->nColumn; i++){
|
|
+ int idx = pIdx->aiColumn[i];
|
|
+ if( idx==pTab->iPKey ){
|
|
+ sqliteVdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1);
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1);
|
|
+ }
|
|
+ }
|
|
+ jumpInst1 = sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0);
|
|
+ if( pParse->db->file_format>=4 ) sqliteAddIdxKeyType(v, pIdx);
|
|
+
|
|
+ /* Find out what action to take in case there is an indexing conflict */
|
|
+ onError = pIdx->onError;
|
|
+ if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */
|
|
+ if( overrideError!=OE_Default ){
|
|
+ onError = overrideError;
|
|
+ }else if( pParse->db->onError!=OE_Default ){
|
|
+ onError = pParse->db->onError;
|
|
+ }else if( onError==OE_Default ){
|
|
+ onError = OE_Abort;
|
|
+ }
|
|
+ if( seenReplace ){
|
|
+ if( onError==OE_Ignore ) onError = OE_Replace;
|
|
+ else if( onError==OE_Fail ) onError = OE_Abort;
|
|
+ }
|
|
+
|
|
+
|
|
+ /* Check to see if the new index entry will be unique */
|
|
+ sqliteVdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRecnos, 1);
|
|
+ jumpInst2 = sqliteVdbeAddOp(v, OP_IsUnique, base+iCur+1, 0);
|
|
+
|
|
+ /* Generate code that executes if the new index entry is not unique */
|
|
+ switch( onError ){
|
|
+ case OE_Rollback:
|
|
+ case OE_Abort:
|
|
+ case OE_Fail: {
|
|
+ int j, n1, n2;
|
|
+ char zErrMsg[200];
|
|
+ strcpy(zErrMsg, pIdx->nColumn>1 ? "columns " : "column ");
|
|
+ n1 = strlen(zErrMsg);
|
|
+ for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){
|
|
+ char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
|
|
+ n2 = strlen(zCol);
|
|
+ if( j>0 ){
|
|
+ strcpy(&zErrMsg[n1], ", ");
|
|
+ n1 += 2;
|
|
+ }
|
|
+ if( n1+n2>sizeof(zErrMsg)-30 ){
|
|
+ strcpy(&zErrMsg[n1], "...");
|
|
+ n1 += 3;
|
|
+ break;
|
|
+ }else{
|
|
+ strcpy(&zErrMsg[n1], zCol);
|
|
+ n1 += n2;
|
|
+ }
|
|
+ }
|
|
+ strcpy(&zErrMsg[n1],
|
|
+ pIdx->nColumn>1 ? " are not unique" : " is not unique");
|
|
+ sqliteVdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, zErrMsg, 0);
|
|
+ break;
|
|
+ }
|
|
+ case OE_Ignore: {
|
|
+ assert( seenReplace==0 );
|
|
+ sqliteVdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRecnos, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest);
|
|
+ break;
|
|
+ }
|
|
+ case OE_Replace: {
|
|
+ sqliteGenerateRowDelete(pParse->db, v, pTab, base, 0);
|
|
+ if( isUpdate ){
|
|
+ sqliteVdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRecnos, 1);
|
|
+ sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
|
|
+ }
|
|
+ seenReplace = 1;
|
|
+ break;
|
|
+ }
|
|
+ default: assert(0);
|
|
+ }
|
|
+ contAddr = sqliteVdbeCurrentAddr(v);
|
|
+#if NULL_DISTINCT_FOR_UNIQUE
|
|
+ sqliteVdbeChangeP2(v, jumpInst1, contAddr);
|
|
+#endif
|
|
+ sqliteVdbeChangeP2(v, jumpInst2, contAddr);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine generates code to finish the INSERT or UPDATE operation
|
|
+** that was started by a prior call to sqliteGenerateConstraintChecks.
|
|
+** The stack must contain keys for all active indices followed by data
|
|
+** and the recno for the new entry. This routine creates the new
|
|
+** entries in all indices and in the main table.
|
|
+**
|
|
+** The arguments to this routine should be the same as the first six
|
|
+** arguments to sqliteGenerateConstraintChecks.
|
|
+*/
|
|
+void sqliteCompleteInsertion(
|
|
+ Parse *pParse, /* The parser context */
|
|
+ Table *pTab, /* the table into which we are inserting */
|
|
+ int base, /* Index of a read/write cursor pointing at pTab */
|
|
+ char *aIdxUsed, /* Which indices are used. NULL means all are used */
|
|
+ int recnoChng, /* True if the record number will change */
|
|
+ int isUpdate, /* True for UPDATE, False for INSERT */
|
|
+ int newIdx /* Index of NEW table for triggers. -1 if none */
|
|
+){
|
|
+ int i;
|
|
+ Vdbe *v;
|
|
+ int nIdx;
|
|
+ Index *pIdx;
|
|
+
|
|
+ v = sqliteGetVdbe(pParse);
|
|
+ assert( v!=0 );
|
|
+ assert( pTab->pSelect==0 ); /* This table is not a VIEW */
|
|
+ for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
|
|
+ for(i=nIdx-1; i>=0; i--){
|
|
+ if( aIdxUsed && aIdxUsed[i]==0 ) continue;
|
|
+ sqliteVdbeAddOp(v, OP_IdxPut, base+i+1, 0);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
|
|
+ if( newIdx>=0 ){
|
|
+ sqliteVdbeAddOp(v, OP_Dup, 1, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Dup, 1, 0);
|
|
+ sqliteVdbeAddOp(v, OP_PutIntKey, newIdx, 0);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_PutIntKey, base,
|
|
+ (pParse->trigStack?0:OPFLAG_NCHANGE) |
|
|
+ (isUpdate?0:OPFLAG_LASTROWID) | OPFLAG_CSCHANGE);
|
|
+ if( isUpdate && recnoChng ){
|
|
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Generate code that will open write cursors for a table and for all
|
|
+** indices of that table. The "base" parameter is the cursor number used
|
|
+** for the table. Indices are opened on subsequent cursors.
|
|
+**
|
|
+** Return the total number of cursors opened. This is always at least
|
|
+** 1 (for the main table) plus more for each cursor.
|
|
+*/
|
|
+int sqliteOpenTableAndIndices(Parse *pParse, Table *pTab, int base){
|
|
+ int i;
|
|
+ Index *pIdx;
|
|
+ Vdbe *v = sqliteGetVdbe(pParse);
|
|
+ assert( v!=0 );
|
|
+ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
|
|
+ sqliteVdbeOp3(v, OP_OpenWrite, base, pTab->tnum, pTab->zName, P3_STATIC);
|
|
+ for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
|
|
+ sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
|
|
+ sqliteVdbeOp3(v, OP_OpenWrite, i+base, pIdx->tnum, pIdx->zName, P3_STATIC);
|
|
+ }
|
|
+ return i;
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/libsqlite.dsp
|
|
@@ -0,0 +1,353 @@
|
|
+# Microsoft Developer Studio Project File - Name="libsqlite" - Package Owner=<4>
|
|
+# Microsoft Developer Studio Generated Build File, Format Version 6.00
|
|
+# ** DO NOT EDIT **
|
|
+
|
|
+# TARGTYPE "Win32 (x86) Static Library" 0x0104
|
|
+
|
|
+CFG=libsqlite - Win32 Debug_TS
|
|
+!MESSAGE This is not a valid makefile. To build this project using NMAKE,
|
|
+!MESSAGE use the Export Makefile command and run
|
|
+!MESSAGE
|
|
+!MESSAGE NMAKE /f "libsqlite.mak".
|
|
+!MESSAGE
|
|
+!MESSAGE You can specify a configuration when running NMAKE
|
|
+!MESSAGE by defining the macro CFG on the command line. For example:
|
|
+!MESSAGE
|
|
+!MESSAGE NMAKE /f "libsqlite.mak" CFG="libsqlite - Win32 Debug_TS"
|
|
+!MESSAGE
|
|
+!MESSAGE Possible choices for configuration are:
|
|
+!MESSAGE
|
|
+!MESSAGE "libsqlite - Win32 Debug_TS" (based on "Win32 (x86) Static Library")
|
|
+!MESSAGE "libsqlite - Win32 Release_TS" (based on "Win32 (x86) Static Library")
|
|
+!MESSAGE "libsqlite - Win32 Release_TSDbg" (based on "Win32 (x86) Static Library")
|
|
+!MESSAGE
|
|
+
|
|
+# Begin Project
|
|
+# PROP AllowPerConfigDependencies 0
|
|
+# PROP Scc_ProjName ""
|
|
+# PROP Scc_LocalPath ""
|
|
+CPP=cl.exe
|
|
+RSC=rc.exe
|
|
+
|
|
+!IF "$(CFG)" == "libsqlite - Win32 Debug_TS"
|
|
+
|
|
+# PROP BASE Use_MFC 0
|
|
+# PROP BASE Use_Debug_Libraries 1
|
|
+# PROP BASE Output_Dir "Debug_TS"
|
|
+# PROP BASE Intermediate_Dir "Debug_TS"
|
|
+# PROP BASE Target_Dir ""
|
|
+# PROP Use_MFC 0
|
|
+# PROP Use_Debug_Libraries 1
|
|
+# PROP Output_Dir "..\..\Debug_TS"
|
|
+# PROP Intermediate_Dir "..\..\Debug_TS"
|
|
+# PROP Target_Dir ""
|
|
+# ADD BASE CPP /nologo /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_MBCS" /D "_LIB" /YX /FD /GZ /c
|
|
+# ADD CPP /nologo /MDd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_MBCS" /D "_LIB" /D THREADSAFE=1 /YX /FD /GZ /c
|
|
+# ADD BASE RSC /l 0x406 /d "_DEBUG"
|
|
+# ADD RSC /l 0x406 /d "_DEBUG"
|
|
+BSC32=bscmake.exe
|
|
+# ADD BASE BSC32 /nologo
|
|
+# ADD BSC32 /nologo
|
|
+LIB32=link.exe -lib
|
|
+# ADD BASE LIB32 /nologo
|
|
+# ADD LIB32 /nologo
|
|
+
|
|
+!ELSEIF "$(CFG)" == "libsqlite - Win32 Release_TS"
|
|
+
|
|
+# PROP BASE Use_MFC 0
|
|
+# PROP BASE Use_Debug_Libraries 0
|
|
+# PROP BASE Output_Dir "Release_TS"
|
|
+# PROP BASE Intermediate_Dir "Release_TS"
|
|
+# PROP BASE Target_Dir ""
|
|
+# PROP Use_MFC 0
|
|
+# PROP Use_Debug_Libraries 0
|
|
+# PROP Output_Dir "..\..\Release_TS"
|
|
+# PROP Intermediate_Dir "..\..\Release_TS"
|
|
+# PROP Target_Dir ""
|
|
+# ADD BASE CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_MBCS" /D "_LIB" /YX /FD /c
|
|
+# ADD CPP /nologo /MD /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_MBCS" /D "_LIB" /D THREADSAFE=1 /YX /FD /c
|
|
+# ADD BASE RSC /l 0x406 /d "NDEBUG"
|
|
+# ADD RSC /l 0x406 /d "NDEBUG"
|
|
+BSC32=bscmake.exe
|
|
+# ADD BASE BSC32 /nologo
|
|
+# ADD BSC32 /nologo
|
|
+LIB32=link.exe -lib
|
|
+# ADD BASE LIB32 /nologo
|
|
+# ADD LIB32 /nologo
|
|
+
|
|
+!ELSEIF "$(CFG)" == "libsqlite - Win32 Release_TSDbg"
|
|
+
|
|
+# PROP BASE Use_MFC 0
|
|
+# PROP BASE Use_Debug_Libraries 0
|
|
+# PROP BASE Output_Dir "libsqlite___Win32_Release_TSDbg"
|
|
+# PROP BASE Intermediate_Dir "libsqlite___Win32_Release_TSDbg"
|
|
+# PROP BASE Target_Dir ""
|
|
+# PROP Use_MFC 0
|
|
+# PROP Use_Debug_Libraries 0
|
|
+# PROP Output_Dir "..\..\Release_TSDbg"
|
|
+# PROP Intermediate_Dir "..\..\Release_TSDbg"
|
|
+# PROP Target_Dir ""
|
|
+# ADD BASE CPP /nologo /MD /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_MBCS" /D "_LIB" /D THREADSAFE=1 /YX /FD /c
|
|
+# ADD CPP /nologo /MD /W3 /GX /Zi /Od /D "WIN32" /D "NDEBUG" /D "_MBCS" /D "_LIB" /D THREADSAFE=1 /YX /FD /c
|
|
+# ADD BASE RSC /l 0x406 /d "NDEBUG"
|
|
+# ADD RSC /l 0x406 /d "NDEBUG"
|
|
+BSC32=bscmake.exe
|
|
+# ADD BASE BSC32 /nologo
|
|
+# ADD BSC32 /nologo
|
|
+LIB32=link.exe -lib
|
|
+# ADD BASE LIB32 /nologo /out:"Release_TS\libsqlite.lib"
|
|
+# ADD LIB32 /nologo
|
|
+
|
|
+!ENDIF
|
|
+
|
|
+# Begin Target
|
|
+
|
|
+# Name "libsqlite - Win32 Debug_TS"
|
|
+# Name "libsqlite - Win32 Release_TS"
|
|
+# Name "libsqlite - Win32 Release_TSDbg"
|
|
+# Begin Group "Source Files"
|
|
+
|
|
+# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat"
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=attach.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=auth.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=btree.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=btree_rb.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=build.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=copy.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\date.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=delete.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=encode.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=expr.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=func.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=hash.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=insert.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=main.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=opcodes.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=os.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=pager.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=parse.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=pragma.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=printf.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=random.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=select.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=table.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=tokenize.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=trigger.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=update.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=util.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=vacuum.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=vdbe.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\vdbeaux.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=where.c
|
|
+# End Source File
|
|
+# End Group
|
|
+# Begin Group "Header Files"
|
|
+
|
|
+# PROP Default_Filter "h;hpp;hxx;hm;inl"
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=btree.h
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=config_static.w32.h
|
|
+
|
|
+!IF "$(CFG)" == "libsqlite - Win32 Debug_TS"
|
|
+
|
|
+# Begin Custom Build
|
|
+InputDir=.
|
|
+InputPath=config_static.w32.h
|
|
+
|
|
+"$(InputDir)\config.h" : $(SOURCE) "$(INTDIR)" "$(OUTDIR)"
|
|
+ copy $(InputPath) $(InputDir)\config.h
|
|
+
|
|
+# End Custom Build
|
|
+
|
|
+!ELSEIF "$(CFG)" == "libsqlite - Win32 Release_TS"
|
|
+
|
|
+# Begin Custom Build
|
|
+InputDir=.
|
|
+InputPath=config_static.w32.h
|
|
+
|
|
+"$(InputDir)\config.h" : $(SOURCE) "$(INTDIR)" "$(OUTDIR)"
|
|
+ copy $(InputPath) $(InputDir)\config.h
|
|
+
|
|
+# End Custom Build
|
|
+
|
|
+!ELSEIF "$(CFG)" == "libsqlite - Win32 Release_TSDbg"
|
|
+
|
|
+# Begin Custom Build
|
|
+InputDir=.
|
|
+InputPath=config_static.w32.h
|
|
+
|
|
+"$(InputDir)\config.h" : $(SOURCE) "$(INTDIR)" "$(OUTDIR)"
|
|
+ copy $(InputPath) $(InputDir)\config.h
|
|
+
|
|
+# End Custom Build
|
|
+
|
|
+!ENDIF
|
|
+
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=hash.h
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=opcodes.h
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=os.h
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=pager.h
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=parse.h
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=sqlite.w32.h
|
|
+
|
|
+!IF "$(CFG)" == "libsqlite - Win32 Debug_TS"
|
|
+
|
|
+# Begin Custom Build
|
|
+InputDir=.
|
|
+InputPath=sqlite.w32.h
|
|
+
|
|
+"$(InputDir)\sqlite.h" : $(SOURCE) "$(INTDIR)" "$(OUTDIR)"
|
|
+ copy $(InputPath) $(InputDir)\sqlite.h
|
|
+
|
|
+# End Custom Build
|
|
+
|
|
+!ELSEIF "$(CFG)" == "libsqlite - Win32 Release_TS"
|
|
+
|
|
+# Begin Custom Build
|
|
+InputDir=.
|
|
+InputPath=sqlite.w32.h
|
|
+
|
|
+"$(InputDir)\sqlite.h" : $(SOURCE) "$(INTDIR)" "$(OUTDIR)"
|
|
+ copy $(InputPath) $(InputDir)\sqlite.h
|
|
+
|
|
+# End Custom Build
|
|
+
|
|
+!ELSEIF "$(CFG)" == "libsqlite - Win32 Release_TSDbg"
|
|
+
|
|
+# Begin Custom Build
|
|
+InputDir=.
|
|
+InputPath=sqlite.w32.h
|
|
+
|
|
+"$(InputDir)\sqlite.h" : $(SOURCE) "$(INTDIR)" "$(OUTDIR)"
|
|
+ copy $(InputPath) $(InputDir)\sqlite.h
|
|
+
|
|
+# End Custom Build
|
|
+
|
|
+!ENDIF
|
|
+
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=sqliteInt.h
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=vdbe.h
|
|
+# End Source File
|
|
+# End Group
|
|
+# End Target
|
|
+# End Project
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/main.c
|
|
@@ -0,0 +1,1143 @@
|
|
+/*
|
|
+** 2001 September 15
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** Main file for the SQLite library. The routines in this file
|
|
+** implement the programmer interface to the library. Routines in
|
|
+** other files are for internal use by SQLite and should not be
|
|
+** accessed by users of the library.
|
|
+**
|
|
+** $Id$
|
|
+*/
|
|
+#include "sqliteInt.h"
|
|
+#include "os.h"
|
|
+#include <ctype.h>
|
|
+
|
|
+/*
|
|
+** A pointer to this structure is used to communicate information
|
|
+** from sqliteInit into the sqliteInitCallback.
|
|
+*/
|
|
+typedef struct {
|
|
+ sqlite *db; /* The database being initialized */
|
|
+ char **pzErrMsg; /* Error message stored here */
|
|
+} InitData;
|
|
+
|
|
+/*
|
|
+** Fill the InitData structure with an error message that indicates
|
|
+** that the database is corrupt.
|
|
+*/
|
|
+static void corruptSchema(InitData *pData, const char *zExtra){
|
|
+ sqliteSetString(pData->pzErrMsg, "malformed database schema",
|
|
+ zExtra!=0 && zExtra[0]!=0 ? " - " : (char*)0, zExtra, (char*)0);
|
|
+}
|
|
+
|
|
+/*
|
|
+** This is the callback routine for the code that initializes the
|
|
+** database. See sqliteInit() below for additional information.
|
|
+**
|
|
+** Each callback contains the following information:
|
|
+**
|
|
+** argv[0] = "file-format" or "schema-cookie" or "table" or "index"
|
|
+** argv[1] = table or index name or meta statement type.
|
|
+** argv[2] = root page number for table or index. NULL for meta.
|
|
+** argv[3] = SQL text for a CREATE TABLE or CREATE INDEX statement.
|
|
+** argv[4] = "1" for temporary files, "0" for main database, "2" or more
|
|
+** for auxiliary database files.
|
|
+**
|
|
+*/
|
|
+static
|
|
+int sqliteInitCallback(void *pInit, int argc, char **argv, char **azColName){
|
|
+ InitData *pData = (InitData*)pInit;
|
|
+ int nErr = 0;
|
|
+
|
|
+ assert( argc==5 );
|
|
+ if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */
|
|
+ if( argv[0]==0 ){
|
|
+ corruptSchema(pData, 0);
|
|
+ return 1;
|
|
+ }
|
|
+ switch( argv[0][0] ){
|
|
+ case 'v':
|
|
+ case 'i':
|
|
+ case 't': { /* CREATE TABLE, CREATE INDEX, or CREATE VIEW statements */
|
|
+ sqlite *db = pData->db;
|
|
+ if( argv[2]==0 || argv[4]==0 ){
|
|
+ corruptSchema(pData, 0);
|
|
+ return 1;
|
|
+ }
|
|
+ if( argv[3] && argv[3][0] ){
|
|
+ /* Call the parser to process a CREATE TABLE, INDEX or VIEW.
|
|
+ ** But because db->init.busy is set to 1, no VDBE code is generated
|
|
+ ** or executed. All the parser does is build the internal data
|
|
+ ** structures that describe the table, index, or view.
|
|
+ */
|
|
+ char *zErr;
|
|
+ assert( db->init.busy );
|
|
+ db->init.iDb = atoi(argv[4]);
|
|
+ assert( db->init.iDb>=0 && db->init.iDb<db->nDb );
|
|
+ db->init.newTnum = atoi(argv[2]);
|
|
+ if( sqlite_exec(db, argv[3], 0, 0, &zErr) ){
|
|
+ corruptSchema(pData, zErr);
|
|
+ sqlite_freemem(zErr);
|
|
+ }
|
|
+ db->init.iDb = 0;
|
|
+ }else{
|
|
+ /* If the SQL column is blank it means this is an index that
|
|
+ ** was created to be the PRIMARY KEY or to fulfill a UNIQUE
|
|
+ ** constraint for a CREATE TABLE. The index should have already
|
|
+ ** been created when we processed the CREATE TABLE. All we have
|
|
+ ** to do here is record the root page number for that index.
|
|
+ */
|
|
+ int iDb;
|
|
+ Index *pIndex;
|
|
+
|
|
+ iDb = atoi(argv[4]);
|
|
+ assert( iDb>=0 && iDb<db->nDb );
|
|
+ pIndex = sqliteFindIndex(db, argv[1], db->aDb[iDb].zName);
|
|
+ if( pIndex==0 || pIndex->tnum!=0 ){
|
|
+ /* This can occur if there exists an index on a TEMP table which
|
|
+ ** has the same name as another index on a permanent index. Since
|
|
+ ** the permanent table is hidden by the TEMP table, we can also
|
|
+ ** safely ignore the index on the permanent table.
|
|
+ */
|
|
+ /* Do Nothing */;
|
|
+ }else{
|
|
+ pIndex->tnum = atoi(argv[2]);
|
|
+ }
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ default: {
|
|
+ /* This can not happen! */
|
|
+ nErr = 1;
|
|
+ assert( nErr==0 );
|
|
+ }
|
|
+ }
|
|
+ return nErr;
|
|
+}
|
|
+
|
|
+/*
|
|
+** This is a callback procedure used to reconstruct a table. The
|
|
+** name of the table to be reconstructed is passed in as argv[0].
|
|
+**
|
|
+** This routine is used to automatically upgrade a database from
|
|
+** format version 1 or 2 to version 3. The correct operation of
|
|
+** this routine relys on the fact that no indices are used when
|
|
+** copying a table out to a temporary file.
|
|
+**
|
|
+** The change from version 2 to version 3 occurred between SQLite
|
|
+** version 2.5.6 and 2.6.0 on 2002-July-18.
|
|
+*/
|
|
+static
|
|
+int upgrade_3_callback(void *pInit, int argc, char **argv, char **NotUsed){
|
|
+ InitData *pData = (InitData*)pInit;
|
|
+ int rc;
|
|
+ Table *pTab;
|
|
+ Trigger *pTrig;
|
|
+ char *zErr = 0;
|
|
+
|
|
+ pTab = sqliteFindTable(pData->db, argv[0], 0);
|
|
+ assert( pTab!=0 );
|
|
+ assert( sqliteStrICmp(pTab->zName, argv[0])==0 );
|
|
+ if( pTab ){
|
|
+ pTrig = pTab->pTrigger;
|
|
+ pTab->pTrigger = 0; /* Disable all triggers before rebuilding the table */
|
|
+ }
|
|
+ rc = sqlite_exec_printf(pData->db,
|
|
+ "CREATE TEMP TABLE sqlite_x AS SELECT * FROM '%q'; "
|
|
+ "DELETE FROM '%q'; "
|
|
+ "INSERT INTO '%q' SELECT * FROM sqlite_x; "
|
|
+ "DROP TABLE sqlite_x;",
|
|
+ 0, 0, &zErr, argv[0], argv[0], argv[0]);
|
|
+ if( zErr ){
|
|
+ if( *pData->pzErrMsg ) sqlite_freemem(*pData->pzErrMsg);
|
|
+ *pData->pzErrMsg = zErr;
|
|
+ }
|
|
+
|
|
+ /* If an error occurred in the SQL above, then the transaction will
|
|
+ ** rollback which will delete the internal symbol tables. This will
|
|
+ ** cause the structure that pTab points to be deleted. In case that
|
|
+ ** happened, we need to refetch pTab.
|
|
+ */
|
|
+ pTab = sqliteFindTable(pData->db, argv[0], 0);
|
|
+ if( pTab ){
|
|
+ assert( sqliteStrICmp(pTab->zName, argv[0])==0 );
|
|
+ pTab->pTrigger = pTrig; /* Re-enable triggers */
|
|
+ }
|
|
+ return rc!=SQLITE_OK;
|
|
+}
|
|
+
|
|
+
|
|
+
|
|
+/*
|
|
+** Attempt to read the database schema and initialize internal
|
|
+** data structures for a single database file. The index of the
|
|
+** database file is given by iDb. iDb==0 is used for the main
|
|
+** database. iDb==1 should never be used. iDb>=2 is used for
|
|
+** auxiliary databases. Return one of the SQLITE_ error codes to
|
|
+** indicate success or failure.
|
|
+*/
|
|
+static int sqliteInitOne(sqlite *db, int iDb, char **pzErrMsg){
|
|
+ int rc;
|
|
+ BtCursor *curMain;
|
|
+ int size;
|
|
+ Table *pTab;
|
|
+ char const *azArg[6];
|
|
+ char zDbNum[30];
|
|
+ int meta[SQLITE_N_BTREE_META];
|
|
+ InitData initData;
|
|
+ char const *zMasterSchema;
|
|
+ char const *zMasterName;
|
|
+ char *zSql = 0;
|
|
+
|
|
+ /*
|
|
+ ** The master database table has a structure like this
|
|
+ */
|
|
+ static char master_schema[] =
|
|
+ "CREATE TABLE sqlite_master(\n"
|
|
+ " type text,\n"
|
|
+ " name text,\n"
|
|
+ " tbl_name text,\n"
|
|
+ " rootpage integer,\n"
|
|
+ " sql text\n"
|
|
+ ")"
|
|
+ ;
|
|
+ static char temp_master_schema[] =
|
|
+ "CREATE TEMP TABLE sqlite_temp_master(\n"
|
|
+ " type text,\n"
|
|
+ " name text,\n"
|
|
+ " tbl_name text,\n"
|
|
+ " rootpage integer,\n"
|
|
+ " sql text\n"
|
|
+ ")"
|
|
+ ;
|
|
+
|
|
+ assert( iDb>=0 && iDb<db->nDb );
|
|
+
|
|
+ /* zMasterSchema and zInitScript are set to point at the master schema
|
|
+ ** and initialisation script appropriate for the database being
|
|
+ ** initialised. zMasterName is the name of the master table.
|
|
+ */
|
|
+ if( iDb==1 ){
|
|
+ zMasterSchema = temp_master_schema;
|
|
+ zMasterName = TEMP_MASTER_NAME;
|
|
+ }else{
|
|
+ zMasterSchema = master_schema;
|
|
+ zMasterName = MASTER_NAME;
|
|
+ }
|
|
+
|
|
+ /* Construct the schema table.
|
|
+ */
|
|
+ sqliteSafetyOff(db);
|
|
+ azArg[0] = "table";
|
|
+ azArg[1] = zMasterName;
|
|
+ azArg[2] = "2";
|
|
+ azArg[3] = zMasterSchema;
|
|
+ sprintf(zDbNum, "%d", iDb);
|
|
+ azArg[4] = zDbNum;
|
|
+ azArg[5] = 0;
|
|
+ initData.db = db;
|
|
+ initData.pzErrMsg = pzErrMsg;
|
|
+ sqliteInitCallback(&initData, 5, (char **)azArg, 0);
|
|
+ pTab = sqliteFindTable(db, zMasterName, db->aDb[iDb].zName);
|
|
+ if( pTab ){
|
|
+ pTab->readOnly = 1;
|
|
+ }else{
|
|
+ return SQLITE_NOMEM;
|
|
+ }
|
|
+ sqliteSafetyOn(db);
|
|
+
|
|
+ /* Create a cursor to hold the database open
|
|
+ */
|
|
+ if( db->aDb[iDb].pBt==0 ) return SQLITE_OK;
|
|
+ rc = sqliteBtreeCursor(db->aDb[iDb].pBt, 2, 0, &curMain);
|
|
+ if( rc ){
|
|
+ sqliteSetString(pzErrMsg, sqlite_error_string(rc), (char*)0);
|
|
+ return rc;
|
|
+ }
|
|
+
|
|
+ /* Get the database meta information
|
|
+ */
|
|
+ rc = sqliteBtreeGetMeta(db->aDb[iDb].pBt, meta);
|
|
+ if( rc ){
|
|
+ sqliteSetString(pzErrMsg, sqlite_error_string(rc), (char*)0);
|
|
+ sqliteBtreeCloseCursor(curMain);
|
|
+ return rc;
|
|
+ }
|
|
+ db->aDb[iDb].schema_cookie = meta[1];
|
|
+ if( iDb==0 ){
|
|
+ db->next_cookie = meta[1];
|
|
+ db->file_format = meta[2];
|
|
+ size = meta[3];
|
|
+ if( size==0 ){ size = MAX_PAGES; }
|
|
+ db->cache_size = size;
|
|
+ db->safety_level = meta[4];
|
|
+ if( meta[6]>0 && meta[6]<=2 && db->temp_store==0 ){
|
|
+ db->temp_store = meta[6];
|
|
+ }
|
|
+ if( db->safety_level==0 ) db->safety_level = 2;
|
|
+
|
|
+ /*
|
|
+ ** file_format==1 Version 2.1.0.
|
|
+ ** file_format==2 Version 2.2.0. Add support for INTEGER PRIMARY KEY.
|
|
+ ** file_format==3 Version 2.6.0. Fix empty-string index bug.
|
|
+ ** file_format==4 Version 2.7.0. Add support for separate numeric and
|
|
+ ** text datatypes.
|
|
+ */
|
|
+ if( db->file_format==0 ){
|
|
+ /* This happens if the database was initially empty */
|
|
+ db->file_format = 4;
|
|
+ }else if( db->file_format>4 ){
|
|
+ sqliteBtreeCloseCursor(curMain);
|
|
+ sqliteSetString(pzErrMsg, "unsupported file format", (char*)0);
|
|
+ return SQLITE_ERROR;
|
|
+ }
|
|
+ }else if( iDb!=1 && (db->file_format!=meta[2] || db->file_format<4) ){
|
|
+ assert( db->file_format>=4 );
|
|
+ if( meta[2]==0 ){
|
|
+ sqliteSetString(pzErrMsg, "cannot attach empty database: ",
|
|
+ db->aDb[iDb].zName, (char*)0);
|
|
+ }else{
|
|
+ sqliteSetString(pzErrMsg, "incompatible file format in auxiliary "
|
|
+ "database: ", db->aDb[iDb].zName, (char*)0);
|
|
+ }
|
|
+ sqliteBtreeClose(db->aDb[iDb].pBt);
|
|
+ db->aDb[iDb].pBt = 0;
|
|
+ return SQLITE_FORMAT;
|
|
+ }
|
|
+ sqliteBtreeSetCacheSize(db->aDb[iDb].pBt, db->cache_size);
|
|
+ sqliteBtreeSetSafetyLevel(db->aDb[iDb].pBt, meta[4]==0 ? 2 : meta[4]);
|
|
+
|
|
+ /* Read the schema information out of the schema tables
|
|
+ */
|
|
+ assert( db->init.busy );
|
|
+ sqliteSafetyOff(db);
|
|
+
|
|
+ /* The following SQL will read the schema from the master tables.
|
|
+ ** The first version works with SQLite file formats 2 or greater.
|
|
+ ** The second version is for format 1 files.
|
|
+ **
|
|
+ ** Beginning with file format 2, the rowid for new table entries
|
|
+ ** (including entries in sqlite_master) is an increasing integer.
|
|
+ ** So for file format 2 and later, we can play back sqlite_master
|
|
+ ** and all the CREATE statements will appear in the right order.
|
|
+ ** But with file format 1, table entries were random and so we
|
|
+ ** have to make sure the CREATE TABLEs occur before their corresponding
|
|
+ ** CREATE INDEXs. (We don't have to deal with CREATE VIEW or
|
|
+ ** CREATE TRIGGER in file format 1 because those constructs did
|
|
+ ** not exist then.)
|
|
+ */
|
|
+ if( db->file_format>=2 ){
|
|
+ sqliteSetString(&zSql,
|
|
+ "SELECT type, name, rootpage, sql, ", zDbNum, " FROM \"",
|
|
+ db->aDb[iDb].zName, "\".", zMasterName, (char*)0);
|
|
+ }else{
|
|
+ sqliteSetString(&zSql,
|
|
+ "SELECT type, name, rootpage, sql, ", zDbNum, " FROM \"",
|
|
+ db->aDb[iDb].zName, "\".", zMasterName,
|
|
+ " WHERE type IN ('table', 'index')"
|
|
+ " ORDER BY CASE type WHEN 'table' THEN 0 ELSE 1 END", (char*)0);
|
|
+ }
|
|
+ rc = sqlite_exec(db, zSql, sqliteInitCallback, &initData, 0);
|
|
+
|
|
+ sqliteFree(zSql);
|
|
+ sqliteSafetyOn(db);
|
|
+ sqliteBtreeCloseCursor(curMain);
|
|
+ if( sqlite_malloc_failed ){
|
|
+ sqliteSetString(pzErrMsg, "out of memory", (char*)0);
|
|
+ rc = SQLITE_NOMEM;
|
|
+ sqliteResetInternalSchema(db, 0);
|
|
+ }
|
|
+ if( rc==SQLITE_OK ){
|
|
+ DbSetProperty(db, iDb, DB_SchemaLoaded);
|
|
+ }else{
|
|
+ sqliteResetInternalSchema(db, iDb);
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Initialize all database files - the main database file, the file
|
|
+** used to store temporary tables, and any additional database files
|
|
+** created using ATTACH statements. Return a success code. If an
|
|
+** error occurs, write an error message into *pzErrMsg.
|
|
+**
|
|
+** After the database is initialized, the SQLITE_Initialized
|
|
+** bit is set in the flags field of the sqlite structure. An
|
|
+** attempt is made to initialize the database as soon as it
|
|
+** is opened. If that fails (perhaps because another process
|
|
+** has the sqlite_master table locked) than another attempt
|
|
+** is made the first time the database is accessed.
|
|
+*/
|
|
+int sqliteInit(sqlite *db, char **pzErrMsg){
|
|
+ int i, rc;
|
|
+
|
|
+ if( db->init.busy ) return SQLITE_OK;
|
|
+ assert( (db->flags & SQLITE_Initialized)==0 );
|
|
+ rc = SQLITE_OK;
|
|
+ db->init.busy = 1;
|
|
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
|
|
+ if( DbHasProperty(db, i, DB_SchemaLoaded) || i==1 ) continue;
|
|
+ rc = sqliteInitOne(db, i, pzErrMsg);
|
|
+ if( rc ){
|
|
+ sqliteResetInternalSchema(db, i);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Once all the other databases have been initialised, load the schema
|
|
+ ** for the TEMP database. This is loaded last, as the TEMP database
|
|
+ ** schema may contain references to objects in other databases.
|
|
+ */
|
|
+ if( rc==SQLITE_OK && db->nDb>1 && !DbHasProperty(db, 1, DB_SchemaLoaded) ){
|
|
+ rc = sqliteInitOne(db, 1, pzErrMsg);
|
|
+ if( rc ){
|
|
+ sqliteResetInternalSchema(db, 1);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ db->init.busy = 0;
|
|
+ if( rc==SQLITE_OK ){
|
|
+ db->flags |= SQLITE_Initialized;
|
|
+ sqliteCommitInternalChanges(db);
|
|
+ }
|
|
+
|
|
+ /* If the database is in formats 1 or 2, then upgrade it to
|
|
+ ** version 3. This will reconstruct all indices. If the
|
|
+ ** upgrade fails for any reason (ex: out of disk space, database
|
|
+ ** is read only, interrupt received, etc.) then fail the init.
|
|
+ */
|
|
+ if( rc==SQLITE_OK && db->file_format<3 ){
|
|
+ char *zErr = 0;
|
|
+ InitData initData;
|
|
+ int meta[SQLITE_N_BTREE_META];
|
|
+
|
|
+ db->magic = SQLITE_MAGIC_OPEN;
|
|
+ initData.db = db;
|
|
+ initData.pzErrMsg = &zErr;
|
|
+ db->file_format = 3;
|
|
+ rc = sqlite_exec(db,
|
|
+ "BEGIN; SELECT name FROM sqlite_master WHERE type='table';",
|
|
+ upgrade_3_callback,
|
|
+ &initData,
|
|
+ &zErr);
|
|
+ if( rc==SQLITE_OK ){
|
|
+ sqliteBtreeGetMeta(db->aDb[0].pBt, meta);
|
|
+ meta[2] = 4;
|
|
+ sqliteBtreeUpdateMeta(db->aDb[0].pBt, meta);
|
|
+ sqlite_exec(db, "COMMIT", 0, 0, 0);
|
|
+ }
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ sqliteSetString(pzErrMsg,
|
|
+ "unable to upgrade database to the version 2.6 format",
|
|
+ zErr ? ": " : 0, zErr, (char*)0);
|
|
+ }
|
|
+ sqlite_freemem(zErr);
|
|
+ }
|
|
+
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ db->flags &= ~SQLITE_Initialized;
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** The version of the library
|
|
+*/
|
|
+const char rcsid[] = "@(#) \044Id: SQLite version " SQLITE_VERSION " $";
|
|
+const char sqlite_version[] = SQLITE_VERSION;
|
|
+
|
|
+/*
|
|
+** Does the library expect data to be encoded as UTF-8 or iso8859? The
|
|
+** following global constant always lets us know.
|
|
+*/
|
|
+#ifdef SQLITE_UTF8
|
|
+const char sqlite_encoding[] = "UTF-8";
|
|
+#else
|
|
+const char sqlite_encoding[] = "iso8859";
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** Open a new SQLite database. Construct an "sqlite" structure to define
|
|
+** the state of this database and return a pointer to that structure.
|
|
+**
|
|
+** An attempt is made to initialize the in-memory data structures that
|
|
+** hold the database schema. But if this fails (because the schema file
|
|
+** is locked) then that step is deferred until the first call to
|
|
+** sqlite_exec().
|
|
+*/
|
|
+sqlite *sqlite_open(const char *zFilename, int mode, char **pzErrMsg){
|
|
+ sqlite *db;
|
|
+ int rc, i;
|
|
+
|
|
+ /* Allocate the sqlite data structure */
|
|
+ db = sqliteMalloc( sizeof(sqlite) );
|
|
+ if( pzErrMsg ) *pzErrMsg = 0;
|
|
+ if( db==0 ) goto no_mem_on_open;
|
|
+ db->onError = OE_Default;
|
|
+ db->priorNewRowid = 0;
|
|
+ db->magic = SQLITE_MAGIC_BUSY;
|
|
+ db->nDb = 2;
|
|
+ db->aDb = db->aDbStatic;
|
|
+ /* db->flags |= SQLITE_ShortColNames; */
|
|
+ sqliteHashInit(&db->aFunc, SQLITE_HASH_STRING, 1);
|
|
+ for(i=0; i<db->nDb; i++){
|
|
+ sqliteHashInit(&db->aDb[i].tblHash, SQLITE_HASH_STRING, 0);
|
|
+ sqliteHashInit(&db->aDb[i].idxHash, SQLITE_HASH_STRING, 0);
|
|
+ sqliteHashInit(&db->aDb[i].trigHash, SQLITE_HASH_STRING, 0);
|
|
+ sqliteHashInit(&db->aDb[i].aFKey, SQLITE_HASH_STRING, 1);
|
|
+ }
|
|
+
|
|
+ /* Open the backend database driver */
|
|
+ if( zFilename[0]==':' && strcmp(zFilename,":memory:")==0 ){
|
|
+ db->temp_store = 2;
|
|
+ }
|
|
+ rc = sqliteBtreeFactory(db, zFilename, 0, MAX_PAGES, &db->aDb[0].pBt);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ switch( rc ){
|
|
+ default: {
|
|
+ sqliteSetString(pzErrMsg, "unable to open database: ",
|
|
+ zFilename, (char*)0);
|
|
+ }
|
|
+ }
|
|
+ sqliteFree(db);
|
|
+ sqliteStrRealloc(pzErrMsg);
|
|
+ return 0;
|
|
+ }
|
|
+ db->aDb[0].zName = "main";
|
|
+ db->aDb[1].zName = "temp";
|
|
+
|
|
+ /* Attempt to read the schema */
|
|
+ sqliteRegisterBuiltinFunctions(db);
|
|
+ rc = sqliteInit(db, pzErrMsg);
|
|
+ db->magic = SQLITE_MAGIC_OPEN;
|
|
+ if( sqlite_malloc_failed ){
|
|
+ sqlite_close(db);
|
|
+ goto no_mem_on_open;
|
|
+ }else if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
|
|
+ sqlite_close(db);
|
|
+ sqliteStrRealloc(pzErrMsg);
|
|
+ return 0;
|
|
+ }else if( pzErrMsg ){
|
|
+ sqliteFree(*pzErrMsg);
|
|
+ *pzErrMsg = 0;
|
|
+ }
|
|
+
|
|
+ /* Return a pointer to the newly opened database structure */
|
|
+ return db;
|
|
+
|
|
+no_mem_on_open:
|
|
+ sqliteSetString(pzErrMsg, "out of memory", (char*)0);
|
|
+ sqliteStrRealloc(pzErrMsg);
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return the ROWID of the most recent insert
|
|
+*/
|
|
+int sqlite_last_insert_rowid(sqlite *db){
|
|
+ return db->lastRowid;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return the number of changes in the most recent call to sqlite_exec().
|
|
+*/
|
|
+int sqlite_changes(sqlite *db){
|
|
+ return db->nChange;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return the number of changes produced by the last INSERT, UPDATE, or
|
|
+** DELETE statement to complete execution. The count does not include
|
|
+** changes due to SQL statements executed in trigger programs that were
|
|
+** triggered by that statement
|
|
+*/
|
|
+int sqlite_last_statement_changes(sqlite *db){
|
|
+ return db->lsChange;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Close an existing SQLite database
|
|
+*/
|
|
+void sqlite_close(sqlite *db){
|
|
+ HashElem *i;
|
|
+ int j;
|
|
+ db->want_to_close = 1;
|
|
+ if( sqliteSafetyCheck(db) || sqliteSafetyOn(db) ){
|
|
+ /* printf("DID NOT CLOSE\n"); fflush(stdout); */
|
|
+ return;
|
|
+ }
|
|
+ db->magic = SQLITE_MAGIC_CLOSED;
|
|
+ for(j=0; j<db->nDb; j++){
|
|
+ struct Db *pDb = &db->aDb[j];
|
|
+ if( pDb->pBt ){
|
|
+ sqliteBtreeClose(pDb->pBt);
|
|
+ pDb->pBt = 0;
|
|
+ }
|
|
+ }
|
|
+ sqliteResetInternalSchema(db, 0);
|
|
+ assert( db->nDb<=2 );
|
|
+ assert( db->aDb==db->aDbStatic );
|
|
+ for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){
|
|
+ FuncDef *pFunc, *pNext;
|
|
+ for(pFunc = (FuncDef*)sqliteHashData(i); pFunc; pFunc=pNext){
|
|
+ pNext = pFunc->pNext;
|
|
+ sqliteFree(pFunc);
|
|
+ }
|
|
+ }
|
|
+ sqliteHashClear(&db->aFunc);
|
|
+ sqliteFree(db);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Rollback all database files.
|
|
+*/
|
|
+void sqliteRollbackAll(sqlite *db){
|
|
+ int i;
|
|
+ for(i=0; i<db->nDb; i++){
|
|
+ if( db->aDb[i].pBt ){
|
|
+ sqliteBtreeRollback(db->aDb[i].pBt);
|
|
+ db->aDb[i].inTrans = 0;
|
|
+ }
|
|
+ }
|
|
+ sqliteResetInternalSchema(db, 0);
|
|
+ /* sqliteRollbackInternalChanges(db); */
|
|
+}
|
|
+
|
|
+/*
|
|
+** Execute SQL code. Return one of the SQLITE_ success/failure
|
|
+** codes. Also write an error message into memory obtained from
|
|
+** malloc() and make *pzErrMsg point to that message.
|
|
+**
|
|
+** If the SQL is a query, then for each row in the query result
|
|
+** the xCallback() function is called. pArg becomes the first
|
|
+** argument to xCallback(). If xCallback=NULL then no callback
|
|
+** is invoked, even for queries.
|
|
+*/
|
|
+int sqlite_exec(
|
|
+ sqlite *db, /* The database on which the SQL executes */
|
|
+ const char *zSql, /* The SQL to be executed */
|
|
+ sqlite_callback xCallback, /* Invoke this callback routine */
|
|
+ void *pArg, /* First argument to xCallback() */
|
|
+ char **pzErrMsg /* Write error messages here */
|
|
+){
|
|
+ int rc = SQLITE_OK;
|
|
+ const char *zLeftover;
|
|
+ sqlite_vm *pVm;
|
|
+ int nRetry = 0;
|
|
+ int nChange = 0;
|
|
+ int nCallback;
|
|
+
|
|
+ if( zSql==0 ) return SQLITE_OK;
|
|
+ while( rc==SQLITE_OK && zSql[0] ){
|
|
+ pVm = 0;
|
|
+ rc = sqlite_compile(db, zSql, &zLeftover, &pVm, pzErrMsg);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ assert( pVm==0 || sqlite_malloc_failed );
|
|
+ return rc;
|
|
+ }
|
|
+ if( pVm==0 ){
|
|
+ /* This happens if the zSql input contained only whitespace */
|
|
+ break;
|
|
+ }
|
|
+ db->nChange += nChange;
|
|
+ nCallback = 0;
|
|
+ while(1){
|
|
+ int nArg;
|
|
+ char **azArg, **azCol;
|
|
+ rc = sqlite_step(pVm, &nArg, (const char***)&azArg,(const char***)&azCol);
|
|
+ if( rc==SQLITE_ROW ){
|
|
+ if( xCallback!=0 && xCallback(pArg, nArg, azArg, azCol) ){
|
|
+ sqlite_finalize(pVm, 0);
|
|
+ return SQLITE_ABORT;
|
|
+ }
|
|
+ nCallback++;
|
|
+ }else{
|
|
+ if( rc==SQLITE_DONE && nCallback==0
|
|
+ && (db->flags & SQLITE_NullCallback)!=0 && xCallback!=0 ){
|
|
+ xCallback(pArg, nArg, azArg, azCol);
|
|
+ }
|
|
+ rc = sqlite_finalize(pVm, pzErrMsg);
|
|
+ if( rc==SQLITE_SCHEMA && nRetry<2 ){
|
|
+ nRetry++;
|
|
+ rc = SQLITE_OK;
|
|
+ break;
|
|
+ }
|
|
+ if( db->pVdbe==0 ){
|
|
+ nChange = db->nChange;
|
|
+ }
|
|
+ nRetry = 0;
|
|
+ zSql = zLeftover;
|
|
+ while( isspace(zSql[0]) ) zSql++;
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+
|
|
+/*
|
|
+** Compile a single statement of SQL into a virtual machine. Return one
|
|
+** of the SQLITE_ success/failure codes. Also write an error message into
|
|
+** memory obtained from malloc() and make *pzErrMsg point to that message.
|
|
+*/
|
|
+int sqlite_compile(
|
|
+ sqlite *db, /* The database on which the SQL executes */
|
|
+ const char *zSql, /* The SQL to be executed */
|
|
+ const char **pzTail, /* OUT: Next statement after the first */
|
|
+ sqlite_vm **ppVm, /* OUT: The virtual machine */
|
|
+ char **pzErrMsg /* OUT: Write error messages here */
|
|
+){
|
|
+ Parse sParse;
|
|
+
|
|
+ if( pzErrMsg ) *pzErrMsg = 0;
|
|
+ if( sqliteSafetyOn(db) ) goto exec_misuse;
|
|
+ if( !db->init.busy ){
|
|
+ if( (db->flags & SQLITE_Initialized)==0 ){
|
|
+ int rc, cnt = 1;
|
|
+ while( (rc = sqliteInit(db, pzErrMsg))==SQLITE_BUSY
|
|
+ && db->xBusyCallback
|
|
+ && db->xBusyCallback(db->pBusyArg, "", cnt++)!=0 ){}
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ sqliteStrRealloc(pzErrMsg);
|
|
+ sqliteSafetyOff(db);
|
|
+ return rc;
|
|
+ }
|
|
+ if( pzErrMsg ){
|
|
+ sqliteFree(*pzErrMsg);
|
|
+ *pzErrMsg = 0;
|
|
+ }
|
|
+ }
|
|
+ if( db->file_format<3 ){
|
|
+ sqliteSafetyOff(db);
|
|
+ sqliteSetString(pzErrMsg, "obsolete database file format", (char*)0);
|
|
+ return SQLITE_ERROR;
|
|
+ }
|
|
+ }
|
|
+ assert( (db->flags & SQLITE_Initialized)!=0 || db->init.busy );
|
|
+ if( db->pVdbe==0 ){ db->nChange = 0; }
|
|
+ memset(&sParse, 0, sizeof(sParse));
|
|
+ sParse.db = db;
|
|
+ sqliteRunParser(&sParse, zSql, pzErrMsg);
|
|
+ if( db->xTrace && !db->init.busy ){
|
|
+ /* Trace only the statment that was compiled.
|
|
+ ** Make a copy of that part of the SQL string since zSQL is const
|
|
+ ** and we must pass a zero terminated string to the trace function
|
|
+ ** The copy is unnecessary if the tail pointer is pointing at the
|
|
+ ** beginnig or end of the SQL string.
|
|
+ */
|
|
+ if( sParse.zTail && sParse.zTail!=zSql && *sParse.zTail ){
|
|
+ char *tmpSql = sqliteStrNDup(zSql, sParse.zTail - zSql);
|
|
+ if( tmpSql ){
|
|
+ db->xTrace(db->pTraceArg, tmpSql);
|
|
+ free(tmpSql);
|
|
+ }else{
|
|
+ /* If a memory error occurred during the copy,
|
|
+ ** trace entire SQL string and fall through to the
|
|
+ ** sqlite_malloc_failed test to report the error.
|
|
+ */
|
|
+ db->xTrace(db->pTraceArg, zSql);
|
|
+ }
|
|
+ }else{
|
|
+ db->xTrace(db->pTraceArg, zSql);
|
|
+ }
|
|
+ }
|
|
+ if( sqlite_malloc_failed ){
|
|
+ sqliteSetString(pzErrMsg, "out of memory", (char*)0);
|
|
+ sParse.rc = SQLITE_NOMEM;
|
|
+ sqliteRollbackAll(db);
|
|
+ sqliteResetInternalSchema(db, 0);
|
|
+ db->flags &= ~SQLITE_InTrans;
|
|
+ }
|
|
+ if( sParse.rc==SQLITE_DONE ) sParse.rc = SQLITE_OK;
|
|
+ if( sParse.rc!=SQLITE_OK && pzErrMsg && *pzErrMsg==0 ){
|
|
+ sqliteSetString(pzErrMsg, sqlite_error_string(sParse.rc), (char*)0);
|
|
+ }
|
|
+ sqliteStrRealloc(pzErrMsg);
|
|
+ if( sParse.rc==SQLITE_SCHEMA ){
|
|
+ sqliteResetInternalSchema(db, 0);
|
|
+ }
|
|
+ assert( ppVm );
|
|
+ *ppVm = (sqlite_vm*)sParse.pVdbe;
|
|
+ if( pzTail ) *pzTail = sParse.zTail;
|
|
+ if( sqliteSafetyOff(db) ) goto exec_misuse;
|
|
+ return sParse.rc;
|
|
+
|
|
+exec_misuse:
|
|
+ if( pzErrMsg ){
|
|
+ *pzErrMsg = 0;
|
|
+ sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), (char*)0);
|
|
+ sqliteStrRealloc(pzErrMsg);
|
|
+ }
|
|
+ return SQLITE_MISUSE;
|
|
+}
|
|
+
|
|
+
|
|
+/*
|
|
+** The following routine destroys a virtual machine that is created by
|
|
+** the sqlite_compile() routine.
|
|
+**
|
|
+** The integer returned is an SQLITE_ success/failure code that describes
|
|
+** the result of executing the virtual machine. An error message is
|
|
+** written into memory obtained from malloc and *pzErrMsg is made to
|
|
+** point to that error if pzErrMsg is not NULL. The calling routine
|
|
+** should use sqlite_freemem() to delete the message when it has finished
|
|
+** with it.
|
|
+*/
|
|
+int sqlite_finalize(
|
|
+ sqlite_vm *pVm, /* The virtual machine to be destroyed */
|
|
+ char **pzErrMsg /* OUT: Write error messages here */
|
|
+){
|
|
+ int rc = sqliteVdbeFinalize((Vdbe*)pVm, pzErrMsg);
|
|
+ sqliteStrRealloc(pzErrMsg);
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Terminate the current execution of a virtual machine then
|
|
+** reset the virtual machine back to its starting state so that it
|
|
+** can be reused. Any error message resulting from the prior execution
|
|
+** is written into *pzErrMsg. A success code from the prior execution
|
|
+** is returned.
|
|
+*/
|
|
+int sqlite_reset(
|
|
+ sqlite_vm *pVm, /* The virtual machine to be destroyed */
|
|
+ char **pzErrMsg /* OUT: Write error messages here */
|
|
+){
|
|
+ int rc = sqliteVdbeReset((Vdbe*)pVm, pzErrMsg);
|
|
+ sqliteVdbeMakeReady((Vdbe*)pVm, -1, 0);
|
|
+ sqliteStrRealloc(pzErrMsg);
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return a static string that describes the kind of error specified in the
|
|
+** argument.
|
|
+*/
|
|
+const char *sqlite_error_string(int rc){
|
|
+ const char *z;
|
|
+ switch( rc ){
|
|
+ case SQLITE_OK: z = "not an error"; break;
|
|
+ case SQLITE_ERROR: z = "SQL logic error or missing database"; break;
|
|
+ case SQLITE_INTERNAL: z = "internal SQLite implementation flaw"; break;
|
|
+ case SQLITE_PERM: z = "access permission denied"; break;
|
|
+ case SQLITE_ABORT: z = "callback requested query abort"; break;
|
|
+ case SQLITE_BUSY: z = "database is locked"; break;
|
|
+ case SQLITE_LOCKED: z = "database table is locked"; break;
|
|
+ case SQLITE_NOMEM: z = "out of memory"; break;
|
|
+ case SQLITE_READONLY: z = "attempt to write a readonly database"; break;
|
|
+ case SQLITE_INTERRUPT: z = "interrupted"; break;
|
|
+ case SQLITE_IOERR: z = "disk I/O error"; break;
|
|
+ case SQLITE_CORRUPT: z = "database disk image is malformed"; break;
|
|
+ case SQLITE_NOTFOUND: z = "table or record not found"; break;
|
|
+ case SQLITE_FULL: z = "database is full"; break;
|
|
+ case SQLITE_CANTOPEN: z = "unable to open database file"; break;
|
|
+ case SQLITE_PROTOCOL: z = "database locking protocol failure"; break;
|
|
+ case SQLITE_EMPTY: z = "table contains no data"; break;
|
|
+ case SQLITE_SCHEMA: z = "database schema has changed"; break;
|
|
+ case SQLITE_TOOBIG: z = "too much data for one table row"; break;
|
|
+ case SQLITE_CONSTRAINT: z = "constraint failed"; break;
|
|
+ case SQLITE_MISMATCH: z = "datatype mismatch"; break;
|
|
+ case SQLITE_MISUSE: z = "library routine called out of sequence";break;
|
|
+ case SQLITE_NOLFS: z = "kernel lacks large file support"; break;
|
|
+ case SQLITE_AUTH: z = "authorization denied"; break;
|
|
+ case SQLITE_FORMAT: z = "auxiliary database format error"; break;
|
|
+ case SQLITE_RANGE: z = "bind index out of range"; break;
|
|
+ case SQLITE_NOTADB: z = "file is encrypted or is not a database";break;
|
|
+ default: z = "unknown error"; break;
|
|
+ }
|
|
+ return z;
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine implements a busy callback that sleeps and tries
|
|
+** again until a timeout value is reached. The timeout value is
|
|
+** an integer number of milliseconds passed in as the first
|
|
+** argument.
|
|
+*/
|
|
+static int sqliteDefaultBusyCallback(
|
|
+ void *Timeout, /* Maximum amount of time to wait */
|
|
+ const char *NotUsed, /* The name of the table that is busy */
|
|
+ int count /* Number of times table has been busy */
|
|
+){
|
|
+#if SQLITE_MIN_SLEEP_MS==1
|
|
+ static const char delays[] =
|
|
+ { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 50, 100};
|
|
+ static const short int totals[] =
|
|
+ { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228, 287};
|
|
+# define NDELAY (sizeof(delays)/sizeof(delays[0]))
|
|
+ int timeout = (int)(long)Timeout;
|
|
+ int delay, prior;
|
|
+
|
|
+ if( count <= NDELAY ){
|
|
+ delay = delays[count-1];
|
|
+ prior = totals[count-1];
|
|
+ }else{
|
|
+ delay = delays[NDELAY-1];
|
|
+ prior = totals[NDELAY-1] + delay*(count-NDELAY-1);
|
|
+ }
|
|
+ if( prior + delay > timeout ){
|
|
+ delay = timeout - prior;
|
|
+ if( delay<=0 ) return 0;
|
|
+ }
|
|
+ sqliteOsSleep(delay);
|
|
+ return 1;
|
|
+#else
|
|
+ int timeout = (int)(long)Timeout;
|
|
+ if( (count+1)*1000 > timeout ){
|
|
+ return 0;
|
|
+ }
|
|
+ sqliteOsSleep(1000);
|
|
+ return 1;
|
|
+#endif
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine sets the busy callback for an Sqlite database to the
|
|
+** given callback function with the given argument.
|
|
+*/
|
|
+void sqlite_busy_handler(
|
|
+ sqlite *db,
|
|
+ int (*xBusy)(void*,const char*,int),
|
|
+ void *pArg
|
|
+){
|
|
+ db->xBusyCallback = xBusy;
|
|
+ db->pBusyArg = pArg;
|
|
+}
|
|
+
|
|
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
+/*
|
|
+** This routine sets the progress callback for an Sqlite database to the
|
|
+** given callback function with the given argument. The progress callback will
|
|
+** be invoked every nOps opcodes.
|
|
+*/
|
|
+void sqlite_progress_handler(
|
|
+ sqlite *db,
|
|
+ int nOps,
|
|
+ int (*xProgress)(void*),
|
|
+ void *pArg
|
|
+){
|
|
+ if( nOps>0 ){
|
|
+ db->xProgress = xProgress;
|
|
+ db->nProgressOps = nOps;
|
|
+ db->pProgressArg = pArg;
|
|
+ }else{
|
|
+ db->xProgress = 0;
|
|
+ db->nProgressOps = 0;
|
|
+ db->pProgressArg = 0;
|
|
+ }
|
|
+}
|
|
+#endif
|
|
+
|
|
+
|
|
+/*
|
|
+** This routine installs a default busy handler that waits for the
|
|
+** specified number of milliseconds before returning 0.
|
|
+*/
|
|
+void sqlite_busy_timeout(sqlite *db, int ms){
|
|
+ if( ms>0 ){
|
|
+ sqlite_busy_handler(db, sqliteDefaultBusyCallback, (void*)(long)ms);
|
|
+ }else{
|
|
+ sqlite_busy_handler(db, 0, 0);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Cause any pending operation to stop at its earliest opportunity.
|
|
+*/
|
|
+void sqlite_interrupt(sqlite *db){
|
|
+ db->flags |= SQLITE_Interrupt;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Windows systems should call this routine to free memory that
|
|
+** is returned in the in the errmsg parameter of sqlite_open() when
|
|
+** SQLite is a DLL. For some reason, it does not work to call free()
|
|
+** directly.
|
|
+**
|
|
+** Note that we need to call free() not sqliteFree() here, since every
|
|
+** string that is exported from SQLite should have already passed through
|
|
+** sqliteStrRealloc().
|
|
+*/
|
|
+void sqlite_freemem(void *p){ free(p); }
|
|
+
|
|
+/*
|
|
+** Windows systems need functions to call to return the sqlite_version
|
|
+** and sqlite_encoding strings since they are unable to access constants
|
|
+** within DLLs.
|
|
+*/
|
|
+const char *sqlite_libversion(void){ return sqlite_version; }
|
|
+const char *sqlite_libencoding(void){ return sqlite_encoding; }
|
|
+
|
|
+/*
|
|
+** Create new user-defined functions. The sqlite_create_function()
|
|
+** routine creates a regular function and sqlite_create_aggregate()
|
|
+** creates an aggregate function.
|
|
+**
|
|
+** Passing a NULL xFunc argument or NULL xStep and xFinalize arguments
|
|
+** disables the function. Calling sqlite_create_function() with the
|
|
+** same name and number of arguments as a prior call to
|
|
+** sqlite_create_aggregate() disables the prior call to
|
|
+** sqlite_create_aggregate(), and vice versa.
|
|
+**
|
|
+** If nArg is -1 it means that this function will accept any number
|
|
+** of arguments, including 0. The maximum allowed value of nArg is 127.
|
|
+*/
|
|
+int sqlite_create_function(
|
|
+ sqlite *db, /* Add the function to this database connection */
|
|
+ const char *zName, /* Name of the function to add */
|
|
+ int nArg, /* Number of arguments */
|
|
+ void (*xFunc)(sqlite_func*,int,const char**), /* The implementation */
|
|
+ void *pUserData /* User data */
|
|
+){
|
|
+ FuncDef *p;
|
|
+ int nName;
|
|
+ if( db==0 || zName==0 || sqliteSafetyCheck(db) ) return 1;
|
|
+ if( nArg<-1 || nArg>127 ) return 1;
|
|
+ nName = strlen(zName);
|
|
+ if( nName>255 ) return 1;
|
|
+ p = sqliteFindFunction(db, zName, nName, nArg, 1);
|
|
+ if( p==0 ) return 1;
|
|
+ p->xFunc = xFunc;
|
|
+ p->xStep = 0;
|
|
+ p->xFinalize = 0;
|
|
+ p->pUserData = pUserData;
|
|
+ return 0;
|
|
+}
|
|
+int sqlite_create_aggregate(
|
|
+ sqlite *db, /* Add the function to this database connection */
|
|
+ const char *zName, /* Name of the function to add */
|
|
+ int nArg, /* Number of arguments */
|
|
+ void (*xStep)(sqlite_func*,int,const char**), /* The step function */
|
|
+ void (*xFinalize)(sqlite_func*), /* The finalizer */
|
|
+ void *pUserData /* User data */
|
|
+){
|
|
+ FuncDef *p;
|
|
+ int nName;
|
|
+ if( db==0 || zName==0 || sqliteSafetyCheck(db) ) return 1;
|
|
+ if( nArg<-1 || nArg>127 ) return 1;
|
|
+ nName = strlen(zName);
|
|
+ if( nName>255 ) return 1;
|
|
+ p = sqliteFindFunction(db, zName, nName, nArg, 1);
|
|
+ if( p==0 ) return 1;
|
|
+ p->xFunc = 0;
|
|
+ p->xStep = xStep;
|
|
+ p->xFinalize = xFinalize;
|
|
+ p->pUserData = pUserData;
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Change the datatype for all functions with a given name. See the
|
|
+** header comment for the prototype of this function in sqlite.h for
|
|
+** additional information.
|
|
+*/
|
|
+int sqlite_function_type(sqlite *db, const char *zName, int dataType){
|
|
+ FuncDef *p = (FuncDef*)sqliteHashFind(&db->aFunc, zName, strlen(zName));
|
|
+ while( p ){
|
|
+ p->dataType = dataType;
|
|
+ p = p->pNext;
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Register a trace function. The pArg from the previously registered trace
|
|
+** is returned.
|
|
+**
|
|
+** A NULL trace function means that no tracing is executes. A non-NULL
|
|
+** trace is a pointer to a function that is invoked at the start of each
|
|
+** sqlite_exec().
|
|
+*/
|
|
+void *sqlite_trace(sqlite *db, void (*xTrace)(void*,const char*), void *pArg){
|
|
+ void *pOld = db->pTraceArg;
|
|
+ db->xTrace = xTrace;
|
|
+ db->pTraceArg = pArg;
|
|
+ return pOld;
|
|
+}
|
|
+
|
|
+/*** EXPERIMENTAL ***
|
|
+**
|
|
+** Register a function to be invoked when a transaction comments.
|
|
+** If either function returns non-zero, then the commit becomes a
|
|
+** rollback.
|
|
+*/
|
|
+void *sqlite_commit_hook(
|
|
+ sqlite *db, /* Attach the hook to this database */
|
|
+ int (*xCallback)(void*), /* Function to invoke on each commit */
|
|
+ void *pArg /* Argument to the function */
|
|
+){
|
|
+ void *pOld = db->pCommitArg;
|
|
+ db->xCommitCallback = xCallback;
|
|
+ db->pCommitArg = pArg;
|
|
+ return pOld;
|
|
+}
|
|
+
|
|
+
|
|
+/*
|
|
+** This routine is called to create a connection to a database BTree
|
|
+** driver. If zFilename is the name of a file, then that file is
|
|
+** opened and used. If zFilename is the magic name ":memory:" then
|
|
+** the database is stored in memory (and is thus forgotten as soon as
|
|
+** the connection is closed.) If zFilename is NULL then the database
|
|
+** is for temporary use only and is deleted as soon as the connection
|
|
+** is closed.
|
|
+**
|
|
+** A temporary database can be either a disk file (that is automatically
|
|
+** deleted when the file is closed) or a set of red-black trees held in memory,
|
|
+** depending on the values of the TEMP_STORE compile-time macro and the
|
|
+** db->temp_store variable, according to the following chart:
|
|
+**
|
|
+** TEMP_STORE db->temp_store Location of temporary database
|
|
+** ---------- -------------- ------------------------------
|
|
+** 0 any file
|
|
+** 1 1 file
|
|
+** 1 2 memory
|
|
+** 1 0 file
|
|
+** 2 1 file
|
|
+** 2 2 memory
|
|
+** 2 0 memory
|
|
+** 3 any memory
|
|
+*/
|
|
+int sqliteBtreeFactory(
|
|
+ const sqlite *db, /* Main database when opening aux otherwise 0 */
|
|
+ const char *zFilename, /* Name of the file containing the BTree database */
|
|
+ int omitJournal, /* if TRUE then do not journal this file */
|
|
+ int nCache, /* How many pages in the page cache */
|
|
+ Btree **ppBtree){ /* Pointer to new Btree object written here */
|
|
+
|
|
+ assert( ppBtree != 0);
|
|
+
|
|
+#ifndef SQLITE_OMIT_INMEMORYDB
|
|
+ if( zFilename==0 ){
|
|
+ if (TEMP_STORE == 0) {
|
|
+ /* Always use file based temporary DB */
|
|
+ return sqliteBtreeOpen(0, omitJournal, nCache, ppBtree);
|
|
+ } else if (TEMP_STORE == 1 || TEMP_STORE == 2) {
|
|
+ /* Switch depending on compile-time and/or runtime settings. */
|
|
+ int location = db->temp_store==0 ? TEMP_STORE : db->temp_store;
|
|
+
|
|
+ if (location == 1) {
|
|
+ return sqliteBtreeOpen(zFilename, omitJournal, nCache, ppBtree);
|
|
+ } else {
|
|
+ return sqliteRbtreeOpen(0, 0, 0, ppBtree);
|
|
+ }
|
|
+ } else {
|
|
+ /* Always use in-core DB */
|
|
+ return sqliteRbtreeOpen(0, 0, 0, ppBtree);
|
|
+ }
|
|
+ }else if( zFilename[0]==':' && strcmp(zFilename,":memory:")==0 ){
|
|
+ return sqliteRbtreeOpen(0, 0, 0, ppBtree);
|
|
+ }else
|
|
+#endif
|
|
+ {
|
|
+ return sqliteBtreeOpen(zFilename, omitJournal, nCache, ppBtree);
|
|
+ }
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/opcodes.c
|
|
@@ -0,0 +1,140 @@
|
|
+/* Automatically generated file. Do not edit */
|
|
+char *sqliteOpcodeNames[] = { "???",
|
|
+ "Goto",
|
|
+ "Gosub",
|
|
+ "Return",
|
|
+ "Halt",
|
|
+ "Integer",
|
|
+ "String",
|
|
+ "Variable",
|
|
+ "Pop",
|
|
+ "Dup",
|
|
+ "Pull",
|
|
+ "Push",
|
|
+ "ColumnName",
|
|
+ "Callback",
|
|
+ "Concat",
|
|
+ "Add",
|
|
+ "Subtract",
|
|
+ "Multiply",
|
|
+ "Divide",
|
|
+ "Remainder",
|
|
+ "Function",
|
|
+ "BitAnd",
|
|
+ "BitOr",
|
|
+ "ShiftLeft",
|
|
+ "ShiftRight",
|
|
+ "AddImm",
|
|
+ "ForceInt",
|
|
+ "MustBeInt",
|
|
+ "Eq",
|
|
+ "Ne",
|
|
+ "Lt",
|
|
+ "Le",
|
|
+ "Gt",
|
|
+ "Ge",
|
|
+ "StrEq",
|
|
+ "StrNe",
|
|
+ "StrLt",
|
|
+ "StrLe",
|
|
+ "StrGt",
|
|
+ "StrGe",
|
|
+ "And",
|
|
+ "Or",
|
|
+ "Negative",
|
|
+ "AbsValue",
|
|
+ "Not",
|
|
+ "BitNot",
|
|
+ "Noop",
|
|
+ "If",
|
|
+ "IfNot",
|
|
+ "IsNull",
|
|
+ "NotNull",
|
|
+ "MakeRecord",
|
|
+ "MakeIdxKey",
|
|
+ "MakeKey",
|
|
+ "IncrKey",
|
|
+ "Checkpoint",
|
|
+ "Transaction",
|
|
+ "Commit",
|
|
+ "Rollback",
|
|
+ "ReadCookie",
|
|
+ "SetCookie",
|
|
+ "VerifyCookie",
|
|
+ "OpenRead",
|
|
+ "OpenWrite",
|
|
+ "OpenTemp",
|
|
+ "OpenPseudo",
|
|
+ "Close",
|
|
+ "MoveLt",
|
|
+ "MoveTo",
|
|
+ "Distinct",
|
|
+ "NotFound",
|
|
+ "Found",
|
|
+ "IsUnique",
|
|
+ "NotExists",
|
|
+ "NewRecno",
|
|
+ "PutIntKey",
|
|
+ "PutStrKey",
|
|
+ "Delete",
|
|
+ "SetCounts",
|
|
+ "KeyAsData",
|
|
+ "RowKey",
|
|
+ "RowData",
|
|
+ "Column",
|
|
+ "Recno",
|
|
+ "FullKey",
|
|
+ "NullRow",
|
|
+ "Last",
|
|
+ "Rewind",
|
|
+ "Prev",
|
|
+ "Next",
|
|
+ "IdxPut",
|
|
+ "IdxDelete",
|
|
+ "IdxRecno",
|
|
+ "IdxLT",
|
|
+ "IdxGT",
|
|
+ "IdxGE",
|
|
+ "IdxIsNull",
|
|
+ "Destroy",
|
|
+ "Clear",
|
|
+ "CreateIndex",
|
|
+ "CreateTable",
|
|
+ "IntegrityCk",
|
|
+ "ListWrite",
|
|
+ "ListRewind",
|
|
+ "ListRead",
|
|
+ "ListReset",
|
|
+ "ListPush",
|
|
+ "ListPop",
|
|
+ "ContextPush",
|
|
+ "ContextPop",
|
|
+ "SortPut",
|
|
+ "SortMakeRec",
|
|
+ "SortMakeKey",
|
|
+ "Sort",
|
|
+ "SortNext",
|
|
+ "SortCallback",
|
|
+ "SortReset",
|
|
+ "FileOpen",
|
|
+ "FileRead",
|
|
+ "FileColumn",
|
|
+ "MemStore",
|
|
+ "MemLoad",
|
|
+ "MemIncr",
|
|
+ "AggReset",
|
|
+ "AggInit",
|
|
+ "AggFunc",
|
|
+ "AggFocus",
|
|
+ "AggSet",
|
|
+ "AggGet",
|
|
+ "AggNext",
|
|
+ "SetInsert",
|
|
+ "SetFound",
|
|
+ "SetNotFound",
|
|
+ "SetFirst",
|
|
+ "SetNext",
|
|
+ "Vacuum",
|
|
+ "StackDepth",
|
|
+ "StackReset",
|
|
+};
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/opcodes.h
|
|
@@ -0,0 +1,138 @@
|
|
+/* Automatically generated file. Do not edit */
|
|
+#define OP_Goto 1
|
|
+#define OP_Gosub 2
|
|
+#define OP_Return 3
|
|
+#define OP_Halt 4
|
|
+#define OP_Integer 5
|
|
+#define OP_String 6
|
|
+#define OP_Variable 7
|
|
+#define OP_Pop 8
|
|
+#define OP_Dup 9
|
|
+#define OP_Pull 10
|
|
+#define OP_Push 11
|
|
+#define OP_ColumnName 12
|
|
+#define OP_Callback 13
|
|
+#define OP_Concat 14
|
|
+#define OP_Add 15
|
|
+#define OP_Subtract 16
|
|
+#define OP_Multiply 17
|
|
+#define OP_Divide 18
|
|
+#define OP_Remainder 19
|
|
+#define OP_Function 20
|
|
+#define OP_BitAnd 21
|
|
+#define OP_BitOr 22
|
|
+#define OP_ShiftLeft 23
|
|
+#define OP_ShiftRight 24
|
|
+#define OP_AddImm 25
|
|
+#define OP_ForceInt 26
|
|
+#define OP_MustBeInt 27
|
|
+#define OP_Eq 28
|
|
+#define OP_Ne 29
|
|
+#define OP_Lt 30
|
|
+#define OP_Le 31
|
|
+#define OP_Gt 32
|
|
+#define OP_Ge 33
|
|
+#define OP_StrEq 34
|
|
+#define OP_StrNe 35
|
|
+#define OP_StrLt 36
|
|
+#define OP_StrLe 37
|
|
+#define OP_StrGt 38
|
|
+#define OP_StrGe 39
|
|
+#define OP_And 40
|
|
+#define OP_Or 41
|
|
+#define OP_Negative 42
|
|
+#define OP_AbsValue 43
|
|
+#define OP_Not 44
|
|
+#define OP_BitNot 45
|
|
+#define OP_Noop 46
|
|
+#define OP_If 47
|
|
+#define OP_IfNot 48
|
|
+#define OP_IsNull 49
|
|
+#define OP_NotNull 50
|
|
+#define OP_MakeRecord 51
|
|
+#define OP_MakeIdxKey 52
|
|
+#define OP_MakeKey 53
|
|
+#define OP_IncrKey 54
|
|
+#define OP_Checkpoint 55
|
|
+#define OP_Transaction 56
|
|
+#define OP_Commit 57
|
|
+#define OP_Rollback 58
|
|
+#define OP_ReadCookie 59
|
|
+#define OP_SetCookie 60
|
|
+#define OP_VerifyCookie 61
|
|
+#define OP_OpenRead 62
|
|
+#define OP_OpenWrite 63
|
|
+#define OP_OpenTemp 64
|
|
+#define OP_OpenPseudo 65
|
|
+#define OP_Close 66
|
|
+#define OP_MoveLt 67
|
|
+#define OP_MoveTo 68
|
|
+#define OP_Distinct 69
|
|
+#define OP_NotFound 70
|
|
+#define OP_Found 71
|
|
+#define OP_IsUnique 72
|
|
+#define OP_NotExists 73
|
|
+#define OP_NewRecno 74
|
|
+#define OP_PutIntKey 75
|
|
+#define OP_PutStrKey 76
|
|
+#define OP_Delete 77
|
|
+#define OP_SetCounts 78
|
|
+#define OP_KeyAsData 79
|
|
+#define OP_RowKey 80
|
|
+#define OP_RowData 81
|
|
+#define OP_Column 82
|
|
+#define OP_Recno 83
|
|
+#define OP_FullKey 84
|
|
+#define OP_NullRow 85
|
|
+#define OP_Last 86
|
|
+#define OP_Rewind 87
|
|
+#define OP_Prev 88
|
|
+#define OP_Next 89
|
|
+#define OP_IdxPut 90
|
|
+#define OP_IdxDelete 91
|
|
+#define OP_IdxRecno 92
|
|
+#define OP_IdxLT 93
|
|
+#define OP_IdxGT 94
|
|
+#define OP_IdxGE 95
|
|
+#define OP_IdxIsNull 96
|
|
+#define OP_Destroy 97
|
|
+#define OP_Clear 98
|
|
+#define OP_CreateIndex 99
|
|
+#define OP_CreateTable 100
|
|
+#define OP_IntegrityCk 101
|
|
+#define OP_ListWrite 102
|
|
+#define OP_ListRewind 103
|
|
+#define OP_ListRead 104
|
|
+#define OP_ListReset 105
|
|
+#define OP_ListPush 106
|
|
+#define OP_ListPop 107
|
|
+#define OP_ContextPush 108
|
|
+#define OP_ContextPop 109
|
|
+#define OP_SortPut 110
|
|
+#define OP_SortMakeRec 111
|
|
+#define OP_SortMakeKey 112
|
|
+#define OP_Sort 113
|
|
+#define OP_SortNext 114
|
|
+#define OP_SortCallback 115
|
|
+#define OP_SortReset 116
|
|
+#define OP_FileOpen 117
|
|
+#define OP_FileRead 118
|
|
+#define OP_FileColumn 119
|
|
+#define OP_MemStore 120
|
|
+#define OP_MemLoad 121
|
|
+#define OP_MemIncr 122
|
|
+#define OP_AggReset 123
|
|
+#define OP_AggInit 124
|
|
+#define OP_AggFunc 125
|
|
+#define OP_AggFocus 126
|
|
+#define OP_AggSet 127
|
|
+#define OP_AggGet 128
|
|
+#define OP_AggNext 129
|
|
+#define OP_SetInsert 130
|
|
+#define OP_SetFound 131
|
|
+#define OP_SetNotFound 132
|
|
+#define OP_SetFirst 133
|
|
+#define OP_SetNext 134
|
|
+#define OP_Vacuum 135
|
|
+#define OP_StackDepth 136
|
|
+#define OP_StackReset 137
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/os.c
|
|
@@ -0,0 +1,1850 @@
|
|
+/*
|
|
+** 2001 September 16
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+******************************************************************************
|
|
+**
|
|
+** This file contains code that is specific to particular operating
|
|
+** systems. The purpose of this file is to provide a uniform abstraction
|
|
+** on which the rest of SQLite can operate.
|
|
+*/
|
|
+#include "os.h" /* Must be first to enable large file support */
|
|
+#include "sqliteInt.h"
|
|
+
|
|
+#if OS_UNIX
|
|
+# include <time.h>
|
|
+# include <errno.h>
|
|
+# include <unistd.h>
|
|
+# ifndef O_LARGEFILE
|
|
+# define O_LARGEFILE 0
|
|
+# endif
|
|
+# ifdef SQLITE_DISABLE_LFS
|
|
+# undef O_LARGEFILE
|
|
+# define O_LARGEFILE 0
|
|
+# endif
|
|
+# ifndef O_NOFOLLOW
|
|
+# define O_NOFOLLOW 0
|
|
+# endif
|
|
+# ifndef O_BINARY
|
|
+# define O_BINARY 0
|
|
+# endif
|
|
+#endif
|
|
+
|
|
+
|
|
+#if OS_WIN
|
|
+# include <winbase.h>
|
|
+#endif
|
|
+
|
|
+#if OS_MAC
|
|
+# include <extras.h>
|
|
+# include <path2fss.h>
|
|
+# include <TextUtils.h>
|
|
+# include <FinderRegistry.h>
|
|
+# include <Folders.h>
|
|
+# include <Timer.h>
|
|
+# include <OSUtils.h>
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** The DJGPP compiler environment looks mostly like Unix, but it
|
|
+** lacks the fcntl() system call. So redefine fcntl() to be something
|
|
+** that always succeeds. This means that locking does not occur under
|
|
+** DJGPP. But its DOS - what did you expect?
|
|
+*/
|
|
+#ifdef __DJGPP__
|
|
+# define fcntl(A,B,C) 0
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** Macros used to determine whether or not to use threads. The
|
|
+** SQLITE_UNIX_THREADS macro is defined if we are synchronizing for
|
|
+** Posix threads and SQLITE_W32_THREADS is defined if we are
|
|
+** synchronizing using Win32 threads.
|
|
+*/
|
|
+#if OS_UNIX && defined(THREADSAFE) && THREADSAFE
|
|
+# include <pthread.h>
|
|
+# define SQLITE_UNIX_THREADS 1
|
|
+#endif
|
|
+#if OS_WIN && defined(THREADSAFE) && THREADSAFE
|
|
+# define SQLITE_W32_THREADS 1
|
|
+#endif
|
|
+#if OS_MAC && defined(THREADSAFE) && THREADSAFE
|
|
+# include <Multiprocessing.h>
|
|
+# define SQLITE_MACOS_MULTITASKING 1
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** Macros for performance tracing. Normally turned off
|
|
+*/
|
|
+#if 0
|
|
+static int last_page = 0;
|
|
+__inline__ unsigned long long int hwtime(void){
|
|
+ unsigned long long int x;
|
|
+ __asm__("rdtsc\n\t"
|
|
+ "mov %%edx, %%ecx\n\t"
|
|
+ :"=A" (x));
|
|
+ return x;
|
|
+}
|
|
+static unsigned long long int g_start;
|
|
+static unsigned int elapse;
|
|
+#define TIMER_START g_start=hwtime()
|
|
+#define TIMER_END elapse=hwtime()-g_start
|
|
+#define SEEK(X) last_page=(X)
|
|
+#define TRACE1(X) fprintf(stderr,X)
|
|
+#define TRACE2(X,Y) fprintf(stderr,X,Y)
|
|
+#define TRACE3(X,Y,Z) fprintf(stderr,X,Y,Z)
|
|
+#define TRACE4(X,Y,Z,A) fprintf(stderr,X,Y,Z,A)
|
|
+#define TRACE5(X,Y,Z,A,B) fprintf(stderr,X,Y,Z,A,B)
|
|
+#else
|
|
+#define TIMER_START
|
|
+#define TIMER_END
|
|
+#define SEEK(X)
|
|
+#define TRACE1(X)
|
|
+#define TRACE2(X,Y)
|
|
+#define TRACE3(X,Y,Z)
|
|
+#define TRACE4(X,Y,Z,A)
|
|
+#define TRACE5(X,Y,Z,A,B)
|
|
+#endif
|
|
+
|
|
+
|
|
+#if OS_UNIX
|
|
+/*
|
|
+** Here is the dirt on POSIX advisory locks: ANSI STD 1003.1 (1996)
|
|
+** section 6.5.2.2 lines 483 through 490 specify that when a process
|
|
+** sets or clears a lock, that operation overrides any prior locks set
|
|
+** by the same process. It does not explicitly say so, but this implies
|
|
+** that it overrides locks set by the same process using a different
|
|
+** file descriptor. Consider this test case:
|
|
+**
|
|
+** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
|
|
+** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
|
|
+**
|
|
+** Suppose ./file1 and ./file2 are really the same file (because
|
|
+** one is a hard or symbolic link to the other) then if you set
|
|
+** an exclusive lock on fd1, then try to get an exclusive lock
|
|
+** on fd2, it works. I would have expected the second lock to
|
|
+** fail since there was already a lock on the file due to fd1.
|
|
+** But not so. Since both locks came from the same process, the
|
|
+** second overrides the first, even though they were on different
|
|
+** file descriptors opened on different file names.
|
|
+**
|
|
+** Bummer. If you ask me, this is broken. Badly broken. It means
|
|
+** that we cannot use POSIX locks to synchronize file access among
|
|
+** competing threads of the same process. POSIX locks will work fine
|
|
+** to synchronize access for threads in separate processes, but not
|
|
+** threads within the same process.
|
|
+**
|
|
+** To work around the problem, SQLite has to manage file locks internally
|
|
+** on its own. Whenever a new database is opened, we have to find the
|
|
+** specific inode of the database file (the inode is determined by the
|
|
+** st_dev and st_ino fields of the stat structure that fstat() fills in)
|
|
+** and check for locks already existing on that inode. When locks are
|
|
+** created or removed, we have to look at our own internal record of the
|
|
+** locks to see if another thread has previously set a lock on that same
|
|
+** inode.
|
|
+**
|
|
+** The OsFile structure for POSIX is no longer just an integer file
|
|
+** descriptor. It is now a structure that holds the integer file
|
|
+** descriptor and a pointer to a structure that describes the internal
|
|
+** locks on the corresponding inode. There is one locking structure
|
|
+** per inode, so if the same inode is opened twice, both OsFile structures
|
|
+** point to the same locking structure. The locking structure keeps
|
|
+** a reference count (so we will know when to delete it) and a "cnt"
|
|
+** field that tells us its internal lock status. cnt==0 means the
|
|
+** file is unlocked. cnt==-1 means the file has an exclusive lock.
|
|
+** cnt>0 means there are cnt shared locks on the file.
|
|
+**
|
|
+** Any attempt to lock or unlock a file first checks the locking
|
|
+** structure. The fcntl() system call is only invoked to set a
|
|
+** POSIX lock if the internal lock structure transitions between
|
|
+** a locked and an unlocked state.
|
|
+**
|
|
+** 2004-Jan-11:
|
|
+** More recent discoveries about POSIX advisory locks. (The more
|
|
+** I discover, the more I realize the a POSIX advisory locks are
|
|
+** an abomination.)
|
|
+**
|
|
+** If you close a file descriptor that points to a file that has locks,
|
|
+** all locks on that file that are owned by the current process are
|
|
+** released. To work around this problem, each OsFile structure contains
|
|
+** a pointer to an openCnt structure. There is one openCnt structure
|
|
+** per open inode, which means that multiple OsFiles can point to a single
|
|
+** openCnt. When an attempt is made to close an OsFile, if there are
|
|
+** other OsFiles open on the same inode that are holding locks, the call
|
|
+** to close() the file descriptor is deferred until all of the locks clear.
|
|
+** The openCnt structure keeps a list of file descriptors that need to
|
|
+** be closed and that list is walked (and cleared) when the last lock
|
|
+** clears.
|
|
+**
|
|
+** First, under Linux threads, because each thread has a separate
|
|
+** process ID, lock operations in one thread do not override locks
|
|
+** to the same file in other threads. Linux threads behave like
|
|
+** separate processes in this respect. But, if you close a file
|
|
+** descriptor in linux threads, all locks are cleared, even locks
|
|
+** on other threads and even though the other threads have different
|
|
+** process IDs. Linux threads is inconsistent in this respect.
|
|
+** (I'm beginning to think that linux threads is an abomination too.)
|
|
+** The consequence of this all is that the hash table for the lockInfo
|
|
+** structure has to include the process id as part of its key because
|
|
+** locks in different threads are treated as distinct. But the
|
|
+** openCnt structure should not include the process id in its
|
|
+** key because close() clears lock on all threads, not just the current
|
|
+** thread. Were it not for this goofiness in linux threads, we could
|
|
+** combine the lockInfo and openCnt structures into a single structure.
|
|
+*/
|
|
+
|
|
+/*
|
|
+** An instance of the following structure serves as the key used
|
|
+** to locate a particular lockInfo structure given its inode. Note
|
|
+** that we have to include the process ID as part of the key. On some
|
|
+** threading implementations (ex: linux), each thread has a separate
|
|
+** process ID.
|
|
+*/
|
|
+struct lockKey {
|
|
+ dev_t dev; /* Device number */
|
|
+ ino_t ino; /* Inode number */
|
|
+ pid_t pid; /* Process ID */
|
|
+};
|
|
+
|
|
+/*
|
|
+** An instance of the following structure is allocated for each open
|
|
+** inode on each thread with a different process ID. (Threads have
|
|
+** different process IDs on linux, but not on most other unixes.)
|
|
+**
|
|
+** A single inode can have multiple file descriptors, so each OsFile
|
|
+** structure contains a pointer to an instance of this object and this
|
|
+** object keeps a count of the number of OsFiles pointing to it.
|
|
+*/
|
|
+struct lockInfo {
|
|
+ struct lockKey key; /* The lookup key */
|
|
+ int cnt; /* 0: unlocked. -1: write lock. 1...: read lock. */
|
|
+ int nRef; /* Number of pointers to this structure */
|
|
+};
|
|
+
|
|
+/*
|
|
+** An instance of the following structure serves as the key used
|
|
+** to locate a particular openCnt structure given its inode. This
|
|
+** is the same as the lockKey except that the process ID is omitted.
|
|
+*/
|
|
+struct openKey {
|
|
+ dev_t dev; /* Device number */
|
|
+ ino_t ino; /* Inode number */
|
|
+};
|
|
+
|
|
+/*
|
|
+** An instance of the following structure is allocated for each open
|
|
+** inode. This structure keeps track of the number of locks on that
|
|
+** inode. If a close is attempted against an inode that is holding
|
|
+** locks, the close is deferred until all locks clear by adding the
|
|
+** file descriptor to be closed to the pending list.
|
|
+*/
|
|
+struct openCnt {
|
|
+ struct openKey key; /* The lookup key */
|
|
+ int nRef; /* Number of pointers to this structure */
|
|
+ int nLock; /* Number of outstanding locks */
|
|
+ int nPending; /* Number of pending close() operations */
|
|
+ int *aPending; /* Malloced space holding fd's awaiting a close() */
|
|
+};
|
|
+
|
|
+/*
|
|
+** These hash table maps inodes and process IDs into lockInfo and openCnt
|
|
+** structures. Access to these hash tables must be protected by a mutex.
|
|
+*/
|
|
+static Hash lockHash = { SQLITE_HASH_BINARY, 0, 0, 0, 0, 0 };
|
|
+static Hash openHash = { SQLITE_HASH_BINARY, 0, 0, 0, 0, 0 };
|
|
+
|
|
+/*
|
|
+** Release a lockInfo structure previously allocated by findLockInfo().
|
|
+*/
|
|
+static void releaseLockInfo(struct lockInfo *pLock){
|
|
+ pLock->nRef--;
|
|
+ if( pLock->nRef==0 ){
|
|
+ sqliteHashInsert(&lockHash, &pLock->key, sizeof(pLock->key), 0);
|
|
+ sqliteFree(pLock);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Release a openCnt structure previously allocated by findLockInfo().
|
|
+*/
|
|
+static void releaseOpenCnt(struct openCnt *pOpen){
|
|
+ pOpen->nRef--;
|
|
+ if( pOpen->nRef==0 ){
|
|
+ sqliteHashInsert(&openHash, &pOpen->key, sizeof(pOpen->key), 0);
|
|
+ sqliteFree(pOpen->aPending);
|
|
+ sqliteFree(pOpen);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Given a file descriptor, locate lockInfo and openCnt structures that
|
|
+** describes that file descriptor. Create a new ones if necessary. The
|
|
+** return values might be unset if an error occurs.
|
|
+**
|
|
+** Return the number of errors.
|
|
+*/
|
|
+int findLockInfo(
|
|
+ int fd, /* The file descriptor used in the key */
|
|
+ struct lockInfo **ppLock, /* Return the lockInfo structure here */
|
|
+ struct openCnt **ppOpen /* Return the openCnt structure here */
|
|
+){
|
|
+ int rc;
|
|
+ struct lockKey key1;
|
|
+ struct openKey key2;
|
|
+ struct stat statbuf;
|
|
+ struct lockInfo *pLock;
|
|
+ struct openCnt *pOpen;
|
|
+ rc = fstat(fd, &statbuf);
|
|
+ if( rc!=0 ) return 1;
|
|
+ memset(&key1, 0, sizeof(key1));
|
|
+ key1.dev = statbuf.st_dev;
|
|
+ key1.ino = statbuf.st_ino;
|
|
+ key1.pid = getpid();
|
|
+ memset(&key2, 0, sizeof(key2));
|
|
+ key2.dev = statbuf.st_dev;
|
|
+ key2.ino = statbuf.st_ino;
|
|
+ pLock = (struct lockInfo*)sqliteHashFind(&lockHash, &key1, sizeof(key1));
|
|
+ if( pLock==0 ){
|
|
+ struct lockInfo *pOld;
|
|
+ pLock = sqliteMallocRaw( sizeof(*pLock) );
|
|
+ if( pLock==0 ) return 1;
|
|
+ pLock->key = key1;
|
|
+ pLock->nRef = 1;
|
|
+ pLock->cnt = 0;
|
|
+ pOld = sqliteHashInsert(&lockHash, &pLock->key, sizeof(key1), pLock);
|
|
+ if( pOld!=0 ){
|
|
+ assert( pOld==pLock );
|
|
+ sqliteFree(pLock);
|
|
+ return 1;
|
|
+ }
|
|
+ }else{
|
|
+ pLock->nRef++;
|
|
+ }
|
|
+ *ppLock = pLock;
|
|
+ pOpen = (struct openCnt*)sqliteHashFind(&openHash, &key2, sizeof(key2));
|
|
+ if( pOpen==0 ){
|
|
+ struct openCnt *pOld;
|
|
+ pOpen = sqliteMallocRaw( sizeof(*pOpen) );
|
|
+ if( pOpen==0 ){
|
|
+ releaseLockInfo(pLock);
|
|
+ return 1;
|
|
+ }
|
|
+ pOpen->key = key2;
|
|
+ pOpen->nRef = 1;
|
|
+ pOpen->nLock = 0;
|
|
+ pOpen->nPending = 0;
|
|
+ pOpen->aPending = 0;
|
|
+ pOld = sqliteHashInsert(&openHash, &pOpen->key, sizeof(key2), pOpen);
|
|
+ if( pOld!=0 ){
|
|
+ assert( pOld==pOpen );
|
|
+ sqliteFree(pOpen);
|
|
+ releaseLockInfo(pLock);
|
|
+ return 1;
|
|
+ }
|
|
+ }else{
|
|
+ pOpen->nRef++;
|
|
+ }
|
|
+ *ppOpen = pOpen;
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+#endif /** POSIX advisory lock work-around **/
|
|
+
|
|
+/*
|
|
+** If we compile with the SQLITE_TEST macro set, then the following block
|
|
+** of code will give us the ability to simulate a disk I/O error. This
|
|
+** is used for testing the I/O recovery logic.
|
|
+*/
|
|
+#ifdef SQLITE_TEST
|
|
+int sqlite_io_error_pending = 0;
|
|
+#define SimulateIOError(A) \
|
|
+ if( sqlite_io_error_pending ) \
|
|
+ if( sqlite_io_error_pending-- == 1 ){ local_ioerr(); return A; }
|
|
+static void local_ioerr(){
|
|
+ sqlite_io_error_pending = 0; /* Really just a place to set a breakpoint */
|
|
+}
|
|
+#else
|
|
+#define SimulateIOError(A)
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** When testing, keep a count of the number of open files.
|
|
+*/
|
|
+#ifdef SQLITE_TEST
|
|
+int sqlite_open_file_count = 0;
|
|
+#define OpenCounter(X) sqlite_open_file_count+=(X)
|
|
+#else
|
|
+#define OpenCounter(X)
|
|
+#endif
|
|
+
|
|
+
|
|
+/*
|
|
+** Delete the named file
|
|
+*/
|
|
+int sqliteOsDelete(const char *zFilename){
|
|
+#if OS_UNIX
|
|
+ unlink(zFilename);
|
|
+#endif
|
|
+#if OS_WIN
|
|
+ DeleteFile(zFilename);
|
|
+#endif
|
|
+#if OS_MAC
|
|
+ unlink(zFilename);
|
|
+#endif
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return TRUE if the named file exists.
|
|
+*/
|
|
+int sqliteOsFileExists(const char *zFilename){
|
|
+#if OS_UNIX
|
|
+ return access(zFilename, 0)==0;
|
|
+#endif
|
|
+#if OS_WIN
|
|
+ return GetFileAttributes(zFilename) != 0xffffffff;
|
|
+#endif
|
|
+#if OS_MAC
|
|
+ return access(zFilename, 0)==0;
|
|
+#endif
|
|
+}
|
|
+
|
|
+
|
|
+#if 0 /* NOT USED */
|
|
+/*
|
|
+** Change the name of an existing file.
|
|
+*/
|
|
+int sqliteOsFileRename(const char *zOldName, const char *zNewName){
|
|
+#if OS_UNIX
|
|
+ if( link(zOldName, zNewName) ){
|
|
+ return SQLITE_ERROR;
|
|
+ }
|
|
+ unlink(zOldName);
|
|
+ return SQLITE_OK;
|
|
+#endif
|
|
+#if OS_WIN
|
|
+ if( !MoveFile(zOldName, zNewName) ){
|
|
+ return SQLITE_ERROR;
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+#endif
|
|
+#if OS_MAC
|
|
+ /**** FIX ME ***/
|
|
+ return SQLITE_ERROR;
|
|
+#endif
|
|
+}
|
|
+#endif /* NOT USED */
|
|
+
|
|
+/*
|
|
+** Attempt to open a file for both reading and writing. If that
|
|
+** fails, try opening it read-only. If the file does not exist,
|
|
+** try to create it.
|
|
+**
|
|
+** On success, a handle for the open file is written to *id
|
|
+** and *pReadonly is set to 0 if the file was opened for reading and
|
|
+** writing or 1 if the file was opened read-only. The function returns
|
|
+** SQLITE_OK.
|
|
+**
|
|
+** On failure, the function returns SQLITE_CANTOPEN and leaves
|
|
+** *id and *pReadonly unchanged.
|
|
+*/
|
|
+int sqliteOsOpenReadWrite(
|
|
+ const char *zFilename,
|
|
+ OsFile *id,
|
|
+ int *pReadonly
|
|
+){
|
|
+#if OS_UNIX
|
|
+ int rc;
|
|
+ id->dirfd = -1;
|
|
+ id->fd = open(zFilename, O_RDWR|O_CREAT|O_LARGEFILE|O_BINARY, 0644);
|
|
+ if( id->fd<0 ){
|
|
+#ifdef EISDIR
|
|
+ if( errno==EISDIR ){
|
|
+ return SQLITE_CANTOPEN;
|
|
+ }
|
|
+#endif
|
|
+ id->fd = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
|
|
+ if( id->fd<0 ){
|
|
+ return SQLITE_CANTOPEN;
|
|
+ }
|
|
+ *pReadonly = 1;
|
|
+ }else{
|
|
+ *pReadonly = 0;
|
|
+ }
|
|
+ sqliteOsEnterMutex();
|
|
+ rc = findLockInfo(id->fd, &id->pLock, &id->pOpen);
|
|
+ sqliteOsLeaveMutex();
|
|
+ if( rc ){
|
|
+ close(id->fd);
|
|
+ return SQLITE_NOMEM;
|
|
+ }
|
|
+ id->locked = 0;
|
|
+ TRACE3("OPEN %-3d %s\n", id->fd, zFilename);
|
|
+ OpenCounter(+1);
|
|
+ return SQLITE_OK;
|
|
+#endif
|
|
+#if OS_WIN
|
|
+ HANDLE h = CreateFile(zFilename,
|
|
+ GENERIC_READ | GENERIC_WRITE,
|
|
+ FILE_SHARE_READ | FILE_SHARE_WRITE,
|
|
+ NULL,
|
|
+ OPEN_ALWAYS,
|
|
+ FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
|
|
+ NULL
|
|
+ );
|
|
+ if( h==INVALID_HANDLE_VALUE ){
|
|
+ h = CreateFile(zFilename,
|
|
+ GENERIC_READ,
|
|
+ FILE_SHARE_READ,
|
|
+ NULL,
|
|
+ OPEN_ALWAYS,
|
|
+ FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
|
|
+ NULL
|
|
+ );
|
|
+ if( h==INVALID_HANDLE_VALUE ){
|
|
+ return SQLITE_CANTOPEN;
|
|
+ }
|
|
+ *pReadonly = 1;
|
|
+ }else{
|
|
+ *pReadonly = 0;
|
|
+ }
|
|
+ id->h = h;
|
|
+ id->locked = 0;
|
|
+ OpenCounter(+1);
|
|
+ return SQLITE_OK;
|
|
+#endif
|
|
+#if OS_MAC
|
|
+ FSSpec fsSpec;
|
|
+# ifdef _LARGE_FILE
|
|
+ HFSUniStr255 dfName;
|
|
+ FSRef fsRef;
|
|
+ if( __path2fss(zFilename, &fsSpec) != noErr ){
|
|
+ if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr )
|
|
+ return SQLITE_CANTOPEN;
|
|
+ }
|
|
+ if( FSpMakeFSRef(&fsSpec, &fsRef) != noErr )
|
|
+ return SQLITE_CANTOPEN;
|
|
+ FSGetDataForkName(&dfName);
|
|
+ if( FSOpenFork(&fsRef, dfName.length, dfName.unicode,
|
|
+ fsRdWrShPerm, &(id->refNum)) != noErr ){
|
|
+ if( FSOpenFork(&fsRef, dfName.length, dfName.unicode,
|
|
+ fsRdWrPerm, &(id->refNum)) != noErr ){
|
|
+ if (FSOpenFork(&fsRef, dfName.length, dfName.unicode,
|
|
+ fsRdPerm, &(id->refNum)) != noErr )
|
|
+ return SQLITE_CANTOPEN;
|
|
+ else
|
|
+ *pReadonly = 1;
|
|
+ } else
|
|
+ *pReadonly = 0;
|
|
+ } else
|
|
+ *pReadonly = 0;
|
|
+# else
|
|
+ __path2fss(zFilename, &fsSpec);
|
|
+ if( !sqliteOsFileExists(zFilename) ){
|
|
+ if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr )
|
|
+ return SQLITE_CANTOPEN;
|
|
+ }
|
|
+ if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrShPerm, &(id->refNum)) != noErr ){
|
|
+ if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrPerm, &(id->refNum)) != noErr ){
|
|
+ if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdPerm, &(id->refNum)) != noErr )
|
|
+ return SQLITE_CANTOPEN;
|
|
+ else
|
|
+ *pReadonly = 1;
|
|
+ } else
|
|
+ *pReadonly = 0;
|
|
+ } else
|
|
+ *pReadonly = 0;
|
|
+# endif
|
|
+ if( HOpenRF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrShPerm, &(id->refNumRF)) != noErr){
|
|
+ id->refNumRF = -1;
|
|
+ }
|
|
+ id->locked = 0;
|
|
+ id->delOnClose = 0;
|
|
+ OpenCounter(+1);
|
|
+ return SQLITE_OK;
|
|
+#endif
|
|
+}
|
|
+
|
|
+
|
|
+/*
|
|
+** Attempt to open a new file for exclusive access by this process.
|
|
+** The file will be opened for both reading and writing. To avoid
|
|
+** a potential security problem, we do not allow the file to have
|
|
+** previously existed. Nor do we allow the file to be a symbolic
|
|
+** link.
|
|
+**
|
|
+** If delFlag is true, then make arrangements to automatically delete
|
|
+** the file when it is closed.
|
|
+**
|
|
+** On success, write the file handle into *id and return SQLITE_OK.
|
|
+**
|
|
+** On failure, return SQLITE_CANTOPEN.
|
|
+*/
|
|
+int sqliteOsOpenExclusive(const char *zFilename, OsFile *id, int delFlag){
|
|
+#if OS_UNIX
|
|
+ int rc;
|
|
+ if( access(zFilename, 0)==0 ){
|
|
+ return SQLITE_CANTOPEN;
|
|
+ }
|
|
+ id->dirfd = -1;
|
|
+ id->fd = open(zFilename,
|
|
+ O_RDWR|O_CREAT|O_EXCL|O_NOFOLLOW|O_LARGEFILE|O_BINARY, 0600);
|
|
+ if( id->fd<0 ){
|
|
+ return SQLITE_CANTOPEN;
|
|
+ }
|
|
+ sqliteOsEnterMutex();
|
|
+ rc = findLockInfo(id->fd, &id->pLock, &id->pOpen);
|
|
+ sqliteOsLeaveMutex();
|
|
+ if( rc ){
|
|
+ close(id->fd);
|
|
+ unlink(zFilename);
|
|
+ return SQLITE_NOMEM;
|
|
+ }
|
|
+ id->locked = 0;
|
|
+ if( delFlag ){
|
|
+ unlink(zFilename);
|
|
+ }
|
|
+ TRACE3("OPEN-EX %-3d %s\n", id->fd, zFilename);
|
|
+ OpenCounter(+1);
|
|
+ return SQLITE_OK;
|
|
+#endif
|
|
+#if OS_WIN
|
|
+ HANDLE h;
|
|
+ int fileflags;
|
|
+ if( delFlag ){
|
|
+ fileflags = FILE_ATTRIBUTE_TEMPORARY | FILE_FLAG_RANDOM_ACCESS
|
|
+ | FILE_FLAG_DELETE_ON_CLOSE;
|
|
+ }else{
|
|
+ fileflags = FILE_FLAG_RANDOM_ACCESS;
|
|
+ }
|
|
+ h = CreateFile(zFilename,
|
|
+ GENERIC_READ | GENERIC_WRITE,
|
|
+ 0,
|
|
+ NULL,
|
|
+ CREATE_ALWAYS,
|
|
+ fileflags,
|
|
+ NULL
|
|
+ );
|
|
+ if( h==INVALID_HANDLE_VALUE ){
|
|
+ return SQLITE_CANTOPEN;
|
|
+ }
|
|
+ id->h = h;
|
|
+ id->locked = 0;
|
|
+ OpenCounter(+1);
|
|
+ return SQLITE_OK;
|
|
+#endif
|
|
+#if OS_MAC
|
|
+ FSSpec fsSpec;
|
|
+# ifdef _LARGE_FILE
|
|
+ HFSUniStr255 dfName;
|
|
+ FSRef fsRef;
|
|
+ __path2fss(zFilename, &fsSpec);
|
|
+ if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr )
|
|
+ return SQLITE_CANTOPEN;
|
|
+ if( FSpMakeFSRef(&fsSpec, &fsRef) != noErr )
|
|
+ return SQLITE_CANTOPEN;
|
|
+ FSGetDataForkName(&dfName);
|
|
+ if( FSOpenFork(&fsRef, dfName.length, dfName.unicode,
|
|
+ fsRdWrPerm, &(id->refNum)) != noErr )
|
|
+ return SQLITE_CANTOPEN;
|
|
+# else
|
|
+ __path2fss(zFilename, &fsSpec);
|
|
+ if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr )
|
|
+ return SQLITE_CANTOPEN;
|
|
+ if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrPerm, &(id->refNum)) != noErr )
|
|
+ return SQLITE_CANTOPEN;
|
|
+# endif
|
|
+ id->refNumRF = -1;
|
|
+ id->locked = 0;
|
|
+ id->delOnClose = delFlag;
|
|
+ if (delFlag)
|
|
+ id->pathToDel = sqliteOsFullPathname(zFilename);
|
|
+ OpenCounter(+1);
|
|
+ return SQLITE_OK;
|
|
+#endif
|
|
+}
|
|
+
|
|
+/*
|
|
+** Attempt to open a new file for read-only access.
|
|
+**
|
|
+** On success, write the file handle into *id and return SQLITE_OK.
|
|
+**
|
|
+** On failure, return SQLITE_CANTOPEN.
|
|
+*/
|
|
+int sqliteOsOpenReadOnly(const char *zFilename, OsFile *id){
|
|
+#if OS_UNIX
|
|
+ int rc;
|
|
+ id->dirfd = -1;
|
|
+ id->fd = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
|
|
+ if( id->fd<0 ){
|
|
+ return SQLITE_CANTOPEN;
|
|
+ }
|
|
+ sqliteOsEnterMutex();
|
|
+ rc = findLockInfo(id->fd, &id->pLock, &id->pOpen);
|
|
+ sqliteOsLeaveMutex();
|
|
+ if( rc ){
|
|
+ close(id->fd);
|
|
+ return SQLITE_NOMEM;
|
|
+ }
|
|
+ id->locked = 0;
|
|
+ TRACE3("OPEN-RO %-3d %s\n", id->fd, zFilename);
|
|
+ OpenCounter(+1);
|
|
+ return SQLITE_OK;
|
|
+#endif
|
|
+#if OS_WIN
|
|
+ HANDLE h = CreateFile(zFilename,
|
|
+ GENERIC_READ,
|
|
+ 0,
|
|
+ NULL,
|
|
+ OPEN_EXISTING,
|
|
+ FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
|
|
+ NULL
|
|
+ );
|
|
+ if( h==INVALID_HANDLE_VALUE ){
|
|
+ return SQLITE_CANTOPEN;
|
|
+ }
|
|
+ id->h = h;
|
|
+ id->locked = 0;
|
|
+ OpenCounter(+1);
|
|
+ return SQLITE_OK;
|
|
+#endif
|
|
+#if OS_MAC
|
|
+ FSSpec fsSpec;
|
|
+# ifdef _LARGE_FILE
|
|
+ HFSUniStr255 dfName;
|
|
+ FSRef fsRef;
|
|
+ if( __path2fss(zFilename, &fsSpec) != noErr )
|
|
+ return SQLITE_CANTOPEN;
|
|
+ if( FSpMakeFSRef(&fsSpec, &fsRef) != noErr )
|
|
+ return SQLITE_CANTOPEN;
|
|
+ FSGetDataForkName(&dfName);
|
|
+ if( FSOpenFork(&fsRef, dfName.length, dfName.unicode,
|
|
+ fsRdPerm, &(id->refNum)) != noErr )
|
|
+ return SQLITE_CANTOPEN;
|
|
+# else
|
|
+ __path2fss(zFilename, &fsSpec);
|
|
+ if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdPerm, &(id->refNum)) != noErr )
|
|
+ return SQLITE_CANTOPEN;
|
|
+# endif
|
|
+ if( HOpenRF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrShPerm, &(id->refNumRF)) != noErr){
|
|
+ id->refNumRF = -1;
|
|
+ }
|
|
+ id->locked = 0;
|
|
+ id->delOnClose = 0;
|
|
+ OpenCounter(+1);
|
|
+ return SQLITE_OK;
|
|
+#endif
|
|
+}
|
|
+
|
|
+/*
|
|
+** Attempt to open a file descriptor for the directory that contains a
|
|
+** file. This file descriptor can be used to fsync() the directory
|
|
+** in order to make sure the creation of a new file is actually written
|
|
+** to disk.
|
|
+**
|
|
+** This routine is only meaningful for Unix. It is a no-op under
|
|
+** windows since windows does not support hard links.
|
|
+**
|
|
+** On success, a handle for a previously open file is at *id is
|
|
+** updated with the new directory file descriptor and SQLITE_OK is
|
|
+** returned.
|
|
+**
|
|
+** On failure, the function returns SQLITE_CANTOPEN and leaves
|
|
+** *id unchanged.
|
|
+*/
|
|
+int sqliteOsOpenDirectory(
|
|
+ const char *zDirname,
|
|
+ OsFile *id
|
|
+){
|
|
+#if OS_UNIX
|
|
+ if( id->fd<0 ){
|
|
+ /* Do not open the directory if the corresponding file is not already
|
|
+ ** open. */
|
|
+ return SQLITE_CANTOPEN;
|
|
+ }
|
|
+ assert( id->dirfd<0 );
|
|
+ id->dirfd = open(zDirname, O_RDONLY|O_BINARY, 0644);
|
|
+ if( id->dirfd<0 ){
|
|
+ return SQLITE_CANTOPEN;
|
|
+ }
|
|
+ TRACE3("OPENDIR %-3d %s\n", id->dirfd, zDirname);
|
|
+#endif
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** If the following global variable points to a string which is the
|
|
+** name of a directory, then that directory will be used to store
|
|
+** temporary files.
|
|
+*/
|
|
+const char *sqlite_temp_directory = 0;
|
|
+
|
|
+/*
|
|
+** Create a temporary file name in zBuf. zBuf must be big enough to
|
|
+** hold at least SQLITE_TEMPNAME_SIZE characters.
|
|
+*/
|
|
+int sqliteOsTempFileName(char *zBuf){
|
|
+#if OS_UNIX
|
|
+ static const char *azDirs[] = {
|
|
+ 0,
|
|
+ "/var/tmp",
|
|
+ "/usr/tmp",
|
|
+ "/tmp",
|
|
+ ".",
|
|
+ };
|
|
+ static unsigned char zChars[] =
|
|
+ "abcdefghijklmnopqrstuvwxyz"
|
|
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
|
+ "0123456789";
|
|
+ int i, j;
|
|
+ struct stat buf;
|
|
+ const char *zDir = ".";
|
|
+ azDirs[0] = sqlite_temp_directory;
|
|
+ for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){
|
|
+ if( azDirs[i]==0 ) continue;
|
|
+ if( stat(azDirs[i], &buf) ) continue;
|
|
+ if( !S_ISDIR(buf.st_mode) ) continue;
|
|
+ if( access(azDirs[i], 07) ) continue;
|
|
+ zDir = azDirs[i];
|
|
+ break;
|
|
+ }
|
|
+ do{
|
|
+ sprintf(zBuf, "%s/"TEMP_FILE_PREFIX, zDir);
|
|
+ j = strlen(zBuf);
|
|
+ sqliteRandomness(15, &zBuf[j]);
|
|
+ for(i=0; i<15; i++, j++){
|
|
+ zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
|
|
+ }
|
|
+ zBuf[j] = 0;
|
|
+ }while( access(zBuf,0)==0 );
|
|
+#endif
|
|
+#if OS_WIN
|
|
+ static char zChars[] =
|
|
+ "abcdefghijklmnopqrstuvwxyz"
|
|
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
|
+ "0123456789";
|
|
+ int i, j;
|
|
+ const char *zDir;
|
|
+ char zTempPath[SQLITE_TEMPNAME_SIZE];
|
|
+ if( sqlite_temp_directory==0 ){
|
|
+ GetTempPath(SQLITE_TEMPNAME_SIZE-30, zTempPath);
|
|
+ for(i=strlen(zTempPath); i>0 && zTempPath[i-1]=='\\'; i--){}
|
|
+ zTempPath[i] = 0;
|
|
+ zDir = zTempPath;
|
|
+ }else{
|
|
+ zDir = sqlite_temp_directory;
|
|
+ }
|
|
+ for(;;){
|
|
+ sprintf(zBuf, "%s\\"TEMP_FILE_PREFIX, zDir);
|
|
+ j = strlen(zBuf);
|
|
+ sqliteRandomness(15, &zBuf[j]);
|
|
+ for(i=0; i<15; i++, j++){
|
|
+ zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
|
|
+ }
|
|
+ zBuf[j] = 0;
|
|
+ if( !sqliteOsFileExists(zBuf) ) break;
|
|
+ }
|
|
+#endif
|
|
+#if OS_MAC
|
|
+ static char zChars[] =
|
|
+ "abcdefghijklmnopqrstuvwxyz"
|
|
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
|
+ "0123456789";
|
|
+ int i, j;
|
|
+ char *zDir;
|
|
+ char zTempPath[SQLITE_TEMPNAME_SIZE];
|
|
+ char zdirName[32];
|
|
+ CInfoPBRec infoRec;
|
|
+ Str31 dirName;
|
|
+ memset(&infoRec, 0, sizeof(infoRec));
|
|
+ memset(zTempPath, 0, SQLITE_TEMPNAME_SIZE);
|
|
+ if( sqlite_temp_directory!=0 ){
|
|
+ zDir = sqlite_temp_directory;
|
|
+ }else if( FindFolder(kOnSystemDisk, kTemporaryFolderType, kCreateFolder,
|
|
+ &(infoRec.dirInfo.ioVRefNum), &(infoRec.dirInfo.ioDrParID)) == noErr ){
|
|
+ infoRec.dirInfo.ioNamePtr = dirName;
|
|
+ do{
|
|
+ infoRec.dirInfo.ioFDirIndex = -1;
|
|
+ infoRec.dirInfo.ioDrDirID = infoRec.dirInfo.ioDrParID;
|
|
+ if( PBGetCatInfoSync(&infoRec) == noErr ){
|
|
+ CopyPascalStringToC(dirName, zdirName);
|
|
+ i = strlen(zdirName);
|
|
+ memmove(&(zTempPath[i+1]), zTempPath, strlen(zTempPath));
|
|
+ strcpy(zTempPath, zdirName);
|
|
+ zTempPath[i] = ':';
|
|
+ }else{
|
|
+ *zTempPath = 0;
|
|
+ break;
|
|
+ }
|
|
+ } while( infoRec.dirInfo.ioDrDirID != fsRtDirID );
|
|
+ zDir = zTempPath;
|
|
+ }
|
|
+ if( zDir[0]==0 ){
|
|
+ getcwd(zTempPath, SQLITE_TEMPNAME_SIZE-24);
|
|
+ zDir = zTempPath;
|
|
+ }
|
|
+ for(;;){
|
|
+ sprintf(zBuf, "%s"TEMP_FILE_PREFIX, zDir);
|
|
+ j = strlen(zBuf);
|
|
+ sqliteRandomness(15, &zBuf[j]);
|
|
+ for(i=0; i<15; i++, j++){
|
|
+ zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
|
|
+ }
|
|
+ zBuf[j] = 0;
|
|
+ if( !sqliteOsFileExists(zBuf) ) break;
|
|
+ }
|
|
+#endif
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Close a file.
|
|
+*/
|
|
+int sqliteOsClose(OsFile *id){
|
|
+#if OS_UNIX
|
|
+ sqliteOsUnlock(id);
|
|
+ if( id->dirfd>=0 ) close(id->dirfd);
|
|
+ id->dirfd = -1;
|
|
+ sqliteOsEnterMutex();
|
|
+ if( id->pOpen->nLock ){
|
|
+ /* If there are outstanding locks, do not actually close the file just
|
|
+ ** yet because that would clear those locks. Instead, add the file
|
|
+ ** descriptor to pOpen->aPending. It will be automatically closed when
|
|
+ ** the last lock is cleared.
|
|
+ */
|
|
+ int *aNew;
|
|
+ struct openCnt *pOpen = id->pOpen;
|
|
+ pOpen->nPending++;
|
|
+ aNew = sqliteRealloc( pOpen->aPending, pOpen->nPending*sizeof(int) );
|
|
+ if( aNew==0 ){
|
|
+ /* If a malloc fails, just leak the file descriptor */
|
|
+ }else{
|
|
+ pOpen->aPending = aNew;
|
|
+ pOpen->aPending[pOpen->nPending-1] = id->fd;
|
|
+ }
|
|
+ }else{
|
|
+ /* There are no outstanding locks so we can close the file immediately */
|
|
+ close(id->fd);
|
|
+ }
|
|
+ releaseLockInfo(id->pLock);
|
|
+ releaseOpenCnt(id->pOpen);
|
|
+ sqliteOsLeaveMutex();
|
|
+ TRACE2("CLOSE %-3d\n", id->fd);
|
|
+ OpenCounter(-1);
|
|
+ return SQLITE_OK;
|
|
+#endif
|
|
+#if OS_WIN
|
|
+ CloseHandle(id->h);
|
|
+ OpenCounter(-1);
|
|
+ return SQLITE_OK;
|
|
+#endif
|
|
+#if OS_MAC
|
|
+ if( id->refNumRF!=-1 )
|
|
+ FSClose(id->refNumRF);
|
|
+# ifdef _LARGE_FILE
|
|
+ FSCloseFork(id->refNum);
|
|
+# else
|
|
+ FSClose(id->refNum);
|
|
+# endif
|
|
+ if( id->delOnClose ){
|
|
+ unlink(id->pathToDel);
|
|
+ sqliteFree(id->pathToDel);
|
|
+ }
|
|
+ OpenCounter(-1);
|
|
+ return SQLITE_OK;
|
|
+#endif
|
|
+}
|
|
+
|
|
+/*
|
|
+** Read data from a file into a buffer. Return SQLITE_OK if all
|
|
+** bytes were read successfully and SQLITE_IOERR if anything goes
|
|
+** wrong.
|
|
+*/
|
|
+int sqliteOsRead(OsFile *id, void *pBuf, int amt){
|
|
+#if OS_UNIX
|
|
+ int got;
|
|
+ SimulateIOError(SQLITE_IOERR);
|
|
+ TIMER_START;
|
|
+ got = read(id->fd, pBuf, amt);
|
|
+ TIMER_END;
|
|
+ TRACE4("READ %-3d %7d %d\n", id->fd, last_page, elapse);
|
|
+ SEEK(0);
|
|
+ /* if( got<0 ) got = 0; */
|
|
+ if( got==amt ){
|
|
+ return SQLITE_OK;
|
|
+ }else{
|
|
+ return SQLITE_IOERR;
|
|
+ }
|
|
+#endif
|
|
+#if OS_WIN
|
|
+ DWORD got;
|
|
+ SimulateIOError(SQLITE_IOERR);
|
|
+ TRACE2("READ %d\n", last_page);
|
|
+ if( !ReadFile(id->h, pBuf, amt, &got, 0) ){
|
|
+ got = 0;
|
|
+ }
|
|
+ if( got==(DWORD)amt ){
|
|
+ return SQLITE_OK;
|
|
+ }else{
|
|
+ return SQLITE_IOERR;
|
|
+ }
|
|
+#endif
|
|
+#if OS_MAC
|
|
+ int got;
|
|
+ SimulateIOError(SQLITE_IOERR);
|
|
+ TRACE2("READ %d\n", last_page);
|
|
+# ifdef _LARGE_FILE
|
|
+ FSReadFork(id->refNum, fsAtMark, 0, (ByteCount)amt, pBuf, (ByteCount*)&got);
|
|
+# else
|
|
+ got = amt;
|
|
+ FSRead(id->refNum, &got, pBuf);
|
|
+# endif
|
|
+ if( got==amt ){
|
|
+ return SQLITE_OK;
|
|
+ }else{
|
|
+ return SQLITE_IOERR;
|
|
+ }
|
|
+#endif
|
|
+}
|
|
+
|
|
+/*
|
|
+** Write data from a buffer into a file. Return SQLITE_OK on success
|
|
+** or some other error code on failure.
|
|
+*/
|
|
+int sqliteOsWrite(OsFile *id, const void *pBuf, int amt){
|
|
+#if OS_UNIX
|
|
+ int wrote = 0;
|
|
+ SimulateIOError(SQLITE_IOERR);
|
|
+ TIMER_START;
|
|
+ while( amt>0 && (wrote = write(id->fd, pBuf, amt))>0 ){
|
|
+ amt -= wrote;
|
|
+ pBuf = &((char*)pBuf)[wrote];
|
|
+ }
|
|
+ TIMER_END;
|
|
+ TRACE4("WRITE %-3d %7d %d\n", id->fd, last_page, elapse);
|
|
+ SEEK(0);
|
|
+ if( amt>0 ){
|
|
+ return SQLITE_FULL;
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+#endif
|
|
+#if OS_WIN
|
|
+ int rc;
|
|
+ DWORD wrote;
|
|
+ SimulateIOError(SQLITE_IOERR);
|
|
+ TRACE2("WRITE %d\n", last_page);
|
|
+ while( amt>0 && (rc = WriteFile(id->h, pBuf, amt, &wrote, 0))!=0 && wrote>0 ){
|
|
+ amt -= wrote;
|
|
+ pBuf = &((char*)pBuf)[wrote];
|
|
+ }
|
|
+ if( !rc || amt>(int)wrote ){
|
|
+ return SQLITE_FULL;
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+#endif
|
|
+#if OS_MAC
|
|
+ OSErr oserr;
|
|
+ int wrote = 0;
|
|
+ SimulateIOError(SQLITE_IOERR);
|
|
+ TRACE2("WRITE %d\n", last_page);
|
|
+ while( amt>0 ){
|
|
+# ifdef _LARGE_FILE
|
|
+ oserr = FSWriteFork(id->refNum, fsAtMark, 0,
|
|
+ (ByteCount)amt, pBuf, (ByteCount*)&wrote);
|
|
+# else
|
|
+ wrote = amt;
|
|
+ oserr = FSWrite(id->refNum, &wrote, pBuf);
|
|
+# endif
|
|
+ if( wrote == 0 || oserr != noErr)
|
|
+ break;
|
|
+ amt -= wrote;
|
|
+ pBuf = &((char*)pBuf)[wrote];
|
|
+ }
|
|
+ if( oserr != noErr || amt>wrote ){
|
|
+ return SQLITE_FULL;
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+#endif
|
|
+}
|
|
+
|
|
+/*
|
|
+** Move the read/write pointer in a file.
|
|
+*/
|
|
+int sqliteOsSeek(OsFile *id, off_t offset){
|
|
+ SEEK(offset/1024 + 1);
|
|
+#if OS_UNIX
|
|
+ lseek(id->fd, offset, SEEK_SET);
|
|
+ return SQLITE_OK;
|
|
+#endif
|
|
+#if OS_WIN
|
|
+ {
|
|
+ LONG upperBits = offset>>32;
|
|
+ LONG lowerBits = offset & 0xffffffff;
|
|
+ DWORD rc;
|
|
+ rc = SetFilePointer(id->h, lowerBits, &upperBits, FILE_BEGIN);
|
|
+ /* TRACE3("SEEK rc=0x%x upper=0x%x\n", rc, upperBits); */
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+#endif
|
|
+#if OS_MAC
|
|
+ {
|
|
+ off_t curSize;
|
|
+ if( sqliteOsFileSize(id, &curSize) != SQLITE_OK ){
|
|
+ return SQLITE_IOERR;
|
|
+ }
|
|
+ if( offset >= curSize ){
|
|
+ if( sqliteOsTruncate(id, offset+1) != SQLITE_OK ){
|
|
+ return SQLITE_IOERR;
|
|
+ }
|
|
+ }
|
|
+# ifdef _LARGE_FILE
|
|
+ if( FSSetForkPosition(id->refNum, fsFromStart, offset) != noErr ){
|
|
+# else
|
|
+ if( SetFPos(id->refNum, fsFromStart, offset) != noErr ){
|
|
+# endif
|
|
+ return SQLITE_IOERR;
|
|
+ }else{
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ }
|
|
+#endif
|
|
+}
|
|
+
|
|
+#ifdef SQLITE_NOSYNC
|
|
+# define fsync(X) 0
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** Make sure all writes to a particular file are committed to disk.
|
|
+**
|
|
+** Under Unix, also make sure that the directory entry for the file
|
|
+** has been created by fsync-ing the directory that contains the file.
|
|
+** If we do not do this and we encounter a power failure, the directory
|
|
+** entry for the journal might not exist after we reboot. The next
|
|
+** SQLite to access the file will not know that the journal exists (because
|
|
+** the directory entry for the journal was never created) and the transaction
|
|
+** will not roll back - possibly leading to database corruption.
|
|
+*/
|
|
+int sqliteOsSync(OsFile *id){
|
|
+#if OS_UNIX
|
|
+ SimulateIOError(SQLITE_IOERR);
|
|
+ TRACE2("SYNC %-3d\n", id->fd);
|
|
+ if( fsync(id->fd) ){
|
|
+ return SQLITE_IOERR;
|
|
+ }else{
|
|
+ if( id->dirfd>=0 ){
|
|
+ TRACE2("DIRSYNC %-3d\n", id->dirfd);
|
|
+ fsync(id->dirfd);
|
|
+ close(id->dirfd); /* Only need to sync once, so close the directory */
|
|
+ id->dirfd = -1; /* when we are done. */
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+#endif
|
|
+#if OS_WIN
|
|
+ if( FlushFileBuffers(id->h) ){
|
|
+ return SQLITE_OK;
|
|
+ }else{
|
|
+ return SQLITE_IOERR;
|
|
+ }
|
|
+#endif
|
|
+#if OS_MAC
|
|
+# ifdef _LARGE_FILE
|
|
+ if( FSFlushFork(id->refNum) != noErr ){
|
|
+# else
|
|
+ ParamBlockRec params;
|
|
+ memset(¶ms, 0, sizeof(ParamBlockRec));
|
|
+ params.ioParam.ioRefNum = id->refNum;
|
|
+ if( PBFlushFileSync(¶ms) != noErr ){
|
|
+# endif
|
|
+ return SQLITE_IOERR;
|
|
+ }else{
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+#endif
|
|
+}
|
|
+
|
|
+/*
|
|
+** Truncate an open file to a specified size
|
|
+*/
|
|
+int sqliteOsTruncate(OsFile *id, off_t nByte){
|
|
+ SimulateIOError(SQLITE_IOERR);
|
|
+#if OS_UNIX
|
|
+ return ftruncate(id->fd, nByte)==0 ? SQLITE_OK : SQLITE_IOERR;
|
|
+#endif
|
|
+#if OS_WIN
|
|
+ {
|
|
+ LONG upperBits = nByte>>32;
|
|
+ SetFilePointer(id->h, nByte, &upperBits, FILE_BEGIN);
|
|
+ SetEndOfFile(id->h);
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+#endif
|
|
+#if OS_MAC
|
|
+# ifdef _LARGE_FILE
|
|
+ if( FSSetForkSize(id->refNum, fsFromStart, nByte) != noErr){
|
|
+# else
|
|
+ if( SetEOF(id->refNum, nByte) != noErr ){
|
|
+# endif
|
|
+ return SQLITE_IOERR;
|
|
+ }else{
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+#endif
|
|
+}
|
|
+
|
|
+/*
|
|
+** Determine the current size of a file in bytes
|
|
+*/
|
|
+int sqliteOsFileSize(OsFile *id, off_t *pSize){
|
|
+#if OS_UNIX
|
|
+ struct stat buf;
|
|
+ SimulateIOError(SQLITE_IOERR);
|
|
+ if( fstat(id->fd, &buf)!=0 ){
|
|
+ return SQLITE_IOERR;
|
|
+ }
|
|
+ *pSize = buf.st_size;
|
|
+ return SQLITE_OK;
|
|
+#endif
|
|
+#if OS_WIN
|
|
+ DWORD upperBits, lowerBits;
|
|
+ SimulateIOError(SQLITE_IOERR);
|
|
+ lowerBits = GetFileSize(id->h, &upperBits);
|
|
+ *pSize = (((off_t)upperBits)<<32) + lowerBits;
|
|
+ return SQLITE_OK;
|
|
+#endif
|
|
+#if OS_MAC
|
|
+# ifdef _LARGE_FILE
|
|
+ if( FSGetForkSize(id->refNum, pSize) != noErr){
|
|
+# else
|
|
+ if( GetEOF(id->refNum, pSize) != noErr ){
|
|
+# endif
|
|
+ return SQLITE_IOERR;
|
|
+ }else{
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+#endif
|
|
+}
|
|
+
|
|
+#if OS_WIN
|
|
+/*
|
|
+** Return true (non-zero) if we are running under WinNT, Win2K or WinXP.
|
|
+** Return false (zero) for Win95, Win98, or WinME.
|
|
+**
|
|
+** Here is an interesting observation: Win95, Win98, and WinME lack
|
|
+** the LockFileEx() API. But we can still statically link against that
|
|
+** API as long as we don't call it win running Win95/98/ME. A call to
|
|
+** this routine is used to determine if the host is Win95/98/ME or
|
|
+** WinNT/2K/XP so that we will know whether or not we can safely call
|
|
+** the LockFileEx() API.
|
|
+*/
|
|
+int isNT(void){
|
|
+ static int osType = 0; /* 0=unknown 1=win95 2=winNT */
|
|
+ if( osType==0 ){
|
|
+ OSVERSIONINFO sInfo;
|
|
+ sInfo.dwOSVersionInfoSize = sizeof(sInfo);
|
|
+ GetVersionEx(&sInfo);
|
|
+ osType = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
|
|
+ }
|
|
+ return osType==2;
|
|
+}
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** Windows file locking notes: [similar issues apply to MacOS]
|
|
+**
|
|
+** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because
|
|
+** those functions are not available. So we use only LockFile() and
|
|
+** UnlockFile().
|
|
+**
|
|
+** LockFile() prevents not just writing but also reading by other processes.
|
|
+** (This is a design error on the part of Windows, but there is nothing
|
|
+** we can do about that.) So the region used for locking is at the
|
|
+** end of the file where it is unlikely to ever interfere with an
|
|
+** actual read attempt.
|
|
+**
|
|
+** A database read lock is obtained by locking a single randomly-chosen
|
|
+** byte out of a specific range of bytes. The lock byte is obtained at
|
|
+** random so two separate readers can probably access the file at the
|
|
+** same time, unless they are unlucky and choose the same lock byte.
|
|
+** A database write lock is obtained by locking all bytes in the range.
|
|
+** There can only be one writer.
|
|
+**
|
|
+** A lock is obtained on the first byte of the lock range before acquiring
|
|
+** either a read lock or a write lock. This prevents two processes from
|
|
+** attempting to get a lock at a same time. The semantics of
|
|
+** sqliteOsReadLock() require that if there is already a write lock, that
|
|
+** lock is converted into a read lock atomically. The lock on the first
|
|
+** byte allows us to drop the old write lock and get the read lock without
|
|
+** another process jumping into the middle and messing us up. The same
|
|
+** argument applies to sqliteOsWriteLock().
|
|
+**
|
|
+** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available,
|
|
+** which means we can use reader/writer locks. When reader writer locks
|
|
+** are used, the lock is placed on the same range of bytes that is used
|
|
+** for probabilistic locking in Win95/98/ME. Hence, the locking scheme
|
|
+** will support two or more Win95 readers or two or more WinNT readers.
|
|
+** But a single Win95 reader will lock out all WinNT readers and a single
|
|
+** WinNT reader will lock out all other Win95 readers.
|
|
+**
|
|
+** Note: On MacOS we use the resource fork for locking.
|
|
+**
|
|
+** The following #defines specify the range of bytes used for locking.
|
|
+** N_LOCKBYTE is the number of bytes available for doing the locking.
|
|
+** The first byte used to hold the lock while the lock is changing does
|
|
+** not count toward this number. FIRST_LOCKBYTE is the address of
|
|
+** the first byte in the range of bytes used for locking.
|
|
+*/
|
|
+#define N_LOCKBYTE 10239
|
|
+#if OS_MAC
|
|
+# define FIRST_LOCKBYTE (0x000fffff - N_LOCKBYTE)
|
|
+#else
|
|
+# define FIRST_LOCKBYTE (0xffffffff - N_LOCKBYTE)
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** Change the status of the lock on the file "id" to be a readlock.
|
|
+** If the file was write locked, then this reduces the lock to a read.
|
|
+** If the file was read locked, then this acquires a new read lock.
|
|
+**
|
|
+** Return SQLITE_OK on success and SQLITE_BUSY on failure. If this
|
|
+** library was compiled with large file support (LFS) but LFS is not
|
|
+** available on the host, then an SQLITE_NOLFS is returned.
|
|
+*/
|
|
+int sqliteOsReadLock(OsFile *id){
|
|
+#if OS_UNIX
|
|
+ int rc;
|
|
+ sqliteOsEnterMutex();
|
|
+ if( id->pLock->cnt>0 ){
|
|
+ if( !id->locked ){
|
|
+ id->pLock->cnt++;
|
|
+ id->locked = 1;
|
|
+ id->pOpen->nLock++;
|
|
+ }
|
|
+ rc = SQLITE_OK;
|
|
+ }else if( id->locked || id->pLock->cnt==0 ){
|
|
+ struct flock lock;
|
|
+ int s;
|
|
+ lock.l_type = F_RDLCK;
|
|
+ lock.l_whence = SEEK_SET;
|
|
+ lock.l_start = lock.l_len = 0L;
|
|
+ s = fcntl(id->fd, F_SETLK, &lock);
|
|
+ if( s!=0 ){
|
|
+ rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
|
|
+ }else{
|
|
+ rc = SQLITE_OK;
|
|
+ if( !id->locked ){
|
|
+ id->pOpen->nLock++;
|
|
+ id->locked = 1;
|
|
+ }
|
|
+ id->pLock->cnt = 1;
|
|
+ }
|
|
+ }else{
|
|
+ rc = SQLITE_BUSY;
|
|
+ }
|
|
+ sqliteOsLeaveMutex();
|
|
+ return rc;
|
|
+#endif
|
|
+#if OS_WIN
|
|
+ int rc;
|
|
+ if( id->locked>0 ){
|
|
+ rc = SQLITE_OK;
|
|
+ }else{
|
|
+ int lk;
|
|
+ int res;
|
|
+ int cnt = 100;
|
|
+ sqliteRandomness(sizeof(lk), &lk);
|
|
+ lk = (lk & 0x7fffffff)%N_LOCKBYTE + 1;
|
|
+ while( cnt-->0 && (res = LockFile(id->h, FIRST_LOCKBYTE, 0, 1, 0))==0 ){
|
|
+ Sleep(1);
|
|
+ }
|
|
+ if( res ){
|
|
+ UnlockFile(id->h, FIRST_LOCKBYTE+1, 0, N_LOCKBYTE, 0);
|
|
+ if( isNT() ){
|
|
+ OVERLAPPED ovlp;
|
|
+ ovlp.Offset = FIRST_LOCKBYTE+1;
|
|
+ ovlp.OffsetHigh = 0;
|
|
+ ovlp.hEvent = 0;
|
|
+ res = LockFileEx(id->h, LOCKFILE_FAIL_IMMEDIATELY,
|
|
+ 0, N_LOCKBYTE, 0, &ovlp);
|
|
+ }else{
|
|
+ res = LockFile(id->h, FIRST_LOCKBYTE+lk, 0, 1, 0);
|
|
+ }
|
|
+ UnlockFile(id->h, FIRST_LOCKBYTE, 0, 1, 0);
|
|
+ }
|
|
+ if( res ){
|
|
+ id->locked = lk;
|
|
+ rc = SQLITE_OK;
|
|
+ }else{
|
|
+ rc = SQLITE_BUSY;
|
|
+ }
|
|
+ }
|
|
+ return rc;
|
|
+#endif
|
|
+#if OS_MAC
|
|
+ int rc;
|
|
+ if( id->locked>0 || id->refNumRF == -1 ){
|
|
+ rc = SQLITE_OK;
|
|
+ }else{
|
|
+ int lk;
|
|
+ OSErr res;
|
|
+ int cnt = 5;
|
|
+ ParamBlockRec params;
|
|
+ sqliteRandomness(sizeof(lk), &lk);
|
|
+ lk = (lk & 0x7fffffff)%N_LOCKBYTE + 1;
|
|
+ memset(¶ms, 0, sizeof(params));
|
|
+ params.ioParam.ioRefNum = id->refNumRF;
|
|
+ params.ioParam.ioPosMode = fsFromStart;
|
|
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE;
|
|
+ params.ioParam.ioReqCount = 1;
|
|
+ while( cnt-->0 && (res = PBLockRangeSync(¶ms))!=noErr ){
|
|
+ UInt32 finalTicks;
|
|
+ Delay(1, &finalTicks); /* 1/60 sec */
|
|
+ }
|
|
+ if( res == noErr ){
|
|
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE+1;
|
|
+ params.ioParam.ioReqCount = N_LOCKBYTE;
|
|
+ PBUnlockRangeSync(¶ms);
|
|
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE+lk;
|
|
+ params.ioParam.ioReqCount = 1;
|
|
+ res = PBLockRangeSync(¶ms);
|
|
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE;
|
|
+ params.ioParam.ioReqCount = 1;
|
|
+ PBUnlockRangeSync(¶ms);
|
|
+ }
|
|
+ if( res == noErr ){
|
|
+ id->locked = lk;
|
|
+ rc = SQLITE_OK;
|
|
+ }else{
|
|
+ rc = SQLITE_BUSY;
|
|
+ }
|
|
+ }
|
|
+ return rc;
|
|
+#endif
|
|
+}
|
|
+
|
|
+/*
|
|
+** Change the lock status to be an exclusive or write lock. Return
|
|
+** SQLITE_OK on success and SQLITE_BUSY on a failure. If this
|
|
+** library was compiled with large file support (LFS) but LFS is not
|
|
+** available on the host, then an SQLITE_NOLFS is returned.
|
|
+*/
|
|
+int sqliteOsWriteLock(OsFile *id){
|
|
+#if OS_UNIX
|
|
+ int rc;
|
|
+ sqliteOsEnterMutex();
|
|
+ if( id->pLock->cnt==0 || (id->pLock->cnt==1 && id->locked==1) ){
|
|
+ struct flock lock;
|
|
+ int s;
|
|
+ lock.l_type = F_WRLCK;
|
|
+ lock.l_whence = SEEK_SET;
|
|
+ lock.l_start = lock.l_len = 0L;
|
|
+ s = fcntl(id->fd, F_SETLK, &lock);
|
|
+ if( s!=0 ){
|
|
+ rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
|
|
+ }else{
|
|
+ rc = SQLITE_OK;
|
|
+ if( !id->locked ){
|
|
+ id->pOpen->nLock++;
|
|
+ id->locked = 1;
|
|
+ }
|
|
+ id->pLock->cnt = -1;
|
|
+ }
|
|
+ }else{
|
|
+ rc = SQLITE_BUSY;
|
|
+ }
|
|
+ sqliteOsLeaveMutex();
|
|
+ return rc;
|
|
+#endif
|
|
+#if OS_WIN
|
|
+ int rc;
|
|
+ if( id->locked<0 ){
|
|
+ rc = SQLITE_OK;
|
|
+ }else{
|
|
+ int res;
|
|
+ int cnt = 100;
|
|
+ while( cnt-->0 && (res = LockFile(id->h, FIRST_LOCKBYTE, 0, 1, 0))==0 ){
|
|
+ Sleep(1);
|
|
+ }
|
|
+ if( res ){
|
|
+ if( id->locked>0 ){
|
|
+ if( isNT() ){
|
|
+ UnlockFile(id->h, FIRST_LOCKBYTE+1, 0, N_LOCKBYTE, 0);
|
|
+ }else{
|
|
+ res = UnlockFile(id->h, FIRST_LOCKBYTE + id->locked, 0, 1, 0);
|
|
+ }
|
|
+ }
|
|
+ if( res ){
|
|
+ res = LockFile(id->h, FIRST_LOCKBYTE+1, 0, N_LOCKBYTE, 0);
|
|
+ }else{
|
|
+ res = 0;
|
|
+ }
|
|
+ UnlockFile(id->h, FIRST_LOCKBYTE, 0, 1, 0);
|
|
+ }
|
|
+ if( res ){
|
|
+ id->locked = -1;
|
|
+ rc = SQLITE_OK;
|
|
+ }else{
|
|
+ rc = SQLITE_BUSY;
|
|
+ }
|
|
+ }
|
|
+ return rc;
|
|
+#endif
|
|
+#if OS_MAC
|
|
+ int rc;
|
|
+ if( id->locked<0 || id->refNumRF == -1 ){
|
|
+ rc = SQLITE_OK;
|
|
+ }else{
|
|
+ OSErr res;
|
|
+ int cnt = 5;
|
|
+ ParamBlockRec params;
|
|
+ memset(¶ms, 0, sizeof(params));
|
|
+ params.ioParam.ioRefNum = id->refNumRF;
|
|
+ params.ioParam.ioPosMode = fsFromStart;
|
|
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE;
|
|
+ params.ioParam.ioReqCount = 1;
|
|
+ while( cnt-->0 && (res = PBLockRangeSync(¶ms))!=noErr ){
|
|
+ UInt32 finalTicks;
|
|
+ Delay(1, &finalTicks); /* 1/60 sec */
|
|
+ }
|
|
+ if( res == noErr ){
|
|
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE + id->locked;
|
|
+ params.ioParam.ioReqCount = 1;
|
|
+ if( id->locked==0
|
|
+ || PBUnlockRangeSync(¶ms)==noErr ){
|
|
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE+1;
|
|
+ params.ioParam.ioReqCount = N_LOCKBYTE;
|
|
+ res = PBLockRangeSync(¶ms);
|
|
+ }else{
|
|
+ res = afpRangeNotLocked;
|
|
+ }
|
|
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE;
|
|
+ params.ioParam.ioReqCount = 1;
|
|
+ PBUnlockRangeSync(¶ms);
|
|
+ }
|
|
+ if( res == noErr ){
|
|
+ id->locked = -1;
|
|
+ rc = SQLITE_OK;
|
|
+ }else{
|
|
+ rc = SQLITE_BUSY;
|
|
+ }
|
|
+ }
|
|
+ return rc;
|
|
+#endif
|
|
+}
|
|
+
|
|
+/*
|
|
+** Unlock the given file descriptor. If the file descriptor was
|
|
+** not previously locked, then this routine is a no-op. If this
|
|
+** library was compiled with large file support (LFS) but LFS is not
|
|
+** available on the host, then an SQLITE_NOLFS is returned.
|
|
+*/
|
|
+int sqliteOsUnlock(OsFile *id){
|
|
+#if OS_UNIX
|
|
+ int rc;
|
|
+ if( !id->locked ) return SQLITE_OK;
|
|
+ sqliteOsEnterMutex();
|
|
+ assert( id->pLock->cnt!=0 );
|
|
+ if( id->pLock->cnt>1 ){
|
|
+ id->pLock->cnt--;
|
|
+ rc = SQLITE_OK;
|
|
+ }else{
|
|
+ struct flock lock;
|
|
+ int s;
|
|
+ lock.l_type = F_UNLCK;
|
|
+ lock.l_whence = SEEK_SET;
|
|
+ lock.l_start = lock.l_len = 0L;
|
|
+ s = fcntl(id->fd, F_SETLK, &lock);
|
|
+ if( s!=0 ){
|
|
+ rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
|
|
+ }else{
|
|
+ rc = SQLITE_OK;
|
|
+ id->pLock->cnt = 0;
|
|
+ }
|
|
+ }
|
|
+ if( rc==SQLITE_OK ){
|
|
+ /* Decrement the count of locks against this same file. When the
|
|
+ ** count reaches zero, close any other file descriptors whose close
|
|
+ ** was deferred because of outstanding locks.
|
|
+ */
|
|
+ struct openCnt *pOpen = id->pOpen;
|
|
+ pOpen->nLock--;
|
|
+ assert( pOpen->nLock>=0 );
|
|
+ if( pOpen->nLock==0 && pOpen->nPending>0 ){
|
|
+ int i;
|
|
+ for(i=0; i<pOpen->nPending; i++){
|
|
+ close(pOpen->aPending[i]);
|
|
+ }
|
|
+ sqliteFree(pOpen->aPending);
|
|
+ pOpen->nPending = 0;
|
|
+ pOpen->aPending = 0;
|
|
+ }
|
|
+ }
|
|
+ sqliteOsLeaveMutex();
|
|
+ id->locked = 0;
|
|
+ return rc;
|
|
+#endif
|
|
+#if OS_WIN
|
|
+ int rc;
|
|
+ if( id->locked==0 ){
|
|
+ rc = SQLITE_OK;
|
|
+ }else if( isNT() || id->locked<0 ){
|
|
+ UnlockFile(id->h, FIRST_LOCKBYTE+1, 0, N_LOCKBYTE, 0);
|
|
+ rc = SQLITE_OK;
|
|
+ id->locked = 0;
|
|
+ }else{
|
|
+ UnlockFile(id->h, FIRST_LOCKBYTE+id->locked, 0, 1, 0);
|
|
+ rc = SQLITE_OK;
|
|
+ id->locked = 0;
|
|
+ }
|
|
+ return rc;
|
|
+#endif
|
|
+#if OS_MAC
|
|
+ int rc;
|
|
+ ParamBlockRec params;
|
|
+ memset(¶ms, 0, sizeof(params));
|
|
+ params.ioParam.ioRefNum = id->refNumRF;
|
|
+ params.ioParam.ioPosMode = fsFromStart;
|
|
+ if( id->locked==0 || id->refNumRF == -1 ){
|
|
+ rc = SQLITE_OK;
|
|
+ }else if( id->locked<0 ){
|
|
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE+1;
|
|
+ params.ioParam.ioReqCount = N_LOCKBYTE;
|
|
+ PBUnlockRangeSync(¶ms);
|
|
+ rc = SQLITE_OK;
|
|
+ id->locked = 0;
|
|
+ }else{
|
|
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE+id->locked;
|
|
+ params.ioParam.ioReqCount = 1;
|
|
+ PBUnlockRangeSync(¶ms);
|
|
+ rc = SQLITE_OK;
|
|
+ id->locked = 0;
|
|
+ }
|
|
+ return rc;
|
|
+#endif
|
|
+}
|
|
+
|
|
+/*
|
|
+** Get information to seed the random number generator. The seed
|
|
+** is written into the buffer zBuf[256]. The calling function must
|
|
+** supply a sufficiently large buffer.
|
|
+*/
|
|
+int sqliteOsRandomSeed(char *zBuf){
|
|
+ /* We have to initialize zBuf to prevent valgrind from reporting
|
|
+ ** errors. The reports issued by valgrind are incorrect - we would
|
|
+ ** prefer that the randomness be increased by making use of the
|
|
+ ** uninitialized space in zBuf - but valgrind errors tend to worry
|
|
+ ** some users. Rather than argue, it seems easier just to initialize
|
|
+ ** the whole array and silence valgrind, even if that means less randomness
|
|
+ ** in the random seed.
|
|
+ **
|
|
+ ** When testing, initializing zBuf[] to zero is all we do. That means
|
|
+ ** that we always use the same random number sequence.* This makes the
|
|
+ ** tests repeatable.
|
|
+ */
|
|
+ memset(zBuf, 0, 256);
|
|
+#if OS_UNIX && !defined(SQLITE_TEST)
|
|
+ {
|
|
+ int pid;
|
|
+ time((time_t*)zBuf);
|
|
+ pid = getpid();
|
|
+ memcpy(&zBuf[sizeof(time_t)], &pid, sizeof(pid));
|
|
+ }
|
|
+#endif
|
|
+#if OS_WIN && !defined(SQLITE_TEST)
|
|
+ GetSystemTime((LPSYSTEMTIME)zBuf);
|
|
+#endif
|
|
+#if OS_MAC
|
|
+ {
|
|
+ int pid;
|
|
+ Microseconds((UnsignedWide*)zBuf);
|
|
+ pid = getpid();
|
|
+ memcpy(&zBuf[sizeof(UnsignedWide)], &pid, sizeof(pid));
|
|
+ }
|
|
+#endif
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Sleep for a little while. Return the amount of time slept.
|
|
+*/
|
|
+int sqliteOsSleep(int ms){
|
|
+#if OS_UNIX
|
|
+#if defined(HAVE_USLEEP) && HAVE_USLEEP
|
|
+ usleep(ms*1000);
|
|
+ return ms;
|
|
+#else
|
|
+ sleep((ms+999)/1000);
|
|
+ return 1000*((ms+999)/1000);
|
|
+#endif
|
|
+#endif
|
|
+#if OS_WIN
|
|
+ Sleep(ms);
|
|
+ return ms;
|
|
+#endif
|
|
+#if OS_MAC
|
|
+ UInt32 finalTicks;
|
|
+ UInt32 ticks = (((UInt32)ms+16)*3)/50; /* 1/60 sec per tick */
|
|
+ Delay(ticks, &finalTicks);
|
|
+ return (int)((ticks*50)/3);
|
|
+#endif
|
|
+}
|
|
+
|
|
+/*
|
|
+** Static variables used for thread synchronization
|
|
+*/
|
|
+static int inMutex = 0;
|
|
+#ifdef SQLITE_UNIX_THREADS
|
|
+ static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
+#endif
|
|
+#ifdef SQLITE_W32_THREADS
|
|
+ static CRITICAL_SECTION cs;
|
|
+#endif
|
|
+#ifdef SQLITE_MACOS_MULTITASKING
|
|
+ static MPCriticalRegionID criticalRegion;
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** The following pair of routine implement mutual exclusion for
|
|
+** multi-threaded processes. Only a single thread is allowed to
|
|
+** executed code that is surrounded by EnterMutex() and LeaveMutex().
|
|
+**
|
|
+** SQLite uses only a single Mutex. There is not much critical
|
|
+** code and what little there is executes quickly and without blocking.
|
|
+*/
|
|
+void sqliteOsEnterMutex(){
|
|
+#ifdef SQLITE_UNIX_THREADS
|
|
+ pthread_mutex_lock(&mutex);
|
|
+#endif
|
|
+#ifdef SQLITE_W32_THREADS
|
|
+ static int isInit = 0;
|
|
+ while( !isInit ){
|
|
+ static long lock = 0;
|
|
+ if( InterlockedIncrement(&lock)==1 ){
|
|
+ InitializeCriticalSection(&cs);
|
|
+ isInit = 1;
|
|
+ }else{
|
|
+ Sleep(1);
|
|
+ }
|
|
+ }
|
|
+ EnterCriticalSection(&cs);
|
|
+#endif
|
|
+#ifdef SQLITE_MACOS_MULTITASKING
|
|
+ static volatile int notInit = 1;
|
|
+ if( notInit ){
|
|
+ if( notInit == 2 ) /* as close as you can get to thread safe init */
|
|
+ MPYield();
|
|
+ else{
|
|
+ notInit = 2;
|
|
+ MPCreateCriticalRegion(&criticalRegion);
|
|
+ notInit = 0;
|
|
+ }
|
|
+ }
|
|
+ MPEnterCriticalRegion(criticalRegion, kDurationForever);
|
|
+#endif
|
|
+ assert( !inMutex );
|
|
+ inMutex = 1;
|
|
+}
|
|
+void sqliteOsLeaveMutex(){
|
|
+ assert( inMutex );
|
|
+ inMutex = 0;
|
|
+#ifdef SQLITE_UNIX_THREADS
|
|
+ pthread_mutex_unlock(&mutex);
|
|
+#endif
|
|
+#ifdef SQLITE_W32_THREADS
|
|
+ LeaveCriticalSection(&cs);
|
|
+#endif
|
|
+#ifdef SQLITE_MACOS_MULTITASKING
|
|
+ MPExitCriticalRegion(criticalRegion);
|
|
+#endif
|
|
+}
|
|
+
|
|
+/*
|
|
+** Turn a relative pathname into a full pathname. Return a pointer
|
|
+** to the full pathname stored in space obtained from sqliteMalloc().
|
|
+** The calling function is responsible for freeing this space once it
|
|
+** is no longer needed.
|
|
+*/
|
|
+char *sqliteOsFullPathname(const char *zRelative){
|
|
+#if OS_UNIX
|
|
+ char *zFull = 0;
|
|
+ if( zRelative[0]=='/' ){
|
|
+ sqliteSetString(&zFull, zRelative, (char*)0);
|
|
+ }else{
|
|
+ char zBuf[5000];
|
|
+ zBuf[0] = 0;
|
|
+ sqliteSetString(&zFull, getcwd(zBuf, sizeof(zBuf)), "/", zRelative,
|
|
+ (char*)0);
|
|
+ }
|
|
+ return zFull;
|
|
+#endif
|
|
+#if OS_WIN
|
|
+ char *zNotUsed;
|
|
+ char *zFull;
|
|
+ int nByte;
|
|
+ nByte = GetFullPathName(zRelative, 0, 0, &zNotUsed) + 1;
|
|
+ zFull = sqliteMalloc( nByte );
|
|
+ if( zFull==0 ) return 0;
|
|
+ GetFullPathName(zRelative, nByte, zFull, &zNotUsed);
|
|
+ return zFull;
|
|
+#endif
|
|
+#if OS_MAC
|
|
+ char *zFull = 0;
|
|
+ if( zRelative[0]==':' ){
|
|
+ char zBuf[_MAX_PATH+1];
|
|
+ sqliteSetString(&zFull, getcwd(zBuf, sizeof(zBuf)), &(zRelative[1]),
|
|
+ (char*)0);
|
|
+ }else{
|
|
+ if( strchr(zRelative, ':') ){
|
|
+ sqliteSetString(&zFull, zRelative, (char*)0);
|
|
+ }else{
|
|
+ char zBuf[_MAX_PATH+1];
|
|
+ sqliteSetString(&zFull, getcwd(zBuf, sizeof(zBuf)), zRelative, (char*)0);
|
|
+ }
|
|
+ }
|
|
+ return zFull;
|
|
+#endif
|
|
+}
|
|
+
|
|
+/*
|
|
+** The following variable, if set to a non-zero value, becomes the result
|
|
+** returned from sqliteOsCurrentTime(). This is used for testing.
|
|
+*/
|
|
+#ifdef SQLITE_TEST
|
|
+int sqlite_current_time = 0;
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** Find the current time (in Universal Coordinated Time). Write the
|
|
+** current time and date as a Julian Day number into *prNow and
|
|
+** return 0. Return 1 if the time and date cannot be found.
|
|
+*/
|
|
+int sqliteOsCurrentTime(double *prNow){
|
|
+#if OS_UNIX
|
|
+ time_t t;
|
|
+ time(&t);
|
|
+ *prNow = t/86400.0 + 2440587.5;
|
|
+#endif
|
|
+#if OS_WIN
|
|
+ FILETIME ft;
|
|
+ /* FILETIME structure is a 64-bit value representing the number of
|
|
+ 100-nanosecond intervals since January 1, 1601 (= JD 2305813.5).
|
|
+ */
|
|
+ double now;
|
|
+ GetSystemTimeAsFileTime( &ft );
|
|
+ now = ((double)ft.dwHighDateTime) * 4294967296.0;
|
|
+ *prNow = (now + ft.dwLowDateTime)/864000000000.0 + 2305813.5;
|
|
+#endif
|
|
+#ifdef SQLITE_TEST
|
|
+ if( sqlite_current_time ){
|
|
+ *prNow = sqlite_current_time/86400.0 + 2440587.5;
|
|
+ }
|
|
+#endif
|
|
+ return 0;
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/os.h
|
|
@@ -0,0 +1,191 @@
|
|
+/*
|
|
+** 2001 September 16
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+******************************************************************************
|
|
+**
|
|
+** This header file (together with is companion C source-code file
|
|
+** "os.c") attempt to abstract the underlying operating system so that
|
|
+** the SQLite library will work on both POSIX and windows systems.
|
|
+*/
|
|
+#ifndef _SQLITE_OS_H_
|
|
+#define _SQLITE_OS_H_
|
|
+
|
|
+/*
|
|
+** Helpful hint: To get this to compile on HP/UX, add -D_INCLUDE_POSIX_SOURCE
|
|
+** to the compiler command line.
|
|
+*/
|
|
+
|
|
+/*
|
|
+** These #defines should enable >2GB file support on Posix if the
|
|
+** underlying operating system supports it. If the OS lacks
|
|
+** large file support, or if the OS is windows, these should be no-ops.
|
|
+**
|
|
+** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
|
|
+** on the compiler command line. This is necessary if you are compiling
|
|
+** on a recent machine (ex: RedHat 7.2) but you want your code to work
|
|
+** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
|
|
+** without this option, LFS is enable. But LFS does not exist in the kernel
|
|
+** in RedHat 6.0, so the code won't work. Hence, for maximum binary
|
|
+** portability you should omit LFS.
|
|
+**
|
|
+** Similar is true for MacOS. LFS is only supported on MacOS 9 and later.
|
|
+*/
|
|
+#ifndef SQLITE_DISABLE_LFS
|
|
+# define _LARGE_FILE 1
|
|
+# ifndef _FILE_OFFSET_BITS
|
|
+# define _FILE_OFFSET_BITS 64
|
|
+# endif
|
|
+# define _LARGEFILE_SOURCE 1
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** Temporary files are named starting with this prefix followed by 16 random
|
|
+** alphanumeric characters, and no file extension. They are stored in the
|
|
+** OS's standard temporary file directory, and are deleted prior to exit.
|
|
+** If sqlite is being embedded in another program, you may wish to change the
|
|
+** prefix to reflect your program's name, so that if your program exits
|
|
+** prematurely, old temporary files can be easily identified. This can be done
|
|
+** using -DTEMP_FILE_PREFIX=myprefix_ on the compiler command line.
|
|
+*/
|
|
+#ifndef TEMP_FILE_PREFIX
|
|
+# define TEMP_FILE_PREFIX "sqlite_"
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** Figure out if we are dealing with Unix, Windows or MacOS.
|
|
+**
|
|
+** N.B. MacOS means Mac Classic (or Carbon). Treat Darwin (OS X) as Unix.
|
|
+** The MacOS build is designed to use CodeWarrior (tested with v8)
|
|
+*/
|
|
+#ifndef OS_UNIX
|
|
+# ifndef OS_WIN
|
|
+# ifndef OS_MAC
|
|
+# if defined(__MACOS__)
|
|
+# define OS_MAC 1
|
|
+# define OS_WIN 0
|
|
+# define OS_UNIX 0
|
|
+# elif defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__)
|
|
+# define OS_MAC 0
|
|
+# define OS_WIN 1
|
|
+# define OS_UNIX 0
|
|
+# else
|
|
+# define OS_MAC 0
|
|
+# define OS_WIN 0
|
|
+# define OS_UNIX 1
|
|
+# endif
|
|
+# else
|
|
+# define OS_WIN 0
|
|
+# define OS_UNIX 0
|
|
+# endif
|
|
+# else
|
|
+# define OS_MAC 0
|
|
+# define OS_UNIX 0
|
|
+# endif
|
|
+#else
|
|
+# define OS_MAC 0
|
|
+# ifndef OS_WIN
|
|
+# define OS_WIN 0
|
|
+# endif
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** A handle for an open file is stored in an OsFile object.
|
|
+*/
|
|
+#if OS_UNIX
|
|
+# include <sys/types.h>
|
|
+# include <sys/stat.h>
|
|
+# include <fcntl.h>
|
|
+# include <unistd.h>
|
|
+ typedef struct OsFile OsFile;
|
|
+ struct OsFile {
|
|
+ struct openCnt *pOpen; /* Info about all open fd's on this inode */
|
|
+ struct lockInfo *pLock; /* Info about locks on this inode */
|
|
+ int fd; /* The file descriptor */
|
|
+ int locked; /* True if this instance holds the lock */
|
|
+ int dirfd; /* File descriptor for the directory */
|
|
+ };
|
|
+# define SQLITE_TEMPNAME_SIZE 200
|
|
+# if defined(HAVE_USLEEP) && HAVE_USLEEP
|
|
+# define SQLITE_MIN_SLEEP_MS 1
|
|
+# else
|
|
+# define SQLITE_MIN_SLEEP_MS 1000
|
|
+# endif
|
|
+#endif
|
|
+
|
|
+#if OS_WIN
|
|
+#include <windows.h>
|
|
+#include <winbase.h>
|
|
+ typedef struct OsFile OsFile;
|
|
+ struct OsFile {
|
|
+ HANDLE h; /* Handle for accessing the file */
|
|
+ int locked; /* 0: unlocked, <0: write lock, >0: read lock */
|
|
+ };
|
|
+# if defined(_MSC_VER) || defined(__BORLANDC__)
|
|
+ typedef __int64 off_t;
|
|
+# else
|
|
+# if !defined(_CYGWIN_TYPES_H)
|
|
+ typedef long long off_t;
|
|
+# if defined(__MINGW32__)
|
|
+# define _OFF_T_
|
|
+# endif
|
|
+# endif
|
|
+# endif
|
|
+# define SQLITE_TEMPNAME_SIZE (MAX_PATH+50)
|
|
+# define SQLITE_MIN_SLEEP_MS 1
|
|
+#endif
|
|
+
|
|
+#if OS_MAC
|
|
+# include <unistd.h>
|
|
+# include <Files.h>
|
|
+ typedef struct OsFile OsFile;
|
|
+ struct OsFile {
|
|
+ SInt16 refNum; /* Data fork/file reference number */
|
|
+ SInt16 refNumRF; /* Resource fork reference number (for locking) */
|
|
+ int locked; /* 0: unlocked, <0: write lock, >0: read lock */
|
|
+ int delOnClose; /* True if file is to be deleted on close */
|
|
+ char *pathToDel; /* Name of file to delete on close */
|
|
+ };
|
|
+# ifdef _LARGE_FILE
|
|
+ typedef SInt64 off_t;
|
|
+# else
|
|
+ typedef SInt32 off_t;
|
|
+# endif
|
|
+# define SQLITE_TEMPNAME_SIZE _MAX_PATH
|
|
+# define SQLITE_MIN_SLEEP_MS 17
|
|
+#endif
|
|
+
|
|
+int sqliteOsDelete(const char*);
|
|
+int sqliteOsFileExists(const char*);
|
|
+int sqliteOsFileRename(const char*, const char*);
|
|
+int sqliteOsOpenReadWrite(const char*, OsFile*, int*);
|
|
+int sqliteOsOpenExclusive(const char*, OsFile*, int);
|
|
+int sqliteOsOpenReadOnly(const char*, OsFile*);
|
|
+int sqliteOsOpenDirectory(const char*, OsFile*);
|
|
+int sqliteOsTempFileName(char*);
|
|
+int sqliteOsClose(OsFile*);
|
|
+int sqliteOsRead(OsFile*, void*, int amt);
|
|
+int sqliteOsWrite(OsFile*, const void*, int amt);
|
|
+int sqliteOsSeek(OsFile*, off_t offset);
|
|
+int sqliteOsSync(OsFile*);
|
|
+int sqliteOsTruncate(OsFile*, off_t size);
|
|
+int sqliteOsFileSize(OsFile*, off_t *pSize);
|
|
+int sqliteOsReadLock(OsFile*);
|
|
+int sqliteOsWriteLock(OsFile*);
|
|
+int sqliteOsUnlock(OsFile*);
|
|
+int sqliteOsRandomSeed(char*);
|
|
+int sqliteOsSleep(int ms);
|
|
+int sqliteOsCurrentTime(double*);
|
|
+void sqliteOsEnterMutex(void);
|
|
+void sqliteOsLeaveMutex(void);
|
|
+char *sqliteOsFullPathname(const char*);
|
|
+
|
|
+
|
|
+
|
|
+#endif /* _SQLITE_OS_H_ */
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/pager.c
|
|
@@ -0,0 +1,2220 @@
|
|
+/*
|
|
+** 2001 September 15
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This is the implementation of the page cache subsystem or "pager".
|
|
+**
|
|
+** The pager is used to access a database disk file. It implements
|
|
+** atomic commit and rollback through the use of a journal file that
|
|
+** is separate from the database file. The pager also implements file
|
|
+** locking to prevent two processes from writing the same database
|
|
+** file simultaneously, or one process from reading the database while
|
|
+** another is writing.
|
|
+**
|
|
+** @(#) $Id$
|
|
+*/
|
|
+#include "os.h" /* Must be first to enable large file support */
|
|
+#include "sqliteInt.h"
|
|
+#include "pager.h"
|
|
+#include <assert.h>
|
|
+#include <string.h>
|
|
+
|
|
+/*
|
|
+** Macros for troubleshooting. Normally turned off
|
|
+*/
|
|
+#if 0
|
|
+static Pager *mainPager = 0;
|
|
+#define SET_PAGER(X) if( mainPager==0 ) mainPager = (X)
|
|
+#define CLR_PAGER(X) if( mainPager==(X) ) mainPager = 0
|
|
+#define TRACE1(X) if( pPager==mainPager ) fprintf(stderr,X)
|
|
+#define TRACE2(X,Y) if( pPager==mainPager ) fprintf(stderr,X,Y)
|
|
+#define TRACE3(X,Y,Z) if( pPager==mainPager ) fprintf(stderr,X,Y,Z)
|
|
+#else
|
|
+#define SET_PAGER(X)
|
|
+#define CLR_PAGER(X)
|
|
+#define TRACE1(X)
|
|
+#define TRACE2(X,Y)
|
|
+#define TRACE3(X,Y,Z)
|
|
+#endif
|
|
+
|
|
+
|
|
+/*
|
|
+** The page cache as a whole is always in one of the following
|
|
+** states:
|
|
+**
|
|
+** SQLITE_UNLOCK The page cache is not currently reading or
|
|
+** writing the database file. There is no
|
|
+** data held in memory. This is the initial
|
|
+** state.
|
|
+**
|
|
+** SQLITE_READLOCK The page cache is reading the database.
|
|
+** Writing is not permitted. There can be
|
|
+** multiple readers accessing the same database
|
|
+** file at the same time.
|
|
+**
|
|
+** SQLITE_WRITELOCK The page cache is writing the database.
|
|
+** Access is exclusive. No other processes or
|
|
+** threads can be reading or writing while one
|
|
+** process is writing.
|
|
+**
|
|
+** The page cache comes up in SQLITE_UNLOCK. The first time a
|
|
+** sqlite_page_get() occurs, the state transitions to SQLITE_READLOCK.
|
|
+** After all pages have been released using sqlite_page_unref(),
|
|
+** the state transitions back to SQLITE_UNLOCK. The first time
|
|
+** that sqlite_page_write() is called, the state transitions to
|
|
+** SQLITE_WRITELOCK. (Note that sqlite_page_write() can only be
|
|
+** called on an outstanding page which means that the pager must
|
|
+** be in SQLITE_READLOCK before it transitions to SQLITE_WRITELOCK.)
|
|
+** The sqlite_page_rollback() and sqlite_page_commit() functions
|
|
+** transition the state from SQLITE_WRITELOCK back to SQLITE_READLOCK.
|
|
+*/
|
|
+#define SQLITE_UNLOCK 0
|
|
+#define SQLITE_READLOCK 1
|
|
+#define SQLITE_WRITELOCK 2
|
|
+
|
|
+
|
|
+/*
|
|
+** Each in-memory image of a page begins with the following header.
|
|
+** This header is only visible to this pager module. The client
|
|
+** code that calls pager sees only the data that follows the header.
|
|
+**
|
|
+** Client code should call sqlitepager_write() on a page prior to making
|
|
+** any modifications to that page. The first time sqlitepager_write()
|
|
+** is called, the original page contents are written into the rollback
|
|
+** journal and PgHdr.inJournal and PgHdr.needSync are set. Later, once
|
|
+** the journal page has made it onto the disk surface, PgHdr.needSync
|
|
+** is cleared. The modified page cannot be written back into the original
|
|
+** database file until the journal pages has been synced to disk and the
|
|
+** PgHdr.needSync has been cleared.
|
|
+**
|
|
+** The PgHdr.dirty flag is set when sqlitepager_write() is called and
|
|
+** is cleared again when the page content is written back to the original
|
|
+** database file.
|
|
+*/
|
|
+typedef struct PgHdr PgHdr;
|
|
+struct PgHdr {
|
|
+ Pager *pPager; /* The pager to which this page belongs */
|
|
+ Pgno pgno; /* The page number for this page */
|
|
+ PgHdr *pNextHash, *pPrevHash; /* Hash collision chain for PgHdr.pgno */
|
|
+ int nRef; /* Number of users of this page */
|
|
+ PgHdr *pNextFree, *pPrevFree; /* Freelist of pages where nRef==0 */
|
|
+ PgHdr *pNextAll, *pPrevAll; /* A list of all pages */
|
|
+ PgHdr *pNextCkpt, *pPrevCkpt; /* List of pages in the checkpoint journal */
|
|
+ u8 inJournal; /* TRUE if has been written to journal */
|
|
+ u8 inCkpt; /* TRUE if written to the checkpoint journal */
|
|
+ u8 dirty; /* TRUE if we need to write back changes */
|
|
+ u8 needSync; /* Sync journal before writing this page */
|
|
+ u8 alwaysRollback; /* Disable dont_rollback() for this page */
|
|
+ PgHdr *pDirty; /* Dirty pages sorted by PgHdr.pgno */
|
|
+ /* SQLITE_PAGE_SIZE bytes of page data follow this header */
|
|
+ /* Pager.nExtra bytes of local data follow the page data */
|
|
+};
|
|
+
|
|
+
|
|
+/*
|
|
+** A macro used for invoking the codec if there is one
|
|
+*/
|
|
+#ifdef SQLITE_HAS_CODEC
|
|
+# define CODEC(P,D,N,X) if( P->xCodec ){ P->xCodec(P->pCodecArg,D,N,X); }
|
|
+#else
|
|
+# define CODEC(P,D,N,X)
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** Convert a pointer to a PgHdr into a pointer to its data
|
|
+** and back again.
|
|
+*/
|
|
+#define PGHDR_TO_DATA(P) ((void*)(&(P)[1]))
|
|
+#define DATA_TO_PGHDR(D) (&((PgHdr*)(D))[-1])
|
|
+#define PGHDR_TO_EXTRA(P) ((void*)&((char*)(&(P)[1]))[SQLITE_PAGE_SIZE])
|
|
+
|
|
+/*
|
|
+** How big to make the hash table used for locating in-memory pages
|
|
+** by page number.
|
|
+*/
|
|
+#define N_PG_HASH 2048
|
|
+
|
|
+/*
|
|
+** Hash a page number
|
|
+*/
|
|
+#define pager_hash(PN) ((PN)&(N_PG_HASH-1))
|
|
+
|
|
+/*
|
|
+** A open page cache is an instance of the following structure.
|
|
+*/
|
|
+struct Pager {
|
|
+ char *zFilename; /* Name of the database file */
|
|
+ char *zJournal; /* Name of the journal file */
|
|
+ char *zDirectory; /* Directory hold database and journal files */
|
|
+ OsFile fd, jfd; /* File descriptors for database and journal */
|
|
+ OsFile cpfd; /* File descriptor for the checkpoint journal */
|
|
+ int dbSize; /* Number of pages in the file */
|
|
+ int origDbSize; /* dbSize before the current change */
|
|
+ int ckptSize; /* Size of database (in pages) at ckpt_begin() */
|
|
+ off_t ckptJSize; /* Size of journal at ckpt_begin() */
|
|
+ int nRec; /* Number of pages written to the journal */
|
|
+ u32 cksumInit; /* Quasi-random value added to every checksum */
|
|
+ int ckptNRec; /* Number of records in the checkpoint journal */
|
|
+ int nExtra; /* Add this many bytes to each in-memory page */
|
|
+ void (*xDestructor)(void*); /* Call this routine when freeing pages */
|
|
+ int nPage; /* Total number of in-memory pages */
|
|
+ int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */
|
|
+ int mxPage; /* Maximum number of pages to hold in cache */
|
|
+ int nHit, nMiss, nOvfl; /* Cache hits, missing, and LRU overflows */
|
|
+ void (*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */
|
|
+ void *pCodecArg; /* First argument to xCodec() */
|
|
+ u8 journalOpen; /* True if journal file descriptors is valid */
|
|
+ u8 journalStarted; /* True if header of journal is synced */
|
|
+ u8 useJournal; /* Use a rollback journal on this file */
|
|
+ u8 ckptOpen; /* True if the checkpoint journal is open */
|
|
+ u8 ckptInUse; /* True we are in a checkpoint */
|
|
+ u8 ckptAutoopen; /* Open ckpt journal when main journal is opened*/
|
|
+ u8 noSync; /* Do not sync the journal if true */
|
|
+ u8 fullSync; /* Do extra syncs of the journal for robustness */
|
|
+ u8 state; /* SQLITE_UNLOCK, _READLOCK or _WRITELOCK */
|
|
+ u8 errMask; /* One of several kinds of errors */
|
|
+ u8 tempFile; /* zFilename is a temporary file */
|
|
+ u8 readOnly; /* True for a read-only database */
|
|
+ u8 needSync; /* True if an fsync() is needed on the journal */
|
|
+ u8 dirtyFile; /* True if database file has changed in any way */
|
|
+ u8 alwaysRollback; /* Disable dont_rollback() for all pages */
|
|
+ u8 *aInJournal; /* One bit for each page in the database file */
|
|
+ u8 *aInCkpt; /* One bit for each page in the database */
|
|
+ PgHdr *pFirst, *pLast; /* List of free pages */
|
|
+ PgHdr *pFirstSynced; /* First free page with PgHdr.needSync==0 */
|
|
+ PgHdr *pAll; /* List of all pages */
|
|
+ PgHdr *pCkpt; /* List of pages in the checkpoint journal */
|
|
+ PgHdr *aHash[N_PG_HASH]; /* Hash table to map page number of PgHdr */
|
|
+};
|
|
+
|
|
+/*
|
|
+** These are bits that can be set in Pager.errMask.
|
|
+*/
|
|
+#define PAGER_ERR_FULL 0x01 /* a write() failed */
|
|
+#define PAGER_ERR_MEM 0x02 /* malloc() failed */
|
|
+#define PAGER_ERR_LOCK 0x04 /* error in the locking protocol */
|
|
+#define PAGER_ERR_CORRUPT 0x08 /* database or journal corruption */
|
|
+#define PAGER_ERR_DISK 0x10 /* general disk I/O error - bad hard drive? */
|
|
+
|
|
+/*
|
|
+** The journal file contains page records in the following
|
|
+** format.
|
|
+**
|
|
+** Actually, this structure is the complete page record for pager
|
|
+** formats less than 3. Beginning with format 3, this record is surrounded
|
|
+** by two checksums.
|
|
+*/
|
|
+typedef struct PageRecord PageRecord;
|
|
+struct PageRecord {
|
|
+ Pgno pgno; /* The page number */
|
|
+ char aData[SQLITE_PAGE_SIZE]; /* Original data for page pgno */
|
|
+};
|
|
+
|
|
+/*
|
|
+** Journal files begin with the following magic string. The data
|
|
+** was obtained from /dev/random. It is used only as a sanity check.
|
|
+**
|
|
+** There are three journal formats (so far). The 1st journal format writes
|
|
+** 32-bit integers in the byte-order of the host machine. New
|
|
+** formats writes integers as big-endian. All new journals use the
|
|
+** new format, but we have to be able to read an older journal in order
|
|
+** to rollback journals created by older versions of the library.
|
|
+**
|
|
+** The 3rd journal format (added for 2.8.0) adds additional sanity
|
|
+** checking information to the journal. If the power fails while the
|
|
+** journal is being written, semi-random garbage data might appear in
|
|
+** the journal file after power is restored. If an attempt is then made
|
|
+** to roll the journal back, the database could be corrupted. The additional
|
|
+** sanity checking data is an attempt to discover the garbage in the
|
|
+** journal and ignore it.
|
|
+**
|
|
+** The sanity checking information for the 3rd journal format consists
|
|
+** of a 32-bit checksum on each page of data. The checksum covers both
|
|
+** the page number and the SQLITE_PAGE_SIZE bytes of data for the page.
|
|
+** This cksum is initialized to a 32-bit random value that appears in the
|
|
+** journal file right after the header. The random initializer is important,
|
|
+** because garbage data that appears at the end of a journal is likely
|
|
+** data that was once in other files that have now been deleted. If the
|
|
+** garbage data came from an obsolete journal file, the checksums might
|
|
+** be correct. But by initializing the checksum to random value which
|
|
+** is different for every journal, we minimize that risk.
|
|
+*/
|
|
+static const unsigned char aJournalMagic1[] = {
|
|
+ 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd4,
|
|
+};
|
|
+static const unsigned char aJournalMagic2[] = {
|
|
+ 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd5,
|
|
+};
|
|
+static const unsigned char aJournalMagic3[] = {
|
|
+ 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd6,
|
|
+};
|
|
+#define JOURNAL_FORMAT_1 1
|
|
+#define JOURNAL_FORMAT_2 2
|
|
+#define JOURNAL_FORMAT_3 3
|
|
+
|
|
+/*
|
|
+** The following integer determines what format to use when creating
|
|
+** new primary journal files. By default we always use format 3.
|
|
+** When testing, we can set this value to older journal formats in order to
|
|
+** make sure that newer versions of the library are able to rollback older
|
|
+** journal files.
|
|
+**
|
|
+** Note that checkpoint journals always use format 2 and omit the header.
|
|
+*/
|
|
+#ifdef SQLITE_TEST
|
|
+int journal_format = 3;
|
|
+#else
|
|
+# define journal_format 3
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** The size of the header and of each page in the journal varies according
|
|
+** to which journal format is being used. The following macros figure out
|
|
+** the sizes based on format numbers.
|
|
+*/
|
|
+#define JOURNAL_HDR_SZ(X) \
|
|
+ (sizeof(aJournalMagic1) + sizeof(Pgno) + ((X)>=3)*2*sizeof(u32))
|
|
+#define JOURNAL_PG_SZ(X) \
|
|
+ (SQLITE_PAGE_SIZE + sizeof(Pgno) + ((X)>=3)*sizeof(u32))
|
|
+
|
|
+/*
|
|
+** Enable reference count tracking here:
|
|
+*/
|
|
+#ifdef SQLITE_TEST
|
|
+ int pager_refinfo_enable = 0;
|
|
+ static void pager_refinfo(PgHdr *p){
|
|
+ static int cnt = 0;
|
|
+ if( !pager_refinfo_enable ) return;
|
|
+ printf(
|
|
+ "REFCNT: %4d addr=0x%08x nRef=%d\n",
|
|
+ p->pgno, (int)PGHDR_TO_DATA(p), p->nRef
|
|
+ );
|
|
+ cnt++; /* Something to set a breakpoint on */
|
|
+ }
|
|
+# define REFINFO(X) pager_refinfo(X)
|
|
+#else
|
|
+# define REFINFO(X)
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** Read a 32-bit integer from the given file descriptor. Store the integer
|
|
+** that is read in *pRes. Return SQLITE_OK if everything worked, or an
|
|
+** error code is something goes wrong.
|
|
+**
|
|
+** If the journal format is 2 or 3, read a big-endian integer. If the
|
|
+** journal format is 1, read an integer in the native byte-order of the
|
|
+** host machine.
|
|
+*/
|
|
+static int read32bits(int format, OsFile *fd, u32 *pRes){
|
|
+ u32 res;
|
|
+ int rc;
|
|
+ rc = sqliteOsRead(fd, &res, sizeof(res));
|
|
+ if( rc==SQLITE_OK && format>JOURNAL_FORMAT_1 ){
|
|
+ unsigned char ac[4];
|
|
+ memcpy(ac, &res, 4);
|
|
+ res = (ac[0]<<24) | (ac[1]<<16) | (ac[2]<<8) | ac[3];
|
|
+ }
|
|
+ *pRes = res;
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK
|
|
+** on success or an error code is something goes wrong.
|
|
+**
|
|
+** If the journal format is 2 or 3, write the integer as 4 big-endian
|
|
+** bytes. If the journal format is 1, write the integer in the native
|
|
+** byte order. In normal operation, only formats 2 and 3 are used.
|
|
+** Journal format 1 is only used for testing.
|
|
+*/
|
|
+static int write32bits(OsFile *fd, u32 val){
|
|
+ unsigned char ac[4];
|
|
+ if( journal_format<=1 ){
|
|
+ return sqliteOsWrite(fd, &val, 4);
|
|
+ }
|
|
+ ac[0] = (val>>24) & 0xff;
|
|
+ ac[1] = (val>>16) & 0xff;
|
|
+ ac[2] = (val>>8) & 0xff;
|
|
+ ac[3] = val & 0xff;
|
|
+ return sqliteOsWrite(fd, ac, 4);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Write a 32-bit integer into a page header right before the
|
|
+** page data. This will overwrite the PgHdr.pDirty pointer.
|
|
+**
|
|
+** The integer is big-endian for formats 2 and 3 and native byte order
|
|
+** for journal format 1.
|
|
+*/
|
|
+static void store32bits(u32 val, PgHdr *p, int offset){
|
|
+ unsigned char *ac;
|
|
+ ac = &((unsigned char*)PGHDR_TO_DATA(p))[offset];
|
|
+ if( journal_format<=1 ){
|
|
+ memcpy(ac, &val, 4);
|
|
+ }else{
|
|
+ ac[0] = (val>>24) & 0xff;
|
|
+ ac[1] = (val>>16) & 0xff;
|
|
+ ac[2] = (val>>8) & 0xff;
|
|
+ ac[3] = val & 0xff;
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+/*
|
|
+** Convert the bits in the pPager->errMask into an approprate
|
|
+** return code.
|
|
+*/
|
|
+static int pager_errcode(Pager *pPager){
|
|
+ int rc = SQLITE_OK;
|
|
+ if( pPager->errMask & PAGER_ERR_LOCK ) rc = SQLITE_PROTOCOL;
|
|
+ if( pPager->errMask & PAGER_ERR_DISK ) rc = SQLITE_IOERR;
|
|
+ if( pPager->errMask & PAGER_ERR_FULL ) rc = SQLITE_FULL;
|
|
+ if( pPager->errMask & PAGER_ERR_MEM ) rc = SQLITE_NOMEM;
|
|
+ if( pPager->errMask & PAGER_ERR_CORRUPT ) rc = SQLITE_CORRUPT;
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Add or remove a page from the list of all pages that are in the
|
|
+** checkpoint journal.
|
|
+**
|
|
+** The Pager keeps a separate list of pages that are currently in
|
|
+** the checkpoint journal. This helps the sqlitepager_ckpt_commit()
|
|
+** routine run MUCH faster for the common case where there are many
|
|
+** pages in memory but only a few are in the checkpoint journal.
|
|
+*/
|
|
+static void page_add_to_ckpt_list(PgHdr *pPg){
|
|
+ Pager *pPager = pPg->pPager;
|
|
+ if( pPg->inCkpt ) return;
|
|
+ assert( pPg->pPrevCkpt==0 && pPg->pNextCkpt==0 );
|
|
+ pPg->pPrevCkpt = 0;
|
|
+ if( pPager->pCkpt ){
|
|
+ pPager->pCkpt->pPrevCkpt = pPg;
|
|
+ }
|
|
+ pPg->pNextCkpt = pPager->pCkpt;
|
|
+ pPager->pCkpt = pPg;
|
|
+ pPg->inCkpt = 1;
|
|
+}
|
|
+static void page_remove_from_ckpt_list(PgHdr *pPg){
|
|
+ if( !pPg->inCkpt ) return;
|
|
+ if( pPg->pPrevCkpt ){
|
|
+ assert( pPg->pPrevCkpt->pNextCkpt==pPg );
|
|
+ pPg->pPrevCkpt->pNextCkpt = pPg->pNextCkpt;
|
|
+ }else{
|
|
+ assert( pPg->pPager->pCkpt==pPg );
|
|
+ pPg->pPager->pCkpt = pPg->pNextCkpt;
|
|
+ }
|
|
+ if( pPg->pNextCkpt ){
|
|
+ assert( pPg->pNextCkpt->pPrevCkpt==pPg );
|
|
+ pPg->pNextCkpt->pPrevCkpt = pPg->pPrevCkpt;
|
|
+ }
|
|
+ pPg->pNextCkpt = 0;
|
|
+ pPg->pPrevCkpt = 0;
|
|
+ pPg->inCkpt = 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Find a page in the hash table given its page number. Return
|
|
+** a pointer to the page or NULL if not found.
|
|
+*/
|
|
+static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){
|
|
+ PgHdr *p = pPager->aHash[pager_hash(pgno)];
|
|
+ while( p && p->pgno!=pgno ){
|
|
+ p = p->pNextHash;
|
|
+ }
|
|
+ return p;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Unlock the database and clear the in-memory cache. This routine
|
|
+** sets the state of the pager back to what it was when it was first
|
|
+** opened. Any outstanding pages are invalidated and subsequent attempts
|
|
+** to access those pages will likely result in a coredump.
|
|
+*/
|
|
+static void pager_reset(Pager *pPager){
|
|
+ PgHdr *pPg, *pNext;
|
|
+ for(pPg=pPager->pAll; pPg; pPg=pNext){
|
|
+ pNext = pPg->pNextAll;
|
|
+ sqliteFree(pPg);
|
|
+ }
|
|
+ pPager->pFirst = 0;
|
|
+ pPager->pFirstSynced = 0;
|
|
+ pPager->pLast = 0;
|
|
+ pPager->pAll = 0;
|
|
+ memset(pPager->aHash, 0, sizeof(pPager->aHash));
|
|
+ pPager->nPage = 0;
|
|
+ if( pPager->state>=SQLITE_WRITELOCK ){
|
|
+ sqlitepager_rollback(pPager);
|
|
+ }
|
|
+ sqliteOsUnlock(&pPager->fd);
|
|
+ pPager->state = SQLITE_UNLOCK;
|
|
+ pPager->dbSize = -1;
|
|
+ pPager->nRef = 0;
|
|
+ assert( pPager->journalOpen==0 );
|
|
+}
|
|
+
|
|
+/*
|
|
+** When this routine is called, the pager has the journal file open and
|
|
+** a write lock on the database. This routine releases the database
|
|
+** write lock and acquires a read lock in its place. The journal file
|
|
+** is deleted and closed.
|
|
+**
|
|
+** TODO: Consider keeping the journal file open for temporary databases.
|
|
+** This might give a performance improvement on windows where opening
|
|
+** a file is an expensive operation.
|
|
+*/
|
|
+static int pager_unwritelock(Pager *pPager){
|
|
+ int rc;
|
|
+ PgHdr *pPg;
|
|
+ if( pPager->state<SQLITE_WRITELOCK ) return SQLITE_OK;
|
|
+ sqlitepager_ckpt_commit(pPager);
|
|
+ if( pPager->ckptOpen ){
|
|
+ sqliteOsClose(&pPager->cpfd);
|
|
+ pPager->ckptOpen = 0;
|
|
+ }
|
|
+ if( pPager->journalOpen ){
|
|
+ sqliteOsClose(&pPager->jfd);
|
|
+ pPager->journalOpen = 0;
|
|
+ sqliteOsDelete(pPager->zJournal);
|
|
+ sqliteFree( pPager->aInJournal );
|
|
+ pPager->aInJournal = 0;
|
|
+ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
|
|
+ pPg->inJournal = 0;
|
|
+ pPg->dirty = 0;
|
|
+ pPg->needSync = 0;
|
|
+ }
|
|
+ }else{
|
|
+ assert( pPager->dirtyFile==0 || pPager->useJournal==0 );
|
|
+ }
|
|
+ rc = sqliteOsReadLock(&pPager->fd);
|
|
+ if( rc==SQLITE_OK ){
|
|
+ pPager->state = SQLITE_READLOCK;
|
|
+ }else{
|
|
+ /* This can only happen if a process does a BEGIN, then forks and the
|
|
+ ** child process does the COMMIT. Because of the semantics of unix
|
|
+ ** file locking, the unlock will fail.
|
|
+ */
|
|
+ pPager->state = SQLITE_UNLOCK;
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Compute and return a checksum for the page of data.
|
|
+**
|
|
+** This is not a real checksum. It is really just the sum of the
|
|
+** random initial value and the page number. We considered do a checksum
|
|
+** of the database, but that was found to be too slow.
|
|
+*/
|
|
+static u32 pager_cksum(Pager *pPager, Pgno pgno, const char *aData){
|
|
+ u32 cksum = pPager->cksumInit + pgno;
|
|
+ return cksum;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Read a single page from the journal file opened on file descriptor
|
|
+** jfd. Playback this one page.
|
|
+**
|
|
+** There are three different journal formats. The format parameter determines
|
|
+** which format is used by the journal that is played back.
|
|
+*/
|
|
+static int pager_playback_one_page(Pager *pPager, OsFile *jfd, int format){
|
|
+ int rc;
|
|
+ PgHdr *pPg; /* An existing page in the cache */
|
|
+ PageRecord pgRec;
|
|
+ u32 cksum;
|
|
+
|
|
+ rc = read32bits(format, jfd, &pgRec.pgno);
|
|
+ if( rc!=SQLITE_OK ) return rc;
|
|
+ rc = sqliteOsRead(jfd, &pgRec.aData, sizeof(pgRec.aData));
|
|
+ if( rc!=SQLITE_OK ) return rc;
|
|
+
|
|
+ /* Sanity checking on the page. This is more important that I originally
|
|
+ ** thought. If a power failure occurs while the journal is being written,
|
|
+ ** it could cause invalid data to be written into the journal. We need to
|
|
+ ** detect this invalid data (with high probability) and ignore it.
|
|
+ */
|
|
+ if( pgRec.pgno==0 ){
|
|
+ return SQLITE_DONE;
|
|
+ }
|
|
+ if( pgRec.pgno>(unsigned)pPager->dbSize ){
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ if( format>=JOURNAL_FORMAT_3 ){
|
|
+ rc = read32bits(format, jfd, &cksum);
|
|
+ if( rc ) return rc;
|
|
+ if( pager_cksum(pPager, pgRec.pgno, pgRec.aData)!=cksum ){
|
|
+ return SQLITE_DONE;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Playback the page. Update the in-memory copy of the page
|
|
+ ** at the same time, if there is one.
|
|
+ */
|
|
+ pPg = pager_lookup(pPager, pgRec.pgno);
|
|
+ TRACE2("PLAYBACK %d\n", pgRec.pgno);
|
|
+ sqliteOsSeek(&pPager->fd, (pgRec.pgno-1)*(off_t)SQLITE_PAGE_SIZE);
|
|
+ rc = sqliteOsWrite(&pPager->fd, pgRec.aData, SQLITE_PAGE_SIZE);
|
|
+ if( pPg ){
|
|
+ /* No page should ever be rolled back that is in use, except for page
|
|
+ ** 1 which is held in use in order to keep the lock on the database
|
|
+ ** active.
|
|
+ */
|
|
+ assert( pPg->nRef==0 || pPg->pgno==1 );
|
|
+ memcpy(PGHDR_TO_DATA(pPg), pgRec.aData, SQLITE_PAGE_SIZE);
|
|
+ memset(PGHDR_TO_EXTRA(pPg), 0, pPager->nExtra);
|
|
+ pPg->dirty = 0;
|
|
+ pPg->needSync = 0;
|
|
+ CODEC(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3);
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Playback the journal and thus restore the database file to
|
|
+** the state it was in before we started making changes.
|
|
+**
|
|
+** The journal file format is as follows:
|
|
+**
|
|
+** * 8 byte prefix. One of the aJournalMagic123 vectors defined
|
|
+** above. The format of the journal file is determined by which
|
|
+** of the three prefix vectors is seen.
|
|
+** * 4 byte big-endian integer which is the number of valid page records
|
|
+** in the journal. If this value is 0xffffffff, then compute the
|
|
+** number of page records from the journal size. This field appears
|
|
+** in format 3 only.
|
|
+** * 4 byte big-endian integer which is the initial value for the
|
|
+** sanity checksum. This field appears in format 3 only.
|
|
+** * 4 byte integer which is the number of pages to truncate the
|
|
+** database to during a rollback.
|
|
+** * Zero or more pages instances, each as follows:
|
|
+** + 4 byte page number.
|
|
+** + SQLITE_PAGE_SIZE bytes of data.
|
|
+** + 4 byte checksum (format 3 only)
|
|
+**
|
|
+** When we speak of the journal header, we mean the first 4 bullets above.
|
|
+** Each entry in the journal is an instance of the 5th bullet. Note that
|
|
+** bullets 2 and 3 only appear in format-3 journals.
|
|
+**
|
|
+** Call the value from the second bullet "nRec". nRec is the number of
|
|
+** valid page entries in the journal. In most cases, you can compute the
|
|
+** value of nRec from the size of the journal file. But if a power
|
|
+** failure occurred while the journal was being written, it could be the
|
|
+** case that the size of the journal file had already been increased but
|
|
+** the extra entries had not yet made it safely to disk. In such a case,
|
|
+** the value of nRec computed from the file size would be too large. For
|
|
+** that reason, we always use the nRec value in the header.
|
|
+**
|
|
+** If the nRec value is 0xffffffff it means that nRec should be computed
|
|
+** from the file size. This value is used when the user selects the
|
|
+** no-sync option for the journal. A power failure could lead to corruption
|
|
+** in this case. But for things like temporary table (which will be
|
|
+** deleted when the power is restored) we don't care.
|
|
+**
|
|
+** Journal formats 1 and 2 do not have an nRec value in the header so we
|
|
+** have to compute nRec from the file size. This has risks (as described
|
|
+** above) which is why all persistent tables have been changed to use
|
|
+** format 3.
|
|
+**
|
|
+** If the file opened as the journal file is not a well-formed
|
|
+** journal file then the database will likely already be
|
|
+** corrupted, so the PAGER_ERR_CORRUPT bit is set in pPager->errMask
|
|
+** and SQLITE_CORRUPT is returned. If it all works, then this routine
|
|
+** returns SQLITE_OK.
|
|
+*/
|
|
+static int pager_playback(Pager *pPager, int useJournalSize){
|
|
+ off_t szJ; /* Size of the journal file in bytes */
|
|
+ int nRec; /* Number of Records in the journal */
|
|
+ int i; /* Loop counter */
|
|
+ Pgno mxPg = 0; /* Size of the original file in pages */
|
|
+ int format; /* Format of the journal file. */
|
|
+ unsigned char aMagic[sizeof(aJournalMagic1)];
|
|
+ int rc;
|
|
+
|
|
+ /* Figure out how many records are in the journal. Abort early if
|
|
+ ** the journal is empty.
|
|
+ */
|
|
+ assert( pPager->journalOpen );
|
|
+ sqliteOsSeek(&pPager->jfd, 0);
|
|
+ rc = sqliteOsFileSize(&pPager->jfd, &szJ);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ goto end_playback;
|
|
+ }
|
|
+
|
|
+ /* If the journal file is too small to contain a complete header,
|
|
+ ** it must mean that the process that created the journal was just
|
|
+ ** beginning to write the journal file when it died. In that case,
|
|
+ ** the database file should have still been completely unchanged.
|
|
+ ** Nothing needs to be rolled back. We can safely ignore this journal.
|
|
+ */
|
|
+ if( szJ < sizeof(aMagic)+sizeof(Pgno) ){
|
|
+ goto end_playback;
|
|
+ }
|
|
+
|
|
+ /* Read the beginning of the journal and truncate the
|
|
+ ** database file back to its original size.
|
|
+ */
|
|
+ rc = sqliteOsRead(&pPager->jfd, aMagic, sizeof(aMagic));
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ rc = SQLITE_PROTOCOL;
|
|
+ goto end_playback;
|
|
+ }
|
|
+ if( memcmp(aMagic, aJournalMagic3, sizeof(aMagic))==0 ){
|
|
+ format = JOURNAL_FORMAT_3;
|
|
+ }else if( memcmp(aMagic, aJournalMagic2, sizeof(aMagic))==0 ){
|
|
+ format = JOURNAL_FORMAT_2;
|
|
+ }else if( memcmp(aMagic, aJournalMagic1, sizeof(aMagic))==0 ){
|
|
+ format = JOURNAL_FORMAT_1;
|
|
+ }else{
|
|
+ rc = SQLITE_PROTOCOL;
|
|
+ goto end_playback;
|
|
+ }
|
|
+ if( format>=JOURNAL_FORMAT_3 ){
|
|
+ if( szJ < sizeof(aMagic) + 3*sizeof(u32) ){
|
|
+ /* Ignore the journal if it is too small to contain a complete
|
|
+ ** header. We already did this test once above, but at the prior
|
|
+ ** test, we did not know the journal format and so we had to assume
|
|
+ ** the smallest possible header. Now we know the header is bigger
|
|
+ ** than the minimum so we test again.
|
|
+ */
|
|
+ goto end_playback;
|
|
+ }
|
|
+ rc = read32bits(format, &pPager->jfd, (u32*)&nRec);
|
|
+ if( rc ) goto end_playback;
|
|
+ rc = read32bits(format, &pPager->jfd, &pPager->cksumInit);
|
|
+ if( rc ) goto end_playback;
|
|
+ if( nRec==0xffffffff || useJournalSize ){
|
|
+ nRec = (szJ - JOURNAL_HDR_SZ(3))/JOURNAL_PG_SZ(3);
|
|
+ }
|
|
+ }else{
|
|
+ nRec = (szJ - JOURNAL_HDR_SZ(2))/JOURNAL_PG_SZ(2);
|
|
+ assert( nRec*JOURNAL_PG_SZ(2)+JOURNAL_HDR_SZ(2)==szJ );
|
|
+ }
|
|
+ rc = read32bits(format, &pPager->jfd, &mxPg);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ goto end_playback;
|
|
+ }
|
|
+ assert( pPager->origDbSize==0 || pPager->origDbSize==mxPg );
|
|
+ rc = sqliteOsTruncate(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)mxPg);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ goto end_playback;
|
|
+ }
|
|
+ pPager->dbSize = mxPg;
|
|
+
|
|
+ /* Copy original pages out of the journal and back into the database file.
|
|
+ */
|
|
+ for(i=0; i<nRec; i++){
|
|
+ rc = pager_playback_one_page(pPager, &pPager->jfd, format);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ if( rc==SQLITE_DONE ){
|
|
+ rc = SQLITE_OK;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Pages that have been written to the journal but never synced
|
|
+ ** where not restored by the loop above. We have to restore those
|
|
+ ** pages by reading them back from the original database.
|
|
+ */
|
|
+ if( rc==SQLITE_OK ){
|
|
+ PgHdr *pPg;
|
|
+ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
|
|
+ char zBuf[SQLITE_PAGE_SIZE];
|
|
+ if( !pPg->dirty ) continue;
|
|
+ if( (int)pPg->pgno <= pPager->origDbSize ){
|
|
+ sqliteOsSeek(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)(pPg->pgno-1));
|
|
+ rc = sqliteOsRead(&pPager->fd, zBuf, SQLITE_PAGE_SIZE);
|
|
+ TRACE2("REFETCH %d\n", pPg->pgno);
|
|
+ CODEC(pPager, zBuf, pPg->pgno, 2);
|
|
+ if( rc ) break;
|
|
+ }else{
|
|
+ memset(zBuf, 0, SQLITE_PAGE_SIZE);
|
|
+ }
|
|
+ if( pPg->nRef==0 || memcmp(zBuf, PGHDR_TO_DATA(pPg), SQLITE_PAGE_SIZE) ){
|
|
+ memcpy(PGHDR_TO_DATA(pPg), zBuf, SQLITE_PAGE_SIZE);
|
|
+ memset(PGHDR_TO_EXTRA(pPg), 0, pPager->nExtra);
|
|
+ }
|
|
+ pPg->needSync = 0;
|
|
+ pPg->dirty = 0;
|
|
+ }
|
|
+ }
|
|
+
|
|
+end_playback:
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ pager_unwritelock(pPager);
|
|
+ pPager->errMask |= PAGER_ERR_CORRUPT;
|
|
+ rc = SQLITE_CORRUPT;
|
|
+ }else{
|
|
+ rc = pager_unwritelock(pPager);
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Playback the checkpoint journal.
|
|
+**
|
|
+** This is similar to playing back the transaction journal but with
|
|
+** a few extra twists.
|
|
+**
|
|
+** (1) The number of pages in the database file at the start of
|
|
+** the checkpoint is stored in pPager->ckptSize, not in the
|
|
+** journal file itself.
|
|
+**
|
|
+** (2) In addition to playing back the checkpoint journal, also
|
|
+** playback all pages of the transaction journal beginning
|
|
+** at offset pPager->ckptJSize.
|
|
+*/
|
|
+static int pager_ckpt_playback(Pager *pPager){
|
|
+ off_t szJ; /* Size of the full journal */
|
|
+ int nRec; /* Number of Records */
|
|
+ int i; /* Loop counter */
|
|
+ int rc;
|
|
+
|
|
+ /* Truncate the database back to its original size.
|
|
+ */
|
|
+ rc = sqliteOsTruncate(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)pPager->ckptSize);
|
|
+ pPager->dbSize = pPager->ckptSize;
|
|
+
|
|
+ /* Figure out how many records are in the checkpoint journal.
|
|
+ */
|
|
+ assert( pPager->ckptInUse && pPager->journalOpen );
|
|
+ sqliteOsSeek(&pPager->cpfd, 0);
|
|
+ nRec = pPager->ckptNRec;
|
|
+
|
|
+ /* Copy original pages out of the checkpoint journal and back into the
|
|
+ ** database file. Note that the checkpoint journal always uses format
|
|
+ ** 2 instead of format 3 since it does not need to be concerned with
|
|
+ ** power failures corrupting the journal and can thus omit the checksums.
|
|
+ */
|
|
+ for(i=nRec-1; i>=0; i--){
|
|
+ rc = pager_playback_one_page(pPager, &pPager->cpfd, 2);
|
|
+ assert( rc!=SQLITE_DONE );
|
|
+ if( rc!=SQLITE_OK ) goto end_ckpt_playback;
|
|
+ }
|
|
+
|
|
+ /* Figure out how many pages need to be copied out of the transaction
|
|
+ ** journal.
|
|
+ */
|
|
+ rc = sqliteOsSeek(&pPager->jfd, pPager->ckptJSize);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ goto end_ckpt_playback;
|
|
+ }
|
|
+ rc = sqliteOsFileSize(&pPager->jfd, &szJ);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ goto end_ckpt_playback;
|
|
+ }
|
|
+ nRec = (szJ - pPager->ckptJSize)/JOURNAL_PG_SZ(journal_format);
|
|
+ for(i=nRec-1; i>=0; i--){
|
|
+ rc = pager_playback_one_page(pPager, &pPager->jfd, journal_format);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ assert( rc!=SQLITE_DONE );
|
|
+ goto end_ckpt_playback;
|
|
+ }
|
|
+ }
|
|
+
|
|
+end_ckpt_playback:
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ pPager->errMask |= PAGER_ERR_CORRUPT;
|
|
+ rc = SQLITE_CORRUPT;
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Change the maximum number of in-memory pages that are allowed.
|
|
+**
|
|
+** The maximum number is the absolute value of the mxPage parameter.
|
|
+** If mxPage is negative, the noSync flag is also set. noSync bypasses
|
|
+** calls to sqliteOsSync(). The pager runs much faster with noSync on,
|
|
+** but if the operating system crashes or there is an abrupt power
|
|
+** failure, the database file might be left in an inconsistent and
|
|
+** unrepairable state.
|
|
+*/
|
|
+void sqlitepager_set_cachesize(Pager *pPager, int mxPage){
|
|
+ if( mxPage>=0 ){
|
|
+ pPager->noSync = pPager->tempFile;
|
|
+ if( pPager->noSync==0 ) pPager->needSync = 0;
|
|
+ }else{
|
|
+ pPager->noSync = 1;
|
|
+ mxPage = -mxPage;
|
|
+ }
|
|
+ if( mxPage>10 ){
|
|
+ pPager->mxPage = mxPage;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Adjust the robustness of the database to damage due to OS crashes
|
|
+** or power failures by changing the number of syncs()s when writing
|
|
+** the rollback journal. There are three levels:
|
|
+**
|
|
+** OFF sqliteOsSync() is never called. This is the default
|
|
+** for temporary and transient files.
|
|
+**
|
|
+** NORMAL The journal is synced once before writes begin on the
|
|
+** database. This is normally adequate protection, but
|
|
+** it is theoretically possible, though very unlikely,
|
|
+** that an inopertune power failure could leave the journal
|
|
+** in a state which would cause damage to the database
|
|
+** when it is rolled back.
|
|
+**
|
|
+** FULL The journal is synced twice before writes begin on the
|
|
+** database (with some additional information - the nRec field
|
|
+** of the journal header - being written in between the two
|
|
+** syncs). If we assume that writing a
|
|
+** single disk sector is atomic, then this mode provides
|
|
+** assurance that the journal will not be corrupted to the
|
|
+** point of causing damage to the database during rollback.
|
|
+**
|
|
+** Numeric values associated with these states are OFF==1, NORMAL=2,
|
|
+** and FULL=3.
|
|
+*/
|
|
+void sqlitepager_set_safety_level(Pager *pPager, int level){
|
|
+ pPager->noSync = level==1 || pPager->tempFile;
|
|
+ pPager->fullSync = level==3 && !pPager->tempFile;
|
|
+ if( pPager->noSync==0 ) pPager->needSync = 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Open a temporary file. Write the name of the file into zName
|
|
+** (zName must be at least SQLITE_TEMPNAME_SIZE bytes long.) Write
|
|
+** the file descriptor into *fd. Return SQLITE_OK on success or some
|
|
+** other error code if we fail.
|
|
+**
|
|
+** The OS will automatically delete the temporary file when it is
|
|
+** closed.
|
|
+*/
|
|
+static int sqlitepager_opentemp(char *zFile, OsFile *fd){
|
|
+ int cnt = 8;
|
|
+ int rc;
|
|
+ do{
|
|
+ cnt--;
|
|
+ sqliteOsTempFileName(zFile);
|
|
+ rc = sqliteOsOpenExclusive(zFile, fd, 1);
|
|
+ }while( cnt>0 && rc!=SQLITE_OK );
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Create a new page cache and put a pointer to the page cache in *ppPager.
|
|
+** The file to be cached need not exist. The file is not locked until
|
|
+** the first call to sqlitepager_get() and is only held open until the
|
|
+** last page is released using sqlitepager_unref().
|
|
+**
|
|
+** If zFilename is NULL then a randomly-named temporary file is created
|
|
+** and used as the file to be cached. The file will be deleted
|
|
+** automatically when it is closed.
|
|
+*/
|
|
+int sqlitepager_open(
|
|
+ Pager **ppPager, /* Return the Pager structure here */
|
|
+ const char *zFilename, /* Name of the database file to open */
|
|
+ int mxPage, /* Max number of in-memory cache pages */
|
|
+ int nExtra, /* Extra bytes append to each in-memory page */
|
|
+ int useJournal /* TRUE to use a rollback journal on this file */
|
|
+){
|
|
+ Pager *pPager;
|
|
+ char *zFullPathname;
|
|
+ int nameLen;
|
|
+ OsFile fd;
|
|
+ int rc, i;
|
|
+ int tempFile;
|
|
+ int readOnly = 0;
|
|
+ char zTemp[SQLITE_TEMPNAME_SIZE];
|
|
+
|
|
+ *ppPager = 0;
|
|
+ if( sqlite_malloc_failed ){
|
|
+ return SQLITE_NOMEM;
|
|
+ }
|
|
+ if( zFilename && zFilename[0] ){
|
|
+ zFullPathname = sqliteOsFullPathname(zFilename);
|
|
+ rc = sqliteOsOpenReadWrite(zFullPathname, &fd, &readOnly);
|
|
+ tempFile = 0;
|
|
+ }else{
|
|
+ rc = sqlitepager_opentemp(zTemp, &fd);
|
|
+ zFilename = zTemp;
|
|
+ zFullPathname = sqliteOsFullPathname(zFilename);
|
|
+ tempFile = 1;
|
|
+ }
|
|
+ if( sqlite_malloc_failed ){
|
|
+ return SQLITE_NOMEM;
|
|
+ }
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ sqliteFree(zFullPathname);
|
|
+ return SQLITE_CANTOPEN;
|
|
+ }
|
|
+ nameLen = strlen(zFullPathname);
|
|
+ pPager = sqliteMalloc( sizeof(*pPager) + nameLen*3 + 30 );
|
|
+ if( pPager==0 ){
|
|
+ sqliteOsClose(&fd);
|
|
+ sqliteFree(zFullPathname);
|
|
+ return SQLITE_NOMEM;
|
|
+ }
|
|
+ SET_PAGER(pPager);
|
|
+ pPager->zFilename = (char*)&pPager[1];
|
|
+ pPager->zDirectory = &pPager->zFilename[nameLen+1];
|
|
+ pPager->zJournal = &pPager->zDirectory[nameLen+1];
|
|
+ strcpy(pPager->zFilename, zFullPathname);
|
|
+ strcpy(pPager->zDirectory, zFullPathname);
|
|
+ for(i=nameLen; i>0 && pPager->zDirectory[i-1]!='/'; i--){}
|
|
+ if( i>0 ) pPager->zDirectory[i-1] = 0;
|
|
+ strcpy(pPager->zJournal, zFullPathname);
|
|
+ sqliteFree(zFullPathname);
|
|
+ strcpy(&pPager->zJournal[nameLen], "-journal");
|
|
+ pPager->fd = fd;
|
|
+ pPager->journalOpen = 0;
|
|
+ pPager->useJournal = useJournal;
|
|
+ pPager->ckptOpen = 0;
|
|
+ pPager->ckptInUse = 0;
|
|
+ pPager->nRef = 0;
|
|
+ pPager->dbSize = -1;
|
|
+ pPager->ckptSize = 0;
|
|
+ pPager->ckptJSize = 0;
|
|
+ pPager->nPage = 0;
|
|
+ pPager->mxPage = mxPage>5 ? mxPage : 10;
|
|
+ pPager->state = SQLITE_UNLOCK;
|
|
+ pPager->errMask = 0;
|
|
+ pPager->tempFile = tempFile;
|
|
+ pPager->readOnly = readOnly;
|
|
+ pPager->needSync = 0;
|
|
+ pPager->noSync = pPager->tempFile || !useJournal;
|
|
+ pPager->pFirst = 0;
|
|
+ pPager->pFirstSynced = 0;
|
|
+ pPager->pLast = 0;
|
|
+ pPager->nExtra = nExtra;
|
|
+ memset(pPager->aHash, 0, sizeof(pPager->aHash));
|
|
+ *ppPager = pPager;
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Set the destructor for this pager. If not NULL, the destructor is called
|
|
+** when the reference count on each page reaches zero. The destructor can
|
|
+** be used to clean up information in the extra segment appended to each page.
|
|
+**
|
|
+** The destructor is not called as a result sqlitepager_close().
|
|
+** Destructors are only called by sqlitepager_unref().
|
|
+*/
|
|
+void sqlitepager_set_destructor(Pager *pPager, void (*xDesc)(void*)){
|
|
+ pPager->xDestructor = xDesc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return the total number of pages in the disk file associated with
|
|
+** pPager.
|
|
+*/
|
|
+int sqlitepager_pagecount(Pager *pPager){
|
|
+ off_t n;
|
|
+ assert( pPager!=0 );
|
|
+ if( pPager->dbSize>=0 ){
|
|
+ return pPager->dbSize;
|
|
+ }
|
|
+ if( sqliteOsFileSize(&pPager->fd, &n)!=SQLITE_OK ){
|
|
+ pPager->errMask |= PAGER_ERR_DISK;
|
|
+ return 0;
|
|
+ }
|
|
+ n /= SQLITE_PAGE_SIZE;
|
|
+ if( pPager->state!=SQLITE_UNLOCK ){
|
|
+ pPager->dbSize = n;
|
|
+ }
|
|
+ return n;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Forward declaration
|
|
+*/
|
|
+static int syncJournal(Pager*);
|
|
+
|
|
+/*
|
|
+** Truncate the file to the number of pages specified.
|
|
+*/
|
|
+int sqlitepager_truncate(Pager *pPager, Pgno nPage){
|
|
+ int rc;
|
|
+ if( pPager->dbSize<0 ){
|
|
+ sqlitepager_pagecount(pPager);
|
|
+ }
|
|
+ if( pPager->errMask!=0 ){
|
|
+ rc = pager_errcode(pPager);
|
|
+ return rc;
|
|
+ }
|
|
+ if( nPage>=(unsigned)pPager->dbSize ){
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ syncJournal(pPager);
|
|
+ rc = sqliteOsTruncate(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)nPage);
|
|
+ if( rc==SQLITE_OK ){
|
|
+ pPager->dbSize = nPage;
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Shutdown the page cache. Free all memory and close all files.
|
|
+**
|
|
+** If a transaction was in progress when this routine is called, that
|
|
+** transaction is rolled back. All outstanding pages are invalidated
|
|
+** and their memory is freed. Any attempt to use a page associated
|
|
+** with this page cache after this function returns will likely
|
|
+** result in a coredump.
|
|
+*/
|
|
+int sqlitepager_close(Pager *pPager){
|
|
+ PgHdr *pPg, *pNext;
|
|
+ switch( pPager->state ){
|
|
+ case SQLITE_WRITELOCK: {
|
|
+ sqlitepager_rollback(pPager);
|
|
+ sqliteOsUnlock(&pPager->fd);
|
|
+ assert( pPager->journalOpen==0 );
|
|
+ break;
|
|
+ }
|
|
+ case SQLITE_READLOCK: {
|
|
+ sqliteOsUnlock(&pPager->fd);
|
|
+ break;
|
|
+ }
|
|
+ default: {
|
|
+ /* Do nothing */
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ for(pPg=pPager->pAll; pPg; pPg=pNext){
|
|
+ pNext = pPg->pNextAll;
|
|
+ sqliteFree(pPg);
|
|
+ }
|
|
+ sqliteOsClose(&pPager->fd);
|
|
+ assert( pPager->journalOpen==0 );
|
|
+ /* Temp files are automatically deleted by the OS
|
|
+ ** if( pPager->tempFile ){
|
|
+ ** sqliteOsDelete(pPager->zFilename);
|
|
+ ** }
|
|
+ */
|
|
+ CLR_PAGER(pPager);
|
|
+ if( pPager->zFilename!=(char*)&pPager[1] ){
|
|
+ assert( 0 ); /* Cannot happen */
|
|
+ sqliteFree(pPager->zFilename);
|
|
+ sqliteFree(pPager->zJournal);
|
|
+ sqliteFree(pPager->zDirectory);
|
|
+ }
|
|
+ sqliteFree(pPager);
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return the page number for the given page data.
|
|
+*/
|
|
+Pgno sqlitepager_pagenumber(void *pData){
|
|
+ PgHdr *p = DATA_TO_PGHDR(pData);
|
|
+ return p->pgno;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Increment the reference count for a page. If the page is
|
|
+** currently on the freelist (the reference count is zero) then
|
|
+** remove it from the freelist.
|
|
+*/
|
|
+#define page_ref(P) ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++)
|
|
+static void _page_ref(PgHdr *pPg){
|
|
+ if( pPg->nRef==0 ){
|
|
+ /* The page is currently on the freelist. Remove it. */
|
|
+ if( pPg==pPg->pPager->pFirstSynced ){
|
|
+ PgHdr *p = pPg->pNextFree;
|
|
+ while( p && p->needSync ){ p = p->pNextFree; }
|
|
+ pPg->pPager->pFirstSynced = p;
|
|
+ }
|
|
+ if( pPg->pPrevFree ){
|
|
+ pPg->pPrevFree->pNextFree = pPg->pNextFree;
|
|
+ }else{
|
|
+ pPg->pPager->pFirst = pPg->pNextFree;
|
|
+ }
|
|
+ if( pPg->pNextFree ){
|
|
+ pPg->pNextFree->pPrevFree = pPg->pPrevFree;
|
|
+ }else{
|
|
+ pPg->pPager->pLast = pPg->pPrevFree;
|
|
+ }
|
|
+ pPg->pPager->nRef++;
|
|
+ }
|
|
+ pPg->nRef++;
|
|
+ REFINFO(pPg);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Increment the reference count for a page. The input pointer is
|
|
+** a reference to the page data.
|
|
+*/
|
|
+int sqlitepager_ref(void *pData){
|
|
+ PgHdr *pPg = DATA_TO_PGHDR(pData);
|
|
+ page_ref(pPg);
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Sync the journal. In other words, make sure all the pages that have
|
|
+** been written to the journal have actually reached the surface of the
|
|
+** disk. It is not safe to modify the original database file until after
|
|
+** the journal has been synced. If the original database is modified before
|
|
+** the journal is synced and a power failure occurs, the unsynced journal
|
|
+** data would be lost and we would be unable to completely rollback the
|
|
+** database changes. Database corruption would occur.
|
|
+**
|
|
+** This routine also updates the nRec field in the header of the journal.
|
|
+** (See comments on the pager_playback() routine for additional information.)
|
|
+** If the sync mode is FULL, two syncs will occur. First the whole journal
|
|
+** is synced, then the nRec field is updated, then a second sync occurs.
|
|
+**
|
|
+** For temporary databases, we do not care if we are able to rollback
|
|
+** after a power failure, so sync occurs.
|
|
+**
|
|
+** This routine clears the needSync field of every page current held in
|
|
+** memory.
|
|
+*/
|
|
+static int syncJournal(Pager *pPager){
|
|
+ PgHdr *pPg;
|
|
+ int rc = SQLITE_OK;
|
|
+
|
|
+ /* Sync the journal before modifying the main database
|
|
+ ** (assuming there is a journal and it needs to be synced.)
|
|
+ */
|
|
+ if( pPager->needSync ){
|
|
+ if( !pPager->tempFile ){
|
|
+ assert( pPager->journalOpen );
|
|
+ /* assert( !pPager->noSync ); // noSync might be set if synchronous
|
|
+ ** was turned off after the transaction was started. Ticket #615 */
|
|
+#ifndef NDEBUG
|
|
+ {
|
|
+ /* Make sure the pPager->nRec counter we are keeping agrees
|
|
+ ** with the nRec computed from the size of the journal file.
|
|
+ */
|
|
+ off_t hdrSz, pgSz, jSz;
|
|
+ hdrSz = JOURNAL_HDR_SZ(journal_format);
|
|
+ pgSz = JOURNAL_PG_SZ(journal_format);
|
|
+ rc = sqliteOsFileSize(&pPager->jfd, &jSz);
|
|
+ if( rc!=0 ) return rc;
|
|
+ assert( pPager->nRec*pgSz+hdrSz==jSz );
|
|
+ }
|
|
+#endif
|
|
+ if( journal_format>=3 ){
|
|
+ /* Write the nRec value into the journal file header */
|
|
+ off_t szJ;
|
|
+ if( pPager->fullSync ){
|
|
+ TRACE1("SYNC\n");
|
|
+ rc = sqliteOsSync(&pPager->jfd);
|
|
+ if( rc!=0 ) return rc;
|
|
+ }
|
|
+ sqliteOsSeek(&pPager->jfd, sizeof(aJournalMagic1));
|
|
+ rc = write32bits(&pPager->jfd, pPager->nRec);
|
|
+ if( rc ) return rc;
|
|
+ szJ = JOURNAL_HDR_SZ(journal_format) +
|
|
+ pPager->nRec*JOURNAL_PG_SZ(journal_format);
|
|
+ sqliteOsSeek(&pPager->jfd, szJ);
|
|
+ }
|
|
+ TRACE1("SYNC\n");
|
|
+ rc = sqliteOsSync(&pPager->jfd);
|
|
+ if( rc!=0 ) return rc;
|
|
+ pPager->journalStarted = 1;
|
|
+ }
|
|
+ pPager->needSync = 0;
|
|
+
|
|
+ /* Erase the needSync flag from every page.
|
|
+ */
|
|
+ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
|
|
+ pPg->needSync = 0;
|
|
+ }
|
|
+ pPager->pFirstSynced = pPager->pFirst;
|
|
+ }
|
|
+
|
|
+#ifndef NDEBUG
|
|
+ /* If the Pager.needSync flag is clear then the PgHdr.needSync
|
|
+ ** flag must also be clear for all pages. Verify that this
|
|
+ ** invariant is true.
|
|
+ */
|
|
+ else{
|
|
+ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
|
|
+ assert( pPg->needSync==0 );
|
|
+ }
|
|
+ assert( pPager->pFirstSynced==pPager->pFirst );
|
|
+ }
|
|
+#endif
|
|
+
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Given a list of pages (connected by the PgHdr.pDirty pointer) write
|
|
+** every one of those pages out to the database file and mark them all
|
|
+** as clean.
|
|
+*/
|
|
+static int pager_write_pagelist(PgHdr *pList){
|
|
+ Pager *pPager;
|
|
+ int rc;
|
|
+
|
|
+ if( pList==0 ) return SQLITE_OK;
|
|
+ pPager = pList->pPager;
|
|
+ while( pList ){
|
|
+ assert( pList->dirty );
|
|
+ sqliteOsSeek(&pPager->fd, (pList->pgno-1)*(off_t)SQLITE_PAGE_SIZE);
|
|
+ CODEC(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6);
|
|
+ TRACE2("STORE %d\n", pList->pgno);
|
|
+ rc = sqliteOsWrite(&pPager->fd, PGHDR_TO_DATA(pList), SQLITE_PAGE_SIZE);
|
|
+ CODEC(pPager, PGHDR_TO_DATA(pList), pList->pgno, 0);
|
|
+ if( rc ) return rc;
|
|
+ pList->dirty = 0;
|
|
+ pList = pList->pDirty;
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Collect every dirty page into a dirty list and
|
|
+** return a pointer to the head of that list. All pages are
|
|
+** collected even if they are still in use.
|
|
+*/
|
|
+static PgHdr *pager_get_all_dirty_pages(Pager *pPager){
|
|
+ PgHdr *p, *pList;
|
|
+ pList = 0;
|
|
+ for(p=pPager->pAll; p; p=p->pNextAll){
|
|
+ if( p->dirty ){
|
|
+ p->pDirty = pList;
|
|
+ pList = p;
|
|
+ }
|
|
+ }
|
|
+ return pList;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Acquire a page.
|
|
+**
|
|
+** A read lock on the disk file is obtained when the first page is acquired.
|
|
+** This read lock is dropped when the last page is released.
|
|
+**
|
|
+** A _get works for any page number greater than 0. If the database
|
|
+** file is smaller than the requested page, then no actual disk
|
|
+** read occurs and the memory image of the page is initialized to
|
|
+** all zeros. The extra data appended to a page is always initialized
|
|
+** to zeros the first time a page is loaded into memory.
|
|
+**
|
|
+** The acquisition might fail for several reasons. In all cases,
|
|
+** an appropriate error code is returned and *ppPage is set to NULL.
|
|
+**
|
|
+** See also sqlitepager_lookup(). Both this routine and _lookup() attempt
|
|
+** to find a page in the in-memory cache first. If the page is not already
|
|
+** in memory, this routine goes to disk to read it in whereas _lookup()
|
|
+** just returns 0. This routine acquires a read-lock the first time it
|
|
+** has to go to disk, and could also playback an old journal if necessary.
|
|
+** Since _lookup() never goes to disk, it never has to deal with locks
|
|
+** or journal files.
|
|
+*/
|
|
+int sqlitepager_get(Pager *pPager, Pgno pgno, void **ppPage){
|
|
+ PgHdr *pPg;
|
|
+ int rc;
|
|
+
|
|
+ /* Make sure we have not hit any critical errors.
|
|
+ */
|
|
+ assert( pPager!=0 );
|
|
+ assert( pgno!=0 );
|
|
+ *ppPage = 0;
|
|
+ if( pPager->errMask & ~(PAGER_ERR_FULL) ){
|
|
+ return pager_errcode(pPager);
|
|
+ }
|
|
+
|
|
+ /* If this is the first page accessed, then get a read lock
|
|
+ ** on the database file.
|
|
+ */
|
|
+ if( pPager->nRef==0 ){
|
|
+ rc = sqliteOsReadLock(&pPager->fd);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ return rc;
|
|
+ }
|
|
+ pPager->state = SQLITE_READLOCK;
|
|
+
|
|
+ /* If a journal file exists, try to play it back.
|
|
+ */
|
|
+ if( pPager->useJournal && sqliteOsFileExists(pPager->zJournal) ){
|
|
+ int rc;
|
|
+
|
|
+ /* Get a write lock on the database
|
|
+ */
|
|
+ rc = sqliteOsWriteLock(&pPager->fd);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ if( sqliteOsUnlock(&pPager->fd)!=SQLITE_OK ){
|
|
+ /* This should never happen! */
|
|
+ rc = SQLITE_INTERNAL;
|
|
+ }
|
|
+ return rc;
|
|
+ }
|
|
+ pPager->state = SQLITE_WRITELOCK;
|
|
+
|
|
+ /* Open the journal for reading only. Return SQLITE_BUSY if
|
|
+ ** we are unable to open the journal file.
|
|
+ **
|
|
+ ** The journal file does not need to be locked itself. The
|
|
+ ** journal file is never open unless the main database file holds
|
|
+ ** a write lock, so there is never any chance of two or more
|
|
+ ** processes opening the journal at the same time.
|
|
+ */
|
|
+ rc = sqliteOsOpenReadOnly(pPager->zJournal, &pPager->jfd);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ rc = sqliteOsUnlock(&pPager->fd);
|
|
+ assert( rc==SQLITE_OK );
|
|
+ return SQLITE_BUSY;
|
|
+ }
|
|
+ pPager->journalOpen = 1;
|
|
+ pPager->journalStarted = 0;
|
|
+
|
|
+ /* Playback and delete the journal. Drop the database write
|
|
+ ** lock and reacquire the read lock.
|
|
+ */
|
|
+ rc = pager_playback(pPager, 0);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ return rc;
|
|
+ }
|
|
+ }
|
|
+ pPg = 0;
|
|
+ }else{
|
|
+ /* Search for page in cache */
|
|
+ pPg = pager_lookup(pPager, pgno);
|
|
+ }
|
|
+ if( pPg==0 ){
|
|
+ /* The requested page is not in the page cache. */
|
|
+ int h;
|
|
+ pPager->nMiss++;
|
|
+ if( pPager->nPage<pPager->mxPage || pPager->pFirst==0 ){
|
|
+ /* Create a new page */
|
|
+ pPg = sqliteMallocRaw( sizeof(*pPg) + SQLITE_PAGE_SIZE
|
|
+ + sizeof(u32) + pPager->nExtra );
|
|
+ if( pPg==0 ){
|
|
+ pager_unwritelock(pPager);
|
|
+ pPager->errMask |= PAGER_ERR_MEM;
|
|
+ return SQLITE_NOMEM;
|
|
+ }
|
|
+ memset(pPg, 0, sizeof(*pPg));
|
|
+ pPg->pPager = pPager;
|
|
+ pPg->pNextAll = pPager->pAll;
|
|
+ if( pPager->pAll ){
|
|
+ pPager->pAll->pPrevAll = pPg;
|
|
+ }
|
|
+ pPg->pPrevAll = 0;
|
|
+ pPager->pAll = pPg;
|
|
+ pPager->nPage++;
|
|
+ }else{
|
|
+ /* Find a page to recycle. Try to locate a page that does not
|
|
+ ** require us to do an fsync() on the journal.
|
|
+ */
|
|
+ pPg = pPager->pFirstSynced;
|
|
+
|
|
+ /* If we could not find a page that does not require an fsync()
|
|
+ ** on the journal file then fsync the journal file. This is a
|
|
+ ** very slow operation, so we work hard to avoid it. But sometimes
|
|
+ ** it can't be helped.
|
|
+ */
|
|
+ if( pPg==0 ){
|
|
+ int rc = syncJournal(pPager);
|
|
+ if( rc!=0 ){
|
|
+ sqlitepager_rollback(pPager);
|
|
+ return SQLITE_IOERR;
|
|
+ }
|
|
+ pPg = pPager->pFirst;
|
|
+ }
|
|
+ assert( pPg->nRef==0 );
|
|
+
|
|
+ /* Write the page to the database file if it is dirty.
|
|
+ */
|
|
+ if( pPg->dirty ){
|
|
+ assert( pPg->needSync==0 );
|
|
+ pPg->pDirty = 0;
|
|
+ rc = pager_write_pagelist( pPg );
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ sqlitepager_rollback(pPager);
|
|
+ return SQLITE_IOERR;
|
|
+ }
|
|
+ }
|
|
+ assert( pPg->dirty==0 );
|
|
+
|
|
+ /* If the page we are recycling is marked as alwaysRollback, then
|
|
+ ** set the global alwaysRollback flag, thus disabling the
|
|
+ ** sqlite_dont_rollback() optimization for the rest of this transaction.
|
|
+ ** It is necessary to do this because the page marked alwaysRollback
|
|
+ ** might be reloaded at a later time but at that point we won't remember
|
|
+ ** that is was marked alwaysRollback. This means that all pages must
|
|
+ ** be marked as alwaysRollback from here on out.
|
|
+ */
|
|
+ if( pPg->alwaysRollback ){
|
|
+ pPager->alwaysRollback = 1;
|
|
+ }
|
|
+
|
|
+ /* Unlink the old page from the free list and the hash table
|
|
+ */
|
|
+ if( pPg==pPager->pFirstSynced ){
|
|
+ PgHdr *p = pPg->pNextFree;
|
|
+ while( p && p->needSync ){ p = p->pNextFree; }
|
|
+ pPager->pFirstSynced = p;
|
|
+ }
|
|
+ if( pPg->pPrevFree ){
|
|
+ pPg->pPrevFree->pNextFree = pPg->pNextFree;
|
|
+ }else{
|
|
+ assert( pPager->pFirst==pPg );
|
|
+ pPager->pFirst = pPg->pNextFree;
|
|
+ }
|
|
+ if( pPg->pNextFree ){
|
|
+ pPg->pNextFree->pPrevFree = pPg->pPrevFree;
|
|
+ }else{
|
|
+ assert( pPager->pLast==pPg );
|
|
+ pPager->pLast = pPg->pPrevFree;
|
|
+ }
|
|
+ pPg->pNextFree = pPg->pPrevFree = 0;
|
|
+ if( pPg->pNextHash ){
|
|
+ pPg->pNextHash->pPrevHash = pPg->pPrevHash;
|
|
+ }
|
|
+ if( pPg->pPrevHash ){
|
|
+ pPg->pPrevHash->pNextHash = pPg->pNextHash;
|
|
+ }else{
|
|
+ h = pager_hash(pPg->pgno);
|
|
+ assert( pPager->aHash[h]==pPg );
|
|
+ pPager->aHash[h] = pPg->pNextHash;
|
|
+ }
|
|
+ pPg->pNextHash = pPg->pPrevHash = 0;
|
|
+ pPager->nOvfl++;
|
|
+ }
|
|
+ pPg->pgno = pgno;
|
|
+ if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){
|
|
+ sqliteCheckMemory(pPager->aInJournal, pgno/8);
|
|
+ assert( pPager->journalOpen );
|
|
+ pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0;
|
|
+ pPg->needSync = 0;
|
|
+ }else{
|
|
+ pPg->inJournal = 0;
|
|
+ pPg->needSync = 0;
|
|
+ }
|
|
+ if( pPager->aInCkpt && (int)pgno<=pPager->ckptSize
|
|
+ && (pPager->aInCkpt[pgno/8] & (1<<(pgno&7)))!=0 ){
|
|
+ page_add_to_ckpt_list(pPg);
|
|
+ }else{
|
|
+ page_remove_from_ckpt_list(pPg);
|
|
+ }
|
|
+ pPg->dirty = 0;
|
|
+ pPg->nRef = 1;
|
|
+ REFINFO(pPg);
|
|
+ pPager->nRef++;
|
|
+ h = pager_hash(pgno);
|
|
+ pPg->pNextHash = pPager->aHash[h];
|
|
+ pPager->aHash[h] = pPg;
|
|
+ if( pPg->pNextHash ){
|
|
+ assert( pPg->pNextHash->pPrevHash==0 );
|
|
+ pPg->pNextHash->pPrevHash = pPg;
|
|
+ }
|
|
+ if( pPager->nExtra>0 ){
|
|
+ memset(PGHDR_TO_EXTRA(pPg), 0, pPager->nExtra);
|
|
+ }
|
|
+ if( pPager->dbSize<0 ) sqlitepager_pagecount(pPager);
|
|
+ if( pPager->errMask!=0 ){
|
|
+ sqlitepager_unref(PGHDR_TO_DATA(pPg));
|
|
+ rc = pager_errcode(pPager);
|
|
+ return rc;
|
|
+ }
|
|
+ if( pPager->dbSize<(int)pgno ){
|
|
+ memset(PGHDR_TO_DATA(pPg), 0, SQLITE_PAGE_SIZE);
|
|
+ }else{
|
|
+ int rc;
|
|
+ sqliteOsSeek(&pPager->fd, (pgno-1)*(off_t)SQLITE_PAGE_SIZE);
|
|
+ rc = sqliteOsRead(&pPager->fd, PGHDR_TO_DATA(pPg), SQLITE_PAGE_SIZE);
|
|
+ TRACE2("FETCH %d\n", pPg->pgno);
|
|
+ CODEC(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ off_t fileSize;
|
|
+ if( sqliteOsFileSize(&pPager->fd,&fileSize)!=SQLITE_OK
|
|
+ || fileSize>=pgno*SQLITE_PAGE_SIZE ){
|
|
+ sqlitepager_unref(PGHDR_TO_DATA(pPg));
|
|
+ return rc;
|
|
+ }else{
|
|
+ memset(PGHDR_TO_DATA(pPg), 0, SQLITE_PAGE_SIZE);
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ }else{
|
|
+ /* The requested page is in the page cache. */
|
|
+ pPager->nHit++;
|
|
+ page_ref(pPg);
|
|
+ }
|
|
+ *ppPage = PGHDR_TO_DATA(pPg);
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Acquire a page if it is already in the in-memory cache. Do
|
|
+** not read the page from disk. Return a pointer to the page,
|
|
+** or 0 if the page is not in cache.
|
|
+**
|
|
+** See also sqlitepager_get(). The difference between this routine
|
|
+** and sqlitepager_get() is that _get() will go to the disk and read
|
|
+** in the page if the page is not already in cache. This routine
|
|
+** returns NULL if the page is not in cache or if a disk I/O error
|
|
+** has ever happened.
|
|
+*/
|
|
+void *sqlitepager_lookup(Pager *pPager, Pgno pgno){
|
|
+ PgHdr *pPg;
|
|
+
|
|
+ assert( pPager!=0 );
|
|
+ assert( pgno!=0 );
|
|
+ if( pPager->errMask & ~(PAGER_ERR_FULL) ){
|
|
+ return 0;
|
|
+ }
|
|
+ /* if( pPager->nRef==0 ){
|
|
+ ** return 0;
|
|
+ ** }
|
|
+ */
|
|
+ pPg = pager_lookup(pPager, pgno);
|
|
+ if( pPg==0 ) return 0;
|
|
+ page_ref(pPg);
|
|
+ return PGHDR_TO_DATA(pPg);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Release a page.
|
|
+**
|
|
+** If the number of references to the page drop to zero, then the
|
|
+** page is added to the LRU list. When all references to all pages
|
|
+** are released, a rollback occurs and the lock on the database is
|
|
+** removed.
|
|
+*/
|
|
+int sqlitepager_unref(void *pData){
|
|
+ PgHdr *pPg;
|
|
+
|
|
+ /* Decrement the reference count for this page
|
|
+ */
|
|
+ pPg = DATA_TO_PGHDR(pData);
|
|
+ assert( pPg->nRef>0 );
|
|
+ pPg->nRef--;
|
|
+ REFINFO(pPg);
|
|
+
|
|
+ /* When the number of references to a page reach 0, call the
|
|
+ ** destructor and add the page to the freelist.
|
|
+ */
|
|
+ if( pPg->nRef==0 ){
|
|
+ Pager *pPager;
|
|
+ pPager = pPg->pPager;
|
|
+ pPg->pNextFree = 0;
|
|
+ pPg->pPrevFree = pPager->pLast;
|
|
+ pPager->pLast = pPg;
|
|
+ if( pPg->pPrevFree ){
|
|
+ pPg->pPrevFree->pNextFree = pPg;
|
|
+ }else{
|
|
+ pPager->pFirst = pPg;
|
|
+ }
|
|
+ if( pPg->needSync==0 && pPager->pFirstSynced==0 ){
|
|
+ pPager->pFirstSynced = pPg;
|
|
+ }
|
|
+ if( pPager->xDestructor ){
|
|
+ pPager->xDestructor(pData);
|
|
+ }
|
|
+
|
|
+ /* When all pages reach the freelist, drop the read lock from
|
|
+ ** the database file.
|
|
+ */
|
|
+ pPager->nRef--;
|
|
+ assert( pPager->nRef>=0 );
|
|
+ if( pPager->nRef==0 ){
|
|
+ pager_reset(pPager);
|
|
+ }
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Create a journal file for pPager. There should already be a write
|
|
+** lock on the database file when this routine is called.
|
|
+**
|
|
+** Return SQLITE_OK if everything. Return an error code and release the
|
|
+** write lock if anything goes wrong.
|
|
+*/
|
|
+static int pager_open_journal(Pager *pPager){
|
|
+ int rc;
|
|
+ assert( pPager->state==SQLITE_WRITELOCK );
|
|
+ assert( pPager->journalOpen==0 );
|
|
+ assert( pPager->useJournal );
|
|
+ sqlitepager_pagecount(pPager);
|
|
+ pPager->aInJournal = sqliteMalloc( pPager->dbSize/8 + 1 );
|
|
+ if( pPager->aInJournal==0 ){
|
|
+ sqliteOsReadLock(&pPager->fd);
|
|
+ pPager->state = SQLITE_READLOCK;
|
|
+ return SQLITE_NOMEM;
|
|
+ }
|
|
+ rc = sqliteOsOpenExclusive(pPager->zJournal, &pPager->jfd,pPager->tempFile);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ sqliteFree(pPager->aInJournal);
|
|
+ pPager->aInJournal = 0;
|
|
+ sqliteOsReadLock(&pPager->fd);
|
|
+ pPager->state = SQLITE_READLOCK;
|
|
+ return SQLITE_CANTOPEN;
|
|
+ }
|
|
+ sqliteOsOpenDirectory(pPager->zDirectory, &pPager->jfd);
|
|
+ pPager->journalOpen = 1;
|
|
+ pPager->journalStarted = 0;
|
|
+ pPager->needSync = 0;
|
|
+ pPager->alwaysRollback = 0;
|
|
+ pPager->nRec = 0;
|
|
+ if( pPager->errMask!=0 ){
|
|
+ rc = pager_errcode(pPager);
|
|
+ return rc;
|
|
+ }
|
|
+ pPager->origDbSize = pPager->dbSize;
|
|
+ if( journal_format==JOURNAL_FORMAT_3 ){
|
|
+ rc = sqliteOsWrite(&pPager->jfd, aJournalMagic3, sizeof(aJournalMagic3));
|
|
+ if( rc==SQLITE_OK ){
|
|
+ rc = write32bits(&pPager->jfd, pPager->noSync ? 0xffffffff : 0);
|
|
+ }
|
|
+ if( rc==SQLITE_OK ){
|
|
+ sqliteRandomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
|
|
+ rc = write32bits(&pPager->jfd, pPager->cksumInit);
|
|
+ }
|
|
+ }else if( journal_format==JOURNAL_FORMAT_2 ){
|
|
+ rc = sqliteOsWrite(&pPager->jfd, aJournalMagic2, sizeof(aJournalMagic2));
|
|
+ }else{
|
|
+ assert( journal_format==JOURNAL_FORMAT_1 );
|
|
+ rc = sqliteOsWrite(&pPager->jfd, aJournalMagic1, sizeof(aJournalMagic1));
|
|
+ }
|
|
+ if( rc==SQLITE_OK ){
|
|
+ rc = write32bits(&pPager->jfd, pPager->dbSize);
|
|
+ }
|
|
+ if( pPager->ckptAutoopen && rc==SQLITE_OK ){
|
|
+ rc = sqlitepager_ckpt_begin(pPager);
|
|
+ }
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ rc = pager_unwritelock(pPager);
|
|
+ if( rc==SQLITE_OK ){
|
|
+ rc = SQLITE_FULL;
|
|
+ }
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Acquire a write-lock on the database. The lock is removed when
|
|
+** the any of the following happen:
|
|
+**
|
|
+** * sqlitepager_commit() is called.
|
|
+** * sqlitepager_rollback() is called.
|
|
+** * sqlitepager_close() is called.
|
|
+** * sqlitepager_unref() is called to on every outstanding page.
|
|
+**
|
|
+** The parameter to this routine is a pointer to any open page of the
|
|
+** database file. Nothing changes about the page - it is used merely
|
|
+** to acquire a pointer to the Pager structure and as proof that there
|
|
+** is already a read-lock on the database.
|
|
+**
|
|
+** A journal file is opened if this is not a temporary file. For
|
|
+** temporary files, the opening of the journal file is deferred until
|
|
+** there is an actual need to write to the journal.
|
|
+**
|
|
+** If the database is already write-locked, this routine is a no-op.
|
|
+*/
|
|
+int sqlitepager_begin(void *pData){
|
|
+ PgHdr *pPg = DATA_TO_PGHDR(pData);
|
|
+ Pager *pPager = pPg->pPager;
|
|
+ int rc = SQLITE_OK;
|
|
+ assert( pPg->nRef>0 );
|
|
+ assert( pPager->state!=SQLITE_UNLOCK );
|
|
+ if( pPager->state==SQLITE_READLOCK ){
|
|
+ assert( pPager->aInJournal==0 );
|
|
+ rc = sqliteOsWriteLock(&pPager->fd);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ return rc;
|
|
+ }
|
|
+ pPager->state = SQLITE_WRITELOCK;
|
|
+ pPager->dirtyFile = 0;
|
|
+ TRACE1("TRANSACTION\n");
|
|
+ if( pPager->useJournal && !pPager->tempFile ){
|
|
+ rc = pager_open_journal(pPager);
|
|
+ }
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Mark a data page as writeable. The page is written into the journal
|
|
+** if it is not there already. This routine must be called before making
|
|
+** changes to a page.
|
|
+**
|
|
+** The first time this routine is called, the pager creates a new
|
|
+** journal and acquires a write lock on the database. If the write
|
|
+** lock could not be acquired, this routine returns SQLITE_BUSY. The
|
|
+** calling routine must check for that return value and be careful not to
|
|
+** change any page data until this routine returns SQLITE_OK.
|
|
+**
|
|
+** If the journal file could not be written because the disk is full,
|
|
+** then this routine returns SQLITE_FULL and does an immediate rollback.
|
|
+** All subsequent write attempts also return SQLITE_FULL until there
|
|
+** is a call to sqlitepager_commit() or sqlitepager_rollback() to
|
|
+** reset.
|
|
+*/
|
|
+int sqlitepager_write(void *pData){
|
|
+ PgHdr *pPg = DATA_TO_PGHDR(pData);
|
|
+ Pager *pPager = pPg->pPager;
|
|
+ int rc = SQLITE_OK;
|
|
+
|
|
+ /* Check for errors
|
|
+ */
|
|
+ if( pPager->errMask ){
|
|
+ return pager_errcode(pPager);
|
|
+ }
|
|
+ if( pPager->readOnly ){
|
|
+ return SQLITE_PERM;
|
|
+ }
|
|
+
|
|
+ /* Mark the page as dirty. If the page has already been written
|
|
+ ** to the journal then we can return right away.
|
|
+ */
|
|
+ pPg->dirty = 1;
|
|
+ if( pPg->inJournal && (pPg->inCkpt || pPager->ckptInUse==0) ){
|
|
+ pPager->dirtyFile = 1;
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+
|
|
+ /* If we get this far, it means that the page needs to be
|
|
+ ** written to the transaction journal or the ckeckpoint journal
|
|
+ ** or both.
|
|
+ **
|
|
+ ** First check to see that the transaction journal exists and
|
|
+ ** create it if it does not.
|
|
+ */
|
|
+ assert( pPager->state!=SQLITE_UNLOCK );
|
|
+ rc = sqlitepager_begin(pData);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ return rc;
|
|
+ }
|
|
+ assert( pPager->state==SQLITE_WRITELOCK );
|
|
+ if( !pPager->journalOpen && pPager->useJournal ){
|
|
+ rc = pager_open_journal(pPager);
|
|
+ if( rc!=SQLITE_OK ) return rc;
|
|
+ }
|
|
+ assert( pPager->journalOpen || !pPager->useJournal );
|
|
+ pPager->dirtyFile = 1;
|
|
+
|
|
+ /* The transaction journal now exists and we have a write lock on the
|
|
+ ** main database file. Write the current page to the transaction
|
|
+ ** journal if it is not there already.
|
|
+ */
|
|
+ if( !pPg->inJournal && pPager->useJournal ){
|
|
+ if( (int)pPg->pgno <= pPager->origDbSize ){
|
|
+ int szPg;
|
|
+ u32 saved;
|
|
+ if( journal_format>=JOURNAL_FORMAT_3 ){
|
|
+ u32 cksum = pager_cksum(pPager, pPg->pgno, pData);
|
|
+ saved = *(u32*)PGHDR_TO_EXTRA(pPg);
|
|
+ store32bits(cksum, pPg, SQLITE_PAGE_SIZE);
|
|
+ szPg = SQLITE_PAGE_SIZE+8;
|
|
+ }else{
|
|
+ szPg = SQLITE_PAGE_SIZE+4;
|
|
+ }
|
|
+ store32bits(pPg->pgno, pPg, -4);
|
|
+ CODEC(pPager, pData, pPg->pgno, 7);
|
|
+ rc = sqliteOsWrite(&pPager->jfd, &((char*)pData)[-4], szPg);
|
|
+ TRACE3("JOURNAL %d %d\n", pPg->pgno, pPg->needSync);
|
|
+ CODEC(pPager, pData, pPg->pgno, 0);
|
|
+ if( journal_format>=JOURNAL_FORMAT_3 ){
|
|
+ *(u32*)PGHDR_TO_EXTRA(pPg) = saved;
|
|
+ }
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ sqlitepager_rollback(pPager);
|
|
+ pPager->errMask |= PAGER_ERR_FULL;
|
|
+ return rc;
|
|
+ }
|
|
+ pPager->nRec++;
|
|
+ assert( pPager->aInJournal!=0 );
|
|
+ pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
|
|
+ pPg->needSync = !pPager->noSync;
|
|
+ pPg->inJournal = 1;
|
|
+ if( pPager->ckptInUse ){
|
|
+ pPager->aInCkpt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
|
|
+ page_add_to_ckpt_list(pPg);
|
|
+ }
|
|
+ }else{
|
|
+ pPg->needSync = !pPager->journalStarted && !pPager->noSync;
|
|
+ TRACE3("APPEND %d %d\n", pPg->pgno, pPg->needSync);
|
|
+ }
|
|
+ if( pPg->needSync ){
|
|
+ pPager->needSync = 1;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* If the checkpoint journal is open and the page is not in it,
|
|
+ ** then write the current page to the checkpoint journal. Note that
|
|
+ ** the checkpoint journal always uses the simplier format 2 that lacks
|
|
+ ** checksums. The header is also omitted from the checkpoint journal.
|
|
+ */
|
|
+ if( pPager->ckptInUse && !pPg->inCkpt && (int)pPg->pgno<=pPager->ckptSize ){
|
|
+ assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
|
|
+ store32bits(pPg->pgno, pPg, -4);
|
|
+ CODEC(pPager, pData, pPg->pgno, 7);
|
|
+ rc = sqliteOsWrite(&pPager->cpfd, &((char*)pData)[-4], SQLITE_PAGE_SIZE+4);
|
|
+ TRACE2("CKPT-JOURNAL %d\n", pPg->pgno);
|
|
+ CODEC(pPager, pData, pPg->pgno, 0);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ sqlitepager_rollback(pPager);
|
|
+ pPager->errMask |= PAGER_ERR_FULL;
|
|
+ return rc;
|
|
+ }
|
|
+ pPager->ckptNRec++;
|
|
+ assert( pPager->aInCkpt!=0 );
|
|
+ pPager->aInCkpt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
|
|
+ page_add_to_ckpt_list(pPg);
|
|
+ }
|
|
+
|
|
+ /* Update the database size and return.
|
|
+ */
|
|
+ if( pPager->dbSize<(int)pPg->pgno ){
|
|
+ pPager->dbSize = pPg->pgno;
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return TRUE if the page given in the argument was previously passed
|
|
+** to sqlitepager_write(). In other words, return TRUE if it is ok
|
|
+** to change the content of the page.
|
|
+*/
|
|
+int sqlitepager_iswriteable(void *pData){
|
|
+ PgHdr *pPg = DATA_TO_PGHDR(pData);
|
|
+ return pPg->dirty;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Replace the content of a single page with the information in the third
|
|
+** argument.
|
|
+*/
|
|
+int sqlitepager_overwrite(Pager *pPager, Pgno pgno, void *pData){
|
|
+ void *pPage;
|
|
+ int rc;
|
|
+
|
|
+ rc = sqlitepager_get(pPager, pgno, &pPage);
|
|
+ if( rc==SQLITE_OK ){
|
|
+ rc = sqlitepager_write(pPage);
|
|
+ if( rc==SQLITE_OK ){
|
|
+ memcpy(pPage, pData, SQLITE_PAGE_SIZE);
|
|
+ }
|
|
+ sqlitepager_unref(pPage);
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** A call to this routine tells the pager that it is not necessary to
|
|
+** write the information on page "pgno" back to the disk, even though
|
|
+** that page might be marked as dirty.
|
|
+**
|
|
+** The overlying software layer calls this routine when all of the data
|
|
+** on the given page is unused. The pager marks the page as clean so
|
|
+** that it does not get written to disk.
|
|
+**
|
|
+** Tests show that this optimization, together with the
|
|
+** sqlitepager_dont_rollback() below, more than double the speed
|
|
+** of large INSERT operations and quadruple the speed of large DELETEs.
|
|
+**
|
|
+** When this routine is called, set the alwaysRollback flag to true.
|
|
+** Subsequent calls to sqlitepager_dont_rollback() for the same page
|
|
+** will thereafter be ignored. This is necessary to avoid a problem
|
|
+** where a page with data is added to the freelist during one part of
|
|
+** a transaction then removed from the freelist during a later part
|
|
+** of the same transaction and reused for some other purpose. When it
|
|
+** is first added to the freelist, this routine is called. When reused,
|
|
+** the dont_rollback() routine is called. But because the page contains
|
|
+** critical data, we still need to be sure it gets rolled back in spite
|
|
+** of the dont_rollback() call.
|
|
+*/
|
|
+void sqlitepager_dont_write(Pager *pPager, Pgno pgno){
|
|
+ PgHdr *pPg;
|
|
+
|
|
+ pPg = pager_lookup(pPager, pgno);
|
|
+ pPg->alwaysRollback = 1;
|
|
+ if( pPg && pPg->dirty && !pPager->ckptInUse ){
|
|
+ if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){
|
|
+ /* If this pages is the last page in the file and the file has grown
|
|
+ ** during the current transaction, then do NOT mark the page as clean.
|
|
+ ** When the database file grows, we must make sure that the last page
|
|
+ ** gets written at least once so that the disk file will be the correct
|
|
+ ** size. If you do not write this page and the size of the file
|
|
+ ** on the disk ends up being too small, that can lead to database
|
|
+ ** corruption during the next transaction.
|
|
+ */
|
|
+ }else{
|
|
+ TRACE2("DONT_WRITE %d\n", pgno);
|
|
+ pPg->dirty = 0;
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** A call to this routine tells the pager that if a rollback occurs,
|
|
+** it is not necessary to restore the data on the given page. This
|
|
+** means that the pager does not have to record the given page in the
|
|
+** rollback journal.
|
|
+*/
|
|
+void sqlitepager_dont_rollback(void *pData){
|
|
+ PgHdr *pPg = DATA_TO_PGHDR(pData);
|
|
+ Pager *pPager = pPg->pPager;
|
|
+
|
|
+ if( pPager->state!=SQLITE_WRITELOCK || pPager->journalOpen==0 ) return;
|
|
+ if( pPg->alwaysRollback || pPager->alwaysRollback ) return;
|
|
+ if( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ){
|
|
+ assert( pPager->aInJournal!=0 );
|
|
+ pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
|
|
+ pPg->inJournal = 1;
|
|
+ if( pPager->ckptInUse ){
|
|
+ pPager->aInCkpt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
|
|
+ page_add_to_ckpt_list(pPg);
|
|
+ }
|
|
+ TRACE2("DONT_ROLLBACK %d\n", pPg->pgno);
|
|
+ }
|
|
+ if( pPager->ckptInUse && !pPg->inCkpt && (int)pPg->pgno<=pPager->ckptSize ){
|
|
+ assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
|
|
+ assert( pPager->aInCkpt!=0 );
|
|
+ pPager->aInCkpt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
|
|
+ page_add_to_ckpt_list(pPg);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Commit all changes to the database and release the write lock.
|
|
+**
|
|
+** If the commit fails for any reason, a rollback attempt is made
|
|
+** and an error code is returned. If the commit worked, SQLITE_OK
|
|
+** is returned.
|
|
+*/
|
|
+int sqlitepager_commit(Pager *pPager){
|
|
+ int rc;
|
|
+ PgHdr *pPg;
|
|
+
|
|
+ if( pPager->errMask==PAGER_ERR_FULL ){
|
|
+ rc = sqlitepager_rollback(pPager);
|
|
+ if( rc==SQLITE_OK ){
|
|
+ rc = SQLITE_FULL;
|
|
+ }
|
|
+ return rc;
|
|
+ }
|
|
+ if( pPager->errMask!=0 ){
|
|
+ rc = pager_errcode(pPager);
|
|
+ return rc;
|
|
+ }
|
|
+ if( pPager->state!=SQLITE_WRITELOCK ){
|
|
+ return SQLITE_ERROR;
|
|
+ }
|
|
+ TRACE1("COMMIT\n");
|
|
+ if( pPager->dirtyFile==0 ){
|
|
+ /* Exit early (without doing the time-consuming sqliteOsSync() calls)
|
|
+ ** if there have been no changes to the database file. */
|
|
+ assert( pPager->needSync==0 );
|
|
+ rc = pager_unwritelock(pPager);
|
|
+ pPager->dbSize = -1;
|
|
+ return rc;
|
|
+ }
|
|
+ assert( pPager->journalOpen );
|
|
+ rc = syncJournal(pPager);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ goto commit_abort;
|
|
+ }
|
|
+ pPg = pager_get_all_dirty_pages(pPager);
|
|
+ if( pPg ){
|
|
+ rc = pager_write_pagelist(pPg);
|
|
+ if( rc || (!pPager->noSync && sqliteOsSync(&pPager->fd)!=SQLITE_OK) ){
|
|
+ goto commit_abort;
|
|
+ }
|
|
+ }
|
|
+ rc = pager_unwritelock(pPager);
|
|
+ pPager->dbSize = -1;
|
|
+ return rc;
|
|
+
|
|
+ /* Jump here if anything goes wrong during the commit process.
|
|
+ */
|
|
+commit_abort:
|
|
+ rc = sqlitepager_rollback(pPager);
|
|
+ if( rc==SQLITE_OK ){
|
|
+ rc = SQLITE_FULL;
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Rollback all changes. The database falls back to read-only mode.
|
|
+** All in-memory cache pages revert to their original data contents.
|
|
+** The journal is deleted.
|
|
+**
|
|
+** This routine cannot fail unless some other process is not following
|
|
+** the correct locking protocol (SQLITE_PROTOCOL) or unless some other
|
|
+** process is writing trash into the journal file (SQLITE_CORRUPT) or
|
|
+** unless a prior malloc() failed (SQLITE_NOMEM). Appropriate error
|
|
+** codes are returned for all these occasions. Otherwise,
|
|
+** SQLITE_OK is returned.
|
|
+*/
|
|
+int sqlitepager_rollback(Pager *pPager){
|
|
+ int rc;
|
|
+ TRACE1("ROLLBACK\n");
|
|
+ if( !pPager->dirtyFile || !pPager->journalOpen ){
|
|
+ rc = pager_unwritelock(pPager);
|
|
+ pPager->dbSize = -1;
|
|
+ return rc;
|
|
+ }
|
|
+
|
|
+ if( pPager->errMask!=0 && pPager->errMask!=PAGER_ERR_FULL ){
|
|
+ if( pPager->state>=SQLITE_WRITELOCK ){
|
|
+ pager_playback(pPager, 1);
|
|
+ }
|
|
+ return pager_errcode(pPager);
|
|
+ }
|
|
+ if( pPager->state!=SQLITE_WRITELOCK ){
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ rc = pager_playback(pPager, 1);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ rc = SQLITE_CORRUPT;
|
|
+ pPager->errMask |= PAGER_ERR_CORRUPT;
|
|
+ }
|
|
+ pPager->dbSize = -1;
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return TRUE if the database file is opened read-only. Return FALSE
|
|
+** if the database is (in theory) writable.
|
|
+*/
|
|
+int sqlitepager_isreadonly(Pager *pPager){
|
|
+ return pPager->readOnly;
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine is used for testing and analysis only.
|
|
+*/
|
|
+int *sqlitepager_stats(Pager *pPager){
|
|
+ static int a[9];
|
|
+ a[0] = pPager->nRef;
|
|
+ a[1] = pPager->nPage;
|
|
+ a[2] = pPager->mxPage;
|
|
+ a[3] = pPager->dbSize;
|
|
+ a[4] = pPager->state;
|
|
+ a[5] = pPager->errMask;
|
|
+ a[6] = pPager->nHit;
|
|
+ a[7] = pPager->nMiss;
|
|
+ a[8] = pPager->nOvfl;
|
|
+ return a;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Set the checkpoint.
|
|
+**
|
|
+** This routine should be called with the transaction journal already
|
|
+** open. A new checkpoint journal is created that can be used to rollback
|
|
+** changes of a single SQL command within a larger transaction.
|
|
+*/
|
|
+int sqlitepager_ckpt_begin(Pager *pPager){
|
|
+ int rc;
|
|
+ char zTemp[SQLITE_TEMPNAME_SIZE];
|
|
+ if( !pPager->journalOpen ){
|
|
+ pPager->ckptAutoopen = 1;
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ assert( pPager->journalOpen );
|
|
+ assert( !pPager->ckptInUse );
|
|
+ pPager->aInCkpt = sqliteMalloc( pPager->dbSize/8 + 1 );
|
|
+ if( pPager->aInCkpt==0 ){
|
|
+ sqliteOsReadLock(&pPager->fd);
|
|
+ return SQLITE_NOMEM;
|
|
+ }
|
|
+#ifndef NDEBUG
|
|
+ rc = sqliteOsFileSize(&pPager->jfd, &pPager->ckptJSize);
|
|
+ if( rc ) goto ckpt_begin_failed;
|
|
+ assert( pPager->ckptJSize ==
|
|
+ pPager->nRec*JOURNAL_PG_SZ(journal_format)+JOURNAL_HDR_SZ(journal_format) );
|
|
+#endif
|
|
+ pPager->ckptJSize = pPager->nRec*JOURNAL_PG_SZ(journal_format)
|
|
+ + JOURNAL_HDR_SZ(journal_format);
|
|
+ pPager->ckptSize = pPager->dbSize;
|
|
+ if( !pPager->ckptOpen ){
|
|
+ rc = sqlitepager_opentemp(zTemp, &pPager->cpfd);
|
|
+ if( rc ) goto ckpt_begin_failed;
|
|
+ pPager->ckptOpen = 1;
|
|
+ pPager->ckptNRec = 0;
|
|
+ }
|
|
+ pPager->ckptInUse = 1;
|
|
+ return SQLITE_OK;
|
|
+
|
|
+ckpt_begin_failed:
|
|
+ if( pPager->aInCkpt ){
|
|
+ sqliteFree(pPager->aInCkpt);
|
|
+ pPager->aInCkpt = 0;
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Commit a checkpoint.
|
|
+*/
|
|
+int sqlitepager_ckpt_commit(Pager *pPager){
|
|
+ if( pPager->ckptInUse ){
|
|
+ PgHdr *pPg, *pNext;
|
|
+ sqliteOsSeek(&pPager->cpfd, 0);
|
|
+ /* sqliteOsTruncate(&pPager->cpfd, 0); */
|
|
+ pPager->ckptNRec = 0;
|
|
+ pPager->ckptInUse = 0;
|
|
+ sqliteFree( pPager->aInCkpt );
|
|
+ pPager->aInCkpt = 0;
|
|
+ for(pPg=pPager->pCkpt; pPg; pPg=pNext){
|
|
+ pNext = pPg->pNextCkpt;
|
|
+ assert( pPg->inCkpt );
|
|
+ pPg->inCkpt = 0;
|
|
+ pPg->pPrevCkpt = pPg->pNextCkpt = 0;
|
|
+ }
|
|
+ pPager->pCkpt = 0;
|
|
+ }
|
|
+ pPager->ckptAutoopen = 0;
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Rollback a checkpoint.
|
|
+*/
|
|
+int sqlitepager_ckpt_rollback(Pager *pPager){
|
|
+ int rc;
|
|
+ if( pPager->ckptInUse ){
|
|
+ rc = pager_ckpt_playback(pPager);
|
|
+ sqlitepager_ckpt_commit(pPager);
|
|
+ }else{
|
|
+ rc = SQLITE_OK;
|
|
+ }
|
|
+ pPager->ckptAutoopen = 0;
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return the full pathname of the database file.
|
|
+*/
|
|
+const char *sqlitepager_filename(Pager *pPager){
|
|
+ return pPager->zFilename;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Set the codec for this pager
|
|
+*/
|
|
+void sqlitepager_set_codec(
|
|
+ Pager *pPager,
|
|
+ void (*xCodec)(void*,void*,Pgno,int),
|
|
+ void *pCodecArg
|
|
+){
|
|
+ pPager->xCodec = xCodec;
|
|
+ pPager->pCodecArg = pCodecArg;
|
|
+}
|
|
+
|
|
+#ifdef SQLITE_TEST
|
|
+/*
|
|
+** Print a listing of all referenced pages and their ref count.
|
|
+*/
|
|
+void sqlitepager_refdump(Pager *pPager){
|
|
+ PgHdr *pPg;
|
|
+ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
|
|
+ if( pPg->nRef<=0 ) continue;
|
|
+ printf("PAGE %3d addr=0x%08x nRef=%d\n",
|
|
+ pPg->pgno, (int)PGHDR_TO_DATA(pPg), pPg->nRef);
|
|
+ }
|
|
+}
|
|
+#endif
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/pager.h
|
|
@@ -0,0 +1,107 @@
|
|
+/*
|
|
+** 2001 September 15
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This header file defines the interface that the sqlite page cache
|
|
+** subsystem. The page cache subsystem reads and writes a file a page
|
|
+** at a time and provides a journal for rollback.
|
|
+**
|
|
+** @(#) $Id$
|
|
+*/
|
|
+
|
|
+/*
|
|
+** The size of one page
|
|
+**
|
|
+** You can change this value to another (reasonable) value you want.
|
|
+** It need not be a power of two, though the interface to the disk
|
|
+** will likely be faster if it is.
|
|
+**
|
|
+** Experiments show that a page size of 1024 gives the best speed
|
|
+** for common usages. The speed differences for different sizes
|
|
+** such as 512, 2048, 4096, an so forth, is minimal. Note, however,
|
|
+** that changing the page size results in a completely imcompatible
|
|
+** file format.
|
|
+*/
|
|
+#ifndef SQLITE_PAGE_SIZE
|
|
+#define SQLITE_PAGE_SIZE 1024
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** Number of extra bytes of data allocated at the end of each page and
|
|
+** stored on disk but not used by the higher level btree layer. Changing
|
|
+** this value results in a completely incompatible file format.
|
|
+*/
|
|
+#ifndef SQLITE_PAGE_RESERVE
|
|
+#define SQLITE_PAGE_RESERVE 0
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** The total number of usable bytes stored on disk for each page.
|
|
+** The usable bytes come at the beginning of the page and the reserve
|
|
+** bytes come at the end.
|
|
+*/
|
|
+#define SQLITE_USABLE_SIZE (SQLITE_PAGE_SIZE-SQLITE_PAGE_RESERVE)
|
|
+
|
|
+/*
|
|
+** Maximum number of pages in one database. (This is a limitation of
|
|
+** imposed by 4GB files size limits.)
|
|
+*/
|
|
+#define SQLITE_MAX_PAGE 1073741823
|
|
+
|
|
+/*
|
|
+** The type used to represent a page number. The first page in a file
|
|
+** is called page 1. 0 is used to represent "not a page".
|
|
+*/
|
|
+typedef unsigned int Pgno;
|
|
+
|
|
+/*
|
|
+** Each open file is managed by a separate instance of the "Pager" structure.
|
|
+*/
|
|
+typedef struct Pager Pager;
|
|
+
|
|
+/*
|
|
+** See source code comments for a detailed description of the following
|
|
+** routines:
|
|
+*/
|
|
+int sqlitepager_open(Pager **ppPager, const char *zFilename,
|
|
+ int nPage, int nExtra, int useJournal);
|
|
+void sqlitepager_set_destructor(Pager*, void(*)(void*));
|
|
+void sqlitepager_set_cachesize(Pager*, int);
|
|
+int sqlitepager_close(Pager *pPager);
|
|
+int sqlitepager_get(Pager *pPager, Pgno pgno, void **ppPage);
|
|
+void *sqlitepager_lookup(Pager *pPager, Pgno pgno);
|
|
+int sqlitepager_ref(void*);
|
|
+int sqlitepager_unref(void*);
|
|
+Pgno sqlitepager_pagenumber(void*);
|
|
+int sqlitepager_write(void*);
|
|
+int sqlitepager_iswriteable(void*);
|
|
+int sqlitepager_overwrite(Pager *pPager, Pgno pgno, void*);
|
|
+int sqlitepager_pagecount(Pager*);
|
|
+int sqlitepager_truncate(Pager*,Pgno);
|
|
+int sqlitepager_begin(void*);
|
|
+int sqlitepager_commit(Pager*);
|
|
+int sqlitepager_rollback(Pager*);
|
|
+int sqlitepager_isreadonly(Pager*);
|
|
+int sqlitepager_ckpt_begin(Pager*);
|
|
+int sqlitepager_ckpt_commit(Pager*);
|
|
+int sqlitepager_ckpt_rollback(Pager*);
|
|
+void sqlitepager_dont_rollback(void*);
|
|
+void sqlitepager_dont_write(Pager*, Pgno);
|
|
+int *sqlitepager_stats(Pager*);
|
|
+void sqlitepager_set_safety_level(Pager*,int);
|
|
+const char *sqlitepager_filename(Pager*);
|
|
+int sqlitepager_rename(Pager*, const char *zNewName);
|
|
+void sqlitepager_set_codec(Pager*,void(*)(void*,void*,Pgno,int),void*);
|
|
+
|
|
+#ifdef SQLITE_TEST
|
|
+void sqlitepager_refdump(Pager*);
|
|
+int pager_refinfo_enable;
|
|
+int journal_format;
|
|
+#endif
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/parse.c
|
|
@@ -0,0 +1,3355 @@
|
|
+/* Driver template for the LEMON parser generator.
|
|
+** The author disclaims copyright to this source code.
|
|
+*/
|
|
+/* First off, code is included that follows the "include" declaration
|
|
+** in the input grammar file. */
|
|
+#include <stdio.h>
|
|
+#line 33 "ext/sqlite/libsqlite/src/parse.y"
|
|
+
|
|
+#include "sqliteInt.h"
|
|
+#include "parse.h"
|
|
+
|
|
+/*
|
|
+** An instance of this structure holds information about the
|
|
+** LIMIT clause of a SELECT statement.
|
|
+*/
|
|
+struct LimitVal {
|
|
+ int limit; /* The LIMIT value. -1 if there is no limit */
|
|
+ int offset; /* The OFFSET. 0 if there is none */
|
|
+};
|
|
+
|
|
+/*
|
|
+** An instance of the following structure describes the event of a
|
|
+** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT,
|
|
+** TK_DELETE, or TK_INSTEAD. If the event is of the form
|
|
+**
|
|
+** UPDATE ON (a,b,c)
|
|
+**
|
|
+** Then the "b" IdList records the list "a,b,c".
|
|
+*/
|
|
+struct TrigEvent { int a; IdList * b; };
|
|
+
|
|
+#line 33 "ext/sqlite/libsqlite/src/parse.c"
|
|
+/* Next is all token values, in a form suitable for use by makeheaders.
|
|
+** This section will be null unless lemon is run with the -m switch.
|
|
+*/
|
|
+/*
|
|
+** These constants (all generated automatically by the parser generator)
|
|
+** specify the various kinds of tokens (terminals) that the parser
|
|
+** understands.
|
|
+**
|
|
+** Each symbol here is a terminal symbol in the grammar.
|
|
+*/
|
|
+/* Make sure the INTERFACE macro is defined.
|
|
+*/
|
|
+#ifndef INTERFACE
|
|
+# define INTERFACE 1
|
|
+#endif
|
|
+/* The next thing included is series of defines which control
|
|
+** various aspects of the generated parser.
|
|
+** YYCODETYPE is the data type used for storing terminal
|
|
+** and nonterminal numbers. "unsigned char" is
|
|
+** used if there are fewer than 250 terminals
|
|
+** and nonterminals. "int" is used otherwise.
|
|
+** YYNOCODE is a number of type YYCODETYPE which corresponds
|
|
+** to no legal terminal or nonterminal number. This
|
|
+** number is used to fill in empty slots of the hash
|
|
+** table.
|
|
+** YYFALLBACK If defined, this indicates that one or more tokens
|
|
+** have fall-back values which should be used if the
|
|
+** original value of the token will not parse.
|
|
+** YYACTIONTYPE is the data type used for storing terminal
|
|
+** and nonterminal numbers. "unsigned char" is
|
|
+** used if there are fewer than 250 rules and
|
|
+** states combined. "int" is used otherwise.
|
|
+** sqliteParserTOKENTYPE is the data type used for minor tokens given
|
|
+** directly to the parser from the tokenizer.
|
|
+** YYMINORTYPE is the data type used for all minor tokens.
|
|
+** This is typically a union of many types, one of
|
|
+** which is sqliteParserTOKENTYPE. The entry in the union
|
|
+** for base tokens is called "yy0".
|
|
+** YYSTACKDEPTH is the maximum depth of the parser's stack. If
|
|
+** zero the stack is dynamically sized using realloc()
|
|
+** sqliteParserARG_SDECL A static variable declaration for the %extra_argument
|
|
+** sqliteParserARG_PDECL A parameter declaration for the %extra_argument
|
|
+** sqliteParserARG_STORE Code to store %extra_argument into yypParser
|
|
+** sqliteParserARG_FETCH Code to extract %extra_argument from yypParser
|
|
+** YYNSTATE the combined number of states.
|
|
+** YYNRULE the number of rules in the grammar
|
|
+** YYERRORSYMBOL is the code number of the error symbol. If not
|
|
+** defined, then do no error processing.
|
|
+*/
|
|
+#define YYCODETYPE unsigned char
|
|
+#define YYNOCODE 221
|
|
+#define YYACTIONTYPE unsigned short int
|
|
+#define sqliteParserTOKENTYPE Token
|
|
+typedef union {
|
|
+ int yyinit;
|
|
+ sqliteParserTOKENTYPE yy0;
|
|
+ TriggerStep * yy19;
|
|
+ struct LimitVal yy124;
|
|
+ Select* yy179;
|
|
+ Expr * yy182;
|
|
+ Expr* yy242;
|
|
+ struct TrigEvent yy290;
|
|
+ SrcList* yy307;
|
|
+ IdList* yy320;
|
|
+ ExprList* yy322;
|
|
+ int yy372;
|
|
+ struct {int value; int mask;} yy407;
|
|
+} YYMINORTYPE;
|
|
+#ifndef YYSTACKDEPTH
|
|
+#define YYSTACKDEPTH 100
|
|
+#endif
|
|
+#define sqliteParserARG_SDECL Parse *pParse;
|
|
+#define sqliteParserARG_PDECL ,Parse *pParse
|
|
+#define sqliteParserARG_FETCH Parse *pParse = yypParser->pParse
|
|
+#define sqliteParserARG_STORE yypParser->pParse = pParse
|
|
+#define YYNSTATE 563
|
|
+#define YYNRULE 293
|
|
+#define YYFALLBACK 1
|
|
+#define YY_NO_ACTION (YYNSTATE+YYNRULE+2)
|
|
+#define YY_ACCEPT_ACTION (YYNSTATE+YYNRULE+1)
|
|
+#define YY_ERROR_ACTION (YYNSTATE+YYNRULE)
|
|
+
|
|
+/* The yyzerominor constant is used to initialize instances of
|
|
+** YYMINORTYPE objects to zero. */
|
|
+static const YYMINORTYPE yyzerominor = { 0 };
|
|
+
|
|
+/* Define the yytestcase() macro to be a no-op if is not already defined
|
|
+** otherwise.
|
|
+**
|
|
+** Applications can choose to define yytestcase() in the %include section
|
|
+** to a macro that can assist in verifying code coverage. For production
|
|
+** code the yytestcase() macro should be turned off. But it is useful
|
|
+** for testing.
|
|
+*/
|
|
+#ifndef yytestcase
|
|
+# define yytestcase(X)
|
|
+#endif
|
|
+
|
|
+
|
|
+/* Next are the tables used to determine what action to take based on the
|
|
+** current state and lookahead token. These tables are used to implement
|
|
+** functions that take a state number and lookahead value and return an
|
|
+** action integer.
|
|
+**
|
|
+** Suppose the action integer is N. Then the action is determined as
|
|
+** follows
|
|
+**
|
|
+** 0 <= N < YYNSTATE Shift N. That is, push the lookahead
|
|
+** token onto the stack and goto state N.
|
|
+**
|
|
+** YYNSTATE <= N < YYNSTATE+YYNRULE Reduce by rule N-YYNSTATE.
|
|
+**
|
|
+** N == YYNSTATE+YYNRULE A syntax error has occurred.
|
|
+**
|
|
+** N == YYNSTATE+YYNRULE+1 The parser accepts its input.
|
|
+**
|
|
+** N == YYNSTATE+YYNRULE+2 No such action. Denotes unused
|
|
+** slots in the yy_action[] table.
|
|
+**
|
|
+** The action table is constructed as a single large table named yy_action[].
|
|
+** Given state S and lookahead X, the action is computed as
|
|
+**
|
|
+** yy_action[ yy_shift_ofst[S] + X ]
|
|
+**
|
|
+** If the index value yy_shift_ofst[S]+X is out of range or if the value
|
|
+** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X or if yy_shift_ofst[S]
|
|
+** is equal to YY_SHIFT_USE_DFLT, it means that the action is not in the table
|
|
+** and that yy_default[S] should be used instead.
|
|
+**
|
|
+** The formula above is for computing the action when the lookahead is
|
|
+** a terminal symbol. If the lookahead is a non-terminal (as occurs after
|
|
+** a reduce action) then the yy_reduce_ofst[] array is used in place of
|
|
+** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of
|
|
+** YY_SHIFT_USE_DFLT.
|
|
+**
|
|
+** The following are the tables generated in this section:
|
|
+**
|
|
+** yy_action[] A single table containing all actions.
|
|
+** yy_lookahead[] A table containing the lookahead for each entry in
|
|
+** yy_action. Used to detect hash collisions.
|
|
+** yy_shift_ofst[] For each state, the offset into yy_action for
|
|
+** shifting terminals.
|
|
+** yy_reduce_ofst[] For each state, the offset into yy_action for
|
|
+** shifting non-terminals after a reduce.
|
|
+** yy_default[] Default action for each state.
|
|
+*/
|
|
+#define YY_ACTTAB_COUNT (1090)
|
|
+static const YYACTIONTYPE yy_action[] = {
|
|
+ /* 0 */ 186, 561, 483, 69, 67, 70, 68, 64, 63, 62,
|
|
+ /* 10 */ 61, 58, 57, 56, 55, 54, 53, 181, 180, 179,
|
|
+ /* 20 */ 514, 421, 334, 420, 468, 515, 64, 63, 62, 61,
|
|
+ /* 30 */ 58, 57, 56, 55, 54, 53, 9, 423, 422, 71,
|
|
+ /* 40 */ 72, 129, 65, 66, 513, 510, 305, 52, 138, 69,
|
|
+ /* 50 */ 67, 70, 68, 64, 63, 62, 61, 58, 57, 56,
|
|
+ /* 60 */ 55, 54, 53, 448, 469, 175, 482, 514, 470, 344,
|
|
+ /* 70 */ 342, 36, 515, 58, 57, 56, 55, 54, 53, 8,
|
|
+ /* 80 */ 341, 281, 285, 307, 437, 178, 71, 72, 129, 65,
|
|
+ /* 90 */ 66, 513, 510, 305, 52, 138, 69, 67, 70, 68,
|
|
+ /* 100 */ 64, 63, 62, 61, 58, 57, 56, 55, 54, 53,
|
|
+ /* 110 */ 130, 362, 360, 508, 507, 267, 551, 436, 298, 297,
|
|
+ /* 120 */ 369, 368, 50, 128, 543, 29, 266, 449, 537, 447,
|
|
+ /* 130 */ 591, 528, 442, 441, 187, 132, 514, 536, 47, 48,
|
|
+ /* 140 */ 472, 515, 122, 427, 331, 409, 49, 371, 370, 518,
|
|
+ /* 150 */ 328, 363, 517, 520, 45, 71, 72, 129, 65, 66,
|
|
+ /* 160 */ 513, 510, 305, 52, 138, 69, 67, 70, 68, 64,
|
|
+ /* 170 */ 63, 62, 61, 58, 57, 56, 55, 54, 53, 185,
|
|
+ /* 180 */ 550, 549, 512, 175, 467, 516, 18, 344, 342, 36,
|
|
+ /* 190 */ 544, 175, 320, 230, 231, 344, 342, 36, 341, 56,
|
|
+ /* 200 */ 55, 54, 53, 212, 531, 514, 341, 551, 3, 213,
|
|
+ /* 210 */ 515, 2, 551, 73, 7, 551, 184, 132, 551, 172,
|
|
+ /* 220 */ 551, 309, 348, 42, 71, 72, 129, 65, 66, 513,
|
|
+ /* 230 */ 510, 305, 52, 138, 69, 67, 70, 68, 64, 63,
|
|
+ /* 240 */ 62, 61, 58, 57, 56, 55, 54, 53, 243, 197,
|
|
+ /* 250 */ 282, 358, 268, 373, 264, 372, 183, 241, 436, 169,
|
|
+ /* 260 */ 356, 171, 269, 240, 471, 426, 29, 446, 506, 514,
|
|
+ /* 270 */ 445, 550, 549, 494, 515, 354, 550, 549, 359, 550,
|
|
+ /* 280 */ 549, 144, 550, 549, 550, 549, 592, 309, 71, 72,
|
|
+ /* 290 */ 129, 65, 66, 513, 510, 305, 52, 138, 69, 67,
|
|
+ /* 300 */ 70, 68, 64, 63, 62, 61, 58, 57, 56, 55,
|
|
+ /* 310 */ 54, 53, 514, 857, 82, 377, 1, 515, 268, 373,
|
|
+ /* 320 */ 264, 372, 183, 241, 362, 12, 508, 507, 500, 240,
|
|
+ /* 330 */ 17, 71, 72, 129, 65, 66, 513, 510, 305, 52,
|
|
+ /* 340 */ 138, 69, 67, 70, 68, 64, 63, 62, 61, 58,
|
|
+ /* 350 */ 57, 56, 55, 54, 53, 362, 182, 508, 507, 514,
|
|
+ /* 360 */ 362, 527, 508, 507, 515, 563, 429, 463, 182, 444,
|
|
+ /* 370 */ 375, 338, 443, 430, 379, 378, 593, 156, 71, 72,
|
|
+ /* 380 */ 129, 65, 66, 513, 510, 305, 52, 138, 69, 67,
|
|
+ /* 390 */ 70, 68, 64, 63, 62, 61, 58, 57, 56, 55,
|
|
+ /* 400 */ 54, 53, 514, 526, 542, 450, 534, 515, 286, 493,
|
|
+ /* 410 */ 453, 17, 478, 240, 80, 11, 533, 153, 194, 155,
|
|
+ /* 420 */ 286, 71, 51, 129, 65, 66, 513, 510, 305, 52,
|
|
+ /* 430 */ 138, 69, 67, 70, 68, 64, 63, 62, 61, 58,
|
|
+ /* 440 */ 57, 56, 55, 54, 53, 514, 195, 466, 160, 17,
|
|
+ /* 450 */ 515, 454, 490, 80, 459, 440, 460, 176, 239, 238,
|
|
+ /* 460 */ 80, 80, 562, 1, 71, 40, 129, 65, 66, 513,
|
|
+ /* 470 */ 510, 305, 52, 138, 69, 67, 70, 68, 64, 63,
|
|
+ /* 480 */ 62, 61, 58, 57, 56, 55, 54, 53, 514, 365,
|
|
+ /* 490 */ 154, 19, 339, 515, 80, 232, 405, 80, 165, 404,
|
|
+ /* 500 */ 193, 32, 396, 13, 32, 86, 414, 108, 72, 129,
|
|
+ /* 510 */ 65, 66, 513, 510, 305, 52, 138, 69, 67, 70,
|
|
+ /* 520 */ 68, 64, 63, 62, 61, 58, 57, 56, 55, 54,
|
|
+ /* 530 */ 53, 514, 551, 365, 483, 192, 515, 488, 323, 207,
|
|
+ /* 540 */ 366, 249, 177, 186, 87, 483, 483, 46, 38, 44,
|
|
+ /* 550 */ 458, 108, 129, 65, 66, 513, 510, 305, 52, 138,
|
|
+ /* 560 */ 69, 67, 70, 68, 64, 63, 62, 61, 58, 57,
|
|
+ /* 570 */ 56, 55, 54, 53, 274, 457, 272, 271, 270, 23,
|
|
+ /* 580 */ 8, 551, 211, 412, 307, 257, 365, 385, 201, 31,
|
|
+ /* 590 */ 217, 388, 141, 205, 387, 219, 550, 549, 482, 511,
|
|
+ /* 600 */ 215, 376, 560, 134, 90, 477, 214, 514, 392, 482,
|
|
+ /* 610 */ 482, 152, 515, 360, 203, 212, 409, 531, 800, 284,
|
|
+ /* 620 */ 365, 145, 505, 50, 300, 365, 365, 173, 321, 212,
|
|
+ /* 630 */ 487, 137, 135, 8, 41, 136, 531, 307, 93, 47,
|
|
+ /* 640 */ 48, 346, 316, 106, 106, 550, 549, 49, 371, 370,
|
|
+ /* 650 */ 518, 509, 531, 517, 520, 504, 531, 531, 162, 495,
|
|
+ /* 660 */ 170, 317, 503, 319, 223, 231, 360, 551, 502, 283,
|
|
+ /* 670 */ 162, 207, 557, 486, 212, 191, 50, 10, 289, 304,
|
|
+ /* 680 */ 303, 556, 207, 531, 8, 531, 516, 18, 307, 498,
|
|
+ /* 690 */ 498, 189, 47, 48, 393, 531, 555, 28, 302, 554,
|
|
+ /* 700 */ 49, 371, 370, 518, 484, 480, 517, 520, 322, 299,
|
|
+ /* 710 */ 553, 418, 365, 323, 17, 365, 365, 360, 416, 207,
|
|
+ /* 720 */ 322, 417, 207, 418, 327, 212, 480, 50, 207, 326,
|
|
+ /* 730 */ 106, 550, 549, 106, 105, 247, 407, 475, 332, 516,
|
|
+ /* 740 */ 18, 326, 365, 47, 48, 207, 295, 365, 475, 294,
|
|
+ /* 750 */ 158, 49, 371, 370, 518, 293, 473, 517, 520, 485,
|
|
+ /* 760 */ 106, 391, 390, 202, 148, 93, 351, 480, 204, 301,
|
|
+ /* 770 */ 333, 190, 291, 541, 60, 531, 498, 252, 453, 498,
|
|
+ /* 780 */ 365, 365, 290, 365, 501, 475, 365, 79, 475, 531,
|
|
+ /* 790 */ 516, 18, 379, 378, 475, 365, 465, 245, 89, 112,
|
|
+ /* 800 */ 365, 109, 365, 131, 121, 288, 499, 365, 365, 439,
|
|
+ /* 810 */ 365, 475, 365, 120, 365, 365, 343, 365, 119, 365,
|
|
+ /* 820 */ 118, 365, 365, 365, 365, 117, 116, 365, 126, 365,
|
|
+ /* 830 */ 125, 365, 124, 123, 365, 115, 365, 114, 431, 140,
|
|
+ /* 840 */ 139, 255, 254, 365, 365, 253, 365, 280, 365, 107,
|
|
+ /* 850 */ 365, 365, 113, 365, 111, 26, 365, 365, 365, 365,
|
|
+ /* 860 */ 365, 279, 278, 365, 277, 365, 92, 365, 104, 103,
|
|
+ /* 870 */ 365, 91, 365, 365, 102, 101, 110, 100, 99, 347,
|
|
+ /* 880 */ 25, 98, 340, 30, 24, 97, 266, 174, 96, 85,
|
|
+ /* 890 */ 95, 94, 166, 292, 78, 165, 415, 14, 163, 60,
|
|
+ /* 900 */ 164, 22, 6, 408, 5, 77, 34, 33, 159, 16,
|
|
+ /* 910 */ 157, 151, 75, 149, 15, 146, 313, 312, 395, 384,
|
|
+ /* 920 */ 143, 20, 60, 206, 21, 273, 198, 559, 375, 548,
|
|
+ /* 930 */ 547, 546, 374, 4, 540, 539, 538, 308, 535, 532,
|
|
+ /* 940 */ 530, 212, 261, 38, 260, 352, 259, 39, 258, 367,
|
|
+ /* 950 */ 529, 196, 210, 256, 521, 522, 53, 53, 209, 43,
|
|
+ /* 960 */ 496, 188, 492, 208, 256, 81, 246, 37, 479, 349,
|
|
+ /* 970 */ 244, 37, 474, 464, 276, 27, 452, 451, 433, 432,
|
|
+ /* 980 */ 275, 235, 234, 335, 424, 35, 329, 413, 410, 127,
|
|
+ /* 990 */ 161, 84, 76, 403, 38, 400, 188, 399, 224, 398,
|
|
+ /* 1000 */ 38, 150, 318, 220, 83, 147, 315, 200, 381, 383,
|
|
+ /* 1010 */ 199, 142, 545, 265, 88, 262, 523, 361, 491, 476,
|
|
+ /* 1020 */ 463, 406, 397, 287, 389, 386, 310, 382, 552, 74,
|
|
+ /* 1030 */ 306, 525, 524, 364, 519, 357, 355, 353, 497, 489,
|
|
+ /* 1040 */ 481, 263, 242, 462, 461, 456, 455, 438, 296, 345,
|
|
+ /* 1050 */ 434, 237, 425, 337, 168, 167, 336, 236, 419, 330,
|
|
+ /* 1060 */ 233, 325, 324, 229, 228, 402, 401, 227, 226, 225,
|
|
+ /* 1070 */ 222, 221, 218, 314, 394, 311, 216, 380, 251, 250,
|
|
+ /* 1080 */ 133, 350, 248, 364, 558, 59, 435, 411, 428, 212,
|
|
+};
|
|
+static const YYCODETYPE yy_lookahead[] = {
|
|
+ /* 0 */ 21, 9, 23, 70, 71, 72, 73, 74, 75, 76,
|
|
+ /* 10 */ 77, 78, 79, 80, 81, 82, 83, 100, 101, 102,
|
|
+ /* 20 */ 41, 100, 101, 102, 20, 46, 74, 75, 76, 77,
|
|
+ /* 30 */ 78, 79, 80, 81, 82, 83, 19, 55, 56, 60,
|
|
+ /* 40 */ 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
|
|
+ /* 50 */ 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
|
|
+ /* 60 */ 81, 82, 83, 23, 108, 90, 87, 41, 112, 94,
|
|
+ /* 70 */ 95, 96, 46, 78, 79, 80, 81, 82, 83, 19,
|
|
+ /* 80 */ 105, 149, 143, 23, 152, 153, 60, 61, 62, 63,
|
|
+ /* 90 */ 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,
|
|
+ /* 100 */ 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
|
|
+ /* 110 */ 31, 107, 52, 109, 110, 93, 23, 140, 78, 79,
|
|
+ /* 120 */ 78, 79, 62, 22, 147, 148, 104, 87, 34, 89,
|
|
+ /* 130 */ 113, 89, 92, 93, 183, 184, 41, 43, 78, 79,
|
|
+ /* 140 */ 80, 46, 165, 166, 205, 53, 86, 87, 88, 89,
|
|
+ /* 150 */ 211, 62, 92, 93, 128, 60, 61, 62, 63, 64,
|
|
+ /* 160 */ 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
|
|
+ /* 170 */ 75, 76, 77, 78, 79, 80, 81, 82, 83, 146,
|
|
+ /* 180 */ 87, 88, 93, 90, 20, 125, 126, 94, 95, 96,
|
|
+ /* 190 */ 20, 90, 100, 101, 102, 94, 95, 96, 105, 80,
|
|
+ /* 200 */ 81, 82, 83, 111, 171, 41, 105, 23, 19, 48,
|
|
+ /* 210 */ 46, 19, 23, 19, 19, 23, 183, 184, 23, 17,
|
|
+ /* 220 */ 23, 62, 189, 128, 60, 61, 62, 63, 64, 65,
|
|
+ /* 230 */ 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
|
|
+ /* 240 */ 76, 77, 78, 79, 80, 81, 82, 83, 20, 90,
|
|
+ /* 250 */ 91, 15, 93, 94, 95, 96, 97, 98, 140, 57,
|
|
+ /* 260 */ 24, 59, 144, 104, 80, 147, 148, 89, 20, 41,
|
|
+ /* 270 */ 92, 87, 88, 20, 46, 39, 87, 88, 42, 87,
|
|
+ /* 280 */ 88, 19, 87, 88, 87, 88, 113, 62, 60, 61,
|
|
+ /* 290 */ 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
|
|
+ /* 300 */ 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
|
|
+ /* 310 */ 82, 83, 41, 132, 133, 134, 135, 46, 93, 94,
|
|
+ /* 320 */ 95, 96, 97, 98, 107, 63, 109, 110, 20, 104,
|
|
+ /* 330 */ 22, 60, 61, 62, 63, 64, 65, 66, 67, 68,
|
|
+ /* 340 */ 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
|
|
+ /* 350 */ 79, 80, 81, 82, 83, 107, 47, 109, 110, 41,
|
|
+ /* 360 */ 107, 89, 109, 110, 46, 0, 161, 162, 47, 89,
|
|
+ /* 370 */ 99, 62, 92, 168, 9, 10, 113, 17, 60, 61,
|
|
+ /* 380 */ 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
|
|
+ /* 390 */ 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
|
|
+ /* 400 */ 82, 83, 41, 89, 155, 156, 26, 46, 99, 20,
|
|
+ /* 410 */ 161, 22, 20, 104, 22, 118, 36, 57, 22, 59,
|
|
+ /* 420 */ 99, 60, 61, 62, 63, 64, 65, 66, 67, 68,
|
|
+ /* 430 */ 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
|
|
+ /* 440 */ 79, 80, 81, 82, 83, 41, 50, 20, 22, 22,
|
|
+ /* 450 */ 46, 20, 22, 22, 91, 20, 93, 22, 20, 20,
|
|
+ /* 460 */ 22, 22, 134, 135, 60, 61, 62, 63, 64, 65,
|
|
+ /* 470 */ 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
|
|
+ /* 480 */ 76, 77, 78, 79, 80, 81, 82, 83, 41, 140,
|
|
+ /* 490 */ 130, 22, 20, 46, 22, 20, 20, 22, 22, 20,
|
|
+ /* 500 */ 113, 22, 20, 19, 22, 21, 18, 158, 61, 62,
|
|
+ /* 510 */ 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
|
|
+ /* 520 */ 73, 74, 75, 76, 77, 78, 79, 80, 81, 82,
|
|
+ /* 530 */ 83, 41, 23, 140, 23, 113, 46, 22, 140, 140,
|
|
+ /* 540 */ 191, 192, 19, 21, 114, 23, 23, 127, 122, 129,
|
|
+ /* 550 */ 29, 158, 62, 63, 64, 65, 66, 67, 68, 69,
|
|
+ /* 560 */ 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
|
|
+ /* 570 */ 80, 81, 82, 83, 11, 54, 13, 14, 15, 16,
|
|
+ /* 580 */ 19, 23, 174, 95, 23, 192, 140, 78, 79, 181,
|
|
+ /* 590 */ 27, 89, 146, 195, 92, 32, 87, 88, 87, 93,
|
|
+ /* 600 */ 37, 136, 137, 88, 158, 206, 141, 41, 99, 87,
|
|
+ /* 610 */ 87, 146, 46, 52, 51, 111, 53, 171, 130, 19,
|
|
+ /* 620 */ 140, 58, 14, 62, 103, 140, 140, 146, 124, 111,
|
|
+ /* 630 */ 115, 146, 146, 19, 68, 69, 171, 23, 158, 78,
|
|
+ /* 640 */ 79, 80, 124, 158, 158, 87, 88, 86, 87, 88,
|
|
+ /* 650 */ 89, 108, 171, 92, 93, 20, 171, 171, 146, 93,
|
|
+ /* 660 */ 146, 196, 20, 100, 101, 102, 52, 23, 20, 106,
|
|
+ /* 670 */ 146, 140, 15, 115, 111, 22, 62, 118, 198, 194,
|
|
+ /* 680 */ 194, 24, 140, 171, 19, 171, 125, 126, 23, 204,
|
|
+ /* 690 */ 204, 22, 78, 79, 140, 171, 39, 19, 167, 42,
|
|
+ /* 700 */ 86, 87, 88, 89, 115, 152, 92, 93, 196, 167,
|
|
+ /* 710 */ 53, 140, 140, 140, 22, 140, 140, 52, 25, 140,
|
|
+ /* 720 */ 196, 28, 140, 140, 212, 111, 152, 62, 140, 217,
|
|
+ /* 730 */ 158, 87, 88, 158, 158, 182, 212, 206, 45, 125,
|
|
+ /* 740 */ 126, 217, 140, 78, 79, 140, 167, 140, 206, 167,
|
|
+ /* 750 */ 146, 86, 87, 88, 89, 167, 182, 92, 93, 115,
|
|
+ /* 760 */ 158, 207, 208, 209, 146, 158, 194, 152, 195, 194,
|
|
+ /* 770 */ 199, 22, 167, 156, 200, 171, 204, 201, 161, 204,
|
|
+ /* 780 */ 140, 140, 199, 140, 20, 206, 140, 20, 206, 171,
|
|
+ /* 790 */ 125, 126, 9, 10, 206, 140, 20, 182, 158, 158,
|
|
+ /* 800 */ 140, 158, 140, 113, 158, 198, 204, 140, 140, 20,
|
|
+ /* 810 */ 140, 206, 140, 158, 140, 140, 48, 140, 158, 140,
|
|
+ /* 820 */ 158, 140, 140, 140, 140, 158, 158, 140, 158, 140,
|
|
+ /* 830 */ 158, 140, 158, 158, 140, 158, 140, 158, 139, 158,
|
|
+ /* 840 */ 158, 158, 158, 140, 140, 158, 140, 158, 140, 158,
|
|
+ /* 850 */ 140, 140, 158, 140, 158, 19, 140, 140, 140, 140,
|
|
+ /* 860 */ 140, 158, 158, 140, 158, 140, 158, 140, 158, 158,
|
|
+ /* 870 */ 140, 158, 140, 140, 158, 158, 158, 158, 158, 140,
|
|
+ /* 880 */ 19, 158, 48, 158, 19, 158, 104, 97, 158, 21,
|
|
+ /* 890 */ 158, 158, 99, 38, 49, 22, 49, 158, 99, 200,
|
|
+ /* 900 */ 130, 19, 11, 14, 9, 103, 63, 63, 123, 19,
|
|
+ /* 910 */ 114, 114, 103, 123, 19, 114, 116, 35, 87, 20,
|
|
+ /* 920 */ 21, 150, 200, 160, 160, 138, 12, 139, 99, 138,
|
|
+ /* 930 */ 138, 138, 145, 22, 139, 139, 164, 44, 139, 139,
|
|
+ /* 940 */ 171, 111, 176, 122, 177, 119, 178, 120, 179, 117,
|
|
+ /* 950 */ 180, 121, 193, 98, 151, 23, 83, 83, 202, 127,
|
|
+ /* 960 */ 186, 113, 186, 193, 98, 186, 187, 99, 188, 116,
|
|
+ /* 970 */ 187, 99, 188, 139, 159, 19, 151, 164, 139, 139,
|
|
+ /* 980 */ 159, 186, 215, 40, 216, 127, 186, 139, 169, 60,
|
|
+ /* 990 */ 169, 197, 19, 176, 122, 186, 113, 186, 186, 176,
|
|
+ /* 1000 */ 122, 169, 186, 186, 197, 169, 186, 218, 33, 219,
|
|
+ /* 1010 */ 116, 218, 142, 157, 173, 175, 157, 203, 157, 157,
|
|
+ /* 1020 */ 162, 176, 176, 152, 210, 210, 152, 152, 140, 140,
|
|
+ /* 1030 */ 154, 154, 154, 140, 140, 140, 140, 140, 140, 185,
|
|
+ /* 1040 */ 140, 172, 140, 140, 163, 163, 163, 152, 154, 154,
|
|
+ /* 1050 */ 140, 140, 140, 140, 140, 213, 214, 140, 140, 140,
|
|
+ /* 1060 */ 140, 140, 140, 140, 140, 140, 140, 140, 140, 140,
|
|
+ /* 1070 */ 140, 140, 140, 140, 140, 140, 140, 140, 140, 140,
|
|
+ /* 1080 */ 140, 140, 140, 140, 170, 200, 166, 170, 166, 111,
|
|
+};
|
|
+#define YY_SHIFT_USE_DFLT (-84)
|
|
+#define YY_SHIFT_COUNT (376)
|
|
+#define YY_SHIFT_MIN (-83)
|
|
+#define YY_SHIFT_MAX (978)
|
|
+static const short yy_shift_ofst[] = {
|
|
+ /* 0 */ 783, 563, 614, 614, 93, 92, 92, 978, 614, 561,
|
|
+ /* 10 */ 665, 665, 509, 197, -21, 665, 665, 665, 665, 665,
|
|
+ /* 20 */ 159, 309, 197, 488, 197, 197, 197, 197, 197, 511,
|
|
+ /* 30 */ 271, 60, 665, 665, 665, 665, 665, 665, 665, 665,
|
|
+ /* 40 */ 665, 665, 665, 665, 665, 665, 665, 665, 665, 665,
|
|
+ /* 50 */ 665, 665, 665, 665, 665, 665, 665, 665, 665, 665,
|
|
+ /* 60 */ 665, 665, 665, 665, 665, 665, 665, 665, 665, 665,
|
|
+ /* 70 */ 665, 665, 665, 665, 225, 197, 197, 197, 197, 522,
|
|
+ /* 80 */ 197, 522, 365, 518, 504, 978, 978, -84, -84, 228,
|
|
+ /* 90 */ 164, 95, 26, 318, 318, 318, 318, 318, 318, 318,
|
|
+ /* 100 */ 318, 404, 318, 318, 318, 318, 318, 361, 318, 447,
|
|
+ /* 110 */ 490, 490, 490, -67, -67, -67, -67, -67, -48, -48,
|
|
+ /* 120 */ -48, -48, 101, -5, -5, -5, -5, 657, -25, 566,
|
|
+ /* 130 */ 657, 184, 195, 644, 558, 253, 192, 248, 189, 119,
|
|
+ /* 140 */ 119, 4, 197, 197, 197, 197, 197, 197, 217, 197,
|
|
+ /* 150 */ 197, 197, 217, 197, 197, 197, 197, 197, 217, 197,
|
|
+ /* 160 */ 197, 197, 217, 197, 197, 197, 197, -79, 693, 197,
|
|
+ /* 170 */ 217, 197, 197, 217, 197, 197, 42, 42, 523, 521,
|
|
+ /* 180 */ 521, 521, 197, 197, 515, 217, 197, 515, 197, 197,
|
|
+ /* 190 */ 197, 197, 197, 197, 42, 42, 42, 197, 197, 511,
|
|
+ /* 200 */ 511, 502, 502, 511, 426, 426, 321, 380, 380, 420,
|
|
+ /* 210 */ 380, 430, -44, 380, 484, 975, 894, 975, 883, 929,
|
|
+ /* 220 */ 973, 883, 883, 929, 878, 883, 883, 883, 872, 973,
|
|
+ /* 230 */ 929, 929, 829, 848, 858, 943, 848, 956, 829, 829,
|
|
+ /* 240 */ 893, 932, 956, 829, 853, 872, 853, 868, 848, 866,
|
|
+ /* 250 */ 848, 848, 832, 874, 874, 873, 932, 855, 830, 832,
|
|
+ /* 260 */ 827, 826, 821, 830, 829, 829, 893, 829, 829, 911,
|
|
+ /* 270 */ 914, 914, 914, 829, 914, -84, -84, -84, -84, -84,
|
|
+ /* 280 */ -84, -84, 40, 360, 236, 202, -83, 262, 482, 479,
|
|
+ /* 290 */ 476, 475, -18, 472, 439, 438, 435, 280, 178, 431,
|
|
+ /* 300 */ 363, 427, 392, 389, 308, 89, 396, 17, 94, 22,
|
|
+ /* 310 */ 899, 899, 831, 882, 800, 801, 895, 790, 809, 797,
|
|
+ /* 320 */ 796, 890, 785, 844, 843, 802, 895, 889, 891, 882,
|
|
+ /* 330 */ 799, 770, 847, 873, 845, 855, 793, 868, 782, 790,
|
|
+ /* 340 */ 865, 834, 861, 836, 768, 789, 776, 690, 767, 678,
|
|
+ /* 350 */ 589, 692, 559, 764, 669, 648, 749, 642, 653, 635,
|
|
+ /* 360 */ 600, 608, 543, 506, 422, 387, 469, 297, 314, 272,
|
|
+ /* 370 */ 263, 173, 194, 161, 170, 79, -8,
|
|
+};
|
|
+#define YY_REDUCE_USE_DFLT (-69)
|
|
+#define YY_REDUCE_COUNT (281)
|
|
+#define YY_REDUCE_MIN (-68)
|
|
+#define YY_REDUCE_MAX (943)
|
|
+static const short yy_reduce_ofst[] = {
|
|
+ /* 0 */ 181, 465, 486, 485, -23, 524, 512, 33, 446, 575,
|
|
+ /* 10 */ 572, 349, 554, 118, 574, 607, 480, 602, 576, 393,
|
|
+ /* 20 */ 249, 205, 605, -61, 588, 582, 579, 542, 531, -68,
|
|
+ /* 30 */ 699, 739, 733, 732, 730, 727, 725, 723, 720, 719,
|
|
+ /* 40 */ 718, 717, 716, 713, 711, 710, 708, 706, 704, 703,
|
|
+ /* 50 */ 696, 694, 691, 689, 687, 684, 683, 682, 681, 679,
|
|
+ /* 60 */ 677, 675, 674, 672, 670, 668, 667, 662, 660, 655,
|
|
+ /* 70 */ 646, 643, 641, 640, 617, 573, 583, 398, 571, 615,
|
|
+ /* 80 */ 399, 553, 328, 618, 604, 514, 481, -49, 408, 722,
|
|
+ /* 90 */ 722, 722, 722, 722, 722, 722, 722, 722, 722, 722,
|
|
+ /* 100 */ 722, 722, 722, 722, 722, 722, 722, 722, 722, 722,
|
|
+ /* 110 */ 722, 722, 722, 722, 722, 722, 722, 722, 722, 722,
|
|
+ /* 120 */ 722, 722, 922, 722, 722, 722, 722, 917, 920, 885,
|
|
+ /* 130 */ 914, 943, 942, 941, 940, 869, 939, 869, 938, 722,
|
|
+ /* 140 */ 722, 869, 937, 936, 935, 934, 933, 932, 869, 931,
|
|
+ /* 150 */ 930, 929, 869, 928, 927, 926, 925, 924, 869, 923,
|
|
+ /* 160 */ 922, 921, 869, 920, 919, 918, 917, 842, 842, 914,
|
|
+ /* 170 */ 869, 913, 912, 869, 911, 910, 895, 894, 895, 883,
|
|
+ /* 180 */ 882, 881, 903, 902, 854, 869, 900, 854, 898, 897,
|
|
+ /* 190 */ 896, 895, 894, 893, 878, 877, 876, 889, 888, 875,
|
|
+ /* 200 */ 874, 815, 814, 871, 846, 845, 858, 862, 861, 814,
|
|
+ /* 210 */ 859, 840, 841, 856, 870, 793, 790, 789, 820, 836,
|
|
+ /* 220 */ 807, 817, 816, 832, 823, 812, 811, 809, 817, 794,
|
|
+ /* 230 */ 821, 819, 848, 800, 768, 767, 795, 821, 840, 839,
|
|
+ /* 240 */ 813, 825, 815, 834, 784, 783, 780, 779, 779, 770,
|
|
+ /* 250 */ 776, 774, 756, 722, 722, 722, 803, 759, 770, 769,
|
|
+ /* 260 */ 768, 767, 766, 769, 800, 799, 772, 796, 795, 787,
|
|
+ /* 270 */ 793, 792, 791, 788, 787, 764, 763, 722, 722, 722,
|
|
+ /* 280 */ 722, 771,
|
|
+};
|
|
+static const YYACTIONTYPE yy_default[] = {
|
|
+ /* 0 */ 570, 856, 797, 797, 856, 839, 839, 685, 856, 797,
|
|
+ /* 10 */ 797, 856, 822, 856, 681, 856, 856, 797, 793, 856,
|
|
+ /* 20 */ 586, 649, 856, 581, 856, 856, 856, 856, 856, 594,
|
|
+ /* 30 */ 651, 856, 856, 856, 856, 856, 856, 856, 856, 856,
|
|
+ /* 40 */ 856, 856, 856, 856, 856, 856, 856, 856, 856, 856,
|
|
+ /* 50 */ 856, 856, 856, 856, 856, 856, 856, 856, 856, 856,
|
|
+ /* 60 */ 856, 856, 856, 856, 856, 856, 856, 856, 856, 856,
|
|
+ /* 70 */ 856, 856, 856, 856, 856, 856, 856, 856, 856, 681,
|
|
+ /* 80 */ 856, 681, 570, 856, 856, 856, 856, 685, 675, 856,
|
|
+ /* 90 */ 856, 856, 856, 730, 729, 724, 723, 837, 697, 721,
|
|
+ /* 100 */ 714, 856, 789, 790, 788, 792, 796, 856, 705, 748,
|
|
+ /* 110 */ 780, 774, 747, 779, 760, 759, 754, 753, 752, 751,
|
|
+ /* 120 */ 750, 749, 640, 758, 757, 756, 755, 856, 856, 856,
|
|
+ /* 130 */ 856, 856, 856, 856, 856, 856, 856, 856, 856, 764,
|
|
+ /* 140 */ 763, 856, 856, 856, 856, 809, 856, 856, 726, 856,
|
|
+ /* 150 */ 856, 856, 663, 856, 856, 856, 856, 856, 842, 856,
|
|
+ /* 160 */ 856, 856, 844, 856, 856, 856, 856, 856, 828, 856,
|
|
+ /* 170 */ 661, 856, 856, 583, 856, 856, 856, 856, 595, 856,
|
|
+ /* 180 */ 856, 856, 856, 856, 689, 688, 856, 683, 856, 856,
|
|
+ /* 190 */ 856, 856, 856, 856, 856, 856, 856, 856, 573, 856,
|
|
+ /* 200 */ 856, 856, 856, 856, 720, 720, 621, 708, 708, 791,
|
|
+ /* 210 */ 708, 682, 673, 708, 856, 854, 852, 854, 690, 653,
|
|
+ /* 220 */ 731, 690, 690, 653, 720, 690, 690, 690, 720, 731,
|
|
+ /* 230 */ 653, 653, 651, 690, 836, 833, 690, 801, 651, 651,
|
|
+ /* 240 */ 636, 856, 801, 651, 700, 698, 700, 698, 690, 709,
|
|
+ /* 250 */ 690, 690, 856, 767, 766, 765, 856, 709, 715, 701,
|
|
+ /* 260 */ 713, 711, 720, 856, 651, 651, 636, 651, 651, 639,
|
|
+ /* 270 */ 572, 572, 572, 651, 572, 624, 624, 777, 776, 775,
|
|
+ /* 280 */ 768, 604, 856, 856, 856, 856, 856, 816, 856, 856,
|
|
+ /* 290 */ 856, 856, 856, 856, 856, 856, 856, 856, 856, 856,
|
|
+ /* 300 */ 856, 856, 856, 856, 856, 856, 716, 737, 856, 856,
|
|
+ /* 310 */ 856, 856, 856, 856, 808, 856, 856, 856, 856, 856,
|
|
+ /* 320 */ 856, 856, 856, 856, 856, 856, 856, 856, 856, 856,
|
|
+ /* 330 */ 856, 856, 856, 832, 831, 856, 856, 856, 856, 856,
|
|
+ /* 340 */ 856, 856, 856, 856, 856, 856, 856, 856, 856, 856,
|
|
+ /* 350 */ 856, 712, 856, 856, 856, 856, 856, 856, 856, 856,
|
|
+ /* 360 */ 856, 856, 666, 856, 739, 856, 702, 856, 856, 856,
|
|
+ /* 370 */ 738, 743, 856, 856, 856, 856, 856, 565, 569, 567,
|
|
+ /* 380 */ 855, 853, 851, 850, 815, 821, 818, 820, 819, 817,
|
|
+ /* 390 */ 814, 813, 812, 811, 810, 807, 725, 722, 719, 849,
|
|
+ /* 400 */ 806, 662, 660, 843, 841, 732, 840, 838, 823, 728,
|
|
+ /* 410 */ 727, 654, 799, 798, 580, 827, 826, 825, 734, 733,
|
|
+ /* 420 */ 830, 829, 835, 834, 824, 579, 585, 643, 642, 650,
|
|
+ /* 430 */ 648, 647, 646, 645, 644, 641, 587, 598, 599, 597,
|
|
+ /* 440 */ 596, 615, 612, 614, 611, 613, 610, 609, 608, 607,
|
|
+ /* 450 */ 606, 635, 623, 622, 802, 629, 628, 633, 632, 631,
|
|
+ /* 460 */ 630, 627, 626, 625, 620, 746, 745, 735, 778, 672,
|
|
+ /* 470 */ 671, 678, 677, 676, 687, 804, 805, 803, 699, 686,
|
|
+ /* 480 */ 680, 679, 590, 589, 696, 695, 694, 693, 692, 684,
|
|
+ /* 490 */ 674, 704, 786, 783, 784, 772, 785, 691, 795, 794,
|
|
+ /* 500 */ 781, 848, 847, 846, 845, 787, 782, 669, 668, 667,
|
|
+ /* 510 */ 771, 773, 770, 769, 762, 761, 744, 742, 741, 740,
|
|
+ /* 520 */ 736, 710, 588, 703, 718, 717, 602, 601, 600, 670,
|
|
+ /* 530 */ 665, 664, 619, 707, 706, 618, 638, 637, 634, 617,
|
|
+ /* 540 */ 616, 605, 603, 584, 582, 578, 577, 576, 575, 593,
|
|
+ /* 550 */ 592, 591, 574, 659, 658, 657, 656, 655, 652, 571,
|
|
+ /* 560 */ 568, 566, 564,
|
|
+};
|
|
+
|
|
+/* The next table maps tokens into fallback tokens. If a construct
|
|
+** like the following:
|
|
+**
|
|
+** %fallback ID X Y Z.
|
|
+**
|
|
+** appears in the grammar, then ID becomes a fallback token for X, Y,
|
|
+** and Z. Whenever one of the tokens X, Y, or Z is input to the parser
|
|
+** but it does not parse, the type of the token is changed to ID and
|
|
+** the parse is retried before an error is thrown.
|
|
+*/
|
|
+#ifdef YYFALLBACK
|
|
+static const YYCODETYPE yyFallback[] = {
|
|
+ 0, /* $ => nothing */
|
|
+ 0, /* END_OF_FILE => nothing */
|
|
+ 0, /* ILLEGAL => nothing */
|
|
+ 0, /* SPACE => nothing */
|
|
+ 0, /* UNCLOSED_STRING => nothing */
|
|
+ 0, /* COMMENT => nothing */
|
|
+ 0, /* FUNCTION => nothing */
|
|
+ 0, /* COLUMN => nothing */
|
|
+ 0, /* AGG_FUNCTION => nothing */
|
|
+ 0, /* SEMI => nothing */
|
|
+ 23, /* EXPLAIN => ID */
|
|
+ 23, /* BEGIN => ID */
|
|
+ 0, /* TRANSACTION => nothing */
|
|
+ 0, /* COMMIT => nothing */
|
|
+ 23, /* END => ID */
|
|
+ 0, /* ROLLBACK => nothing */
|
|
+ 0, /* CREATE => nothing */
|
|
+ 0, /* TABLE => nothing */
|
|
+ 23, /* TEMP => ID */
|
|
+ 0, /* LP => nothing */
|
|
+ 0, /* RP => nothing */
|
|
+ 0, /* AS => nothing */
|
|
+ 0, /* COMMA => nothing */
|
|
+ 0, /* ID => nothing */
|
|
+ 23, /* ABORT => ID */
|
|
+ 23, /* AFTER => ID */
|
|
+ 23, /* ASC => ID */
|
|
+ 23, /* ATTACH => ID */
|
|
+ 23, /* BEFORE => ID */
|
|
+ 23, /* CASCADE => ID */
|
|
+ 23, /* CLUSTER => ID */
|
|
+ 23, /* CONFLICT => ID */
|
|
+ 23, /* COPY => ID */
|
|
+ 23, /* DATABASE => ID */
|
|
+ 23, /* DEFERRED => ID */
|
|
+ 23, /* DELIMITERS => ID */
|
|
+ 23, /* DESC => ID */
|
|
+ 23, /* DETACH => ID */
|
|
+ 23, /* EACH => ID */
|
|
+ 23, /* FAIL => ID */
|
|
+ 23, /* FOR => ID */
|
|
+ 23, /* GLOB => ID */
|
|
+ 23, /* IGNORE => ID */
|
|
+ 23, /* IMMEDIATE => ID */
|
|
+ 23, /* INITIALLY => ID */
|
|
+ 23, /* INSTEAD => ID */
|
|
+ 23, /* LIKE => ID */
|
|
+ 23, /* MATCH => ID */
|
|
+ 23, /* KEY => ID */
|
|
+ 23, /* OF => ID */
|
|
+ 23, /* OFFSET => ID */
|
|
+ 23, /* PRAGMA => ID */
|
|
+ 23, /* RAISE => ID */
|
|
+ 23, /* REPLACE => ID */
|
|
+ 23, /* RESTRICT => ID */
|
|
+ 23, /* ROW => ID */
|
|
+ 23, /* STATEMENT => ID */
|
|
+ 23, /* TRIGGER => ID */
|
|
+ 23, /* VACUUM => ID */
|
|
+ 23, /* VIEW => ID */
|
|
+};
|
|
+#endif /* YYFALLBACK */
|
|
+
|
|
+/* The following structure represents a single element of the
|
|
+** parser's stack. Information stored includes:
|
|
+**
|
|
+** + The state number for the parser at this level of the stack.
|
|
+**
|
|
+** + The value of the token stored at this level of the stack.
|
|
+** (In other words, the "major" token.)
|
|
+**
|
|
+** + The semantic value stored at this level of the stack. This is
|
|
+** the information used by the action routines in the grammar.
|
|
+** It is sometimes called the "minor" token.
|
|
+*/
|
|
+struct yyStackEntry {
|
|
+ YYACTIONTYPE stateno; /* The state-number */
|
|
+ YYCODETYPE major; /* The major token value. This is the code
|
|
+ ** number for the token at this stack level */
|
|
+ YYMINORTYPE minor; /* The user-supplied minor token value. This
|
|
+ ** is the value of the token */
|
|
+};
|
|
+typedef struct yyStackEntry yyStackEntry;
|
|
+
|
|
+/* The state of the parser is completely contained in an instance of
|
|
+** the following structure */
|
|
+struct yyParser {
|
|
+ int yyidx; /* Index of top element in stack */
|
|
+#ifdef YYTRACKMAXSTACKDEPTH
|
|
+ int yyidxMax; /* Maximum value of yyidx */
|
|
+#endif
|
|
+ int yyerrcnt; /* Shifts left before out of the error */
|
|
+ sqliteParserARG_SDECL /* A place to hold %extra_argument */
|
|
+#if YYSTACKDEPTH<=0
|
|
+ int yystksz; /* Current side of the stack */
|
|
+ yyStackEntry *yystack; /* The parser's stack */
|
|
+#else
|
|
+ yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */
|
|
+#endif
|
|
+};
|
|
+typedef struct yyParser yyParser;
|
|
+
|
|
+#ifndef NDEBUG
|
|
+#include <stdio.h>
|
|
+static FILE *yyTraceFILE = 0;
|
|
+static char *yyTracePrompt = 0;
|
|
+#endif /* NDEBUG */
|
|
+
|
|
+#ifndef NDEBUG
|
|
+/*
|
|
+** Turn parser tracing on by giving a stream to which to write the trace
|
|
+** and a prompt to preface each trace message. Tracing is turned off
|
|
+** by making either argument NULL
|
|
+**
|
|
+** Inputs:
|
|
+** <ul>
|
|
+** <li> A FILE* to which trace output should be written.
|
|
+** If NULL, then tracing is turned off.
|
|
+** <li> A prefix string written at the beginning of every
|
|
+** line of trace output. If NULL, then tracing is
|
|
+** turned off.
|
|
+** </ul>
|
|
+**
|
|
+** Outputs:
|
|
+** None.
|
|
+*/
|
|
+void sqliteParserTrace(FILE *TraceFILE, char *zTracePrompt){
|
|
+ yyTraceFILE = TraceFILE;
|
|
+ yyTracePrompt = zTracePrompt;
|
|
+ if( yyTraceFILE==0 ) yyTracePrompt = 0;
|
|
+ else if( yyTracePrompt==0 ) yyTraceFILE = 0;
|
|
+}
|
|
+#endif /* NDEBUG */
|
|
+
|
|
+#ifndef NDEBUG
|
|
+/* For tracing shifts, the names of all terminals and nonterminals
|
|
+** are required. The following table supplies these names */
|
|
+static const char *const yyTokenName[] = {
|
|
+ "$", "END_OF_FILE", "ILLEGAL", "SPACE",
|
|
+ "UNCLOSED_STRING", "COMMENT", "FUNCTION", "COLUMN",
|
|
+ "AGG_FUNCTION", "SEMI", "EXPLAIN", "BEGIN",
|
|
+ "TRANSACTION", "COMMIT", "END", "ROLLBACK",
|
|
+ "CREATE", "TABLE", "TEMP", "LP",
|
|
+ "RP", "AS", "COMMA", "ID",
|
|
+ "ABORT", "AFTER", "ASC", "ATTACH",
|
|
+ "BEFORE", "CASCADE", "CLUSTER", "CONFLICT",
|
|
+ "COPY", "DATABASE", "DEFERRED", "DELIMITERS",
|
|
+ "DESC", "DETACH", "EACH", "FAIL",
|
|
+ "FOR", "GLOB", "IGNORE", "IMMEDIATE",
|
|
+ "INITIALLY", "INSTEAD", "LIKE", "MATCH",
|
|
+ "KEY", "OF", "OFFSET", "PRAGMA",
|
|
+ "RAISE", "REPLACE", "RESTRICT", "ROW",
|
|
+ "STATEMENT", "TRIGGER", "VACUUM", "VIEW",
|
|
+ "OR", "AND", "NOT", "EQ",
|
|
+ "NE", "ISNULL", "NOTNULL", "IS",
|
|
+ "BETWEEN", "IN", "GT", "GE",
|
|
+ "LT", "LE", "BITAND", "BITOR",
|
|
+ "LSHIFT", "RSHIFT", "PLUS", "MINUS",
|
|
+ "STAR", "SLASH", "REM", "CONCAT",
|
|
+ "UMINUS", "UPLUS", "BITNOT", "STRING",
|
|
+ "JOIN_KW", "INTEGER", "CONSTRAINT", "DEFAULT",
|
|
+ "FLOAT", "NULL", "PRIMARY", "UNIQUE",
|
|
+ "CHECK", "REFERENCES", "COLLATE", "ON",
|
|
+ "DELETE", "UPDATE", "INSERT", "SET",
|
|
+ "DEFERRABLE", "FOREIGN", "DROP", "UNION",
|
|
+ "ALL", "INTERSECT", "EXCEPT", "SELECT",
|
|
+ "DISTINCT", "DOT", "FROM", "JOIN",
|
|
+ "USING", "ORDER", "BY", "GROUP",
|
|
+ "HAVING", "LIMIT", "WHERE", "INTO",
|
|
+ "VALUES", "VARIABLE", "CASE", "WHEN",
|
|
+ "THEN", "ELSE", "INDEX", "error",
|
|
+ "input", "cmdlist", "ecmd", "explain",
|
|
+ "cmdx", "cmd", "trans_opt", "onconf",
|
|
+ "nm", "create_table", "create_table_args", "temp",
|
|
+ "columnlist", "conslist_opt", "select", "column",
|
|
+ "columnid", "type", "carglist", "id",
|
|
+ "ids", "typename", "signed", "carg",
|
|
+ "ccons", "sortorder", "expr", "idxlist_opt",
|
|
+ "refargs", "defer_subclause", "refarg", "refact",
|
|
+ "init_deferred_pred_opt", "conslist", "tcons", "idxlist",
|
|
+ "defer_subclause_opt", "orconf", "resolvetype", "oneselect",
|
|
+ "multiselect_op", "distinct", "selcollist", "from",
|
|
+ "where_opt", "groupby_opt", "having_opt", "orderby_opt",
|
|
+ "limit_opt", "sclp", "as", "seltablist",
|
|
+ "stl_prefix", "joinop", "dbnm", "on_opt",
|
|
+ "using_opt", "seltablist_paren", "joinop2", "sortlist",
|
|
+ "sortitem", "collate", "exprlist", "setlist",
|
|
+ "insert_cmd", "inscollist_opt", "itemlist", "inscollist",
|
|
+ "likeop", "case_operand", "case_exprlist", "case_else",
|
|
+ "expritem", "uniqueflag", "idxitem", "plus_num",
|
|
+ "minus_num", "plus_opt", "number", "trigger_decl",
|
|
+ "trigger_cmd_list", "trigger_time", "trigger_event", "foreach_clause",
|
|
+ "when_clause", "trigger_cmd", "database_kw_opt", "key_opt",
|
|
+};
|
|
+#endif /* NDEBUG */
|
|
+
|
|
+#ifndef NDEBUG
|
|
+/* For tracing reduce actions, the names of all rules are required.
|
|
+*/
|
|
+static const char *const yyRuleName[] = {
|
|
+ /* 0 */ "input ::= cmdlist",
|
|
+ /* 1 */ "cmdlist ::= cmdlist ecmd",
|
|
+ /* 2 */ "cmdlist ::= ecmd",
|
|
+ /* 3 */ "ecmd ::= explain cmdx SEMI",
|
|
+ /* 4 */ "ecmd ::= SEMI",
|
|
+ /* 5 */ "cmdx ::= cmd",
|
|
+ /* 6 */ "explain ::= EXPLAIN",
|
|
+ /* 7 */ "explain ::=",
|
|
+ /* 8 */ "cmd ::= BEGIN trans_opt onconf",
|
|
+ /* 9 */ "trans_opt ::=",
|
|
+ /* 10 */ "trans_opt ::= TRANSACTION",
|
|
+ /* 11 */ "trans_opt ::= TRANSACTION nm",
|
|
+ /* 12 */ "cmd ::= COMMIT trans_opt",
|
|
+ /* 13 */ "cmd ::= END trans_opt",
|
|
+ /* 14 */ "cmd ::= ROLLBACK trans_opt",
|
|
+ /* 15 */ "cmd ::= create_table create_table_args",
|
|
+ /* 16 */ "create_table ::= CREATE temp TABLE nm",
|
|
+ /* 17 */ "temp ::= TEMP",
|
|
+ /* 18 */ "temp ::=",
|
|
+ /* 19 */ "create_table_args ::= LP columnlist conslist_opt RP",
|
|
+ /* 20 */ "create_table_args ::= AS select",
|
|
+ /* 21 */ "columnlist ::= columnlist COMMA column",
|
|
+ /* 22 */ "columnlist ::= column",
|
|
+ /* 23 */ "column ::= columnid type carglist",
|
|
+ /* 24 */ "columnid ::= nm",
|
|
+ /* 25 */ "id ::= ID",
|
|
+ /* 26 */ "ids ::= ID",
|
|
+ /* 27 */ "ids ::= STRING",
|
|
+ /* 28 */ "nm ::= ID",
|
|
+ /* 29 */ "nm ::= STRING",
|
|
+ /* 30 */ "nm ::= JOIN_KW",
|
|
+ /* 31 */ "type ::=",
|
|
+ /* 32 */ "type ::= typename",
|
|
+ /* 33 */ "type ::= typename LP signed RP",
|
|
+ /* 34 */ "type ::= typename LP signed COMMA signed RP",
|
|
+ /* 35 */ "typename ::= ids",
|
|
+ /* 36 */ "typename ::= typename ids",
|
|
+ /* 37 */ "signed ::= INTEGER",
|
|
+ /* 38 */ "signed ::= PLUS INTEGER",
|
|
+ /* 39 */ "signed ::= MINUS INTEGER",
|
|
+ /* 40 */ "carglist ::= carglist carg",
|
|
+ /* 41 */ "carglist ::=",
|
|
+ /* 42 */ "carg ::= CONSTRAINT nm ccons",
|
|
+ /* 43 */ "carg ::= ccons",
|
|
+ /* 44 */ "carg ::= DEFAULT STRING",
|
|
+ /* 45 */ "carg ::= DEFAULT ID",
|
|
+ /* 46 */ "carg ::= DEFAULT INTEGER",
|
|
+ /* 47 */ "carg ::= DEFAULT PLUS INTEGER",
|
|
+ /* 48 */ "carg ::= DEFAULT MINUS INTEGER",
|
|
+ /* 49 */ "carg ::= DEFAULT FLOAT",
|
|
+ /* 50 */ "carg ::= DEFAULT PLUS FLOAT",
|
|
+ /* 51 */ "carg ::= DEFAULT MINUS FLOAT",
|
|
+ /* 52 */ "carg ::= DEFAULT NULL",
|
|
+ /* 53 */ "ccons ::= NULL onconf",
|
|
+ /* 54 */ "ccons ::= NOT NULL onconf",
|
|
+ /* 55 */ "ccons ::= PRIMARY KEY sortorder onconf",
|
|
+ /* 56 */ "ccons ::= UNIQUE onconf",
|
|
+ /* 57 */ "ccons ::= CHECK LP expr RP onconf",
|
|
+ /* 58 */ "ccons ::= REFERENCES nm idxlist_opt refargs",
|
|
+ /* 59 */ "ccons ::= defer_subclause",
|
|
+ /* 60 */ "ccons ::= COLLATE id",
|
|
+ /* 61 */ "refargs ::=",
|
|
+ /* 62 */ "refargs ::= refargs refarg",
|
|
+ /* 63 */ "refarg ::= MATCH nm",
|
|
+ /* 64 */ "refarg ::= ON DELETE refact",
|
|
+ /* 65 */ "refarg ::= ON UPDATE refact",
|
|
+ /* 66 */ "refarg ::= ON INSERT refact",
|
|
+ /* 67 */ "refact ::= SET NULL",
|
|
+ /* 68 */ "refact ::= SET DEFAULT",
|
|
+ /* 69 */ "refact ::= CASCADE",
|
|
+ /* 70 */ "refact ::= RESTRICT",
|
|
+ /* 71 */ "defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt",
|
|
+ /* 72 */ "defer_subclause ::= DEFERRABLE init_deferred_pred_opt",
|
|
+ /* 73 */ "init_deferred_pred_opt ::=",
|
|
+ /* 74 */ "init_deferred_pred_opt ::= INITIALLY DEFERRED",
|
|
+ /* 75 */ "init_deferred_pred_opt ::= INITIALLY IMMEDIATE",
|
|
+ /* 76 */ "conslist_opt ::=",
|
|
+ /* 77 */ "conslist_opt ::= COMMA conslist",
|
|
+ /* 78 */ "conslist ::= conslist COMMA tcons",
|
|
+ /* 79 */ "conslist ::= conslist tcons",
|
|
+ /* 80 */ "conslist ::= tcons",
|
|
+ /* 81 */ "tcons ::= CONSTRAINT nm",
|
|
+ /* 82 */ "tcons ::= PRIMARY KEY LP idxlist RP onconf",
|
|
+ /* 83 */ "tcons ::= UNIQUE LP idxlist RP onconf",
|
|
+ /* 84 */ "tcons ::= CHECK expr onconf",
|
|
+ /* 85 */ "tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt",
|
|
+ /* 86 */ "defer_subclause_opt ::=",
|
|
+ /* 87 */ "defer_subclause_opt ::= defer_subclause",
|
|
+ /* 88 */ "onconf ::=",
|
|
+ /* 89 */ "onconf ::= ON CONFLICT resolvetype",
|
|
+ /* 90 */ "orconf ::=",
|
|
+ /* 91 */ "orconf ::= OR resolvetype",
|
|
+ /* 92 */ "resolvetype ::= ROLLBACK",
|
|
+ /* 93 */ "resolvetype ::= ABORT",
|
|
+ /* 94 */ "resolvetype ::= FAIL",
|
|
+ /* 95 */ "resolvetype ::= IGNORE",
|
|
+ /* 96 */ "resolvetype ::= REPLACE",
|
|
+ /* 97 */ "cmd ::= DROP TABLE nm",
|
|
+ /* 98 */ "cmd ::= CREATE temp VIEW nm AS select",
|
|
+ /* 99 */ "cmd ::= DROP VIEW nm",
|
|
+ /* 100 */ "cmd ::= select",
|
|
+ /* 101 */ "select ::= oneselect",
|
|
+ /* 102 */ "select ::= select multiselect_op oneselect",
|
|
+ /* 103 */ "multiselect_op ::= UNION",
|
|
+ /* 104 */ "multiselect_op ::= UNION ALL",
|
|
+ /* 105 */ "multiselect_op ::= INTERSECT",
|
|
+ /* 106 */ "multiselect_op ::= EXCEPT",
|
|
+ /* 107 */ "oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt",
|
|
+ /* 108 */ "distinct ::= DISTINCT",
|
|
+ /* 109 */ "distinct ::= ALL",
|
|
+ /* 110 */ "distinct ::=",
|
|
+ /* 111 */ "sclp ::= selcollist COMMA",
|
|
+ /* 112 */ "sclp ::=",
|
|
+ /* 113 */ "selcollist ::= sclp expr as",
|
|
+ /* 114 */ "selcollist ::= sclp STAR",
|
|
+ /* 115 */ "selcollist ::= sclp nm DOT STAR",
|
|
+ /* 116 */ "as ::= AS nm",
|
|
+ /* 117 */ "as ::= ids",
|
|
+ /* 118 */ "as ::=",
|
|
+ /* 119 */ "from ::=",
|
|
+ /* 120 */ "from ::= FROM seltablist",
|
|
+ /* 121 */ "stl_prefix ::= seltablist joinop",
|
|
+ /* 122 */ "stl_prefix ::=",
|
|
+ /* 123 */ "seltablist ::= stl_prefix nm dbnm as on_opt using_opt",
|
|
+ /* 124 */ "seltablist ::= stl_prefix LP seltablist_paren RP as on_opt using_opt",
|
|
+ /* 125 */ "seltablist_paren ::= select",
|
|
+ /* 126 */ "seltablist_paren ::= seltablist",
|
|
+ /* 127 */ "dbnm ::=",
|
|
+ /* 128 */ "dbnm ::= DOT nm",
|
|
+ /* 129 */ "joinop ::= COMMA",
|
|
+ /* 130 */ "joinop ::= JOIN",
|
|
+ /* 131 */ "joinop ::= JOIN_KW JOIN",
|
|
+ /* 132 */ "joinop ::= JOIN_KW nm JOIN",
|
|
+ /* 133 */ "joinop ::= JOIN_KW nm nm JOIN",
|
|
+ /* 134 */ "on_opt ::= ON expr",
|
|
+ /* 135 */ "on_opt ::=",
|
|
+ /* 136 */ "using_opt ::= USING LP idxlist RP",
|
|
+ /* 137 */ "using_opt ::=",
|
|
+ /* 138 */ "orderby_opt ::=",
|
|
+ /* 139 */ "orderby_opt ::= ORDER BY sortlist",
|
|
+ /* 140 */ "sortlist ::= sortlist COMMA sortitem collate sortorder",
|
|
+ /* 141 */ "sortlist ::= sortitem collate sortorder",
|
|
+ /* 142 */ "sortitem ::= expr",
|
|
+ /* 143 */ "sortorder ::= ASC",
|
|
+ /* 144 */ "sortorder ::= DESC",
|
|
+ /* 145 */ "sortorder ::=",
|
|
+ /* 146 */ "collate ::=",
|
|
+ /* 147 */ "collate ::= COLLATE id",
|
|
+ /* 148 */ "groupby_opt ::=",
|
|
+ /* 149 */ "groupby_opt ::= GROUP BY exprlist",
|
|
+ /* 150 */ "having_opt ::=",
|
|
+ /* 151 */ "having_opt ::= HAVING expr",
|
|
+ /* 152 */ "limit_opt ::=",
|
|
+ /* 153 */ "limit_opt ::= LIMIT signed",
|
|
+ /* 154 */ "limit_opt ::= LIMIT signed OFFSET signed",
|
|
+ /* 155 */ "limit_opt ::= LIMIT signed COMMA signed",
|
|
+ /* 156 */ "cmd ::= DELETE FROM nm dbnm where_opt",
|
|
+ /* 157 */ "where_opt ::=",
|
|
+ /* 158 */ "where_opt ::= WHERE expr",
|
|
+ /* 159 */ "cmd ::= UPDATE orconf nm dbnm SET setlist where_opt",
|
|
+ /* 160 */ "setlist ::= setlist COMMA nm EQ expr",
|
|
+ /* 161 */ "setlist ::= nm EQ expr",
|
|
+ /* 162 */ "cmd ::= insert_cmd INTO nm dbnm inscollist_opt VALUES LP itemlist RP",
|
|
+ /* 163 */ "cmd ::= insert_cmd INTO nm dbnm inscollist_opt select",
|
|
+ /* 164 */ "insert_cmd ::= INSERT orconf",
|
|
+ /* 165 */ "insert_cmd ::= REPLACE",
|
|
+ /* 166 */ "itemlist ::= itemlist COMMA expr",
|
|
+ /* 167 */ "itemlist ::= expr",
|
|
+ /* 168 */ "inscollist_opt ::=",
|
|
+ /* 169 */ "inscollist_opt ::= LP inscollist RP",
|
|
+ /* 170 */ "inscollist ::= inscollist COMMA nm",
|
|
+ /* 171 */ "inscollist ::= nm",
|
|
+ /* 172 */ "expr ::= LP expr RP",
|
|
+ /* 173 */ "expr ::= NULL",
|
|
+ /* 174 */ "expr ::= ID",
|
|
+ /* 175 */ "expr ::= JOIN_KW",
|
|
+ /* 176 */ "expr ::= nm DOT nm",
|
|
+ /* 177 */ "expr ::= nm DOT nm DOT nm",
|
|
+ /* 178 */ "expr ::= INTEGER",
|
|
+ /* 179 */ "expr ::= FLOAT",
|
|
+ /* 180 */ "expr ::= STRING",
|
|
+ /* 181 */ "expr ::= VARIABLE",
|
|
+ /* 182 */ "expr ::= ID LP exprlist RP",
|
|
+ /* 183 */ "expr ::= ID LP STAR RP",
|
|
+ /* 184 */ "expr ::= expr AND expr",
|
|
+ /* 185 */ "expr ::= expr OR expr",
|
|
+ /* 186 */ "expr ::= expr LT expr",
|
|
+ /* 187 */ "expr ::= expr GT expr",
|
|
+ /* 188 */ "expr ::= expr LE expr",
|
|
+ /* 189 */ "expr ::= expr GE expr",
|
|
+ /* 190 */ "expr ::= expr NE expr",
|
|
+ /* 191 */ "expr ::= expr EQ expr",
|
|
+ /* 192 */ "expr ::= expr BITAND expr",
|
|
+ /* 193 */ "expr ::= expr BITOR expr",
|
|
+ /* 194 */ "expr ::= expr LSHIFT expr",
|
|
+ /* 195 */ "expr ::= expr RSHIFT expr",
|
|
+ /* 196 */ "expr ::= expr likeop expr",
|
|
+ /* 197 */ "expr ::= expr NOT likeop expr",
|
|
+ /* 198 */ "likeop ::= LIKE",
|
|
+ /* 199 */ "likeop ::= GLOB",
|
|
+ /* 200 */ "expr ::= expr PLUS expr",
|
|
+ /* 201 */ "expr ::= expr MINUS expr",
|
|
+ /* 202 */ "expr ::= expr STAR expr",
|
|
+ /* 203 */ "expr ::= expr SLASH expr",
|
|
+ /* 204 */ "expr ::= expr REM expr",
|
|
+ /* 205 */ "expr ::= expr CONCAT expr",
|
|
+ /* 206 */ "expr ::= expr ISNULL",
|
|
+ /* 207 */ "expr ::= expr IS NULL",
|
|
+ /* 208 */ "expr ::= expr NOTNULL",
|
|
+ /* 209 */ "expr ::= expr NOT NULL",
|
|
+ /* 210 */ "expr ::= expr IS NOT NULL",
|
|
+ /* 211 */ "expr ::= NOT expr",
|
|
+ /* 212 */ "expr ::= BITNOT expr",
|
|
+ /* 213 */ "expr ::= MINUS expr",
|
|
+ /* 214 */ "expr ::= PLUS expr",
|
|
+ /* 215 */ "expr ::= LP select RP",
|
|
+ /* 216 */ "expr ::= expr BETWEEN expr AND expr",
|
|
+ /* 217 */ "expr ::= expr NOT BETWEEN expr AND expr",
|
|
+ /* 218 */ "expr ::= expr IN LP exprlist RP",
|
|
+ /* 219 */ "expr ::= expr IN LP select RP",
|
|
+ /* 220 */ "expr ::= expr NOT IN LP exprlist RP",
|
|
+ /* 221 */ "expr ::= expr NOT IN LP select RP",
|
|
+ /* 222 */ "expr ::= expr IN nm dbnm",
|
|
+ /* 223 */ "expr ::= expr NOT IN nm dbnm",
|
|
+ /* 224 */ "expr ::= CASE case_operand case_exprlist case_else END",
|
|
+ /* 225 */ "case_exprlist ::= case_exprlist WHEN expr THEN expr",
|
|
+ /* 226 */ "case_exprlist ::= WHEN expr THEN expr",
|
|
+ /* 227 */ "case_else ::= ELSE expr",
|
|
+ /* 228 */ "case_else ::=",
|
|
+ /* 229 */ "case_operand ::= expr",
|
|
+ /* 230 */ "case_operand ::=",
|
|
+ /* 231 */ "exprlist ::= exprlist COMMA expritem",
|
|
+ /* 232 */ "exprlist ::= expritem",
|
|
+ /* 233 */ "expritem ::= expr",
|
|
+ /* 234 */ "expritem ::=",
|
|
+ /* 235 */ "cmd ::= CREATE uniqueflag INDEX nm ON nm dbnm LP idxlist RP onconf",
|
|
+ /* 236 */ "uniqueflag ::= UNIQUE",
|
|
+ /* 237 */ "uniqueflag ::=",
|
|
+ /* 238 */ "idxlist_opt ::=",
|
|
+ /* 239 */ "idxlist_opt ::= LP idxlist RP",
|
|
+ /* 240 */ "idxlist ::= idxlist COMMA idxitem",
|
|
+ /* 241 */ "idxlist ::= idxitem",
|
|
+ /* 242 */ "idxitem ::= nm sortorder",
|
|
+ /* 243 */ "cmd ::= DROP INDEX nm dbnm",
|
|
+ /* 244 */ "cmd ::= COPY orconf nm dbnm FROM nm USING DELIMITERS STRING",
|
|
+ /* 245 */ "cmd ::= COPY orconf nm dbnm FROM nm",
|
|
+ /* 246 */ "cmd ::= VACUUM",
|
|
+ /* 247 */ "cmd ::= VACUUM nm",
|
|
+ /* 248 */ "cmd ::= PRAGMA ids EQ nm",
|
|
+ /* 249 */ "cmd ::= PRAGMA ids EQ ON",
|
|
+ /* 250 */ "cmd ::= PRAGMA ids EQ plus_num",
|
|
+ /* 251 */ "cmd ::= PRAGMA ids EQ minus_num",
|
|
+ /* 252 */ "cmd ::= PRAGMA ids LP nm RP",
|
|
+ /* 253 */ "cmd ::= PRAGMA ids",
|
|
+ /* 254 */ "plus_num ::= plus_opt number",
|
|
+ /* 255 */ "minus_num ::= MINUS number",
|
|
+ /* 256 */ "number ::= INTEGER",
|
|
+ /* 257 */ "number ::= FLOAT",
|
|
+ /* 258 */ "plus_opt ::= PLUS",
|
|
+ /* 259 */ "plus_opt ::=",
|
|
+ /* 260 */ "cmd ::= CREATE trigger_decl BEGIN trigger_cmd_list END",
|
|
+ /* 261 */ "trigger_decl ::= temp TRIGGER nm trigger_time trigger_event ON nm dbnm foreach_clause when_clause",
|
|
+ /* 262 */ "trigger_time ::= BEFORE",
|
|
+ /* 263 */ "trigger_time ::= AFTER",
|
|
+ /* 264 */ "trigger_time ::= INSTEAD OF",
|
|
+ /* 265 */ "trigger_time ::=",
|
|
+ /* 266 */ "trigger_event ::= DELETE",
|
|
+ /* 267 */ "trigger_event ::= INSERT",
|
|
+ /* 268 */ "trigger_event ::= UPDATE",
|
|
+ /* 269 */ "trigger_event ::= UPDATE OF inscollist",
|
|
+ /* 270 */ "foreach_clause ::=",
|
|
+ /* 271 */ "foreach_clause ::= FOR EACH ROW",
|
|
+ /* 272 */ "foreach_clause ::= FOR EACH STATEMENT",
|
|
+ /* 273 */ "when_clause ::=",
|
|
+ /* 274 */ "when_clause ::= WHEN expr",
|
|
+ /* 275 */ "trigger_cmd_list ::= trigger_cmd SEMI trigger_cmd_list",
|
|
+ /* 276 */ "trigger_cmd_list ::=",
|
|
+ /* 277 */ "trigger_cmd ::= UPDATE orconf nm SET setlist where_opt",
|
|
+ /* 278 */ "trigger_cmd ::= insert_cmd INTO nm inscollist_opt VALUES LP itemlist RP",
|
|
+ /* 279 */ "trigger_cmd ::= insert_cmd INTO nm inscollist_opt select",
|
|
+ /* 280 */ "trigger_cmd ::= DELETE FROM nm where_opt",
|
|
+ /* 281 */ "trigger_cmd ::= select",
|
|
+ /* 282 */ "expr ::= RAISE LP IGNORE RP",
|
|
+ /* 283 */ "expr ::= RAISE LP ROLLBACK COMMA nm RP",
|
|
+ /* 284 */ "expr ::= RAISE LP ABORT COMMA nm RP",
|
|
+ /* 285 */ "expr ::= RAISE LP FAIL COMMA nm RP",
|
|
+ /* 286 */ "cmd ::= DROP TRIGGER nm dbnm",
|
|
+ /* 287 */ "cmd ::= ATTACH database_kw_opt ids AS nm key_opt",
|
|
+ /* 288 */ "key_opt ::= USING ids",
|
|
+ /* 289 */ "key_opt ::=",
|
|
+ /* 290 */ "database_kw_opt ::= DATABASE",
|
|
+ /* 291 */ "database_kw_opt ::=",
|
|
+ /* 292 */ "cmd ::= DETACH database_kw_opt nm",
|
|
+};
|
|
+#endif /* NDEBUG */
|
|
+
|
|
+
|
|
+#if YYSTACKDEPTH<=0
|
|
+/*
|
|
+** Try to increase the size of the parser stack.
|
|
+*/
|
|
+static void yyGrowStack(yyParser *p){
|
|
+ int newSize;
|
|
+ yyStackEntry *pNew;
|
|
+
|
|
+ newSize = p->yystksz*2 + 100;
|
|
+ pNew = realloc(p->yystack, newSize*sizeof(pNew[0]));
|
|
+ if( pNew ){
|
|
+ p->yystack = pNew;
|
|
+ p->yystksz = newSize;
|
|
+#ifndef NDEBUG
|
|
+ if( yyTraceFILE ){
|
|
+ fprintf(yyTraceFILE,"%sStack grows to %d entries!\n",
|
|
+ yyTracePrompt, p->yystksz);
|
|
+ }
|
|
+#endif
|
|
+ }
|
|
+}
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** This function allocates a new parser.
|
|
+** The only argument is a pointer to a function which works like
|
|
+** malloc.
|
|
+**
|
|
+** Inputs:
|
|
+** A pointer to the function used to allocate memory.
|
|
+**
|
|
+** Outputs:
|
|
+** A pointer to a parser. This pointer is used in subsequent calls
|
|
+** to sqliteParser and sqliteParserFree.
|
|
+*/
|
|
+void *sqliteParserAlloc(void *(*mallocProc)(size_t)){
|
|
+ yyParser *pParser;
|
|
+ pParser = (yyParser*)(*mallocProc)( (size_t)sizeof(yyParser) );
|
|
+ if( pParser ){
|
|
+ pParser->yyidx = -1;
|
|
+#ifdef YYTRACKMAXSTACKDEPTH
|
|
+ pParser->yyidxMax = 0;
|
|
+#endif
|
|
+#if YYSTACKDEPTH<=0
|
|
+ pParser->yystack = NULL;
|
|
+ pParser->yystksz = 0;
|
|
+ yyGrowStack(pParser);
|
|
+#endif
|
|
+ }
|
|
+ return pParser;
|
|
+}
|
|
+
|
|
+/* The following function deletes the value associated with a
|
|
+** symbol. The symbol can be either a terminal or nonterminal.
|
|
+** "yymajor" is the symbol code, and "yypminor" is a pointer to
|
|
+** the value.
|
|
+*/
|
|
+static void yy_destructor(
|
|
+ yyParser *yypParser, /* The parser */
|
|
+ YYCODETYPE yymajor, /* Type code for object to destroy */
|
|
+ YYMINORTYPE *yypminor /* The object to be destroyed */
|
|
+){
|
|
+ sqliteParserARG_FETCH;
|
|
+ switch( yymajor ){
|
|
+ /* Here is inserted the actions which take place when a
|
|
+ ** terminal or non-terminal is destroyed. This can happen
|
|
+ ** when the symbol is popped from the stack during a
|
|
+ ** reduce or during error processing or when a parser is
|
|
+ ** being destroyed before it is finished parsing.
|
|
+ **
|
|
+ ** Note: during a reduce, the only symbols destroyed are those
|
|
+ ** which appear on the RHS of the rule, but which are not used
|
|
+ ** inside the C code.
|
|
+ */
|
|
+ case 146: /* select */
|
|
+ case 171: /* oneselect */
|
|
+ case 189: /* seltablist_paren */
|
|
+{
|
|
+#line 286 "ext/sqlite/libsqlite/src/parse.y"
|
|
+sqliteSelectDelete((yypminor->yy179));
|
|
+#line 1131 "ext/sqlite/libsqlite/src/parse.c"
|
|
+}
|
|
+ break;
|
|
+ case 158: /* expr */
|
|
+ case 176: /* where_opt */
|
|
+ case 178: /* having_opt */
|
|
+ case 187: /* on_opt */
|
|
+ case 192: /* sortitem */
|
|
+ case 204: /* expritem */
|
|
+{
|
|
+#line 533 "ext/sqlite/libsqlite/src/parse.y"
|
|
+sqliteExprDelete((yypminor->yy242));
|
|
+#line 1143 "ext/sqlite/libsqlite/src/parse.c"
|
|
+}
|
|
+ break;
|
|
+ case 159: /* idxlist_opt */
|
|
+ case 167: /* idxlist */
|
|
+ case 188: /* using_opt */
|
|
+ case 197: /* inscollist_opt */
|
|
+ case 199: /* inscollist */
|
|
+{
|
|
+#line 746 "ext/sqlite/libsqlite/src/parse.y"
|
|
+sqliteIdListDelete((yypminor->yy320));
|
|
+#line 1154 "ext/sqlite/libsqlite/src/parse.c"
|
|
+}
|
|
+ break;
|
|
+ case 174: /* selcollist */
|
|
+ case 177: /* groupby_opt */
|
|
+ case 179: /* orderby_opt */
|
|
+ case 181: /* sclp */
|
|
+ case 191: /* sortlist */
|
|
+ case 194: /* exprlist */
|
|
+ case 195: /* setlist */
|
|
+ case 198: /* itemlist */
|
|
+ case 202: /* case_exprlist */
|
|
+{
|
|
+#line 322 "ext/sqlite/libsqlite/src/parse.y"
|
|
+sqliteExprListDelete((yypminor->yy322));
|
|
+#line 1169 "ext/sqlite/libsqlite/src/parse.c"
|
|
+}
|
|
+ break;
|
|
+ case 175: /* from */
|
|
+ case 183: /* seltablist */
|
|
+ case 184: /* stl_prefix */
|
|
+{
|
|
+#line 353 "ext/sqlite/libsqlite/src/parse.y"
|
|
+sqliteSrcListDelete((yypminor->yy307));
|
|
+#line 1178 "ext/sqlite/libsqlite/src/parse.c"
|
|
+}
|
|
+ break;
|
|
+ case 212: /* trigger_cmd_list */
|
|
+ case 217: /* trigger_cmd */
|
|
+{
|
|
+#line 828 "ext/sqlite/libsqlite/src/parse.y"
|
|
+sqliteDeleteTriggerStep((yypminor->yy19));
|
|
+#line 1186 "ext/sqlite/libsqlite/src/parse.c"
|
|
+}
|
|
+ break;
|
|
+ case 214: /* trigger_event */
|
|
+{
|
|
+#line 812 "ext/sqlite/libsqlite/src/parse.y"
|
|
+sqliteIdListDelete((yypminor->yy290).b);
|
|
+#line 1193 "ext/sqlite/libsqlite/src/parse.c"
|
|
+}
|
|
+ break;
|
|
+ default: break; /* If no destructor action specified: do nothing */
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Pop the parser's stack once.
|
|
+**
|
|
+** If there is a destructor routine associated with the token which
|
|
+** is popped from the stack, then call it.
|
|
+**
|
|
+** Return the major token number for the symbol popped.
|
|
+*/
|
|
+static int yy_pop_parser_stack(yyParser *pParser){
|
|
+ YYCODETYPE yymajor;
|
|
+ yyStackEntry *yytos = &pParser->yystack[pParser->yyidx];
|
|
+
|
|
+ if( pParser->yyidx<0 ) return 0;
|
|
+#ifndef NDEBUG
|
|
+ if( yyTraceFILE && pParser->yyidx>=0 ){
|
|
+ fprintf(yyTraceFILE,"%sPopping %s\n",
|
|
+ yyTracePrompt,
|
|
+ yyTokenName[yytos->major]);
|
|
+ }
|
|
+#endif
|
|
+ yymajor = yytos->major;
|
|
+ yy_destructor(pParser, yymajor, &yytos->minor);
|
|
+ pParser->yyidx--;
|
|
+ return yymajor;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Deallocate and destroy a parser. Destructors are all called for
|
|
+** all stack elements before shutting the parser down.
|
|
+**
|
|
+** Inputs:
|
|
+** <ul>
|
|
+** <li> A pointer to the parser. This should be a pointer
|
|
+** obtained from sqliteParserAlloc.
|
|
+** <li> A pointer to a function used to reclaim memory obtained
|
|
+** from malloc.
|
|
+** </ul>
|
|
+*/
|
|
+void sqliteParserFree(
|
|
+ void *p, /* The parser to be deleted */
|
|
+ void (*freeProc)(void*) /* Function used to reclaim memory */
|
|
+){
|
|
+ yyParser *pParser = (yyParser*)p;
|
|
+ if( pParser==0 ) return;
|
|
+ while( pParser->yyidx>=0 ) yy_pop_parser_stack(pParser);
|
|
+#if YYSTACKDEPTH<=0
|
|
+ free(pParser->yystack);
|
|
+#endif
|
|
+ (*freeProc)((void*)pParser);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return the peak depth of the stack for a parser.
|
|
+*/
|
|
+#ifdef YYTRACKMAXSTACKDEPTH
|
|
+int sqliteParserStackPeak(void *p){
|
|
+ yyParser *pParser = (yyParser*)p;
|
|
+ return pParser->yyidxMax;
|
|
+}
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** Find the appropriate action for a parser given the terminal
|
|
+** look-ahead token iLookAhead.
|
|
+**
|
|
+** If the look-ahead token is YYNOCODE, then check to see if the action is
|
|
+** independent of the look-ahead. If it is, return the action, otherwise
|
|
+** return YY_NO_ACTION.
|
|
+*/
|
|
+static int yy_find_shift_action(
|
|
+ yyParser *pParser, /* The parser */
|
|
+ YYCODETYPE iLookAhead /* The look-ahead token */
|
|
+){
|
|
+ int i;
|
|
+ int stateno = pParser->yystack[pParser->yyidx].stateno;
|
|
+
|
|
+ if( stateno>YY_SHIFT_COUNT
|
|
+ || (i = yy_shift_ofst[stateno])==YY_SHIFT_USE_DFLT ){
|
|
+ return yy_default[stateno];
|
|
+ }
|
|
+ assert( iLookAhead!=YYNOCODE );
|
|
+ i += iLookAhead;
|
|
+ if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
|
|
+ if( iLookAhead>0 ){
|
|
+#ifdef YYFALLBACK
|
|
+ YYCODETYPE iFallback; /* Fallback token */
|
|
+ if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
|
|
+ && (iFallback = yyFallback[iLookAhead])!=0 ){
|
|
+#ifndef NDEBUG
|
|
+ if( yyTraceFILE ){
|
|
+ fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n",
|
|
+ yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]);
|
|
+ }
|
|
+#endif
|
|
+ return yy_find_shift_action(pParser, iFallback);
|
|
+ }
|
|
+#endif
|
|
+#ifdef YYWILDCARD
|
|
+ {
|
|
+ int j = i - iLookAhead + YYWILDCARD;
|
|
+ if(
|
|
+#if YY_SHIFT_MIN+YYWILDCARD<0
|
|
+ j>=0 &&
|
|
+#endif
|
|
+#if YY_SHIFT_MAX+YYWILDCARD>=YY_ACTTAB_COUNT
|
|
+ j<YY_ACTTAB_COUNT &&
|
|
+#endif
|
|
+ yy_lookahead[j]==YYWILDCARD
|
|
+ ){
|
|
+#ifndef NDEBUG
|
|
+ if( yyTraceFILE ){
|
|
+ fprintf(yyTraceFILE, "%sWILDCARD %s => %s\n",
|
|
+ yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[YYWILDCARD]);
|
|
+ }
|
|
+#endif /* NDEBUG */
|
|
+ return yy_action[j];
|
|
+ }
|
|
+ }
|
|
+#endif /* YYWILDCARD */
|
|
+ }
|
|
+ return yy_default[stateno];
|
|
+ }else{
|
|
+ return yy_action[i];
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Find the appropriate action for a parser given the non-terminal
|
|
+** look-ahead token iLookAhead.
|
|
+**
|
|
+** If the look-ahead token is YYNOCODE, then check to see if the action is
|
|
+** independent of the look-ahead. If it is, return the action, otherwise
|
|
+** return YY_NO_ACTION.
|
|
+*/
|
|
+static int yy_find_reduce_action(
|
|
+ int stateno, /* Current state number */
|
|
+ YYCODETYPE iLookAhead /* The look-ahead token */
|
|
+){
|
|
+ int i;
|
|
+#ifdef YYERRORSYMBOL
|
|
+ if( stateno>YY_REDUCE_COUNT ){
|
|
+ return yy_default[stateno];
|
|
+ }
|
|
+#else
|
|
+ assert( stateno<=YY_REDUCE_COUNT );
|
|
+#endif
|
|
+ i = yy_reduce_ofst[stateno];
|
|
+ assert( i!=YY_REDUCE_USE_DFLT );
|
|
+ assert( iLookAhead!=YYNOCODE );
|
|
+ i += iLookAhead;
|
|
+#ifdef YYERRORSYMBOL
|
|
+ if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
|
|
+ return yy_default[stateno];
|
|
+ }
|
|
+#else
|
|
+ assert( i>=0 && i<YY_ACTTAB_COUNT );
|
|
+ assert( yy_lookahead[i]==iLookAhead );
|
|
+#endif
|
|
+ return yy_action[i];
|
|
+}
|
|
+
|
|
+/*
|
|
+** The following routine is called if the stack overflows.
|
|
+*/
|
|
+static void yyStackOverflow(yyParser *yypParser, YYMINORTYPE *yypMinor){
|
|
+ sqliteParserARG_FETCH;
|
|
+ yypParser->yyidx--;
|
|
+#ifndef NDEBUG
|
|
+ if( yyTraceFILE ){
|
|
+ fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt);
|
|
+ }
|
|
+#endif
|
|
+ while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
|
|
+ /* Here code is inserted which will execute if the parser
|
|
+ ** stack every overflows */
|
|
+ sqliteParserARG_STORE; /* Suppress warning about unused %extra_argument var */
|
|
+}
|
|
+
|
|
+/*
|
|
+** Perform a shift action.
|
|
+*/
|
|
+static void yy_shift(
|
|
+ yyParser *yypParser, /* The parser to be shifted */
|
|
+ int yyNewState, /* The new state to shift in */
|
|
+ int yyMajor, /* The major token to shift in */
|
|
+ YYMINORTYPE *yypMinor /* Pointer to the minor token to shift in */
|
|
+){
|
|
+ yyStackEntry *yytos;
|
|
+ yypParser->yyidx++;
|
|
+#ifdef YYTRACKMAXSTACKDEPTH
|
|
+ if( yypParser->yyidx>yypParser->yyidxMax ){
|
|
+ yypParser->yyidxMax = yypParser->yyidx;
|
|
+ }
|
|
+#endif
|
|
+#if YYSTACKDEPTH>0
|
|
+ if( yypParser->yyidx>=YYSTACKDEPTH ){
|
|
+ yyStackOverflow(yypParser, yypMinor);
|
|
+ return;
|
|
+ }
|
|
+#else
|
|
+ if( yypParser->yyidx>=yypParser->yystksz ){
|
|
+ yyGrowStack(yypParser);
|
|
+ if( yypParser->yyidx>=yypParser->yystksz ){
|
|
+ yyStackOverflow(yypParser, yypMinor);
|
|
+ return;
|
|
+ }
|
|
+ }
|
|
+#endif
|
|
+ yytos = &yypParser->yystack[yypParser->yyidx];
|
|
+ yytos->stateno = (YYACTIONTYPE)yyNewState;
|
|
+ yytos->major = (YYCODETYPE)yyMajor;
|
|
+ yytos->minor = *yypMinor;
|
|
+#ifndef NDEBUG
|
|
+ if( yyTraceFILE && yypParser->yyidx>0 ){
|
|
+ int i;
|
|
+ fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState);
|
|
+ fprintf(yyTraceFILE,"%sStack:",yyTracePrompt);
|
|
+ for(i=1; i<=yypParser->yyidx; i++)
|
|
+ fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]);
|
|
+ fprintf(yyTraceFILE,"\n");
|
|
+ }
|
|
+#endif
|
|
+}
|
|
+
|
|
+/* The following table contains information about every rule that
|
|
+** is used during the reduce.
|
|
+*/
|
|
+static const struct {
|
|
+ YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */
|
|
+ unsigned char nrhs; /* Number of right-hand side symbols in the rule */
|
|
+} yyRuleInfo[] = {
|
|
+ { 132, 1 },
|
|
+ { 133, 2 },
|
|
+ { 133, 1 },
|
|
+ { 134, 3 },
|
|
+ { 134, 1 },
|
|
+ { 136, 1 },
|
|
+ { 135, 1 },
|
|
+ { 135, 0 },
|
|
+ { 137, 3 },
|
|
+ { 138, 0 },
|
|
+ { 138, 1 },
|
|
+ { 138, 2 },
|
|
+ { 137, 2 },
|
|
+ { 137, 2 },
|
|
+ { 137, 2 },
|
|
+ { 137, 2 },
|
|
+ { 141, 4 },
|
|
+ { 143, 1 },
|
|
+ { 143, 0 },
|
|
+ { 142, 4 },
|
|
+ { 142, 2 },
|
|
+ { 144, 3 },
|
|
+ { 144, 1 },
|
|
+ { 147, 3 },
|
|
+ { 148, 1 },
|
|
+ { 151, 1 },
|
|
+ { 152, 1 },
|
|
+ { 152, 1 },
|
|
+ { 140, 1 },
|
|
+ { 140, 1 },
|
|
+ { 140, 1 },
|
|
+ { 149, 0 },
|
|
+ { 149, 1 },
|
|
+ { 149, 4 },
|
|
+ { 149, 6 },
|
|
+ { 153, 1 },
|
|
+ { 153, 2 },
|
|
+ { 154, 1 },
|
|
+ { 154, 2 },
|
|
+ { 154, 2 },
|
|
+ { 150, 2 },
|
|
+ { 150, 0 },
|
|
+ { 155, 3 },
|
|
+ { 155, 1 },
|
|
+ { 155, 2 },
|
|
+ { 155, 2 },
|
|
+ { 155, 2 },
|
|
+ { 155, 3 },
|
|
+ { 155, 3 },
|
|
+ { 155, 2 },
|
|
+ { 155, 3 },
|
|
+ { 155, 3 },
|
|
+ { 155, 2 },
|
|
+ { 156, 2 },
|
|
+ { 156, 3 },
|
|
+ { 156, 4 },
|
|
+ { 156, 2 },
|
|
+ { 156, 5 },
|
|
+ { 156, 4 },
|
|
+ { 156, 1 },
|
|
+ { 156, 2 },
|
|
+ { 160, 0 },
|
|
+ { 160, 2 },
|
|
+ { 162, 2 },
|
|
+ { 162, 3 },
|
|
+ { 162, 3 },
|
|
+ { 162, 3 },
|
|
+ { 163, 2 },
|
|
+ { 163, 2 },
|
|
+ { 163, 1 },
|
|
+ { 163, 1 },
|
|
+ { 161, 3 },
|
|
+ { 161, 2 },
|
|
+ { 164, 0 },
|
|
+ { 164, 2 },
|
|
+ { 164, 2 },
|
|
+ { 145, 0 },
|
|
+ { 145, 2 },
|
|
+ { 165, 3 },
|
|
+ { 165, 2 },
|
|
+ { 165, 1 },
|
|
+ { 166, 2 },
|
|
+ { 166, 6 },
|
|
+ { 166, 5 },
|
|
+ { 166, 3 },
|
|
+ { 166, 10 },
|
|
+ { 168, 0 },
|
|
+ { 168, 1 },
|
|
+ { 139, 0 },
|
|
+ { 139, 3 },
|
|
+ { 169, 0 },
|
|
+ { 169, 2 },
|
|
+ { 170, 1 },
|
|
+ { 170, 1 },
|
|
+ { 170, 1 },
|
|
+ { 170, 1 },
|
|
+ { 170, 1 },
|
|
+ { 137, 3 },
|
|
+ { 137, 6 },
|
|
+ { 137, 3 },
|
|
+ { 137, 1 },
|
|
+ { 146, 1 },
|
|
+ { 146, 3 },
|
|
+ { 172, 1 },
|
|
+ { 172, 2 },
|
|
+ { 172, 1 },
|
|
+ { 172, 1 },
|
|
+ { 171, 9 },
|
|
+ { 173, 1 },
|
|
+ { 173, 1 },
|
|
+ { 173, 0 },
|
|
+ { 181, 2 },
|
|
+ { 181, 0 },
|
|
+ { 174, 3 },
|
|
+ { 174, 2 },
|
|
+ { 174, 4 },
|
|
+ { 182, 2 },
|
|
+ { 182, 1 },
|
|
+ { 182, 0 },
|
|
+ { 175, 0 },
|
|
+ { 175, 2 },
|
|
+ { 184, 2 },
|
|
+ { 184, 0 },
|
|
+ { 183, 6 },
|
|
+ { 183, 7 },
|
|
+ { 189, 1 },
|
|
+ { 189, 1 },
|
|
+ { 186, 0 },
|
|
+ { 186, 2 },
|
|
+ { 185, 1 },
|
|
+ { 185, 1 },
|
|
+ { 185, 2 },
|
|
+ { 185, 3 },
|
|
+ { 185, 4 },
|
|
+ { 187, 2 },
|
|
+ { 187, 0 },
|
|
+ { 188, 4 },
|
|
+ { 188, 0 },
|
|
+ { 179, 0 },
|
|
+ { 179, 3 },
|
|
+ { 191, 5 },
|
|
+ { 191, 3 },
|
|
+ { 192, 1 },
|
|
+ { 157, 1 },
|
|
+ { 157, 1 },
|
|
+ { 157, 0 },
|
|
+ { 193, 0 },
|
|
+ { 193, 2 },
|
|
+ { 177, 0 },
|
|
+ { 177, 3 },
|
|
+ { 178, 0 },
|
|
+ { 178, 2 },
|
|
+ { 180, 0 },
|
|
+ { 180, 2 },
|
|
+ { 180, 4 },
|
|
+ { 180, 4 },
|
|
+ { 137, 5 },
|
|
+ { 176, 0 },
|
|
+ { 176, 2 },
|
|
+ { 137, 7 },
|
|
+ { 195, 5 },
|
|
+ { 195, 3 },
|
|
+ { 137, 9 },
|
|
+ { 137, 6 },
|
|
+ { 196, 2 },
|
|
+ { 196, 1 },
|
|
+ { 198, 3 },
|
|
+ { 198, 1 },
|
|
+ { 197, 0 },
|
|
+ { 197, 3 },
|
|
+ { 199, 3 },
|
|
+ { 199, 1 },
|
|
+ { 158, 3 },
|
|
+ { 158, 1 },
|
|
+ { 158, 1 },
|
|
+ { 158, 1 },
|
|
+ { 158, 3 },
|
|
+ { 158, 5 },
|
|
+ { 158, 1 },
|
|
+ { 158, 1 },
|
|
+ { 158, 1 },
|
|
+ { 158, 1 },
|
|
+ { 158, 4 },
|
|
+ { 158, 4 },
|
|
+ { 158, 3 },
|
|
+ { 158, 3 },
|
|
+ { 158, 3 },
|
|
+ { 158, 3 },
|
|
+ { 158, 3 },
|
|
+ { 158, 3 },
|
|
+ { 158, 3 },
|
|
+ { 158, 3 },
|
|
+ { 158, 3 },
|
|
+ { 158, 3 },
|
|
+ { 158, 3 },
|
|
+ { 158, 3 },
|
|
+ { 158, 3 },
|
|
+ { 158, 4 },
|
|
+ { 200, 1 },
|
|
+ { 200, 1 },
|
|
+ { 158, 3 },
|
|
+ { 158, 3 },
|
|
+ { 158, 3 },
|
|
+ { 158, 3 },
|
|
+ { 158, 3 },
|
|
+ { 158, 3 },
|
|
+ { 158, 2 },
|
|
+ { 158, 3 },
|
|
+ { 158, 2 },
|
|
+ { 158, 3 },
|
|
+ { 158, 4 },
|
|
+ { 158, 2 },
|
|
+ { 158, 2 },
|
|
+ { 158, 2 },
|
|
+ { 158, 2 },
|
|
+ { 158, 3 },
|
|
+ { 158, 5 },
|
|
+ { 158, 6 },
|
|
+ { 158, 5 },
|
|
+ { 158, 5 },
|
|
+ { 158, 6 },
|
|
+ { 158, 6 },
|
|
+ { 158, 4 },
|
|
+ { 158, 5 },
|
|
+ { 158, 5 },
|
|
+ { 202, 5 },
|
|
+ { 202, 4 },
|
|
+ { 203, 2 },
|
|
+ { 203, 0 },
|
|
+ { 201, 1 },
|
|
+ { 201, 0 },
|
|
+ { 194, 3 },
|
|
+ { 194, 1 },
|
|
+ { 204, 1 },
|
|
+ { 204, 0 },
|
|
+ { 137, 11 },
|
|
+ { 205, 1 },
|
|
+ { 205, 0 },
|
|
+ { 159, 0 },
|
|
+ { 159, 3 },
|
|
+ { 167, 3 },
|
|
+ { 167, 1 },
|
|
+ { 206, 2 },
|
|
+ { 137, 4 },
|
|
+ { 137, 9 },
|
|
+ { 137, 6 },
|
|
+ { 137, 1 },
|
|
+ { 137, 2 },
|
|
+ { 137, 4 },
|
|
+ { 137, 4 },
|
|
+ { 137, 4 },
|
|
+ { 137, 4 },
|
|
+ { 137, 5 },
|
|
+ { 137, 2 },
|
|
+ { 207, 2 },
|
|
+ { 208, 2 },
|
|
+ { 210, 1 },
|
|
+ { 210, 1 },
|
|
+ { 209, 1 },
|
|
+ { 209, 0 },
|
|
+ { 137, 5 },
|
|
+ { 211, 10 },
|
|
+ { 213, 1 },
|
|
+ { 213, 1 },
|
|
+ { 213, 2 },
|
|
+ { 213, 0 },
|
|
+ { 214, 1 },
|
|
+ { 214, 1 },
|
|
+ { 214, 1 },
|
|
+ { 214, 3 },
|
|
+ { 215, 0 },
|
|
+ { 215, 3 },
|
|
+ { 215, 3 },
|
|
+ { 216, 0 },
|
|
+ { 216, 2 },
|
|
+ { 212, 3 },
|
|
+ { 212, 0 },
|
|
+ { 217, 6 },
|
|
+ { 217, 8 },
|
|
+ { 217, 5 },
|
|
+ { 217, 4 },
|
|
+ { 217, 1 },
|
|
+ { 158, 4 },
|
|
+ { 158, 6 },
|
|
+ { 158, 6 },
|
|
+ { 158, 6 },
|
|
+ { 137, 4 },
|
|
+ { 137, 6 },
|
|
+ { 219, 2 },
|
|
+ { 219, 0 },
|
|
+ { 218, 1 },
|
|
+ { 218, 0 },
|
|
+ { 137, 3 },
|
|
+};
|
|
+
|
|
+static void yy_accept(yyParser*); /* Forward Declaration */
|
|
+
|
|
+/*
|
|
+** Perform a reduce action and the shift that must immediately
|
|
+** follow the reduce.
|
|
+*/
|
|
+static void yy_reduce(
|
|
+ yyParser *yypParser, /* The parser */
|
|
+ int yyruleno /* Number of the rule by which to reduce */
|
|
+){
|
|
+ int yygoto; /* The next state */
|
|
+ int yyact; /* The next action */
|
|
+ YYMINORTYPE yygotominor; /* The LHS of the rule reduced */
|
|
+ yyStackEntry *yymsp; /* The top of the parser's stack */
|
|
+ int yysize; /* Amount to pop the stack */
|
|
+ sqliteParserARG_FETCH;
|
|
+ yymsp = &yypParser->yystack[yypParser->yyidx];
|
|
+#ifndef NDEBUG
|
|
+ if( yyTraceFILE && yyruleno>=0
|
|
+ && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){
|
|
+ fprintf(yyTraceFILE, "%sReduce [%s].\n", yyTracePrompt,
|
|
+ yyRuleName[yyruleno]);
|
|
+ }
|
|
+#endif /* NDEBUG */
|
|
+
|
|
+ /* Silence complaints from purify about yygotominor being uninitialized
|
|
+ ** in some cases when it is copied into the stack after the following
|
|
+ ** switch. yygotominor is uninitialized when a rule reduces that does
|
|
+ ** not set the value of its left-hand side nonterminal. Leaving the
|
|
+ ** value of the nonterminal uninitialized is utterly harmless as long
|
|
+ ** as the value is never used. So really the only thing this code
|
|
+ ** accomplishes is to quieten purify.
|
|
+ **
|
|
+ ** 2007-01-16: The wireshark project (www.wireshark.org) reports that
|
|
+ ** without this code, their parser segfaults. I'm not sure what there
|
|
+ ** parser is doing to make this happen. This is the second bug report
|
|
+ ** from wireshark this week. Clearly they are stressing Lemon in ways
|
|
+ ** that it has not been previously stressed... (SQLite ticket #2172)
|
|
+ */
|
|
+ /*memset(&yygotominor, 0, sizeof(yygotominor));*/
|
|
+ yygotominor = yyzerominor;
|
|
+
|
|
+
|
|
+ switch( yyruleno ){
|
|
+ /* Beginning here are the reduction cases. A typical example
|
|
+ ** follows:
|
|
+ ** case 0:
|
|
+ ** #line <lineno> <grammarfile>
|
|
+ ** { ... } // User supplied code
|
|
+ ** #line <lineno> <thisfile>
|
|
+ ** break;
|
|
+ */
|
|
+ case 5: /* cmdx ::= cmd */
|
|
+#line 72 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ sqliteExec(pParse); }
|
|
+#line 1781 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 6: /* explain ::= EXPLAIN */
|
|
+#line 73 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ sqliteBeginParse(pParse, 1); }
|
|
+#line 1786 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 7: /* explain ::= */
|
|
+#line 74 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ sqliteBeginParse(pParse, 0); }
|
|
+#line 1791 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 8: /* cmd ::= BEGIN trans_opt onconf */
|
|
+#line 79 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqliteBeginTransaction(pParse,yymsp[0].minor.yy372);}
|
|
+#line 1796 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 12: /* cmd ::= COMMIT trans_opt */
|
|
+ case 13: /* cmd ::= END trans_opt */ yytestcase(yyruleno==13);
|
|
+#line 83 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqliteCommitTransaction(pParse);}
|
|
+#line 1802 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 14: /* cmd ::= ROLLBACK trans_opt */
|
|
+#line 85 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqliteRollbackTransaction(pParse);}
|
|
+#line 1807 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 16: /* create_table ::= CREATE temp TABLE nm */
|
|
+#line 90 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ sqliteStartTable(pParse,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0,yymsp[-2].minor.yy372,0);
|
|
+}
|
|
+#line 1814 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 17: /* temp ::= TEMP */
|
|
+ case 74: /* init_deferred_pred_opt ::= INITIALLY DEFERRED */ yytestcase(yyruleno==74);
|
|
+ case 108: /* distinct ::= DISTINCT */ yytestcase(yyruleno==108);
|
|
+#line 94 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy372 = 1;}
|
|
+#line 1821 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 18: /* temp ::= */
|
|
+ case 73: /* init_deferred_pred_opt ::= */ yytestcase(yyruleno==73);
|
|
+ case 75: /* init_deferred_pred_opt ::= INITIALLY IMMEDIATE */ yytestcase(yyruleno==75);
|
|
+ case 86: /* defer_subclause_opt ::= */ yytestcase(yyruleno==86);
|
|
+ case 109: /* distinct ::= ALL */ yytestcase(yyruleno==109);
|
|
+ case 110: /* distinct ::= */ yytestcase(yyruleno==110);
|
|
+#line 95 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy372 = 0;}
|
|
+#line 1831 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 19: /* create_table_args ::= LP columnlist conslist_opt RP */
|
|
+#line 96 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ sqliteEndTable(pParse,&yymsp[0].minor.yy0,0);
|
|
+}
|
|
+#line 1838 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 20: /* create_table_args ::= AS select */
|
|
+#line 99 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ sqliteEndTable(pParse,0,yymsp[0].minor.yy179);
|
|
+ sqliteSelectDelete(yymsp[0].minor.yy179);
|
|
+}
|
|
+#line 1846 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 24: /* columnid ::= nm */
|
|
+#line 111 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqliteAddColumn(pParse,&yymsp[0].minor.yy0);}
|
|
+#line 1851 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 25: /* id ::= ID */
|
|
+ case 26: /* ids ::= ID */ yytestcase(yyruleno==26);
|
|
+ case 27: /* ids ::= STRING */ yytestcase(yyruleno==27);
|
|
+ case 28: /* nm ::= ID */ yytestcase(yyruleno==28);
|
|
+ case 29: /* nm ::= STRING */ yytestcase(yyruleno==29);
|
|
+ case 30: /* nm ::= JOIN_KW */ yytestcase(yyruleno==30);
|
|
+ case 35: /* typename ::= ids */ yytestcase(yyruleno==35);
|
|
+ case 128: /* dbnm ::= DOT nm */ yytestcase(yyruleno==128);
|
|
+ case 254: /* plus_num ::= plus_opt number */ yytestcase(yyruleno==254);
|
|
+ case 255: /* minus_num ::= MINUS number */ yytestcase(yyruleno==255);
|
|
+ case 256: /* number ::= INTEGER */ yytestcase(yyruleno==256);
|
|
+ case 257: /* number ::= FLOAT */ yytestcase(yyruleno==257);
|
|
+#line 117 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy0 = yymsp[0].minor.yy0;}
|
|
+#line 1867 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 32: /* type ::= typename */
|
|
+#line 160 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqliteAddColumnType(pParse,&yymsp[0].minor.yy0,&yymsp[0].minor.yy0);}
|
|
+#line 1872 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 33: /* type ::= typename LP signed RP */
|
|
+#line 161 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqliteAddColumnType(pParse,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);}
|
|
+#line 1877 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 34: /* type ::= typename LP signed COMMA signed RP */
|
|
+#line 163 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqliteAddColumnType(pParse,&yymsp[-5].minor.yy0,&yymsp[0].minor.yy0);}
|
|
+#line 1882 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 36: /* typename ::= typename ids */
|
|
+ case 242: /* idxitem ::= nm sortorder */ yytestcase(yyruleno==242);
|
|
+#line 166 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy0 = yymsp[-1].minor.yy0;}
|
|
+#line 1888 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 37: /* signed ::= INTEGER */
|
|
+ case 38: /* signed ::= PLUS INTEGER */ yytestcase(yyruleno==38);
|
|
+#line 168 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = atoi(yymsp[0].minor.yy0.z); }
|
|
+#line 1894 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 39: /* signed ::= MINUS INTEGER */
|
|
+#line 170 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = -atoi(yymsp[0].minor.yy0.z); }
|
|
+#line 1899 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 44: /* carg ::= DEFAULT STRING */
|
|
+ case 45: /* carg ::= DEFAULT ID */ yytestcase(yyruleno==45);
|
|
+ case 46: /* carg ::= DEFAULT INTEGER */ yytestcase(yyruleno==46);
|
|
+ case 47: /* carg ::= DEFAULT PLUS INTEGER */ yytestcase(yyruleno==47);
|
|
+ case 49: /* carg ::= DEFAULT FLOAT */ yytestcase(yyruleno==49);
|
|
+ case 50: /* carg ::= DEFAULT PLUS FLOAT */ yytestcase(yyruleno==50);
|
|
+#line 175 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,0);}
|
|
+#line 1909 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 48: /* carg ::= DEFAULT MINUS INTEGER */
|
|
+ case 51: /* carg ::= DEFAULT MINUS FLOAT */ yytestcase(yyruleno==51);
|
|
+#line 179 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,1);}
|
|
+#line 1915 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 54: /* ccons ::= NOT NULL onconf */
|
|
+#line 189 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqliteAddNotNull(pParse, yymsp[0].minor.yy372);}
|
|
+#line 1920 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 55: /* ccons ::= PRIMARY KEY sortorder onconf */
|
|
+#line 190 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqliteAddPrimaryKey(pParse,0,yymsp[0].minor.yy372);}
|
|
+#line 1925 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 56: /* ccons ::= UNIQUE onconf */
|
|
+#line 191 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqliteCreateIndex(pParse,0,0,0,yymsp[0].minor.yy372,0,0);}
|
|
+#line 1930 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 57: /* ccons ::= CHECK LP expr RP onconf */
|
|
+#line 192 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yy_destructor(yypParser,158,&yymsp[-2].minor);
|
|
+}
|
|
+#line 1937 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 58: /* ccons ::= REFERENCES nm idxlist_opt refargs */
|
|
+#line 194 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqliteCreateForeignKey(pParse,0,&yymsp[-2].minor.yy0,yymsp[-1].minor.yy320,yymsp[0].minor.yy372);}
|
|
+#line 1942 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 59: /* ccons ::= defer_subclause */
|
|
+#line 195 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqliteDeferForeignKey(pParse,yymsp[0].minor.yy372);}
|
|
+#line 1947 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 60: /* ccons ::= COLLATE id */
|
|
+#line 196 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ sqliteAddCollateType(pParse, sqliteCollateType(yymsp[0].minor.yy0.z, yymsp[0].minor.yy0.n));
|
|
+}
|
|
+#line 1954 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 61: /* refargs ::= */
|
|
+#line 206 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = OE_Restrict * 0x010101; }
|
|
+#line 1959 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 62: /* refargs ::= refargs refarg */
|
|
+#line 207 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = (yymsp[-1].minor.yy372 & yymsp[0].minor.yy407.mask) | yymsp[0].minor.yy407.value; }
|
|
+#line 1964 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 63: /* refarg ::= MATCH nm */
|
|
+#line 209 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy407.value = 0; yygotominor.yy407.mask = 0x000000; }
|
|
+#line 1969 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 64: /* refarg ::= ON DELETE refact */
|
|
+#line 210 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy407.value = yymsp[0].minor.yy372; yygotominor.yy407.mask = 0x0000ff; }
|
|
+#line 1974 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 65: /* refarg ::= ON UPDATE refact */
|
|
+#line 211 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy407.value = yymsp[0].minor.yy372<<8; yygotominor.yy407.mask = 0x00ff00; }
|
|
+#line 1979 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 66: /* refarg ::= ON INSERT refact */
|
|
+#line 212 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy407.value = yymsp[0].minor.yy372<<16; yygotominor.yy407.mask = 0xff0000; }
|
|
+#line 1984 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 67: /* refact ::= SET NULL */
|
|
+#line 214 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = OE_SetNull; }
|
|
+#line 1989 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 68: /* refact ::= SET DEFAULT */
|
|
+#line 215 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = OE_SetDflt; }
|
|
+#line 1994 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 69: /* refact ::= CASCADE */
|
|
+#line 216 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = OE_Cascade; }
|
|
+#line 1999 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 70: /* refact ::= RESTRICT */
|
|
+#line 217 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = OE_Restrict; }
|
|
+#line 2004 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 71: /* defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */
|
|
+ case 72: /* defer_subclause ::= DEFERRABLE init_deferred_pred_opt */ yytestcase(yyruleno==72);
|
|
+ case 87: /* defer_subclause_opt ::= defer_subclause */ yytestcase(yyruleno==87);
|
|
+ case 164: /* insert_cmd ::= INSERT orconf */ yytestcase(yyruleno==164);
|
|
+#line 219 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy372 = yymsp[0].minor.yy372;}
|
|
+#line 2012 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 82: /* tcons ::= PRIMARY KEY LP idxlist RP onconf */
|
|
+#line 236 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqliteAddPrimaryKey(pParse,yymsp[-2].minor.yy320,yymsp[0].minor.yy372);}
|
|
+#line 2017 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 83: /* tcons ::= UNIQUE LP idxlist RP onconf */
|
|
+#line 238 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqliteCreateIndex(pParse,0,0,yymsp[-2].minor.yy320,yymsp[0].minor.yy372,0,0);}
|
|
+#line 2022 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 84: /* tcons ::= CHECK expr onconf */
|
|
+#line 239 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yy_destructor(yypParser,158,&yymsp[-1].minor);
|
|
+}
|
|
+#line 2029 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 85: /* tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt */
|
|
+#line 241 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ sqliteCreateForeignKey(pParse, yymsp[-6].minor.yy320, &yymsp[-3].minor.yy0, yymsp[-2].minor.yy320, yymsp[-1].minor.yy372);
|
|
+ sqliteDeferForeignKey(pParse, yymsp[0].minor.yy372);
|
|
+}
|
|
+#line 2037 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 88: /* onconf ::= */
|
|
+ case 90: /* orconf ::= */ yytestcase(yyruleno==90);
|
|
+#line 255 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = OE_Default; }
|
|
+#line 2043 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 89: /* onconf ::= ON CONFLICT resolvetype */
|
|
+ case 91: /* orconf ::= OR resolvetype */ yytestcase(yyruleno==91);
|
|
+#line 256 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = yymsp[0].minor.yy372; }
|
|
+#line 2049 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 92: /* resolvetype ::= ROLLBACK */
|
|
+#line 259 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = OE_Rollback; }
|
|
+#line 2054 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 93: /* resolvetype ::= ABORT */
|
|
+ case 236: /* uniqueflag ::= UNIQUE */ yytestcase(yyruleno==236);
|
|
+#line 260 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = OE_Abort; }
|
|
+#line 2060 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 94: /* resolvetype ::= FAIL */
|
|
+#line 261 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = OE_Fail; }
|
|
+#line 2065 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 95: /* resolvetype ::= IGNORE */
|
|
+#line 262 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = OE_Ignore; }
|
|
+#line 2070 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 96: /* resolvetype ::= REPLACE */
|
|
+#line 263 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = OE_Replace; }
|
|
+#line 2075 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 97: /* cmd ::= DROP TABLE nm */
|
|
+#line 267 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqliteDropTable(pParse,&yymsp[0].minor.yy0,0);}
|
|
+#line 2080 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 98: /* cmd ::= CREATE temp VIEW nm AS select */
|
|
+#line 271 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ sqliteCreateView(pParse, &yymsp[-5].minor.yy0, &yymsp[-2].minor.yy0, yymsp[0].minor.yy179, yymsp[-4].minor.yy372);
|
|
+}
|
|
+#line 2087 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 99: /* cmd ::= DROP VIEW nm */
|
|
+#line 274 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ sqliteDropTable(pParse, &yymsp[0].minor.yy0, 1);
|
|
+}
|
|
+#line 2094 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 100: /* cmd ::= select */
|
|
+#line 280 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ sqliteSelect(pParse, yymsp[0].minor.yy179, SRT_Callback, 0, 0, 0, 0);
|
|
+ sqliteSelectDelete(yymsp[0].minor.yy179);
|
|
+}
|
|
+#line 2102 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 101: /* select ::= oneselect */
|
|
+ case 125: /* seltablist_paren ::= select */ yytestcase(yyruleno==125);
|
|
+#line 290 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy179 = yymsp[0].minor.yy179;}
|
|
+#line 2108 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 102: /* select ::= select multiselect_op oneselect */
|
|
+#line 291 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ if( yymsp[0].minor.yy179 ){
|
|
+ yymsp[0].minor.yy179->op = yymsp[-1].minor.yy372;
|
|
+ yymsp[0].minor.yy179->pPrior = yymsp[-2].minor.yy179;
|
|
+ }
|
|
+ yygotominor.yy179 = yymsp[0].minor.yy179;
|
|
+}
|
|
+#line 2119 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 103: /* multiselect_op ::= UNION */
|
|
+#line 299 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy372 = TK_UNION;}
|
|
+#line 2124 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 104: /* multiselect_op ::= UNION ALL */
|
|
+#line 300 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy372 = TK_ALL;}
|
|
+#line 2129 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 105: /* multiselect_op ::= INTERSECT */
|
|
+#line 301 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy372 = TK_INTERSECT;}
|
|
+#line 2134 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 106: /* multiselect_op ::= EXCEPT */
|
|
+#line 302 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy372 = TK_EXCEPT;}
|
|
+#line 2139 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 107: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */
|
|
+#line 304 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy179 = sqliteSelectNew(yymsp[-6].minor.yy322,yymsp[-5].minor.yy307,yymsp[-4].minor.yy242,yymsp[-3].minor.yy322,yymsp[-2].minor.yy242,yymsp[-1].minor.yy322,yymsp[-7].minor.yy372,yymsp[0].minor.yy124.limit,yymsp[0].minor.yy124.offset);
|
|
+}
|
|
+#line 2146 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 111: /* sclp ::= selcollist COMMA */
|
|
+#line 325 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy322 = yymsp[-1].minor.yy322;}
|
|
+#line 2151 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 112: /* sclp ::= */
|
|
+ case 138: /* orderby_opt ::= */ yytestcase(yyruleno==138);
|
|
+ case 148: /* groupby_opt ::= */ yytestcase(yyruleno==148);
|
|
+#line 326 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy322 = 0;}
|
|
+#line 2158 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 113: /* selcollist ::= sclp expr as */
|
|
+#line 327 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy322 = sqliteExprListAppend(yymsp[-2].minor.yy322,yymsp[-1].minor.yy242,yymsp[0].minor.yy0.n?&yymsp[0].minor.yy0:0);
|
|
+}
|
|
+#line 2165 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 114: /* selcollist ::= sclp STAR */
|
|
+#line 330 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy322 = sqliteExprListAppend(yymsp[-1].minor.yy322, sqliteExpr(TK_ALL, 0, 0, 0), 0);
|
|
+}
|
|
+#line 2172 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 115: /* selcollist ::= sclp nm DOT STAR */
|
|
+#line 333 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ Expr *pRight = sqliteExpr(TK_ALL, 0, 0, 0);
|
|
+ Expr *pLeft = sqliteExpr(TK_ID, 0, 0, &yymsp[-2].minor.yy0);
|
|
+ yygotominor.yy322 = sqliteExprListAppend(yymsp[-3].minor.yy322, sqliteExpr(TK_DOT, pLeft, pRight, 0), 0);
|
|
+}
|
|
+#line 2181 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 116: /* as ::= AS nm */
|
|
+ case 117: /* as ::= ids */ yytestcase(yyruleno==117);
|
|
+ case 288: /* key_opt ::= USING ids */ yytestcase(yyruleno==288);
|
|
+#line 343 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy0 = yymsp[0].minor.yy0; }
|
|
+#line 2188 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 118: /* as ::= */
|
|
+#line 345 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy0.n = 0; }
|
|
+#line 2193 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 119: /* from ::= */
|
|
+#line 357 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy307 = sqliteMalloc(sizeof(*yygotominor.yy307));}
|
|
+#line 2198 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 120: /* from ::= FROM seltablist */
|
|
+#line 358 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy307 = yymsp[0].minor.yy307;}
|
|
+#line 2203 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 121: /* stl_prefix ::= seltablist joinop */
|
|
+#line 363 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy307 = yymsp[-1].minor.yy307;
|
|
+ if( yygotominor.yy307 && yygotominor.yy307->nSrc>0 ) yygotominor.yy307->a[yygotominor.yy307->nSrc-1].jointype = yymsp[0].minor.yy372;
|
|
+}
|
|
+#line 2211 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 122: /* stl_prefix ::= */
|
|
+#line 367 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy307 = 0;}
|
|
+#line 2216 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 123: /* seltablist ::= stl_prefix nm dbnm as on_opt using_opt */
|
|
+#line 368 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy307 = sqliteSrcListAppend(yymsp[-5].minor.yy307,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0);
|
|
+ if( yymsp[-2].minor.yy0.n ) sqliteSrcListAddAlias(yygotominor.yy307,&yymsp[-2].minor.yy0);
|
|
+ if( yymsp[-1].minor.yy242 ){
|
|
+ if( yygotominor.yy307 && yygotominor.yy307->nSrc>1 ){ yygotominor.yy307->a[yygotominor.yy307->nSrc-2].pOn = yymsp[-1].minor.yy242; }
|
|
+ else { sqliteExprDelete(yymsp[-1].minor.yy242); }
|
|
+ }
|
|
+ if( yymsp[0].minor.yy320 ){
|
|
+ if( yygotominor.yy307 && yygotominor.yy307->nSrc>1 ){ yygotominor.yy307->a[yygotominor.yy307->nSrc-2].pUsing = yymsp[0].minor.yy320; }
|
|
+ else { sqliteIdListDelete(yymsp[0].minor.yy320); }
|
|
+ }
|
|
+}
|
|
+#line 2232 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 124: /* seltablist ::= stl_prefix LP seltablist_paren RP as on_opt using_opt */
|
|
+#line 381 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy307 = sqliteSrcListAppend(yymsp[-6].minor.yy307,0,0);
|
|
+ yygotominor.yy307->a[yygotominor.yy307->nSrc-1].pSelect = yymsp[-4].minor.yy179;
|
|
+ if( yymsp[-2].minor.yy0.n ) sqliteSrcListAddAlias(yygotominor.yy307,&yymsp[-2].minor.yy0);
|
|
+ if( yymsp[-1].minor.yy242 ){
|
|
+ if( yygotominor.yy307 && yygotominor.yy307->nSrc>1 ){ yygotominor.yy307->a[yygotominor.yy307->nSrc-2].pOn = yymsp[-1].minor.yy242; }
|
|
+ else { sqliteExprDelete(yymsp[-1].minor.yy242); }
|
|
+ }
|
|
+ if( yymsp[0].minor.yy320 ){
|
|
+ if( yygotominor.yy307 && yygotominor.yy307->nSrc>1 ){ yygotominor.yy307->a[yygotominor.yy307->nSrc-2].pUsing = yymsp[0].minor.yy320; }
|
|
+ else { sqliteIdListDelete(yymsp[0].minor.yy320); }
|
|
+ }
|
|
+}
|
|
+#line 2249 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 126: /* seltablist_paren ::= seltablist */
|
|
+#line 402 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy179 = sqliteSelectNew(0,yymsp[0].minor.yy307,0,0,0,0,0,-1,0);
|
|
+}
|
|
+#line 2256 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 127: /* dbnm ::= */
|
|
+#line 407 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy0.z=0; yygotominor.yy0.n=0;}
|
|
+#line 2261 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 129: /* joinop ::= COMMA */
|
|
+ case 130: /* joinop ::= JOIN */ yytestcase(yyruleno==130);
|
|
+#line 412 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = JT_INNER; }
|
|
+#line 2267 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 131: /* joinop ::= JOIN_KW JOIN */
|
|
+#line 414 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = sqliteJoinType(pParse,&yymsp[-1].minor.yy0,0,0); }
|
|
+#line 2272 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 132: /* joinop ::= JOIN_KW nm JOIN */
|
|
+#line 415 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = sqliteJoinType(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0,0); }
|
|
+#line 2277 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 133: /* joinop ::= JOIN_KW nm nm JOIN */
|
|
+#line 417 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = sqliteJoinType(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0); }
|
|
+#line 2282 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 134: /* on_opt ::= ON expr */
|
|
+ case 142: /* sortitem ::= expr */ yytestcase(yyruleno==142);
|
|
+ case 151: /* having_opt ::= HAVING expr */ yytestcase(yyruleno==151);
|
|
+ case 158: /* where_opt ::= WHERE expr */ yytestcase(yyruleno==158);
|
|
+ case 227: /* case_else ::= ELSE expr */ yytestcase(yyruleno==227);
|
|
+ case 229: /* case_operand ::= expr */ yytestcase(yyruleno==229);
|
|
+ case 233: /* expritem ::= expr */ yytestcase(yyruleno==233);
|
|
+#line 421 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = yymsp[0].minor.yy242;}
|
|
+#line 2293 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 135: /* on_opt ::= */
|
|
+ case 150: /* having_opt ::= */ yytestcase(yyruleno==150);
|
|
+ case 157: /* where_opt ::= */ yytestcase(yyruleno==157);
|
|
+ case 228: /* case_else ::= */ yytestcase(yyruleno==228);
|
|
+ case 230: /* case_operand ::= */ yytestcase(yyruleno==230);
|
|
+ case 234: /* expritem ::= */ yytestcase(yyruleno==234);
|
|
+#line 422 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = 0;}
|
|
+#line 2303 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 136: /* using_opt ::= USING LP idxlist RP */
|
|
+ case 169: /* inscollist_opt ::= LP inscollist RP */ yytestcase(yyruleno==169);
|
|
+ case 239: /* idxlist_opt ::= LP idxlist RP */ yytestcase(yyruleno==239);
|
|
+#line 426 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy320 = yymsp[-1].minor.yy320;}
|
|
+#line 2310 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 137: /* using_opt ::= */
|
|
+ case 168: /* inscollist_opt ::= */ yytestcase(yyruleno==168);
|
|
+ case 238: /* idxlist_opt ::= */ yytestcase(yyruleno==238);
|
|
+#line 427 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy320 = 0;}
|
|
+#line 2317 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 139: /* orderby_opt ::= ORDER BY sortlist */
|
|
+ case 149: /* groupby_opt ::= GROUP BY exprlist */ yytestcase(yyruleno==149);
|
|
+#line 438 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy322 = yymsp[0].minor.yy322;}
|
|
+#line 2323 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 140: /* sortlist ::= sortlist COMMA sortitem collate sortorder */
|
|
+#line 439 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy322 = sqliteExprListAppend(yymsp[-4].minor.yy322,yymsp[-2].minor.yy242,0);
|
|
+ if( yygotominor.yy322 ) yygotominor.yy322->a[yygotominor.yy322->nExpr-1].sortOrder = yymsp[-1].minor.yy372+yymsp[0].minor.yy372;
|
|
+}
|
|
+#line 2331 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 141: /* sortlist ::= sortitem collate sortorder */
|
|
+#line 443 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy322 = sqliteExprListAppend(0,yymsp[-2].minor.yy242,0);
|
|
+ if( yygotominor.yy322 ) yygotominor.yy322->a[0].sortOrder = yymsp[-1].minor.yy372+yymsp[0].minor.yy372;
|
|
+}
|
|
+#line 2339 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 143: /* sortorder ::= ASC */
|
|
+ case 145: /* sortorder ::= */ yytestcase(yyruleno==145);
|
|
+#line 452 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy372 = SQLITE_SO_ASC;}
|
|
+#line 2345 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 144: /* sortorder ::= DESC */
|
|
+#line 453 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy372 = SQLITE_SO_DESC;}
|
|
+#line 2350 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 146: /* collate ::= */
|
|
+#line 455 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy372 = SQLITE_SO_UNK;}
|
|
+#line 2355 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 147: /* collate ::= COLLATE id */
|
|
+#line 456 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy372 = sqliteCollateType(yymsp[0].minor.yy0.z, yymsp[0].minor.yy0.n);}
|
|
+#line 2360 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 152: /* limit_opt ::= */
|
|
+#line 469 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy124.limit = -1; yygotominor.yy124.offset = 0;}
|
|
+#line 2365 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 153: /* limit_opt ::= LIMIT signed */
|
|
+#line 470 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy124.limit = yymsp[0].minor.yy372; yygotominor.yy124.offset = 0;}
|
|
+#line 2370 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 154: /* limit_opt ::= LIMIT signed OFFSET signed */
|
|
+#line 472 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy124.limit = yymsp[-2].minor.yy372; yygotominor.yy124.offset = yymsp[0].minor.yy372;}
|
|
+#line 2375 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 155: /* limit_opt ::= LIMIT signed COMMA signed */
|
|
+#line 474 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy124.limit = yymsp[0].minor.yy372; yygotominor.yy124.offset = yymsp[-2].minor.yy372;}
|
|
+#line 2380 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 156: /* cmd ::= DELETE FROM nm dbnm where_opt */
|
|
+#line 478 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ sqliteDeleteFrom(pParse, sqliteSrcListAppend(0,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0), yymsp[0].minor.yy242);
|
|
+}
|
|
+#line 2387 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 159: /* cmd ::= UPDATE orconf nm dbnm SET setlist where_opt */
|
|
+#line 494 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqliteUpdate(pParse,sqliteSrcListAppend(0,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0),yymsp[-1].minor.yy322,yymsp[0].minor.yy242,yymsp[-5].minor.yy372);}
|
|
+#line 2392 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 160: /* setlist ::= setlist COMMA nm EQ expr */
|
|
+#line 497 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy322 = sqliteExprListAppend(yymsp[-4].minor.yy322,yymsp[0].minor.yy242,&yymsp[-2].minor.yy0);}
|
|
+#line 2397 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 161: /* setlist ::= nm EQ expr */
|
|
+#line 498 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy322 = sqliteExprListAppend(0,yymsp[0].minor.yy242,&yymsp[-2].minor.yy0);}
|
|
+#line 2402 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 162: /* cmd ::= insert_cmd INTO nm dbnm inscollist_opt VALUES LP itemlist RP */
|
|
+#line 504 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqliteInsert(pParse, sqliteSrcListAppend(0,&yymsp[-6].minor.yy0,&yymsp[-5].minor.yy0), yymsp[-1].minor.yy322, 0, yymsp[-4].minor.yy320, yymsp[-8].minor.yy372);}
|
|
+#line 2407 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 163: /* cmd ::= insert_cmd INTO nm dbnm inscollist_opt select */
|
|
+#line 506 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqliteInsert(pParse, sqliteSrcListAppend(0,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0), 0, yymsp[0].minor.yy179, yymsp[-1].minor.yy320, yymsp[-5].minor.yy372);}
|
|
+#line 2412 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 165: /* insert_cmd ::= REPLACE */
|
|
+#line 510 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy372 = OE_Replace;}
|
|
+#line 2417 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 166: /* itemlist ::= itemlist COMMA expr */
|
|
+ case 231: /* exprlist ::= exprlist COMMA expritem */ yytestcase(yyruleno==231);
|
|
+#line 516 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy322 = sqliteExprListAppend(yymsp[-2].minor.yy322,yymsp[0].minor.yy242,0);}
|
|
+#line 2423 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 167: /* itemlist ::= expr */
|
|
+ case 232: /* exprlist ::= expritem */ yytestcase(yyruleno==232);
|
|
+#line 517 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy322 = sqliteExprListAppend(0,yymsp[0].minor.yy242,0);}
|
|
+#line 2429 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 170: /* inscollist ::= inscollist COMMA nm */
|
|
+ case 240: /* idxlist ::= idxlist COMMA idxitem */ yytestcase(yyruleno==240);
|
|
+#line 526 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy320 = sqliteIdListAppend(yymsp[-2].minor.yy320,&yymsp[0].minor.yy0);}
|
|
+#line 2435 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 171: /* inscollist ::= nm */
|
|
+ case 241: /* idxlist ::= idxitem */ yytestcase(yyruleno==241);
|
|
+#line 527 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy320 = sqliteIdListAppend(0,&yymsp[0].minor.yy0);}
|
|
+#line 2441 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 172: /* expr ::= LP expr RP */
|
|
+#line 535 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = yymsp[-1].minor.yy242; sqliteExprSpan(yygotominor.yy242,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); }
|
|
+#line 2446 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 173: /* expr ::= NULL */
|
|
+#line 536 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = sqliteExpr(TK_NULL, 0, 0, &yymsp[0].minor.yy0);}
|
|
+#line 2451 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 174: /* expr ::= ID */
|
|
+ case 175: /* expr ::= JOIN_KW */ yytestcase(yyruleno==175);
|
|
+#line 537 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = sqliteExpr(TK_ID, 0, 0, &yymsp[0].minor.yy0);}
|
|
+#line 2457 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 176: /* expr ::= nm DOT nm */
|
|
+#line 539 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ Expr *temp1 = sqliteExpr(TK_ID, 0, 0, &yymsp[-2].minor.yy0);
|
|
+ Expr *temp2 = sqliteExpr(TK_ID, 0, 0, &yymsp[0].minor.yy0);
|
|
+ yygotominor.yy242 = sqliteExpr(TK_DOT, temp1, temp2, 0);
|
|
+}
|
|
+#line 2466 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 177: /* expr ::= nm DOT nm DOT nm */
|
|
+#line 544 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ Expr *temp1 = sqliteExpr(TK_ID, 0, 0, &yymsp[-4].minor.yy0);
|
|
+ Expr *temp2 = sqliteExpr(TK_ID, 0, 0, &yymsp[-2].minor.yy0);
|
|
+ Expr *temp3 = sqliteExpr(TK_ID, 0, 0, &yymsp[0].minor.yy0);
|
|
+ Expr *temp4 = sqliteExpr(TK_DOT, temp2, temp3, 0);
|
|
+ yygotominor.yy242 = sqliteExpr(TK_DOT, temp1, temp4, 0);
|
|
+}
|
|
+#line 2477 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 178: /* expr ::= INTEGER */
|
|
+#line 551 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = sqliteExpr(TK_INTEGER, 0, 0, &yymsp[0].minor.yy0);}
|
|
+#line 2482 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 179: /* expr ::= FLOAT */
|
|
+#line 552 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = sqliteExpr(TK_FLOAT, 0, 0, &yymsp[0].minor.yy0);}
|
|
+#line 2487 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 180: /* expr ::= STRING */
|
|
+#line 553 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = sqliteExpr(TK_STRING, 0, 0, &yymsp[0].minor.yy0);}
|
|
+#line 2492 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 181: /* expr ::= VARIABLE */
|
|
+#line 554 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy242 = sqliteExpr(TK_VARIABLE, 0, 0, &yymsp[0].minor.yy0);
|
|
+ if( yygotominor.yy242 ) yygotominor.yy242->iTable = ++pParse->nVar;
|
|
+}
|
|
+#line 2500 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 182: /* expr ::= ID LP exprlist RP */
|
|
+#line 558 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy242 = sqliteExprFunction(yymsp[-1].minor.yy322, &yymsp[-3].minor.yy0);
|
|
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
|
|
+}
|
|
+#line 2508 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 183: /* expr ::= ID LP STAR RP */
|
|
+#line 562 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy242 = sqliteExprFunction(0, &yymsp[-3].minor.yy0);
|
|
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
|
|
+}
|
|
+#line 2516 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 184: /* expr ::= expr AND expr */
|
|
+#line 566 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = sqliteExpr(TK_AND, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
|
|
+#line 2521 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 185: /* expr ::= expr OR expr */
|
|
+#line 567 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = sqliteExpr(TK_OR, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
|
|
+#line 2526 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 186: /* expr ::= expr LT expr */
|
|
+#line 568 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = sqliteExpr(TK_LT, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
|
|
+#line 2531 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 187: /* expr ::= expr GT expr */
|
|
+#line 569 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = sqliteExpr(TK_GT, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
|
|
+#line 2536 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 188: /* expr ::= expr LE expr */
|
|
+#line 570 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = sqliteExpr(TK_LE, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
|
|
+#line 2541 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 189: /* expr ::= expr GE expr */
|
|
+#line 571 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = sqliteExpr(TK_GE, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
|
|
+#line 2546 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 190: /* expr ::= expr NE expr */
|
|
+#line 572 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = sqliteExpr(TK_NE, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
|
|
+#line 2551 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 191: /* expr ::= expr EQ expr */
|
|
+#line 573 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = sqliteExpr(TK_EQ, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
|
|
+#line 2556 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 192: /* expr ::= expr BITAND expr */
|
|
+#line 574 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = sqliteExpr(TK_BITAND, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
|
|
+#line 2561 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 193: /* expr ::= expr BITOR expr */
|
|
+#line 575 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = sqliteExpr(TK_BITOR, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
|
|
+#line 2566 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 194: /* expr ::= expr LSHIFT expr */
|
|
+#line 576 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = sqliteExpr(TK_LSHIFT, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
|
|
+#line 2571 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 195: /* expr ::= expr RSHIFT expr */
|
|
+#line 577 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = sqliteExpr(TK_RSHIFT, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
|
|
+#line 2576 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 196: /* expr ::= expr likeop expr */
|
|
+#line 578 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ ExprList *pList = sqliteExprListAppend(0, yymsp[0].minor.yy242, 0);
|
|
+ pList = sqliteExprListAppend(pList, yymsp[-2].minor.yy242, 0);
|
|
+ yygotominor.yy242 = sqliteExprFunction(pList, 0);
|
|
+ if( yygotominor.yy242 ) yygotominor.yy242->op = yymsp[-1].minor.yy372;
|
|
+ sqliteExprSpan(yygotominor.yy242, &yymsp[-2].minor.yy242->span, &yymsp[0].minor.yy242->span);
|
|
+}
|
|
+#line 2587 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 197: /* expr ::= expr NOT likeop expr */
|
|
+#line 585 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ ExprList *pList = sqliteExprListAppend(0, yymsp[0].minor.yy242, 0);
|
|
+ pList = sqliteExprListAppend(pList, yymsp[-3].minor.yy242, 0);
|
|
+ yygotominor.yy242 = sqliteExprFunction(pList, 0);
|
|
+ if( yygotominor.yy242 ) yygotominor.yy242->op = yymsp[-1].minor.yy372;
|
|
+ yygotominor.yy242 = sqliteExpr(TK_NOT, yygotominor.yy242, 0, 0);
|
|
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-3].minor.yy242->span,&yymsp[0].minor.yy242->span);
|
|
+}
|
|
+#line 2599 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 198: /* likeop ::= LIKE */
|
|
+#line 594 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy372 = TK_LIKE;}
|
|
+#line 2604 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 199: /* likeop ::= GLOB */
|
|
+#line 595 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy372 = TK_GLOB;}
|
|
+#line 2609 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 200: /* expr ::= expr PLUS expr */
|
|
+#line 596 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = sqliteExpr(TK_PLUS, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
|
|
+#line 2614 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 201: /* expr ::= expr MINUS expr */
|
|
+#line 597 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = sqliteExpr(TK_MINUS, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
|
|
+#line 2619 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 202: /* expr ::= expr STAR expr */
|
|
+#line 598 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = sqliteExpr(TK_STAR, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
|
|
+#line 2624 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 203: /* expr ::= expr SLASH expr */
|
|
+#line 599 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = sqliteExpr(TK_SLASH, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
|
|
+#line 2629 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 204: /* expr ::= expr REM expr */
|
|
+#line 600 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = sqliteExpr(TK_REM, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
|
|
+#line 2634 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 205: /* expr ::= expr CONCAT expr */
|
|
+#line 601 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy242 = sqliteExpr(TK_CONCAT, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
|
|
+#line 2639 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 206: /* expr ::= expr ISNULL */
|
|
+#line 602 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy242 = sqliteExpr(TK_ISNULL, yymsp[-1].minor.yy242, 0, 0);
|
|
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-1].minor.yy242->span,&yymsp[0].minor.yy0);
|
|
+}
|
|
+#line 2647 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 207: /* expr ::= expr IS NULL */
|
|
+#line 606 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy242 = sqliteExpr(TK_ISNULL, yymsp[-2].minor.yy242, 0, 0);
|
|
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-2].minor.yy242->span,&yymsp[0].minor.yy0);
|
|
+}
|
|
+#line 2655 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 208: /* expr ::= expr NOTNULL */
|
|
+#line 610 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy242 = sqliteExpr(TK_NOTNULL, yymsp[-1].minor.yy242, 0, 0);
|
|
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-1].minor.yy242->span,&yymsp[0].minor.yy0);
|
|
+}
|
|
+#line 2663 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 209: /* expr ::= expr NOT NULL */
|
|
+#line 614 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy242 = sqliteExpr(TK_NOTNULL, yymsp[-2].minor.yy242, 0, 0);
|
|
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-2].minor.yy242->span,&yymsp[0].minor.yy0);
|
|
+}
|
|
+#line 2671 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 210: /* expr ::= expr IS NOT NULL */
|
|
+#line 618 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy242 = sqliteExpr(TK_NOTNULL, yymsp[-3].minor.yy242, 0, 0);
|
|
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-3].minor.yy242->span,&yymsp[0].minor.yy0);
|
|
+}
|
|
+#line 2679 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 211: /* expr ::= NOT expr */
|
|
+#line 622 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy242 = sqliteExpr(TK_NOT, yymsp[0].minor.yy242, 0, 0);
|
|
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy242->span);
|
|
+}
|
|
+#line 2687 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 212: /* expr ::= BITNOT expr */
|
|
+#line 626 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy242 = sqliteExpr(TK_BITNOT, yymsp[0].minor.yy242, 0, 0);
|
|
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy242->span);
|
|
+}
|
|
+#line 2695 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 213: /* expr ::= MINUS expr */
|
|
+#line 630 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy242 = sqliteExpr(TK_UMINUS, yymsp[0].minor.yy242, 0, 0);
|
|
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy242->span);
|
|
+}
|
|
+#line 2703 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 214: /* expr ::= PLUS expr */
|
|
+#line 634 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy242 = sqliteExpr(TK_UPLUS, yymsp[0].minor.yy242, 0, 0);
|
|
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy242->span);
|
|
+}
|
|
+#line 2711 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 215: /* expr ::= LP select RP */
|
|
+#line 638 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy242 = sqliteExpr(TK_SELECT, 0, 0, 0);
|
|
+ if( yygotominor.yy242 ) yygotominor.yy242->pSelect = yymsp[-1].minor.yy179;
|
|
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0);
|
|
+}
|
|
+#line 2720 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 216: /* expr ::= expr BETWEEN expr AND expr */
|
|
+#line 643 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ ExprList *pList = sqliteExprListAppend(0, yymsp[-2].minor.yy242, 0);
|
|
+ pList = sqliteExprListAppend(pList, yymsp[0].minor.yy242, 0);
|
|
+ yygotominor.yy242 = sqliteExpr(TK_BETWEEN, yymsp[-4].minor.yy242, 0, 0);
|
|
+ if( yygotominor.yy242 ) yygotominor.yy242->pList = pList;
|
|
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-4].minor.yy242->span,&yymsp[0].minor.yy242->span);
|
|
+}
|
|
+#line 2731 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 217: /* expr ::= expr NOT BETWEEN expr AND expr */
|
|
+#line 650 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ ExprList *pList = sqliteExprListAppend(0, yymsp[-2].minor.yy242, 0);
|
|
+ pList = sqliteExprListAppend(pList, yymsp[0].minor.yy242, 0);
|
|
+ yygotominor.yy242 = sqliteExpr(TK_BETWEEN, yymsp[-5].minor.yy242, 0, 0);
|
|
+ if( yygotominor.yy242 ) yygotominor.yy242->pList = pList;
|
|
+ yygotominor.yy242 = sqliteExpr(TK_NOT, yygotominor.yy242, 0, 0);
|
|
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-5].minor.yy242->span,&yymsp[0].minor.yy242->span);
|
|
+}
|
|
+#line 2743 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 218: /* expr ::= expr IN LP exprlist RP */
|
|
+#line 658 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy242 = sqliteExpr(TK_IN, yymsp[-4].minor.yy242, 0, 0);
|
|
+ if( yygotominor.yy242 ) yygotominor.yy242->pList = yymsp[-1].minor.yy322;
|
|
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-4].minor.yy242->span,&yymsp[0].minor.yy0);
|
|
+}
|
|
+#line 2752 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 219: /* expr ::= expr IN LP select RP */
|
|
+#line 663 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy242 = sqliteExpr(TK_IN, yymsp[-4].minor.yy242, 0, 0);
|
|
+ if( yygotominor.yy242 ) yygotominor.yy242->pSelect = yymsp[-1].minor.yy179;
|
|
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-4].minor.yy242->span,&yymsp[0].minor.yy0);
|
|
+}
|
|
+#line 2761 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 220: /* expr ::= expr NOT IN LP exprlist RP */
|
|
+#line 668 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy242 = sqliteExpr(TK_IN, yymsp[-5].minor.yy242, 0, 0);
|
|
+ if( yygotominor.yy242 ) yygotominor.yy242->pList = yymsp[-1].minor.yy322;
|
|
+ yygotominor.yy242 = sqliteExpr(TK_NOT, yygotominor.yy242, 0, 0);
|
|
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-5].minor.yy242->span,&yymsp[0].minor.yy0);
|
|
+}
|
|
+#line 2771 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 221: /* expr ::= expr NOT IN LP select RP */
|
|
+#line 674 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy242 = sqliteExpr(TK_IN, yymsp[-5].minor.yy242, 0, 0);
|
|
+ if( yygotominor.yy242 ) yygotominor.yy242->pSelect = yymsp[-1].minor.yy179;
|
|
+ yygotominor.yy242 = sqliteExpr(TK_NOT, yygotominor.yy242, 0, 0);
|
|
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-5].minor.yy242->span,&yymsp[0].minor.yy0);
|
|
+}
|
|
+#line 2781 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 222: /* expr ::= expr IN nm dbnm */
|
|
+#line 680 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ SrcList *pSrc = sqliteSrcListAppend(0, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);
|
|
+ yygotominor.yy242 = sqliteExpr(TK_IN, yymsp[-3].minor.yy242, 0, 0);
|
|
+ if( yygotominor.yy242 ) yygotominor.yy242->pSelect = sqliteSelectNew(0,pSrc,0,0,0,0,0,-1,0);
|
|
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-3].minor.yy242->span,yymsp[0].minor.yy0.z?&yymsp[0].minor.yy0:&yymsp[-1].minor.yy0);
|
|
+}
|
|
+#line 2791 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 223: /* expr ::= expr NOT IN nm dbnm */
|
|
+#line 686 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ SrcList *pSrc = sqliteSrcListAppend(0, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);
|
|
+ yygotominor.yy242 = sqliteExpr(TK_IN, yymsp[-4].minor.yy242, 0, 0);
|
|
+ if( yygotominor.yy242 ) yygotominor.yy242->pSelect = sqliteSelectNew(0,pSrc,0,0,0,0,0,-1,0);
|
|
+ yygotominor.yy242 = sqliteExpr(TK_NOT, yygotominor.yy242, 0, 0);
|
|
+ sqliteExprSpan(yygotominor.yy242,&yymsp[-4].minor.yy242->span,yymsp[0].minor.yy0.z?&yymsp[0].minor.yy0:&yymsp[-1].minor.yy0);
|
|
+}
|
|
+#line 2802 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 224: /* expr ::= CASE case_operand case_exprlist case_else END */
|
|
+#line 696 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy242 = sqliteExpr(TK_CASE, yymsp[-3].minor.yy242, yymsp[-1].minor.yy242, 0);
|
|
+ if( yygotominor.yy242 ) yygotominor.yy242->pList = yymsp[-2].minor.yy322;
|
|
+ sqliteExprSpan(yygotominor.yy242, &yymsp[-4].minor.yy0, &yymsp[0].minor.yy0);
|
|
+}
|
|
+#line 2811 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 225: /* case_exprlist ::= case_exprlist WHEN expr THEN expr */
|
|
+#line 703 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy322 = sqliteExprListAppend(yymsp[-4].minor.yy322, yymsp[-2].minor.yy242, 0);
|
|
+ yygotominor.yy322 = sqliteExprListAppend(yygotominor.yy322, yymsp[0].minor.yy242, 0);
|
|
+}
|
|
+#line 2819 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 226: /* case_exprlist ::= WHEN expr THEN expr */
|
|
+#line 707 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy322 = sqliteExprListAppend(0, yymsp[-2].minor.yy242, 0);
|
|
+ yygotominor.yy322 = sqliteExprListAppend(yygotominor.yy322, yymsp[0].minor.yy242, 0);
|
|
+}
|
|
+#line 2827 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 235: /* cmd ::= CREATE uniqueflag INDEX nm ON nm dbnm LP idxlist RP onconf */
|
|
+#line 732 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ SrcList *pSrc = sqliteSrcListAppend(0, &yymsp[-5].minor.yy0, &yymsp[-4].minor.yy0);
|
|
+ if( yymsp[-9].minor.yy372!=OE_None ) yymsp[-9].minor.yy372 = yymsp[0].minor.yy372;
|
|
+ if( yymsp[-9].minor.yy372==OE_Default) yymsp[-9].minor.yy372 = OE_Abort;
|
|
+ sqliteCreateIndex(pParse, &yymsp[-7].minor.yy0, pSrc, yymsp[-2].minor.yy320, yymsp[-9].minor.yy372, &yymsp[-10].minor.yy0, &yymsp[-1].minor.yy0);
|
|
+}
|
|
+#line 2837 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 237: /* uniqueflag ::= */
|
|
+#line 741 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = OE_None; }
|
|
+#line 2842 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 243: /* cmd ::= DROP INDEX nm dbnm */
|
|
+#line 758 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ sqliteDropIndex(pParse, sqliteSrcListAppend(0,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0));
|
|
+}
|
|
+#line 2849 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 244: /* cmd ::= COPY orconf nm dbnm FROM nm USING DELIMITERS STRING */
|
|
+#line 766 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqliteCopy(pParse,sqliteSrcListAppend(0,&yymsp[-6].minor.yy0,&yymsp[-5].minor.yy0),&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0,yymsp[-7].minor.yy372);}
|
|
+#line 2854 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 245: /* cmd ::= COPY orconf nm dbnm FROM nm */
|
|
+#line 768 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqliteCopy(pParse,sqliteSrcListAppend(0,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0),&yymsp[0].minor.yy0,0,yymsp[-4].minor.yy372);}
|
|
+#line 2859 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 246: /* cmd ::= VACUUM */
|
|
+#line 772 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqliteVacuum(pParse,0);}
|
|
+#line 2864 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 247: /* cmd ::= VACUUM nm */
|
|
+#line 773 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqliteVacuum(pParse,&yymsp[0].minor.yy0);}
|
|
+#line 2869 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 248: /* cmd ::= PRAGMA ids EQ nm */
|
|
+ case 249: /* cmd ::= PRAGMA ids EQ ON */ yytestcase(yyruleno==249);
|
|
+ case 250: /* cmd ::= PRAGMA ids EQ plus_num */ yytestcase(yyruleno==250);
|
|
+#line 777 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqlitePragma(pParse,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0,0);}
|
|
+#line 2876 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 251: /* cmd ::= PRAGMA ids EQ minus_num */
|
|
+#line 780 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqlitePragma(pParse,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0,1);}
|
|
+#line 2881 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 252: /* cmd ::= PRAGMA ids LP nm RP */
|
|
+#line 781 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqlitePragma(pParse,&yymsp[-3].minor.yy0,&yymsp[-1].minor.yy0,0);}
|
|
+#line 2886 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 253: /* cmd ::= PRAGMA ids */
|
|
+#line 782 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{sqlitePragma(pParse,&yymsp[0].minor.yy0,&yymsp[0].minor.yy0,0);}
|
|
+#line 2891 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 260: /* cmd ::= CREATE trigger_decl BEGIN trigger_cmd_list END */
|
|
+#line 792 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ Token all;
|
|
+ all.z = yymsp[-4].minor.yy0.z;
|
|
+ all.n = (yymsp[0].minor.yy0.z - yymsp[-4].minor.yy0.z) + yymsp[0].minor.yy0.n;
|
|
+ sqliteFinishTrigger(pParse, yymsp[-1].minor.yy19, &all);
|
|
+}
|
|
+#line 2901 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 261: /* trigger_decl ::= temp TRIGGER nm trigger_time trigger_event ON nm dbnm foreach_clause when_clause */
|
|
+#line 800 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ SrcList *pTab = sqliteSrcListAppend(0, &yymsp[-3].minor.yy0, &yymsp[-2].minor.yy0);
|
|
+ sqliteBeginTrigger(pParse, &yymsp[-7].minor.yy0, yymsp[-6].minor.yy372, yymsp[-5].minor.yy290.a, yymsp[-5].minor.yy290.b, pTab, yymsp[-1].minor.yy372, yymsp[0].minor.yy182, yymsp[-9].minor.yy372);
|
|
+}
|
|
+#line 2909 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 262: /* trigger_time ::= BEFORE */
|
|
+ case 265: /* trigger_time ::= */ yytestcase(yyruleno==265);
|
|
+#line 806 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = TK_BEFORE; }
|
|
+#line 2915 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 263: /* trigger_time ::= AFTER */
|
|
+#line 807 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = TK_AFTER; }
|
|
+#line 2920 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 264: /* trigger_time ::= INSTEAD OF */
|
|
+#line 808 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = TK_INSTEAD;}
|
|
+#line 2925 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 266: /* trigger_event ::= DELETE */
|
|
+#line 813 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy290.a = TK_DELETE; yygotominor.yy290.b = 0; }
|
|
+#line 2930 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 267: /* trigger_event ::= INSERT */
|
|
+#line 814 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy290.a = TK_INSERT; yygotominor.yy290.b = 0; }
|
|
+#line 2935 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 268: /* trigger_event ::= UPDATE */
|
|
+#line 815 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy290.a = TK_UPDATE; yygotominor.yy290.b = 0;}
|
|
+#line 2940 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 269: /* trigger_event ::= UPDATE OF inscollist */
|
|
+#line 816 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy290.a = TK_UPDATE; yygotominor.yy290.b = yymsp[0].minor.yy320; }
|
|
+#line 2945 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 270: /* foreach_clause ::= */
|
|
+ case 271: /* foreach_clause ::= FOR EACH ROW */ yytestcase(yyruleno==271);
|
|
+#line 819 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = TK_ROW; }
|
|
+#line 2951 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 272: /* foreach_clause ::= FOR EACH STATEMENT */
|
|
+#line 821 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy372 = TK_STATEMENT; }
|
|
+#line 2956 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 273: /* when_clause ::= */
|
|
+#line 824 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy182 = 0; }
|
|
+#line 2961 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 274: /* when_clause ::= WHEN expr */
|
|
+#line 825 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy182 = yymsp[0].minor.yy242; }
|
|
+#line 2966 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 275: /* trigger_cmd_list ::= trigger_cmd SEMI trigger_cmd_list */
|
|
+#line 829 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yymsp[-2].minor.yy19->pNext = yymsp[0].minor.yy19;
|
|
+ yygotominor.yy19 = yymsp[-2].minor.yy19;
|
|
+}
|
|
+#line 2974 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 276: /* trigger_cmd_list ::= */
|
|
+#line 833 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy19 = 0; }
|
|
+#line 2979 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 277: /* trigger_cmd ::= UPDATE orconf nm SET setlist where_opt */
|
|
+#line 839 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy19 = sqliteTriggerUpdateStep(&yymsp[-3].minor.yy0, yymsp[-1].minor.yy322, yymsp[0].minor.yy242, yymsp[-4].minor.yy372); }
|
|
+#line 2984 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 278: /* trigger_cmd ::= insert_cmd INTO nm inscollist_opt VALUES LP itemlist RP */
|
|
+#line 844 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy19 = sqliteTriggerInsertStep(&yymsp[-5].minor.yy0, yymsp[-4].minor.yy320, yymsp[-1].minor.yy322, 0, yymsp[-7].minor.yy372);}
|
|
+#line 2989 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 279: /* trigger_cmd ::= insert_cmd INTO nm inscollist_opt select */
|
|
+#line 847 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy19 = sqliteTriggerInsertStep(&yymsp[-2].minor.yy0, yymsp[-1].minor.yy320, 0, yymsp[0].minor.yy179, yymsp[-4].minor.yy372);}
|
|
+#line 2994 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 280: /* trigger_cmd ::= DELETE FROM nm where_opt */
|
|
+#line 851 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy19 = sqliteTriggerDeleteStep(&yymsp[-1].minor.yy0, yymsp[0].minor.yy242);}
|
|
+#line 2999 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 281: /* trigger_cmd ::= select */
|
|
+#line 854 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{yygotominor.yy19 = sqliteTriggerSelectStep(yymsp[0].minor.yy179); }
|
|
+#line 3004 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 282: /* expr ::= RAISE LP IGNORE RP */
|
|
+#line 857 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy242 = sqliteExpr(TK_RAISE, 0, 0, 0);
|
|
+ yygotominor.yy242->iColumn = OE_Ignore;
|
|
+ sqliteExprSpan(yygotominor.yy242, &yymsp[-3].minor.yy0, &yymsp[0].minor.yy0);
|
|
+}
|
|
+#line 3013 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 283: /* expr ::= RAISE LP ROLLBACK COMMA nm RP */
|
|
+#line 862 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy242 = sqliteExpr(TK_RAISE, 0, 0, &yymsp[-1].minor.yy0);
|
|
+ yygotominor.yy242->iColumn = OE_Rollback;
|
|
+ sqliteExprSpan(yygotominor.yy242, &yymsp[-5].minor.yy0, &yymsp[0].minor.yy0);
|
|
+}
|
|
+#line 3022 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 284: /* expr ::= RAISE LP ABORT COMMA nm RP */
|
|
+#line 867 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy242 = sqliteExpr(TK_RAISE, 0, 0, &yymsp[-1].minor.yy0);
|
|
+ yygotominor.yy242->iColumn = OE_Abort;
|
|
+ sqliteExprSpan(yygotominor.yy242, &yymsp[-5].minor.yy0, &yymsp[0].minor.yy0);
|
|
+}
|
|
+#line 3031 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 285: /* expr ::= RAISE LP FAIL COMMA nm RP */
|
|
+#line 872 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ yygotominor.yy242 = sqliteExpr(TK_RAISE, 0, 0, &yymsp[-1].minor.yy0);
|
|
+ yygotominor.yy242->iColumn = OE_Fail;
|
|
+ sqliteExprSpan(yygotominor.yy242, &yymsp[-5].minor.yy0, &yymsp[0].minor.yy0);
|
|
+}
|
|
+#line 3040 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 286: /* cmd ::= DROP TRIGGER nm dbnm */
|
|
+#line 879 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ sqliteDropTrigger(pParse,sqliteSrcListAppend(0,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0));
|
|
+}
|
|
+#line 3047 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 287: /* cmd ::= ATTACH database_kw_opt ids AS nm key_opt */
|
|
+#line 884 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ sqliteAttach(pParse, &yymsp[-3].minor.yy0, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);
|
|
+}
|
|
+#line 3054 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 289: /* key_opt ::= */
|
|
+#line 889 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{ yygotominor.yy0.z = 0; yygotominor.yy0.n = 0; }
|
|
+#line 3059 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ case 292: /* cmd ::= DETACH database_kw_opt nm */
|
|
+#line 895 "ext/sqlite/libsqlite/src/parse.y"
|
|
+{
|
|
+ sqliteDetach(pParse, &yymsp[0].minor.yy0);
|
|
+}
|
|
+#line 3066 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ break;
|
|
+ default:
|
|
+ /* (0) input ::= cmdlist */ yytestcase(yyruleno==0);
|
|
+ /* (1) cmdlist ::= cmdlist ecmd */ yytestcase(yyruleno==1);
|
|
+ /* (2) cmdlist ::= ecmd */ yytestcase(yyruleno==2);
|
|
+ /* (3) ecmd ::= explain cmdx SEMI */ yytestcase(yyruleno==3);
|
|
+ /* (4) ecmd ::= SEMI */ yytestcase(yyruleno==4);
|
|
+ /* (9) trans_opt ::= */ yytestcase(yyruleno==9);
|
|
+ /* (10) trans_opt ::= TRANSACTION */ yytestcase(yyruleno==10);
|
|
+ /* (11) trans_opt ::= TRANSACTION nm */ yytestcase(yyruleno==11);
|
|
+ /* (15) cmd ::= create_table create_table_args */ yytestcase(yyruleno==15);
|
|
+ /* (21) columnlist ::= columnlist COMMA column */ yytestcase(yyruleno==21);
|
|
+ /* (22) columnlist ::= column */ yytestcase(yyruleno==22);
|
|
+ /* (23) column ::= columnid type carglist */ yytestcase(yyruleno==23);
|
|
+ /* (31) type ::= */ yytestcase(yyruleno==31);
|
|
+ /* (40) carglist ::= carglist carg */ yytestcase(yyruleno==40);
|
|
+ /* (41) carglist ::= */ yytestcase(yyruleno==41);
|
|
+ /* (42) carg ::= CONSTRAINT nm ccons */ yytestcase(yyruleno==42);
|
|
+ /* (43) carg ::= ccons */ yytestcase(yyruleno==43);
|
|
+ /* (52) carg ::= DEFAULT NULL */ yytestcase(yyruleno==52);
|
|
+ /* (53) ccons ::= NULL onconf */ yytestcase(yyruleno==53);
|
|
+ /* (76) conslist_opt ::= */ yytestcase(yyruleno==76);
|
|
+ /* (77) conslist_opt ::= COMMA conslist */ yytestcase(yyruleno==77);
|
|
+ /* (78) conslist ::= conslist COMMA tcons */ yytestcase(yyruleno==78);
|
|
+ /* (79) conslist ::= conslist tcons */ yytestcase(yyruleno==79);
|
|
+ /* (80) conslist ::= tcons */ yytestcase(yyruleno==80);
|
|
+ /* (81) tcons ::= CONSTRAINT nm */ yytestcase(yyruleno==81);
|
|
+ /* (258) plus_opt ::= PLUS */ yytestcase(yyruleno==258);
|
|
+ /* (259) plus_opt ::= */ yytestcase(yyruleno==259);
|
|
+ /* (290) database_kw_opt ::= DATABASE */ yytestcase(yyruleno==290);
|
|
+ /* (291) database_kw_opt ::= */ yytestcase(yyruleno==291);
|
|
+ break;
|
|
+ };
|
|
+ yygoto = yyRuleInfo[yyruleno].lhs;
|
|
+ yysize = yyRuleInfo[yyruleno].nrhs;
|
|
+ yypParser->yyidx -= yysize;
|
|
+ yyact = yy_find_reduce_action(yymsp[-yysize].stateno,(YYCODETYPE)yygoto);
|
|
+ if( yyact < YYNSTATE ){
|
|
+#ifdef NDEBUG
|
|
+ /* If we are not debugging and the reduce action popped at least
|
|
+ ** one element off the stack, then we can push the new element back
|
|
+ ** onto the stack here, and skip the stack overflow test in yy_shift().
|
|
+ ** That gives a significant speed improvement. */
|
|
+ if( yysize ){
|
|
+ yypParser->yyidx++;
|
|
+ yymsp -= yysize-1;
|
|
+ yymsp->stateno = (YYACTIONTYPE)yyact;
|
|
+ yymsp->major = (YYCODETYPE)yygoto;
|
|
+ yymsp->minor = yygotominor;
|
|
+ }else
|
|
+#endif
|
|
+ {
|
|
+ yy_shift(yypParser,yyact,yygoto,&yygotominor);
|
|
+ }
|
|
+ }else{
|
|
+ assert( yyact == YYNSTATE + YYNRULE + 1 );
|
|
+ yy_accept(yypParser);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** The following code executes when the parse fails
|
|
+*/
|
|
+#ifndef YYNOERRORRECOVERY
|
|
+static void yy_parse_failed(
|
|
+ yyParser *yypParser /* The parser */
|
|
+){
|
|
+ sqliteParserARG_FETCH;
|
|
+#ifndef NDEBUG
|
|
+ if( yyTraceFILE ){
|
|
+ fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt);
|
|
+ }
|
|
+#endif
|
|
+ while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
|
|
+ /* Here code is inserted which will be executed whenever the
|
|
+ ** parser fails */
|
|
+ sqliteParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
|
|
+}
|
|
+#endif /* YYNOERRORRECOVERY */
|
|
+
|
|
+/*
|
|
+** The following code executes when a syntax error first occurs.
|
|
+*/
|
|
+static void yy_syntax_error(
|
|
+ yyParser *yypParser, /* The parser */
|
|
+ int yymajor, /* The major type of the error token */
|
|
+ YYMINORTYPE yyminor /* The minor type of the error token */
|
|
+){
|
|
+ sqliteParserARG_FETCH;
|
|
+#define TOKEN (yyminor.yy0)
|
|
+#line 23 "ext/sqlite/libsqlite/src/parse.y"
|
|
+
|
|
+ if( pParse->zErrMsg==0 ){
|
|
+ if( TOKEN.z[0] ){
|
|
+ sqliteErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
|
|
+ }else{
|
|
+ sqliteErrorMsg(pParse, "incomplete SQL statement");
|
|
+ }
|
|
+ }
|
|
+#line 3166 "ext/sqlite/libsqlite/src/parse.c"
|
|
+ sqliteParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
|
|
+}
|
|
+
|
|
+/*
|
|
+** The following is executed when the parser accepts
|
|
+*/
|
|
+static void yy_accept(
|
|
+ yyParser *yypParser /* The parser */
|
|
+){
|
|
+ sqliteParserARG_FETCH;
|
|
+#ifndef NDEBUG
|
|
+ if( yyTraceFILE ){
|
|
+ fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt);
|
|
+ }
|
|
+#endif
|
|
+ while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
|
|
+ /* Here code is inserted which will be executed whenever the
|
|
+ ** parser accepts */
|
|
+ sqliteParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
|
|
+}
|
|
+
|
|
+/* The main parser program.
|
|
+** The first argument is a pointer to a structure obtained from
|
|
+** "sqliteParserAlloc" which describes the current state of the parser.
|
|
+** The second argument is the major token number. The third is
|
|
+** the minor token. The fourth optional argument is whatever the
|
|
+** user wants (and specified in the grammar) and is available for
|
|
+** use by the action routines.
|
|
+**
|
|
+** Inputs:
|
|
+** <ul>
|
|
+** <li> A pointer to the parser (an opaque structure.)
|
|
+** <li> The major token number.
|
|
+** <li> The minor token number.
|
|
+** <li> An option argument of a grammar-specified type.
|
|
+** </ul>
|
|
+**
|
|
+** Outputs:
|
|
+** None.
|
|
+*/
|
|
+void sqliteParser(
|
|
+ void *yyp, /* The parser */
|
|
+ int yymajor, /* The major token code number */
|
|
+ sqliteParserTOKENTYPE yyminor /* The value for the token */
|
|
+ sqliteParserARG_PDECL /* Optional %extra_argument parameter */
|
|
+){
|
|
+ YYMINORTYPE yyminorunion;
|
|
+ int yyact; /* The parser action. */
|
|
+ int yyendofinput; /* True if we are at the end of input */
|
|
+#ifdef YYERRORSYMBOL
|
|
+ int yyerrorhit = 0; /* True if yymajor has invoked an error */
|
|
+#endif
|
|
+ yyParser *yypParser; /* The parser */
|
|
+
|
|
+ /* (re)initialize the parser, if necessary */
|
|
+ yypParser = (yyParser*)yyp;
|
|
+ if( yypParser->yyidx<0 ){
|
|
+#if YYSTACKDEPTH<=0
|
|
+ if( yypParser->yystksz <=0 ){
|
|
+ /*memset(&yyminorunion, 0, sizeof(yyminorunion));*/
|
|
+ yyminorunion = yyzerominor;
|
|
+ yyStackOverflow(yypParser, &yyminorunion);
|
|
+ return;
|
|
+ }
|
|
+#endif
|
|
+ yypParser->yyidx = 0;
|
|
+ yypParser->yyerrcnt = -1;
|
|
+ yypParser->yystack[0].stateno = 0;
|
|
+ yypParser->yystack[0].major = 0;
|
|
+ }
|
|
+ yyminorunion.yy0 = yyminor;
|
|
+ yyendofinput = (yymajor==0);
|
|
+ sqliteParserARG_STORE;
|
|
+
|
|
+#ifndef NDEBUG
|
|
+ if( yyTraceFILE ){
|
|
+ fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]);
|
|
+ }
|
|
+#endif
|
|
+
|
|
+ do{
|
|
+ yyact = yy_find_shift_action(yypParser,(YYCODETYPE)yymajor);
|
|
+ if( yyact<YYNSTATE ){
|
|
+ assert( !yyendofinput ); /* Impossible to shift the $ token */
|
|
+ yy_shift(yypParser,yyact,yymajor,&yyminorunion);
|
|
+ yypParser->yyerrcnt--;
|
|
+ yymajor = YYNOCODE;
|
|
+ }else if( yyact < YYNSTATE + YYNRULE ){
|
|
+ yy_reduce(yypParser,yyact-YYNSTATE);
|
|
+ }else{
|
|
+ assert( yyact == YY_ERROR_ACTION );
|
|
+#ifdef YYERRORSYMBOL
|
|
+ int yymx;
|
|
+#endif
|
|
+#ifndef NDEBUG
|
|
+ if( yyTraceFILE ){
|
|
+ fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt);
|
|
+ }
|
|
+#endif
|
|
+#ifdef YYERRORSYMBOL
|
|
+ /* A syntax error has occurred.
|
|
+ ** The response to an error depends upon whether or not the
|
|
+ ** grammar defines an error token "ERROR".
|
|
+ **
|
|
+ ** This is what we do if the grammar does define ERROR:
|
|
+ **
|
|
+ ** * Call the %syntax_error function.
|
|
+ **
|
|
+ ** * Begin popping the stack until we enter a state where
|
|
+ ** it is legal to shift the error symbol, then shift
|
|
+ ** the error symbol.
|
|
+ **
|
|
+ ** * Set the error count to three.
|
|
+ **
|
|
+ ** * Begin accepting and shifting new tokens. No new error
|
|
+ ** processing will occur until three tokens have been
|
|
+ ** shifted successfully.
|
|
+ **
|
|
+ */
|
|
+ if( yypParser->yyerrcnt<0 ){
|
|
+ yy_syntax_error(yypParser,yymajor,yyminorunion);
|
|
+ }
|
|
+ yymx = yypParser->yystack[yypParser->yyidx].major;
|
|
+ if( yymx==YYERRORSYMBOL || yyerrorhit ){
|
|
+#ifndef NDEBUG
|
|
+ if( yyTraceFILE ){
|
|
+ fprintf(yyTraceFILE,"%sDiscard input token %s\n",
|
|
+ yyTracePrompt,yyTokenName[yymajor]);
|
|
+ }
|
|
+#endif
|
|
+ yy_destructor(yypParser, (YYCODETYPE)yymajor,&yyminorunion);
|
|
+ yymajor = YYNOCODE;
|
|
+ }else{
|
|
+ while(
|
|
+ yypParser->yyidx >= 0 &&
|
|
+ yymx != YYERRORSYMBOL &&
|
|
+ (yyact = yy_find_reduce_action(
|
|
+ yypParser->yystack[yypParser->yyidx].stateno,
|
|
+ YYERRORSYMBOL)) >= YYNSTATE
|
|
+ ){
|
|
+ yy_pop_parser_stack(yypParser);
|
|
+ }
|
|
+ if( yypParser->yyidx < 0 || yymajor==0 ){
|
|
+ yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
|
|
+ yy_parse_failed(yypParser);
|
|
+ yymajor = YYNOCODE;
|
|
+ }else if( yymx!=YYERRORSYMBOL ){
|
|
+ YYMINORTYPE u2;
|
|
+ u2.YYERRSYMDT = 0;
|
|
+ yy_shift(yypParser,yyact,YYERRORSYMBOL,&u2);
|
|
+ }
|
|
+ }
|
|
+ yypParser->yyerrcnt = 3;
|
|
+ yyerrorhit = 1;
|
|
+#elif defined(YYNOERRORRECOVERY)
|
|
+ /* If the YYNOERRORRECOVERY macro is defined, then do not attempt to
|
|
+ ** do any kind of error recovery. Instead, simply invoke the syntax
|
|
+ ** error routine and continue going as if nothing had happened.
|
|
+ **
|
|
+ ** Applications can set this macro (for example inside %include) if
|
|
+ ** they intend to abandon the parse upon the first syntax error seen.
|
|
+ */
|
|
+ yy_syntax_error(yypParser,yymajor,yyminorunion);
|
|
+ yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
|
|
+ yymajor = YYNOCODE;
|
|
+
|
|
+#else /* YYERRORSYMBOL is not defined */
|
|
+ /* This is what we do if the grammar does not define ERROR:
|
|
+ **
|
|
+ ** * Report an error message, and throw away the input token.
|
|
+ **
|
|
+ ** * If the input token is $, then fail the parse.
|
|
+ **
|
|
+ ** As before, subsequent error messages are suppressed until
|
|
+ ** three input tokens have been successfully shifted.
|
|
+ */
|
|
+ if( yypParser->yyerrcnt<=0 ){
|
|
+ yy_syntax_error(yypParser,yymajor,yyminorunion);
|
|
+ }
|
|
+ yypParser->yyerrcnt = 3;
|
|
+ yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
|
|
+ if( yyendofinput ){
|
|
+ yy_parse_failed(yypParser);
|
|
+ }
|
|
+ yymajor = YYNOCODE;
|
|
+#endif
|
|
+ }
|
|
+ }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 );
|
|
+ return;
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/parse.h
|
|
@@ -0,0 +1,130 @@
|
|
+#define TK_END_OF_FILE 1
|
|
+#define TK_ILLEGAL 2
|
|
+#define TK_SPACE 3
|
|
+#define TK_UNCLOSED_STRING 4
|
|
+#define TK_COMMENT 5
|
|
+#define TK_FUNCTION 6
|
|
+#define TK_COLUMN 7
|
|
+#define TK_AGG_FUNCTION 8
|
|
+#define TK_SEMI 9
|
|
+#define TK_EXPLAIN 10
|
|
+#define TK_BEGIN 11
|
|
+#define TK_TRANSACTION 12
|
|
+#define TK_COMMIT 13
|
|
+#define TK_END 14
|
|
+#define TK_ROLLBACK 15
|
|
+#define TK_CREATE 16
|
|
+#define TK_TABLE 17
|
|
+#define TK_TEMP 18
|
|
+#define TK_LP 19
|
|
+#define TK_RP 20
|
|
+#define TK_AS 21
|
|
+#define TK_COMMA 22
|
|
+#define TK_ID 23
|
|
+#define TK_ABORT 24
|
|
+#define TK_AFTER 25
|
|
+#define TK_ASC 26
|
|
+#define TK_ATTACH 27
|
|
+#define TK_BEFORE 28
|
|
+#define TK_CASCADE 29
|
|
+#define TK_CLUSTER 30
|
|
+#define TK_CONFLICT 31
|
|
+#define TK_COPY 32
|
|
+#define TK_DATABASE 33
|
|
+#define TK_DEFERRED 34
|
|
+#define TK_DELIMITERS 35
|
|
+#define TK_DESC 36
|
|
+#define TK_DETACH 37
|
|
+#define TK_EACH 38
|
|
+#define TK_FAIL 39
|
|
+#define TK_FOR 40
|
|
+#define TK_GLOB 41
|
|
+#define TK_IGNORE 42
|
|
+#define TK_IMMEDIATE 43
|
|
+#define TK_INITIALLY 44
|
|
+#define TK_INSTEAD 45
|
|
+#define TK_LIKE 46
|
|
+#define TK_MATCH 47
|
|
+#define TK_KEY 48
|
|
+#define TK_OF 49
|
|
+#define TK_OFFSET 50
|
|
+#define TK_PRAGMA 51
|
|
+#define TK_RAISE 52
|
|
+#define TK_REPLACE 53
|
|
+#define TK_RESTRICT 54
|
|
+#define TK_ROW 55
|
|
+#define TK_STATEMENT 56
|
|
+#define TK_TRIGGER 57
|
|
+#define TK_VACUUM 58
|
|
+#define TK_VIEW 59
|
|
+#define TK_OR 60
|
|
+#define TK_AND 61
|
|
+#define TK_NOT 62
|
|
+#define TK_EQ 63
|
|
+#define TK_NE 64
|
|
+#define TK_ISNULL 65
|
|
+#define TK_NOTNULL 66
|
|
+#define TK_IS 67
|
|
+#define TK_BETWEEN 68
|
|
+#define TK_IN 69
|
|
+#define TK_GT 70
|
|
+#define TK_GE 71
|
|
+#define TK_LT 72
|
|
+#define TK_LE 73
|
|
+#define TK_BITAND 74
|
|
+#define TK_BITOR 75
|
|
+#define TK_LSHIFT 76
|
|
+#define TK_RSHIFT 77
|
|
+#define TK_PLUS 78
|
|
+#define TK_MINUS 79
|
|
+#define TK_STAR 80
|
|
+#define TK_SLASH 81
|
|
+#define TK_REM 82
|
|
+#define TK_CONCAT 83
|
|
+#define TK_UMINUS 84
|
|
+#define TK_UPLUS 85
|
|
+#define TK_BITNOT 86
|
|
+#define TK_STRING 87
|
|
+#define TK_JOIN_KW 88
|
|
+#define TK_INTEGER 89
|
|
+#define TK_CONSTRAINT 90
|
|
+#define TK_DEFAULT 91
|
|
+#define TK_FLOAT 92
|
|
+#define TK_NULL 93
|
|
+#define TK_PRIMARY 94
|
|
+#define TK_UNIQUE 95
|
|
+#define TK_CHECK 96
|
|
+#define TK_REFERENCES 97
|
|
+#define TK_COLLATE 98
|
|
+#define TK_ON 99
|
|
+#define TK_DELETE 100
|
|
+#define TK_UPDATE 101
|
|
+#define TK_INSERT 102
|
|
+#define TK_SET 103
|
|
+#define TK_DEFERRABLE 104
|
|
+#define TK_FOREIGN 105
|
|
+#define TK_DROP 106
|
|
+#define TK_UNION 107
|
|
+#define TK_ALL 108
|
|
+#define TK_INTERSECT 109
|
|
+#define TK_EXCEPT 110
|
|
+#define TK_SELECT 111
|
|
+#define TK_DISTINCT 112
|
|
+#define TK_DOT 113
|
|
+#define TK_FROM 114
|
|
+#define TK_JOIN 115
|
|
+#define TK_USING 116
|
|
+#define TK_ORDER 117
|
|
+#define TK_BY 118
|
|
+#define TK_GROUP 119
|
|
+#define TK_HAVING 120
|
|
+#define TK_LIMIT 121
|
|
+#define TK_WHERE 122
|
|
+#define TK_INTO 123
|
|
+#define TK_VALUES 124
|
|
+#define TK_VARIABLE 125
|
|
+#define TK_CASE 126
|
|
+#define TK_WHEN 127
|
|
+#define TK_THEN 128
|
|
+#define TK_ELSE 129
|
|
+#define TK_INDEX 130
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/parse.y
|
|
@@ -0,0 +1,897 @@
|
|
+/*
|
|
+** 2001 September 15
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This file contains SQLite's grammar for SQL. Process this file
|
|
+** using the lemon parser generator to generate C code that runs
|
|
+** the parser. Lemon will also generate a header file containing
|
|
+** numeric codes for all of the tokens.
|
|
+**
|
|
+** @(#) $Id$
|
|
+*/
|
|
+%token_prefix TK_
|
|
+%token_type {Token}
|
|
+%default_type {Token}
|
|
+%extra_argument {Parse *pParse}
|
|
+%syntax_error {
|
|
+ if( pParse->zErrMsg==0 ){
|
|
+ if( TOKEN.z[0] ){
|
|
+ sqliteErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
|
|
+ }else{
|
|
+ sqliteErrorMsg(pParse, "incomplete SQL statement");
|
|
+ }
|
|
+ }
|
|
+}
|
|
+%name sqliteParser
|
|
+%include {
|
|
+#include "sqliteInt.h"
|
|
+#include "parse.h"
|
|
+
|
|
+/*
|
|
+** An instance of this structure holds information about the
|
|
+** LIMIT clause of a SELECT statement.
|
|
+*/
|
|
+struct LimitVal {
|
|
+ int limit; /* The LIMIT value. -1 if there is no limit */
|
|
+ int offset; /* The OFFSET. 0 if there is none */
|
|
+};
|
|
+
|
|
+/*
|
|
+** An instance of the following structure describes the event of a
|
|
+** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT,
|
|
+** TK_DELETE, or TK_INSTEAD. If the event is of the form
|
|
+**
|
|
+** UPDATE ON (a,b,c)
|
|
+**
|
|
+** Then the "b" IdList records the list "a,b,c".
|
|
+*/
|
|
+struct TrigEvent { int a; IdList * b; };
|
|
+
|
|
+} // end %include
|
|
+
|
|
+// These are extra tokens used by the lexer but never seen by the
|
|
+// parser. We put them in a rule so that the parser generator will
|
|
+// add them to the parse.h output file.
|
|
+//
|
|
+%nonassoc END_OF_FILE ILLEGAL SPACE UNCLOSED_STRING COMMENT FUNCTION
|
|
+ COLUMN AGG_FUNCTION.
|
|
+
|
|
+// Input is a single SQL command
|
|
+input ::= cmdlist.
|
|
+cmdlist ::= cmdlist ecmd.
|
|
+cmdlist ::= ecmd.
|
|
+ecmd ::= explain cmdx SEMI.
|
|
+ecmd ::= SEMI.
|
|
+cmdx ::= cmd. { sqliteExec(pParse); }
|
|
+explain ::= EXPLAIN. { sqliteBeginParse(pParse, 1); }
|
|
+explain ::= . { sqliteBeginParse(pParse, 0); }
|
|
+
|
|
+///////////////////// Begin and end transactions. ////////////////////////////
|
|
+//
|
|
+
|
|
+cmd ::= BEGIN trans_opt onconf(R). {sqliteBeginTransaction(pParse,R);}
|
|
+trans_opt ::= .
|
|
+trans_opt ::= TRANSACTION.
|
|
+trans_opt ::= TRANSACTION nm.
|
|
+cmd ::= COMMIT trans_opt. {sqliteCommitTransaction(pParse);}
|
|
+cmd ::= END trans_opt. {sqliteCommitTransaction(pParse);}
|
|
+cmd ::= ROLLBACK trans_opt. {sqliteRollbackTransaction(pParse);}
|
|
+
|
|
+///////////////////// The CREATE TABLE statement ////////////////////////////
|
|
+//
|
|
+cmd ::= create_table create_table_args.
|
|
+create_table ::= CREATE(X) temp(T) TABLE nm(Y). {
|
|
+ sqliteStartTable(pParse,&X,&Y,T,0);
|
|
+}
|
|
+%type temp {int}
|
|
+temp(A) ::= TEMP. {A = 1;}
|
|
+temp(A) ::= . {A = 0;}
|
|
+create_table_args ::= LP columnlist conslist_opt RP(X). {
|
|
+ sqliteEndTable(pParse,&X,0);
|
|
+}
|
|
+create_table_args ::= AS select(S). {
|
|
+ sqliteEndTable(pParse,0,S);
|
|
+ sqliteSelectDelete(S);
|
|
+}
|
|
+columnlist ::= columnlist COMMA column.
|
|
+columnlist ::= column.
|
|
+
|
|
+// About the only information used for a column is the name of the
|
|
+// column. The type is always just "text". But the code will accept
|
|
+// an elaborate typename. Perhaps someday we'll do something with it.
|
|
+//
|
|
+column ::= columnid type carglist.
|
|
+columnid ::= nm(X). {sqliteAddColumn(pParse,&X);}
|
|
+
|
|
+// An IDENTIFIER can be a generic identifier, or one of several
|
|
+// keywords. Any non-standard keyword can also be an identifier.
|
|
+//
|
|
+%type id {Token}
|
|
+id(A) ::= ID(X). {A = X;}
|
|
+
|
|
+// The following directive causes tokens ABORT, AFTER, ASC, etc. to
|
|
+// fallback to ID if they will not parse as their original value.
|
|
+// This obviates the need for the "id" nonterminal.
|
|
+//
|
|
+%fallback ID
|
|
+ ABORT AFTER ASC ATTACH BEFORE BEGIN CASCADE CLUSTER CONFLICT
|
|
+ COPY DATABASE DEFERRED DELIMITERS DESC DETACH EACH END EXPLAIN FAIL FOR
|
|
+ GLOB IGNORE IMMEDIATE INITIALLY INSTEAD LIKE MATCH KEY
|
|
+ OF OFFSET PRAGMA RAISE REPLACE RESTRICT ROW STATEMENT
|
|
+ TEMP TRIGGER VACUUM VIEW.
|
|
+
|
|
+// Define operator precedence early so that this is the first occurance
|
|
+// of the operator tokens in the grammer. Keeping the operators together
|
|
+// causes them to be assigned integer values that are close together,
|
|
+// which keeps parser tables smaller.
|
|
+//
|
|
+%left OR.
|
|
+%left AND.
|
|
+%right NOT.
|
|
+%left EQ NE ISNULL NOTNULL IS LIKE GLOB BETWEEN IN.
|
|
+%left GT GE LT LE.
|
|
+%left BITAND BITOR LSHIFT RSHIFT.
|
|
+%left PLUS MINUS.
|
|
+%left STAR SLASH REM.
|
|
+%left CONCAT.
|
|
+%right UMINUS UPLUS BITNOT.
|
|
+
|
|
+// And "ids" is an identifer-or-string.
|
|
+//
|
|
+%type ids {Token}
|
|
+ids(A) ::= ID(X). {A = X;}
|
|
+ids(A) ::= STRING(X). {A = X;}
|
|
+
|
|
+// The name of a column or table can be any of the following:
|
|
+//
|
|
+%type nm {Token}
|
|
+nm(A) ::= ID(X). {A = X;}
|
|
+nm(A) ::= STRING(X). {A = X;}
|
|
+nm(A) ::= JOIN_KW(X). {A = X;}
|
|
+
|
|
+type ::= .
|
|
+type ::= typename(X). {sqliteAddColumnType(pParse,&X,&X);}
|
|
+type ::= typename(X) LP signed RP(Y). {sqliteAddColumnType(pParse,&X,&Y);}
|
|
+type ::= typename(X) LP signed COMMA signed RP(Y).
|
|
+ {sqliteAddColumnType(pParse,&X,&Y);}
|
|
+%type typename {Token}
|
|
+typename(A) ::= ids(X). {A = X;}
|
|
+typename(A) ::= typename(X) ids. {A = X;}
|
|
+%type signed {int}
|
|
+signed(A) ::= INTEGER(X). { A = atoi(X.z); }
|
|
+signed(A) ::= PLUS INTEGER(X). { A = atoi(X.z); }
|
|
+signed(A) ::= MINUS INTEGER(X). { A = -atoi(X.z); }
|
|
+carglist ::= carglist carg.
|
|
+carglist ::= .
|
|
+carg ::= CONSTRAINT nm ccons.
|
|
+carg ::= ccons.
|
|
+carg ::= DEFAULT STRING(X). {sqliteAddDefaultValue(pParse,&X,0);}
|
|
+carg ::= DEFAULT ID(X). {sqliteAddDefaultValue(pParse,&X,0);}
|
|
+carg ::= DEFAULT INTEGER(X). {sqliteAddDefaultValue(pParse,&X,0);}
|
|
+carg ::= DEFAULT PLUS INTEGER(X). {sqliteAddDefaultValue(pParse,&X,0);}
|
|
+carg ::= DEFAULT MINUS INTEGER(X). {sqliteAddDefaultValue(pParse,&X,1);}
|
|
+carg ::= DEFAULT FLOAT(X). {sqliteAddDefaultValue(pParse,&X,0);}
|
|
+carg ::= DEFAULT PLUS FLOAT(X). {sqliteAddDefaultValue(pParse,&X,0);}
|
|
+carg ::= DEFAULT MINUS FLOAT(X). {sqliteAddDefaultValue(pParse,&X,1);}
|
|
+carg ::= DEFAULT NULL.
|
|
+
|
|
+// In addition to the type name, we also care about the primary key and
|
|
+// UNIQUE constraints.
|
|
+//
|
|
+ccons ::= NULL onconf.
|
|
+ccons ::= NOT NULL onconf(R). {sqliteAddNotNull(pParse, R);}
|
|
+ccons ::= PRIMARY KEY sortorder onconf(R). {sqliteAddPrimaryKey(pParse,0,R);}
|
|
+ccons ::= UNIQUE onconf(R). {sqliteCreateIndex(pParse,0,0,0,R,0,0);}
|
|
+ccons ::= CHECK LP expr RP onconf.
|
|
+ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R).
|
|
+ {sqliteCreateForeignKey(pParse,0,&T,TA,R);}
|
|
+ccons ::= defer_subclause(D). {sqliteDeferForeignKey(pParse,D);}
|
|
+ccons ::= COLLATE id(C). {
|
|
+ sqliteAddCollateType(pParse, sqliteCollateType(C.z, C.n));
|
|
+}
|
|
+
|
|
+// The next group of rules parses the arguments to a REFERENCES clause
|
|
+// that determine if the referential integrity checking is deferred or
|
|
+// or immediate and which determine what action to take if a ref-integ
|
|
+// check fails.
|
|
+//
|
|
+%type refargs {int}
|
|
+refargs(A) ::= . { A = OE_Restrict * 0x010101; }
|
|
+refargs(A) ::= refargs(X) refarg(Y). { A = (X & Y.mask) | Y.value; }
|
|
+%type refarg {struct {int value; int mask;}}
|
|
+refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; }
|
|
+refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; }
|
|
+refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; }
|
|
+refarg(A) ::= ON INSERT refact(X). { A.value = X<<16; A.mask = 0xff0000; }
|
|
+%type refact {int}
|
|
+refact(A) ::= SET NULL. { A = OE_SetNull; }
|
|
+refact(A) ::= SET DEFAULT. { A = OE_SetDflt; }
|
|
+refact(A) ::= CASCADE. { A = OE_Cascade; }
|
|
+refact(A) ::= RESTRICT. { A = OE_Restrict; }
|
|
+%type defer_subclause {int}
|
|
+defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt(X). {A = X;}
|
|
+defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;}
|
|
+%type init_deferred_pred_opt {int}
|
|
+init_deferred_pred_opt(A) ::= . {A = 0;}
|
|
+init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;}
|
|
+init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;}
|
|
+
|
|
+// For the time being, the only constraint we care about is the primary
|
|
+// key and UNIQUE. Both create indices.
|
|
+//
|
|
+conslist_opt ::= .
|
|
+conslist_opt ::= COMMA conslist.
|
|
+conslist ::= conslist COMMA tcons.
|
|
+conslist ::= conslist tcons.
|
|
+conslist ::= tcons.
|
|
+tcons ::= CONSTRAINT nm.
|
|
+tcons ::= PRIMARY KEY LP idxlist(X) RP onconf(R).
|
|
+ {sqliteAddPrimaryKey(pParse,X,R);}
|
|
+tcons ::= UNIQUE LP idxlist(X) RP onconf(R).
|
|
+ {sqliteCreateIndex(pParse,0,0,X,R,0,0);}
|
|
+tcons ::= CHECK expr onconf.
|
|
+tcons ::= FOREIGN KEY LP idxlist(FA) RP
|
|
+ REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). {
|
|
+ sqliteCreateForeignKey(pParse, FA, &T, TA, R);
|
|
+ sqliteDeferForeignKey(pParse, D);
|
|
+}
|
|
+%type defer_subclause_opt {int}
|
|
+defer_subclause_opt(A) ::= . {A = 0;}
|
|
+defer_subclause_opt(A) ::= defer_subclause(X). {A = X;}
|
|
+
|
|
+// The following is a non-standard extension that allows us to declare the
|
|
+// default behavior when there is a constraint conflict.
|
|
+//
|
|
+%type onconf {int}
|
|
+%type orconf {int}
|
|
+%type resolvetype {int}
|
|
+onconf(A) ::= . { A = OE_Default; }
|
|
+onconf(A) ::= ON CONFLICT resolvetype(X). { A = X; }
|
|
+orconf(A) ::= . { A = OE_Default; }
|
|
+orconf(A) ::= OR resolvetype(X). { A = X; }
|
|
+resolvetype(A) ::= ROLLBACK. { A = OE_Rollback; }
|
|
+resolvetype(A) ::= ABORT. { A = OE_Abort; }
|
|
+resolvetype(A) ::= FAIL. { A = OE_Fail; }
|
|
+resolvetype(A) ::= IGNORE. { A = OE_Ignore; }
|
|
+resolvetype(A) ::= REPLACE. { A = OE_Replace; }
|
|
+
|
|
+////////////////////////// The DROP TABLE /////////////////////////////////////
|
|
+//
|
|
+cmd ::= DROP TABLE nm(X). {sqliteDropTable(pParse,&X,0);}
|
|
+
|
|
+///////////////////// The CREATE VIEW statement /////////////////////////////
|
|
+//
|
|
+cmd ::= CREATE(X) temp(T) VIEW nm(Y) AS select(S). {
|
|
+ sqliteCreateView(pParse, &X, &Y, S, T);
|
|
+}
|
|
+cmd ::= DROP VIEW nm(X). {
|
|
+ sqliteDropTable(pParse, &X, 1);
|
|
+}
|
|
+
|
|
+//////////////////////// The SELECT statement /////////////////////////////////
|
|
+//
|
|
+cmd ::= select(X). {
|
|
+ sqliteSelect(pParse, X, SRT_Callback, 0, 0, 0, 0);
|
|
+ sqliteSelectDelete(X);
|
|
+}
|
|
+
|
|
+%type select {Select*}
|
|
+%destructor select {sqliteSelectDelete($$);}
|
|
+%type oneselect {Select*}
|
|
+%destructor oneselect {sqliteSelectDelete($$);}
|
|
+
|
|
+select(A) ::= oneselect(X). {A = X;}
|
|
+select(A) ::= select(X) multiselect_op(Y) oneselect(Z). {
|
|
+ if( Z ){
|
|
+ Z->op = Y;
|
|
+ Z->pPrior = X;
|
|
+ }
|
|
+ A = Z;
|
|
+}
|
|
+%type multiselect_op {int}
|
|
+multiselect_op(A) ::= UNION. {A = TK_UNION;}
|
|
+multiselect_op(A) ::= UNION ALL. {A = TK_ALL;}
|
|
+multiselect_op(A) ::= INTERSECT. {A = TK_INTERSECT;}
|
|
+multiselect_op(A) ::= EXCEPT. {A = TK_EXCEPT;}
|
|
+oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y)
|
|
+ groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
|
|
+ A = sqliteSelectNew(W,X,Y,P,Q,Z,D,L.limit,L.offset);
|
|
+}
|
|
+
|
|
+// The "distinct" nonterminal is true (1) if the DISTINCT keyword is
|
|
+// present and false (0) if it is not.
|
|
+//
|
|
+%type distinct {int}
|
|
+distinct(A) ::= DISTINCT. {A = 1;}
|
|
+distinct(A) ::= ALL. {A = 0;}
|
|
+distinct(A) ::= . {A = 0;}
|
|
+
|
|
+// selcollist is a list of expressions that are to become the return
|
|
+// values of the SELECT statement. The "*" in statements like
|
|
+// "SELECT * FROM ..." is encoded as a special expression with an
|
|
+// opcode of TK_ALL.
|
|
+//
|
|
+%type selcollist {ExprList*}
|
|
+%destructor selcollist {sqliteExprListDelete($$);}
|
|
+%type sclp {ExprList*}
|
|
+%destructor sclp {sqliteExprListDelete($$);}
|
|
+sclp(A) ::= selcollist(X) COMMA. {A = X;}
|
|
+sclp(A) ::= . {A = 0;}
|
|
+selcollist(A) ::= sclp(P) expr(X) as(Y). {
|
|
+ A = sqliteExprListAppend(P,X,Y.n?&Y:0);
|
|
+}
|
|
+selcollist(A) ::= sclp(P) STAR. {
|
|
+ A = sqliteExprListAppend(P, sqliteExpr(TK_ALL, 0, 0, 0), 0);
|
|
+}
|
|
+selcollist(A) ::= sclp(P) nm(X) DOT STAR. {
|
|
+ Expr *pRight = sqliteExpr(TK_ALL, 0, 0, 0);
|
|
+ Expr *pLeft = sqliteExpr(TK_ID, 0, 0, &X);
|
|
+ A = sqliteExprListAppend(P, sqliteExpr(TK_DOT, pLeft, pRight, 0), 0);
|
|
+}
|
|
+
|
|
+// An option "AS <id>" phrase that can follow one of the expressions that
|
|
+// define the result set, or one of the tables in the FROM clause.
|
|
+//
|
|
+%type as {Token}
|
|
+as(X) ::= AS nm(Y). { X = Y; }
|
|
+as(X) ::= ids(Y). { X = Y; }
|
|
+as(X) ::= . { X.n = 0; }
|
|
+
|
|
+
|
|
+%type seltablist {SrcList*}
|
|
+%destructor seltablist {sqliteSrcListDelete($$);}
|
|
+%type stl_prefix {SrcList*}
|
|
+%destructor stl_prefix {sqliteSrcListDelete($$);}
|
|
+%type from {SrcList*}
|
|
+%destructor from {sqliteSrcListDelete($$);}
|
|
+
|
|
+// A complete FROM clause.
|
|
+//
|
|
+from(A) ::= . {A = sqliteMalloc(sizeof(*A));}
|
|
+from(A) ::= FROM seltablist(X). {A = X;}
|
|
+
|
|
+// "seltablist" is a "Select Table List" - the content of the FROM clause
|
|
+// in a SELECT statement. "stl_prefix" is a prefix of this list.
|
|
+//
|
|
+stl_prefix(A) ::= seltablist(X) joinop(Y). {
|
|
+ A = X;
|
|
+ if( A && A->nSrc>0 ) A->a[A->nSrc-1].jointype = Y;
|
|
+}
|
|
+stl_prefix(A) ::= . {A = 0;}
|
|
+seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) on_opt(N) using_opt(U). {
|
|
+ A = sqliteSrcListAppend(X,&Y,&D);
|
|
+ if( Z.n ) sqliteSrcListAddAlias(A,&Z);
|
|
+ if( N ){
|
|
+ if( A && A->nSrc>1 ){ A->a[A->nSrc-2].pOn = N; }
|
|
+ else { sqliteExprDelete(N); }
|
|
+ }
|
|
+ if( U ){
|
|
+ if( A && A->nSrc>1 ){ A->a[A->nSrc-2].pUsing = U; }
|
|
+ else { sqliteIdListDelete(U); }
|
|
+ }
|
|
+}
|
|
+seltablist(A) ::= stl_prefix(X) LP seltablist_paren(S) RP
|
|
+ as(Z) on_opt(N) using_opt(U). {
|
|
+ A = sqliteSrcListAppend(X,0,0);
|
|
+ A->a[A->nSrc-1].pSelect = S;
|
|
+ if( Z.n ) sqliteSrcListAddAlias(A,&Z);
|
|
+ if( N ){
|
|
+ if( A && A->nSrc>1 ){ A->a[A->nSrc-2].pOn = N; }
|
|
+ else { sqliteExprDelete(N); }
|
|
+ }
|
|
+ if( U ){
|
|
+ if( A && A->nSrc>1 ){ A->a[A->nSrc-2].pUsing = U; }
|
|
+ else { sqliteIdListDelete(U); }
|
|
+ }
|
|
+}
|
|
+
|
|
+// A seltablist_paren nonterminal represents anything in a FROM that
|
|
+// is contained inside parentheses. This can be either a subquery or
|
|
+// a grouping of table and subqueries.
|
|
+//
|
|
+%type seltablist_paren {Select*}
|
|
+%destructor seltablist_paren {sqliteSelectDelete($$);}
|
|
+seltablist_paren(A) ::= select(S). {A = S;}
|
|
+seltablist_paren(A) ::= seltablist(F). {
|
|
+ A = sqliteSelectNew(0,F,0,0,0,0,0,-1,0);
|
|
+}
|
|
+
|
|
+%type dbnm {Token}
|
|
+dbnm(A) ::= . {A.z=0; A.n=0;}
|
|
+dbnm(A) ::= DOT nm(X). {A = X;}
|
|
+
|
|
+%type joinop {int}
|
|
+%type joinop2 {int}
|
|
+joinop(X) ::= COMMA. { X = JT_INNER; }
|
|
+joinop(X) ::= JOIN. { X = JT_INNER; }
|
|
+joinop(X) ::= JOIN_KW(A) JOIN. { X = sqliteJoinType(pParse,&A,0,0); }
|
|
+joinop(X) ::= JOIN_KW(A) nm(B) JOIN. { X = sqliteJoinType(pParse,&A,&B,0); }
|
|
+joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
|
|
+ { X = sqliteJoinType(pParse,&A,&B,&C); }
|
|
+
|
|
+%type on_opt {Expr*}
|
|
+%destructor on_opt {sqliteExprDelete($$);}
|
|
+on_opt(N) ::= ON expr(E). {N = E;}
|
|
+on_opt(N) ::= . {N = 0;}
|
|
+
|
|
+%type using_opt {IdList*}
|
|
+%destructor using_opt {sqliteIdListDelete($$);}
|
|
+using_opt(U) ::= USING LP idxlist(L) RP. {U = L;}
|
|
+using_opt(U) ::= . {U = 0;}
|
|
+
|
|
+
|
|
+%type orderby_opt {ExprList*}
|
|
+%destructor orderby_opt {sqliteExprListDelete($$);}
|
|
+%type sortlist {ExprList*}
|
|
+%destructor sortlist {sqliteExprListDelete($$);}
|
|
+%type sortitem {Expr*}
|
|
+%destructor sortitem {sqliteExprDelete($$);}
|
|
+
|
|
+orderby_opt(A) ::= . {A = 0;}
|
|
+orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;}
|
|
+sortlist(A) ::= sortlist(X) COMMA sortitem(Y) collate(C) sortorder(Z). {
|
|
+ A = sqliteExprListAppend(X,Y,0);
|
|
+ if( A ) A->a[A->nExpr-1].sortOrder = C+Z;
|
|
+}
|
|
+sortlist(A) ::= sortitem(Y) collate(C) sortorder(Z). {
|
|
+ A = sqliteExprListAppend(0,Y,0);
|
|
+ if( A ) A->a[0].sortOrder = C+Z;
|
|
+}
|
|
+sortitem(A) ::= expr(X). {A = X;}
|
|
+
|
|
+%type sortorder {int}
|
|
+%type collate {int}
|
|
+
|
|
+sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;}
|
|
+sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;}
|
|
+sortorder(A) ::= . {A = SQLITE_SO_ASC;}
|
|
+collate(C) ::= . {C = SQLITE_SO_UNK;}
|
|
+collate(C) ::= COLLATE id(X). {C = sqliteCollateType(X.z, X.n);}
|
|
+
|
|
+%type groupby_opt {ExprList*}
|
|
+%destructor groupby_opt {sqliteExprListDelete($$);}
|
|
+groupby_opt(A) ::= . {A = 0;}
|
|
+groupby_opt(A) ::= GROUP BY exprlist(X). {A = X;}
|
|
+
|
|
+%type having_opt {Expr*}
|
|
+%destructor having_opt {sqliteExprDelete($$);}
|
|
+having_opt(A) ::= . {A = 0;}
|
|
+having_opt(A) ::= HAVING expr(X). {A = X;}
|
|
+
|
|
+%type limit_opt {struct LimitVal}
|
|
+limit_opt(A) ::= . {A.limit = -1; A.offset = 0;}
|
|
+limit_opt(A) ::= LIMIT signed(X). {A.limit = X; A.offset = 0;}
|
|
+limit_opt(A) ::= LIMIT signed(X) OFFSET signed(Y).
|
|
+ {A.limit = X; A.offset = Y;}
|
|
+limit_opt(A) ::= LIMIT signed(X) COMMA signed(Y).
|
|
+ {A.limit = Y; A.offset = X;}
|
|
+
|
|
+/////////////////////////// The DELETE statement /////////////////////////////
|
|
+//
|
|
+cmd ::= DELETE FROM nm(X) dbnm(D) where_opt(Y). {
|
|
+ sqliteDeleteFrom(pParse, sqliteSrcListAppend(0,&X,&D), Y);
|
|
+}
|
|
+
|
|
+%type where_opt {Expr*}
|
|
+%destructor where_opt {sqliteExprDelete($$);}
|
|
+
|
|
+where_opt(A) ::= . {A = 0;}
|
|
+where_opt(A) ::= WHERE expr(X). {A = X;}
|
|
+
|
|
+%type setlist {ExprList*}
|
|
+%destructor setlist {sqliteExprListDelete($$);}
|
|
+
|
|
+////////////////////////// The UPDATE command ////////////////////////////////
|
|
+//
|
|
+cmd ::= UPDATE orconf(R) nm(X) dbnm(D) SET setlist(Y) where_opt(Z).
|
|
+ {sqliteUpdate(pParse,sqliteSrcListAppend(0,&X,&D),Y,Z,R);}
|
|
+
|
|
+setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y).
|
|
+ {A = sqliteExprListAppend(Z,Y,&X);}
|
|
+setlist(A) ::= nm(X) EQ expr(Y). {A = sqliteExprListAppend(0,Y,&X);}
|
|
+
|
|
+////////////////////////// The INSERT command /////////////////////////////////
|
|
+//
|
|
+cmd ::= insert_cmd(R) INTO nm(X) dbnm(D) inscollist_opt(F)
|
|
+ VALUES LP itemlist(Y) RP.
|
|
+ {sqliteInsert(pParse, sqliteSrcListAppend(0,&X,&D), Y, 0, F, R);}
|
|
+cmd ::= insert_cmd(R) INTO nm(X) dbnm(D) inscollist_opt(F) select(S).
|
|
+ {sqliteInsert(pParse, sqliteSrcListAppend(0,&X,&D), 0, S, F, R);}
|
|
+
|
|
+%type insert_cmd {int}
|
|
+insert_cmd(A) ::= INSERT orconf(R). {A = R;}
|
|
+insert_cmd(A) ::= REPLACE. {A = OE_Replace;}
|
|
+
|
|
+
|
|
+%type itemlist {ExprList*}
|
|
+%destructor itemlist {sqliteExprListDelete($$);}
|
|
+
|
|
+itemlist(A) ::= itemlist(X) COMMA expr(Y). {A = sqliteExprListAppend(X,Y,0);}
|
|
+itemlist(A) ::= expr(X). {A = sqliteExprListAppend(0,X,0);}
|
|
+
|
|
+%type inscollist_opt {IdList*}
|
|
+%destructor inscollist_opt {sqliteIdListDelete($$);}
|
|
+%type inscollist {IdList*}
|
|
+%destructor inscollist {sqliteIdListDelete($$);}
|
|
+
|
|
+inscollist_opt(A) ::= . {A = 0;}
|
|
+inscollist_opt(A) ::= LP inscollist(X) RP. {A = X;}
|
|
+inscollist(A) ::= inscollist(X) COMMA nm(Y). {A = sqliteIdListAppend(X,&Y);}
|
|
+inscollist(A) ::= nm(Y). {A = sqliteIdListAppend(0,&Y);}
|
|
+
|
|
+/////////////////////////// Expression Processing /////////////////////////////
|
|
+//
|
|
+
|
|
+%type expr {Expr*}
|
|
+%destructor expr {sqliteExprDelete($$);}
|
|
+
|
|
+expr(A) ::= LP(B) expr(X) RP(E). {A = X; sqliteExprSpan(A,&B,&E); }
|
|
+expr(A) ::= NULL(X). {A = sqliteExpr(TK_NULL, 0, 0, &X);}
|
|
+expr(A) ::= ID(X). {A = sqliteExpr(TK_ID, 0, 0, &X);}
|
|
+expr(A) ::= JOIN_KW(X). {A = sqliteExpr(TK_ID, 0, 0, &X);}
|
|
+expr(A) ::= nm(X) DOT nm(Y). {
|
|
+ Expr *temp1 = sqliteExpr(TK_ID, 0, 0, &X);
|
|
+ Expr *temp2 = sqliteExpr(TK_ID, 0, 0, &Y);
|
|
+ A = sqliteExpr(TK_DOT, temp1, temp2, 0);
|
|
+}
|
|
+expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). {
|
|
+ Expr *temp1 = sqliteExpr(TK_ID, 0, 0, &X);
|
|
+ Expr *temp2 = sqliteExpr(TK_ID, 0, 0, &Y);
|
|
+ Expr *temp3 = sqliteExpr(TK_ID, 0, 0, &Z);
|
|
+ Expr *temp4 = sqliteExpr(TK_DOT, temp2, temp3, 0);
|
|
+ A = sqliteExpr(TK_DOT, temp1, temp4, 0);
|
|
+}
|
|
+expr(A) ::= INTEGER(X). {A = sqliteExpr(TK_INTEGER, 0, 0, &X);}
|
|
+expr(A) ::= FLOAT(X). {A = sqliteExpr(TK_FLOAT, 0, 0, &X);}
|
|
+expr(A) ::= STRING(X). {A = sqliteExpr(TK_STRING, 0, 0, &X);}
|
|
+expr(A) ::= VARIABLE(X). {
|
|
+ A = sqliteExpr(TK_VARIABLE, 0, 0, &X);
|
|
+ if( A ) A->iTable = ++pParse->nVar;
|
|
+}
|
|
+expr(A) ::= ID(X) LP exprlist(Y) RP(E). {
|
|
+ A = sqliteExprFunction(Y, &X);
|
|
+ sqliteExprSpan(A,&X,&E);
|
|
+}
|
|
+expr(A) ::= ID(X) LP STAR RP(E). {
|
|
+ A = sqliteExprFunction(0, &X);
|
|
+ sqliteExprSpan(A,&X,&E);
|
|
+}
|
|
+expr(A) ::= expr(X) AND expr(Y). {A = sqliteExpr(TK_AND, X, Y, 0);}
|
|
+expr(A) ::= expr(X) OR expr(Y). {A = sqliteExpr(TK_OR, X, Y, 0);}
|
|
+expr(A) ::= expr(X) LT expr(Y). {A = sqliteExpr(TK_LT, X, Y, 0);}
|
|
+expr(A) ::= expr(X) GT expr(Y). {A = sqliteExpr(TK_GT, X, Y, 0);}
|
|
+expr(A) ::= expr(X) LE expr(Y). {A = sqliteExpr(TK_LE, X, Y, 0);}
|
|
+expr(A) ::= expr(X) GE expr(Y). {A = sqliteExpr(TK_GE, X, Y, 0);}
|
|
+expr(A) ::= expr(X) NE expr(Y). {A = sqliteExpr(TK_NE, X, Y, 0);}
|
|
+expr(A) ::= expr(X) EQ expr(Y). {A = sqliteExpr(TK_EQ, X, Y, 0);}
|
|
+expr(A) ::= expr(X) BITAND expr(Y). {A = sqliteExpr(TK_BITAND, X, Y, 0);}
|
|
+expr(A) ::= expr(X) BITOR expr(Y). {A = sqliteExpr(TK_BITOR, X, Y, 0);}
|
|
+expr(A) ::= expr(X) LSHIFT expr(Y). {A = sqliteExpr(TK_LSHIFT, X, Y, 0);}
|
|
+expr(A) ::= expr(X) RSHIFT expr(Y). {A = sqliteExpr(TK_RSHIFT, X, Y, 0);}
|
|
+expr(A) ::= expr(X) likeop(OP) expr(Y). [LIKE] {
|
|
+ ExprList *pList = sqliteExprListAppend(0, Y, 0);
|
|
+ pList = sqliteExprListAppend(pList, X, 0);
|
|
+ A = sqliteExprFunction(pList, 0);
|
|
+ if( A ) A->op = OP;
|
|
+ sqliteExprSpan(A, &X->span, &Y->span);
|
|
+}
|
|
+expr(A) ::= expr(X) NOT likeop(OP) expr(Y). [LIKE] {
|
|
+ ExprList *pList = sqliteExprListAppend(0, Y, 0);
|
|
+ pList = sqliteExprListAppend(pList, X, 0);
|
|
+ A = sqliteExprFunction(pList, 0);
|
|
+ if( A ) A->op = OP;
|
|
+ A = sqliteExpr(TK_NOT, A, 0, 0);
|
|
+ sqliteExprSpan(A,&X->span,&Y->span);
|
|
+}
|
|
+%type likeop {int}
|
|
+likeop(A) ::= LIKE. {A = TK_LIKE;}
|
|
+likeop(A) ::= GLOB. {A = TK_GLOB;}
|
|
+expr(A) ::= expr(X) PLUS expr(Y). {A = sqliteExpr(TK_PLUS, X, Y, 0);}
|
|
+expr(A) ::= expr(X) MINUS expr(Y). {A = sqliteExpr(TK_MINUS, X, Y, 0);}
|
|
+expr(A) ::= expr(X) STAR expr(Y). {A = sqliteExpr(TK_STAR, X, Y, 0);}
|
|
+expr(A) ::= expr(X) SLASH expr(Y). {A = sqliteExpr(TK_SLASH, X, Y, 0);}
|
|
+expr(A) ::= expr(X) REM expr(Y). {A = sqliteExpr(TK_REM, X, Y, 0);}
|
|
+expr(A) ::= expr(X) CONCAT expr(Y). {A = sqliteExpr(TK_CONCAT, X, Y, 0);}
|
|
+expr(A) ::= expr(X) ISNULL(E). {
|
|
+ A = sqliteExpr(TK_ISNULL, X, 0, 0);
|
|
+ sqliteExprSpan(A,&X->span,&E);
|
|
+}
|
|
+expr(A) ::= expr(X) IS NULL(E). {
|
|
+ A = sqliteExpr(TK_ISNULL, X, 0, 0);
|
|
+ sqliteExprSpan(A,&X->span,&E);
|
|
+}
|
|
+expr(A) ::= expr(X) NOTNULL(E). {
|
|
+ A = sqliteExpr(TK_NOTNULL, X, 0, 0);
|
|
+ sqliteExprSpan(A,&X->span,&E);
|
|
+}
|
|
+expr(A) ::= expr(X) NOT NULL(E). {
|
|
+ A = sqliteExpr(TK_NOTNULL, X, 0, 0);
|
|
+ sqliteExprSpan(A,&X->span,&E);
|
|
+}
|
|
+expr(A) ::= expr(X) IS NOT NULL(E). {
|
|
+ A = sqliteExpr(TK_NOTNULL, X, 0, 0);
|
|
+ sqliteExprSpan(A,&X->span,&E);
|
|
+}
|
|
+expr(A) ::= NOT(B) expr(X). {
|
|
+ A = sqliteExpr(TK_NOT, X, 0, 0);
|
|
+ sqliteExprSpan(A,&B,&X->span);
|
|
+}
|
|
+expr(A) ::= BITNOT(B) expr(X). {
|
|
+ A = sqliteExpr(TK_BITNOT, X, 0, 0);
|
|
+ sqliteExprSpan(A,&B,&X->span);
|
|
+}
|
|
+expr(A) ::= MINUS(B) expr(X). [UMINUS] {
|
|
+ A = sqliteExpr(TK_UMINUS, X, 0, 0);
|
|
+ sqliteExprSpan(A,&B,&X->span);
|
|
+}
|
|
+expr(A) ::= PLUS(B) expr(X). [UPLUS] {
|
|
+ A = sqliteExpr(TK_UPLUS, X, 0, 0);
|
|
+ sqliteExprSpan(A,&B,&X->span);
|
|
+}
|
|
+expr(A) ::= LP(B) select(X) RP(E). {
|
|
+ A = sqliteExpr(TK_SELECT, 0, 0, 0);
|
|
+ if( A ) A->pSelect = X;
|
|
+ sqliteExprSpan(A,&B,&E);
|
|
+}
|
|
+expr(A) ::= expr(W) BETWEEN expr(X) AND expr(Y). {
|
|
+ ExprList *pList = sqliteExprListAppend(0, X, 0);
|
|
+ pList = sqliteExprListAppend(pList, Y, 0);
|
|
+ A = sqliteExpr(TK_BETWEEN, W, 0, 0);
|
|
+ if( A ) A->pList = pList;
|
|
+ sqliteExprSpan(A,&W->span,&Y->span);
|
|
+}
|
|
+expr(A) ::= expr(W) NOT BETWEEN expr(X) AND expr(Y). {
|
|
+ ExprList *pList = sqliteExprListAppend(0, X, 0);
|
|
+ pList = sqliteExprListAppend(pList, Y, 0);
|
|
+ A = sqliteExpr(TK_BETWEEN, W, 0, 0);
|
|
+ if( A ) A->pList = pList;
|
|
+ A = sqliteExpr(TK_NOT, A, 0, 0);
|
|
+ sqliteExprSpan(A,&W->span,&Y->span);
|
|
+}
|
|
+expr(A) ::= expr(X) IN LP exprlist(Y) RP(E). {
|
|
+ A = sqliteExpr(TK_IN, X, 0, 0);
|
|
+ if( A ) A->pList = Y;
|
|
+ sqliteExprSpan(A,&X->span,&E);
|
|
+}
|
|
+expr(A) ::= expr(X) IN LP select(Y) RP(E). {
|
|
+ A = sqliteExpr(TK_IN, X, 0, 0);
|
|
+ if( A ) A->pSelect = Y;
|
|
+ sqliteExprSpan(A,&X->span,&E);
|
|
+}
|
|
+expr(A) ::= expr(X) NOT IN LP exprlist(Y) RP(E). {
|
|
+ A = sqliteExpr(TK_IN, X, 0, 0);
|
|
+ if( A ) A->pList = Y;
|
|
+ A = sqliteExpr(TK_NOT, A, 0, 0);
|
|
+ sqliteExprSpan(A,&X->span,&E);
|
|
+}
|
|
+expr(A) ::= expr(X) NOT IN LP select(Y) RP(E). {
|
|
+ A = sqliteExpr(TK_IN, X, 0, 0);
|
|
+ if( A ) A->pSelect = Y;
|
|
+ A = sqliteExpr(TK_NOT, A, 0, 0);
|
|
+ sqliteExprSpan(A,&X->span,&E);
|
|
+}
|
|
+expr(A) ::= expr(X) IN nm(Y) dbnm(D). {
|
|
+ SrcList *pSrc = sqliteSrcListAppend(0, &Y, &D);
|
|
+ A = sqliteExpr(TK_IN, X, 0, 0);
|
|
+ if( A ) A->pSelect = sqliteSelectNew(0,pSrc,0,0,0,0,0,-1,0);
|
|
+ sqliteExprSpan(A,&X->span,D.z?&D:&Y);
|
|
+}
|
|
+expr(A) ::= expr(X) NOT IN nm(Y) dbnm(D). {
|
|
+ SrcList *pSrc = sqliteSrcListAppend(0, &Y, &D);
|
|
+ A = sqliteExpr(TK_IN, X, 0, 0);
|
|
+ if( A ) A->pSelect = sqliteSelectNew(0,pSrc,0,0,0,0,0,-1,0);
|
|
+ A = sqliteExpr(TK_NOT, A, 0, 0);
|
|
+ sqliteExprSpan(A,&X->span,D.z?&D:&Y);
|
|
+}
|
|
+
|
|
+
|
|
+/* CASE expressions */
|
|
+expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). {
|
|
+ A = sqliteExpr(TK_CASE, X, Z, 0);
|
|
+ if( A ) A->pList = Y;
|
|
+ sqliteExprSpan(A, &C, &E);
|
|
+}
|
|
+%type case_exprlist {ExprList*}
|
|
+%destructor case_exprlist {sqliteExprListDelete($$);}
|
|
+case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). {
|
|
+ A = sqliteExprListAppend(X, Y, 0);
|
|
+ A = sqliteExprListAppend(A, Z, 0);
|
|
+}
|
|
+case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). {
|
|
+ A = sqliteExprListAppend(0, Y, 0);
|
|
+ A = sqliteExprListAppend(A, Z, 0);
|
|
+}
|
|
+%type case_else {Expr*}
|
|
+case_else(A) ::= ELSE expr(X). {A = X;}
|
|
+case_else(A) ::= . {A = 0;}
|
|
+%type case_operand {Expr*}
|
|
+case_operand(A) ::= expr(X). {A = X;}
|
|
+case_operand(A) ::= . {A = 0;}
|
|
+
|
|
+%type exprlist {ExprList*}
|
|
+%destructor exprlist {sqliteExprListDelete($$);}
|
|
+%type expritem {Expr*}
|
|
+%destructor expritem {sqliteExprDelete($$);}
|
|
+
|
|
+exprlist(A) ::= exprlist(X) COMMA expritem(Y).
|
|
+ {A = sqliteExprListAppend(X,Y,0);}
|
|
+exprlist(A) ::= expritem(X). {A = sqliteExprListAppend(0,X,0);}
|
|
+expritem(A) ::= expr(X). {A = X;}
|
|
+expritem(A) ::= . {A = 0;}
|
|
+
|
|
+///////////////////////////// The CREATE INDEX command ///////////////////////
|
|
+//
|
|
+cmd ::= CREATE(S) uniqueflag(U) INDEX nm(X)
|
|
+ ON nm(Y) dbnm(D) LP idxlist(Z) RP(E) onconf(R). {
|
|
+ SrcList *pSrc = sqliteSrcListAppend(0, &Y, &D);
|
|
+ if( U!=OE_None ) U = R;
|
|
+ if( U==OE_Default) U = OE_Abort;
|
|
+ sqliteCreateIndex(pParse, &X, pSrc, Z, U, &S, &E);
|
|
+}
|
|
+
|
|
+%type uniqueflag {int}
|
|
+uniqueflag(A) ::= UNIQUE. { A = OE_Abort; }
|
|
+uniqueflag(A) ::= . { A = OE_None; }
|
|
+
|
|
+%type idxlist {IdList*}
|
|
+%destructor idxlist {sqliteIdListDelete($$);}
|
|
+%type idxlist_opt {IdList*}
|
|
+%destructor idxlist_opt {sqliteIdListDelete($$);}
|
|
+%type idxitem {Token}
|
|
+
|
|
+idxlist_opt(A) ::= . {A = 0;}
|
|
+idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;}
|
|
+idxlist(A) ::= idxlist(X) COMMA idxitem(Y). {A = sqliteIdListAppend(X,&Y);}
|
|
+idxlist(A) ::= idxitem(Y). {A = sqliteIdListAppend(0,&Y);}
|
|
+idxitem(A) ::= nm(X) sortorder. {A = X;}
|
|
+
|
|
+///////////////////////////// The DROP INDEX command /////////////////////////
|
|
+//
|
|
+
|
|
+cmd ::= DROP INDEX nm(X) dbnm(Y). {
|
|
+ sqliteDropIndex(pParse, sqliteSrcListAppend(0,&X,&Y));
|
|
+}
|
|
+
|
|
+
|
|
+///////////////////////////// The COPY command ///////////////////////////////
|
|
+//
|
|
+cmd ::= COPY orconf(R) nm(X) dbnm(D) FROM nm(Y) USING DELIMITERS STRING(Z).
|
|
+ {sqliteCopy(pParse,sqliteSrcListAppend(0,&X,&D),&Y,&Z,R);}
|
|
+cmd ::= COPY orconf(R) nm(X) dbnm(D) FROM nm(Y).
|
|
+ {sqliteCopy(pParse,sqliteSrcListAppend(0,&X,&D),&Y,0,R);}
|
|
+
|
|
+///////////////////////////// The VACUUM command /////////////////////////////
|
|
+//
|
|
+cmd ::= VACUUM. {sqliteVacuum(pParse,0);}
|
|
+cmd ::= VACUUM nm(X). {sqliteVacuum(pParse,&X);}
|
|
+
|
|
+///////////////////////////// The PRAGMA command /////////////////////////////
|
|
+//
|
|
+cmd ::= PRAGMA ids(X) EQ nm(Y). {sqlitePragma(pParse,&X,&Y,0);}
|
|
+cmd ::= PRAGMA ids(X) EQ ON(Y). {sqlitePragma(pParse,&X,&Y,0);}
|
|
+cmd ::= PRAGMA ids(X) EQ plus_num(Y). {sqlitePragma(pParse,&X,&Y,0);}
|
|
+cmd ::= PRAGMA ids(X) EQ minus_num(Y). {sqlitePragma(pParse,&X,&Y,1);}
|
|
+cmd ::= PRAGMA ids(X) LP nm(Y) RP. {sqlitePragma(pParse,&X,&Y,0);}
|
|
+cmd ::= PRAGMA ids(X). {sqlitePragma(pParse,&X,&X,0);}
|
|
+plus_num(A) ::= plus_opt number(X). {A = X;}
|
|
+minus_num(A) ::= MINUS number(X). {A = X;}
|
|
+number(A) ::= INTEGER(X). {A = X;}
|
|
+number(A) ::= FLOAT(X). {A = X;}
|
|
+plus_opt ::= PLUS.
|
|
+plus_opt ::= .
|
|
+
|
|
+//////////////////////////// The CREATE TRIGGER command /////////////////////
|
|
+
|
|
+cmd ::= CREATE(A) trigger_decl BEGIN trigger_cmd_list(S) END(Z). {
|
|
+ Token all;
|
|
+ all.z = A.z;
|
|
+ all.n = (Z.z - A.z) + Z.n;
|
|
+ sqliteFinishTrigger(pParse, S, &all);
|
|
+}
|
|
+
|
|
+trigger_decl ::= temp(T) TRIGGER nm(B) trigger_time(C) trigger_event(D)
|
|
+ ON nm(E) dbnm(DB) foreach_clause(F) when_clause(G). {
|
|
+ SrcList *pTab = sqliteSrcListAppend(0, &E, &DB);
|
|
+ sqliteBeginTrigger(pParse, &B, C, D.a, D.b, pTab, F, G, T);
|
|
+}
|
|
+
|
|
+%type trigger_time {int}
|
|
+trigger_time(A) ::= BEFORE. { A = TK_BEFORE; }
|
|
+trigger_time(A) ::= AFTER. { A = TK_AFTER; }
|
|
+trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;}
|
|
+trigger_time(A) ::= . { A = TK_BEFORE; }
|
|
+
|
|
+%type trigger_event {struct TrigEvent}
|
|
+%destructor trigger_event {sqliteIdListDelete($$.b);}
|
|
+trigger_event(A) ::= DELETE. { A.a = TK_DELETE; A.b = 0; }
|
|
+trigger_event(A) ::= INSERT. { A.a = TK_INSERT; A.b = 0; }
|
|
+trigger_event(A) ::= UPDATE. { A.a = TK_UPDATE; A.b = 0;}
|
|
+trigger_event(A) ::= UPDATE OF inscollist(X). {A.a = TK_UPDATE; A.b = X; }
|
|
+
|
|
+%type foreach_clause {int}
|
|
+foreach_clause(A) ::= . { A = TK_ROW; }
|
|
+foreach_clause(A) ::= FOR EACH ROW. { A = TK_ROW; }
|
|
+foreach_clause(A) ::= FOR EACH STATEMENT. { A = TK_STATEMENT; }
|
|
+
|
|
+%type when_clause {Expr *}
|
|
+when_clause(A) ::= . { A = 0; }
|
|
+when_clause(A) ::= WHEN expr(X). { A = X; }
|
|
+
|
|
+%type trigger_cmd_list {TriggerStep *}
|
|
+%destructor trigger_cmd_list {sqliteDeleteTriggerStep($$);}
|
|
+trigger_cmd_list(A) ::= trigger_cmd(X) SEMI trigger_cmd_list(Y). {
|
|
+ X->pNext = Y;
|
|
+ A = X;
|
|
+}
|
|
+trigger_cmd_list(A) ::= . { A = 0; }
|
|
+
|
|
+%type trigger_cmd {TriggerStep *}
|
|
+%destructor trigger_cmd {sqliteDeleteTriggerStep($$);}
|
|
+// UPDATE
|
|
+trigger_cmd(A) ::= UPDATE orconf(R) nm(X) SET setlist(Y) where_opt(Z).
|
|
+ { A = sqliteTriggerUpdateStep(&X, Y, Z, R); }
|
|
+
|
|
+// INSERT
|
|
+trigger_cmd(A) ::= insert_cmd(R) INTO nm(X) inscollist_opt(F)
|
|
+ VALUES LP itemlist(Y) RP.
|
|
+{A = sqliteTriggerInsertStep(&X, F, Y, 0, R);}
|
|
+
|
|
+trigger_cmd(A) ::= insert_cmd(R) INTO nm(X) inscollist_opt(F) select(S).
|
|
+ {A = sqliteTriggerInsertStep(&X, F, 0, S, R);}
|
|
+
|
|
+// DELETE
|
|
+trigger_cmd(A) ::= DELETE FROM nm(X) where_opt(Y).
|
|
+ {A = sqliteTriggerDeleteStep(&X, Y);}
|
|
+
|
|
+// SELECT
|
|
+trigger_cmd(A) ::= select(X). {A = sqliteTriggerSelectStep(X); }
|
|
+
|
|
+// The special RAISE expression that may occur in trigger programs
|
|
+expr(A) ::= RAISE(X) LP IGNORE RP(Y). {
|
|
+ A = sqliteExpr(TK_RAISE, 0, 0, 0);
|
|
+ A->iColumn = OE_Ignore;
|
|
+ sqliteExprSpan(A, &X, &Y);
|
|
+}
|
|
+expr(A) ::= RAISE(X) LP ROLLBACK COMMA nm(Z) RP(Y). {
|
|
+ A = sqliteExpr(TK_RAISE, 0, 0, &Z);
|
|
+ A->iColumn = OE_Rollback;
|
|
+ sqliteExprSpan(A, &X, &Y);
|
|
+}
|
|
+expr(A) ::= RAISE(X) LP ABORT COMMA nm(Z) RP(Y). {
|
|
+ A = sqliteExpr(TK_RAISE, 0, 0, &Z);
|
|
+ A->iColumn = OE_Abort;
|
|
+ sqliteExprSpan(A, &X, &Y);
|
|
+}
|
|
+expr(A) ::= RAISE(X) LP FAIL COMMA nm(Z) RP(Y). {
|
|
+ A = sqliteExpr(TK_RAISE, 0, 0, &Z);
|
|
+ A->iColumn = OE_Fail;
|
|
+ sqliteExprSpan(A, &X, &Y);
|
|
+}
|
|
+
|
|
+//////////////////////// DROP TRIGGER statement //////////////////////////////
|
|
+cmd ::= DROP TRIGGER nm(X) dbnm(D). {
|
|
+ sqliteDropTrigger(pParse,sqliteSrcListAppend(0,&X,&D));
|
|
+}
|
|
+
|
|
+//////////////////////// ATTACH DATABASE file AS name /////////////////////////
|
|
+cmd ::= ATTACH database_kw_opt ids(F) AS nm(D) key_opt(K). {
|
|
+ sqliteAttach(pParse, &F, &D, &K);
|
|
+}
|
|
+%type key_opt {Token}
|
|
+key_opt(A) ::= USING ids(X). { A = X; }
|
|
+key_opt(A) ::= . { A.z = 0; A.n = 0; }
|
|
+
|
|
+database_kw_opt ::= DATABASE.
|
|
+database_kw_opt ::= .
|
|
+
|
|
+//////////////////////// DETACH DATABASE name /////////////////////////////////
|
|
+cmd ::= DETACH database_kw_opt nm(D). {
|
|
+ sqliteDetach(pParse, &D);
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/pragma.c
|
|
@@ -0,0 +1,712 @@
|
|
+/*
|
|
+** 2003 April 6
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This file contains code used to implement the PRAGMA command.
|
|
+**
|
|
+** $Id$
|
|
+*/
|
|
+#include "sqliteInt.h"
|
|
+#include <ctype.h>
|
|
+
|
|
+/*
|
|
+** Interpret the given string as a boolean value.
|
|
+*/
|
|
+static int getBoolean(const char *z){
|
|
+ static char *azTrue[] = { "yes", "on", "true" };
|
|
+ int i;
|
|
+ if( z[0]==0 ) return 0;
|
|
+ if( isdigit(z[0]) || (z[0]=='-' && isdigit(z[1])) ){
|
|
+ return atoi(z);
|
|
+ }
|
|
+ for(i=0; i<sizeof(azTrue)/sizeof(azTrue[0]); i++){
|
|
+ if( sqliteStrICmp(z,azTrue[i])==0 ) return 1;
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Interpret the given string as a safety level. Return 0 for OFF,
|
|
+** 1 for ON or NORMAL and 2 for FULL. Return 1 for an empty or
|
|
+** unrecognized string argument.
|
|
+**
|
|
+** Note that the values returned are one less that the values that
|
|
+** should be passed into sqliteBtreeSetSafetyLevel(). The is done
|
|
+** to support legacy SQL code. The safety level used to be boolean
|
|
+** and older scripts may have used numbers 0 for OFF and 1 for ON.
|
|
+*/
|
|
+static int getSafetyLevel(char *z){
|
|
+ static const struct {
|
|
+ const char *zWord;
|
|
+ int val;
|
|
+ } aKey[] = {
|
|
+ { "no", 0 },
|
|
+ { "off", 0 },
|
|
+ { "false", 0 },
|
|
+ { "yes", 1 },
|
|
+ { "on", 1 },
|
|
+ { "true", 1 },
|
|
+ { "full", 2 },
|
|
+ };
|
|
+ int i;
|
|
+ if( z[0]==0 ) return 1;
|
|
+ if( isdigit(z[0]) || (z[0]=='-' && isdigit(z[1])) ){
|
|
+ return atoi(z);
|
|
+ }
|
|
+ for(i=0; i<sizeof(aKey)/sizeof(aKey[0]); i++){
|
|
+ if( sqliteStrICmp(z,aKey[i].zWord)==0 ) return aKey[i].val;
|
|
+ }
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Interpret the given string as a temp db location. Return 1 for file
|
|
+** backed temporary databases, 2 for the Red-Black tree in memory database
|
|
+** and 0 to use the compile-time default.
|
|
+*/
|
|
+static int getTempStore(const char *z){
|
|
+ if( z[0]>='0' && z[0]<='2' ){
|
|
+ return z[0] - '0';
|
|
+ }else if( sqliteStrICmp(z, "file")==0 ){
|
|
+ return 1;
|
|
+ }else if( sqliteStrICmp(z, "memory")==0 ){
|
|
+ return 2;
|
|
+ }else{
|
|
+ return 0;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** If the TEMP database is open, close it and mark the database schema
|
|
+** as needing reloading. This must be done when using the TEMP_STORE
|
|
+** or DEFAULT_TEMP_STORE pragmas.
|
|
+*/
|
|
+static int changeTempStorage(Parse *pParse, const char *zStorageType){
|
|
+ int ts = getTempStore(zStorageType);
|
|
+ sqlite *db = pParse->db;
|
|
+ if( db->temp_store==ts ) return SQLITE_OK;
|
|
+ if( db->aDb[1].pBt!=0 ){
|
|
+ if( db->flags & SQLITE_InTrans ){
|
|
+ sqliteErrorMsg(pParse, "temporary storage cannot be changed "
|
|
+ "from within a transaction");
|
|
+ return SQLITE_ERROR;
|
|
+ }
|
|
+ sqliteBtreeClose(db->aDb[1].pBt);
|
|
+ db->aDb[1].pBt = 0;
|
|
+ sqliteResetInternalSchema(db, 0);
|
|
+ }
|
|
+ db->temp_store = ts;
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Check to see if zRight and zLeft refer to a pragma that queries
|
|
+** or changes one of the flags in db->flags. Return 1 if so and 0 if not.
|
|
+** Also, implement the pragma.
|
|
+*/
|
|
+static int flagPragma(Parse *pParse, const char *zLeft, const char *zRight){
|
|
+ static const struct {
|
|
+ const char *zName; /* Name of the pragma */
|
|
+ int mask; /* Mask for the db->flags value */
|
|
+ } aPragma[] = {
|
|
+ { "vdbe_trace", SQLITE_VdbeTrace },
|
|
+ { "full_column_names", SQLITE_FullColNames },
|
|
+ { "short_column_names", SQLITE_ShortColNames },
|
|
+ { "show_datatypes", SQLITE_ReportTypes },
|
|
+ { "count_changes", SQLITE_CountRows },
|
|
+ { "empty_result_callbacks", SQLITE_NullCallback },
|
|
+ };
|
|
+ int i;
|
|
+ for(i=0; i<sizeof(aPragma)/sizeof(aPragma[0]); i++){
|
|
+ if( sqliteStrICmp(zLeft, aPragma[i].zName)==0 ){
|
|
+ sqlite *db = pParse->db;
|
|
+ Vdbe *v;
|
|
+ if( strcmp(zLeft,zRight)==0 && (v = sqliteGetVdbe(pParse))!=0 ){
|
|
+ sqliteVdbeOp3(v, OP_ColumnName, 0, 1, aPragma[i].zName, P3_STATIC);
|
|
+ sqliteVdbeOp3(v, OP_ColumnName, 1, 0, "boolean", P3_STATIC);
|
|
+ sqliteVdbeCode(v, OP_Integer, (db->flags & aPragma[i].mask)!=0, 0,
|
|
+ OP_Callback, 1, 0,
|
|
+ 0);
|
|
+ }else if( getBoolean(zRight) ){
|
|
+ db->flags |= aPragma[i].mask;
|
|
+ }else{
|
|
+ db->flags &= ~aPragma[i].mask;
|
|
+ }
|
|
+ return 1;
|
|
+ }
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Process a pragma statement.
|
|
+**
|
|
+** Pragmas are of this form:
|
|
+**
|
|
+** PRAGMA id = value
|
|
+**
|
|
+** The identifier might also be a string. The value is a string, and
|
|
+** identifier, or a number. If minusFlag is true, then the value is
|
|
+** a number that was preceded by a minus sign.
|
|
+*/
|
|
+void sqlitePragma(Parse *pParse, Token *pLeft, Token *pRight, int minusFlag){
|
|
+ char *zLeft = 0;
|
|
+ char *zRight = 0;
|
|
+ sqlite *db = pParse->db;
|
|
+ Vdbe *v = sqliteGetVdbe(pParse);
|
|
+ if( v==0 ) return;
|
|
+
|
|
+ zLeft = sqliteStrNDup(pLeft->z, pLeft->n);
|
|
+ sqliteDequote(zLeft);
|
|
+ if( minusFlag ){
|
|
+ zRight = 0;
|
|
+ sqliteSetNString(&zRight, "-", 1, pRight->z, pRight->n, 0);
|
|
+ }else{
|
|
+ zRight = sqliteStrNDup(pRight->z, pRight->n);
|
|
+ sqliteDequote(zRight);
|
|
+ }
|
|
+ if( sqliteAuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, 0) ){
|
|
+ sqliteFree(zLeft);
|
|
+ sqliteFree(zRight);
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ ** PRAGMA default_cache_size
|
|
+ ** PRAGMA default_cache_size=N
|
|
+ **
|
|
+ ** The first form reports the current persistent setting for the
|
|
+ ** page cache size. The value returned is the maximum number of
|
|
+ ** pages in the page cache. The second form sets both the current
|
|
+ ** page cache size value and the persistent page cache size value
|
|
+ ** stored in the database file.
|
|
+ **
|
|
+ ** The default cache size is stored in meta-value 2 of page 1 of the
|
|
+ ** database file. The cache size is actually the absolute value of
|
|
+ ** this memory location. The sign of meta-value 2 determines the
|
|
+ ** synchronous setting. A negative value means synchronous is off
|
|
+ ** and a positive value means synchronous is on.
|
|
+ */
|
|
+ if( sqliteStrICmp(zLeft,"default_cache_size")==0 ){
|
|
+ static VdbeOpList getCacheSize[] = {
|
|
+ { OP_ReadCookie, 0, 2, 0},
|
|
+ { OP_AbsValue, 0, 0, 0},
|
|
+ { OP_Dup, 0, 0, 0},
|
|
+ { OP_Integer, 0, 0, 0},
|
|
+ { OP_Ne, 0, 6, 0},
|
|
+ { OP_Integer, 0, 0, 0}, /* 5 */
|
|
+ { OP_ColumnName, 0, 1, "cache_size"},
|
|
+ { OP_Callback, 1, 0, 0},
|
|
+ };
|
|
+ int addr;
|
|
+ if( pRight->z==pLeft->z ){
|
|
+ addr = sqliteVdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
|
|
+ sqliteVdbeChangeP1(v, addr+5, MAX_PAGES);
|
|
+ }else{
|
|
+ int size = atoi(zRight);
|
|
+ if( size<0 ) size = -size;
|
|
+ sqliteBeginWriteOperation(pParse, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Integer, size, 0);
|
|
+ sqliteVdbeAddOp(v, OP_ReadCookie, 0, 2);
|
|
+ addr = sqliteVdbeAddOp(v, OP_Integer, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Ge, 0, addr+3);
|
|
+ sqliteVdbeAddOp(v, OP_Negative, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_SetCookie, 0, 2);
|
|
+ sqliteEndWriteOperation(pParse);
|
|
+ db->cache_size = db->cache_size<0 ? -size : size;
|
|
+ sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size);
|
|
+ }
|
|
+ }else
|
|
+
|
|
+ /*
|
|
+ ** PRAGMA cache_size
|
|
+ ** PRAGMA cache_size=N
|
|
+ **
|
|
+ ** The first form reports the current local setting for the
|
|
+ ** page cache size. The local setting can be different from
|
|
+ ** the persistent cache size value that is stored in the database
|
|
+ ** file itself. The value returned is the maximum number of
|
|
+ ** pages in the page cache. The second form sets the local
|
|
+ ** page cache size value. It does not change the persistent
|
|
+ ** cache size stored on the disk so the cache size will revert
|
|
+ ** to its default value when the database is closed and reopened.
|
|
+ ** N should be a positive integer.
|
|
+ */
|
|
+ if( sqliteStrICmp(zLeft,"cache_size")==0 ){
|
|
+ static VdbeOpList getCacheSize[] = {
|
|
+ { OP_ColumnName, 0, 1, "cache_size"},
|
|
+ { OP_Callback, 1, 0, 0},
|
|
+ };
|
|
+ if( pRight->z==pLeft->z ){
|
|
+ int size = db->cache_size;;
|
|
+ if( size<0 ) size = -size;
|
|
+ sqliteVdbeAddOp(v, OP_Integer, size, 0);
|
|
+ sqliteVdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
|
|
+ }else{
|
|
+ int size = atoi(zRight);
|
|
+ if( size<0 ) size = -size;
|
|
+ if( db->cache_size<0 ) size = -size;
|
|
+ db->cache_size = size;
|
|
+ sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size);
|
|
+ }
|
|
+ }else
|
|
+
|
|
+ /*
|
|
+ ** PRAGMA default_synchronous
|
|
+ ** PRAGMA default_synchronous=ON|OFF|NORMAL|FULL
|
|
+ **
|
|
+ ** The first form returns the persistent value of the "synchronous" setting
|
|
+ ** that is stored in the database. This is the synchronous setting that
|
|
+ ** is used whenever the database is opened unless overridden by a separate
|
|
+ ** "synchronous" pragma. The second form changes the persistent and the
|
|
+ ** local synchronous setting to the value given.
|
|
+ **
|
|
+ ** If synchronous is OFF, SQLite does not attempt any fsync() systems calls
|
|
+ ** to make sure data is committed to disk. Write operations are very fast,
|
|
+ ** but a power failure can leave the database in an inconsistent state.
|
|
+ ** If synchronous is ON or NORMAL, SQLite will do an fsync() system call to
|
|
+ ** make sure data is being written to disk. The risk of corruption due to
|
|
+ ** a power loss in this mode is negligible but non-zero. If synchronous
|
|
+ ** is FULL, extra fsync()s occur to reduce the risk of corruption to near
|
|
+ ** zero, but with a write performance penalty. The default mode is NORMAL.
|
|
+ */
|
|
+ if( sqliteStrICmp(zLeft,"default_synchronous")==0 ){
|
|
+ static VdbeOpList getSync[] = {
|
|
+ { OP_ColumnName, 0, 1, "synchronous"},
|
|
+ { OP_ReadCookie, 0, 3, 0},
|
|
+ { OP_Dup, 0, 0, 0},
|
|
+ { OP_If, 0, 0, 0}, /* 3 */
|
|
+ { OP_ReadCookie, 0, 2, 0},
|
|
+ { OP_Integer, 0, 0, 0},
|
|
+ { OP_Lt, 0, 5, 0},
|
|
+ { OP_AddImm, 1, 0, 0},
|
|
+ { OP_Callback, 1, 0, 0},
|
|
+ { OP_Halt, 0, 0, 0},
|
|
+ { OP_AddImm, -1, 0, 0}, /* 10 */
|
|
+ { OP_Callback, 1, 0, 0}
|
|
+ };
|
|
+ if( pRight->z==pLeft->z ){
|
|
+ int addr = sqliteVdbeAddOpList(v, ArraySize(getSync), getSync);
|
|
+ sqliteVdbeChangeP2(v, addr+3, addr+10);
|
|
+ }else{
|
|
+ int addr;
|
|
+ int size = db->cache_size;
|
|
+ if( size<0 ) size = -size;
|
|
+ sqliteBeginWriteOperation(pParse, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_ReadCookie, 0, 2);
|
|
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
|
+ addr = sqliteVdbeAddOp(v, OP_Integer, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Ne, 0, addr+3);
|
|
+ sqliteVdbeAddOp(v, OP_AddImm, MAX_PAGES, 0);
|
|
+ sqliteVdbeAddOp(v, OP_AbsValue, 0, 0);
|
|
+ db->safety_level = getSafetyLevel(zRight)+1;
|
|
+ if( db->safety_level==1 ){
|
|
+ sqliteVdbeAddOp(v, OP_Negative, 0, 0);
|
|
+ size = -size;
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_SetCookie, 0, 2);
|
|
+ sqliteVdbeAddOp(v, OP_Integer, db->safety_level, 0);
|
|
+ sqliteVdbeAddOp(v, OP_SetCookie, 0, 3);
|
|
+ sqliteEndWriteOperation(pParse);
|
|
+ db->cache_size = size;
|
|
+ sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size);
|
|
+ sqliteBtreeSetSafetyLevel(db->aDb[0].pBt, db->safety_level);
|
|
+ }
|
|
+ }else
|
|
+
|
|
+ /*
|
|
+ ** PRAGMA synchronous
|
|
+ ** PRAGMA synchronous=OFF|ON|NORMAL|FULL
|
|
+ **
|
|
+ ** Return or set the local value of the synchronous flag. Changing
|
|
+ ** the local value does not make changes to the disk file and the
|
|
+ ** default value will be restored the next time the database is
|
|
+ ** opened.
|
|
+ */
|
|
+ if( sqliteStrICmp(zLeft,"synchronous")==0 ){
|
|
+ static VdbeOpList getSync[] = {
|
|
+ { OP_ColumnName, 0, 1, "synchronous"},
|
|
+ { OP_Callback, 1, 0, 0},
|
|
+ };
|
|
+ if( pRight->z==pLeft->z ){
|
|
+ sqliteVdbeAddOp(v, OP_Integer, db->safety_level-1, 0);
|
|
+ sqliteVdbeAddOpList(v, ArraySize(getSync), getSync);
|
|
+ }else{
|
|
+ int size = db->cache_size;
|
|
+ if( size<0 ) size = -size;
|
|
+ db->safety_level = getSafetyLevel(zRight)+1;
|
|
+ if( db->safety_level==1 ) size = -size;
|
|
+ db->cache_size = size;
|
|
+ sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size);
|
|
+ sqliteBtreeSetSafetyLevel(db->aDb[0].pBt, db->safety_level);
|
|
+ }
|
|
+ }else
|
|
+
|
|
+#ifndef NDEBUG
|
|
+ if( sqliteStrICmp(zLeft, "trigger_overhead_test")==0 ){
|
|
+ if( getBoolean(zRight) ){
|
|
+ always_code_trigger_setup = 1;
|
|
+ }else{
|
|
+ always_code_trigger_setup = 0;
|
|
+ }
|
|
+ }else
|
|
+#endif
|
|
+
|
|
+ if( flagPragma(pParse, zLeft, zRight) ){
|
|
+ /* The flagPragma() call also generates any necessary code */
|
|
+ }else
|
|
+
|
|
+ if( sqliteStrICmp(zLeft, "table_info")==0 ){
|
|
+ Table *pTab;
|
|
+ pTab = sqliteFindTable(db, zRight, 0);
|
|
+ if( pTab ){
|
|
+ static VdbeOpList tableInfoPreface[] = {
|
|
+ { OP_ColumnName, 0, 0, "cid"},
|
|
+ { OP_ColumnName, 1, 0, "name"},
|
|
+ { OP_ColumnName, 2, 0, "type"},
|
|
+ { OP_ColumnName, 3, 0, "notnull"},
|
|
+ { OP_ColumnName, 4, 0, "dflt_value"},
|
|
+ { OP_ColumnName, 5, 1, "pk"},
|
|
+ };
|
|
+ int i;
|
|
+ sqliteVdbeAddOpList(v, ArraySize(tableInfoPreface), tableInfoPreface);
|
|
+ sqliteViewGetColumnNames(pParse, pTab);
|
|
+ for(i=0; i<pTab->nCol; i++){
|
|
+ sqliteVdbeAddOp(v, OP_Integer, i, 0);
|
|
+ sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zName, 0);
|
|
+ sqliteVdbeOp3(v, OP_String, 0, 0,
|
|
+ pTab->aCol[i].zType ? pTab->aCol[i].zType : "numeric", 0);
|
|
+ sqliteVdbeAddOp(v, OP_Integer, pTab->aCol[i].notNull, 0);
|
|
+ sqliteVdbeOp3(v, OP_String, 0, 0,
|
|
+ pTab->aCol[i].zDflt, P3_STATIC);
|
|
+ sqliteVdbeAddOp(v, OP_Integer, pTab->aCol[i].isPrimKey, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Callback, 6, 0);
|
|
+ }
|
|
+ }
|
|
+ }else
|
|
+
|
|
+ if( sqliteStrICmp(zLeft, "index_info")==0 ){
|
|
+ Index *pIdx;
|
|
+ Table *pTab;
|
|
+ pIdx = sqliteFindIndex(db, zRight, 0);
|
|
+ if( pIdx ){
|
|
+ static VdbeOpList tableInfoPreface[] = {
|
|
+ { OP_ColumnName, 0, 0, "seqno"},
|
|
+ { OP_ColumnName, 1, 0, "cid"},
|
|
+ { OP_ColumnName, 2, 1, "name"},
|
|
+ };
|
|
+ int i;
|
|
+ pTab = pIdx->pTable;
|
|
+ sqliteVdbeAddOpList(v, ArraySize(tableInfoPreface), tableInfoPreface);
|
|
+ for(i=0; i<pIdx->nColumn; i++){
|
|
+ int cnum = pIdx->aiColumn[i];
|
|
+ sqliteVdbeAddOp(v, OP_Integer, i, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Integer, cnum, 0);
|
|
+ assert( pTab->nCol>cnum );
|
|
+ sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[cnum].zName, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Callback, 3, 0);
|
|
+ }
|
|
+ }
|
|
+ }else
|
|
+
|
|
+ if( sqliteStrICmp(zLeft, "index_list")==0 ){
|
|
+ Index *pIdx;
|
|
+ Table *pTab;
|
|
+ pTab = sqliteFindTable(db, zRight, 0);
|
|
+ if( pTab ){
|
|
+ v = sqliteGetVdbe(pParse);
|
|
+ pIdx = pTab->pIndex;
|
|
+ }
|
|
+ if( pTab && pIdx ){
|
|
+ int i = 0;
|
|
+ static VdbeOpList indexListPreface[] = {
|
|
+ { OP_ColumnName, 0, 0, "seq"},
|
|
+ { OP_ColumnName, 1, 0, "name"},
|
|
+ { OP_ColumnName, 2, 1, "unique"},
|
|
+ };
|
|
+
|
|
+ sqliteVdbeAddOpList(v, ArraySize(indexListPreface), indexListPreface);
|
|
+ while(pIdx){
|
|
+ sqliteVdbeAddOp(v, OP_Integer, i, 0);
|
|
+ sqliteVdbeOp3(v, OP_String, 0, 0, pIdx->zName, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Integer, pIdx->onError!=OE_None, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Callback, 3, 0);
|
|
+ ++i;
|
|
+ pIdx = pIdx->pNext;
|
|
+ }
|
|
+ }
|
|
+ }else
|
|
+
|
|
+ if( sqliteStrICmp(zLeft, "foreign_key_list")==0 ){
|
|
+ FKey *pFK;
|
|
+ Table *pTab;
|
|
+ pTab = sqliteFindTable(db, zRight, 0);
|
|
+ if( pTab ){
|
|
+ v = sqliteGetVdbe(pParse);
|
|
+ pFK = pTab->pFKey;
|
|
+ }
|
|
+ if( pTab && pFK ){
|
|
+ int i = 0;
|
|
+ static VdbeOpList indexListPreface[] = {
|
|
+ { OP_ColumnName, 0, 0, "id"},
|
|
+ { OP_ColumnName, 1, 0, "seq"},
|
|
+ { OP_ColumnName, 2, 0, "table"},
|
|
+ { OP_ColumnName, 3, 0, "from"},
|
|
+ { OP_ColumnName, 4, 1, "to"},
|
|
+ };
|
|
+
|
|
+ sqliteVdbeAddOpList(v, ArraySize(indexListPreface), indexListPreface);
|
|
+ while(pFK){
|
|
+ int j;
|
|
+ for(j=0; j<pFK->nCol; j++){
|
|
+ sqliteVdbeAddOp(v, OP_Integer, i, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Integer, j, 0);
|
|
+ sqliteVdbeOp3(v, OP_String, 0, 0, pFK->zTo, 0);
|
|
+ sqliteVdbeOp3(v, OP_String, 0, 0,
|
|
+ pTab->aCol[pFK->aCol[j].iFrom].zName, 0);
|
|
+ sqliteVdbeOp3(v, OP_String, 0, 0, pFK->aCol[j].zCol, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Callback, 5, 0);
|
|
+ }
|
|
+ ++i;
|
|
+ pFK = pFK->pNextFrom;
|
|
+ }
|
|
+ }
|
|
+ }else
|
|
+
|
|
+ if( sqliteStrICmp(zLeft, "database_list")==0 ){
|
|
+ int i;
|
|
+ static VdbeOpList indexListPreface[] = {
|
|
+ { OP_ColumnName, 0, 0, "seq"},
|
|
+ { OP_ColumnName, 1, 0, "name"},
|
|
+ { OP_ColumnName, 2, 1, "file"},
|
|
+ };
|
|
+
|
|
+ sqliteVdbeAddOpList(v, ArraySize(indexListPreface), indexListPreface);
|
|
+ for(i=0; i<db->nDb; i++){
|
|
+ if( db->aDb[i].pBt==0 ) continue;
|
|
+ assert( db->aDb[i].zName!=0 );
|
|
+ sqliteVdbeAddOp(v, OP_Integer, i, 0);
|
|
+ sqliteVdbeOp3(v, OP_String, 0, 0, db->aDb[i].zName, 0);
|
|
+ sqliteVdbeOp3(v, OP_String, 0, 0,
|
|
+ sqliteBtreeGetFilename(db->aDb[i].pBt), 0);
|
|
+ sqliteVdbeAddOp(v, OP_Callback, 3, 0);
|
|
+ }
|
|
+ }else
|
|
+
|
|
+
|
|
+ /*
|
|
+ ** PRAGMA temp_store
|
|
+ ** PRAGMA temp_store = "default"|"memory"|"file"
|
|
+ **
|
|
+ ** Return or set the local value of the temp_store flag. Changing
|
|
+ ** the local value does not make changes to the disk file and the default
|
|
+ ** value will be restored the next time the database is opened.
|
|
+ **
|
|
+ ** Note that it is possible for the library compile-time options to
|
|
+ ** override this setting
|
|
+ */
|
|
+ if( sqliteStrICmp(zLeft, "temp_store")==0 ){
|
|
+ static VdbeOpList getTmpDbLoc[] = {
|
|
+ { OP_ColumnName, 0, 1, "temp_store"},
|
|
+ { OP_Callback, 1, 0, 0},
|
|
+ };
|
|
+ if( pRight->z==pLeft->z ){
|
|
+ sqliteVdbeAddOp(v, OP_Integer, db->temp_store, 0);
|
|
+ sqliteVdbeAddOpList(v, ArraySize(getTmpDbLoc), getTmpDbLoc);
|
|
+ }else{
|
|
+ changeTempStorage(pParse, zRight);
|
|
+ }
|
|
+ }else
|
|
+
|
|
+ /*
|
|
+ ** PRAGMA default_temp_store
|
|
+ ** PRAGMA default_temp_store = "default"|"memory"|"file"
|
|
+ **
|
|
+ ** Return or set the value of the persistent temp_store flag. Any
|
|
+ ** change does not take effect until the next time the database is
|
|
+ ** opened.
|
|
+ **
|
|
+ ** Note that it is possible for the library compile-time options to
|
|
+ ** override this setting
|
|
+ */
|
|
+ if( sqliteStrICmp(zLeft, "default_temp_store")==0 ){
|
|
+ static VdbeOpList getTmpDbLoc[] = {
|
|
+ { OP_ColumnName, 0, 1, "temp_store"},
|
|
+ { OP_ReadCookie, 0, 5, 0},
|
|
+ { OP_Callback, 1, 0, 0}};
|
|
+ if( pRight->z==pLeft->z ){
|
|
+ sqliteVdbeAddOpList(v, ArraySize(getTmpDbLoc), getTmpDbLoc);
|
|
+ }else{
|
|
+ sqliteBeginWriteOperation(pParse, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Integer, getTempStore(zRight), 0);
|
|
+ sqliteVdbeAddOp(v, OP_SetCookie, 0, 5);
|
|
+ sqliteEndWriteOperation(pParse);
|
|
+ }
|
|
+ }else
|
|
+
|
|
+#ifndef NDEBUG
|
|
+ if( sqliteStrICmp(zLeft, "parser_trace")==0 ){
|
|
+ extern void sqliteParserTrace(FILE*, char *);
|
|
+ if( getBoolean(zRight) ){
|
|
+ sqliteParserTrace(stdout, "parser: ");
|
|
+ }else{
|
|
+ sqliteParserTrace(0, 0);
|
|
+ }
|
|
+ }else
|
|
+#endif
|
|
+
|
|
+ if( sqliteStrICmp(zLeft, "integrity_check")==0 ){
|
|
+ int i, j, addr;
|
|
+
|
|
+ /* Code that initializes the integrity check program. Set the
|
|
+ ** error count 0
|
|
+ */
|
|
+ static VdbeOpList initCode[] = {
|
|
+ { OP_Integer, 0, 0, 0},
|
|
+ { OP_MemStore, 0, 1, 0},
|
|
+ { OP_ColumnName, 0, 1, "integrity_check"},
|
|
+ };
|
|
+
|
|
+ /* Code to do an BTree integrity check on a single database file.
|
|
+ */
|
|
+ static VdbeOpList checkDb[] = {
|
|
+ { OP_SetInsert, 0, 0, "2"},
|
|
+ { OP_Integer, 0, 0, 0}, /* 1 */
|
|
+ { OP_OpenRead, 0, 2, 0},
|
|
+ { OP_Rewind, 0, 7, 0}, /* 3 */
|
|
+ { OP_Column, 0, 3, 0}, /* 4 */
|
|
+ { OP_SetInsert, 0, 0, 0},
|
|
+ { OP_Next, 0, 4, 0}, /* 6 */
|
|
+ { OP_IntegrityCk, 0, 0, 0}, /* 7 */
|
|
+ { OP_Dup, 0, 1, 0},
|
|
+ { OP_String, 0, 0, "ok"},
|
|
+ { OP_StrEq, 0, 12, 0}, /* 10 */
|
|
+ { OP_MemIncr, 0, 0, 0},
|
|
+ { OP_String, 0, 0, "*** in database "},
|
|
+ { OP_String, 0, 0, 0}, /* 13 */
|
|
+ { OP_String, 0, 0, " ***\n"},
|
|
+ { OP_Pull, 3, 0, 0},
|
|
+ { OP_Concat, 4, 1, 0},
|
|
+ { OP_Callback, 1, 0, 0},
|
|
+ };
|
|
+
|
|
+ /* Code that appears at the end of the integrity check. If no error
|
|
+ ** messages have been generated, output OK. Otherwise output the
|
|
+ ** error message
|
|
+ */
|
|
+ static VdbeOpList endCode[] = {
|
|
+ { OP_MemLoad, 0, 0, 0},
|
|
+ { OP_Integer, 0, 0, 0},
|
|
+ { OP_Ne, 0, 0, 0}, /* 2 */
|
|
+ { OP_String, 0, 0, "ok"},
|
|
+ { OP_Callback, 1, 0, 0},
|
|
+ };
|
|
+
|
|
+ /* Initialize the VDBE program */
|
|
+ sqliteVdbeAddOpList(v, ArraySize(initCode), initCode);
|
|
+
|
|
+ /* Do an integrity check on each database file */
|
|
+ for(i=0; i<db->nDb; i++){
|
|
+ HashElem *x;
|
|
+
|
|
+ /* Do an integrity check of the B-Tree
|
|
+ */
|
|
+ addr = sqliteVdbeAddOpList(v, ArraySize(checkDb), checkDb);
|
|
+ sqliteVdbeChangeP1(v, addr+1, i);
|
|
+ sqliteVdbeChangeP2(v, addr+3, addr+7);
|
|
+ sqliteVdbeChangeP2(v, addr+6, addr+4);
|
|
+ sqliteVdbeChangeP2(v, addr+7, i);
|
|
+ sqliteVdbeChangeP2(v, addr+10, addr+ArraySize(checkDb));
|
|
+ sqliteVdbeChangeP3(v, addr+13, db->aDb[i].zName, P3_STATIC);
|
|
+
|
|
+ /* Make sure all the indices are constructed correctly.
|
|
+ */
|
|
+ sqliteCodeVerifySchema(pParse, i);
|
|
+ for(x=sqliteHashFirst(&db->aDb[i].tblHash); x; x=sqliteHashNext(x)){
|
|
+ Table *pTab = sqliteHashData(x);
|
|
+ Index *pIdx;
|
|
+ int loopTop;
|
|
+
|
|
+ if( pTab->pIndex==0 ) continue;
|
|
+ sqliteVdbeAddOp(v, OP_Integer, i, 0);
|
|
+ sqliteVdbeOp3(v, OP_OpenRead, 1, pTab->tnum, pTab->zName, 0);
|
|
+ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
|
|
+ if( pIdx->tnum==0 ) continue;
|
|
+ sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
|
|
+ sqliteVdbeOp3(v, OP_OpenRead, j+2, pIdx->tnum, pIdx->zName, 0);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_Integer, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_MemStore, 1, 1);
|
|
+ loopTop = sqliteVdbeAddOp(v, OP_Rewind, 1, 0);
|
|
+ sqliteVdbeAddOp(v, OP_MemIncr, 1, 0);
|
|
+ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
|
|
+ int k, jmp2;
|
|
+ static VdbeOpList idxErr[] = {
|
|
+ { OP_MemIncr, 0, 0, 0},
|
|
+ { OP_String, 0, 0, "rowid "},
|
|
+ { OP_Recno, 1, 0, 0},
|
|
+ { OP_String, 0, 0, " missing from index "},
|
|
+ { OP_String, 0, 0, 0}, /* 4 */
|
|
+ { OP_Concat, 4, 0, 0},
|
|
+ { OP_Callback, 1, 0, 0},
|
|
+ };
|
|
+ sqliteVdbeAddOp(v, OP_Recno, 1, 0);
|
|
+ for(k=0; k<pIdx->nColumn; k++){
|
|
+ int idx = pIdx->aiColumn[k];
|
|
+ if( idx==pTab->iPKey ){
|
|
+ sqliteVdbeAddOp(v, OP_Recno, 1, 0);
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_Column, 1, idx);
|
|
+ }
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0);
|
|
+ if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIdx);
|
|
+ jmp2 = sqliteVdbeAddOp(v, OP_Found, j+2, 0);
|
|
+ addr = sqliteVdbeAddOpList(v, ArraySize(idxErr), idxErr);
|
|
+ sqliteVdbeChangeP3(v, addr+4, pIdx->zName, P3_STATIC);
|
|
+ sqliteVdbeChangeP2(v, jmp2, sqliteVdbeCurrentAddr(v));
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_Next, 1, loopTop+1);
|
|
+ sqliteVdbeChangeP2(v, loopTop, sqliteVdbeCurrentAddr(v));
|
|
+ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
|
|
+ static VdbeOpList cntIdx[] = {
|
|
+ { OP_Integer, 0, 0, 0},
|
|
+ { OP_MemStore, 2, 1, 0},
|
|
+ { OP_Rewind, 0, 0, 0}, /* 2 */
|
|
+ { OP_MemIncr, 2, 0, 0},
|
|
+ { OP_Next, 0, 0, 0}, /* 4 */
|
|
+ { OP_MemLoad, 1, 0, 0},
|
|
+ { OP_MemLoad, 2, 0, 0},
|
|
+ { OP_Eq, 0, 0, 0}, /* 7 */
|
|
+ { OP_MemIncr, 0, 0, 0},
|
|
+ { OP_String, 0, 0, "wrong # of entries in index "},
|
|
+ { OP_String, 0, 0, 0}, /* 10 */
|
|
+ { OP_Concat, 2, 0, 0},
|
|
+ { OP_Callback, 1, 0, 0},
|
|
+ };
|
|
+ if( pIdx->tnum==0 ) continue;
|
|
+ addr = sqliteVdbeAddOpList(v, ArraySize(cntIdx), cntIdx);
|
|
+ sqliteVdbeChangeP1(v, addr+2, j+2);
|
|
+ sqliteVdbeChangeP2(v, addr+2, addr+5);
|
|
+ sqliteVdbeChangeP1(v, addr+4, j+2);
|
|
+ sqliteVdbeChangeP2(v, addr+4, addr+3);
|
|
+ sqliteVdbeChangeP2(v, addr+7, addr+ArraySize(cntIdx));
|
|
+ sqliteVdbeChangeP3(v, addr+10, pIdx->zName, P3_STATIC);
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ addr = sqliteVdbeAddOpList(v, ArraySize(endCode), endCode);
|
|
+ sqliteVdbeChangeP2(v, addr+2, addr+ArraySize(endCode));
|
|
+ }else
|
|
+
|
|
+ {}
|
|
+ sqliteFree(zLeft);
|
|
+ sqliteFree(zRight);
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/printf.c
|
|
@@ -0,0 +1,858 @@
|
|
+/*
|
|
+** The "printf" code that follows dates from the 1980's. It is in
|
|
+** the public domain. The original comments are included here for
|
|
+** completeness. They are very out-of-date but might be useful as
|
|
+** an historical reference. Most of the "enhancements" have been backed
|
|
+** out so that the functionality is now the same as standard printf().
|
|
+**
|
|
+**************************************************************************
|
|
+**
|
|
+** The following modules is an enhanced replacement for the "printf" subroutines
|
|
+** found in the standard C library. The following enhancements are
|
|
+** supported:
|
|
+**
|
|
+** + Additional functions. The standard set of "printf" functions
|
|
+** includes printf, fprintf, sprintf, vprintf, vfprintf, and
|
|
+** vsprintf. This module adds the following:
|
|
+**
|
|
+** * snprintf -- Works like sprintf, but has an extra argument
|
|
+** which is the size of the buffer written to.
|
|
+**
|
|
+** * mprintf -- Similar to sprintf. Writes output to memory
|
|
+** obtained from malloc.
|
|
+**
|
|
+** * xprintf -- Calls a function to dispose of output.
|
|
+**
|
|
+** * nprintf -- No output, but returns the number of characters
|
|
+** that would have been output by printf.
|
|
+**
|
|
+** * A v- version (ex: vsnprintf) of every function is also
|
|
+** supplied.
|
|
+**
|
|
+** + A few extensions to the formatting notation are supported:
|
|
+**
|
|
+** * The "=" flag (similar to "-") causes the output to be
|
|
+** be centered in the appropriately sized field.
|
|
+**
|
|
+** * The %b field outputs an integer in binary notation.
|
|
+**
|
|
+** * The %c field now accepts a precision. The character output
|
|
+** is repeated by the number of times the precision specifies.
|
|
+**
|
|
+** * The %' field works like %c, but takes as its character the
|
|
+** next character of the format string, instead of the next
|
|
+** argument. For example, printf("%.78'-") prints 78 minus
|
|
+** signs, the same as printf("%.78c",'-').
|
|
+**
|
|
+** + When compiled using GCC on a SPARC, this version of printf is
|
|
+** faster than the library printf for SUN OS 4.1.
|
|
+**
|
|
+** + All functions are fully reentrant.
|
|
+**
|
|
+*/
|
|
+#include "sqliteInt.h"
|
|
+
|
|
+/*
|
|
+** Conversion types fall into various categories as defined by the
|
|
+** following enumeration.
|
|
+*/
|
|
+#define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */
|
|
+#define etFLOAT 2 /* Floating point. %f */
|
|
+#define etEXP 3 /* Exponentional notation. %e and %E */
|
|
+#define etGENERIC 4 /* Floating or exponential, depending on exponent. %g */
|
|
+#define etSIZE 5 /* Return number of characters processed so far. %n */
|
|
+#define etSTRING 6 /* Strings. %s */
|
|
+#define etDYNSTRING 7 /* Dynamically allocated strings. %z */
|
|
+#define etPERCENT 8 /* Percent symbol. %% */
|
|
+#define etCHARX 9 /* Characters. %c */
|
|
+#define etERROR 10 /* Used to indicate no such conversion type */
|
|
+/* The rest are extensions, not normally found in printf() */
|
|
+#define etCHARLIT 11 /* Literal characters. %' */
|
|
+#define etSQLESCAPE 12 /* Strings with '\'' doubled. %q */
|
|
+#define etSQLESCAPE2 13 /* Strings with '\'' doubled and enclosed in '',
|
|
+ NULL pointers replaced by SQL NULL. %Q */
|
|
+#define etTOKEN 14 /* a pointer to a Token structure */
|
|
+#define etSRCLIST 15 /* a pointer to a SrcList */
|
|
+
|
|
+
|
|
+/*
|
|
+** An "etByte" is an 8-bit unsigned value.
|
|
+*/
|
|
+typedef unsigned char etByte;
|
|
+
|
|
+/*
|
|
+** Each builtin conversion character (ex: the 'd' in "%d") is described
|
|
+** by an instance of the following structure
|
|
+*/
|
|
+typedef struct et_info { /* Information about each format field */
|
|
+ char fmttype; /* The format field code letter */
|
|
+ etByte base; /* The base for radix conversion */
|
|
+ etByte flags; /* One or more of FLAG_ constants below */
|
|
+ etByte type; /* Conversion paradigm */
|
|
+ char *charset; /* The character set for conversion */
|
|
+ char *prefix; /* Prefix on non-zero values in alt format */
|
|
+} et_info;
|
|
+
|
|
+/*
|
|
+** Allowed values for et_info.flags
|
|
+*/
|
|
+#define FLAG_SIGNED 1 /* True if the value to convert is signed */
|
|
+#define FLAG_INTERN 2 /* True if for internal use only */
|
|
+
|
|
+
|
|
+/*
|
|
+** The following table is searched linearly, so it is good to put the
|
|
+** most frequently used conversion types first.
|
|
+*/
|
|
+static et_info fmtinfo[] = {
|
|
+ { 'd', 10, 1, etRADIX, "0123456789", 0 },
|
|
+ { 's', 0, 0, etSTRING, 0, 0 },
|
|
+ { 'z', 0, 2, etDYNSTRING, 0, 0 },
|
|
+ { 'q', 0, 0, etSQLESCAPE, 0, 0 },
|
|
+ { 'Q', 0, 0, etSQLESCAPE2, 0, 0 },
|
|
+ { 'c', 0, 0, etCHARX, 0, 0 },
|
|
+ { 'o', 8, 0, etRADIX, "01234567", "0" },
|
|
+ { 'u', 10, 0, etRADIX, "0123456789", 0 },
|
|
+ { 'x', 16, 0, etRADIX, "0123456789abcdef", "x0" },
|
|
+ { 'X', 16, 0, etRADIX, "0123456789ABCDEF", "X0" },
|
|
+ { 'f', 0, 1, etFLOAT, 0, 0 },
|
|
+ { 'e', 0, 1, etEXP, "e", 0 },
|
|
+ { 'E', 0, 1, etEXP, "E", 0 },
|
|
+ { 'g', 0, 1, etGENERIC, "e", 0 },
|
|
+ { 'G', 0, 1, etGENERIC, "E", 0 },
|
|
+ { 'i', 10, 1, etRADIX, "0123456789", 0 },
|
|
+ { 'n', 0, 0, etSIZE, 0, 0 },
|
|
+ { '%', 0, 0, etPERCENT, 0, 0 },
|
|
+ { 'p', 10, 0, etRADIX, "0123456789", 0 },
|
|
+ { 'T', 0, 2, etTOKEN, 0, 0 },
|
|
+ { 'S', 0, 2, etSRCLIST, 0, 0 },
|
|
+};
|
|
+#define etNINFO (sizeof(fmtinfo)/sizeof(fmtinfo[0]))
|
|
+
|
|
+/*
|
|
+** If NOFLOATINGPOINT is defined, then none of the floating point
|
|
+** conversions will work.
|
|
+*/
|
|
+#ifndef etNOFLOATINGPOINT
|
|
+/*
|
|
+** "*val" is a double such that 0.1 <= *val < 10.0
|
|
+** Return the ascii code for the leading digit of *val, then
|
|
+** multiply "*val" by 10.0 to renormalize.
|
|
+**
|
|
+** Example:
|
|
+** input: *val = 3.14159
|
|
+** output: *val = 1.4159 function return = '3'
|
|
+**
|
|
+** The counter *cnt is incremented each time. After counter exceeds
|
|
+** 16 (the number of significant digits in a 64-bit float) '0' is
|
|
+** always returned.
|
|
+*/
|
|
+static int et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
|
|
+ int digit;
|
|
+ LONGDOUBLE_TYPE d;
|
|
+ if( (*cnt)++ >= 16 ) return '0';
|
|
+ digit = (int)*val;
|
|
+ d = digit;
|
|
+ digit += '0';
|
|
+ *val = (*val - d)*10.0;
|
|
+ return digit;
|
|
+}
|
|
+#endif
|
|
+
|
|
+#define etBUFSIZE 1000 /* Size of the output buffer */
|
|
+
|
|
+/*
|
|
+** The root program. All variations call this core.
|
|
+**
|
|
+** INPUTS:
|
|
+** func This is a pointer to a function taking three arguments
|
|
+** 1. A pointer to anything. Same as the "arg" parameter.
|
|
+** 2. A pointer to the list of characters to be output
|
|
+** (Note, this list is NOT null terminated.)
|
|
+** 3. An integer number of characters to be output.
|
|
+** (Note: This number might be zero.)
|
|
+**
|
|
+** arg This is the pointer to anything which will be passed as the
|
|
+** first argument to "func". Use it for whatever you like.
|
|
+**
|
|
+** fmt This is the format string, as in the usual print.
|
|
+**
|
|
+** ap This is a pointer to a list of arguments. Same as in
|
|
+** vfprint.
|
|
+**
|
|
+** OUTPUTS:
|
|
+** The return value is the total number of characters sent to
|
|
+** the function "func". Returns -1 on a error.
|
|
+**
|
|
+** Note that the order in which automatic variables are declared below
|
|
+** seems to make a big difference in determining how fast this beast
|
|
+** will run.
|
|
+*/
|
|
+static int vxprintf(
|
|
+ void (*func)(void*,const char*,int), /* Consumer of text */
|
|
+ void *arg, /* First argument to the consumer */
|
|
+ int useExtended, /* Allow extended %-conversions */
|
|
+ const char *fmt, /* Format string */
|
|
+ va_list ap /* arguments */
|
|
+){
|
|
+ int c; /* Next character in the format string */
|
|
+ char *bufpt; /* Pointer to the conversion buffer */
|
|
+ int precision; /* Precision of the current field */
|
|
+ int length; /* Length of the field */
|
|
+ int idx; /* A general purpose loop counter */
|
|
+ int count; /* Total number of characters output */
|
|
+ int width; /* Width of the current field */
|
|
+ etByte flag_leftjustify; /* True if "-" flag is present */
|
|
+ etByte flag_plussign; /* True if "+" flag is present */
|
|
+ etByte flag_blanksign; /* True if " " flag is present */
|
|
+ etByte flag_alternateform; /* True if "#" flag is present */
|
|
+ etByte flag_zeropad; /* True if field width constant starts with zero */
|
|
+ etByte flag_long; /* True if "l" flag is present */
|
|
+ unsigned long longvalue; /* Value for integer types */
|
|
+ LONGDOUBLE_TYPE realvalue; /* Value for real types */
|
|
+ et_info *infop; /* Pointer to the appropriate info structure */
|
|
+ char buf[etBUFSIZE]; /* Conversion buffer */
|
|
+ char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */
|
|
+ etByte errorflag = 0; /* True if an error is encountered */
|
|
+ etByte xtype; /* Conversion paradigm */
|
|
+ char *zExtra; /* Extra memory used for etTCLESCAPE conversions */
|
|
+ static char spaces[] = " ";
|
|
+#define etSPACESIZE (sizeof(spaces)-1)
|
|
+#ifndef etNOFLOATINGPOINT
|
|
+ int exp; /* exponent of real numbers */
|
|
+ double rounder; /* Used for rounding floating point values */
|
|
+ etByte flag_dp; /* True if decimal point should be shown */
|
|
+ etByte flag_rtz; /* True if trailing zeros should be removed */
|
|
+ etByte flag_exp; /* True to force display of the exponent */
|
|
+ int nsd; /* Number of significant digits returned */
|
|
+#endif
|
|
+
|
|
+ func(arg,"",0);
|
|
+ count = length = 0;
|
|
+ bufpt = 0;
|
|
+ for(; (c=(*fmt))!=0; ++fmt){
|
|
+ if( c!='%' ){
|
|
+ int amt;
|
|
+ bufpt = (char *)fmt;
|
|
+ amt = 1;
|
|
+ while( (c=(*++fmt))!='%' && c!=0 ) amt++;
|
|
+ (*func)(arg,bufpt,amt);
|
|
+ count += amt;
|
|
+ if( c==0 ) break;
|
|
+ }
|
|
+ if( (c=(*++fmt))==0 ){
|
|
+ errorflag = 1;
|
|
+ (*func)(arg,"%",1);
|
|
+ count++;
|
|
+ break;
|
|
+ }
|
|
+ /* Find out what flags are present */
|
|
+ flag_leftjustify = flag_plussign = flag_blanksign =
|
|
+ flag_alternateform = flag_zeropad = 0;
|
|
+ do{
|
|
+ switch( c ){
|
|
+ case '-': flag_leftjustify = 1; c = 0; break;
|
|
+ case '+': flag_plussign = 1; c = 0; break;
|
|
+ case ' ': flag_blanksign = 1; c = 0; break;
|
|
+ case '#': flag_alternateform = 1; c = 0; break;
|
|
+ case '0': flag_zeropad = 1; c = 0; break;
|
|
+ default: break;
|
|
+ }
|
|
+ }while( c==0 && (c=(*++fmt))!=0 );
|
|
+ /* Get the field width */
|
|
+ width = 0;
|
|
+ if( c=='*' ){
|
|
+ width = va_arg(ap,int);
|
|
+ if( width<0 ){
|
|
+ flag_leftjustify = 1;
|
|
+ width = -width;
|
|
+ }
|
|
+ c = *++fmt;
|
|
+ }else{
|
|
+ while( c>='0' && c<='9' ){
|
|
+ width = width*10 + c - '0';
|
|
+ c = *++fmt;
|
|
+ }
|
|
+ }
|
|
+ if( width > etBUFSIZE-10 ){
|
|
+ width = etBUFSIZE-10;
|
|
+ }
|
|
+ /* Get the precision */
|
|
+ if( c=='.' ){
|
|
+ precision = 0;
|
|
+ c = *++fmt;
|
|
+ if( c=='*' ){
|
|
+ precision = va_arg(ap,int);
|
|
+ if( precision<0 ) precision = -precision;
|
|
+ c = *++fmt;
|
|
+ }else{
|
|
+ while( c>='0' && c<='9' ){
|
|
+ precision = precision*10 + c - '0';
|
|
+ c = *++fmt;
|
|
+ }
|
|
+ }
|
|
+ /* Limit the precision to prevent overflowing buf[] during conversion */
|
|
+ if( precision>etBUFSIZE-40 ) precision = etBUFSIZE-40;
|
|
+ }else{
|
|
+ precision = -1;
|
|
+ }
|
|
+ /* Get the conversion type modifier */
|
|
+ if( c=='l' ){
|
|
+ flag_long = 1;
|
|
+ c = *++fmt;
|
|
+ }else{
|
|
+ flag_long = 0;
|
|
+ }
|
|
+ /* Fetch the info entry for the field */
|
|
+ infop = 0;
|
|
+ xtype = etERROR;
|
|
+ for(idx=0; idx<etNINFO; idx++){
|
|
+ if( c==fmtinfo[idx].fmttype ){
|
|
+ infop = &fmtinfo[idx];
|
|
+ if( useExtended || (infop->flags & FLAG_INTERN)==0 ){
|
|
+ xtype = infop->type;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ zExtra = 0;
|
|
+
|
|
+ /*
|
|
+ ** At this point, variables are initialized as follows:
|
|
+ **
|
|
+ ** flag_alternateform TRUE if a '#' is present.
|
|
+ ** flag_plussign TRUE if a '+' is present.
|
|
+ ** flag_leftjustify TRUE if a '-' is present or if the
|
|
+ ** field width was negative.
|
|
+ ** flag_zeropad TRUE if the width began with 0.
|
|
+ ** flag_long TRUE if the letter 'l' (ell) prefixed
|
|
+ ** the conversion character.
|
|
+ ** flag_blanksign TRUE if a ' ' is present.
|
|
+ ** width The specified field width. This is
|
|
+ ** always non-negative. Zero is the default.
|
|
+ ** precision The specified precision. The default
|
|
+ ** is -1.
|
|
+ ** xtype The class of the conversion.
|
|
+ ** infop Pointer to the appropriate info struct.
|
|
+ */
|
|
+ switch( xtype ){
|
|
+ case etRADIX:
|
|
+ if( flag_long ) longvalue = va_arg(ap,long);
|
|
+ else longvalue = va_arg(ap,int);
|
|
+#if 1
|
|
+ /* For the format %#x, the value zero is printed "0" not "0x0".
|
|
+ ** I think this is stupid. */
|
|
+ if( longvalue==0 ) flag_alternateform = 0;
|
|
+#else
|
|
+ /* More sensible: turn off the prefix for octal (to prevent "00"),
|
|
+ ** but leave the prefix for hex. */
|
|
+ if( longvalue==0 && infop->base==8 ) flag_alternateform = 0;
|
|
+#endif
|
|
+ if( infop->flags & FLAG_SIGNED ){
|
|
+ if( *(long*)&longvalue<0 ){
|
|
+ longvalue = -*(long*)&longvalue;
|
|
+ prefix = '-';
|
|
+ }else if( flag_plussign ) prefix = '+';
|
|
+ else if( flag_blanksign ) prefix = ' ';
|
|
+ else prefix = 0;
|
|
+ }else prefix = 0;
|
|
+ if( flag_zeropad && precision<width-(prefix!=0) ){
|
|
+ precision = width-(prefix!=0);
|
|
+ }
|
|
+ bufpt = &buf[etBUFSIZE-1];
|
|
+ {
|
|
+ register char *cset; /* Use registers for speed */
|
|
+ register int base;
|
|
+ cset = infop->charset;
|
|
+ base = infop->base;
|
|
+ do{ /* Convert to ascii */
|
|
+ *(--bufpt) = cset[longvalue%base];
|
|
+ longvalue = longvalue/base;
|
|
+ }while( longvalue>0 );
|
|
+ }
|
|
+ length = &buf[etBUFSIZE-1]-bufpt;
|
|
+ for(idx=precision-length; idx>0; idx--){
|
|
+ *(--bufpt) = '0'; /* Zero pad */
|
|
+ }
|
|
+ if( prefix ) *(--bufpt) = prefix; /* Add sign */
|
|
+ if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */
|
|
+ char *pre, x;
|
|
+ pre = infop->prefix;
|
|
+ if( *bufpt!=pre[0] ){
|
|
+ for(pre=infop->prefix; (x=(*pre))!=0; pre++) *(--bufpt) = x;
|
|
+ }
|
|
+ }
|
|
+ length = &buf[etBUFSIZE-1]-bufpt;
|
|
+ break;
|
|
+ case etFLOAT:
|
|
+ case etEXP:
|
|
+ case etGENERIC:
|
|
+ realvalue = va_arg(ap,double);
|
|
+#ifndef etNOFLOATINGPOINT
|
|
+ if( precision<0 ) precision = 6; /* Set default precision */
|
|
+ if( precision>etBUFSIZE-10 ) precision = etBUFSIZE-10;
|
|
+ if( realvalue<0.0 ){
|
|
+ realvalue = -realvalue;
|
|
+ prefix = '-';
|
|
+ }else{
|
|
+ if( flag_plussign ) prefix = '+';
|
|
+ else if( flag_blanksign ) prefix = ' ';
|
|
+ else prefix = 0;
|
|
+ }
|
|
+ if( infop->type==etGENERIC && precision>0 ) precision--;
|
|
+ rounder = 0.0;
|
|
+#if 0
|
|
+ /* Rounding works like BSD when the constant 0.4999 is used. Wierd! */
|
|
+ for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1);
|
|
+#else
|
|
+ /* It makes more sense to use 0.5 */
|
|
+ for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1);
|
|
+#endif
|
|
+ if( infop->type==etFLOAT ) realvalue += rounder;
|
|
+ /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */
|
|
+ exp = 0;
|
|
+ if( realvalue>0.0 ){
|
|
+ while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; }
|
|
+ while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; }
|
|
+ while( realvalue<1e-8 && exp>=-350 ){ realvalue *= 1e8; exp-=8; }
|
|
+ while( realvalue<1.0 && exp>=-350 ){ realvalue *= 10.0; exp--; }
|
|
+ if( exp>350 || exp<-350 ){
|
|
+ bufpt = "NaN";
|
|
+ length = 3;
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ bufpt = buf;
|
|
+ /*
|
|
+ ** If the field type is etGENERIC, then convert to either etEXP
|
|
+ ** or etFLOAT, as appropriate.
|
|
+ */
|
|
+ flag_exp = xtype==etEXP;
|
|
+ if( xtype!=etFLOAT ){
|
|
+ realvalue += rounder;
|
|
+ if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; }
|
|
+ }
|
|
+ if( xtype==etGENERIC ){
|
|
+ flag_rtz = !flag_alternateform;
|
|
+ if( exp<-4 || exp>precision ){
|
|
+ xtype = etEXP;
|
|
+ }else{
|
|
+ precision = precision - exp;
|
|
+ xtype = etFLOAT;
|
|
+ }
|
|
+ }else{
|
|
+ flag_rtz = 0;
|
|
+ }
|
|
+ /*
|
|
+ ** The "exp+precision" test causes output to be of type etEXP if
|
|
+ ** the precision is too large to fit in buf[].
|
|
+ */
|
|
+ nsd = 0;
|
|
+ if( xtype==etFLOAT && exp+precision<etBUFSIZE-30 ){
|
|
+ flag_dp = (precision>0 || flag_alternateform);
|
|
+ if( prefix ) *(bufpt++) = prefix; /* Sign */
|
|
+ if( exp<0 ) *(bufpt++) = '0'; /* Digits before "." */
|
|
+ else for(; exp>=0; exp--) *(bufpt++) = et_getdigit(&realvalue,&nsd);
|
|
+ if( flag_dp ) *(bufpt++) = '.'; /* The decimal point */
|
|
+ for(exp++; exp<0 && precision>0; precision--, exp++){
|
|
+ *(bufpt++) = '0';
|
|
+ }
|
|
+ while( (precision--)>0 ) *(bufpt++) = et_getdigit(&realvalue,&nsd);
|
|
+ *(bufpt--) = 0; /* Null terminate */
|
|
+ if( flag_rtz && flag_dp ){ /* Remove trailing zeros and "." */
|
|
+ while( bufpt>=buf && *bufpt=='0' ) *(bufpt--) = 0;
|
|
+ if( bufpt>=buf && *bufpt=='.' ) *(bufpt--) = 0;
|
|
+ }
|
|
+ bufpt++; /* point to next free slot */
|
|
+ }else{ /* etEXP or etGENERIC */
|
|
+ flag_dp = (precision>0 || flag_alternateform);
|
|
+ if( prefix ) *(bufpt++) = prefix; /* Sign */
|
|
+ *(bufpt++) = et_getdigit(&realvalue,&nsd); /* First digit */
|
|
+ if( flag_dp ) *(bufpt++) = '.'; /* Decimal point */
|
|
+ while( (precision--)>0 ) *(bufpt++) = et_getdigit(&realvalue,&nsd);
|
|
+ bufpt--; /* point to last digit */
|
|
+ if( flag_rtz && flag_dp ){ /* Remove tail zeros */
|
|
+ while( bufpt>=buf && *bufpt=='0' ) *(bufpt--) = 0;
|
|
+ if( bufpt>=buf && *bufpt=='.' ) *(bufpt--) = 0;
|
|
+ }
|
|
+ bufpt++; /* point to next free slot */
|
|
+ if( exp || flag_exp ){
|
|
+ *(bufpt++) = infop->charset[0];
|
|
+ if( exp<0 ){ *(bufpt++) = '-'; exp = -exp; } /* sign of exp */
|
|
+ else { *(bufpt++) = '+'; }
|
|
+ if( exp>=100 ){
|
|
+ *(bufpt++) = (exp/100)+'0'; /* 100's digit */
|
|
+ exp %= 100;
|
|
+ }
|
|
+ *(bufpt++) = exp/10+'0'; /* 10's digit */
|
|
+ *(bufpt++) = exp%10+'0'; /* 1's digit */
|
|
+ }
|
|
+ }
|
|
+ /* The converted number is in buf[] and zero terminated. Output it.
|
|
+ ** Note that the number is in the usual order, not reversed as with
|
|
+ ** integer conversions. */
|
|
+ length = bufpt-buf;
|
|
+ bufpt = buf;
|
|
+
|
|
+ /* Special case: Add leading zeros if the flag_zeropad flag is
|
|
+ ** set and we are not left justified */
|
|
+ if( flag_zeropad && !flag_leftjustify && length < width){
|
|
+ int i;
|
|
+ int nPad = width - length;
|
|
+ for(i=width; i>=nPad; i--){
|
|
+ bufpt[i] = bufpt[i-nPad];
|
|
+ }
|
|
+ i = prefix!=0;
|
|
+ while( nPad-- ) bufpt[i++] = '0';
|
|
+ length = width;
|
|
+ }
|
|
+#endif
|
|
+ break;
|
|
+ case etSIZE:
|
|
+ *(va_arg(ap,int*)) = count;
|
|
+ length = width = 0;
|
|
+ break;
|
|
+ case etPERCENT:
|
|
+ buf[0] = '%';
|
|
+ bufpt = buf;
|
|
+ length = 1;
|
|
+ break;
|
|
+ case etCHARLIT:
|
|
+ case etCHARX:
|
|
+ c = buf[0] = (xtype==etCHARX ? va_arg(ap,int) : *++fmt);
|
|
+ if( precision>=0 ){
|
|
+ for(idx=1; idx<precision; idx++) buf[idx] = c;
|
|
+ length = precision;
|
|
+ }else{
|
|
+ length =1;
|
|
+ }
|
|
+ bufpt = buf;
|
|
+ break;
|
|
+ case etSTRING:
|
|
+ case etDYNSTRING:
|
|
+ bufpt = va_arg(ap,char*);
|
|
+ if( bufpt==0 ){
|
|
+ bufpt = "";
|
|
+ }else if( xtype==etDYNSTRING ){
|
|
+ zExtra = bufpt;
|
|
+ }
|
|
+ length = strlen(bufpt);
|
|
+ if( precision>=0 && precision<length ) length = precision;
|
|
+ break;
|
|
+ case etSQLESCAPE:
|
|
+ case etSQLESCAPE2:
|
|
+ {
|
|
+ int i, j, n, c, isnull;
|
|
+ char *arg = va_arg(ap,char*);
|
|
+ isnull = arg==0;
|
|
+ if( isnull ) arg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)");
|
|
+ for(i=n=0; (c=arg[i])!=0; i++){
|
|
+ if( c=='\'' ) n++;
|
|
+ }
|
|
+ n += i + 1 + ((!isnull && xtype==etSQLESCAPE2) ? 2 : 0);
|
|
+ if( n>etBUFSIZE ){
|
|
+ bufpt = zExtra = sqliteMalloc( n );
|
|
+ if( bufpt==0 ) return -1;
|
|
+ }else{
|
|
+ bufpt = buf;
|
|
+ }
|
|
+ j = 0;
|
|
+ if( !isnull && xtype==etSQLESCAPE2 ) bufpt[j++] = '\'';
|
|
+ for(i=0; (c=arg[i])!=0; i++){
|
|
+ bufpt[j++] = c;
|
|
+ if( c=='\'' ) bufpt[j++] = c;
|
|
+ }
|
|
+ if( !isnull && xtype==etSQLESCAPE2 ) bufpt[j++] = '\'';
|
|
+ bufpt[j] = 0;
|
|
+ length = j;
|
|
+ if( precision>=0 && precision<length ) length = precision;
|
|
+ }
|
|
+ break;
|
|
+ case etTOKEN: {
|
|
+ Token *pToken = va_arg(ap, Token*);
|
|
+ (*func)(arg, pToken->z, pToken->n);
|
|
+ length = width = 0;
|
|
+ break;
|
|
+ }
|
|
+ case etSRCLIST: {
|
|
+ SrcList *pSrc = va_arg(ap, SrcList*);
|
|
+ int k = va_arg(ap, int);
|
|
+ struct SrcList_item *pItem = &pSrc->a[k];
|
|
+ assert( k>=0 && k<pSrc->nSrc );
|
|
+ if( pItem->zDatabase && pItem->zDatabase[0] ){
|
|
+ (*func)(arg, pItem->zDatabase, strlen(pItem->zDatabase));
|
|
+ (*func)(arg, ".", 1);
|
|
+ }
|
|
+ (*func)(arg, pItem->zName, strlen(pItem->zName));
|
|
+ length = width = 0;
|
|
+ break;
|
|
+ }
|
|
+ case etERROR:
|
|
+ buf[0] = '%';
|
|
+ buf[1] = c;
|
|
+ errorflag = 0;
|
|
+ idx = 1+(c!=0);
|
|
+ (*func)(arg,"%",idx);
|
|
+ count += idx;
|
|
+ if( c==0 ) fmt--;
|
|
+ break;
|
|
+ }/* End switch over the format type */
|
|
+ /*
|
|
+ ** The text of the conversion is pointed to by "bufpt" and is
|
|
+ ** "length" characters long. The field width is "width". Do
|
|
+ ** the output.
|
|
+ */
|
|
+ if( !flag_leftjustify ){
|
|
+ register int nspace;
|
|
+ nspace = width-length;
|
|
+ if( nspace>0 ){
|
|
+ count += nspace;
|
|
+ while( nspace>=etSPACESIZE ){
|
|
+ (*func)(arg,spaces,etSPACESIZE);
|
|
+ nspace -= etSPACESIZE;
|
|
+ }
|
|
+ if( nspace>0 ) (*func)(arg,spaces,nspace);
|
|
+ }
|
|
+ }
|
|
+ if( length>0 ){
|
|
+ (*func)(arg,bufpt,length);
|
|
+ count += length;
|
|
+ }
|
|
+ if( flag_leftjustify ){
|
|
+ register int nspace;
|
|
+ nspace = width-length;
|
|
+ if( nspace>0 ){
|
|
+ count += nspace;
|
|
+ while( nspace>=etSPACESIZE ){
|
|
+ (*func)(arg,spaces,etSPACESIZE);
|
|
+ nspace -= etSPACESIZE;
|
|
+ }
|
|
+ if( nspace>0 ) (*func)(arg,spaces,nspace);
|
|
+ }
|
|
+ }
|
|
+ if( zExtra ){
|
|
+ sqliteFree(zExtra);
|
|
+ }
|
|
+ }/* End for loop over the format string */
|
|
+ return errorflag ? -1 : count;
|
|
+} /* End of function */
|
|
+
|
|
+
|
|
+/* This structure is used to store state information about the
|
|
+** write to memory that is currently in progress.
|
|
+*/
|
|
+struct sgMprintf {
|
|
+ char *zBase; /* A base allocation */
|
|
+ char *zText; /* The string collected so far */
|
|
+ int nChar; /* Length of the string so far */
|
|
+ int nTotal; /* Output size if unconstrained */
|
|
+ int nAlloc; /* Amount of space allocated in zText */
|
|
+ void *(*xRealloc)(void*,int); /* Function used to realloc memory */
|
|
+};
|
|
+
|
|
+/*
|
|
+** This function implements the callback from vxprintf.
|
|
+**
|
|
+** This routine add nNewChar characters of text in zNewText to
|
|
+** the sgMprintf structure pointed to by "arg".
|
|
+*/
|
|
+static void mout(void *arg, const char *zNewText, int nNewChar){
|
|
+ struct sgMprintf *pM = (struct sgMprintf*)arg;
|
|
+ pM->nTotal += nNewChar;
|
|
+ if( pM->nChar + nNewChar + 1 > pM->nAlloc ){
|
|
+ if( pM->xRealloc==0 ){
|
|
+ nNewChar = pM->nAlloc - pM->nChar - 1;
|
|
+ }else{
|
|
+ pM->nAlloc = pM->nChar + nNewChar*2 + 1;
|
|
+ if( pM->zText==pM->zBase ){
|
|
+ pM->zText = pM->xRealloc(0, pM->nAlloc);
|
|
+ if( pM->zText && pM->nChar ){
|
|
+ memcpy(pM->zText, pM->zBase, pM->nChar);
|
|
+ }
|
|
+ }else{
|
|
+ pM->zText = pM->xRealloc(pM->zText, pM->nAlloc);
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ if( pM->zText ){
|
|
+ if( nNewChar>0 ){
|
|
+ memcpy(&pM->zText[pM->nChar], zNewText, nNewChar);
|
|
+ pM->nChar += nNewChar;
|
|
+ }
|
|
+ pM->zText[pM->nChar] = 0;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine is a wrapper around xprintf() that invokes mout() as
|
|
+** the consumer.
|
|
+*/
|
|
+static char *base_vprintf(
|
|
+ void *(*xRealloc)(void*,int), /* Routine to realloc memory. May be NULL */
|
|
+ int useInternal, /* Use internal %-conversions if true */
|
|
+ char *zInitBuf, /* Initially write here, before mallocing */
|
|
+ int nInitBuf, /* Size of zInitBuf[] */
|
|
+ const char *zFormat, /* format string */
|
|
+ va_list ap /* arguments */
|
|
+){
|
|
+ struct sgMprintf sM;
|
|
+ sM.zBase = sM.zText = zInitBuf;
|
|
+ sM.nChar = sM.nTotal = 0;
|
|
+ sM.nAlloc = nInitBuf;
|
|
+ sM.xRealloc = xRealloc;
|
|
+ vxprintf(mout, &sM, useInternal, zFormat, ap);
|
|
+ if( xRealloc ){
|
|
+ if( sM.zText==sM.zBase ){
|
|
+ sM.zText = xRealloc(0, sM.nChar+1);
|
|
+ memcpy(sM.zText, sM.zBase, sM.nChar+1);
|
|
+ }else if( sM.nAlloc>sM.nChar+10 ){
|
|
+ sM.zText = xRealloc(sM.zText, sM.nChar+1);
|
|
+ }
|
|
+ }
|
|
+ return sM.zText;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Realloc that is a real function, not a macro.
|
|
+*/
|
|
+static void *printf_realloc(void *old, int size){
|
|
+ return sqliteRealloc(old,size);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Print into memory obtained from sqliteMalloc(). Use the internal
|
|
+** %-conversion extensions.
|
|
+*/
|
|
+char *sqliteVMPrintf(const char *zFormat, va_list ap){
|
|
+ char zBase[1000];
|
|
+ return base_vprintf(printf_realloc, 1, zBase, sizeof(zBase), zFormat, ap);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Print into memory obtained from sqliteMalloc(). Use the internal
|
|
+** %-conversion extensions.
|
|
+*/
|
|
+char *sqliteMPrintf(const char *zFormat, ...){
|
|
+ va_list ap;
|
|
+ char *z;
|
|
+ char zBase[1000];
|
|
+ va_start(ap, zFormat);
|
|
+ z = base_vprintf(printf_realloc, 1, zBase, sizeof(zBase), zFormat, ap);
|
|
+ va_end(ap);
|
|
+ return z;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Print into memory obtained from malloc(). Do not use the internal
|
|
+** %-conversion extensions. This routine is for use by external users.
|
|
+*/
|
|
+char *sqlite_mprintf(const char *zFormat, ...){
|
|
+ va_list ap;
|
|
+ char *z;
|
|
+ char zBuf[200];
|
|
+
|
|
+ va_start(ap,zFormat);
|
|
+ z = base_vprintf((void*(*)(void*,int))realloc, 0,
|
|
+ zBuf, sizeof(zBuf), zFormat, ap);
|
|
+ va_end(ap);
|
|
+ return z;
|
|
+}
|
|
+
|
|
+/* This is the varargs version of sqlite_mprintf.
|
|
+*/
|
|
+char *sqlite_vmprintf(const char *zFormat, va_list ap){
|
|
+ char zBuf[200];
|
|
+ return base_vprintf((void*(*)(void*,int))realloc, 0,
|
|
+ zBuf, sizeof(zBuf), zFormat, ap);
|
|
+}
|
|
+
|
|
+/*
|
|
+** sqlite_snprintf() works like snprintf() except that it ignores the
|
|
+** current locale settings. This is important for SQLite because we
|
|
+** are not able to use a "," as the decimal point in place of "." as
|
|
+** specified by some locales.
|
|
+*/
|
|
+char *sqlite_snprintf(int n, char *zBuf, const char *zFormat, ...){
|
|
+ char *z;
|
|
+ va_list ap;
|
|
+
|
|
+ va_start(ap,zFormat);
|
|
+ z = base_vprintf(0, 0, zBuf, n, zFormat, ap);
|
|
+ va_end(ap);
|
|
+ return z;
|
|
+}
|
|
+
|
|
+/*
|
|
+** The following four routines implement the varargs versions of the
|
|
+** sqlite_exec() and sqlite_get_table() interfaces. See the sqlite.h
|
|
+** header files for a more detailed description of how these interfaces
|
|
+** work.
|
|
+**
|
|
+** These routines are all just simple wrappers.
|
|
+*/
|
|
+int sqlite_exec_printf(
|
|
+ sqlite *db, /* An open database */
|
|
+ const char *sqlFormat, /* printf-style format string for the SQL */
|
|
+ sqlite_callback xCallback, /* Callback function */
|
|
+ void *pArg, /* 1st argument to callback function */
|
|
+ char **errmsg, /* Error msg written here */
|
|
+ ... /* Arguments to the format string. */
|
|
+){
|
|
+ va_list ap;
|
|
+ int rc;
|
|
+
|
|
+ va_start(ap, errmsg);
|
|
+ rc = sqlite_exec_vprintf(db, sqlFormat, xCallback, pArg, errmsg, ap);
|
|
+ va_end(ap);
|
|
+ return rc;
|
|
+}
|
|
+int sqlite_exec_vprintf(
|
|
+ sqlite *db, /* An open database */
|
|
+ const char *sqlFormat, /* printf-style format string for the SQL */
|
|
+ sqlite_callback xCallback, /* Callback function */
|
|
+ void *pArg, /* 1st argument to callback function */
|
|
+ char **errmsg, /* Error msg written here */
|
|
+ va_list ap /* Arguments to the format string. */
|
|
+){
|
|
+ char *zSql;
|
|
+ int rc;
|
|
+
|
|
+ zSql = sqlite_vmprintf(sqlFormat, ap);
|
|
+ rc = sqlite_exec(db, zSql, xCallback, pArg, errmsg);
|
|
+ free(zSql);
|
|
+ return rc;
|
|
+}
|
|
+int sqlite_get_table_printf(
|
|
+ sqlite *db, /* An open database */
|
|
+ const char *sqlFormat, /* printf-style format string for the SQL */
|
|
+ char ***resultp, /* Result written to a char *[] that this points to */
|
|
+ int *nrow, /* Number of result rows written here */
|
|
+ int *ncol, /* Number of result columns written here */
|
|
+ char **errmsg, /* Error msg written here */
|
|
+ ... /* Arguments to the format string */
|
|
+){
|
|
+ va_list ap;
|
|
+ int rc;
|
|
+
|
|
+ va_start(ap, errmsg);
|
|
+ rc = sqlite_get_table_vprintf(db, sqlFormat, resultp, nrow, ncol, errmsg, ap);
|
|
+ va_end(ap);
|
|
+ return rc;
|
|
+}
|
|
+int sqlite_get_table_vprintf(
|
|
+ sqlite *db, /* An open database */
|
|
+ const char *sqlFormat, /* printf-style format string for the SQL */
|
|
+ char ***resultp, /* Result written to a char *[] that this points to */
|
|
+ int *nrow, /* Number of result rows written here */
|
|
+ int *ncolumn, /* Number of result columns written here */
|
|
+ char **errmsg, /* Error msg written here */
|
|
+ va_list ap /* Arguments to the format string */
|
|
+){
|
|
+ char *zSql;
|
|
+ int rc;
|
|
+
|
|
+ zSql = sqlite_vmprintf(sqlFormat, ap);
|
|
+ rc = sqlite_get_table(db, zSql, resultp, nrow, ncolumn, errmsg);
|
|
+ free(zSql);
|
|
+ return rc;
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/random.c
|
|
@@ -0,0 +1,97 @@
|
|
+/*
|
|
+** 2001 September 15
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This file contains code to implement a pseudo-random number
|
|
+** generator (PRNG) for SQLite.
|
|
+**
|
|
+** Random numbers are used by some of the database backends in order
|
|
+** to generate random integer keys for tables or random filenames.
|
|
+**
|
|
+** $Id$
|
|
+*/
|
|
+#include "sqliteInt.h"
|
|
+#include "os.h"
|
|
+
|
|
+
|
|
+/*
|
|
+** Get a single 8-bit random value from the RC4 PRNG. The Mutex
|
|
+** must be held while executing this routine.
|
|
+**
|
|
+** Why not just use a library random generator like lrand48() for this?
|
|
+** Because the OP_NewRecno opcode in the VDBE depends on having a very
|
|
+** good source of random numbers. The lrand48() library function may
|
|
+** well be good enough. But maybe not. Or maybe lrand48() has some
|
|
+** subtle problems on some systems that could cause problems. It is hard
|
|
+** to know. To minimize the risk of problems due to bad lrand48()
|
|
+** implementations, SQLite uses this random number generator based
|
|
+** on RC4, which we know works very well.
|
|
+*/
|
|
+static int randomByte(){
|
|
+ unsigned char t;
|
|
+
|
|
+ /* All threads share a single random number generator.
|
|
+ ** This structure is the current state of the generator.
|
|
+ */
|
|
+ static struct {
|
|
+ unsigned char isInit; /* True if initialized */
|
|
+ unsigned char i, j; /* State variables */
|
|
+ unsigned char s[256]; /* State variables */
|
|
+ } prng;
|
|
+
|
|
+ /* Initialize the state of the random number generator once,
|
|
+ ** the first time this routine is called. The seed value does
|
|
+ ** not need to contain a lot of randomness since we are not
|
|
+ ** trying to do secure encryption or anything like that...
|
|
+ **
|
|
+ ** Nothing in this file or anywhere else in SQLite does any kind of
|
|
+ ** encryption. The RC4 algorithm is being used as a PRNG (pseudo-random
|
|
+ ** number generator) not as an encryption device.
|
|
+ */
|
|
+ if( !prng.isInit ){
|
|
+ int i;
|
|
+ char k[256];
|
|
+ prng.j = 0;
|
|
+ prng.i = 0;
|
|
+ sqliteOsRandomSeed(k);
|
|
+ for(i=0; i<256; i++){
|
|
+ prng.s[i] = i;
|
|
+ }
|
|
+ for(i=0; i<256; i++){
|
|
+ prng.j += prng.s[i] + k[i];
|
|
+ t = prng.s[prng.j];
|
|
+ prng.s[prng.j] = prng.s[i];
|
|
+ prng.s[i] = t;
|
|
+ }
|
|
+ prng.isInit = 1;
|
|
+ }
|
|
+
|
|
+ /* Generate and return single random byte
|
|
+ */
|
|
+ prng.i++;
|
|
+ t = prng.s[prng.i];
|
|
+ prng.j += t;
|
|
+ prng.s[prng.i] = prng.s[prng.j];
|
|
+ prng.s[prng.j] = t;
|
|
+ t += prng.s[prng.i];
|
|
+ return prng.s[t];
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return N random bytes.
|
|
+*/
|
|
+void sqliteRandomness(int N, void *pBuf){
|
|
+ unsigned char *zBuf = pBuf;
|
|
+ sqliteOsEnterMutex();
|
|
+ while( N-- ){
|
|
+ *(zBuf++) = randomByte();
|
|
+ }
|
|
+ sqliteOsLeaveMutex();
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/select.c
|
|
@@ -0,0 +1,2434 @@
|
|
+/*
|
|
+** 2001 September 15
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This file contains C code routines that are called by the parser
|
|
+** to handle SELECT statements in SQLite.
|
|
+**
|
|
+** $Id$
|
|
+*/
|
|
+#include "sqliteInt.h"
|
|
+
|
|
+
|
|
+/*
|
|
+** Allocate a new Select structure and return a pointer to that
|
|
+** structure.
|
|
+*/
|
|
+Select *sqliteSelectNew(
|
|
+ ExprList *pEList, /* which columns to include in the result */
|
|
+ SrcList *pSrc, /* the FROM clause -- which tables to scan */
|
|
+ Expr *pWhere, /* the WHERE clause */
|
|
+ ExprList *pGroupBy, /* the GROUP BY clause */
|
|
+ Expr *pHaving, /* the HAVING clause */
|
|
+ ExprList *pOrderBy, /* the ORDER BY clause */
|
|
+ int isDistinct, /* true if the DISTINCT keyword is present */
|
|
+ int nLimit, /* LIMIT value. -1 means not used */
|
|
+ int nOffset /* OFFSET value. 0 means no offset */
|
|
+){
|
|
+ Select *pNew;
|
|
+ pNew = sqliteMalloc( sizeof(*pNew) );
|
|
+ if( pNew==0 ){
|
|
+ sqliteExprListDelete(pEList);
|
|
+ sqliteSrcListDelete(pSrc);
|
|
+ sqliteExprDelete(pWhere);
|
|
+ sqliteExprListDelete(pGroupBy);
|
|
+ sqliteExprDelete(pHaving);
|
|
+ sqliteExprListDelete(pOrderBy);
|
|
+ }else{
|
|
+ if( pEList==0 ){
|
|
+ pEList = sqliteExprListAppend(0, sqliteExpr(TK_ALL,0,0,0), 0);
|
|
+ }
|
|
+ pNew->pEList = pEList;
|
|
+ pNew->pSrc = pSrc;
|
|
+ pNew->pWhere = pWhere;
|
|
+ pNew->pGroupBy = pGroupBy;
|
|
+ pNew->pHaving = pHaving;
|
|
+ pNew->pOrderBy = pOrderBy;
|
|
+ pNew->isDistinct = isDistinct;
|
|
+ pNew->op = TK_SELECT;
|
|
+ pNew->nLimit = nLimit;
|
|
+ pNew->nOffset = nOffset;
|
|
+ pNew->iLimit = -1;
|
|
+ pNew->iOffset = -1;
|
|
+ }
|
|
+ return pNew;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
|
|
+** type of join. Return an integer constant that expresses that type
|
|
+** in terms of the following bit values:
|
|
+**
|
|
+** JT_INNER
|
|
+** JT_OUTER
|
|
+** JT_NATURAL
|
|
+** JT_LEFT
|
|
+** JT_RIGHT
|
|
+**
|
|
+** A full outer join is the combination of JT_LEFT and JT_RIGHT.
|
|
+**
|
|
+** If an illegal or unsupported join type is seen, then still return
|
|
+** a join type, but put an error in the pParse structure.
|
|
+*/
|
|
+int sqliteJoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
|
|
+ int jointype = 0;
|
|
+ Token *apAll[3];
|
|
+ Token *p;
|
|
+ static struct {
|
|
+ const char *zKeyword;
|
|
+ int nChar;
|
|
+ int code;
|
|
+ } keywords[] = {
|
|
+ { "natural", 7, JT_NATURAL },
|
|
+ { "left", 4, JT_LEFT|JT_OUTER },
|
|
+ { "right", 5, JT_RIGHT|JT_OUTER },
|
|
+ { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER },
|
|
+ { "outer", 5, JT_OUTER },
|
|
+ { "inner", 5, JT_INNER },
|
|
+ { "cross", 5, JT_INNER },
|
|
+ };
|
|
+ int i, j;
|
|
+ apAll[0] = pA;
|
|
+ apAll[1] = pB;
|
|
+ apAll[2] = pC;
|
|
+ for(i=0; i<3 && apAll[i]; i++){
|
|
+ p = apAll[i];
|
|
+ for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
|
|
+ if( p->n==keywords[j].nChar
|
|
+ && sqliteStrNICmp(p->z, keywords[j].zKeyword, p->n)==0 ){
|
|
+ jointype |= keywords[j].code;
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
|
|
+ jointype |= JT_ERROR;
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ if(
|
|
+ (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
|
|
+ (jointype & JT_ERROR)!=0
|
|
+ ){
|
|
+ static Token dummy = { 0, 0 };
|
|
+ char *zSp1 = " ", *zSp2 = " ";
|
|
+ if( pB==0 ){ pB = &dummy; zSp1 = 0; }
|
|
+ if( pC==0 ){ pC = &dummy; zSp2 = 0; }
|
|
+ sqliteSetNString(&pParse->zErrMsg, "unknown or unsupported join type: ", 0,
|
|
+ pA->z, pA->n, zSp1, 1, pB->z, pB->n, zSp2, 1, pC->z, pC->n, 0);
|
|
+ pParse->nErr++;
|
|
+ jointype = JT_INNER;
|
|
+ }else if( jointype & JT_RIGHT ){
|
|
+ sqliteErrorMsg(pParse,
|
|
+ "RIGHT and FULL OUTER JOINs are not currently supported");
|
|
+ jointype = JT_INNER;
|
|
+ }
|
|
+ return jointype;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return the index of a column in a table. Return -1 if the column
|
|
+** is not contained in the table.
|
|
+*/
|
|
+static int columnIndex(Table *pTab, const char *zCol){
|
|
+ int i;
|
|
+ for(i=0; i<pTab->nCol; i++){
|
|
+ if( sqliteStrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
|
|
+ }
|
|
+ return -1;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Add a term to the WHERE expression in *ppExpr that requires the
|
|
+** zCol column to be equal in the two tables pTab1 and pTab2.
|
|
+*/
|
|
+static void addWhereTerm(
|
|
+ const char *zCol, /* Name of the column */
|
|
+ const Table *pTab1, /* First table */
|
|
+ const Table *pTab2, /* Second table */
|
|
+ Expr **ppExpr /* Add the equality term to this expression */
|
|
+){
|
|
+ Token dummy;
|
|
+ Expr *pE1a, *pE1b, *pE1c;
|
|
+ Expr *pE2a, *pE2b, *pE2c;
|
|
+ Expr *pE;
|
|
+
|
|
+ dummy.z = zCol;
|
|
+ dummy.n = strlen(zCol);
|
|
+ dummy.dyn = 0;
|
|
+ pE1a = sqliteExpr(TK_ID, 0, 0, &dummy);
|
|
+ pE2a = sqliteExpr(TK_ID, 0, 0, &dummy);
|
|
+ dummy.z = pTab1->zName;
|
|
+ dummy.n = strlen(dummy.z);
|
|
+ pE1b = sqliteExpr(TK_ID, 0, 0, &dummy);
|
|
+ dummy.z = pTab2->zName;
|
|
+ dummy.n = strlen(dummy.z);
|
|
+ pE2b = sqliteExpr(TK_ID, 0, 0, &dummy);
|
|
+ pE1c = sqliteExpr(TK_DOT, pE1b, pE1a, 0);
|
|
+ pE2c = sqliteExpr(TK_DOT, pE2b, pE2a, 0);
|
|
+ pE = sqliteExpr(TK_EQ, pE1c, pE2c, 0);
|
|
+ ExprSetProperty(pE, EP_FromJoin);
|
|
+ if( *ppExpr ){
|
|
+ *ppExpr = sqliteExpr(TK_AND, *ppExpr, pE, 0);
|
|
+ }else{
|
|
+ *ppExpr = pE;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Set the EP_FromJoin property on all terms of the given expression.
|
|
+**
|
|
+** The EP_FromJoin property is used on terms of an expression to tell
|
|
+** the LEFT OUTER JOIN processing logic that this term is part of the
|
|
+** join restriction specified in the ON or USING clause and not a part
|
|
+** of the more general WHERE clause. These terms are moved over to the
|
|
+** WHERE clause during join processing but we need to remember that they
|
|
+** originated in the ON or USING clause.
|
|
+*/
|
|
+static void setJoinExpr(Expr *p){
|
|
+ while( p ){
|
|
+ ExprSetProperty(p, EP_FromJoin);
|
|
+ setJoinExpr(p->pLeft);
|
|
+ p = p->pRight;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine processes the join information for a SELECT statement.
|
|
+** ON and USING clauses are converted into extra terms of the WHERE clause.
|
|
+** NATURAL joins also create extra WHERE clause terms.
|
|
+**
|
|
+** This routine returns the number of errors encountered.
|
|
+*/
|
|
+static int sqliteProcessJoin(Parse *pParse, Select *p){
|
|
+ SrcList *pSrc;
|
|
+ int i, j;
|
|
+ pSrc = p->pSrc;
|
|
+ for(i=0; i<pSrc->nSrc-1; i++){
|
|
+ struct SrcList_item *pTerm = &pSrc->a[i];
|
|
+ struct SrcList_item *pOther = &pSrc->a[i+1];
|
|
+
|
|
+ if( pTerm->pTab==0 || pOther->pTab==0 ) continue;
|
|
+
|
|
+ /* When the NATURAL keyword is present, add WHERE clause terms for
|
|
+ ** every column that the two tables have in common.
|
|
+ */
|
|
+ if( pTerm->jointype & JT_NATURAL ){
|
|
+ Table *pTab;
|
|
+ if( pTerm->pOn || pTerm->pUsing ){
|
|
+ sqliteErrorMsg(pParse, "a NATURAL join may not have "
|
|
+ "an ON or USING clause", 0);
|
|
+ return 1;
|
|
+ }
|
|
+ pTab = pTerm->pTab;
|
|
+ for(j=0; j<pTab->nCol; j++){
|
|
+ if( columnIndex(pOther->pTab, pTab->aCol[j].zName)>=0 ){
|
|
+ addWhereTerm(pTab->aCol[j].zName, pTab, pOther->pTab, &p->pWhere);
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Disallow both ON and USING clauses in the same join
|
|
+ */
|
|
+ if( pTerm->pOn && pTerm->pUsing ){
|
|
+ sqliteErrorMsg(pParse, "cannot have both ON and USING "
|
|
+ "clauses in the same join");
|
|
+ return 1;
|
|
+ }
|
|
+
|
|
+ /* Add the ON clause to the end of the WHERE clause, connected by
|
|
+ ** and AND operator.
|
|
+ */
|
|
+ if( pTerm->pOn ){
|
|
+ setJoinExpr(pTerm->pOn);
|
|
+ if( p->pWhere==0 ){
|
|
+ p->pWhere = pTerm->pOn;
|
|
+ }else{
|
|
+ p->pWhere = sqliteExpr(TK_AND, p->pWhere, pTerm->pOn, 0);
|
|
+ }
|
|
+ pTerm->pOn = 0;
|
|
+ }
|
|
+
|
|
+ /* Create extra terms on the WHERE clause for each column named
|
|
+ ** in the USING clause. Example: If the two tables to be joined are
|
|
+ ** A and B and the USING clause names X, Y, and Z, then add this
|
|
+ ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
|
|
+ ** Report an error if any column mentioned in the USING clause is
|
|
+ ** not contained in both tables to be joined.
|
|
+ */
|
|
+ if( pTerm->pUsing ){
|
|
+ IdList *pList;
|
|
+ int j;
|
|
+ assert( i<pSrc->nSrc-1 );
|
|
+ pList = pTerm->pUsing;
|
|
+ for(j=0; j<pList->nId; j++){
|
|
+ if( columnIndex(pTerm->pTab, pList->a[j].zName)<0 ||
|
|
+ columnIndex(pOther->pTab, pList->a[j].zName)<0 ){
|
|
+ sqliteErrorMsg(pParse, "cannot join using column %s - column "
|
|
+ "not present in both tables", pList->a[j].zName);
|
|
+ return 1;
|
|
+ }
|
|
+ addWhereTerm(pList->a[j].zName, pTerm->pTab, pOther->pTab, &p->pWhere);
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Delete the given Select structure and all of its substructures.
|
|
+*/
|
|
+void sqliteSelectDelete(Select *p){
|
|
+ if( p==0 ) return;
|
|
+ sqliteExprListDelete(p->pEList);
|
|
+ sqliteSrcListDelete(p->pSrc);
|
|
+ sqliteExprDelete(p->pWhere);
|
|
+ sqliteExprListDelete(p->pGroupBy);
|
|
+ sqliteExprDelete(p->pHaving);
|
|
+ sqliteExprListDelete(p->pOrderBy);
|
|
+ sqliteSelectDelete(p->pPrior);
|
|
+ sqliteFree(p->zSelect);
|
|
+ sqliteFree(p);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Delete the aggregate information from the parse structure.
|
|
+*/
|
|
+static void sqliteAggregateInfoReset(Parse *pParse){
|
|
+ sqliteFree(pParse->aAgg);
|
|
+ pParse->aAgg = 0;
|
|
+ pParse->nAgg = 0;
|
|
+ pParse->useAgg = 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Insert code into "v" that will push the record on the top of the
|
|
+** stack into the sorter.
|
|
+*/
|
|
+static void pushOntoSorter(Parse *pParse, Vdbe *v, ExprList *pOrderBy){
|
|
+ char *zSortOrder;
|
|
+ int i;
|
|
+ zSortOrder = sqliteMalloc( pOrderBy->nExpr + 1 );
|
|
+ if( zSortOrder==0 ) return;
|
|
+ for(i=0; i<pOrderBy->nExpr; i++){
|
|
+ int order = pOrderBy->a[i].sortOrder;
|
|
+ int type;
|
|
+ int c;
|
|
+ if( (order & SQLITE_SO_TYPEMASK)==SQLITE_SO_TEXT ){
|
|
+ type = SQLITE_SO_TEXT;
|
|
+ }else if( (order & SQLITE_SO_TYPEMASK)==SQLITE_SO_NUM ){
|
|
+ type = SQLITE_SO_NUM;
|
|
+ }else if( pParse->db->file_format>=4 ){
|
|
+ type = sqliteExprType(pOrderBy->a[i].pExpr);
|
|
+ }else{
|
|
+ type = SQLITE_SO_NUM;
|
|
+ }
|
|
+ if( (order & SQLITE_SO_DIRMASK)==SQLITE_SO_ASC ){
|
|
+ c = type==SQLITE_SO_TEXT ? 'A' : '+';
|
|
+ }else{
|
|
+ c = type==SQLITE_SO_TEXT ? 'D' : '-';
|
|
+ }
|
|
+ zSortOrder[i] = c;
|
|
+ sqliteExprCode(pParse, pOrderBy->a[i].pExpr);
|
|
+ }
|
|
+ zSortOrder[pOrderBy->nExpr] = 0;
|
|
+ sqliteVdbeOp3(v, OP_SortMakeKey, pOrderBy->nExpr, 0, zSortOrder, P3_DYNAMIC);
|
|
+ sqliteVdbeAddOp(v, OP_SortPut, 0, 0);
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine adds a P3 argument to the last VDBE opcode that was
|
|
+** inserted. The P3 argument added is a string suitable for the
|
|
+** OP_MakeKey or OP_MakeIdxKey opcodes. The string consists of
|
|
+** characters 't' or 'n' depending on whether or not the various
|
|
+** fields of the key to be generated should be treated as numeric
|
|
+** or as text. See the OP_MakeKey and OP_MakeIdxKey opcode
|
|
+** documentation for additional information about the P3 string.
|
|
+** See also the sqliteAddIdxKeyType() routine.
|
|
+*/
|
|
+void sqliteAddKeyType(Vdbe *v, ExprList *pEList){
|
|
+ int nColumn = pEList->nExpr;
|
|
+ char *zType = sqliteMalloc( nColumn+1 );
|
|
+ int i;
|
|
+ if( zType==0 ) return;
|
|
+ for(i=0; i<nColumn; i++){
|
|
+ zType[i] = sqliteExprType(pEList->a[i].pExpr)==SQLITE_SO_NUM ? 'n' : 't';
|
|
+ }
|
|
+ zType[i] = 0;
|
|
+ sqliteVdbeChangeP3(v, -1, zType, P3_DYNAMIC);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Add code to implement the OFFSET and LIMIT
|
|
+*/
|
|
+static void codeLimiter(
|
|
+ Vdbe *v, /* Generate code into this VM */
|
|
+ Select *p, /* The SELECT statement being coded */
|
|
+ int iContinue, /* Jump here to skip the current record */
|
|
+ int iBreak, /* Jump here to end the loop */
|
|
+ int nPop /* Number of times to pop stack when jumping */
|
|
+){
|
|
+ if( p->iOffset>=0 ){
|
|
+ int addr = sqliteVdbeCurrentAddr(v) + 2;
|
|
+ if( nPop>0 ) addr++;
|
|
+ sqliteVdbeAddOp(v, OP_MemIncr, p->iOffset, addr);
|
|
+ if( nPop>0 ){
|
|
+ sqliteVdbeAddOp(v, OP_Pop, nPop, 0);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, iContinue);
|
|
+ }
|
|
+ if( p->iLimit>=0 ){
|
|
+ sqliteVdbeAddOp(v, OP_MemIncr, p->iLimit, iBreak);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine generates the code for the inside of the inner loop
|
|
+** of a SELECT.
|
|
+**
|
|
+** If srcTab and nColumn are both zero, then the pEList expressions
|
|
+** are evaluated in order to get the data for this row. If nColumn>0
|
|
+** then data is pulled from srcTab and pEList is used only to get the
|
|
+** datatypes for each column.
|
|
+*/
|
|
+static int selectInnerLoop(
|
|
+ Parse *pParse, /* The parser context */
|
|
+ Select *p, /* The complete select statement being coded */
|
|
+ ExprList *pEList, /* List of values being extracted */
|
|
+ int srcTab, /* Pull data from this table */
|
|
+ int nColumn, /* Number of columns in the source table */
|
|
+ ExprList *pOrderBy, /* If not NULL, sort results using this key */
|
|
+ int distinct, /* If >=0, make sure results are distinct */
|
|
+ int eDest, /* How to dispose of the results */
|
|
+ int iParm, /* An argument to the disposal method */
|
|
+ int iContinue, /* Jump here to continue with next row */
|
|
+ int iBreak /* Jump here to break out of the inner loop */
|
|
+){
|
|
+ Vdbe *v = pParse->pVdbe;
|
|
+ int i;
|
|
+ int hasDistinct; /* True if the DISTINCT keyword is present */
|
|
+
|
|
+ if( v==0 ) return 0;
|
|
+ assert( pEList!=0 );
|
|
+
|
|
+ /* If there was a LIMIT clause on the SELECT statement, then do the check
|
|
+ ** to see if this row should be output.
|
|
+ */
|
|
+ hasDistinct = distinct>=0 && pEList && pEList->nExpr>0;
|
|
+ if( pOrderBy==0 && !hasDistinct ){
|
|
+ codeLimiter(v, p, iContinue, iBreak, 0);
|
|
+ }
|
|
+
|
|
+ /* Pull the requested columns.
|
|
+ */
|
|
+ if( nColumn>0 ){
|
|
+ for(i=0; i<nColumn; i++){
|
|
+ sqliteVdbeAddOp(v, OP_Column, srcTab, i);
|
|
+ }
|
|
+ }else{
|
|
+ nColumn = pEList->nExpr;
|
|
+ for(i=0; i<pEList->nExpr; i++){
|
|
+ sqliteExprCode(pParse, pEList->a[i].pExpr);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* If the DISTINCT keyword was present on the SELECT statement
|
|
+ ** and this row has been seen before, then do not make this row
|
|
+ ** part of the result.
|
|
+ */
|
|
+ if( hasDistinct ){
|
|
+#if NULL_ALWAYS_DISTINCT
|
|
+ sqliteVdbeAddOp(v, OP_IsNull, -pEList->nExpr, sqliteVdbeCurrentAddr(v)+7);
|
|
+#endif
|
|
+ sqliteVdbeAddOp(v, OP_MakeKey, pEList->nExpr, 1);
|
|
+ if( pParse->db->file_format>=4 ) sqliteAddKeyType(v, pEList);
|
|
+ sqliteVdbeAddOp(v, OP_Distinct, distinct, sqliteVdbeCurrentAddr(v)+3);
|
|
+ sqliteVdbeAddOp(v, OP_Pop, pEList->nExpr+1, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, iContinue);
|
|
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_PutStrKey, distinct, 0);
|
|
+ if( pOrderBy==0 ){
|
|
+ codeLimiter(v, p, iContinue, iBreak, nColumn);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ switch( eDest ){
|
|
+ /* In this mode, write each query result to the key of the temporary
|
|
+ ** table iParm.
|
|
+ */
|
|
+ case SRT_Union: {
|
|
+ sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT);
|
|
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ /* Store the result as data using a unique key.
|
|
+ */
|
|
+ case SRT_Table:
|
|
+ case SRT_TempTable: {
|
|
+ sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
|
|
+ if( pOrderBy ){
|
|
+ pushOntoSorter(pParse, v, pOrderBy);
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_NewRecno, iParm, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Pull, 1, 0);
|
|
+ sqliteVdbeAddOp(v, OP_PutIntKey, iParm, 0);
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ /* Construct a record from the query result, but instead of
|
|
+ ** saving that record, use it as a key to delete elements from
|
|
+ ** the temporary table iParm.
|
|
+ */
|
|
+ case SRT_Except: {
|
|
+ int addr;
|
|
+ addr = sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT);
|
|
+ sqliteVdbeAddOp(v, OP_NotFound, iParm, addr+3);
|
|
+ sqliteVdbeAddOp(v, OP_Delete, iParm, 0);
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ /* If we are creating a set for an "expr IN (SELECT ...)" construct,
|
|
+ ** then there should be a single item on the stack. Write this
|
|
+ ** item into the set table with bogus data.
|
|
+ */
|
|
+ case SRT_Set: {
|
|
+ int addr1 = sqliteVdbeCurrentAddr(v);
|
|
+ int addr2;
|
|
+ assert( nColumn==1 );
|
|
+ sqliteVdbeAddOp(v, OP_NotNull, -1, addr1+3);
|
|
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
|
+ addr2 = sqliteVdbeAddOp(v, OP_Goto, 0, 0);
|
|
+ if( pOrderBy ){
|
|
+ pushOntoSorter(pParse, v, pOrderBy);
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
|
|
+ }
|
|
+ sqliteVdbeChangeP2(v, addr2, sqliteVdbeCurrentAddr(v));
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ /* If this is a scalar select that is part of an expression, then
|
|
+ ** store the results in the appropriate memory cell and break out
|
|
+ ** of the scan loop.
|
|
+ */
|
|
+ case SRT_Mem: {
|
|
+ assert( nColumn==1 );
|
|
+ if( pOrderBy ){
|
|
+ pushOntoSorter(pParse, v, pOrderBy);
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, iBreak);
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ /* Send the data to the callback function.
|
|
+ */
|
|
+ case SRT_Callback:
|
|
+ case SRT_Sorter: {
|
|
+ if( pOrderBy ){
|
|
+ sqliteVdbeAddOp(v, OP_SortMakeRec, nColumn, 0);
|
|
+ pushOntoSorter(pParse, v, pOrderBy);
|
|
+ }else{
|
|
+ assert( eDest==SRT_Callback );
|
|
+ sqliteVdbeAddOp(v, OP_Callback, nColumn, 0);
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ /* Invoke a subroutine to handle the results. The subroutine itself
|
|
+ ** is responsible for popping the results off of the stack.
|
|
+ */
|
|
+ case SRT_Subroutine: {
|
|
+ if( pOrderBy ){
|
|
+ sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
|
|
+ pushOntoSorter(pParse, v, pOrderBy);
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_Gosub, 0, iParm);
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ /* Discard the results. This is used for SELECT statements inside
|
|
+ ** the body of a TRIGGER. The purpose of such selects is to call
|
|
+ ** user-defined functions that have side effects. We do not care
|
|
+ ** about the actual results of the select.
|
|
+ */
|
|
+ default: {
|
|
+ assert( eDest==SRT_Discard );
|
|
+ sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** If the inner loop was generated using a non-null pOrderBy argument,
|
|
+** then the results were placed in a sorter. After the loop is terminated
|
|
+** we need to run the sorter and output the results. The following
|
|
+** routine generates the code needed to do that.
|
|
+*/
|
|
+static void generateSortTail(
|
|
+ Select *p, /* The SELECT statement */
|
|
+ Vdbe *v, /* Generate code into this VDBE */
|
|
+ int nColumn, /* Number of columns of data */
|
|
+ int eDest, /* Write the sorted results here */
|
|
+ int iParm /* Optional parameter associated with eDest */
|
|
+){
|
|
+ int end1 = sqliteVdbeMakeLabel(v);
|
|
+ int end2 = sqliteVdbeMakeLabel(v);
|
|
+ int addr;
|
|
+ if( eDest==SRT_Sorter ) return;
|
|
+ sqliteVdbeAddOp(v, OP_Sort, 0, 0);
|
|
+ addr = sqliteVdbeAddOp(v, OP_SortNext, 0, end1);
|
|
+ codeLimiter(v, p, addr, end2, 1);
|
|
+ switch( eDest ){
|
|
+ case SRT_Callback: {
|
|
+ sqliteVdbeAddOp(v, OP_SortCallback, nColumn, 0);
|
|
+ break;
|
|
+ }
|
|
+ case SRT_Table:
|
|
+ case SRT_TempTable: {
|
|
+ sqliteVdbeAddOp(v, OP_NewRecno, iParm, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Pull, 1, 0);
|
|
+ sqliteVdbeAddOp(v, OP_PutIntKey, iParm, 0);
|
|
+ break;
|
|
+ }
|
|
+ case SRT_Set: {
|
|
+ assert( nColumn==1 );
|
|
+ sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3);
|
|
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, sqliteVdbeCurrentAddr(v)+3);
|
|
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
|
|
+ break;
|
|
+ }
|
|
+ case SRT_Mem: {
|
|
+ assert( nColumn==1 );
|
|
+ sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, end1);
|
|
+ break;
|
|
+ }
|
|
+ case SRT_Subroutine: {
|
|
+ int i;
|
|
+ for(i=0; i<nColumn; i++){
|
|
+ sqliteVdbeAddOp(v, OP_Column, -1-i, i);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_Gosub, 0, iParm);
|
|
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
|
+ break;
|
|
+ }
|
|
+ default: {
|
|
+ /* Do nothing */
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, addr);
|
|
+ sqliteVdbeResolveLabel(v, end2);
|
|
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
|
|
+ sqliteVdbeResolveLabel(v, end1);
|
|
+ sqliteVdbeAddOp(v, OP_SortReset, 0, 0);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Generate code that will tell the VDBE the datatypes of
|
|
+** columns in the result set.
|
|
+**
|
|
+** This routine only generates code if the "PRAGMA show_datatypes=on"
|
|
+** has been executed. The datatypes are reported out in the azCol
|
|
+** parameter to the callback function. The first N azCol[] entries
|
|
+** are the names of the columns, and the second N entries are the
|
|
+** datatypes for the columns.
|
|
+**
|
|
+** The "datatype" for a result that is a column of a type is the
|
|
+** datatype definition extracted from the CREATE TABLE statement.
|
|
+** The datatype for an expression is either TEXT or NUMERIC. The
|
|
+** datatype for a ROWID field is INTEGER.
|
|
+*/
|
|
+static void generateColumnTypes(
|
|
+ Parse *pParse, /* Parser context */
|
|
+ SrcList *pTabList, /* List of tables */
|
|
+ ExprList *pEList /* Expressions defining the result set */
|
|
+){
|
|
+ Vdbe *v = pParse->pVdbe;
|
|
+ int i, j;
|
|
+ for(i=0; i<pEList->nExpr; i++){
|
|
+ Expr *p = pEList->a[i].pExpr;
|
|
+ char *zType = 0;
|
|
+ if( p==0 ) continue;
|
|
+ if( p->op==TK_COLUMN && pTabList ){
|
|
+ Table *pTab;
|
|
+ int iCol = p->iColumn;
|
|
+ for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
|
|
+ assert( j<pTabList->nSrc );
|
|
+ pTab = pTabList->a[j].pTab;
|
|
+ if( iCol<0 ) iCol = pTab->iPKey;
|
|
+ assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
|
|
+ if( iCol<0 ){
|
|
+ zType = "INTEGER";
|
|
+ }else{
|
|
+ zType = pTab->aCol[iCol].zType;
|
|
+ }
|
|
+ }else{
|
|
+ if( sqliteExprType(p)==SQLITE_SO_TEXT ){
|
|
+ zType = "TEXT";
|
|
+ }else{
|
|
+ zType = "NUMERIC";
|
|
+ }
|
|
+ }
|
|
+ sqliteVdbeOp3(v, OP_ColumnName, i + pEList->nExpr, 0, zType, 0);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Generate code that will tell the VDBE the names of columns
|
|
+** in the result set. This information is used to provide the
|
|
+** azCol[] values in the callback.
|
|
+*/
|
|
+static void generateColumnNames(
|
|
+ Parse *pParse, /* Parser context */
|
|
+ SrcList *pTabList, /* List of tables */
|
|
+ ExprList *pEList /* Expressions defining the result set */
|
|
+){
|
|
+ Vdbe *v = pParse->pVdbe;
|
|
+ int i, j;
|
|
+ sqlite *db = pParse->db;
|
|
+ int fullNames, shortNames;
|
|
+
|
|
+ assert( v!=0 );
|
|
+ if( pParse->colNamesSet || v==0 || sqlite_malloc_failed ) return;
|
|
+ pParse->colNamesSet = 1;
|
|
+ fullNames = (db->flags & SQLITE_FullColNames)!=0;
|
|
+ shortNames = (db->flags & SQLITE_ShortColNames)!=0;
|
|
+ for(i=0; i<pEList->nExpr; i++){
|
|
+ Expr *p;
|
|
+ int p2 = i==pEList->nExpr-1;
|
|
+ p = pEList->a[i].pExpr;
|
|
+ if( p==0 ) continue;
|
|
+ if( pEList->a[i].zName ){
|
|
+ char *zName = pEList->a[i].zName;
|
|
+ sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, 0);
|
|
+ continue;
|
|
+ }
|
|
+ if( p->op==TK_COLUMN && pTabList ){
|
|
+ Table *pTab;
|
|
+ char *zCol;
|
|
+ int iCol = p->iColumn;
|
|
+ for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
|
|
+ assert( j<pTabList->nSrc );
|
|
+ pTab = pTabList->a[j].pTab;
|
|
+ if( iCol<0 ) iCol = pTab->iPKey;
|
|
+ assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
|
|
+ if( iCol<0 ){
|
|
+ zCol = "_ROWID_";
|
|
+ }else{
|
|
+ zCol = pTab->aCol[iCol].zName;
|
|
+ }
|
|
+ if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
|
|
+ int addr = sqliteVdbeOp3(v,OP_ColumnName, i, p2, p->span.z, p->span.n);
|
|
+ sqliteVdbeCompressSpace(v, addr);
|
|
+ }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
|
|
+ char *zName = 0;
|
|
+ char *zTab;
|
|
+
|
|
+ zTab = pTabList->a[j].zAlias;
|
|
+ if( fullNames || zTab==0 ) zTab = pTab->zName;
|
|
+ sqliteSetString(&zName, zTab, ".", zCol, 0);
|
|
+ sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, P3_DYNAMIC);
|
|
+ }else{
|
|
+ sqliteVdbeOp3(v, OP_ColumnName, i, p2, zCol, 0);
|
|
+ }
|
|
+ }else if( p->span.z && p->span.z[0] ){
|
|
+ int addr = sqliteVdbeOp3(v,OP_ColumnName, i, p2, p->span.z, p->span.n);
|
|
+ sqliteVdbeCompressSpace(v, addr);
|
|
+ }else{
|
|
+ char zName[30];
|
|
+ assert( p->op!=TK_COLUMN || pTabList==0 );
|
|
+ sprintf(zName, "column%d", i+1);
|
|
+ sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, 0);
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Name of the connection operator, used for error messages.
|
|
+*/
|
|
+static const char *selectOpName(int id){
|
|
+ char *z;
|
|
+ switch( id ){
|
|
+ case TK_ALL: z = "UNION ALL"; break;
|
|
+ case TK_INTERSECT: z = "INTERSECT"; break;
|
|
+ case TK_EXCEPT: z = "EXCEPT"; break;
|
|
+ default: z = "UNION"; break;
|
|
+ }
|
|
+ return z;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Forward declaration
|
|
+*/
|
|
+static int fillInColumnList(Parse*, Select*);
|
|
+
|
|
+/*
|
|
+** Given a SELECT statement, generate a Table structure that describes
|
|
+** the result set of that SELECT.
|
|
+*/
|
|
+Table *sqliteResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
|
|
+ Table *pTab;
|
|
+ int i, j;
|
|
+ ExprList *pEList;
|
|
+ Column *aCol;
|
|
+
|
|
+ if( fillInColumnList(pParse, pSelect) ){
|
|
+ return 0;
|
|
+ }
|
|
+ pTab = sqliteMalloc( sizeof(Table) );
|
|
+ if( pTab==0 ){
|
|
+ return 0;
|
|
+ }
|
|
+ pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0;
|
|
+ pEList = pSelect->pEList;
|
|
+ pTab->nCol = pEList->nExpr;
|
|
+ assert( pTab->nCol>0 );
|
|
+ pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol );
|
|
+ for(i=0; i<pTab->nCol; i++){
|
|
+ Expr *p, *pR;
|
|
+ if( pEList->a[i].zName ){
|
|
+ aCol[i].zName = sqliteStrDup(pEList->a[i].zName);
|
|
+ }else if( (p=pEList->a[i].pExpr)->op==TK_DOT
|
|
+ && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
|
|
+ int cnt;
|
|
+ sqliteSetNString(&aCol[i].zName, pR->token.z, pR->token.n, 0);
|
|
+ for(j=cnt=0; j<i; j++){
|
|
+ if( sqliteStrICmp(aCol[j].zName, aCol[i].zName)==0 ){
|
|
+ int n;
|
|
+ char zBuf[30];
|
|
+ sprintf(zBuf,"_%d",++cnt);
|
|
+ n = strlen(zBuf);
|
|
+ sqliteSetNString(&aCol[i].zName, pR->token.z, pR->token.n, zBuf, n,0);
|
|
+ j = -1;
|
|
+ }
|
|
+ }
|
|
+ }else if( p->span.z && p->span.z[0] ){
|
|
+ sqliteSetNString(&pTab->aCol[i].zName, p->span.z, p->span.n, 0);
|
|
+ }else{
|
|
+ char zBuf[30];
|
|
+ sprintf(zBuf, "column%d", i+1);
|
|
+ aCol[i].zName = sqliteStrDup(zBuf);
|
|
+ }
|
|
+ sqliteDequote(aCol[i].zName);
|
|
+ }
|
|
+ pTab->iPKey = -1;
|
|
+ return pTab;
|
|
+}
|
|
+
|
|
+/*
|
|
+** For the given SELECT statement, do three things.
|
|
+**
|
|
+** (1) Fill in the pTabList->a[].pTab fields in the SrcList that
|
|
+** defines the set of tables that should be scanned. For views,
|
|
+** fill pTabList->a[].pSelect with a copy of the SELECT statement
|
|
+** that implements the view. A copy is made of the view's SELECT
|
|
+** statement so that we can freely modify or delete that statement
|
|
+** without worrying about messing up the presistent representation
|
|
+** of the view.
|
|
+**
|
|
+** (2) Add terms to the WHERE clause to accomodate the NATURAL keyword
|
|
+** on joins and the ON and USING clause of joins.
|
|
+**
|
|
+** (3) Scan the list of columns in the result set (pEList) looking
|
|
+** for instances of the "*" operator or the TABLE.* operator.
|
|
+** If found, expand each "*" to be every column in every table
|
|
+** and TABLE.* to be every column in TABLE.
|
|
+**
|
|
+** Return 0 on success. If there are problems, leave an error message
|
|
+** in pParse and return non-zero.
|
|
+*/
|
|
+static int fillInColumnList(Parse *pParse, Select *p){
|
|
+ int i, j, k, rc;
|
|
+ SrcList *pTabList;
|
|
+ ExprList *pEList;
|
|
+ Table *pTab;
|
|
+
|
|
+ if( p==0 || p->pSrc==0 ) return 1;
|
|
+ pTabList = p->pSrc;
|
|
+ pEList = p->pEList;
|
|
+
|
|
+ /* Look up every table in the table list.
|
|
+ */
|
|
+ for(i=0; i<pTabList->nSrc; i++){
|
|
+ if( pTabList->a[i].pTab ){
|
|
+ /* This routine has run before! No need to continue */
|
|
+ return 0;
|
|
+ }
|
|
+ if( pTabList->a[i].zName==0 ){
|
|
+ /* A sub-query in the FROM clause of a SELECT */
|
|
+ assert( pTabList->a[i].pSelect!=0 );
|
|
+ if( pTabList->a[i].zAlias==0 ){
|
|
+ char zFakeName[60];
|
|
+ sprintf(zFakeName, "sqlite_subquery_%p_",
|
|
+ (void*)pTabList->a[i].pSelect);
|
|
+ sqliteSetString(&pTabList->a[i].zAlias, zFakeName, 0);
|
|
+ }
|
|
+ pTabList->a[i].pTab = pTab =
|
|
+ sqliteResultSetOfSelect(pParse, pTabList->a[i].zAlias,
|
|
+ pTabList->a[i].pSelect);
|
|
+ if( pTab==0 ){
|
|
+ return 1;
|
|
+ }
|
|
+ /* The isTransient flag indicates that the Table structure has been
|
|
+ ** dynamically allocated and may be freed at any time. In other words,
|
|
+ ** pTab is not pointing to a persistent table structure that defines
|
|
+ ** part of the schema. */
|
|
+ pTab->isTransient = 1;
|
|
+ }else{
|
|
+ /* An ordinary table or view name in the FROM clause */
|
|
+ pTabList->a[i].pTab = pTab =
|
|
+ sqliteLocateTable(pParse,pTabList->a[i].zName,pTabList->a[i].zDatabase);
|
|
+ if( pTab==0 ){
|
|
+ return 1;
|
|
+ }
|
|
+ if( pTab->pSelect ){
|
|
+ /* We reach here if the named table is a really a view */
|
|
+ if( sqliteViewGetColumnNames(pParse, pTab) ){
|
|
+ return 1;
|
|
+ }
|
|
+ /* If pTabList->a[i].pSelect!=0 it means we are dealing with a
|
|
+ ** view within a view. The SELECT structure has already been
|
|
+ ** copied by the outer view so we can skip the copy step here
|
|
+ ** in the inner view.
|
|
+ */
|
|
+ if( pTabList->a[i].pSelect==0 ){
|
|
+ pTabList->a[i].pSelect = sqliteSelectDup(pTab->pSelect);
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Process NATURAL keywords, and ON and USING clauses of joins.
|
|
+ */
|
|
+ if( sqliteProcessJoin(pParse, p) ) return 1;
|
|
+
|
|
+ /* For every "*" that occurs in the column list, insert the names of
|
|
+ ** all columns in all tables. And for every TABLE.* insert the names
|
|
+ ** of all columns in TABLE. The parser inserted a special expression
|
|
+ ** with the TK_ALL operator for each "*" that it found in the column list.
|
|
+ ** The following code just has to locate the TK_ALL expressions and expand
|
|
+ ** each one to the list of all columns in all tables.
|
|
+ **
|
|
+ ** The first loop just checks to see if there are any "*" operators
|
|
+ ** that need expanding.
|
|
+ */
|
|
+ for(k=0; k<pEList->nExpr; k++){
|
|
+ Expr *pE = pEList->a[k].pExpr;
|
|
+ if( pE->op==TK_ALL ) break;
|
|
+ if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
|
|
+ && pE->pLeft && pE->pLeft->op==TK_ID ) break;
|
|
+ }
|
|
+ rc = 0;
|
|
+ if( k<pEList->nExpr ){
|
|
+ /*
|
|
+ ** If we get here it means the result set contains one or more "*"
|
|
+ ** operators that need to be expanded. Loop through each expression
|
|
+ ** in the result set and expand them one by one.
|
|
+ */
|
|
+ struct ExprList_item *a = pEList->a;
|
|
+ ExprList *pNew = 0;
|
|
+ for(k=0; k<pEList->nExpr; k++){
|
|
+ Expr *pE = a[k].pExpr;
|
|
+ if( pE->op!=TK_ALL &&
|
|
+ (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
|
|
+ /* This particular expression does not need to be expanded.
|
|
+ */
|
|
+ pNew = sqliteExprListAppend(pNew, a[k].pExpr, 0);
|
|
+ pNew->a[pNew->nExpr-1].zName = a[k].zName;
|
|
+ a[k].pExpr = 0;
|
|
+ a[k].zName = 0;
|
|
+ }else{
|
|
+ /* This expression is a "*" or a "TABLE.*" and needs to be
|
|
+ ** expanded. */
|
|
+ int tableSeen = 0; /* Set to 1 when TABLE matches */
|
|
+ char *zTName; /* text of name of TABLE */
|
|
+ if( pE->op==TK_DOT && pE->pLeft ){
|
|
+ zTName = sqliteTableNameFromToken(&pE->pLeft->token);
|
|
+ }else{
|
|
+ zTName = 0;
|
|
+ }
|
|
+ for(i=0; i<pTabList->nSrc; i++){
|
|
+ Table *pTab = pTabList->a[i].pTab;
|
|
+ char *zTabName = pTabList->a[i].zAlias;
|
|
+ if( zTabName==0 || zTabName[0]==0 ){
|
|
+ zTabName = pTab->zName;
|
|
+ }
|
|
+ if( zTName && (zTabName==0 || zTabName[0]==0 ||
|
|
+ sqliteStrICmp(zTName, zTabName)!=0) ){
|
|
+ continue;
|
|
+ }
|
|
+ tableSeen = 1;
|
|
+ for(j=0; j<pTab->nCol; j++){
|
|
+ Expr *pExpr, *pLeft, *pRight;
|
|
+ char *zName = pTab->aCol[j].zName;
|
|
+
|
|
+ if( i>0 && (pTabList->a[i-1].jointype & JT_NATURAL)!=0 &&
|
|
+ columnIndex(pTabList->a[i-1].pTab, zName)>=0 ){
|
|
+ /* In a NATURAL join, omit the join columns from the
|
|
+ ** table on the right */
|
|
+ continue;
|
|
+ }
|
|
+ if( i>0 && sqliteIdListIndex(pTabList->a[i-1].pUsing, zName)>=0 ){
|
|
+ /* In a join with a USING clause, omit columns in the
|
|
+ ** using clause from the table on the right. */
|
|
+ continue;
|
|
+ }
|
|
+ pRight = sqliteExpr(TK_ID, 0, 0, 0);
|
|
+ if( pRight==0 ) break;
|
|
+ pRight->token.z = zName;
|
|
+ pRight->token.n = strlen(zName);
|
|
+ pRight->token.dyn = 0;
|
|
+ if( zTabName && pTabList->nSrc>1 ){
|
|
+ pLeft = sqliteExpr(TK_ID, 0, 0, 0);
|
|
+ pExpr = sqliteExpr(TK_DOT, pLeft, pRight, 0);
|
|
+ if( pExpr==0 ) break;
|
|
+ pLeft->token.z = zTabName;
|
|
+ pLeft->token.n = strlen(zTabName);
|
|
+ pLeft->token.dyn = 0;
|
|
+ sqliteSetString((char**)&pExpr->span.z, zTabName, ".", zName, 0);
|
|
+ pExpr->span.n = strlen(pExpr->span.z);
|
|
+ pExpr->span.dyn = 1;
|
|
+ pExpr->token.z = 0;
|
|
+ pExpr->token.n = 0;
|
|
+ pExpr->token.dyn = 0;
|
|
+ }else{
|
|
+ pExpr = pRight;
|
|
+ pExpr->span = pExpr->token;
|
|
+ }
|
|
+ pNew = sqliteExprListAppend(pNew, pExpr, 0);
|
|
+ }
|
|
+ }
|
|
+ if( !tableSeen ){
|
|
+ if( zTName ){
|
|
+ sqliteErrorMsg(pParse, "no such table: %s", zTName);
|
|
+ }else{
|
|
+ sqliteErrorMsg(pParse, "no tables specified");
|
|
+ }
|
|
+ rc = 1;
|
|
+ }
|
|
+ sqliteFree(zTName);
|
|
+ }
|
|
+ }
|
|
+ sqliteExprListDelete(pEList);
|
|
+ p->pEList = pNew;
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine recursively unlinks the Select.pSrc.a[].pTab pointers
|
|
+** in a select structure. It just sets the pointers to NULL. This
|
|
+** routine is recursive in the sense that if the Select.pSrc.a[].pSelect
|
|
+** pointer is not NULL, this routine is called recursively on that pointer.
|
|
+**
|
|
+** This routine is called on the Select structure that defines a
|
|
+** VIEW in order to undo any bindings to tables. This is necessary
|
|
+** because those tables might be DROPed by a subsequent SQL command.
|
|
+** If the bindings are not removed, then the Select.pSrc->a[].pTab field
|
|
+** will be left pointing to a deallocated Table structure after the
|
|
+** DROP and a coredump will occur the next time the VIEW is used.
|
|
+*/
|
|
+void sqliteSelectUnbind(Select *p){
|
|
+ int i;
|
|
+ SrcList *pSrc = p->pSrc;
|
|
+ Table *pTab;
|
|
+ if( p==0 ) return;
|
|
+ for(i=0; i<pSrc->nSrc; i++){
|
|
+ if( (pTab = pSrc->a[i].pTab)!=0 ){
|
|
+ if( pTab->isTransient ){
|
|
+ sqliteDeleteTable(0, pTab);
|
|
+ }
|
|
+ pSrc->a[i].pTab = 0;
|
|
+ if( pSrc->a[i].pSelect ){
|
|
+ sqliteSelectUnbind(pSrc->a[i].pSelect);
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine associates entries in an ORDER BY expression list with
|
|
+** columns in a result. For each ORDER BY expression, the opcode of
|
|
+** the top-level node is changed to TK_COLUMN and the iColumn value of
|
|
+** the top-level node is filled in with column number and the iTable
|
|
+** value of the top-level node is filled with iTable parameter.
|
|
+**
|
|
+** If there are prior SELECT clauses, they are processed first. A match
|
|
+** in an earlier SELECT takes precedence over a later SELECT.
|
|
+**
|
|
+** Any entry that does not match is flagged as an error. The number
|
|
+** of errors is returned.
|
|
+**
|
|
+** This routine does NOT correctly initialize the Expr.dataType field
|
|
+** of the ORDER BY expressions. The multiSelectSortOrder() routine
|
|
+** must be called to do that after the individual select statements
|
|
+** have all been analyzed. This routine is unable to compute Expr.dataType
|
|
+** because it must be called before the individual select statements
|
|
+** have been analyzed.
|
|
+*/
|
|
+static int matchOrderbyToColumn(
|
|
+ Parse *pParse, /* A place to leave error messages */
|
|
+ Select *pSelect, /* Match to result columns of this SELECT */
|
|
+ ExprList *pOrderBy, /* The ORDER BY values to match against columns */
|
|
+ int iTable, /* Insert this value in iTable */
|
|
+ int mustComplete /* If TRUE all ORDER BYs must match */
|
|
+){
|
|
+ int nErr = 0;
|
|
+ int i, j;
|
|
+ ExprList *pEList;
|
|
+
|
|
+ if( pSelect==0 || pOrderBy==0 ) return 1;
|
|
+ if( mustComplete ){
|
|
+ for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; }
|
|
+ }
|
|
+ if( fillInColumnList(pParse, pSelect) ){
|
|
+ return 1;
|
|
+ }
|
|
+ if( pSelect->pPrior ){
|
|
+ if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){
|
|
+ return 1;
|
|
+ }
|
|
+ }
|
|
+ pEList = pSelect->pEList;
|
|
+ for(i=0; i<pOrderBy->nExpr; i++){
|
|
+ Expr *pE = pOrderBy->a[i].pExpr;
|
|
+ int iCol = -1;
|
|
+ if( pOrderBy->a[i].done ) continue;
|
|
+ if( sqliteExprIsInteger(pE, &iCol) ){
|
|
+ if( iCol<=0 || iCol>pEList->nExpr ){
|
|
+ sqliteErrorMsg(pParse,
|
|
+ "ORDER BY position %d should be between 1 and %d",
|
|
+ iCol, pEList->nExpr);
|
|
+ nErr++;
|
|
+ break;
|
|
+ }
|
|
+ if( !mustComplete ) continue;
|
|
+ iCol--;
|
|
+ }
|
|
+ for(j=0; iCol<0 && j<pEList->nExpr; j++){
|
|
+ if( pEList->a[j].zName && (pE->op==TK_ID || pE->op==TK_STRING) ){
|
|
+ char *zName, *zLabel;
|
|
+ zName = pEList->a[j].zName;
|
|
+ assert( pE->token.z );
|
|
+ zLabel = sqliteStrNDup(pE->token.z, pE->token.n);
|
|
+ sqliteDequote(zLabel);
|
|
+ if( sqliteStrICmp(zName, zLabel)==0 ){
|
|
+ iCol = j;
|
|
+ }
|
|
+ sqliteFree(zLabel);
|
|
+ }
|
|
+ if( iCol<0 && sqliteExprCompare(pE, pEList->a[j].pExpr) ){
|
|
+ iCol = j;
|
|
+ }
|
|
+ }
|
|
+ if( iCol>=0 ){
|
|
+ pE->op = TK_COLUMN;
|
|
+ pE->iColumn = iCol;
|
|
+ pE->iTable = iTable;
|
|
+ pOrderBy->a[i].done = 1;
|
|
+ }
|
|
+ if( iCol<0 && mustComplete ){
|
|
+ sqliteErrorMsg(pParse,
|
|
+ "ORDER BY term number %d does not match any result column", i+1);
|
|
+ nErr++;
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ return nErr;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Get a VDBE for the given parser context. Create a new one if necessary.
|
|
+** If an error occurs, return NULL and leave a message in pParse.
|
|
+*/
|
|
+Vdbe *sqliteGetVdbe(Parse *pParse){
|
|
+ Vdbe *v = pParse->pVdbe;
|
|
+ if( v==0 ){
|
|
+ v = pParse->pVdbe = sqliteVdbeCreate(pParse->db);
|
|
+ }
|
|
+ return v;
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine sets the Expr.dataType field on all elements of
|
|
+** the pOrderBy expression list. The pOrderBy list will have been
|
|
+** set up by matchOrderbyToColumn(). Hence each expression has
|
|
+** a TK_COLUMN as its root node. The Expr.iColumn refers to a
|
|
+** column in the result set. The datatype is set to SQLITE_SO_TEXT
|
|
+** if the corresponding column in p and every SELECT to the left of
|
|
+** p has a datatype of SQLITE_SO_TEXT. If the cooressponding column
|
|
+** in p or any of the left SELECTs is SQLITE_SO_NUM, then the datatype
|
|
+** of the order-by expression is set to SQLITE_SO_NUM.
|
|
+**
|
|
+** Examples:
|
|
+**
|
|
+** CREATE TABLE one(a INTEGER, b TEXT);
|
|
+** CREATE TABLE two(c VARCHAR(5), d FLOAT);
|
|
+**
|
|
+** SELECT b, b FROM one UNION SELECT d, c FROM two ORDER BY 1, 2;
|
|
+**
|
|
+** The primary sort key will use SQLITE_SO_NUM because the "d" in
|
|
+** the second SELECT is numeric. The 1st column of the first SELECT
|
|
+** is text but that does not matter because a numeric always overrides
|
|
+** a text.
|
|
+**
|
|
+** The secondary key will use the SQLITE_SO_TEXT sort order because
|
|
+** both the (second) "b" in the first SELECT and the "c" in the second
|
|
+** SELECT have a datatype of text.
|
|
+*/
|
|
+static void multiSelectSortOrder(Select *p, ExprList *pOrderBy){
|
|
+ int i;
|
|
+ ExprList *pEList;
|
|
+ if( pOrderBy==0 ) return;
|
|
+ if( p==0 ){
|
|
+ for(i=0; i<pOrderBy->nExpr; i++){
|
|
+ pOrderBy->a[i].pExpr->dataType = SQLITE_SO_TEXT;
|
|
+ }
|
|
+ return;
|
|
+ }
|
|
+ multiSelectSortOrder(p->pPrior, pOrderBy);
|
|
+ pEList = p->pEList;
|
|
+ for(i=0; i<pOrderBy->nExpr; i++){
|
|
+ Expr *pE = pOrderBy->a[i].pExpr;
|
|
+ if( pE->dataType==SQLITE_SO_NUM ) continue;
|
|
+ assert( pE->iColumn>=0 );
|
|
+ if( pEList->nExpr>pE->iColumn ){
|
|
+ pE->dataType = sqliteExprType(pEList->a[pE->iColumn].pExpr);
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Compute the iLimit and iOffset fields of the SELECT based on the
|
|
+** nLimit and nOffset fields. nLimit and nOffset hold the integers
|
|
+** that appear in the original SQL statement after the LIMIT and OFFSET
|
|
+** keywords. Or that hold -1 and 0 if those keywords are omitted.
|
|
+** iLimit and iOffset are the integer memory register numbers for
|
|
+** counters used to compute the limit and offset. If there is no
|
|
+** limit and/or offset, then iLimit and iOffset are negative.
|
|
+**
|
|
+** This routine changes the values if iLimit and iOffset only if
|
|
+** a limit or offset is defined by nLimit and nOffset. iLimit and
|
|
+** iOffset should have been preset to appropriate default values
|
|
+** (usually but not always -1) prior to calling this routine.
|
|
+** Only if nLimit>=0 or nOffset>0 do the limit registers get
|
|
+** redefined. The UNION ALL operator uses this property to force
|
|
+** the reuse of the same limit and offset registers across multiple
|
|
+** SELECT statements.
|
|
+*/
|
|
+static void computeLimitRegisters(Parse *pParse, Select *p){
|
|
+ /*
|
|
+ ** If the comparison is p->nLimit>0 then "LIMIT 0" shows
|
|
+ ** all rows. It is the same as no limit. If the comparision is
|
|
+ ** p->nLimit>=0 then "LIMIT 0" show no rows at all.
|
|
+ ** "LIMIT -1" always shows all rows. There is some
|
|
+ ** contraversy about what the correct behavior should be.
|
|
+ ** The current implementation interprets "LIMIT 0" to mean
|
|
+ ** no rows.
|
|
+ */
|
|
+ if( p->nLimit>=0 ){
|
|
+ int iMem = pParse->nMem++;
|
|
+ Vdbe *v = sqliteGetVdbe(pParse);
|
|
+ if( v==0 ) return;
|
|
+ sqliteVdbeAddOp(v, OP_Integer, -p->nLimit, 0);
|
|
+ sqliteVdbeAddOp(v, OP_MemStore, iMem, 1);
|
|
+ p->iLimit = iMem;
|
|
+ }
|
|
+ if( p->nOffset>0 ){
|
|
+ int iMem = pParse->nMem++;
|
|
+ Vdbe *v = sqliteGetVdbe(pParse);
|
|
+ if( v==0 ) return;
|
|
+ sqliteVdbeAddOp(v, OP_Integer, -p->nOffset, 0);
|
|
+ sqliteVdbeAddOp(v, OP_MemStore, iMem, 1);
|
|
+ p->iOffset = iMem;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine is called to process a query that is really the union
|
|
+** or intersection of two or more separate queries.
|
|
+**
|
|
+** "p" points to the right-most of the two queries. the query on the
|
|
+** left is p->pPrior. The left query could also be a compound query
|
|
+** in which case this routine will be called recursively.
|
|
+**
|
|
+** The results of the total query are to be written into a destination
|
|
+** of type eDest with parameter iParm.
|
|
+**
|
|
+** Example 1: Consider a three-way compound SQL statement.
|
|
+**
|
|
+** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
|
|
+**
|
|
+** This statement is parsed up as follows:
|
|
+**
|
|
+** SELECT c FROM t3
|
|
+** |
|
|
+** `-----> SELECT b FROM t2
|
|
+** |
|
|
+** `------> SELECT a FROM t1
|
|
+**
|
|
+** The arrows in the diagram above represent the Select.pPrior pointer.
|
|
+** So if this routine is called with p equal to the t3 query, then
|
|
+** pPrior will be the t2 query. p->op will be TK_UNION in this case.
|
|
+**
|
|
+** Notice that because of the way SQLite parses compound SELECTs, the
|
|
+** individual selects always group from left to right.
|
|
+*/
|
|
+static int multiSelect(Parse *pParse, Select *p, int eDest, int iParm){
|
|
+ int rc; /* Success code from a subroutine */
|
|
+ Select *pPrior; /* Another SELECT immediately to our left */
|
|
+ Vdbe *v; /* Generate code to this VDBE */
|
|
+
|
|
+ /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
|
|
+ ** the last SELECT in the series may have an ORDER BY or LIMIT.
|
|
+ */
|
|
+ if( p==0 || p->pPrior==0 ) return 1;
|
|
+ pPrior = p->pPrior;
|
|
+ if( pPrior->pOrderBy ){
|
|
+ sqliteErrorMsg(pParse,"ORDER BY clause should come after %s not before",
|
|
+ selectOpName(p->op));
|
|
+ return 1;
|
|
+ }
|
|
+ if( pPrior->nLimit>=0 || pPrior->nOffset>0 ){
|
|
+ sqliteErrorMsg(pParse,"LIMIT clause should come after %s not before",
|
|
+ selectOpName(p->op));
|
|
+ return 1;
|
|
+ }
|
|
+
|
|
+ /* Make sure we have a valid query engine. If not, create a new one.
|
|
+ */
|
|
+ v = sqliteGetVdbe(pParse);
|
|
+ if( v==0 ) return 1;
|
|
+
|
|
+ /* Create the destination temporary table if necessary
|
|
+ */
|
|
+ if( eDest==SRT_TempTable ){
|
|
+ sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
|
|
+ eDest = SRT_Table;
|
|
+ }
|
|
+
|
|
+ /* Generate code for the left and right SELECT statements.
|
|
+ */
|
|
+ switch( p->op ){
|
|
+ case TK_ALL: {
|
|
+ if( p->pOrderBy==0 ){
|
|
+ pPrior->nLimit = p->nLimit;
|
|
+ pPrior->nOffset = p->nOffset;
|
|
+ rc = sqliteSelect(pParse, pPrior, eDest, iParm, 0, 0, 0);
|
|
+ if( rc ) return rc;
|
|
+ p->pPrior = 0;
|
|
+ p->iLimit = pPrior->iLimit;
|
|
+ p->iOffset = pPrior->iOffset;
|
|
+ p->nLimit = -1;
|
|
+ p->nOffset = 0;
|
|
+ rc = sqliteSelect(pParse, p, eDest, iParm, 0, 0, 0);
|
|
+ p->pPrior = pPrior;
|
|
+ if( rc ) return rc;
|
|
+ break;
|
|
+ }
|
|
+ /* For UNION ALL ... ORDER BY fall through to the next case */
|
|
+ }
|
|
+ case TK_EXCEPT:
|
|
+ case TK_UNION: {
|
|
+ int unionTab; /* Cursor number of the temporary table holding result */
|
|
+ int op; /* One of the SRT_ operations to apply to self */
|
|
+ int priorOp; /* The SRT_ operation to apply to prior selects */
|
|
+ int nLimit, nOffset; /* Saved values of p->nLimit and p->nOffset */
|
|
+ ExprList *pOrderBy; /* The ORDER BY clause for the right SELECT */
|
|
+
|
|
+ priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
|
|
+ if( eDest==priorOp && p->pOrderBy==0 && p->nLimit<0 && p->nOffset==0 ){
|
|
+ /* We can reuse a temporary table generated by a SELECT to our
|
|
+ ** right.
|
|
+ */
|
|
+ unionTab = iParm;
|
|
+ }else{
|
|
+ /* We will need to create our own temporary table to hold the
|
|
+ ** intermediate results.
|
|
+ */
|
|
+ unionTab = pParse->nTab++;
|
|
+ if( p->pOrderBy
|
|
+ && matchOrderbyToColumn(pParse, p, p->pOrderBy, unionTab, 1) ){
|
|
+ return 1;
|
|
+ }
|
|
+ if( p->op!=TK_ALL ){
|
|
+ sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 1);
|
|
+ sqliteVdbeAddOp(v, OP_KeyAsData, unionTab, 1);
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 0);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Code the SELECT statements to our left
|
|
+ */
|
|
+ rc = sqliteSelect(pParse, pPrior, priorOp, unionTab, 0, 0, 0);
|
|
+ if( rc ) return rc;
|
|
+
|
|
+ /* Code the current SELECT statement
|
|
+ */
|
|
+ switch( p->op ){
|
|
+ case TK_EXCEPT: op = SRT_Except; break;
|
|
+ case TK_UNION: op = SRT_Union; break;
|
|
+ case TK_ALL: op = SRT_Table; break;
|
|
+ }
|
|
+ p->pPrior = 0;
|
|
+ pOrderBy = p->pOrderBy;
|
|
+ p->pOrderBy = 0;
|
|
+ nLimit = p->nLimit;
|
|
+ p->nLimit = -1;
|
|
+ nOffset = p->nOffset;
|
|
+ p->nOffset = 0;
|
|
+ rc = sqliteSelect(pParse, p, op, unionTab, 0, 0, 0);
|
|
+ p->pPrior = pPrior;
|
|
+ p->pOrderBy = pOrderBy;
|
|
+ p->nLimit = nLimit;
|
|
+ p->nOffset = nOffset;
|
|
+ if( rc ) return rc;
|
|
+
|
|
+ /* Convert the data in the temporary table into whatever form
|
|
+ ** it is that we currently need.
|
|
+ */
|
|
+ if( eDest!=priorOp || unionTab!=iParm ){
|
|
+ int iCont, iBreak, iStart;
|
|
+ assert( p->pEList );
|
|
+ if( eDest==SRT_Callback ){
|
|
+ generateColumnNames(pParse, 0, p->pEList);
|
|
+ generateColumnTypes(pParse, p->pSrc, p->pEList);
|
|
+ }
|
|
+ iBreak = sqliteVdbeMakeLabel(v);
|
|
+ iCont = sqliteVdbeMakeLabel(v);
|
|
+ sqliteVdbeAddOp(v, OP_Rewind, unionTab, iBreak);
|
|
+ computeLimitRegisters(pParse, p);
|
|
+ iStart = sqliteVdbeCurrentAddr(v);
|
|
+ multiSelectSortOrder(p, p->pOrderBy);
|
|
+ rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
|
|
+ p->pOrderBy, -1, eDest, iParm,
|
|
+ iCont, iBreak);
|
|
+ if( rc ) return 1;
|
|
+ sqliteVdbeResolveLabel(v, iCont);
|
|
+ sqliteVdbeAddOp(v, OP_Next, unionTab, iStart);
|
|
+ sqliteVdbeResolveLabel(v, iBreak);
|
|
+ sqliteVdbeAddOp(v, OP_Close, unionTab, 0);
|
|
+ if( p->pOrderBy ){
|
|
+ generateSortTail(p, v, p->pEList->nExpr, eDest, iParm);
|
|
+ }
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ case TK_INTERSECT: {
|
|
+ int tab1, tab2;
|
|
+ int iCont, iBreak, iStart;
|
|
+ int nLimit, nOffset;
|
|
+
|
|
+ /* INTERSECT is different from the others since it requires
|
|
+ ** two temporary tables. Hence it has its own case. Begin
|
|
+ ** by allocating the tables we will need.
|
|
+ */
|
|
+ tab1 = pParse->nTab++;
|
|
+ tab2 = pParse->nTab++;
|
|
+ if( p->pOrderBy && matchOrderbyToColumn(pParse,p,p->pOrderBy,tab1,1) ){
|
|
+ return 1;
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_OpenTemp, tab1, 1);
|
|
+ sqliteVdbeAddOp(v, OP_KeyAsData, tab1, 1);
|
|
+
|
|
+ /* Code the SELECTs to our left into temporary table "tab1".
|
|
+ */
|
|
+ rc = sqliteSelect(pParse, pPrior, SRT_Union, tab1, 0, 0, 0);
|
|
+ if( rc ) return rc;
|
|
+
|
|
+ /* Code the current SELECT into temporary table "tab2"
|
|
+ */
|
|
+ sqliteVdbeAddOp(v, OP_OpenTemp, tab2, 1);
|
|
+ sqliteVdbeAddOp(v, OP_KeyAsData, tab2, 1);
|
|
+ p->pPrior = 0;
|
|
+ nLimit = p->nLimit;
|
|
+ p->nLimit = -1;
|
|
+ nOffset = p->nOffset;
|
|
+ p->nOffset = 0;
|
|
+ rc = sqliteSelect(pParse, p, SRT_Union, tab2, 0, 0, 0);
|
|
+ p->pPrior = pPrior;
|
|
+ p->nLimit = nLimit;
|
|
+ p->nOffset = nOffset;
|
|
+ if( rc ) return rc;
|
|
+
|
|
+ /* Generate code to take the intersection of the two temporary
|
|
+ ** tables.
|
|
+ */
|
|
+ assert( p->pEList );
|
|
+ if( eDest==SRT_Callback ){
|
|
+ generateColumnNames(pParse, 0, p->pEList);
|
|
+ generateColumnTypes(pParse, p->pSrc, p->pEList);
|
|
+ }
|
|
+ iBreak = sqliteVdbeMakeLabel(v);
|
|
+ iCont = sqliteVdbeMakeLabel(v);
|
|
+ sqliteVdbeAddOp(v, OP_Rewind, tab1, iBreak);
|
|
+ computeLimitRegisters(pParse, p);
|
|
+ iStart = sqliteVdbeAddOp(v, OP_FullKey, tab1, 0);
|
|
+ sqliteVdbeAddOp(v, OP_NotFound, tab2, iCont);
|
|
+ multiSelectSortOrder(p, p->pOrderBy);
|
|
+ rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
|
|
+ p->pOrderBy, -1, eDest, iParm,
|
|
+ iCont, iBreak);
|
|
+ if( rc ) return 1;
|
|
+ sqliteVdbeResolveLabel(v, iCont);
|
|
+ sqliteVdbeAddOp(v, OP_Next, tab1, iStart);
|
|
+ sqliteVdbeResolveLabel(v, iBreak);
|
|
+ sqliteVdbeAddOp(v, OP_Close, tab2, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Close, tab1, 0);
|
|
+ if( p->pOrderBy ){
|
|
+ generateSortTail(p, v, p->pEList->nExpr, eDest, iParm);
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ assert( p->pEList && pPrior->pEList );
|
|
+ if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
|
|
+ sqliteErrorMsg(pParse, "SELECTs to the left and right of %s"
|
|
+ " do not have the same number of result columns", selectOpName(p->op));
|
|
+ return 1;
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Scan through the expression pExpr. Replace every reference to
|
|
+** a column in table number iTable with a copy of the iColumn-th
|
|
+** entry in pEList. (But leave references to the ROWID column
|
|
+** unchanged.)
|
|
+**
|
|
+** This routine is part of the flattening procedure. A subquery
|
|
+** whose result set is defined by pEList appears as entry in the
|
|
+** FROM clause of a SELECT such that the VDBE cursor assigned to that
|
|
+** FORM clause entry is iTable. This routine make the necessary
|
|
+** changes to pExpr so that it refers directly to the source table
|
|
+** of the subquery rather the result set of the subquery.
|
|
+*/
|
|
+static void substExprList(ExprList*,int,ExprList*); /* Forward Decl */
|
|
+static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){
|
|
+ if( pExpr==0 ) return;
|
|
+ if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
|
|
+ if( pExpr->iColumn<0 ){
|
|
+ pExpr->op = TK_NULL;
|
|
+ }else{
|
|
+ Expr *pNew;
|
|
+ assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
|
|
+ assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
|
|
+ pNew = pEList->a[pExpr->iColumn].pExpr;
|
|
+ assert( pNew!=0 );
|
|
+ pExpr->op = pNew->op;
|
|
+ pExpr->dataType = pNew->dataType;
|
|
+ assert( pExpr->pLeft==0 );
|
|
+ pExpr->pLeft = sqliteExprDup(pNew->pLeft);
|
|
+ assert( pExpr->pRight==0 );
|
|
+ pExpr->pRight = sqliteExprDup(pNew->pRight);
|
|
+ assert( pExpr->pList==0 );
|
|
+ pExpr->pList = sqliteExprListDup(pNew->pList);
|
|
+ pExpr->iTable = pNew->iTable;
|
|
+ pExpr->iColumn = pNew->iColumn;
|
|
+ pExpr->iAgg = pNew->iAgg;
|
|
+ sqliteTokenCopy(&pExpr->token, &pNew->token);
|
|
+ sqliteTokenCopy(&pExpr->span, &pNew->span);
|
|
+ }
|
|
+ }else{
|
|
+ substExpr(pExpr->pLeft, iTable, pEList);
|
|
+ substExpr(pExpr->pRight, iTable, pEList);
|
|
+ substExprList(pExpr->pList, iTable, pEList);
|
|
+ }
|
|
+}
|
|
+static void
|
|
+substExprList(ExprList *pList, int iTable, ExprList *pEList){
|
|
+ int i;
|
|
+ if( pList==0 ) return;
|
|
+ for(i=0; i<pList->nExpr; i++){
|
|
+ substExpr(pList->a[i].pExpr, iTable, pEList);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine attempts to flatten subqueries in order to speed
|
|
+** execution. It returns 1 if it makes changes and 0 if no flattening
|
|
+** occurs.
|
|
+**
|
|
+** To understand the concept of flattening, consider the following
|
|
+** query:
|
|
+**
|
|
+** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
|
|
+**
|
|
+** The default way of implementing this query is to execute the
|
|
+** subquery first and store the results in a temporary table, then
|
|
+** run the outer query on that temporary table. This requires two
|
|
+** passes over the data. Furthermore, because the temporary table
|
|
+** has no indices, the WHERE clause on the outer query cannot be
|
|
+** optimized.
|
|
+**
|
|
+** This routine attempts to rewrite queries such as the above into
|
|
+** a single flat select, like this:
|
|
+**
|
|
+** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
|
|
+**
|
|
+** The code generated for this simpification gives the same result
|
|
+** but only has to scan the data once. And because indices might
|
|
+** exist on the table t1, a complete scan of the data might be
|
|
+** avoided.
|
|
+**
|
|
+** Flattening is only attempted if all of the following are true:
|
|
+**
|
|
+** (1) The subquery and the outer query do not both use aggregates.
|
|
+**
|
|
+** (2) The subquery is not an aggregate or the outer query is not a join.
|
|
+**
|
|
+** (3) The subquery is not the right operand of a left outer join, or
|
|
+** the subquery is not itself a join. (Ticket #306)
|
|
+**
|
|
+** (4) The subquery is not DISTINCT or the outer query is not a join.
|
|
+**
|
|
+** (5) The subquery is not DISTINCT or the outer query does not use
|
|
+** aggregates.
|
|
+**
|
|
+** (6) The subquery does not use aggregates or the outer query is not
|
|
+** DISTINCT.
|
|
+**
|
|
+** (7) The subquery has a FROM clause.
|
|
+**
|
|
+** (8) The subquery does not use LIMIT or the outer query is not a join.
|
|
+**
|
|
+** (9) The subquery does not use LIMIT or the outer query does not use
|
|
+** aggregates.
|
|
+**
|
|
+** (10) The subquery does not use aggregates or the outer query does not
|
|
+** use LIMIT.
|
|
+**
|
|
+** (11) The subquery and the outer query do not both have ORDER BY clauses.
|
|
+**
|
|
+** (12) The subquery is not the right term of a LEFT OUTER JOIN or the
|
|
+** subquery has no WHERE clause. (added by ticket #350)
|
|
+**
|
|
+** In this routine, the "p" parameter is a pointer to the outer query.
|
|
+** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
|
|
+** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
|
|
+**
|
|
+** If flattening is not attempted, this routine is a no-op and returns 0.
|
|
+** If flattening is attempted this routine returns 1.
|
|
+**
|
|
+** All of the expression analysis must occur on both the outer query and
|
|
+** the subquery before this routine runs.
|
|
+*/
|
|
+static int flattenSubquery(
|
|
+ Parse *pParse, /* The parsing context */
|
|
+ Select *p, /* The parent or outer SELECT statement */
|
|
+ int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
|
|
+ int isAgg, /* True if outer SELECT uses aggregate functions */
|
|
+ int subqueryIsAgg /* True if the subquery uses aggregate functions */
|
|
+){
|
|
+ Select *pSub; /* The inner query or "subquery" */
|
|
+ SrcList *pSrc; /* The FROM clause of the outer query */
|
|
+ SrcList *pSubSrc; /* The FROM clause of the subquery */
|
|
+ ExprList *pList; /* The result set of the outer query */
|
|
+ int iParent; /* VDBE cursor number of the pSub result set temp table */
|
|
+ int i;
|
|
+ Expr *pWhere;
|
|
+
|
|
+ /* Check to see if flattening is permitted. Return 0 if not.
|
|
+ */
|
|
+ if( p==0 ) return 0;
|
|
+ pSrc = p->pSrc;
|
|
+ assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
|
|
+ pSub = pSrc->a[iFrom].pSelect;
|
|
+ assert( pSub!=0 );
|
|
+ if( isAgg && subqueryIsAgg ) return 0;
|
|
+ if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;
|
|
+ pSubSrc = pSub->pSrc;
|
|
+ assert( pSubSrc );
|
|
+ if( pSubSrc->nSrc==0 ) return 0;
|
|
+ if( (pSub->isDistinct || pSub->nLimit>=0) && (pSrc->nSrc>1 || isAgg) ){
|
|
+ return 0;
|
|
+ }
|
|
+ if( (p->isDistinct || p->nLimit>=0) && subqueryIsAgg ) return 0;
|
|
+ if( p->pOrderBy && pSub->pOrderBy ) return 0;
|
|
+
|
|
+ /* Restriction 3: If the subquery is a join, make sure the subquery is
|
|
+ ** not used as the right operand of an outer join. Examples of why this
|
|
+ ** is not allowed:
|
|
+ **
|
|
+ ** t1 LEFT OUTER JOIN (t2 JOIN t3)
|
|
+ **
|
|
+ ** If we flatten the above, we would get
|
|
+ **
|
|
+ ** (t1 LEFT OUTER JOIN t2) JOIN t3
|
|
+ **
|
|
+ ** which is not at all the same thing.
|
|
+ */
|
|
+ if( pSubSrc->nSrc>1 && iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0 ){
|
|
+ return 0;
|
|
+ }
|
|
+
|
|
+ /* Restriction 12: If the subquery is the right operand of a left outer
|
|
+ ** join, make sure the subquery has no WHERE clause.
|
|
+ ** An examples of why this is not allowed:
|
|
+ **
|
|
+ ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
|
|
+ **
|
|
+ ** If we flatten the above, we would get
|
|
+ **
|
|
+ ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
|
|
+ **
|
|
+ ** But the t2.x>0 test will always fail on a NULL row of t2, which
|
|
+ ** effectively converts the OUTER JOIN into an INNER JOIN.
|
|
+ */
|
|
+ if( iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0
|
|
+ && pSub->pWhere!=0 ){
|
|
+ return 0;
|
|
+ }
|
|
+
|
|
+ /* If we reach this point, it means flattening is permitted for the
|
|
+ ** iFrom-th entry of the FROM clause in the outer query.
|
|
+ */
|
|
+
|
|
+ /* Move all of the FROM elements of the subquery into the
|
|
+ ** the FROM clause of the outer query. Before doing this, remember
|
|
+ ** the cursor number for the original outer query FROM element in
|
|
+ ** iParent. The iParent cursor will never be used. Subsequent code
|
|
+ ** will scan expressions looking for iParent references and replace
|
|
+ ** those references with expressions that resolve to the subquery FROM
|
|
+ ** elements we are now copying in.
|
|
+ */
|
|
+ iParent = pSrc->a[iFrom].iCursor;
|
|
+ {
|
|
+ int nSubSrc = pSubSrc->nSrc;
|
|
+ int jointype = pSrc->a[iFrom].jointype;
|
|
+
|
|
+ if( pSrc->a[iFrom].pTab && pSrc->a[iFrom].pTab->isTransient ){
|
|
+ sqliteDeleteTable(0, pSrc->a[iFrom].pTab);
|
|
+ }
|
|
+ sqliteFree(pSrc->a[iFrom].zDatabase);
|
|
+ sqliteFree(pSrc->a[iFrom].zName);
|
|
+ sqliteFree(pSrc->a[iFrom].zAlias);
|
|
+ if( nSubSrc>1 ){
|
|
+ int extra = nSubSrc - 1;
|
|
+ for(i=1; i<nSubSrc; i++){
|
|
+ pSrc = sqliteSrcListAppend(pSrc, 0, 0);
|
|
+ }
|
|
+ p->pSrc = pSrc;
|
|
+ for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
|
|
+ pSrc->a[i] = pSrc->a[i-extra];
|
|
+ }
|
|
+ }
|
|
+ for(i=0; i<nSubSrc; i++){
|
|
+ pSrc->a[i+iFrom] = pSubSrc->a[i];
|
|
+ memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
|
|
+ }
|
|
+ pSrc->a[iFrom+nSubSrc-1].jointype = jointype;
|
|
+ }
|
|
+
|
|
+ /* Now begin substituting subquery result set expressions for
|
|
+ ** references to the iParent in the outer query.
|
|
+ **
|
|
+ ** Example:
|
|
+ **
|
|
+ ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
|
|
+ ** \ \_____________ subquery __________/ /
|
|
+ ** \_____________________ outer query ______________________________/
|
|
+ **
|
|
+ ** We look at every expression in the outer query and every place we see
|
|
+ ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
|
|
+ */
|
|
+ substExprList(p->pEList, iParent, pSub->pEList);
|
|
+ pList = p->pEList;
|
|
+ for(i=0; i<pList->nExpr; i++){
|
|
+ Expr *pExpr;
|
|
+ if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
|
|
+ pList->a[i].zName = sqliteStrNDup(pExpr->span.z, pExpr->span.n);
|
|
+ }
|
|
+ }
|
|
+ if( isAgg ){
|
|
+ substExprList(p->pGroupBy, iParent, pSub->pEList);
|
|
+ substExpr(p->pHaving, iParent, pSub->pEList);
|
|
+ }
|
|
+ if( pSub->pOrderBy ){
|
|
+ assert( p->pOrderBy==0 );
|
|
+ p->pOrderBy = pSub->pOrderBy;
|
|
+ pSub->pOrderBy = 0;
|
|
+ }else if( p->pOrderBy ){
|
|
+ substExprList(p->pOrderBy, iParent, pSub->pEList);
|
|
+ }
|
|
+ if( pSub->pWhere ){
|
|
+ pWhere = sqliteExprDup(pSub->pWhere);
|
|
+ }else{
|
|
+ pWhere = 0;
|
|
+ }
|
|
+ if( subqueryIsAgg ){
|
|
+ assert( p->pHaving==0 );
|
|
+ p->pHaving = p->pWhere;
|
|
+ p->pWhere = pWhere;
|
|
+ substExpr(p->pHaving, iParent, pSub->pEList);
|
|
+ if( pSub->pHaving ){
|
|
+ Expr *pHaving = sqliteExprDup(pSub->pHaving);
|
|
+ if( p->pHaving ){
|
|
+ p->pHaving = sqliteExpr(TK_AND, p->pHaving, pHaving, 0);
|
|
+ }else{
|
|
+ p->pHaving = pHaving;
|
|
+ }
|
|
+ }
|
|
+ assert( p->pGroupBy==0 );
|
|
+ p->pGroupBy = sqliteExprListDup(pSub->pGroupBy);
|
|
+ }else if( p->pWhere==0 ){
|
|
+ p->pWhere = pWhere;
|
|
+ }else{
|
|
+ substExpr(p->pWhere, iParent, pSub->pEList);
|
|
+ if( pWhere ){
|
|
+ p->pWhere = sqliteExpr(TK_AND, p->pWhere, pWhere, 0);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* The flattened query is distinct if either the inner or the
|
|
+ ** outer query is distinct.
|
|
+ */
|
|
+ p->isDistinct = p->isDistinct || pSub->isDistinct;
|
|
+
|
|
+ /* Transfer the limit expression from the subquery to the outer
|
|
+ ** query.
|
|
+ */
|
|
+ if( pSub->nLimit>=0 ){
|
|
+ if( p->nLimit<0 ){
|
|
+ p->nLimit = pSub->nLimit;
|
|
+ }else if( p->nLimit+p->nOffset > pSub->nLimit+pSub->nOffset ){
|
|
+ p->nLimit = pSub->nLimit + pSub->nOffset - p->nOffset;
|
|
+ }
|
|
+ }
|
|
+ p->nOffset += pSub->nOffset;
|
|
+
|
|
+ /* Finially, delete what is left of the subquery and return
|
|
+ ** success.
|
|
+ */
|
|
+ sqliteSelectDelete(pSub);
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Analyze the SELECT statement passed in as an argument to see if it
|
|
+** is a simple min() or max() query. If it is and this query can be
|
|
+** satisfied using a single seek to the beginning or end of an index,
|
|
+** then generate the code for this SELECT and return 1. If this is not a
|
|
+** simple min() or max() query, then return 0;
|
|
+**
|
|
+** A simply min() or max() query looks like this:
|
|
+**
|
|
+** SELECT min(a) FROM table;
|
|
+** SELECT max(a) FROM table;
|
|
+**
|
|
+** The query may have only a single table in its FROM argument. There
|
|
+** can be no GROUP BY or HAVING or WHERE clauses. The result set must
|
|
+** be the min() or max() of a single column of the table. The column
|
|
+** in the min() or max() function must be indexed.
|
|
+**
|
|
+** The parameters to this routine are the same as for sqliteSelect().
|
|
+** See the header comment on that routine for additional information.
|
|
+*/
|
|
+static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
|
|
+ Expr *pExpr;
|
|
+ int iCol;
|
|
+ Table *pTab;
|
|
+ Index *pIdx;
|
|
+ int base;
|
|
+ Vdbe *v;
|
|
+ int seekOp;
|
|
+ int cont;
|
|
+ ExprList *pEList, *pList, eList;
|
|
+ struct ExprList_item eListItem;
|
|
+ SrcList *pSrc;
|
|
+
|
|
+
|
|
+ /* Check to see if this query is a simple min() or max() query. Return
|
|
+ ** zero if it is not.
|
|
+ */
|
|
+ if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
|
|
+ pSrc = p->pSrc;
|
|
+ if( pSrc->nSrc!=1 ) return 0;
|
|
+ pEList = p->pEList;
|
|
+ if( pEList->nExpr!=1 ) return 0;
|
|
+ pExpr = pEList->a[0].pExpr;
|
|
+ if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
|
|
+ pList = pExpr->pList;
|
|
+ if( pList==0 || pList->nExpr!=1 ) return 0;
|
|
+ if( pExpr->token.n!=3 ) return 0;
|
|
+ if( sqliteStrNICmp(pExpr->token.z,"min",3)==0 ){
|
|
+ seekOp = OP_Rewind;
|
|
+ }else if( sqliteStrNICmp(pExpr->token.z,"max",3)==0 ){
|
|
+ seekOp = OP_Last;
|
|
+ }else{
|
|
+ return 0;
|
|
+ }
|
|
+ pExpr = pList->a[0].pExpr;
|
|
+ if( pExpr->op!=TK_COLUMN ) return 0;
|
|
+ iCol = pExpr->iColumn;
|
|
+ pTab = pSrc->a[0].pTab;
|
|
+
|
|
+ /* If we get to here, it means the query is of the correct form.
|
|
+ ** Check to make sure we have an index and make pIdx point to the
|
|
+ ** appropriate index. If the min() or max() is on an INTEGER PRIMARY
|
|
+ ** key column, no index is necessary so set pIdx to NULL. If no
|
|
+ ** usable index is found, return 0.
|
|
+ */
|
|
+ if( iCol<0 ){
|
|
+ pIdx = 0;
|
|
+ }else{
|
|
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
+ assert( pIdx->nColumn>=1 );
|
|
+ if( pIdx->aiColumn[0]==iCol ) break;
|
|
+ }
|
|
+ if( pIdx==0 ) return 0;
|
|
+ }
|
|
+
|
|
+ /* Identify column types if we will be using the callback. This
|
|
+ ** step is skipped if the output is going to a table or a memory cell.
|
|
+ ** The column names have already been generated in the calling function.
|
|
+ */
|
|
+ v = sqliteGetVdbe(pParse);
|
|
+ if( v==0 ) return 0;
|
|
+ if( eDest==SRT_Callback ){
|
|
+ generateColumnTypes(pParse, p->pSrc, p->pEList);
|
|
+ }
|
|
+
|
|
+ /* If the output is destined for a temporary table, open that table.
|
|
+ */
|
|
+ if( eDest==SRT_TempTable ){
|
|
+ sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
|
|
+ }
|
|
+
|
|
+ /* Generating code to find the min or the max. Basically all we have
|
|
+ ** to do is find the first or the last entry in the chosen index. If
|
|
+ ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
|
|
+ ** or last entry in the main table.
|
|
+ */
|
|
+ sqliteCodeVerifySchema(pParse, pTab->iDb);
|
|
+ base = pSrc->a[0].iCursor;
|
|
+ computeLimitRegisters(pParse, p);
|
|
+ if( pSrc->a[0].pSelect==0 ){
|
|
+ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
|
|
+ sqliteVdbeOp3(v, OP_OpenRead, base, pTab->tnum, pTab->zName, 0);
|
|
+ }
|
|
+ cont = sqliteVdbeMakeLabel(v);
|
|
+ if( pIdx==0 ){
|
|
+ sqliteVdbeAddOp(v, seekOp, base, 0);
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
|
|
+ sqliteVdbeOp3(v, OP_OpenRead, base+1, pIdx->tnum, pIdx->zName, P3_STATIC);
|
|
+ if( seekOp==OP_Rewind ){
|
|
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_MakeKey, 1, 0);
|
|
+ sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
|
|
+ seekOp = OP_MoveTo;
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, seekOp, base+1, 0);
|
|
+ sqliteVdbeAddOp(v, OP_IdxRecno, base+1, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Close, base+1, 0);
|
|
+ sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
|
|
+ }
|
|
+ eList.nExpr = 1;
|
|
+ memset(&eListItem, 0, sizeof(eListItem));
|
|
+ eList.a = &eListItem;
|
|
+ eList.a[0].pExpr = pExpr;
|
|
+ selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, cont, cont);
|
|
+ sqliteVdbeResolveLabel(v, cont);
|
|
+ sqliteVdbeAddOp(v, OP_Close, base, 0);
|
|
+
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Generate code for the given SELECT statement.
|
|
+**
|
|
+** The results are distributed in various ways depending on the
|
|
+** value of eDest and iParm.
|
|
+**
|
|
+** eDest Value Result
|
|
+** ------------ -------------------------------------------
|
|
+** SRT_Callback Invoke the callback for each row of the result.
|
|
+**
|
|
+** SRT_Mem Store first result in memory cell iParm
|
|
+**
|
|
+** SRT_Set Store results as keys of a table with cursor iParm
|
|
+**
|
|
+** SRT_Union Store results as a key in a temporary table iParm
|
|
+**
|
|
+** SRT_Except Remove results from the temporary table iParm.
|
|
+**
|
|
+** SRT_Table Store results in temporary table iParm
|
|
+**
|
|
+** The table above is incomplete. Additional eDist value have be added
|
|
+** since this comment was written. See the selectInnerLoop() function for
|
|
+** a complete listing of the allowed values of eDest and their meanings.
|
|
+**
|
|
+** This routine returns the number of errors. If any errors are
|
|
+** encountered, then an appropriate error message is left in
|
|
+** pParse->zErrMsg.
|
|
+**
|
|
+** This routine does NOT free the Select structure passed in. The
|
|
+** calling function needs to do that.
|
|
+**
|
|
+** The pParent, parentTab, and *pParentAgg fields are filled in if this
|
|
+** SELECT is a subquery. This routine may try to combine this SELECT
|
|
+** with its parent to form a single flat query. In so doing, it might
|
|
+** change the parent query from a non-aggregate to an aggregate query.
|
|
+** For that reason, the pParentAgg flag is passed as a pointer, so it
|
|
+** can be changed.
|
|
+**
|
|
+** Example 1: The meaning of the pParent parameter.
|
|
+**
|
|
+** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
|
|
+** \ \_______ subquery _______/ /
|
|
+** \ /
|
|
+** \____________________ outer query ___________________/
|
|
+**
|
|
+** This routine is called for the outer query first. For that call,
|
|
+** pParent will be NULL. During the processing of the outer query, this
|
|
+** routine is called recursively to handle the subquery. For the recursive
|
|
+** call, pParent will point to the outer query. Because the subquery is
|
|
+** the second element in a three-way join, the parentTab parameter will
|
|
+** be 1 (the 2nd value of a 0-indexed array.)
|
|
+*/
|
|
+int sqliteSelect(
|
|
+ Parse *pParse, /* The parser context */
|
|
+ Select *p, /* The SELECT statement being coded. */
|
|
+ int eDest, /* How to dispose of the results */
|
|
+ int iParm, /* A parameter used by the eDest disposal method */
|
|
+ Select *pParent, /* Another SELECT for which this is a sub-query */
|
|
+ int parentTab, /* Index in pParent->pSrc of this query */
|
|
+ int *pParentAgg /* True if pParent uses aggregate functions */
|
|
+){
|
|
+ int i;
|
|
+ WhereInfo *pWInfo;
|
|
+ Vdbe *v;
|
|
+ int isAgg = 0; /* True for select lists like "count(*)" */
|
|
+ ExprList *pEList; /* List of columns to extract. */
|
|
+ SrcList *pTabList; /* List of tables to select from */
|
|
+ Expr *pWhere; /* The WHERE clause. May be NULL */
|
|
+ ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */
|
|
+ ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
|
|
+ Expr *pHaving; /* The HAVING clause. May be NULL */
|
|
+ int isDistinct; /* True if the DISTINCT keyword is present */
|
|
+ int distinct; /* Table to use for the distinct set */
|
|
+ int rc = 1; /* Value to return from this function */
|
|
+
|
|
+ if( sqlite_malloc_failed || pParse->nErr || p==0 ) return 1;
|
|
+ if( sqliteAuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
|
|
+
|
|
+ /* If there is are a sequence of queries, do the earlier ones first.
|
|
+ */
|
|
+ if( p->pPrior ){
|
|
+ return multiSelect(pParse, p, eDest, iParm);
|
|
+ }
|
|
+
|
|
+ /* Make local copies of the parameters for this query.
|
|
+ */
|
|
+ pTabList = p->pSrc;
|
|
+ pWhere = p->pWhere;
|
|
+ pOrderBy = p->pOrderBy;
|
|
+ pGroupBy = p->pGroupBy;
|
|
+ pHaving = p->pHaving;
|
|
+ isDistinct = p->isDistinct;
|
|
+
|
|
+ /* Allocate VDBE cursors for each table in the FROM clause
|
|
+ */
|
|
+ sqliteSrcListAssignCursors(pParse, pTabList);
|
|
+
|
|
+ /*
|
|
+ ** Do not even attempt to generate any code if we have already seen
|
|
+ ** errors before this routine starts.
|
|
+ */
|
|
+ if( pParse->nErr>0 ) goto select_end;
|
|
+
|
|
+ /* Expand any "*" terms in the result set. (For example the "*" in
|
|
+ ** "SELECT * FROM t1") The fillInColumnlist() routine also does some
|
|
+ ** other housekeeping - see the header comment for details.
|
|
+ */
|
|
+ if( fillInColumnList(pParse, p) ){
|
|
+ goto select_end;
|
|
+ }
|
|
+ pWhere = p->pWhere;
|
|
+ pEList = p->pEList;
|
|
+ if( pEList==0 ) goto select_end;
|
|
+
|
|
+ /* If writing to memory or generating a set
|
|
+ ** only a single column may be output.
|
|
+ */
|
|
+ if( (eDest==SRT_Mem || eDest==SRT_Set) && pEList->nExpr>1 ){
|
|
+ sqliteErrorMsg(pParse, "only a single result allowed for "
|
|
+ "a SELECT that is part of an expression");
|
|
+ goto select_end;
|
|
+ }
|
|
+
|
|
+ /* ORDER BY is ignored for some destinations.
|
|
+ */
|
|
+ switch( eDest ){
|
|
+ case SRT_Union:
|
|
+ case SRT_Except:
|
|
+ case SRT_Discard:
|
|
+ pOrderBy = 0;
|
|
+ break;
|
|
+ default:
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ /* At this point, we should have allocated all the cursors that we
|
|
+ ** need to handle subquerys and temporary tables.
|
|
+ **
|
|
+ ** Resolve the column names and do a semantics check on all the expressions.
|
|
+ */
|
|
+ for(i=0; i<pEList->nExpr; i++){
|
|
+ if( sqliteExprResolveIds(pParse, pTabList, 0, pEList->a[i].pExpr) ){
|
|
+ goto select_end;
|
|
+ }
|
|
+ if( sqliteExprCheck(pParse, pEList->a[i].pExpr, 1, &isAgg) ){
|
|
+ goto select_end;
|
|
+ }
|
|
+ }
|
|
+ if( pWhere ){
|
|
+ if( sqliteExprResolveIds(pParse, pTabList, pEList, pWhere) ){
|
|
+ goto select_end;
|
|
+ }
|
|
+ if( sqliteExprCheck(pParse, pWhere, 0, 0) ){
|
|
+ goto select_end;
|
|
+ }
|
|
+ }
|
|
+ if( pHaving ){
|
|
+ if( pGroupBy==0 ){
|
|
+ sqliteErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
|
|
+ goto select_end;
|
|
+ }
|
|
+ if( sqliteExprResolveIds(pParse, pTabList, pEList, pHaving) ){
|
|
+ goto select_end;
|
|
+ }
|
|
+ if( sqliteExprCheck(pParse, pHaving, 1, &isAgg) ){
|
|
+ goto select_end;
|
|
+ }
|
|
+ }
|
|
+ if( pOrderBy ){
|
|
+ for(i=0; i<pOrderBy->nExpr; i++){
|
|
+ int iCol;
|
|
+ Expr *pE = pOrderBy->a[i].pExpr;
|
|
+ if( sqliteExprIsInteger(pE, &iCol) && iCol>0 && iCol<=pEList->nExpr ){
|
|
+ sqliteExprDelete(pE);
|
|
+ pE = pOrderBy->a[i].pExpr = sqliteExprDup(pEList->a[iCol-1].pExpr);
|
|
+ }
|
|
+ if( sqliteExprResolveIds(pParse, pTabList, pEList, pE) ){
|
|
+ goto select_end;
|
|
+ }
|
|
+ if( sqliteExprCheck(pParse, pE, isAgg, 0) ){
|
|
+ goto select_end;
|
|
+ }
|
|
+ if( sqliteExprIsConstant(pE) ){
|
|
+ if( sqliteExprIsInteger(pE, &iCol)==0 ){
|
|
+ sqliteErrorMsg(pParse,
|
|
+ "ORDER BY terms must not be non-integer constants");
|
|
+ goto select_end;
|
|
+ }else if( iCol<=0 || iCol>pEList->nExpr ){
|
|
+ sqliteErrorMsg(pParse,
|
|
+ "ORDER BY column number %d out of range - should be "
|
|
+ "between 1 and %d", iCol, pEList->nExpr);
|
|
+ goto select_end;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ if( pGroupBy ){
|
|
+ for(i=0; i<pGroupBy->nExpr; i++){
|
|
+ int iCol;
|
|
+ Expr *pE = pGroupBy->a[i].pExpr;
|
|
+ if( sqliteExprIsInteger(pE, &iCol) && iCol>0 && iCol<=pEList->nExpr ){
|
|
+ sqliteExprDelete(pE);
|
|
+ pE = pGroupBy->a[i].pExpr = sqliteExprDup(pEList->a[iCol-1].pExpr);
|
|
+ }
|
|
+ if( sqliteExprResolveIds(pParse, pTabList, pEList, pE) ){
|
|
+ goto select_end;
|
|
+ }
|
|
+ if( sqliteExprCheck(pParse, pE, isAgg, 0) ){
|
|
+ goto select_end;
|
|
+ }
|
|
+ if( sqliteExprIsConstant(pE) ){
|
|
+ if( sqliteExprIsInteger(pE, &iCol)==0 ){
|
|
+ sqliteErrorMsg(pParse,
|
|
+ "GROUP BY terms must not be non-integer constants");
|
|
+ goto select_end;
|
|
+ }else if( iCol<=0 || iCol>pEList->nExpr ){
|
|
+ sqliteErrorMsg(pParse,
|
|
+ "GROUP BY column number %d out of range - should be "
|
|
+ "between 1 and %d", iCol, pEList->nExpr);
|
|
+ goto select_end;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Begin generating code.
|
|
+ */
|
|
+ v = sqliteGetVdbe(pParse);
|
|
+ if( v==0 ) goto select_end;
|
|
+
|
|
+ /* Identify column names if we will be using them in a callback. This
|
|
+ ** step is skipped if the output is going to some other destination.
|
|
+ */
|
|
+ if( eDest==SRT_Callback ){
|
|
+ generateColumnNames(pParse, pTabList, pEList);
|
|
+ }
|
|
+
|
|
+ /* Generate code for all sub-queries in the FROM clause
|
|
+ */
|
|
+ for(i=0; i<pTabList->nSrc; i++){
|
|
+ const char *zSavedAuthContext;
|
|
+ int needRestoreContext;
|
|
+
|
|
+ if( pTabList->a[i].pSelect==0 ) continue;
|
|
+ if( pTabList->a[i].zName!=0 ){
|
|
+ zSavedAuthContext = pParse->zAuthContext;
|
|
+ pParse->zAuthContext = pTabList->a[i].zName;
|
|
+ needRestoreContext = 1;
|
|
+ }else{
|
|
+ needRestoreContext = 0;
|
|
+ }
|
|
+ sqliteSelect(pParse, pTabList->a[i].pSelect, SRT_TempTable,
|
|
+ pTabList->a[i].iCursor, p, i, &isAgg);
|
|
+ if( needRestoreContext ){
|
|
+ pParse->zAuthContext = zSavedAuthContext;
|
|
+ }
|
|
+ pTabList = p->pSrc;
|
|
+ pWhere = p->pWhere;
|
|
+ if( eDest!=SRT_Union && eDest!=SRT_Except && eDest!=SRT_Discard ){
|
|
+ pOrderBy = p->pOrderBy;
|
|
+ }
|
|
+ pGroupBy = p->pGroupBy;
|
|
+ pHaving = p->pHaving;
|
|
+ isDistinct = p->isDistinct;
|
|
+ }
|
|
+
|
|
+ /* Check for the special case of a min() or max() function by itself
|
|
+ ** in the result set.
|
|
+ */
|
|
+ if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
|
|
+ rc = 0;
|
|
+ goto select_end;
|
|
+ }
|
|
+
|
|
+ /* Check to see if this is a subquery that can be "flattened" into its parent.
|
|
+ ** If flattening is a possiblity, do so and return immediately.
|
|
+ */
|
|
+ if( pParent && pParentAgg &&
|
|
+ flattenSubquery(pParse, pParent, parentTab, *pParentAgg, isAgg) ){
|
|
+ if( isAgg ) *pParentAgg = 1;
|
|
+ return rc;
|
|
+ }
|
|
+
|
|
+ /* Set the limiter.
|
|
+ */
|
|
+ computeLimitRegisters(pParse, p);
|
|
+
|
|
+ /* Identify column types if we will be using a callback. This
|
|
+ ** step is skipped if the output is going to a destination other
|
|
+ ** than a callback.
|
|
+ **
|
|
+ ** We have to do this separately from the creation of column names
|
|
+ ** above because if the pTabList contains views then they will not
|
|
+ ** have been resolved and we will not know the column types until
|
|
+ ** now.
|
|
+ */
|
|
+ if( eDest==SRT_Callback ){
|
|
+ generateColumnTypes(pParse, pTabList, pEList);
|
|
+ }
|
|
+
|
|
+ /* If the output is destined for a temporary table, open that table.
|
|
+ */
|
|
+ if( eDest==SRT_TempTable ){
|
|
+ sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
|
|
+ }
|
|
+
|
|
+ /* Do an analysis of aggregate expressions.
|
|
+ */
|
|
+ sqliteAggregateInfoReset(pParse);
|
|
+ if( isAgg || pGroupBy ){
|
|
+ assert( pParse->nAgg==0 );
|
|
+ isAgg = 1;
|
|
+ for(i=0; i<pEList->nExpr; i++){
|
|
+ if( sqliteExprAnalyzeAggregates(pParse, pEList->a[i].pExpr) ){
|
|
+ goto select_end;
|
|
+ }
|
|
+ }
|
|
+ if( pGroupBy ){
|
|
+ for(i=0; i<pGroupBy->nExpr; i++){
|
|
+ if( sqliteExprAnalyzeAggregates(pParse, pGroupBy->a[i].pExpr) ){
|
|
+ goto select_end;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ if( pHaving && sqliteExprAnalyzeAggregates(pParse, pHaving) ){
|
|
+ goto select_end;
|
|
+ }
|
|
+ if( pOrderBy ){
|
|
+ for(i=0; i<pOrderBy->nExpr; i++){
|
|
+ if( sqliteExprAnalyzeAggregates(pParse, pOrderBy->a[i].pExpr) ){
|
|
+ goto select_end;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Reset the aggregator
|
|
+ */
|
|
+ if( isAgg ){
|
|
+ sqliteVdbeAddOp(v, OP_AggReset, 0, pParse->nAgg);
|
|
+ for(i=0; i<pParse->nAgg; i++){
|
|
+ FuncDef *pFunc;
|
|
+ if( (pFunc = pParse->aAgg[i].pFunc)!=0 && pFunc->xFinalize!=0 ){
|
|
+ sqliteVdbeOp3(v, OP_AggInit, 0, i, (char*)pFunc, P3_POINTER);
|
|
+ }
|
|
+ }
|
|
+ if( pGroupBy==0 ){
|
|
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_AggFocus, 0, 0);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Initialize the memory cell to NULL
|
|
+ */
|
|
+ if( eDest==SRT_Mem ){
|
|
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
|
|
+ }
|
|
+
|
|
+ /* Open a temporary table to use for the distinct set.
|
|
+ */
|
|
+ if( isDistinct ){
|
|
+ distinct = pParse->nTab++;
|
|
+ sqliteVdbeAddOp(v, OP_OpenTemp, distinct, 1);
|
|
+ }else{
|
|
+ distinct = -1;
|
|
+ }
|
|
+
|
|
+ /* Begin the database scan
|
|
+ */
|
|
+ pWInfo = sqliteWhereBegin(pParse, pTabList, pWhere, 0,
|
|
+ pGroupBy ? 0 : &pOrderBy);
|
|
+ if( pWInfo==0 ) goto select_end;
|
|
+
|
|
+ /* Use the standard inner loop if we are not dealing with
|
|
+ ** aggregates
|
|
+ */
|
|
+ if( !isAgg ){
|
|
+ if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
|
|
+ iParm, pWInfo->iContinue, pWInfo->iBreak) ){
|
|
+ goto select_end;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* If we are dealing with aggregates, then do the special aggregate
|
|
+ ** processing.
|
|
+ */
|
|
+ else{
|
|
+ AggExpr *pAgg;
|
|
+ if( pGroupBy ){
|
|
+ int lbl1;
|
|
+ for(i=0; i<pGroupBy->nExpr; i++){
|
|
+ sqliteExprCode(pParse, pGroupBy->a[i].pExpr);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_MakeKey, pGroupBy->nExpr, 0);
|
|
+ if( pParse->db->file_format>=4 ) sqliteAddKeyType(v, pGroupBy);
|
|
+ lbl1 = sqliteVdbeMakeLabel(v);
|
|
+ sqliteVdbeAddOp(v, OP_AggFocus, 0, lbl1);
|
|
+ for(i=0, pAgg=pParse->aAgg; i<pParse->nAgg; i++, pAgg++){
|
|
+ if( pAgg->isAgg ) continue;
|
|
+ sqliteExprCode(pParse, pAgg->pExpr);
|
|
+ sqliteVdbeAddOp(v, OP_AggSet, 0, i);
|
|
+ }
|
|
+ sqliteVdbeResolveLabel(v, lbl1);
|
|
+ }
|
|
+ for(i=0, pAgg=pParse->aAgg; i<pParse->nAgg; i++, pAgg++){
|
|
+ Expr *pE;
|
|
+ int nExpr;
|
|
+ FuncDef *pDef;
|
|
+ if( !pAgg->isAgg ) continue;
|
|
+ assert( pAgg->pFunc!=0 );
|
|
+ assert( pAgg->pFunc->xStep!=0 );
|
|
+ pDef = pAgg->pFunc;
|
|
+ pE = pAgg->pExpr;
|
|
+ assert( pE!=0 );
|
|
+ assert( pE->op==TK_AGG_FUNCTION );
|
|
+ nExpr = sqliteExprCodeExprList(pParse, pE->pList, pDef->includeTypes);
|
|
+ sqliteVdbeAddOp(v, OP_Integer, i, 0);
|
|
+ sqliteVdbeOp3(v, OP_AggFunc, 0, nExpr, (char*)pDef, P3_POINTER);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* End the database scan loop.
|
|
+ */
|
|
+ sqliteWhereEnd(pWInfo);
|
|
+
|
|
+ /* If we are processing aggregates, we need to set up a second loop
|
|
+ ** over all of the aggregate values and process them.
|
|
+ */
|
|
+ if( isAgg ){
|
|
+ int endagg = sqliteVdbeMakeLabel(v);
|
|
+ int startagg;
|
|
+ startagg = sqliteVdbeAddOp(v, OP_AggNext, 0, endagg);
|
|
+ pParse->useAgg = 1;
|
|
+ if( pHaving ){
|
|
+ sqliteExprIfFalse(pParse, pHaving, startagg, 1);
|
|
+ }
|
|
+ if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
|
|
+ iParm, startagg, endagg) ){
|
|
+ goto select_end;
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, startagg);
|
|
+ sqliteVdbeResolveLabel(v, endagg);
|
|
+ sqliteVdbeAddOp(v, OP_Noop, 0, 0);
|
|
+ pParse->useAgg = 0;
|
|
+ }
|
|
+
|
|
+ /* If there is an ORDER BY clause, then we need to sort the results
|
|
+ ** and send them to the callback one by one.
|
|
+ */
|
|
+ if( pOrderBy ){
|
|
+ generateSortTail(p, v, pEList->nExpr, eDest, iParm);
|
|
+ }
|
|
+
|
|
+ /* If this was a subquery, we have now converted the subquery into a
|
|
+ ** temporary table. So delete the subquery structure from the parent
|
|
+ ** to prevent this subquery from being evaluated again and to force the
|
|
+ ** the use of the temporary table.
|
|
+ */
|
|
+ if( pParent ){
|
|
+ assert( pParent->pSrc->nSrc>parentTab );
|
|
+ assert( pParent->pSrc->a[parentTab].pSelect==p );
|
|
+ sqliteSelectDelete(p);
|
|
+ pParent->pSrc->a[parentTab].pSelect = 0;
|
|
+ }
|
|
+
|
|
+ /* The SELECT was successfully coded. Set the return code to 0
|
|
+ ** to indicate no errors.
|
|
+ */
|
|
+ rc = 0;
|
|
+
|
|
+ /* Control jumps to here if an error is encountered above, or upon
|
|
+ ** successful coding of the SELECT.
|
|
+ */
|
|
+select_end:
|
|
+ sqliteAggregateInfoReset(pParse);
|
|
+ return rc;
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/sqlite_config.w32.h
|
|
@@ -0,0 +1,8 @@
|
|
+#include "config.w32.h"
|
|
+#if ZTS
|
|
+# define THREADSAFE 1
|
|
+#endif
|
|
+#if !ZEND_DEBUG && !defined(NDEBUG)
|
|
+# define NDEBUG
|
|
+#endif
|
|
+#define SQLITE_PTR_SZ 4
|
|
\ No newline at end of file
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/sqlite.h.in
|
|
@@ -0,0 +1,886 @@
|
|
+/*
|
|
+** 2001 September 15
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This header file defines the interface that the SQLite library
|
|
+** presents to client programs.
|
|
+**
|
|
+** @(#) $Id$
|
|
+*/
|
|
+#ifndef _SQLITE_H_
|
|
+#define _SQLITE_H_
|
|
+#include <stdarg.h> /* Needed for the definition of va_list */
|
|
+
|
|
+/*
|
|
+** Make sure we can call this stuff from C++.
|
|
+*/
|
|
+#ifdef __cplusplus
|
|
+extern "C" {
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** The version of the SQLite library.
|
|
+*/
|
|
+#ifdef SQLITE_VERSION
|
|
+# undef SQLITE_VERSION
|
|
+#else
|
|
+# define SQLITE_VERSION "--VERS--"
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** The version string is also compiled into the library so that a program
|
|
+** can check to make sure that the lib*.a file and the *.h file are from
|
|
+** the same version.
|
|
+*/
|
|
+extern const char sqlite_version[];
|
|
+
|
|
+/*
|
|
+** The SQLITE_UTF8 macro is defined if the library expects to see
|
|
+** UTF-8 encoded data. The SQLITE_ISO8859 macro is defined if the
|
|
+** iso8859 encoded should be used.
|
|
+*/
|
|
+#define SQLITE_--ENCODING-- 1
|
|
+
|
|
+/*
|
|
+** The following constant holds one of two strings, "UTF-8" or "iso8859",
|
|
+** depending on which character encoding the SQLite library expects to
|
|
+** see. The character encoding makes a difference for the LIKE and GLOB
|
|
+** operators and for the LENGTH() and SUBSTR() functions.
|
|
+*/
|
|
+extern const char sqlite_encoding[];
|
|
+
|
|
+/*
|
|
+** Each open sqlite database is represented by an instance of the
|
|
+** following opaque structure.
|
|
+*/
|
|
+typedef struct sqlite sqlite;
|
|
+
|
|
+/*
|
|
+** A function to open a new sqlite database.
|
|
+**
|
|
+** If the database does not exist and mode indicates write
|
|
+** permission, then a new database is created. If the database
|
|
+** does not exist and mode does not indicate write permission,
|
|
+** then the open fails, an error message generated (if errmsg!=0)
|
|
+** and the function returns 0.
|
|
+**
|
|
+** If mode does not indicates user write permission, then the
|
|
+** database is opened read-only.
|
|
+**
|
|
+** The Truth: As currently implemented, all databases are opened
|
|
+** for writing all the time. Maybe someday we will provide the
|
|
+** ability to open a database readonly. The mode parameters is
|
|
+** provided in anticipation of that enhancement.
|
|
+*/
|
|
+sqlite *sqlite_open(const char *filename, int mode, char **errmsg);
|
|
+
|
|
+/*
|
|
+** A function to close the database.
|
|
+**
|
|
+** Call this function with a pointer to a structure that was previously
|
|
+** returned from sqlite_open() and the corresponding database will by closed.
|
|
+*/
|
|
+void sqlite_close(sqlite *);
|
|
+
|
|
+/*
|
|
+** The type for a callback function.
|
|
+*/
|
|
+typedef int (*sqlite_callback)(void*,int,char**, char**);
|
|
+
|
|
+/*
|
|
+** A function to executes one or more statements of SQL.
|
|
+**
|
|
+** If one or more of the SQL statements are queries, then
|
|
+** the callback function specified by the 3rd parameter is
|
|
+** invoked once for each row of the query result. This callback
|
|
+** should normally return 0. If the callback returns a non-zero
|
|
+** value then the query is aborted, all subsequent SQL statements
|
|
+** are skipped and the sqlite_exec() function returns the SQLITE_ABORT.
|
|
+**
|
|
+** The 4th parameter is an arbitrary pointer that is passed
|
|
+** to the callback function as its first parameter.
|
|
+**
|
|
+** The 2nd parameter to the callback function is the number of
|
|
+** columns in the query result. The 3rd parameter to the callback
|
|
+** is an array of strings holding the values for each column.
|
|
+** The 4th parameter to the callback is an array of strings holding
|
|
+** the names of each column.
|
|
+**
|
|
+** The callback function may be NULL, even for queries. A NULL
|
|
+** callback is not an error. It just means that no callback
|
|
+** will be invoked.
|
|
+**
|
|
+** If an error occurs while parsing or evaluating the SQL (but
|
|
+** not while executing the callback) then an appropriate error
|
|
+** message is written into memory obtained from malloc() and
|
|
+** *errmsg is made to point to that message. The calling function
|
|
+** is responsible for freeing the memory that holds the error
|
|
+** message. Use sqlite_freemem() for this. If errmsg==NULL,
|
|
+** then no error message is ever written.
|
|
+**
|
|
+** The return value is is SQLITE_OK if there are no errors and
|
|
+** some other return code if there is an error. The particular
|
|
+** return value depends on the type of error.
|
|
+**
|
|
+** If the query could not be executed because a database file is
|
|
+** locked or busy, then this function returns SQLITE_BUSY. (This
|
|
+** behavior can be modified somewhat using the sqlite_busy_handler()
|
|
+** and sqlite_busy_timeout() functions below.)
|
|
+*/
|
|
+int sqlite_exec(
|
|
+ sqlite*, /* An open database */
|
|
+ const char *sql, /* SQL to be executed */
|
|
+ sqlite_callback, /* Callback function */
|
|
+ void *, /* 1st argument to callback function */
|
|
+ char **errmsg /* Error msg written here */
|
|
+);
|
|
+
|
|
+/*
|
|
+** Return values for sqlite_exec() and sqlite_step()
|
|
+*/
|
|
+#define SQLITE_OK 0 /* Successful result */
|
|
+#define SQLITE_ERROR 1 /* SQL error or missing database */
|
|
+#define SQLITE_INTERNAL 2 /* An internal logic error in SQLite */
|
|
+#define SQLITE_PERM 3 /* Access permission denied */
|
|
+#define SQLITE_ABORT 4 /* Callback routine requested an abort */
|
|
+#define SQLITE_BUSY 5 /* The database file is locked */
|
|
+#define SQLITE_LOCKED 6 /* A table in the database is locked */
|
|
+#define SQLITE_NOMEM 7 /* A malloc() failed */
|
|
+#define SQLITE_READONLY 8 /* Attempt to write a readonly database */
|
|
+#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite_interrupt() */
|
|
+#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */
|
|
+#define SQLITE_CORRUPT 11 /* The database disk image is malformed */
|
|
+#define SQLITE_NOTFOUND 12 /* (Internal Only) Table or record not found */
|
|
+#define SQLITE_FULL 13 /* Insertion failed because database is full */
|
|
+#define SQLITE_CANTOPEN 14 /* Unable to open the database file */
|
|
+#define SQLITE_PROTOCOL 15 /* Database lock protocol error */
|
|
+#define SQLITE_EMPTY 16 /* (Internal Only) Database table is empty */
|
|
+#define SQLITE_SCHEMA 17 /* The database schema changed */
|
|
+#define SQLITE_TOOBIG 18 /* Too much data for one row of a table */
|
|
+#define SQLITE_CONSTRAINT 19 /* Abort due to contraint violation */
|
|
+#define SQLITE_MISMATCH 20 /* Data type mismatch */
|
|
+#define SQLITE_MISUSE 21 /* Library used incorrectly */
|
|
+#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */
|
|
+#define SQLITE_AUTH 23 /* Authorization denied */
|
|
+#define SQLITE_FORMAT 24 /* Auxiliary database format error */
|
|
+#define SQLITE_RANGE 25 /* 2nd parameter to sqlite_bind out of range */
|
|
+#define SQLITE_NOTADB 26 /* File opened that is not a database file */
|
|
+#define SQLITE_ROW 100 /* sqlite_step() has another row ready */
|
|
+#define SQLITE_DONE 101 /* sqlite_step() has finished executing */
|
|
+
|
|
+/*
|
|
+** Each entry in an SQLite table has a unique integer key. (The key is
|
|
+** the value of the INTEGER PRIMARY KEY column if there is such a column,
|
|
+** otherwise the key is generated at random. The unique key is always
|
|
+** available as the ROWID, OID, or _ROWID_ column.) The following routine
|
|
+** returns the integer key of the most recent insert in the database.
|
|
+**
|
|
+** This function is similar to the mysql_insert_id() function from MySQL.
|
|
+*/
|
|
+int sqlite_last_insert_rowid(sqlite*);
|
|
+
|
|
+/*
|
|
+** This function returns the number of database rows that were changed
|
|
+** (or inserted or deleted) by the most recent called sqlite_exec().
|
|
+**
|
|
+** All changes are counted, even if they were later undone by a
|
|
+** ROLLBACK or ABORT. Except, changes associated with creating and
|
|
+** dropping tables are not counted.
|
|
+**
|
|
+** If a callback invokes sqlite_exec() recursively, then the changes
|
|
+** in the inner, recursive call are counted together with the changes
|
|
+** in the outer call.
|
|
+**
|
|
+** SQLite implements the command "DELETE FROM table" without a WHERE clause
|
|
+** by dropping and recreating the table. (This is much faster than going
|
|
+** through and deleting individual elements form the table.) Because of
|
|
+** this optimization, the change count for "DELETE FROM table" will be
|
|
+** zero regardless of the number of elements that were originally in the
|
|
+** table. To get an accurate count of the number of rows deleted, use
|
|
+** "DELETE FROM table WHERE 1" instead.
|
|
+*/
|
|
+int sqlite_changes(sqlite*);
|
|
+
|
|
+/*
|
|
+** This function returns the number of database rows that were changed
|
|
+** by the last INSERT, UPDATE, or DELETE statment executed by sqlite_exec(),
|
|
+** or by the last VM to run to completion. The change count is not updated
|
|
+** by SQL statements other than INSERT, UPDATE or DELETE.
|
|
+**
|
|
+** Changes are counted, even if they are later undone by a ROLLBACK or
|
|
+** ABORT. Changes associated with trigger programs that execute as a
|
|
+** result of the INSERT, UPDATE, or DELETE statement are not counted.
|
|
+**
|
|
+** If a callback invokes sqlite_exec() recursively, then the changes
|
|
+** in the inner, recursive call are counted together with the changes
|
|
+** in the outer call.
|
|
+**
|
|
+** SQLite implements the command "DELETE FROM table" without a WHERE clause
|
|
+** by dropping and recreating the table. (This is much faster than going
|
|
+** through and deleting individual elements form the table.) Because of
|
|
+** this optimization, the change count for "DELETE FROM table" will be
|
|
+** zero regardless of the number of elements that were originally in the
|
|
+** table. To get an accurate count of the number of rows deleted, use
|
|
+** "DELETE FROM table WHERE 1" instead.
|
|
+**
|
|
+******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
|
|
+*/
|
|
+int sqlite_last_statement_changes(sqlite*);
|
|
+
|
|
+/* If the parameter to this routine is one of the return value constants
|
|
+** defined above, then this routine returns a constant text string which
|
|
+** descripts (in English) the meaning of the return value.
|
|
+*/
|
|
+const char *sqlite_error_string(int);
|
|
+#define sqliteErrStr sqlite_error_string /* Legacy. Do not use in new code. */
|
|
+
|
|
+/* This function causes any pending database operation to abort and
|
|
+** return at its earliest opportunity. This routine is typically
|
|
+** called in response to a user action such as pressing "Cancel"
|
|
+** or Ctrl-C where the user wants a long query operation to halt
|
|
+** immediately.
|
|
+*/
|
|
+void sqlite_interrupt(sqlite*);
|
|
+
|
|
+
|
|
+/* This function returns true if the given input string comprises
|
|
+** one or more complete SQL statements.
|
|
+**
|
|
+** The algorithm is simple. If the last token other than spaces
|
|
+** and comments is a semicolon, then return true. otherwise return
|
|
+** false.
|
|
+*/
|
|
+int sqlite_complete(const char *sql);
|
|
+
|
|
+/*
|
|
+** This routine identifies a callback function that is invoked
|
|
+** whenever an attempt is made to open a database table that is
|
|
+** currently locked by another process or thread. If the busy callback
|
|
+** is NULL, then sqlite_exec() returns SQLITE_BUSY immediately if
|
|
+** it finds a locked table. If the busy callback is not NULL, then
|
|
+** sqlite_exec() invokes the callback with three arguments. The
|
|
+** second argument is the name of the locked table and the third
|
|
+** argument is the number of times the table has been busy. If the
|
|
+** busy callback returns 0, then sqlite_exec() immediately returns
|
|
+** SQLITE_BUSY. If the callback returns non-zero, then sqlite_exec()
|
|
+** tries to open the table again and the cycle repeats.
|
|
+**
|
|
+** The default busy callback is NULL.
|
|
+**
|
|
+** Sqlite is re-entrant, so the busy handler may start a new query.
|
|
+** (It is not clear why anyone would every want to do this, but it
|
|
+** is allowed, in theory.) But the busy handler may not close the
|
|
+** database. Closing the database from a busy handler will delete
|
|
+** data structures out from under the executing query and will
|
|
+** probably result in a coredump.
|
|
+*/
|
|
+void sqlite_busy_handler(sqlite*, int(*)(void*,const char*,int), void*);
|
|
+
|
|
+/*
|
|
+** This routine sets a busy handler that sleeps for a while when a
|
|
+** table is locked. The handler will sleep multiple times until
|
|
+** at least "ms" milleseconds of sleeping have been done. After
|
|
+** "ms" milleseconds of sleeping, the handler returns 0 which
|
|
+** causes sqlite_exec() to return SQLITE_BUSY.
|
|
+**
|
|
+** Calling this routine with an argument less than or equal to zero
|
|
+** turns off all busy handlers.
|
|
+*/
|
|
+void sqlite_busy_timeout(sqlite*, int ms);
|
|
+
|
|
+/*
|
|
+** This next routine is really just a wrapper around sqlite_exec().
|
|
+** Instead of invoking a user-supplied callback for each row of the
|
|
+** result, this routine remembers each row of the result in memory
|
|
+** obtained from malloc(), then returns all of the result after the
|
|
+** query has finished.
|
|
+**
|
|
+** As an example, suppose the query result where this table:
|
|
+**
|
|
+** Name | Age
|
|
+** -----------------------
|
|
+** Alice | 43
|
|
+** Bob | 28
|
|
+** Cindy | 21
|
|
+**
|
|
+** If the 3rd argument were &azResult then after the function returns
|
|
+** azResult will contain the following data:
|
|
+**
|
|
+** azResult[0] = "Name";
|
|
+** azResult[1] = "Age";
|
|
+** azResult[2] = "Alice";
|
|
+** azResult[3] = "43";
|
|
+** azResult[4] = "Bob";
|
|
+** azResult[5] = "28";
|
|
+** azResult[6] = "Cindy";
|
|
+** azResult[7] = "21";
|
|
+**
|
|
+** Notice that there is an extra row of data containing the column
|
|
+** headers. But the *nrow return value is still 3. *ncolumn is
|
|
+** set to 2. In general, the number of values inserted into azResult
|
|
+** will be ((*nrow) + 1)*(*ncolumn).
|
|
+**
|
|
+** After the calling function has finished using the result, it should
|
|
+** pass the result data pointer to sqlite_free_table() in order to
|
|
+** release the memory that was malloc-ed. Because of the way the
|
|
+** malloc() happens, the calling function must not try to call
|
|
+** malloc() directly. Only sqlite_free_table() is able to release
|
|
+** the memory properly and safely.
|
|
+**
|
|
+** The return value of this routine is the same as from sqlite_exec().
|
|
+*/
|
|
+int sqlite_get_table(
|
|
+ sqlite*, /* An open database */
|
|
+ const char *sql, /* SQL to be executed */
|
|
+ char ***resultp, /* Result written to a char *[] that this points to */
|
|
+ int *nrow, /* Number of result rows written here */
|
|
+ int *ncolumn, /* Number of result columns written here */
|
|
+ char **errmsg /* Error msg written here */
|
|
+);
|
|
+
|
|
+/*
|
|
+** Call this routine to free the memory that sqlite_get_table() allocated.
|
|
+*/
|
|
+void sqlite_free_table(char **result);
|
|
+
|
|
+/*
|
|
+** The following routines are wrappers around sqlite_exec() and
|
|
+** sqlite_get_table(). The only difference between the routines that
|
|
+** follow and the originals is that the second argument to the
|
|
+** routines that follow is really a printf()-style format
|
|
+** string describing the SQL to be executed. Arguments to the format
|
|
+** string appear at the end of the argument list.
|
|
+**
|
|
+** All of the usual printf formatting options apply. In addition, there
|
|
+** is a "%q" option. %q works like %s in that it substitutes a null-terminated
|
|
+** string from the argument list. But %q also doubles every '\'' character.
|
|
+** %q is designed for use inside a string literal. By doubling each '\''
|
|
+** character it escapes that character and allows it to be inserted into
|
|
+** the string.
|
|
+**
|
|
+** For example, so some string variable contains text as follows:
|
|
+**
|
|
+** char *zText = "It's a happy day!";
|
|
+**
|
|
+** We can use this text in an SQL statement as follows:
|
|
+**
|
|
+** sqlite_exec_printf(db, "INSERT INTO table VALUES('%q')",
|
|
+** callback1, 0, 0, zText);
|
|
+**
|
|
+** Because the %q format string is used, the '\'' character in zText
|
|
+** is escaped and the SQL generated is as follows:
|
|
+**
|
|
+** INSERT INTO table1 VALUES('It''s a happy day!')
|
|
+**
|
|
+** This is correct. Had we used %s instead of %q, the generated SQL
|
|
+** would have looked like this:
|
|
+**
|
|
+** INSERT INTO table1 VALUES('It's a happy day!');
|
|
+**
|
|
+** This second example is an SQL syntax error. As a general rule you
|
|
+** should always use %q instead of %s when inserting text into a string
|
|
+** literal.
|
|
+*/
|
|
+int sqlite_exec_printf(
|
|
+ sqlite*, /* An open database */
|
|
+ const char *sqlFormat, /* printf-style format string for the SQL */
|
|
+ sqlite_callback, /* Callback function */
|
|
+ void *, /* 1st argument to callback function */
|
|
+ char **errmsg, /* Error msg written here */
|
|
+ ... /* Arguments to the format string. */
|
|
+);
|
|
+int sqlite_exec_vprintf(
|
|
+ sqlite*, /* An open database */
|
|
+ const char *sqlFormat, /* printf-style format string for the SQL */
|
|
+ sqlite_callback, /* Callback function */
|
|
+ void *, /* 1st argument to callback function */
|
|
+ char **errmsg, /* Error msg written here */
|
|
+ va_list ap /* Arguments to the format string. */
|
|
+);
|
|
+int sqlite_get_table_printf(
|
|
+ sqlite*, /* An open database */
|
|
+ const char *sqlFormat, /* printf-style format string for the SQL */
|
|
+ char ***resultp, /* Result written to a char *[] that this points to */
|
|
+ int *nrow, /* Number of result rows written here */
|
|
+ int *ncolumn, /* Number of result columns written here */
|
|
+ char **errmsg, /* Error msg written here */
|
|
+ ... /* Arguments to the format string */
|
|
+);
|
|
+int sqlite_get_table_vprintf(
|
|
+ sqlite*, /* An open database */
|
|
+ const char *sqlFormat, /* printf-style format string for the SQL */
|
|
+ char ***resultp, /* Result written to a char *[] that this points to */
|
|
+ int *nrow, /* Number of result rows written here */
|
|
+ int *ncolumn, /* Number of result columns written here */
|
|
+ char **errmsg, /* Error msg written here */
|
|
+ va_list ap /* Arguments to the format string */
|
|
+);
|
|
+char *sqlite_mprintf(const char*,...);
|
|
+char *sqlite_vmprintf(const char*, va_list);
|
|
+
|
|
+/*
|
|
+** Windows systems should call this routine to free memory that
|
|
+** is returned in the in the errmsg parameter of sqlite_open() when
|
|
+** SQLite is a DLL. For some reason, it does not work to call free()
|
|
+** directly.
|
|
+*/
|
|
+void sqlite_freemem(void *p);
|
|
+
|
|
+/*
|
|
+** Windows systems need functions to call to return the sqlite_version
|
|
+** and sqlite_encoding strings.
|
|
+*/
|
|
+const char *sqlite_libversion(void);
|
|
+const char *sqlite_libencoding(void);
|
|
+
|
|
+/*
|
|
+** A pointer to the following structure is used to communicate with
|
|
+** the implementations of user-defined functions.
|
|
+*/
|
|
+typedef struct sqlite_func sqlite_func;
|
|
+
|
|
+/*
|
|
+** Use the following routines to create new user-defined functions. See
|
|
+** the documentation for details.
|
|
+*/
|
|
+int sqlite_create_function(
|
|
+ sqlite*, /* Database where the new function is registered */
|
|
+ const char *zName, /* Name of the new function */
|
|
+ int nArg, /* Number of arguments. -1 means any number */
|
|
+ void (*xFunc)(sqlite_func*,int,const char**), /* C code to implement */
|
|
+ void *pUserData /* Available via the sqlite_user_data() call */
|
|
+);
|
|
+int sqlite_create_aggregate(
|
|
+ sqlite*, /* Database where the new function is registered */
|
|
+ const char *zName, /* Name of the function */
|
|
+ int nArg, /* Number of arguments */
|
|
+ void (*xStep)(sqlite_func*,int,const char**), /* Called for each row */
|
|
+ void (*xFinalize)(sqlite_func*), /* Called once to get final result */
|
|
+ void *pUserData /* Available via the sqlite_user_data() call */
|
|
+);
|
|
+
|
|
+/*
|
|
+** Use the following routine to define the datatype returned by a
|
|
+** user-defined function. The second argument can be one of the
|
|
+** constants SQLITE_NUMERIC, SQLITE_TEXT, or SQLITE_ARGS or it
|
|
+** can be an integer greater than or equal to zero. When the datatype
|
|
+** parameter is non-negative, the type of the result will be the
|
|
+** same as the datatype-th argument. If datatype==SQLITE_NUMERIC
|
|
+** then the result is always numeric. If datatype==SQLITE_TEXT then
|
|
+** the result is always text. If datatype==SQLITE_ARGS then the result
|
|
+** is numeric if any argument is numeric and is text otherwise.
|
|
+*/
|
|
+int sqlite_function_type(
|
|
+ sqlite *db, /* The database there the function is registered */
|
|
+ const char *zName, /* Name of the function */
|
|
+ int datatype /* The datatype for this function */
|
|
+);
|
|
+#define SQLITE_NUMERIC (-1)
|
|
+/* #define SQLITE_TEXT (-2) // See below */
|
|
+#define SQLITE_ARGS (-3)
|
|
+
|
|
+/*
|
|
+** SQLite version 3 defines SQLITE_TEXT differently. To allow both
|
|
+** version 2 and version 3 to be included, undefine them both if a
|
|
+** conflict is seen. Define SQLITE2_TEXT to be the version 2 value.
|
|
+*/
|
|
+#ifdef SQLITE_TEXT
|
|
+# undef SQLITE_TEXT
|
|
+#else
|
|
+# define SQLITE_TEXT (-2)
|
|
+#endif
|
|
+#define SQLITE2_TEXT (-2)
|
|
+
|
|
+
|
|
+
|
|
+/*
|
|
+** The user function implementations call one of the following four routines
|
|
+** in order to return their results. The first parameter to each of these
|
|
+** routines is a copy of the first argument to xFunc() or xFinialize().
|
|
+** The second parameter to these routines is the result to be returned.
|
|
+** A NULL can be passed as the second parameter to sqlite_set_result_string()
|
|
+** in order to return a NULL result.
|
|
+**
|
|
+** The 3rd argument to _string and _error is the number of characters to
|
|
+** take from the string. If this argument is negative, then all characters
|
|
+** up to and including the first '\000' are used.
|
|
+**
|
|
+** The sqlite_set_result_string() function allocates a buffer to hold the
|
|
+** result and returns a pointer to this buffer. The calling routine
|
|
+** (that is, the implmentation of a user function) can alter the content
|
|
+** of this buffer if desired.
|
|
+*/
|
|
+char *sqlite_set_result_string(sqlite_func*,const char*,int);
|
|
+void sqlite_set_result_int(sqlite_func*,int);
|
|
+void sqlite_set_result_double(sqlite_func*,double);
|
|
+void sqlite_set_result_error(sqlite_func*,const char*,int);
|
|
+
|
|
+/*
|
|
+** The pUserData parameter to the sqlite_create_function() and
|
|
+** sqlite_create_aggregate() routines used to register user functions
|
|
+** is available to the implementation of the function using this
|
|
+** call.
|
|
+*/
|
|
+void *sqlite_user_data(sqlite_func*);
|
|
+
|
|
+/*
|
|
+** Aggregate functions use the following routine to allocate
|
|
+** a structure for storing their state. The first time this routine
|
|
+** is called for a particular aggregate, a new structure of size nBytes
|
|
+** is allocated, zeroed, and returned. On subsequent calls (for the
|
|
+** same aggregate instance) the same buffer is returned. The implementation
|
|
+** of the aggregate can use the returned buffer to accumulate data.
|
|
+**
|
|
+** The buffer allocated is freed automatically be SQLite.
|
|
+*/
|
|
+void *sqlite_aggregate_context(sqlite_func*, int nBytes);
|
|
+
|
|
+/*
|
|
+** The next routine returns the number of calls to xStep for a particular
|
|
+** aggregate function instance. The current call to xStep counts so this
|
|
+** routine always returns at least 1.
|
|
+*/
|
|
+int sqlite_aggregate_count(sqlite_func*);
|
|
+
|
|
+/*
|
|
+** This routine registers a callback with the SQLite library. The
|
|
+** callback is invoked (at compile-time, not at run-time) for each
|
|
+** attempt to access a column of a table in the database. The callback
|
|
+** returns SQLITE_OK if access is allowed, SQLITE_DENY if the entire
|
|
+** SQL statement should be aborted with an error and SQLITE_IGNORE
|
|
+** if the column should be treated as a NULL value.
|
|
+*/
|
|
+int sqlite_set_authorizer(
|
|
+ sqlite*,
|
|
+ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
|
|
+ void *pUserData
|
|
+);
|
|
+
|
|
+/*
|
|
+** The second parameter to the access authorization function above will
|
|
+** be one of the values below. These values signify what kind of operation
|
|
+** is to be authorized. The 3rd and 4th parameters to the authorization
|
|
+** function will be parameters or NULL depending on which of the following
|
|
+** codes is used as the second parameter. The 5th parameter is the name
|
|
+** of the database ("main", "temp", etc.) if applicable. The 6th parameter
|
|
+** is the name of the inner-most trigger or view that is responsible for
|
|
+** the access attempt or NULL if this access attempt is directly from
|
|
+** input SQL code.
|
|
+**
|
|
+** Arg-3 Arg-4
|
|
+*/
|
|
+#define SQLITE_COPY 0 /* Table Name File Name */
|
|
+#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */
|
|
+#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */
|
|
+#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */
|
|
+#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */
|
|
+#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */
|
|
+#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */
|
|
+#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */
|
|
+#define SQLITE_CREATE_VIEW 8 /* View Name NULL */
|
|
+#define SQLITE_DELETE 9 /* Table Name NULL */
|
|
+#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */
|
|
+#define SQLITE_DROP_TABLE 11 /* Table Name NULL */
|
|
+#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */
|
|
+#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */
|
|
+#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */
|
|
+#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */
|
|
+#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */
|
|
+#define SQLITE_DROP_VIEW 17 /* View Name NULL */
|
|
+#define SQLITE_INSERT 18 /* Table Name NULL */
|
|
+#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */
|
|
+#define SQLITE_READ 20 /* Table Name Column Name */
|
|
+#define SQLITE_SELECT 21 /* NULL NULL */
|
|
+#define SQLITE_TRANSACTION 22 /* NULL NULL */
|
|
+#define SQLITE_UPDATE 23 /* Table Name Column Name */
|
|
+#define SQLITE_ATTACH 24 /* Filename NULL */
|
|
+#define SQLITE_DETACH 25 /* Database Name NULL */
|
|
+
|
|
+
|
|
+/*
|
|
+** The return value of the authorization function should be one of the
|
|
+** following constants:
|
|
+*/
|
|
+/* #define SQLITE_OK 0 // Allow access (This is actually defined above) */
|
|
+#define SQLITE_DENY 1 /* Abort the SQL statement with an error */
|
|
+#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
|
|
+
|
|
+/*
|
|
+** Register a function that is called at every invocation of sqlite_exec()
|
|
+** or sqlite_compile(). This function can be used (for example) to generate
|
|
+** a log file of all SQL executed against a database.
|
|
+*/
|
|
+void *sqlite_trace(sqlite*, void(*xTrace)(void*,const char*), void*);
|
|
+
|
|
+/*** The Callback-Free API
|
|
+**
|
|
+** The following routines implement a new way to access SQLite that does not
|
|
+** involve the use of callbacks.
|
|
+**
|
|
+** An sqlite_vm is an opaque object that represents a single SQL statement
|
|
+** that is ready to be executed.
|
|
+*/
|
|
+typedef struct sqlite_vm sqlite_vm;
|
|
+
|
|
+/*
|
|
+** To execute an SQLite query without the use of callbacks, you first have
|
|
+** to compile the SQL using this routine. The 1st parameter "db" is a pointer
|
|
+** to an sqlite object obtained from sqlite_open(). The 2nd parameter
|
|
+** "zSql" is the text of the SQL to be compiled. The remaining parameters
|
|
+** are all outputs.
|
|
+**
|
|
+** *pzTail is made to point to the first character past the end of the first
|
|
+** SQL statement in zSql. This routine only compiles the first statement
|
|
+** in zSql, so *pzTail is left pointing to what remains uncompiled.
|
|
+**
|
|
+** *ppVm is left pointing to a "virtual machine" that can be used to execute
|
|
+** the compiled statement. Or if there is an error, *ppVm may be set to NULL.
|
|
+** If the input text contained no SQL (if the input is and empty string or
|
|
+** a comment) then *ppVm is set to NULL.
|
|
+**
|
|
+** If any errors are detected during compilation, an error message is written
|
|
+** into space obtained from malloc() and *pzErrMsg is made to point to that
|
|
+** error message. The calling routine is responsible for freeing the text
|
|
+** of this message when it has finished with it. Use sqlite_freemem() to
|
|
+** free the message. pzErrMsg may be NULL in which case no error message
|
|
+** will be generated.
|
|
+**
|
|
+** On success, SQLITE_OK is returned. Otherwise and error code is returned.
|
|
+*/
|
|
+int sqlite_compile(
|
|
+ sqlite *db, /* The open database */
|
|
+ const char *zSql, /* SQL statement to be compiled */
|
|
+ const char **pzTail, /* OUT: uncompiled tail of zSql */
|
|
+ sqlite_vm **ppVm, /* OUT: the virtual machine to execute zSql */
|
|
+ char **pzErrmsg /* OUT: Error message. */
|
|
+);
|
|
+
|
|
+/*
|
|
+** After an SQL statement has been compiled, it is handed to this routine
|
|
+** to be executed. This routine executes the statement as far as it can
|
|
+** go then returns. The return value will be one of SQLITE_DONE,
|
|
+** SQLITE_ERROR, SQLITE_BUSY, SQLITE_ROW, or SQLITE_MISUSE.
|
|
+**
|
|
+** SQLITE_DONE means that the execute of the SQL statement is complete
|
|
+** an no errors have occurred. sqlite_step() should not be called again
|
|
+** for the same virtual machine. *pN is set to the number of columns in
|
|
+** the result set and *pazColName is set to an array of strings that
|
|
+** describe the column names and datatypes. The name of the i-th column
|
|
+** is (*pazColName)[i] and the datatype of the i-th column is
|
|
+** (*pazColName)[i+*pN]. *pazValue is set to NULL.
|
|
+**
|
|
+** SQLITE_ERROR means that the virtual machine encountered a run-time
|
|
+** error. sqlite_step() should not be called again for the same
|
|
+** virtual machine. *pN is set to 0 and *pazColName and *pazValue are set
|
|
+** to NULL. Use sqlite_finalize() to obtain the specific error code
|
|
+** and the error message text for the error.
|
|
+**
|
|
+** SQLITE_BUSY means that an attempt to open the database failed because
|
|
+** another thread or process is holding a lock. The calling routine
|
|
+** can try again to open the database by calling sqlite_step() again.
|
|
+** The return code will only be SQLITE_BUSY if no busy handler is registered
|
|
+** using the sqlite_busy_handler() or sqlite_busy_timeout() routines. If
|
|
+** a busy handler callback has been registered but returns 0, then this
|
|
+** routine will return SQLITE_ERROR and sqltie_finalize() will return
|
|
+** SQLITE_BUSY when it is called.
|
|
+**
|
|
+** SQLITE_ROW means that a single row of the result is now available.
|
|
+** The data is contained in *pazValue. The value of the i-th column is
|
|
+** (*azValue)[i]. *pN and *pazColName are set as described in SQLITE_DONE.
|
|
+** Invoke sqlite_step() again to advance to the next row.
|
|
+**
|
|
+** SQLITE_MISUSE is returned if sqlite_step() is called incorrectly.
|
|
+** For example, if you call sqlite_step() after the virtual machine
|
|
+** has halted (after a prior call to sqlite_step() has returned SQLITE_DONE)
|
|
+** or if you call sqlite_step() with an incorrectly initialized virtual
|
|
+** machine or a virtual machine that has been deleted or that is associated
|
|
+** with an sqlite structure that has been closed.
|
|
+*/
|
|
+int sqlite_step(
|
|
+ sqlite_vm *pVm, /* The virtual machine to execute */
|
|
+ int *pN, /* OUT: Number of columns in result */
|
|
+ const char ***pazValue, /* OUT: Column data */
|
|
+ const char ***pazColName /* OUT: Column names and datatypes */
|
|
+);
|
|
+
|
|
+/*
|
|
+** This routine is called to delete a virtual machine after it has finished
|
|
+** executing. The return value is the result code. SQLITE_OK is returned
|
|
+** if the statement executed successfully and some other value is returned if
|
|
+** there was any kind of error. If an error occurred and pzErrMsg is not
|
|
+** NULL, then an error message is written into memory obtained from malloc()
|
|
+** and *pzErrMsg is made to point to that error message. The calling routine
|
|
+** should use sqlite_freemem() to delete this message when it has finished
|
|
+** with it.
|
|
+**
|
|
+** This routine can be called at any point during the execution of the
|
|
+** virtual machine. If the virtual machine has not completed execution
|
|
+** when this routine is called, that is like encountering an error or
|
|
+** an interrupt. (See sqlite_interrupt().) Incomplete updates may be
|
|
+** rolled back and transactions cancelled, depending on the circumstances,
|
|
+** and the result code returned will be SQLITE_ABORT.
|
|
+*/
|
|
+int sqlite_finalize(sqlite_vm*, char **pzErrMsg);
|
|
+
|
|
+/*
|
|
+** This routine deletes the virtual machine, writes any error message to
|
|
+** *pzErrMsg and returns an SQLite return code in the same way as the
|
|
+** sqlite_finalize() function.
|
|
+**
|
|
+** Additionally, if ppVm is not NULL, *ppVm is left pointing to a new virtual
|
|
+** machine loaded with the compiled version of the original query ready for
|
|
+** execution.
|
|
+**
|
|
+** If sqlite_reset() returns SQLITE_SCHEMA, then *ppVm is set to NULL.
|
|
+**
|
|
+******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
|
|
+*/
|
|
+int sqlite_reset(sqlite_vm*, char **pzErrMsg);
|
|
+
|
|
+/*
|
|
+** If the SQL that was handed to sqlite_compile contains variables that
|
|
+** are represeted in the SQL text by a question mark ('?'). This routine
|
|
+** is used to assign values to those variables.
|
|
+**
|
|
+** The first parameter is a virtual machine obtained from sqlite_compile().
|
|
+** The 2nd "idx" parameter determines which variable in the SQL statement
|
|
+** to bind the value to. The left most '?' is 1. The 3rd parameter is
|
|
+** the value to assign to that variable. The 4th parameter is the number
|
|
+** of bytes in the value, including the terminating \000 for strings.
|
|
+** Finally, the 5th "copy" parameter is TRUE if SQLite should make its
|
|
+** own private copy of this value, or false if the space that the 3rd
|
|
+** parameter points to will be unchanging and can be used directly by
|
|
+** SQLite.
|
|
+**
|
|
+** Unbound variables are treated as having a value of NULL. To explicitly
|
|
+** set a variable to NULL, call this routine with the 3rd parameter as a
|
|
+** NULL pointer.
|
|
+**
|
|
+** If the 4th "len" parameter is -1, then strlen() is used to find the
|
|
+** length.
|
|
+**
|
|
+** This routine can only be called immediately after sqlite_compile()
|
|
+** or sqlite_reset() and before any calls to sqlite_step().
|
|
+**
|
|
+******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
|
|
+*/
|
|
+int sqlite_bind(sqlite_vm*, int idx, const char *value, int len, int copy);
|
|
+
|
|
+/*
|
|
+** This routine configures a callback function - the progress callback - that
|
|
+** is invoked periodically during long running calls to sqlite_exec(),
|
|
+** sqlite_step() and sqlite_get_table(). An example use for this API is to keep
|
|
+** a GUI updated during a large query.
|
|
+**
|
|
+** The progress callback is invoked once for every N virtual machine opcodes,
|
|
+** where N is the second argument to this function. The progress callback
|
|
+** itself is identified by the third argument to this function. The fourth
|
|
+** argument to this function is a void pointer passed to the progress callback
|
|
+** function each time it is invoked.
|
|
+**
|
|
+** If a call to sqlite_exec(), sqlite_step() or sqlite_get_table() results
|
|
+** in less than N opcodes being executed, then the progress callback is not
|
|
+** invoked.
|
|
+**
|
|
+** Calling this routine overwrites any previously installed progress callback.
|
|
+** To remove the progress callback altogether, pass NULL as the third
|
|
+** argument to this function.
|
|
+**
|
|
+** If the progress callback returns a result other than 0, then the current
|
|
+** query is immediately terminated and any database changes rolled back. If the
|
|
+** query was part of a larger transaction, then the transaction is not rolled
|
|
+** back and remains active. The sqlite_exec() call returns SQLITE_ABORT.
|
|
+**
|
|
+******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
|
|
+*/
|
|
+void sqlite_progress_handler(sqlite*, int, int(*)(void*), void*);
|
|
+
|
|
+/*
|
|
+** Register a callback function to be invoked whenever a new transaction
|
|
+** is committed. The pArg argument is passed through to the callback.
|
|
+** callback. If the callback function returns non-zero, then the commit
|
|
+** is converted into a rollback.
|
|
+**
|
|
+** If another function was previously registered, its pArg value is returned.
|
|
+** Otherwise NULL is returned.
|
|
+**
|
|
+** Registering a NULL function disables the callback.
|
|
+**
|
|
+******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
|
|
+*/
|
|
+void *sqlite_commit_hook(sqlite*, int(*)(void*), void*);
|
|
+
|
|
+/*
|
|
+** Open an encrypted SQLite database. If pKey==0 or nKey==0, this routine
|
|
+** is the same as sqlite_open().
|
|
+**
|
|
+** The code to implement this API is not available in the public release
|
|
+** of SQLite.
|
|
+*/
|
|
+sqlite *sqlite_open_encrypted(
|
|
+ const char *zFilename, /* Name of the encrypted database */
|
|
+ const void *pKey, /* Pointer to the key */
|
|
+ int nKey, /* Number of bytes in the key */
|
|
+ int *pErrcode, /* Write error code here */
|
|
+ char **pzErrmsg /* Write error message here */
|
|
+);
|
|
+
|
|
+/*
|
|
+** Change the key on an open database. If the current database is not
|
|
+** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the
|
|
+** database is decrypted.
|
|
+**
|
|
+** The code to implement this API is not available in the public release
|
|
+** of SQLite.
|
|
+*/
|
|
+int sqlite_rekey(
|
|
+ sqlite *db, /* Database to be rekeyed */
|
|
+ const void *pKey, int nKey /* The new key */
|
|
+);
|
|
+
|
|
+/*
|
|
+** Encode a binary buffer "in" of size n bytes so that it contains
|
|
+** no instances of characters '\'' or '\000'. The output is
|
|
+** null-terminated and can be used as a string value in an INSERT
|
|
+** or UPDATE statement. Use sqlite_decode_binary() to convert the
|
|
+** string back into its original binary.
|
|
+**
|
|
+** The result is written into a preallocated output buffer "out".
|
|
+** "out" must be able to hold at least 2 +(257*n)/254 bytes.
|
|
+** In other words, the output will be expanded by as much as 3
|
|
+** bytes for every 254 bytes of input plus 2 bytes of fixed overhead.
|
|
+** (This is approximately 2 + 1.0118*n or about a 1.2% size increase.)
|
|
+**
|
|
+** The return value is the number of characters in the encoded
|
|
+** string, excluding the "\000" terminator.
|
|
+**
|
|
+** If out==NULL then no output is generated but the routine still returns
|
|
+** the number of characters that would have been generated if out had
|
|
+** not been NULL.
|
|
+*/
|
|
+int sqlite_encode_binary(const unsigned char *in, int n, unsigned char *out);
|
|
+
|
|
+/*
|
|
+** Decode the string "in" into binary data and write it into "out".
|
|
+** This routine reverses the encoding created by sqlite_encode_binary().
|
|
+** The output will always be a few bytes less than the input. The number
|
|
+** of bytes of output is returned. If the input is not a well-formed
|
|
+** encoding, -1 is returned.
|
|
+**
|
|
+** The "in" and "out" parameters may point to the same buffer in order
|
|
+** to decode a string in place.
|
|
+*/
|
|
+int sqlite_decode_binary(const unsigned char *in, unsigned char *out);
|
|
+
|
|
+#ifdef __cplusplus
|
|
+} /* End of the 'extern "C"' block */
|
|
+#endif
|
|
+
|
|
+#endif /* _SQLITE_H_ */
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/sqliteInt.h
|
|
@@ -0,0 +1,1270 @@
|
|
+/*
|
|
+** 2001 September 15
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** Internal interface definitions for SQLite.
|
|
+**
|
|
+** @(#) $Id$
|
|
+*/
|
|
+#include "config.h"
|
|
+#include "sqlite.h"
|
|
+#include "hash.h"
|
|
+#include "parse.h"
|
|
+#include "btree.h"
|
|
+#include <stdio.h>
|
|
+#include <stdlib.h>
|
|
+#include <string.h>
|
|
+#include <assert.h>
|
|
+
|
|
+/*
|
|
+** The maximum number of in-memory pages to use for the main database
|
|
+** table and for temporary tables.
|
|
+*/
|
|
+#define MAX_PAGES 2000
|
|
+#define TEMP_PAGES 500
|
|
+
|
|
+/*
|
|
+** If the following macro is set to 1, then NULL values are considered
|
|
+** distinct for the SELECT DISTINCT statement and for UNION or EXCEPT
|
|
+** compound queries. No other SQL database engine (among those tested)
|
|
+** works this way except for OCELOT. But the SQL92 spec implies that
|
|
+** this is how things should work.
|
|
+**
|
|
+** If the following macro is set to 0, then NULLs are indistinct for
|
|
+** SELECT DISTINCT and for UNION.
|
|
+*/
|
|
+#define NULL_ALWAYS_DISTINCT 0
|
|
+
|
|
+/*
|
|
+** If the following macro is set to 1, then NULL values are considered
|
|
+** distinct when determining whether or not two entries are the same
|
|
+** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL,
|
|
+** OCELOT, and Firebird all work. The SQL92 spec explicitly says this
|
|
+** is the way things are suppose to work.
|
|
+**
|
|
+** If the following macro is set to 0, the NULLs are indistinct for
|
|
+** a UNIQUE index. In this mode, you can only have a single NULL entry
|
|
+** for a column declared UNIQUE. This is the way Informix and SQL Server
|
|
+** work.
|
|
+*/
|
|
+#define NULL_DISTINCT_FOR_UNIQUE 1
|
|
+
|
|
+/*
|
|
+** The maximum number of attached databases. This must be at least 2
|
|
+** in order to support the main database file (0) and the file used to
|
|
+** hold temporary tables (1). And it must be less than 256 because
|
|
+** an unsigned character is used to stored the database index.
|
|
+*/
|
|
+#define MAX_ATTACHED 10
|
|
+
|
|
+/*
|
|
+** The next macro is used to determine where TEMP tables and indices
|
|
+** are stored. Possible values:
|
|
+**
|
|
+** 0 Always use a temporary files
|
|
+** 1 Use a file unless overridden by "PRAGMA temp_store"
|
|
+** 2 Use memory unless overridden by "PRAGMA temp_store"
|
|
+** 3 Always use memory
|
|
+*/
|
|
+#ifndef TEMP_STORE
|
|
+# define TEMP_STORE 1
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** When building SQLite for embedded systems where memory is scarce,
|
|
+** you can define one or more of the following macros to omit extra
|
|
+** features of the library and thus keep the size of the library to
|
|
+** a minimum.
|
|
+*/
|
|
+/* #define SQLITE_OMIT_AUTHORIZATION 1 */
|
|
+/* #define SQLITE_OMIT_INMEMORYDB 1 */
|
|
+/* #define SQLITE_OMIT_VACUUM 1 */
|
|
+/* #define SQLITE_OMIT_DATETIME_FUNCS 1 */
|
|
+/* #define SQLITE_OMIT_PROGRESS_CALLBACK 1 */
|
|
+
|
|
+/*
|
|
+** Integers of known sizes. These typedefs might change for architectures
|
|
+** where the sizes very. Preprocessor macros are available so that the
|
|
+** types can be conveniently redefined at compile-type. Like this:
|
|
+**
|
|
+** cc '-DUINTPTR_TYPE=long long int' ...
|
|
+*/
|
|
+#ifndef UINT32_TYPE
|
|
+# define UINT32_TYPE unsigned int
|
|
+#endif
|
|
+#ifndef UINT16_TYPE
|
|
+# define UINT16_TYPE unsigned short int
|
|
+#endif
|
|
+#ifndef INT16_TYPE
|
|
+# define INT16_TYPE short int
|
|
+#endif
|
|
+#ifndef UINT8_TYPE
|
|
+# define UINT8_TYPE unsigned char
|
|
+#endif
|
|
+#ifndef INT8_TYPE
|
|
+# define INT8_TYPE signed char
|
|
+#endif
|
|
+#ifndef INTPTR_TYPE
|
|
+# if SQLITE_PTR_SZ==4
|
|
+# define INTPTR_TYPE int
|
|
+# else
|
|
+# define INTPTR_TYPE long long
|
|
+# endif
|
|
+#endif
|
|
+typedef UINT32_TYPE u32; /* 4-byte unsigned integer */
|
|
+typedef UINT16_TYPE u16; /* 2-byte unsigned integer */
|
|
+typedef INT16_TYPE i16; /* 2-byte signed integer */
|
|
+typedef UINT8_TYPE u8; /* 1-byte unsigned integer */
|
|
+typedef UINT8_TYPE i8; /* 1-byte signed integer */
|
|
+typedef INTPTR_TYPE ptr; /* Big enough to hold a pointer */
|
|
+typedef unsigned INTPTR_TYPE uptr; /* Big enough to hold a pointer */
|
|
+
|
|
+/*
|
|
+** Defer sourcing vdbe.h until after the "u8" typedef is defined.
|
|
+*/
|
|
+#include "vdbe.h"
|
|
+
|
|
+/*
|
|
+** Most C compilers these days recognize "long double", don't they?
|
|
+** Just in case we encounter one that does not, we will create a macro
|
|
+** for long double so that it can be easily changed to just "double".
|
|
+*/
|
|
+#ifndef LONGDOUBLE_TYPE
|
|
+# define LONGDOUBLE_TYPE long double
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** This macro casts a pointer to an integer. Useful for doing
|
|
+** pointer arithmetic.
|
|
+*/
|
|
+#define Addr(X) ((uptr)X)
|
|
+
|
|
+/*
|
|
+** The maximum number of bytes of data that can be put into a single
|
|
+** row of a single table. The upper bound on this limit is 16777215
|
|
+** bytes (or 16MB-1). We have arbitrarily set the limit to just 1MB
|
|
+** here because the overflow page chain is inefficient for really big
|
|
+** records and we want to discourage people from thinking that
|
|
+** multi-megabyte records are OK. If your needs are different, you can
|
|
+** change this define and recompile to increase or decrease the record
|
|
+** size.
|
|
+**
|
|
+** The 16777198 is computed as follows: 238 bytes of payload on the
|
|
+** original pages plus 16448 overflow pages each holding 1020 bytes of
|
|
+** data.
|
|
+*/
|
|
+#define MAX_BYTES_PER_ROW 1048576
|
|
+/* #define MAX_BYTES_PER_ROW 16777198 */
|
|
+
|
|
+/*
|
|
+** If memory allocation problems are found, recompile with
|
|
+**
|
|
+** -DMEMORY_DEBUG=1
|
|
+**
|
|
+** to enable some sanity checking on malloc() and free(). To
|
|
+** check for memory leaks, recompile with
|
|
+**
|
|
+** -DMEMORY_DEBUG=2
|
|
+**
|
|
+** and a line of text will be written to standard error for
|
|
+** each malloc() and free(). This output can be analyzed
|
|
+** by an AWK script to determine if there are any leaks.
|
|
+*/
|
|
+#ifdef MEMORY_DEBUG
|
|
+# define sqliteMalloc(X) sqliteMalloc_(X,1,__FILE__,__LINE__)
|
|
+# define sqliteMallocRaw(X) sqliteMalloc_(X,0,__FILE__,__LINE__)
|
|
+# define sqliteFree(X) sqliteFree_(X,__FILE__,__LINE__)
|
|
+# define sqliteRealloc(X,Y) sqliteRealloc_(X,Y,__FILE__,__LINE__)
|
|
+# define sqliteStrDup(X) sqliteStrDup_(X,__FILE__,__LINE__)
|
|
+# define sqliteStrNDup(X,Y) sqliteStrNDup_(X,Y,__FILE__,__LINE__)
|
|
+ void sqliteStrRealloc(char**);
|
|
+#else
|
|
+# define sqliteRealloc_(X,Y) sqliteRealloc(X,Y)
|
|
+# define sqliteStrRealloc(X)
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** This variable gets set if malloc() ever fails. After it gets set,
|
|
+** the SQLite library shuts down permanently.
|
|
+*/
|
|
+extern int sqlite_malloc_failed;
|
|
+
|
|
+/*
|
|
+** The following global variables are used for testing and debugging
|
|
+** only. They only work if MEMORY_DEBUG is defined.
|
|
+*/
|
|
+#ifdef MEMORY_DEBUG
|
|
+extern int sqlite_nMalloc; /* Number of sqliteMalloc() calls */
|
|
+extern int sqlite_nFree; /* Number of sqliteFree() calls */
|
|
+extern int sqlite_iMallocFail; /* Fail sqliteMalloc() after this many calls */
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** Name of the master database table. The master database table
|
|
+** is a special table that holds the names and attributes of all
|
|
+** user tables and indices.
|
|
+*/
|
|
+#define MASTER_NAME "sqlite_master"
|
|
+#define TEMP_MASTER_NAME "sqlite_temp_master"
|
|
+
|
|
+/*
|
|
+** The name of the schema table.
|
|
+*/
|
|
+#define SCHEMA_TABLE(x) (x?TEMP_MASTER_NAME:MASTER_NAME)
|
|
+
|
|
+/*
|
|
+** A convenience macro that returns the number of elements in
|
|
+** an array.
|
|
+*/
|
|
+#define ArraySize(X) (sizeof(X)/sizeof(X[0]))
|
|
+
|
|
+/*
|
|
+** Forward references to structures
|
|
+*/
|
|
+typedef struct Column Column;
|
|
+typedef struct Table Table;
|
|
+typedef struct Index Index;
|
|
+typedef struct Instruction Instruction;
|
|
+typedef struct Expr Expr;
|
|
+typedef struct ExprList ExprList;
|
|
+typedef struct Parse Parse;
|
|
+typedef struct Token Token;
|
|
+typedef struct IdList IdList;
|
|
+typedef struct SrcList SrcList;
|
|
+typedef struct WhereInfo WhereInfo;
|
|
+typedef struct WhereLevel WhereLevel;
|
|
+typedef struct Select Select;
|
|
+typedef struct AggExpr AggExpr;
|
|
+typedef struct FuncDef FuncDef;
|
|
+typedef struct Trigger Trigger;
|
|
+typedef struct TriggerStep TriggerStep;
|
|
+typedef struct TriggerStack TriggerStack;
|
|
+typedef struct FKey FKey;
|
|
+typedef struct Db Db;
|
|
+typedef struct AuthContext AuthContext;
|
|
+
|
|
+/*
|
|
+** Each database file to be accessed by the system is an instance
|
|
+** of the following structure. There are normally two of these structures
|
|
+** in the sqlite.aDb[] array. aDb[0] is the main database file and
|
|
+** aDb[1] is the database file used to hold temporary tables. Additional
|
|
+** databases may be attached.
|
|
+*/
|
|
+struct Db {
|
|
+ char *zName; /* Name of this database */
|
|
+ Btree *pBt; /* The B*Tree structure for this database file */
|
|
+ int schema_cookie; /* Database schema version number for this file */
|
|
+ Hash tblHash; /* All tables indexed by name */
|
|
+ Hash idxHash; /* All (named) indices indexed by name */
|
|
+ Hash trigHash; /* All triggers indexed by name */
|
|
+ Hash aFKey; /* Foreign keys indexed by to-table */
|
|
+ u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */
|
|
+ u16 flags; /* Flags associated with this database */
|
|
+ void *pAux; /* Auxiliary data. Usually NULL */
|
|
+ void (*xFreeAux)(void*); /* Routine to free pAux */
|
|
+};
|
|
+
|
|
+/*
|
|
+** These macros can be used to test, set, or clear bits in the
|
|
+** Db.flags field.
|
|
+*/
|
|
+#define DbHasProperty(D,I,P) (((D)->aDb[I].flags&(P))==(P))
|
|
+#define DbHasAnyProperty(D,I,P) (((D)->aDb[I].flags&(P))!=0)
|
|
+#define DbSetProperty(D,I,P) (D)->aDb[I].flags|=(P)
|
|
+#define DbClearProperty(D,I,P) (D)->aDb[I].flags&=~(P)
|
|
+
|
|
+/*
|
|
+** Allowed values for the DB.flags field.
|
|
+**
|
|
+** The DB_Locked flag is set when the first OP_Transaction or OP_Checkpoint
|
|
+** opcode is emitted for a database. This prevents multiple occurances
|
|
+** of those opcodes for the same database in the same program. Similarly,
|
|
+** the DB_Cookie flag is set when the OP_VerifyCookie opcode is emitted,
|
|
+** and prevents duplicate OP_VerifyCookies from taking up space and slowing
|
|
+** down execution.
|
|
+**
|
|
+** The DB_SchemaLoaded flag is set after the database schema has been
|
|
+** read into internal hash tables.
|
|
+**
|
|
+** DB_UnresetViews means that one or more views have column names that
|
|
+** have been filled out. If the schema changes, these column names might
|
|
+** changes and so the view will need to be reset.
|
|
+*/
|
|
+#define DB_Locked 0x0001 /* OP_Transaction opcode has been emitted */
|
|
+#define DB_Cookie 0x0002 /* OP_VerifyCookie opcode has been emiited */
|
|
+#define DB_SchemaLoaded 0x0004 /* The schema has been loaded */
|
|
+#define DB_UnresetViews 0x0008 /* Some views have defined column names */
|
|
+
|
|
+
|
|
+/*
|
|
+** Each database is an instance of the following structure.
|
|
+**
|
|
+** The sqlite.file_format is initialized by the database file
|
|
+** and helps determines how the data in the database file is
|
|
+** represented. This field allows newer versions of the library
|
|
+** to read and write older databases. The various file formats
|
|
+** are as follows:
|
|
+**
|
|
+** file_format==1 Version 2.1.0.
|
|
+** file_format==2 Version 2.2.0. Add support for INTEGER PRIMARY KEY.
|
|
+** file_format==3 Version 2.6.0. Fix empty-string index bug.
|
|
+** file_format==4 Version 2.7.0. Add support for separate numeric and
|
|
+** text datatypes.
|
|
+**
|
|
+** The sqlite.temp_store determines where temporary database files
|
|
+** are stored. If 1, then a file is created to hold those tables. If
|
|
+** 2, then they are held in memory. 0 means use the default value in
|
|
+** the TEMP_STORE macro.
|
|
+**
|
|
+** The sqlite.lastRowid records the last insert rowid generated by an
|
|
+** insert statement. Inserts on views do not affect its value. Each
|
|
+** trigger has its own context, so that lastRowid can be updated inside
|
|
+** triggers as usual. The previous value will be restored once the trigger
|
|
+** exits. Upon entering a before or instead of trigger, lastRowid is no
|
|
+** longer (since after version 2.8.12) reset to -1.
|
|
+**
|
|
+** The sqlite.nChange does not count changes within triggers and keeps no
|
|
+** context. It is reset at start of sqlite_exec.
|
|
+** The sqlite.lsChange represents the number of changes made by the last
|
|
+** insert, update, or delete statement. It remains constant throughout the
|
|
+** length of a statement and is then updated by OP_SetCounts. It keeps a
|
|
+** context stack just like lastRowid so that the count of changes
|
|
+** within a trigger is not seen outside the trigger. Changes to views do not
|
|
+** affect the value of lsChange.
|
|
+** The sqlite.csChange keeps track of the number of current changes (since
|
|
+** the last statement) and is used to update sqlite_lsChange.
|
|
+*/
|
|
+struct sqlite {
|
|
+ int nDb; /* Number of backends currently in use */
|
|
+ Db *aDb; /* All backends */
|
|
+ Db aDbStatic[2]; /* Static space for the 2 default backends */
|
|
+ int flags; /* Miscellanous flags. See below */
|
|
+ u8 file_format; /* What file format version is this database? */
|
|
+ u8 safety_level; /* How aggressive at synching data to disk */
|
|
+ u8 want_to_close; /* Close after all VDBEs are deallocated */
|
|
+ u8 temp_store; /* 1=file, 2=memory, 0=compile-time default */
|
|
+ u8 onError; /* Default conflict algorithm */
|
|
+ int next_cookie; /* Next value of aDb[0].schema_cookie */
|
|
+ int cache_size; /* Number of pages to use in the cache */
|
|
+ int nTable; /* Number of tables in the database */
|
|
+ void *pBusyArg; /* 1st Argument to the busy callback */
|
|
+ int (*xBusyCallback)(void *,const char*,int); /* The busy callback */
|
|
+ void *pCommitArg; /* Argument to xCommitCallback() */
|
|
+ int (*xCommitCallback)(void*);/* Invoked at every commit. */
|
|
+ Hash aFunc; /* All functions that can be in SQL exprs */
|
|
+ int lastRowid; /* ROWID of most recent insert (see above) */
|
|
+ int priorNewRowid; /* Last randomly generated ROWID */
|
|
+ int magic; /* Magic number for detect library misuse */
|
|
+ int nChange; /* Number of rows changed (see above) */
|
|
+ int lsChange; /* Last statement change count (see above) */
|
|
+ int csChange; /* Current statement change count (see above) */
|
|
+ struct sqliteInitInfo { /* Information used during initialization */
|
|
+ int iDb; /* When back is being initialized */
|
|
+ int newTnum; /* Rootpage of table being initialized */
|
|
+ u8 busy; /* TRUE if currently initializing */
|
|
+ } init;
|
|
+ struct Vdbe *pVdbe; /* List of active virtual machines */
|
|
+ void (*xTrace)(void*,const char*); /* Trace function */
|
|
+ void *pTraceArg; /* Argument to the trace function */
|
|
+#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
+ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
|
|
+ /* Access authorization function */
|
|
+ void *pAuthArg; /* 1st argument to the access auth function */
|
|
+#endif
|
|
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
+ int (*xProgress)(void *); /* The progress callback */
|
|
+ void *pProgressArg; /* Argument to the progress callback */
|
|
+ int nProgressOps; /* Number of opcodes for progress callback */
|
|
+#endif
|
|
+};
|
|
+
|
|
+/*
|
|
+** Possible values for the sqlite.flags and or Db.flags fields.
|
|
+**
|
|
+** On sqlite.flags, the SQLITE_InTrans value means that we have
|
|
+** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement
|
|
+** transaction is active on that particular database file.
|
|
+*/
|
|
+#define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */
|
|
+#define SQLITE_Initialized 0x00000002 /* True after initialization */
|
|
+#define SQLITE_Interrupt 0x00000004 /* Cancel current operation */
|
|
+#define SQLITE_InTrans 0x00000008 /* True if in a transaction */
|
|
+#define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */
|
|
+#define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */
|
|
+#define SQLITE_ShortColNames 0x00000040 /* Show short columns names */
|
|
+#define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */
|
|
+ /* DELETE, or UPDATE and return */
|
|
+ /* the count using a callback. */
|
|
+#define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */
|
|
+ /* result set is empty */
|
|
+#define SQLITE_ReportTypes 0x00000200 /* Include information on datatypes */
|
|
+ /* in 4th argument of callback */
|
|
+
|
|
+/*
|
|
+** Possible values for the sqlite.magic field.
|
|
+** The numbers are obtained at random and have no special meaning, other
|
|
+** than being distinct from one another.
|
|
+*/
|
|
+#define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */
|
|
+#define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */
|
|
+#define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */
|
|
+#define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */
|
|
+
|
|
+/*
|
|
+** Each SQL function is defined by an instance of the following
|
|
+** structure. A pointer to this structure is stored in the sqlite.aFunc
|
|
+** hash table. When multiple functions have the same name, the hash table
|
|
+** points to a linked list of these structures.
|
|
+*/
|
|
+struct FuncDef {
|
|
+ void (*xFunc)(sqlite_func*,int,const char**); /* Regular function */
|
|
+ void (*xStep)(sqlite_func*,int,const char**); /* Aggregate function step */
|
|
+ void (*xFinalize)(sqlite_func*); /* Aggregate function finializer */
|
|
+ signed char nArg; /* Number of arguments. -1 means unlimited */
|
|
+ signed char dataType; /* Arg that determines datatype. -1=NUMERIC, */
|
|
+ /* -2=TEXT. -3=SQLITE_ARGS */
|
|
+ u8 includeTypes; /* Add datatypes to args of xFunc and xStep */
|
|
+ void *pUserData; /* User data parameter */
|
|
+ FuncDef *pNext; /* Next function with same name */
|
|
+};
|
|
+
|
|
+/*
|
|
+** information about each column of an SQL table is held in an instance
|
|
+** of this structure.
|
|
+*/
|
|
+struct Column {
|
|
+ char *zName; /* Name of this column */
|
|
+ char *zDflt; /* Default value of this column */
|
|
+ char *zType; /* Data type for this column */
|
|
+ u8 notNull; /* True if there is a NOT NULL constraint */
|
|
+ u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */
|
|
+ u8 sortOrder; /* Some combination of SQLITE_SO_... values */
|
|
+ u8 dottedName; /* True if zName contains a "." character */
|
|
+};
|
|
+
|
|
+/*
|
|
+** The allowed sort orders.
|
|
+**
|
|
+** The TEXT and NUM values use bits that do not overlap with DESC and ASC.
|
|
+** That way the two can be combined into a single number.
|
|
+*/
|
|
+#define SQLITE_SO_UNK 0 /* Use the default collating type. (SCT_NUM) */
|
|
+#define SQLITE_SO_TEXT 2 /* Sort using memcmp() */
|
|
+#define SQLITE_SO_NUM 4 /* Sort using sqliteCompare() */
|
|
+#define SQLITE_SO_TYPEMASK 6 /* Mask to extract the collating sequence */
|
|
+#define SQLITE_SO_ASC 0 /* Sort in ascending order */
|
|
+#define SQLITE_SO_DESC 1 /* Sort in descending order */
|
|
+#define SQLITE_SO_DIRMASK 1 /* Mask to extract the sort direction */
|
|
+
|
|
+/*
|
|
+** Each SQL table is represented in memory by an instance of the
|
|
+** following structure.
|
|
+**
|
|
+** Table.zName is the name of the table. The case of the original
|
|
+** CREATE TABLE statement is stored, but case is not significant for
|
|
+** comparisons.
|
|
+**
|
|
+** Table.nCol is the number of columns in this table. Table.aCol is a
|
|
+** pointer to an array of Column structures, one for each column.
|
|
+**
|
|
+** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
|
|
+** the column that is that key. Otherwise Table.iPKey is negative. Note
|
|
+** that the datatype of the PRIMARY KEY must be INTEGER for this field to
|
|
+** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of
|
|
+** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid
|
|
+** is generated for each row of the table. Table.hasPrimKey is true if
|
|
+** the table has any PRIMARY KEY, INTEGER or otherwise.
|
|
+**
|
|
+** Table.tnum is the page number for the root BTree page of the table in the
|
|
+** database file. If Table.iDb is the index of the database table backend
|
|
+** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that
|
|
+** holds temporary tables and indices. If Table.isTransient
|
|
+** is true, then the table is stored in a file that is automatically deleted
|
|
+** when the VDBE cursor to the table is closed. In this case Table.tnum
|
|
+** refers VDBE cursor number that holds the table open, not to the root
|
|
+** page number. Transient tables are used to hold the results of a
|
|
+** sub-query that appears instead of a real table name in the FROM clause
|
|
+** of a SELECT statement.
|
|
+*/
|
|
+struct Table {
|
|
+ char *zName; /* Name of the table */
|
|
+ int nCol; /* Number of columns in this table */
|
|
+ Column *aCol; /* Information about each column */
|
|
+ int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */
|
|
+ Index *pIndex; /* List of SQL indexes on this table. */
|
|
+ int tnum; /* Root BTree node for this table (see note above) */
|
|
+ Select *pSelect; /* NULL for tables. Points to definition if a view. */
|
|
+ u8 readOnly; /* True if this table should not be written by the user */
|
|
+ u8 iDb; /* Index into sqlite.aDb[] of the backend for this table */
|
|
+ u8 isTransient; /* True if automatically deleted when VDBE finishes */
|
|
+ u8 hasPrimKey; /* True if there exists a primary key */
|
|
+ u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */
|
|
+ Trigger *pTrigger; /* List of SQL triggers on this table */
|
|
+ FKey *pFKey; /* Linked list of all foreign keys in this table */
|
|
+};
|
|
+
|
|
+/*
|
|
+** Each foreign key constraint is an instance of the following structure.
|
|
+**
|
|
+** A foreign key is associated with two tables. The "from" table is
|
|
+** the table that contains the REFERENCES clause that creates the foreign
|
|
+** key. The "to" table is the table that is named in the REFERENCES clause.
|
|
+** Consider this example:
|
|
+**
|
|
+** CREATE TABLE ex1(
|
|
+** a INTEGER PRIMARY KEY,
|
|
+** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
|
|
+** );
|
|
+**
|
|
+** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
|
|
+**
|
|
+** Each REFERENCES clause generates an instance of the following structure
|
|
+** which is attached to the from-table. The to-table need not exist when
|
|
+** the from-table is created. The existance of the to-table is not checked
|
|
+** until an attempt is made to insert data into the from-table.
|
|
+**
|
|
+** The sqlite.aFKey hash table stores pointers to this structure
|
|
+** given the name of a to-table. For each to-table, all foreign keys
|
|
+** associated with that table are on a linked list using the FKey.pNextTo
|
|
+** field.
|
|
+*/
|
|
+struct FKey {
|
|
+ Table *pFrom; /* The table that constains the REFERENCES clause */
|
|
+ FKey *pNextFrom; /* Next foreign key in pFrom */
|
|
+ char *zTo; /* Name of table that the key points to */
|
|
+ FKey *pNextTo; /* Next foreign key that points to zTo */
|
|
+ int nCol; /* Number of columns in this key */
|
|
+ struct sColMap { /* Mapping of columns in pFrom to columns in zTo */
|
|
+ int iFrom; /* Index of column in pFrom */
|
|
+ char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */
|
|
+ } *aCol; /* One entry for each of nCol column s */
|
|
+ u8 isDeferred; /* True if constraint checking is deferred till COMMIT */
|
|
+ u8 updateConf; /* How to resolve conflicts that occur on UPDATE */
|
|
+ u8 deleteConf; /* How to resolve conflicts that occur on DELETE */
|
|
+ u8 insertConf; /* How to resolve conflicts that occur on INSERT */
|
|
+};
|
|
+
|
|
+/*
|
|
+** SQLite supports many different ways to resolve a contraint
|
|
+** error. ROLLBACK processing means that a constraint violation
|
|
+** causes the operation in process to fail and for the current transaction
|
|
+** to be rolled back. ABORT processing means the operation in process
|
|
+** fails and any prior changes from that one operation are backed out,
|
|
+** but the transaction is not rolled back. FAIL processing means that
|
|
+** the operation in progress stops and returns an error code. But prior
|
|
+** changes due to the same operation are not backed out and no rollback
|
|
+** occurs. IGNORE means that the particular row that caused the constraint
|
|
+** error is not inserted or updated. Processing continues and no error
|
|
+** is returned. REPLACE means that preexisting database rows that caused
|
|
+** a UNIQUE constraint violation are removed so that the new insert or
|
|
+** update can proceed. Processing continues and no error is reported.
|
|
+**
|
|
+** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
|
|
+** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
|
|
+** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign
|
|
+** key is set to NULL. CASCADE means that a DELETE or UPDATE of the
|
|
+** referenced table row is propagated into the row that holds the
|
|
+** foreign key.
|
|
+**
|
|
+** The following symbolic values are used to record which type
|
|
+** of action to take.
|
|
+*/
|
|
+#define OE_None 0 /* There is no constraint to check */
|
|
+#define OE_Rollback 1 /* Fail the operation and rollback the transaction */
|
|
+#define OE_Abort 2 /* Back out changes but do no rollback transaction */
|
|
+#define OE_Fail 3 /* Stop the operation but leave all prior changes */
|
|
+#define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */
|
|
+#define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */
|
|
+
|
|
+#define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
|
|
+#define OE_SetNull 7 /* Set the foreign key value to NULL */
|
|
+#define OE_SetDflt 8 /* Set the foreign key value to its default */
|
|
+#define OE_Cascade 9 /* Cascade the changes */
|
|
+
|
|
+#define OE_Default 99 /* Do whatever the default action is */
|
|
+
|
|
+/*
|
|
+** Each SQL index is represented in memory by an
|
|
+** instance of the following structure.
|
|
+**
|
|
+** The columns of the table that are to be indexed are described
|
|
+** by the aiColumn[] field of this structure. For example, suppose
|
|
+** we have the following table and index:
|
|
+**
|
|
+** CREATE TABLE Ex1(c1 int, c2 int, c3 text);
|
|
+** CREATE INDEX Ex2 ON Ex1(c3,c1);
|
|
+**
|
|
+** In the Table structure describing Ex1, nCol==3 because there are
|
|
+** three columns in the table. In the Index structure describing
|
|
+** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
|
|
+** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the
|
|
+** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
|
|
+** The second column to be indexed (c1) has an index of 0 in
|
|
+** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
|
|
+**
|
|
+** The Index.onError field determines whether or not the indexed columns
|
|
+** must be unique and what to do if they are not. When Index.onError=OE_None,
|
|
+** it means this is not a unique index. Otherwise it is a unique index
|
|
+** and the value of Index.onError indicate the which conflict resolution
|
|
+** algorithm to employ whenever an attempt is made to insert a non-unique
|
|
+** element.
|
|
+*/
|
|
+struct Index {
|
|
+ char *zName; /* Name of this index */
|
|
+ int nColumn; /* Number of columns in the table used by this index */
|
|
+ int *aiColumn; /* Which columns are used by this index. 1st is 0 */
|
|
+ Table *pTable; /* The SQL table being indexed */
|
|
+ int tnum; /* Page containing root of this index in database file */
|
|
+ u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
|
|
+ u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */
|
|
+ u8 iDb; /* Index in sqlite.aDb[] of where this index is stored */
|
|
+ Index *pNext; /* The next index associated with the same table */
|
|
+};
|
|
+
|
|
+/*
|
|
+** Each token coming out of the lexer is an instance of
|
|
+** this structure. Tokens are also used as part of an expression.
|
|
+**
|
|
+** Note if Token.z==0 then Token.dyn and Token.n are undefined and
|
|
+** may contain random values. Do not make any assuptions about Token.dyn
|
|
+** and Token.n when Token.z==0.
|
|
+*/
|
|
+struct Token {
|
|
+ const char *z; /* Text of the token. Not NULL-terminated! */
|
|
+ unsigned dyn : 1; /* True for malloced memory, false for static */
|
|
+ unsigned n : 31; /* Number of characters in this token */
|
|
+};
|
|
+
|
|
+/*
|
|
+** Each node of an expression in the parse tree is an instance
|
|
+** of this structure.
|
|
+**
|
|
+** Expr.op is the opcode. The integer parser token codes are reused
|
|
+** as opcodes here. For example, the parser defines TK_GE to be an integer
|
|
+** code representing the ">=" operator. This same integer code is reused
|
|
+** to represent the greater-than-or-equal-to operator in the expression
|
|
+** tree.
|
|
+**
|
|
+** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list
|
|
+** of argument if the expression is a function.
|
|
+**
|
|
+** Expr.token is the operator token for this node. For some expressions
|
|
+** that have subexpressions, Expr.token can be the complete text that gave
|
|
+** rise to the Expr. In the latter case, the token is marked as being
|
|
+** a compound token.
|
|
+**
|
|
+** An expression of the form ID or ID.ID refers to a column in a table.
|
|
+** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
|
|
+** the integer cursor number of a VDBE cursor pointing to that table and
|
|
+** Expr.iColumn is the column number for the specific column. If the
|
|
+** expression is used as a result in an aggregate SELECT, then the
|
|
+** value is also stored in the Expr.iAgg column in the aggregate so that
|
|
+** it can be accessed after all aggregates are computed.
|
|
+**
|
|
+** If the expression is a function, the Expr.iTable is an integer code
|
|
+** representing which function. If the expression is an unbound variable
|
|
+** marker (a question mark character '?' in the original SQL) then the
|
|
+** Expr.iTable holds the index number for that variable.
|
|
+**
|
|
+** The Expr.pSelect field points to a SELECT statement. The SELECT might
|
|
+** be the right operand of an IN operator. Or, if a scalar SELECT appears
|
|
+** in an expression the opcode is TK_SELECT and Expr.pSelect is the only
|
|
+** operand.
|
|
+*/
|
|
+struct Expr {
|
|
+ u8 op; /* Operation performed by this node */
|
|
+ u8 dataType; /* Either SQLITE_SO_TEXT or SQLITE_SO_NUM */
|
|
+ u8 iDb; /* Database referenced by this expression */
|
|
+ u8 flags; /* Various flags. See below */
|
|
+ Expr *pLeft, *pRight; /* Left and right subnodes */
|
|
+ ExprList *pList; /* A list of expressions used as function arguments
|
|
+ ** or in "<expr> IN (<expr-list)" */
|
|
+ Token token; /* An operand token */
|
|
+ Token span; /* Complete text of the expression */
|
|
+ int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the
|
|
+ ** iColumn-th field of the iTable-th table. */
|
|
+ int iAgg; /* When op==TK_COLUMN and pParse->useAgg==TRUE, pull
|
|
+ ** result from the iAgg-th element of the aggregator */
|
|
+ Select *pSelect; /* When the expression is a sub-select. Also the
|
|
+ ** right side of "<expr> IN (<select>)" */
|
|
+};
|
|
+
|
|
+/*
|
|
+** The following are the meanings of bits in the Expr.flags field.
|
|
+*/
|
|
+#define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */
|
|
+
|
|
+/*
|
|
+** These macros can be used to test, set, or clear bits in the
|
|
+** Expr.flags field.
|
|
+*/
|
|
+#define ExprHasProperty(E,P) (((E)->flags&(P))==(P))
|
|
+#define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0)
|
|
+#define ExprSetProperty(E,P) (E)->flags|=(P)
|
|
+#define ExprClearProperty(E,P) (E)->flags&=~(P)
|
|
+
|
|
+/*
|
|
+** A list of expressions. Each expression may optionally have a
|
|
+** name. An expr/name combination can be used in several ways, such
|
|
+** as the list of "expr AS ID" fields following a "SELECT" or in the
|
|
+** list of "ID = expr" items in an UPDATE. A list of expressions can
|
|
+** also be used as the argument to a function, in which case the a.zName
|
|
+** field is not used.
|
|
+*/
|
|
+struct ExprList {
|
|
+ int nExpr; /* Number of expressions on the list */
|
|
+ int nAlloc; /* Number of entries allocated below */
|
|
+ struct ExprList_item {
|
|
+ Expr *pExpr; /* The list of expressions */
|
|
+ char *zName; /* Token associated with this expression */
|
|
+ u8 sortOrder; /* 1 for DESC or 0 for ASC */
|
|
+ u8 isAgg; /* True if this is an aggregate like count(*) */
|
|
+ u8 done; /* A flag to indicate when processing is finished */
|
|
+ } *a; /* One entry for each expression */
|
|
+};
|
|
+
|
|
+/*
|
|
+** An instance of this structure can hold a simple list of identifiers,
|
|
+** such as the list "a,b,c" in the following statements:
|
|
+**
|
|
+** INSERT INTO t(a,b,c) VALUES ...;
|
|
+** CREATE INDEX idx ON t(a,b,c);
|
|
+** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
|
|
+**
|
|
+** The IdList.a.idx field is used when the IdList represents the list of
|
|
+** column names after a table name in an INSERT statement. In the statement
|
|
+**
|
|
+** INSERT INTO t(a,b,c) ...
|
|
+**
|
|
+** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
|
|
+*/
|
|
+struct IdList {
|
|
+ int nId; /* Number of identifiers on the list */
|
|
+ int nAlloc; /* Number of entries allocated for a[] below */
|
|
+ struct IdList_item {
|
|
+ char *zName; /* Name of the identifier */
|
|
+ int idx; /* Index in some Table.aCol[] of a column named zName */
|
|
+ } *a;
|
|
+};
|
|
+
|
|
+/*
|
|
+** The following structure describes the FROM clause of a SELECT statement.
|
|
+** Each table or subquery in the FROM clause is a separate element of
|
|
+** the SrcList.a[] array.
|
|
+**
|
|
+** With the addition of multiple database support, the following structure
|
|
+** can also be used to describe a particular table such as the table that
|
|
+** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL,
|
|
+** such a table must be a simple name: ID. But in SQLite, the table can
|
|
+** now be identified by a database name, a dot, then the table name: ID.ID.
|
|
+*/
|
|
+struct SrcList {
|
|
+ i16 nSrc; /* Number of tables or subqueries in the FROM clause */
|
|
+ i16 nAlloc; /* Number of entries allocated in a[] below */
|
|
+ struct SrcList_item {
|
|
+ char *zDatabase; /* Name of database holding this table */
|
|
+ char *zName; /* Name of the table */
|
|
+ char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */
|
|
+ Table *pTab; /* An SQL table corresponding to zName */
|
|
+ Select *pSelect; /* A SELECT statement used in place of a table name */
|
|
+ int jointype; /* Type of join between this table and the next */
|
|
+ int iCursor; /* The VDBE cursor number used to access this table */
|
|
+ Expr *pOn; /* The ON clause of a join */
|
|
+ IdList *pUsing; /* The USING clause of a join */
|
|
+ } a[1]; /* One entry for each identifier on the list */
|
|
+};
|
|
+
|
|
+/*
|
|
+** Permitted values of the SrcList.a.jointype field
|
|
+*/
|
|
+#define JT_INNER 0x0001 /* Any kind of inner or cross join */
|
|
+#define JT_NATURAL 0x0002 /* True for a "natural" join */
|
|
+#define JT_LEFT 0x0004 /* Left outer join */
|
|
+#define JT_RIGHT 0x0008 /* Right outer join */
|
|
+#define JT_OUTER 0x0010 /* The "OUTER" keyword is present */
|
|
+#define JT_ERROR 0x0020 /* unknown or unsupported join type */
|
|
+
|
|
+/*
|
|
+** For each nested loop in a WHERE clause implementation, the WhereInfo
|
|
+** structure contains a single instance of this structure. This structure
|
|
+** is intended to be private the the where.c module and should not be
|
|
+** access or modified by other modules.
|
|
+*/
|
|
+struct WhereLevel {
|
|
+ int iMem; /* Memory cell used by this level */
|
|
+ Index *pIdx; /* Index used */
|
|
+ int iCur; /* Cursor number used for this index */
|
|
+ int score; /* How well this indexed scored */
|
|
+ int brk; /* Jump here to break out of the loop */
|
|
+ int cont; /* Jump here to continue with the next loop cycle */
|
|
+ int op, p1, p2; /* Opcode used to terminate the loop */
|
|
+ int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */
|
|
+ int top; /* First instruction of interior of the loop */
|
|
+ int inOp, inP1, inP2;/* Opcode used to implement an IN operator */
|
|
+ int bRev; /* Do the scan in the reverse direction */
|
|
+};
|
|
+
|
|
+/*
|
|
+** The WHERE clause processing routine has two halves. The
|
|
+** first part does the start of the WHERE loop and the second
|
|
+** half does the tail of the WHERE loop. An instance of
|
|
+** this structure is returned by the first half and passed
|
|
+** into the second half to give some continuity.
|
|
+*/
|
|
+struct WhereInfo {
|
|
+ Parse *pParse;
|
|
+ SrcList *pTabList; /* List of tables in the join */
|
|
+ int iContinue; /* Jump here to continue with next record */
|
|
+ int iBreak; /* Jump here to break out of the loop */
|
|
+ int nLevel; /* Number of nested loop */
|
|
+ int savedNTab; /* Value of pParse->nTab before WhereBegin() */
|
|
+ int peakNTab; /* Value of pParse->nTab after WhereBegin() */
|
|
+ WhereLevel a[1]; /* Information about each nest loop in the WHERE */
|
|
+};
|
|
+
|
|
+/*
|
|
+** An instance of the following structure contains all information
|
|
+** needed to generate code for a single SELECT statement.
|
|
+**
|
|
+** The zSelect field is used when the Select structure must be persistent.
|
|
+** Normally, the expression tree points to tokens in the original input
|
|
+** string that encodes the select. But if the Select structure must live
|
|
+** longer than its input string (for example when it is used to describe
|
|
+** a VIEW) we have to make a copy of the input string so that the nodes
|
|
+** of the expression tree will have something to point to. zSelect is used
|
|
+** to hold that copy.
|
|
+**
|
|
+** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0.
|
|
+** If there is a LIMIT clause, the parser sets nLimit to the value of the
|
|
+** limit and nOffset to the value of the offset (or 0 if there is not
|
|
+** offset). But later on, nLimit and nOffset become the memory locations
|
|
+** in the VDBE that record the limit and offset counters.
|
|
+*/
|
|
+struct Select {
|
|
+ ExprList *pEList; /* The fields of the result */
|
|
+ u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
|
|
+ u8 isDistinct; /* True if the DISTINCT keyword is present */
|
|
+ SrcList *pSrc; /* The FROM clause */
|
|
+ Expr *pWhere; /* The WHERE clause */
|
|
+ ExprList *pGroupBy; /* The GROUP BY clause */
|
|
+ Expr *pHaving; /* The HAVING clause */
|
|
+ ExprList *pOrderBy; /* The ORDER BY clause */
|
|
+ Select *pPrior; /* Prior select in a compound select statement */
|
|
+ int nLimit, nOffset; /* LIMIT and OFFSET values. -1 means not used */
|
|
+ int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */
|
|
+ char *zSelect; /* Complete text of the SELECT command */
|
|
+};
|
|
+
|
|
+/*
|
|
+** The results of a select can be distributed in several ways.
|
|
+*/
|
|
+#define SRT_Callback 1 /* Invoke a callback with each row of result */
|
|
+#define SRT_Mem 2 /* Store result in a memory cell */
|
|
+#define SRT_Set 3 /* Store result as unique keys in a table */
|
|
+#define SRT_Union 5 /* Store result as keys in a table */
|
|
+#define SRT_Except 6 /* Remove result from a UNION table */
|
|
+#define SRT_Table 7 /* Store result as data with a unique key */
|
|
+#define SRT_TempTable 8 /* Store result in a trasient table */
|
|
+#define SRT_Discard 9 /* Do not save the results anywhere */
|
|
+#define SRT_Sorter 10 /* Store results in the sorter */
|
|
+#define SRT_Subroutine 11 /* Call a subroutine to handle results */
|
|
+
|
|
+/*
|
|
+** When a SELECT uses aggregate functions (like "count(*)" or "avg(f1)")
|
|
+** we have to do some additional analysis of expressions. An instance
|
|
+** of the following structure holds information about a single subexpression
|
|
+** somewhere in the SELECT statement. An array of these structures holds
|
|
+** all the information we need to generate code for aggregate
|
|
+** expressions.
|
|
+**
|
|
+** Note that when analyzing a SELECT containing aggregates, both
|
|
+** non-aggregate field variables and aggregate functions are stored
|
|
+** in the AggExpr array of the Parser structure.
|
|
+**
|
|
+** The pExpr field points to an expression that is part of either the
|
|
+** field list, the GROUP BY clause, the HAVING clause or the ORDER BY
|
|
+** clause. The expression will be freed when those clauses are cleaned
|
|
+** up. Do not try to delete the expression attached to AggExpr.pExpr.
|
|
+**
|
|
+** If AggExpr.pExpr==0, that means the expression is "count(*)".
|
|
+*/
|
|
+struct AggExpr {
|
|
+ int isAgg; /* if TRUE contains an aggregate function */
|
|
+ Expr *pExpr; /* The expression */
|
|
+ FuncDef *pFunc; /* Information about the aggregate function */
|
|
+};
|
|
+
|
|
+/*
|
|
+** An SQL parser context. A copy of this structure is passed through
|
|
+** the parser and down into all the parser action routine in order to
|
|
+** carry around information that is global to the entire parse.
|
|
+*/
|
|
+struct Parse {
|
|
+ sqlite *db; /* The main database structure */
|
|
+ int rc; /* Return code from execution */
|
|
+ char *zErrMsg; /* An error message */
|
|
+ Token sErrToken; /* The token at which the error occurred */
|
|
+ Token sFirstToken; /* The first token parsed */
|
|
+ Token sLastToken; /* The last token parsed */
|
|
+ const char *zTail; /* All SQL text past the last semicolon parsed */
|
|
+ Table *pNewTable; /* A table being constructed by CREATE TABLE */
|
|
+ Vdbe *pVdbe; /* An engine for executing database bytecode */
|
|
+ u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */
|
|
+ u8 explain; /* True if the EXPLAIN flag is found on the query */
|
|
+ u8 nameClash; /* A permanent table name clashes with temp table name */
|
|
+ u8 useAgg; /* If true, extract field values from the aggregator
|
|
+ ** while generating expressions. Normally false */
|
|
+ int nErr; /* Number of errors seen */
|
|
+ int nTab; /* Number of previously allocated VDBE cursors */
|
|
+ int nMem; /* Number of memory cells used so far */
|
|
+ int nSet; /* Number of sets used so far */
|
|
+ int nAgg; /* Number of aggregate expressions */
|
|
+ int nVar; /* Number of '?' variables seen in the SQL so far */
|
|
+ AggExpr *aAgg; /* An array of aggregate expressions */
|
|
+ const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
|
|
+ Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */
|
|
+ TriggerStack *trigStack; /* Trigger actions being coded */
|
|
+};
|
|
+
|
|
+/*
|
|
+** An instance of the following structure can be declared on a stack and used
|
|
+** to save the Parse.zAuthContext value so that it can be restored later.
|
|
+*/
|
|
+struct AuthContext {
|
|
+ const char *zAuthContext; /* Put saved Parse.zAuthContext here */
|
|
+ Parse *pParse; /* The Parse structure */
|
|
+};
|
|
+
|
|
+/*
|
|
+** Bitfield flags for P2 value in OP_PutIntKey and OP_Delete
|
|
+*/
|
|
+#define OPFLAG_NCHANGE 1 /* Set to update db->nChange */
|
|
+#define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */
|
|
+#define OPFLAG_CSCHANGE 4 /* Set to update db->csChange */
|
|
+
|
|
+/*
|
|
+ * Each trigger present in the database schema is stored as an instance of
|
|
+ * struct Trigger.
|
|
+ *
|
|
+ * Pointers to instances of struct Trigger are stored in two ways.
|
|
+ * 1. In the "trigHash" hash table (part of the sqlite* that represents the
|
|
+ * database). This allows Trigger structures to be retrieved by name.
|
|
+ * 2. All triggers associated with a single table form a linked list, using the
|
|
+ * pNext member of struct Trigger. A pointer to the first element of the
|
|
+ * linked list is stored as the "pTrigger" member of the associated
|
|
+ * struct Table.
|
|
+ *
|
|
+ * The "step_list" member points to the first element of a linked list
|
|
+ * containing the SQL statements specified as the trigger program.
|
|
+ */
|
|
+struct Trigger {
|
|
+ char *name; /* The name of the trigger */
|
|
+ char *table; /* The table or view to which the trigger applies */
|
|
+ u8 iDb; /* Database containing this trigger */
|
|
+ u8 iTabDb; /* Database containing Trigger.table */
|
|
+ u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */
|
|
+ u8 tr_tm; /* One of TK_BEFORE, TK_AFTER */
|
|
+ Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */
|
|
+ IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger,
|
|
+ the <column-list> is stored here */
|
|
+ int foreach; /* One of TK_ROW or TK_STATEMENT */
|
|
+ Token nameToken; /* Token containing zName. Use during parsing only */
|
|
+
|
|
+ TriggerStep *step_list; /* Link list of trigger program steps */
|
|
+ Trigger *pNext; /* Next trigger associated with the table */
|
|
+};
|
|
+
|
|
+/*
|
|
+ * An instance of struct TriggerStep is used to store a single SQL statement
|
|
+ * that is a part of a trigger-program.
|
|
+ *
|
|
+ * Instances of struct TriggerStep are stored in a singly linked list (linked
|
|
+ * using the "pNext" member) referenced by the "step_list" member of the
|
|
+ * associated struct Trigger instance. The first element of the linked list is
|
|
+ * the first step of the trigger-program.
|
|
+ *
|
|
+ * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
|
|
+ * "SELECT" statement. The meanings of the other members is determined by the
|
|
+ * value of "op" as follows:
|
|
+ *
|
|
+ * (op == TK_INSERT)
|
|
+ * orconf -> stores the ON CONFLICT algorithm
|
|
+ * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then
|
|
+ * this stores a pointer to the SELECT statement. Otherwise NULL.
|
|
+ * target -> A token holding the name of the table to insert into.
|
|
+ * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
|
|
+ * this stores values to be inserted. Otherwise NULL.
|
|
+ * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ...
|
|
+ * statement, then this stores the column-names to be
|
|
+ * inserted into.
|
|
+ *
|
|
+ * (op == TK_DELETE)
|
|
+ * target -> A token holding the name of the table to delete from.
|
|
+ * pWhere -> The WHERE clause of the DELETE statement if one is specified.
|
|
+ * Otherwise NULL.
|
|
+ *
|
|
+ * (op == TK_UPDATE)
|
|
+ * target -> A token holding the name of the table to update rows of.
|
|
+ * pWhere -> The WHERE clause of the UPDATE statement if one is specified.
|
|
+ * Otherwise NULL.
|
|
+ * pExprList -> A list of the columns to update and the expressions to update
|
|
+ * them to. See sqliteUpdate() documentation of "pChanges"
|
|
+ * argument.
|
|
+ *
|
|
+ */
|
|
+struct TriggerStep {
|
|
+ int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
|
|
+ int orconf; /* OE_Rollback etc. */
|
|
+ Trigger *pTrig; /* The trigger that this step is a part of */
|
|
+
|
|
+ Select *pSelect; /* Valid for SELECT and sometimes
|
|
+ INSERT steps (when pExprList == 0) */
|
|
+ Token target; /* Valid for DELETE, UPDATE, INSERT steps */
|
|
+ Expr *pWhere; /* Valid for DELETE, UPDATE steps */
|
|
+ ExprList *pExprList; /* Valid for UPDATE statements and sometimes
|
|
+ INSERT steps (when pSelect == 0) */
|
|
+ IdList *pIdList; /* Valid for INSERT statements only */
|
|
+
|
|
+ TriggerStep * pNext; /* Next in the link-list */
|
|
+};
|
|
+
|
|
+/*
|
|
+ * An instance of struct TriggerStack stores information required during code
|
|
+ * generation of a single trigger program. While the trigger program is being
|
|
+ * coded, its associated TriggerStack instance is pointed to by the
|
|
+ * "pTriggerStack" member of the Parse structure.
|
|
+ *
|
|
+ * The pTab member points to the table that triggers are being coded on. The
|
|
+ * newIdx member contains the index of the vdbe cursor that points at the temp
|
|
+ * table that stores the new.* references. If new.* references are not valid
|
|
+ * for the trigger being coded (for example an ON DELETE trigger), then newIdx
|
|
+ * is set to -1. The oldIdx member is analogous to newIdx, for old.* references.
|
|
+ *
|
|
+ * The ON CONFLICT policy to be used for the trigger program steps is stored
|
|
+ * as the orconf member. If this is OE_Default, then the ON CONFLICT clause
|
|
+ * specified for individual triggers steps is used.
|
|
+ *
|
|
+ * struct TriggerStack has a "pNext" member, to allow linked lists to be
|
|
+ * constructed. When coding nested triggers (triggers fired by other triggers)
|
|
+ * each nested trigger stores its parent trigger's TriggerStack as the "pNext"
|
|
+ * pointer. Once the nested trigger has been coded, the pNext value is restored
|
|
+ * to the pTriggerStack member of the Parse stucture and coding of the parent
|
|
+ * trigger continues.
|
|
+ *
|
|
+ * Before a nested trigger is coded, the linked list pointed to by the
|
|
+ * pTriggerStack is scanned to ensure that the trigger is not about to be coded
|
|
+ * recursively. If this condition is detected, the nested trigger is not coded.
|
|
+ */
|
|
+struct TriggerStack {
|
|
+ Table *pTab; /* Table that triggers are currently being coded on */
|
|
+ int newIdx; /* Index of vdbe cursor to "new" temp table */
|
|
+ int oldIdx; /* Index of vdbe cursor to "old" temp table */
|
|
+ int orconf; /* Current orconf policy */
|
|
+ int ignoreJump; /* where to jump to for a RAISE(IGNORE) */
|
|
+ Trigger *pTrigger; /* The trigger currently being coded */
|
|
+ TriggerStack *pNext; /* Next trigger down on the trigger stack */
|
|
+};
|
|
+
|
|
+/*
|
|
+** The following structure contains information used by the sqliteFix...
|
|
+** routines as they walk the parse tree to make database references
|
|
+** explicit.
|
|
+*/
|
|
+typedef struct DbFixer DbFixer;
|
|
+struct DbFixer {
|
|
+ Parse *pParse; /* The parsing context. Error messages written here */
|
|
+ const char *zDb; /* Make sure all objects are contained in this database */
|
|
+ const char *zType; /* Type of the container - used for error messages */
|
|
+ const Token *pName; /* Name of the container - used for error messages */
|
|
+};
|
|
+
|
|
+/*
|
|
+ * This global flag is set for performance testing of triggers. When it is set
|
|
+ * SQLite will perform the overhead of building new and old trigger references
|
|
+ * even when no triggers exist
|
|
+ */
|
|
+extern int always_code_trigger_setup;
|
|
+
|
|
+/*
|
|
+** Internal function prototypes
|
|
+*/
|
|
+int sqliteStrICmp(const char *, const char *);
|
|
+int sqliteStrNICmp(const char *, const char *, int);
|
|
+int sqliteHashNoCase(const char *, int);
|
|
+int sqliteIsNumber(const char*);
|
|
+int sqliteCompare(const char *, const char *);
|
|
+int sqliteSortCompare(const char *, const char *);
|
|
+void sqliteRealToSortable(double r, char *);
|
|
+#ifdef MEMORY_DEBUG
|
|
+ void *sqliteMalloc_(int,int,char*,int);
|
|
+ void sqliteFree_(void*,char*,int);
|
|
+ void *sqliteRealloc_(void*,int,char*,int);
|
|
+ char *sqliteStrDup_(const char*,char*,int);
|
|
+ char *sqliteStrNDup_(const char*, int,char*,int);
|
|
+ void sqliteCheckMemory(void*,int);
|
|
+#else
|
|
+ void *sqliteMalloc(int);
|
|
+ void *sqliteMallocRaw(int);
|
|
+ void sqliteFree(void*);
|
|
+ void *sqliteRealloc(void*,int);
|
|
+ char *sqliteStrDup(const char*);
|
|
+ char *sqliteStrNDup(const char*, int);
|
|
+# define sqliteCheckMemory(a,b)
|
|
+#endif
|
|
+char *sqliteMPrintf(const char*, ...);
|
|
+char *sqliteVMPrintf(const char*, va_list);
|
|
+void sqliteSetString(char **, ...);
|
|
+void sqliteSetNString(char **, ...);
|
|
+void sqliteErrorMsg(Parse*, const char*, ...);
|
|
+void sqliteDequote(char*);
|
|
+int sqliteKeywordCode(const char*, int);
|
|
+int sqliteRunParser(Parse*, const char*, char **);
|
|
+void sqliteExec(Parse*);
|
|
+Expr *sqliteExpr(int, Expr*, Expr*, Token*);
|
|
+void sqliteExprSpan(Expr*,Token*,Token*);
|
|
+Expr *sqliteExprFunction(ExprList*, Token*);
|
|
+void sqliteExprDelete(Expr*);
|
|
+ExprList *sqliteExprListAppend(ExprList*,Expr*,Token*);
|
|
+void sqliteExprListDelete(ExprList*);
|
|
+int sqliteInit(sqlite*, char**);
|
|
+void sqlitePragma(Parse*,Token*,Token*,int);
|
|
+void sqliteResetInternalSchema(sqlite*, int);
|
|
+void sqliteBeginParse(Parse*,int);
|
|
+void sqliteRollbackInternalChanges(sqlite*);
|
|
+void sqliteCommitInternalChanges(sqlite*);
|
|
+Table *sqliteResultSetOfSelect(Parse*,char*,Select*);
|
|
+void sqliteOpenMasterTable(Vdbe *v, int);
|
|
+void sqliteStartTable(Parse*,Token*,Token*,int,int);
|
|
+void sqliteAddColumn(Parse*,Token*);
|
|
+void sqliteAddNotNull(Parse*, int);
|
|
+void sqliteAddPrimaryKey(Parse*, IdList*, int);
|
|
+void sqliteAddColumnType(Parse*,Token*,Token*);
|
|
+void sqliteAddDefaultValue(Parse*,Token*,int);
|
|
+int sqliteCollateType(const char*, int);
|
|
+void sqliteAddCollateType(Parse*, int);
|
|
+void sqliteEndTable(Parse*,Token*,Select*);
|
|
+void sqliteCreateView(Parse*,Token*,Token*,Select*,int);
|
|
+int sqliteViewGetColumnNames(Parse*,Table*);
|
|
+void sqliteDropTable(Parse*, Token*, int);
|
|
+void sqliteDeleteTable(sqlite*, Table*);
|
|
+void sqliteInsert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
|
|
+IdList *sqliteIdListAppend(IdList*, Token*);
|
|
+int sqliteIdListIndex(IdList*,const char*);
|
|
+SrcList *sqliteSrcListAppend(SrcList*, Token*, Token*);
|
|
+void sqliteSrcListAddAlias(SrcList*, Token*);
|
|
+void sqliteSrcListAssignCursors(Parse*, SrcList*);
|
|
+void sqliteIdListDelete(IdList*);
|
|
+void sqliteSrcListDelete(SrcList*);
|
|
+void sqliteCreateIndex(Parse*,Token*,SrcList*,IdList*,int,Token*,Token*);
|
|
+void sqliteDropIndex(Parse*, SrcList*);
|
|
+void sqliteAddKeyType(Vdbe*, ExprList*);
|
|
+void sqliteAddIdxKeyType(Vdbe*, Index*);
|
|
+int sqliteSelect(Parse*, Select*, int, int, Select*, int, int*);
|
|
+Select *sqliteSelectNew(ExprList*,SrcList*,Expr*,ExprList*,Expr*,ExprList*,
|
|
+ int,int,int);
|
|
+void sqliteSelectDelete(Select*);
|
|
+void sqliteSelectUnbind(Select*);
|
|
+Table *sqliteSrcListLookup(Parse*, SrcList*);
|
|
+int sqliteIsReadOnly(Parse*, Table*, int);
|
|
+void sqliteDeleteFrom(Parse*, SrcList*, Expr*);
|
|
+void sqliteUpdate(Parse*, SrcList*, ExprList*, Expr*, int);
|
|
+WhereInfo *sqliteWhereBegin(Parse*, SrcList*, Expr*, int, ExprList**);
|
|
+void sqliteWhereEnd(WhereInfo*);
|
|
+void sqliteExprCode(Parse*, Expr*);
|
|
+int sqliteExprCodeExprList(Parse*, ExprList*, int);
|
|
+void sqliteExprIfTrue(Parse*, Expr*, int, int);
|
|
+void sqliteExprIfFalse(Parse*, Expr*, int, int);
|
|
+Table *sqliteFindTable(sqlite*,const char*, const char*);
|
|
+Table *sqliteLocateTable(Parse*,const char*, const char*);
|
|
+Index *sqliteFindIndex(sqlite*,const char*, const char*);
|
|
+void sqliteUnlinkAndDeleteIndex(sqlite*,Index*);
|
|
+void sqliteCopy(Parse*, SrcList*, Token*, Token*, int);
|
|
+void sqliteVacuum(Parse*, Token*);
|
|
+int sqliteRunVacuum(char**, sqlite*);
|
|
+int sqliteGlobCompare(const unsigned char*,const unsigned char*);
|
|
+int sqliteLikeCompare(const unsigned char*,const unsigned char*);
|
|
+char *sqliteTableNameFromToken(Token*);
|
|
+int sqliteExprCheck(Parse*, Expr*, int, int*);
|
|
+int sqliteExprType(Expr*);
|
|
+int sqliteExprCompare(Expr*, Expr*);
|
|
+int sqliteFuncId(Token*);
|
|
+int sqliteExprResolveIds(Parse*, SrcList*, ExprList*, Expr*);
|
|
+int sqliteExprAnalyzeAggregates(Parse*, Expr*);
|
|
+Vdbe *sqliteGetVdbe(Parse*);
|
|
+void sqliteRandomness(int, void*);
|
|
+void sqliteRollbackAll(sqlite*);
|
|
+void sqliteCodeVerifySchema(Parse*, int);
|
|
+void sqliteBeginTransaction(Parse*, int);
|
|
+void sqliteCommitTransaction(Parse*);
|
|
+void sqliteRollbackTransaction(Parse*);
|
|
+int sqliteExprIsConstant(Expr*);
|
|
+int sqliteExprIsInteger(Expr*, int*);
|
|
+int sqliteIsRowid(const char*);
|
|
+void sqliteGenerateRowDelete(sqlite*, Vdbe*, Table*, int, int);
|
|
+void sqliteGenerateRowIndexDelete(sqlite*, Vdbe*, Table*, int, char*);
|
|
+void sqliteGenerateConstraintChecks(Parse*,Table*,int,char*,int,int,int,int);
|
|
+void sqliteCompleteInsertion(Parse*, Table*, int, char*, int, int, int);
|
|
+int sqliteOpenTableAndIndices(Parse*, Table*, int);
|
|
+void sqliteBeginWriteOperation(Parse*, int, int);
|
|
+void sqliteEndWriteOperation(Parse*);
|
|
+Expr *sqliteExprDup(Expr*);
|
|
+void sqliteTokenCopy(Token*, Token*);
|
|
+ExprList *sqliteExprListDup(ExprList*);
|
|
+SrcList *sqliteSrcListDup(SrcList*);
|
|
+IdList *sqliteIdListDup(IdList*);
|
|
+Select *sqliteSelectDup(Select*);
|
|
+FuncDef *sqliteFindFunction(sqlite*,const char*,int,int,int);
|
|
+void sqliteRegisterBuiltinFunctions(sqlite*);
|
|
+void sqliteRegisterDateTimeFunctions(sqlite*);
|
|
+int sqliteSafetyOn(sqlite*);
|
|
+int sqliteSafetyOff(sqlite*);
|
|
+int sqliteSafetyCheck(sqlite*);
|
|
+void sqliteChangeCookie(sqlite*, Vdbe*);
|
|
+void sqliteBeginTrigger(Parse*, Token*,int,int,IdList*,SrcList*,int,Expr*,int);
|
|
+void sqliteFinishTrigger(Parse*, TriggerStep*, Token*);
|
|
+void sqliteDropTrigger(Parse*, SrcList*);
|
|
+void sqliteDropTriggerPtr(Parse*, Trigger*, int);
|
|
+int sqliteTriggersExist(Parse* , Trigger* , int , int , int, ExprList*);
|
|
+int sqliteCodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int,
|
|
+ int, int);
|
|
+void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
|
|
+void sqliteDeleteTriggerStep(TriggerStep*);
|
|
+TriggerStep *sqliteTriggerSelectStep(Select*);
|
|
+TriggerStep *sqliteTriggerInsertStep(Token*, IdList*, ExprList*, Select*, int);
|
|
+TriggerStep *sqliteTriggerUpdateStep(Token*, ExprList*, Expr*, int);
|
|
+TriggerStep *sqliteTriggerDeleteStep(Token*, Expr*);
|
|
+void sqliteDeleteTrigger(Trigger*);
|
|
+int sqliteJoinType(Parse*, Token*, Token*, Token*);
|
|
+void sqliteCreateForeignKey(Parse*, IdList*, Token*, IdList*, int);
|
|
+void sqliteDeferForeignKey(Parse*, int);
|
|
+#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
+ void sqliteAuthRead(Parse*,Expr*,SrcList*);
|
|
+ int sqliteAuthCheck(Parse*,int, const char*, const char*, const char*);
|
|
+ void sqliteAuthContextPush(Parse*, AuthContext*, const char*);
|
|
+ void sqliteAuthContextPop(AuthContext*);
|
|
+#else
|
|
+# define sqliteAuthRead(a,b,c)
|
|
+# define sqliteAuthCheck(a,b,c,d,e) SQLITE_OK
|
|
+# define sqliteAuthContextPush(a,b,c)
|
|
+# define sqliteAuthContextPop(a) ((void)(a))
|
|
+#endif
|
|
+void sqliteAttach(Parse*, Token*, Token*, Token*);
|
|
+void sqliteDetach(Parse*, Token*);
|
|
+int sqliteBtreeFactory(const sqlite *db, const char *zFilename,
|
|
+ int mode, int nPg, Btree **ppBtree);
|
|
+int sqliteFixInit(DbFixer*, Parse*, int, const char*, const Token*);
|
|
+int sqliteFixSrcList(DbFixer*, SrcList*);
|
|
+int sqliteFixSelect(DbFixer*, Select*);
|
|
+int sqliteFixExpr(DbFixer*, Expr*);
|
|
+int sqliteFixExprList(DbFixer*, ExprList*);
|
|
+int sqliteFixTriggerStep(DbFixer*, TriggerStep*);
|
|
+double sqliteAtoF(const char *z, const char **);
|
|
+char *sqlite_snprintf(int,char*,const char*,...);
|
|
+int sqliteFitsIn32Bits(const char *);
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/sqlite.w32.h
|
|
@@ -0,0 +1,764 @@
|
|
+/*
|
|
+** 2001 September 15
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This header file defines the interface that the SQLite library
|
|
+** presents to client programs.
|
|
+**
|
|
+** @(#) $Id$
|
|
+*/
|
|
+#ifndef _SQLITE_H_
|
|
+#define _SQLITE_H_
|
|
+#include <stdarg.h> /* Needed for the definition of va_list */
|
|
+
|
|
+/*
|
|
+** Make sure we can call this stuff from C++.
|
|
+*/
|
|
+#ifdef __cplusplus
|
|
+extern "C" {
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** The version of the SQLite library.
|
|
+*/
|
|
+#define SQLITE_VERSION "2.8.17"
|
|
+
|
|
+/*
|
|
+** The version string is also compiled into the library so that a program
|
|
+** can check to make sure that the lib*.a file and the *.h file are from
|
|
+** the same version.
|
|
+*/
|
|
+extern const char sqlite_version[];
|
|
+
|
|
+/*
|
|
+** The SQLITE_UTF8 macro is defined if the library expects to see
|
|
+** UTF-8 encoded data. The SQLITE_ISO8859 macro is defined if the
|
|
+** iso8859 encoded should be used.
|
|
+*/
|
|
+#define SQLITE_ISO8859 1
|
|
+
|
|
+/*
|
|
+** The following constant holds one of two strings, "UTF-8" or "iso8859",
|
|
+** depending on which character encoding the SQLite library expects to
|
|
+** see. The character encoding makes a difference for the LIKE and GLOB
|
|
+** operators and for the LENGTH() and SUBSTR() functions.
|
|
+*/
|
|
+extern const char sqlite_encoding[];
|
|
+
|
|
+/*
|
|
+** Each open sqlite database is represented by an instance of the
|
|
+** following opaque structure.
|
|
+*/
|
|
+typedef struct sqlite sqlite;
|
|
+
|
|
+/*
|
|
+** A function to open a new sqlite database.
|
|
+**
|
|
+** If the database does not exist and mode indicates write
|
|
+** permission, then a new database is created. If the database
|
|
+** does not exist and mode does not indicate write permission,
|
|
+** then the open fails, an error message generated (if errmsg!=0)
|
|
+** and the function returns 0.
|
|
+**
|
|
+** If mode does not indicates user write permission, then the
|
|
+** database is opened read-only.
|
|
+**
|
|
+** The Truth: As currently implemented, all databases are opened
|
|
+** for writing all the time. Maybe someday we will provide the
|
|
+** ability to open a database readonly. The mode parameters is
|
|
+** provided in anticipation of that enhancement.
|
|
+*/
|
|
+sqlite *sqlite_open(const char *filename, int mode, char **errmsg);
|
|
+
|
|
+/*
|
|
+** A function to close the database.
|
|
+**
|
|
+** Call this function with a pointer to a structure that was previously
|
|
+** returned from sqlite_open() and the corresponding database will by closed.
|
|
+*/
|
|
+void sqlite_close(sqlite *);
|
|
+
|
|
+/*
|
|
+** The type for a callback function.
|
|
+*/
|
|
+typedef int (*sqlite_callback)(void*,int,char**, char**);
|
|
+
|
|
+/*
|
|
+** A function to executes one or more statements of SQL.
|
|
+**
|
|
+** If one or more of the SQL statements are queries, then
|
|
+** the callback function specified by the 3rd parameter is
|
|
+** invoked once for each row of the query result. This callback
|
|
+** should normally return 0. If the callback returns a non-zero
|
|
+** value then the query is aborted, all subsequent SQL statements
|
|
+** are skipped and the sqlite_exec() function returns the SQLITE_ABORT.
|
|
+**
|
|
+** The 4th parameter is an arbitrary pointer that is passed
|
|
+** to the callback function as its first parameter.
|
|
+**
|
|
+** The 2nd parameter to the callback function is the number of
|
|
+** columns in the query result. The 3rd parameter to the callback
|
|
+** is an array of strings holding the values for each column.
|
|
+** The 4th parameter to the callback is an array of strings holding
|
|
+** the names of each column.
|
|
+**
|
|
+** The callback function may be NULL, even for queries. A NULL
|
|
+** callback is not an error. It just means that no callback
|
|
+** will be invoked.
|
|
+**
|
|
+** If an error occurs while parsing or evaluating the SQL (but
|
|
+** not while executing the callback) then an appropriate error
|
|
+** message is written into memory obtained from malloc() and
|
|
+** *errmsg is made to point to that message. The calling function
|
|
+** is responsible for freeing the memory that holds the error
|
|
+** message. Use sqlite_freemem() for this. If errmsg==NULL,
|
|
+** then no error message is ever written.
|
|
+**
|
|
+** The return value is is SQLITE_OK if there are no errors and
|
|
+** some other return code if there is an error. The particular
|
|
+** return value depends on the type of error.
|
|
+**
|
|
+** If the query could not be executed because a database file is
|
|
+** locked or busy, then this function returns SQLITE_BUSY. (This
|
|
+** behavior can be modified somewhat using the sqlite_busy_handler()
|
|
+** and sqlite_busy_timeout() functions below.)
|
|
+*/
|
|
+int sqlite_exec(
|
|
+ sqlite*, /* An open database */
|
|
+ const char *sql, /* SQL to be executed */
|
|
+ sqlite_callback, /* Callback function */
|
|
+ void *, /* 1st argument to callback function */
|
|
+ char **errmsg /* Error msg written here */
|
|
+);
|
|
+
|
|
+/*
|
|
+** Return values for sqlite_exec() and sqlite_step()
|
|
+*/
|
|
+#define SQLITE_OK 0 /* Successful result */
|
|
+#define SQLITE_ERROR 1 /* SQL error or missing database */
|
|
+#define SQLITE_INTERNAL 2 /* An internal logic error in SQLite */
|
|
+#define SQLITE_PERM 3 /* Access permission denied */
|
|
+#define SQLITE_ABORT 4 /* Callback routine requested an abort */
|
|
+#define SQLITE_BUSY 5 /* The database file is locked */
|
|
+#define SQLITE_LOCKED 6 /* A table in the database is locked */
|
|
+#define SQLITE_NOMEM 7 /* A malloc() failed */
|
|
+#define SQLITE_READONLY 8 /* Attempt to write a readonly database */
|
|
+#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite_interrupt() */
|
|
+#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */
|
|
+#define SQLITE_CORRUPT 11 /* The database disk image is malformed */
|
|
+#define SQLITE_NOTFOUND 12 /* (Internal Only) Table or record not found */
|
|
+#define SQLITE_FULL 13 /* Insertion failed because database is full */
|
|
+#define SQLITE_CANTOPEN 14 /* Unable to open the database file */
|
|
+#define SQLITE_PROTOCOL 15 /* Database lock protocol error */
|
|
+#define SQLITE_EMPTY 16 /* (Internal Only) Database table is empty */
|
|
+#define SQLITE_SCHEMA 17 /* The database schema changed */
|
|
+#define SQLITE_TOOBIG 18 /* Too much data for one row of a table */
|
|
+#define SQLITE_CONSTRAINT 19 /* Abort due to contraint violation */
|
|
+#define SQLITE_MISMATCH 20 /* Data type mismatch */
|
|
+#define SQLITE_MISUSE 21 /* Library used incorrectly */
|
|
+#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */
|
|
+#define SQLITE_AUTH 23 /* Authorization denied */
|
|
+#define SQLITE_FORMAT 24 /* Auxiliary database format error */
|
|
+#define SQLITE_RANGE 25 /* 2nd parameter to sqlite_bind out of range */
|
|
+#define SQLITE_NOTADB 26 /* File opened that is not a database file */
|
|
+#define SQLITE_ROW 100 /* sqlite_step() has another row ready */
|
|
+#define SQLITE_DONE 101 /* sqlite_step() has finished executing */
|
|
+
|
|
+/*
|
|
+** Each entry in an SQLite table has a unique integer key. (The key is
|
|
+** the value of the INTEGER PRIMARY KEY column if there is such a column,
|
|
+** otherwise the key is generated at random. The unique key is always
|
|
+** available as the ROWID, OID, or _ROWID_ column.) The following routine
|
|
+** returns the integer key of the most recent insert in the database.
|
|
+**
|
|
+** This function is similar to the mysql_insert_id() function from MySQL.
|
|
+*/
|
|
+int sqlite_last_insert_rowid(sqlite*);
|
|
+
|
|
+/*
|
|
+** This function returns the number of database rows that were changed
|
|
+** (or inserted or deleted) by the most recent called sqlite_exec().
|
|
+**
|
|
+** All changes are counted, even if they were later undone by a
|
|
+** ROLLBACK or ABORT. Except, changes associated with creating and
|
|
+** dropping tables are not counted.
|
|
+**
|
|
+** If a callback invokes sqlite_exec() recursively, then the changes
|
|
+** in the inner, recursive call are counted together with the changes
|
|
+** in the outer call.
|
|
+**
|
|
+** SQLite implements the command "DELETE FROM table" without a WHERE clause
|
|
+** by dropping and recreating the table. (This is much faster than going
|
|
+** through and deleting individual elements form the table.) Because of
|
|
+** this optimization, the change count for "DELETE FROM table" will be
|
|
+** zero regardless of the number of elements that were originally in the
|
|
+** table. To get an accurate count of the number of rows deleted, use
|
|
+** "DELETE FROM table WHERE 1" instead.
|
|
+*/
|
|
+int sqlite_changes(sqlite*);
|
|
+
|
|
+/* If the parameter to this routine is one of the return value constants
|
|
+** defined above, then this routine returns a constant text string which
|
|
+** descripts (in English) the meaning of the return value.
|
|
+*/
|
|
+const char *sqlite_error_string(int);
|
|
+#define sqliteErrStr sqlite_error_string /* Legacy. Do not use in new code. */
|
|
+
|
|
+/* This function causes any pending database operation to abort and
|
|
+** return at its earliest opportunity. This routine is typically
|
|
+** called in response to a user action such as pressing "Cancel"
|
|
+** or Ctrl-C where the user wants a long query operation to halt
|
|
+** immediately.
|
|
+*/
|
|
+void sqlite_interrupt(sqlite*);
|
|
+
|
|
+
|
|
+/* This function returns true if the given input string comprises
|
|
+** one or more complete SQL statements.
|
|
+**
|
|
+** The algorithm is simple. If the last token other than spaces
|
|
+** and comments is a semicolon, then return true. otherwise return
|
|
+** false.
|
|
+*/
|
|
+int sqlite_complete(const char *sql);
|
|
+
|
|
+/*
|
|
+** This routine identifies a callback function that is invoked
|
|
+** whenever an attempt is made to open a database table that is
|
|
+** currently locked by another process or thread. If the busy callback
|
|
+** is NULL, then sqlite_exec() returns SQLITE_BUSY immediately if
|
|
+** it finds a locked table. If the busy callback is not NULL, then
|
|
+** sqlite_exec() invokes the callback with three arguments. The
|
|
+** second argument is the name of the locked table and the third
|
|
+** argument is the number of times the table has been busy. If the
|
|
+** busy callback returns 0, then sqlite_exec() immediately returns
|
|
+** SQLITE_BUSY. If the callback returns non-zero, then sqlite_exec()
|
|
+** tries to open the table again and the cycle repeats.
|
|
+**
|
|
+** The default busy callback is NULL.
|
|
+**
|
|
+** Sqlite is re-entrant, so the busy handler may start a new query.
|
|
+** (It is not clear why anyone would every want to do this, but it
|
|
+** is allowed, in theory.) But the busy handler may not close the
|
|
+** database. Closing the database from a busy handler will delete
|
|
+** data structures out from under the executing query and will
|
|
+** probably result in a coredump.
|
|
+*/
|
|
+void sqlite_busy_handler(sqlite*, int(*)(void*,const char*,int), void*);
|
|
+
|
|
+/*
|
|
+** This routine sets a busy handler that sleeps for a while when a
|
|
+** table is locked. The handler will sleep multiple times until
|
|
+** at least "ms" milleseconds of sleeping have been done. After
|
|
+** "ms" milleseconds of sleeping, the handler returns 0 which
|
|
+** causes sqlite_exec() to return SQLITE_BUSY.
|
|
+**
|
|
+** Calling this routine with an argument less than or equal to zero
|
|
+** turns off all busy handlers.
|
|
+*/
|
|
+void sqlite_busy_timeout(sqlite*, int ms);
|
|
+
|
|
+/*
|
|
+** This next routine is really just a wrapper around sqlite_exec().
|
|
+** Instead of invoking a user-supplied callback for each row of the
|
|
+** result, this routine remembers each row of the result in memory
|
|
+** obtained from malloc(), then returns all of the result after the
|
|
+** query has finished.
|
|
+**
|
|
+** As an example, suppose the query result where this table:
|
|
+**
|
|
+** Name | Age
|
|
+** -----------------------
|
|
+** Alice | 43
|
|
+** Bob | 28
|
|
+** Cindy | 21
|
|
+**
|
|
+** If the 3rd argument were &azResult then after the function returns
|
|
+** azResult will contain the following data:
|
|
+**
|
|
+** azResult[0] = "Name";
|
|
+** azResult[1] = "Age";
|
|
+** azResult[2] = "Alice";
|
|
+** azResult[3] = "43";
|
|
+** azResult[4] = "Bob";
|
|
+** azResult[5] = "28";
|
|
+** azResult[6] = "Cindy";
|
|
+** azResult[7] = "21";
|
|
+**
|
|
+** Notice that there is an extra row of data containing the column
|
|
+** headers. But the *nrow return value is still 3. *ncolumn is
|
|
+** set to 2. In general, the number of values inserted into azResult
|
|
+** will be ((*nrow) + 1)*(*ncolumn).
|
|
+**
|
|
+** After the calling function has finished using the result, it should
|
|
+** pass the result data pointer to sqlite_free_table() in order to
|
|
+** release the memory that was malloc-ed. Because of the way the
|
|
+** malloc() happens, the calling function must not try to call
|
|
+** malloc() directly. Only sqlite_free_table() is able to release
|
|
+** the memory properly and safely.
|
|
+**
|
|
+** The return value of this routine is the same as from sqlite_exec().
|
|
+*/
|
|
+int sqlite_get_table(
|
|
+ sqlite*, /* An open database */
|
|
+ const char *sql, /* SQL to be executed */
|
|
+ char ***resultp, /* Result written to a char *[] that this points to */
|
|
+ int *nrow, /* Number of result rows written here */
|
|
+ int *ncolumn, /* Number of result columns written here */
|
|
+ char **errmsg /* Error msg written here */
|
|
+);
|
|
+
|
|
+/*
|
|
+** Call this routine to free the memory that sqlite_get_table() allocated.
|
|
+*/
|
|
+void sqlite_free_table(char **result);
|
|
+
|
|
+/*
|
|
+** The following routines are wrappers around sqlite_exec() and
|
|
+** sqlite_get_table(). The only difference between the routines that
|
|
+** follow and the originals is that the second argument to the
|
|
+** routines that follow is really a printf()-style format
|
|
+** string describing the SQL to be executed. Arguments to the format
|
|
+** string appear at the end of the argument list.
|
|
+**
|
|
+** All of the usual printf formatting options apply. In addition, there
|
|
+** is a "%q" option. %q works like %s in that it substitutes a null-terminated
|
|
+** string from the argument list. But %q also doubles every '\'' character.
|
|
+** %q is designed for use inside a string literal. By doubling each '\''
|
|
+** character it escapes that character and allows it to be inserted into
|
|
+** the string.
|
|
+**
|
|
+** For example, so some string variable contains text as follows:
|
|
+**
|
|
+** char *zText = "It's a happy day!";
|
|
+**
|
|
+** We can use this text in an SQL statement as follows:
|
|
+**
|
|
+** sqlite_exec_printf(db, "INSERT INTO table VALUES('%q')",
|
|
+** callback1, 0, 0, zText);
|
|
+**
|
|
+** Because the %q format string is used, the '\'' character in zText
|
|
+** is escaped and the SQL generated is as follows:
|
|
+**
|
|
+** INSERT INTO table1 VALUES('It''s a happy day!')
|
|
+**
|
|
+** This is correct. Had we used %s instead of %q, the generated SQL
|
|
+** would have looked like this:
|
|
+**
|
|
+** INSERT INTO table1 VALUES('It's a happy day!');
|
|
+**
|
|
+** This second example is an SQL syntax error. As a general rule you
|
|
+** should always use %q instead of %s when inserting text into a string
|
|
+** literal.
|
|
+*/
|
|
+int sqlite_exec_printf(
|
|
+ sqlite*, /* An open database */
|
|
+ const char *sqlFormat, /* printf-style format string for the SQL */
|
|
+ sqlite_callback, /* Callback function */
|
|
+ void *, /* 1st argument to callback function */
|
|
+ char **errmsg, /* Error msg written here */
|
|
+ ... /* Arguments to the format string. */
|
|
+);
|
|
+int sqlite_exec_vprintf(
|
|
+ sqlite*, /* An open database */
|
|
+ const char *sqlFormat, /* printf-style format string for the SQL */
|
|
+ sqlite_callback, /* Callback function */
|
|
+ void *, /* 1st argument to callback function */
|
|
+ char **errmsg, /* Error msg written here */
|
|
+ va_list ap /* Arguments to the format string. */
|
|
+);
|
|
+int sqlite_get_table_printf(
|
|
+ sqlite*, /* An open database */
|
|
+ const char *sqlFormat, /* printf-style format string for the SQL */
|
|
+ char ***resultp, /* Result written to a char *[] that this points to */
|
|
+ int *nrow, /* Number of result rows written here */
|
|
+ int *ncolumn, /* Number of result columns written here */
|
|
+ char **errmsg, /* Error msg written here */
|
|
+ ... /* Arguments to the format string */
|
|
+);
|
|
+int sqlite_get_table_vprintf(
|
|
+ sqlite*, /* An open database */
|
|
+ const char *sqlFormat, /* printf-style format string for the SQL */
|
|
+ char ***resultp, /* Result written to a char *[] that this points to */
|
|
+ int *nrow, /* Number of result rows written here */
|
|
+ int *ncolumn, /* Number of result columns written here */
|
|
+ char **errmsg, /* Error msg written here */
|
|
+ va_list ap /* Arguments to the format string */
|
|
+);
|
|
+char *sqlite_mprintf(const char*,...);
|
|
+char *sqlite_vmprintf(const char*, va_list);
|
|
+
|
|
+/*
|
|
+** Windows systems should call this routine to free memory that
|
|
+** is returned in the in the errmsg parameter of sqlite_open() when
|
|
+** SQLite is a DLL. For some reason, it does not work to call free()
|
|
+** directly.
|
|
+*/
|
|
+void sqlite_freemem(void *p);
|
|
+
|
|
+/*
|
|
+** Windows systems need functions to call to return the sqlite_version
|
|
+** and sqlite_encoding strings.
|
|
+*/
|
|
+const char *sqlite_libversion(void);
|
|
+const char *sqlite_libencoding(void);
|
|
+
|
|
+/*
|
|
+** A pointer to the following structure is used to communicate with
|
|
+** the implementations of user-defined functions.
|
|
+*/
|
|
+typedef struct sqlite_func sqlite_func;
|
|
+
|
|
+/*
|
|
+** Use the following routines to create new user-defined functions. See
|
|
+** the documentation for details.
|
|
+*/
|
|
+int sqlite_create_function(
|
|
+ sqlite*, /* Database where the new function is registered */
|
|
+ const char *zName, /* Name of the new function */
|
|
+ int nArg, /* Number of arguments. -1 means any number */
|
|
+ void (*xFunc)(sqlite_func*,int,const char**), /* C code to implement */
|
|
+ void *pUserData /* Available via the sqlite_user_data() call */
|
|
+);
|
|
+int sqlite_create_aggregate(
|
|
+ sqlite*, /* Database where the new function is registered */
|
|
+ const char *zName, /* Name of the function */
|
|
+ int nArg, /* Number of arguments */
|
|
+ void (*xStep)(sqlite_func*,int,const char**), /* Called for each row */
|
|
+ void (*xFinalize)(sqlite_func*), /* Called once to get final result */
|
|
+ void *pUserData /* Available via the sqlite_user_data() call */
|
|
+);
|
|
+
|
|
+/*
|
|
+** Use the following routine to define the datatype returned by a
|
|
+** user-defined function. The second argument can be one of the
|
|
+** constants SQLITE_NUMERIC, SQLITE_TEXT, or SQLITE_ARGS or it
|
|
+** can be an integer greater than or equal to zero. The datatype
|
|
+** will be numeric or text (the only two types supported) if the
|
|
+** argument is SQLITE_NUMERIC or SQLITE_TEXT. If the argument is
|
|
+** SQLITE_ARGS, then the datatype is numeric if any argument to the
|
|
+** function is numeric and is text otherwise. If the second argument
|
|
+** is an integer, then the datatype of the result is the same as the
|
|
+** parameter to the function that corresponds to that integer.
|
|
+*/
|
|
+int sqlite_function_type(
|
|
+ sqlite *db, /* The database there the function is registered */
|
|
+ const char *zName, /* Name of the function */
|
|
+ int datatype /* The datatype for this function */
|
|
+);
|
|
+#define SQLITE_NUMERIC (-1)
|
|
+#define SQLITE_TEXT (-2)
|
|
+#define SQLITE_ARGS (-3)
|
|
+
|
|
+/*
|
|
+** The user function implementations call one of the following four routines
|
|
+** in order to return their results. The first parameter to each of these
|
|
+** routines is a copy of the first argument to xFunc() or xFinialize().
|
|
+** The second parameter to these routines is the result to be returned.
|
|
+** A NULL can be passed as the second parameter to sqlite_set_result_string()
|
|
+** in order to return a NULL result.
|
|
+**
|
|
+** The 3rd argument to _string and _error is the number of characters to
|
|
+** take from the string. If this argument is negative, then all characters
|
|
+** up to and including the first '\000' are used.
|
|
+**
|
|
+** The sqlite_set_result_string() function allocates a buffer to hold the
|
|
+** result and returns a pointer to this buffer. The calling routine
|
|
+** (that is, the implmentation of a user function) can alter the content
|
|
+** of this buffer if desired.
|
|
+*/
|
|
+char *sqlite_set_result_string(sqlite_func*,const char*,int);
|
|
+void sqlite_set_result_int(sqlite_func*,int);
|
|
+void sqlite_set_result_double(sqlite_func*,double);
|
|
+void sqlite_set_result_error(sqlite_func*,const char*,int);
|
|
+
|
|
+/*
|
|
+** The pUserData parameter to the sqlite_create_function() and
|
|
+** sqlite_create_aggregate() routines used to register user functions
|
|
+** is available to the implementation of the function using this
|
|
+** call.
|
|
+*/
|
|
+void *sqlite_user_data(sqlite_func*);
|
|
+
|
|
+/*
|
|
+** Aggregate functions use the following routine to allocate
|
|
+** a structure for storing their state. The first time this routine
|
|
+** is called for a particular aggregate, a new structure of size nBytes
|
|
+** is allocated, zeroed, and returned. On subsequent calls (for the
|
|
+** same aggregate instance) the same buffer is returned. The implementation
|
|
+** of the aggregate can use the returned buffer to accumulate data.
|
|
+**
|
|
+** The buffer allocated is freed automatically be SQLite.
|
|
+*/
|
|
+void *sqlite_aggregate_context(sqlite_func*, int nBytes);
|
|
+
|
|
+/*
|
|
+** The next routine returns the number of calls to xStep for a particular
|
|
+** aggregate function instance. The current call to xStep counts so this
|
|
+** routine always returns at least 1.
|
|
+*/
|
|
+int sqlite_aggregate_count(sqlite_func*);
|
|
+
|
|
+/*
|
|
+** This routine registers a callback with the SQLite library. The
|
|
+** callback is invoked (at compile-time, not at run-time) for each
|
|
+** attempt to access a column of a table in the database. The callback
|
|
+** returns SQLITE_OK if access is allowed, SQLITE_DENY if the entire
|
|
+** SQL statement should be aborted with an error and SQLITE_IGNORE
|
|
+** if the column should be treated as a NULL value.
|
|
+*/
|
|
+int sqlite_set_authorizer(
|
|
+ sqlite*,
|
|
+ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
|
|
+ void *pUserData
|
|
+);
|
|
+
|
|
+/*
|
|
+** The second parameter to the access authorization function above will
|
|
+** be one of the values below. These values signify what kind of operation
|
|
+** is to be authorized. The 3rd and 4th parameters to the authorization
|
|
+** function will be parameters or NULL depending on which of the following
|
|
+** codes is used as the second parameter. The 5th parameter is the name
|
|
+** of the database ("main", "temp", etc.) if applicable. The 6th parameter
|
|
+** is the name of the inner-most trigger or view that is responsible for
|
|
+** the access attempt or NULL if this access attempt is directly from
|
|
+** input SQL code.
|
|
+**
|
|
+** Arg-3 Arg-4
|
|
+*/
|
|
+#define SQLITE_COPY 0 /* Table Name File Name */
|
|
+#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */
|
|
+#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */
|
|
+#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */
|
|
+#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */
|
|
+#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */
|
|
+#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */
|
|
+#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */
|
|
+#define SQLITE_CREATE_VIEW 8 /* View Name NULL */
|
|
+#define SQLITE_DELETE 9 /* Table Name NULL */
|
|
+#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */
|
|
+#define SQLITE_DROP_TABLE 11 /* Table Name NULL */
|
|
+#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */
|
|
+#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */
|
|
+#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */
|
|
+#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */
|
|
+#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */
|
|
+#define SQLITE_DROP_VIEW 17 /* View Name NULL */
|
|
+#define SQLITE_INSERT 18 /* Table Name NULL */
|
|
+#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */
|
|
+#define SQLITE_READ 20 /* Table Name Column Name */
|
|
+#define SQLITE_SELECT 21 /* NULL NULL */
|
|
+#define SQLITE_TRANSACTION 22 /* NULL NULL */
|
|
+#define SQLITE_UPDATE 23 /* Table Name Column Name */
|
|
+#define SQLITE_ATTACH 24 /* Filename NULL */
|
|
+#define SQLITE_DETACH 25 /* Database Name NULL */
|
|
+
|
|
+
|
|
+/*
|
|
+** The return value of the authorization function should be one of the
|
|
+** following constants:
|
|
+*/
|
|
+/* #define SQLITE_OK 0 // Allow access (This is actually defined above) */
|
|
+#define SQLITE_DENY 1 /* Abort the SQL statement with an error */
|
|
+#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
|
|
+
|
|
+/*
|
|
+** Register a function that is called at every invocation of sqlite_exec()
|
|
+** or sqlite_compile(). This function can be used (for example) to generate
|
|
+** a log file of all SQL executed against a database.
|
|
+*/
|
|
+void *sqlite_trace(sqlite*, void(*xTrace)(void*,const char*), void*);
|
|
+
|
|
+/*** The Callback-Free API
|
|
+**
|
|
+** The following routines implement a new way to access SQLite that does not
|
|
+** involve the use of callbacks.
|
|
+**
|
|
+** An sqlite_vm is an opaque object that represents a single SQL statement
|
|
+** that is ready to be executed.
|
|
+*/
|
|
+typedef struct sqlite_vm sqlite_vm;
|
|
+
|
|
+/*
|
|
+** To execute an SQLite query without the use of callbacks, you first have
|
|
+** to compile the SQL using this routine. The 1st parameter "db" is a pointer
|
|
+** to an sqlite object obtained from sqlite_open(). The 2nd parameter
|
|
+** "zSql" is the text of the SQL to be compiled. The remaining parameters
|
|
+** are all outputs.
|
|
+**
|
|
+** *pzTail is made to point to the first character past the end of the first
|
|
+** SQL statement in zSql. This routine only compiles the first statement
|
|
+** in zSql, so *pzTail is left pointing to what remains uncompiled.
|
|
+**
|
|
+** *ppVm is left pointing to a "virtual machine" that can be used to execute
|
|
+** the compiled statement. Or if there is an error, *ppVm may be set to NULL.
|
|
+** If the input text contained no SQL (if the input is and empty string or
|
|
+** a comment) then *ppVm is set to NULL.
|
|
+**
|
|
+** If any errors are detected during compilation, an error message is written
|
|
+** into space obtained from malloc() and *pzErrMsg is made to point to that
|
|
+** error message. The calling routine is responsible for freeing the text
|
|
+** of this message when it has finished with it. Use sqlite_freemem() to
|
|
+** free the message. pzErrMsg may be NULL in which case no error message
|
|
+** will be generated.
|
|
+**
|
|
+** On success, SQLITE_OK is returned. Otherwise and error code is returned.
|
|
+*/
|
|
+int sqlite_compile(
|
|
+ sqlite *db, /* The open database */
|
|
+ const char *zSql, /* SQL statement to be compiled */
|
|
+ const char **pzTail, /* OUT: uncompiled tail of zSql */
|
|
+ sqlite_vm **ppVm, /* OUT: the virtual machine to execute zSql */
|
|
+ char **pzErrmsg /* OUT: Error message. */
|
|
+);
|
|
+
|
|
+/*
|
|
+** After an SQL statement has been compiled, it is handed to this routine
|
|
+** to be executed. This routine executes the statement as far as it can
|
|
+** go then returns. The return value will be one of SQLITE_DONE,
|
|
+** SQLITE_ERROR, SQLITE_BUSY, SQLITE_ROW, or SQLITE_MISUSE.
|
|
+**
|
|
+** SQLITE_DONE means that the execute of the SQL statement is complete
|
|
+** an no errors have occurred. sqlite_step() should not be called again
|
|
+** for the same virtual machine. *pN is set to the number of columns in
|
|
+** the result set and *pazColName is set to an array of strings that
|
|
+** describe the column names and datatypes. The name of the i-th column
|
|
+** is (*pazColName)[i] and the datatype of the i-th column is
|
|
+** (*pazColName)[i+*pN]. *pazValue is set to NULL.
|
|
+**
|
|
+** SQLITE_ERROR means that the virtual machine encountered a run-time
|
|
+** error. sqlite_step() should not be called again for the same
|
|
+** virtual machine. *pN is set to 0 and *pazColName and *pazValue are set
|
|
+** to NULL. Use sqlite_finalize() to obtain the specific error code
|
|
+** and the error message text for the error.
|
|
+**
|
|
+** SQLITE_BUSY means that an attempt to open the database failed because
|
|
+** another thread or process is holding a lock. The calling routine
|
|
+** can try again to open the database by calling sqlite_step() again.
|
|
+** The return code will only be SQLITE_BUSY if no busy handler is registered
|
|
+** using the sqlite_busy_handler() or sqlite_busy_timeout() routines. If
|
|
+** a busy handler callback has been registered but returns 0, then this
|
|
+** routine will return SQLITE_ERROR and sqltie_finalize() will return
|
|
+** SQLITE_BUSY when it is called.
|
|
+**
|
|
+** SQLITE_ROW means that a single row of the result is now available.
|
|
+** The data is contained in *pazValue. The value of the i-th column is
|
|
+** (*azValue)[i]. *pN and *pazColName are set as described in SQLITE_DONE.
|
|
+** Invoke sqlite_step() again to advance to the next row.
|
|
+**
|
|
+** SQLITE_MISUSE is returned if sqlite_step() is called incorrectly.
|
|
+** For example, if you call sqlite_step() after the virtual machine
|
|
+** has halted (after a prior call to sqlite_step() has returned SQLITE_DONE)
|
|
+** or if you call sqlite_step() with an incorrectly initialized virtual
|
|
+** machine or a virtual machine that has been deleted or that is associated
|
|
+** with an sqlite structure that has been closed.
|
|
+*/
|
|
+int sqlite_step(
|
|
+ sqlite_vm *pVm, /* The virtual machine to execute */
|
|
+ int *pN, /* OUT: Number of columns in result */
|
|
+ const char ***pazValue, /* OUT: Column data */
|
|
+ const char ***pazColName /* OUT: Column names and datatypes */
|
|
+);
|
|
+
|
|
+/*
|
|
+** This routine is called to delete a virtual machine after it has finished
|
|
+** executing. The return value is the result code. SQLITE_OK is returned
|
|
+** if the statement executed successfully and some other value is returned if
|
|
+** there was any kind of error. If an error occurred and pzErrMsg is not
|
|
+** NULL, then an error message is written into memory obtained from malloc()
|
|
+** and *pzErrMsg is made to point to that error message. The calling routine
|
|
+** should use sqlite_freemem() to delete this message when it has finished
|
|
+** with it.
|
|
+**
|
|
+** This routine can be called at any point during the execution of the
|
|
+** virtual machine. If the virtual machine has not completed execution
|
|
+** when this routine is called, that is like encountering an error or
|
|
+** an interrupt. (See sqlite_interrupt().) Incomplete updates may be
|
|
+** rolled back and transactions cancelled, depending on the circumstances,
|
|
+** and the result code returned will be SQLITE_ABORT.
|
|
+*/
|
|
+int sqlite_finalize(sqlite_vm*, char **pzErrMsg);
|
|
+
|
|
+/*
|
|
+** This routine deletes the virtual machine, writes any error message to
|
|
+** *pzErrMsg and returns an SQLite return code in the same way as the
|
|
+** sqlite_finalize() function.
|
|
+**
|
|
+** Additionally, if ppVm is not NULL, *ppVm is left pointing to a new virtual
|
|
+** machine loaded with the compiled version of the original query ready for
|
|
+** execution.
|
|
+**
|
|
+** If sqlite_reset() returns SQLITE_SCHEMA, then *ppVm is set to NULL.
|
|
+**
|
|
+******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
|
|
+*/
|
|
+int sqlite_reset(sqlite_vm*, char **pzErrMsg);
|
|
+
|
|
+/*
|
|
+** If the SQL that was handed to sqlite_compile contains variables that
|
|
+** are represeted in the SQL text by a question mark ('?'). This routine
|
|
+** is used to assign values to those variables.
|
|
+**
|
|
+** The first parameter is a virtual machine obtained from sqlite_compile().
|
|
+** The 2nd "idx" parameter determines which variable in the SQL statement
|
|
+** to bind the value to. The left most '?' is 1. The 3rd parameter is
|
|
+** the value to assign to that variable. The 4th parameter is the number
|
|
+** of bytes in the value, including the terminating \000 for strings.
|
|
+** Finally, the 5th "copy" parameter is TRUE if SQLite should make its
|
|
+** own private copy of this value, or false if the space that the 3rd
|
|
+** parameter points to will be unchanging and can be used directly by
|
|
+** SQLite.
|
|
+**
|
|
+** Unbound variables are treated as having a value of NULL. To explicitly
|
|
+** set a variable to NULL, call this routine with the 3rd parameter as a
|
|
+** NULL pointer.
|
|
+**
|
|
+** If the 4th "len" parameter is -1, then strlen() is used to find the
|
|
+** length.
|
|
+**
|
|
+** This routine can only be called immediately after sqlite_compile()
|
|
+** or sqlite_reset() and before any calls to sqlite_step().
|
|
+**
|
|
+******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
|
|
+*/
|
|
+int sqlite_bind(sqlite_vm*, int idx, const char *value, int len, int copy);
|
|
+
|
|
+/*
|
|
+** This routine configures a callback function - the progress callback - that
|
|
+** is invoked periodically during long running calls to sqlite_exec(),
|
|
+** sqlite_step() and sqlite_get_table(). An example use for this API is to keep
|
|
+** a GUI updated during a large query.
|
|
+**
|
|
+** The progress callback is invoked once for every N virtual machine opcodes,
|
|
+** where N is the second argument to this function. The progress callback
|
|
+** itself is identified by the third argument to this function. The fourth
|
|
+** argument to this function is a void pointer passed to the progress callback
|
|
+** function each time it is invoked.
|
|
+**
|
|
+** If a call to sqlite_exec(), sqlite_step() or sqlite_get_table() results
|
|
+** in less than N opcodes being executed, then the progress callback is not
|
|
+** invoked.
|
|
+**
|
|
+** Calling this routine overwrites any previously installed progress callback.
|
|
+** To remove the progress callback altogether, pass NULL as the third
|
|
+** argument to this function.
|
|
+**
|
|
+** If the progress callback returns a result other than 0, then the current
|
|
+** query is immediately terminated and any database changes rolled back. If the
|
|
+** query was part of a larger transaction, then the transaction is not rolled
|
|
+** back and remains active. The sqlite_exec() call returns SQLITE_ABORT.
|
|
+*/
|
|
+void sqlite_progress_handler(sqlite*, int, int(*)(void*), void*);
|
|
+
|
|
+#ifdef __cplusplus
|
|
+} /* End of the 'extern "C"' block */
|
|
+#endif
|
|
+
|
|
+#endif /* _SQLITE_H_ */
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/table.c
|
|
@@ -0,0 +1,203 @@
|
|
+/*
|
|
+** 2001 September 15
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This file contains the sqlite_get_table() and sqlite_free_table()
|
|
+** interface routines. These are just wrappers around the main
|
|
+** interface routine of sqlite_exec().
|
|
+**
|
|
+** These routines are in a separate files so that they will not be linked
|
|
+** if they are not used.
|
|
+*/
|
|
+#include <stdlib.h>
|
|
+#include <string.h>
|
|
+#include "sqliteInt.h"
|
|
+
|
|
+/*
|
|
+** This structure is used to pass data from sqlite_get_table() through
|
|
+** to the callback function is uses to build the result.
|
|
+*/
|
|
+typedef struct TabResult {
|
|
+ char **azResult;
|
|
+ char *zErrMsg;
|
|
+ int nResult;
|
|
+ int nAlloc;
|
|
+ int nRow;
|
|
+ int nColumn;
|
|
+ long nData;
|
|
+ int rc;
|
|
+} TabResult;
|
|
+
|
|
+/*
|
|
+** This routine is called once for each row in the result table. Its job
|
|
+** is to fill in the TabResult structure appropriately, allocating new
|
|
+** memory as necessary.
|
|
+*/
|
|
+static int sqlite_get_table_cb(void *pArg, int nCol, char **argv, char **colv){
|
|
+ TabResult *p = (TabResult*)pArg;
|
|
+ int need;
|
|
+ int i;
|
|
+ char *z;
|
|
+
|
|
+ /* Make sure there is enough space in p->azResult to hold everything
|
|
+ ** we need to remember from this invocation of the callback.
|
|
+ */
|
|
+ if( p->nRow==0 && argv!=0 ){
|
|
+ need = nCol*2;
|
|
+ }else{
|
|
+ need = nCol;
|
|
+ }
|
|
+ if( p->nData + need >= p->nAlloc ){
|
|
+ char **azNew;
|
|
+ p->nAlloc = p->nAlloc*2 + need + 1;
|
|
+ azNew = realloc( p->azResult, sizeof(char*)*p->nAlloc );
|
|
+ if( azNew==0 ){
|
|
+ p->rc = SQLITE_NOMEM;
|
|
+ return 1;
|
|
+ }
|
|
+ p->azResult = azNew;
|
|
+ }
|
|
+
|
|
+ /* If this is the first row, then generate an extra row containing
|
|
+ ** the names of all columns.
|
|
+ */
|
|
+ if( p->nRow==0 ){
|
|
+ p->nColumn = nCol;
|
|
+ for(i=0; i<nCol; i++){
|
|
+ if( colv[i]==0 ){
|
|
+ z = 0;
|
|
+ }else{
|
|
+ z = malloc( strlen(colv[i])+1 );
|
|
+ if( z==0 ){
|
|
+ p->rc = SQLITE_NOMEM;
|
|
+ return 1;
|
|
+ }
|
|
+ strcpy(z, colv[i]);
|
|
+ }
|
|
+ p->azResult[p->nData++] = z;
|
|
+ }
|
|
+ }else if( p->nColumn!=nCol ){
|
|
+ sqliteSetString(&p->zErrMsg,
|
|
+ "sqlite_get_table() called with two or more incompatible queries",
|
|
+ (char*)0);
|
|
+ p->rc = SQLITE_ERROR;
|
|
+ return 1;
|
|
+ }
|
|
+
|
|
+ /* Copy over the row data
|
|
+ */
|
|
+ if( argv!=0 ){
|
|
+ for(i=0; i<nCol; i++){
|
|
+ if( argv[i]==0 ){
|
|
+ z = 0;
|
|
+ }else{
|
|
+ z = malloc( strlen(argv[i])+1 );
|
|
+ if( z==0 ){
|
|
+ p->rc = SQLITE_NOMEM;
|
|
+ return 1;
|
|
+ }
|
|
+ strcpy(z, argv[i]);
|
|
+ }
|
|
+ p->azResult[p->nData++] = z;
|
|
+ }
|
|
+ p->nRow++;
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Query the database. But instead of invoking a callback for each row,
|
|
+** malloc() for space to hold the result and return the entire results
|
|
+** at the conclusion of the call.
|
|
+**
|
|
+** The result that is written to ***pazResult is held in memory obtained
|
|
+** from malloc(). But the caller cannot free this memory directly.
|
|
+** Instead, the entire table should be passed to sqlite_free_table() when
|
|
+** the calling procedure is finished using it.
|
|
+*/
|
|
+int sqlite_get_table(
|
|
+ sqlite *db, /* The database on which the SQL executes */
|
|
+ const char *zSql, /* The SQL to be executed */
|
|
+ char ***pazResult, /* Write the result table here */
|
|
+ int *pnRow, /* Write the number of rows in the result here */
|
|
+ int *pnColumn, /* Write the number of columns of result here */
|
|
+ char **pzErrMsg /* Write error messages here */
|
|
+){
|
|
+ int rc;
|
|
+ TabResult res;
|
|
+ if( pazResult==0 ){ return SQLITE_ERROR; }
|
|
+ *pazResult = 0;
|
|
+ if( pnColumn ) *pnColumn = 0;
|
|
+ if( pnRow ) *pnRow = 0;
|
|
+ res.zErrMsg = 0;
|
|
+ res.nResult = 0;
|
|
+ res.nRow = 0;
|
|
+ res.nColumn = 0;
|
|
+ res.nData = 1;
|
|
+ res.nAlloc = 20;
|
|
+ res.rc = SQLITE_OK;
|
|
+ res.azResult = malloc( sizeof(char*)*res.nAlloc );
|
|
+ if( res.azResult==0 ){
|
|
+ return SQLITE_NOMEM;
|
|
+ }
|
|
+ res.azResult[0] = 0;
|
|
+ rc = sqlite_exec(db, zSql, sqlite_get_table_cb, &res, pzErrMsg);
|
|
+ if( res.azResult ){
|
|
+ res.azResult[0] = (char*)res.nData;
|
|
+ }
|
|
+ if( rc==SQLITE_ABORT ){
|
|
+ sqlite_free_table(&res.azResult[1]);
|
|
+ if( res.zErrMsg ){
|
|
+ if( pzErrMsg ){
|
|
+ free(*pzErrMsg);
|
|
+ *pzErrMsg = res.zErrMsg;
|
|
+ sqliteStrRealloc(pzErrMsg);
|
|
+ }else{
|
|
+ sqliteFree(res.zErrMsg);
|
|
+ }
|
|
+ }
|
|
+ return res.rc;
|
|
+ }
|
|
+ sqliteFree(res.zErrMsg);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ sqlite_free_table(&res.azResult[1]);
|
|
+ return rc;
|
|
+ }
|
|
+ if( res.nAlloc>res.nData ){
|
|
+ char **azNew;
|
|
+ azNew = realloc( res.azResult, sizeof(char*)*(res.nData+1) );
|
|
+ if( azNew==0 ){
|
|
+ sqlite_free_table(&res.azResult[1]);
|
|
+ return SQLITE_NOMEM;
|
|
+ }
|
|
+ res.nAlloc = res.nData+1;
|
|
+ res.azResult = azNew;
|
|
+ }
|
|
+ *pazResult = &res.azResult[1];
|
|
+ if( pnColumn ) *pnColumn = res.nColumn;
|
|
+ if( pnRow ) *pnRow = res.nRow;
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine frees the space the sqlite_get_table() malloced.
|
|
+*/
|
|
+void sqlite_free_table(
|
|
+ char **azResult /* Result returned from from sqlite_get_table() */
|
|
+){
|
|
+ if( azResult ){
|
|
+ int i, n;
|
|
+ azResult--;
|
|
+ if( azResult==0 ) return;
|
|
+ n = (int)(long)azResult[0];
|
|
+ for(i=1; i<n; i++){ if( azResult[i] ) free(azResult[i]); }
|
|
+ free(azResult);
|
|
+ }
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/tokenize.c
|
|
@@ -0,0 +1,679 @@
|
|
+/*
|
|
+** 2001 September 15
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** An tokenizer for SQL
|
|
+**
|
|
+** This file contains C code that splits an SQL input string up into
|
|
+** individual tokens and sends those tokens one-by-one over to the
|
|
+** parser for analysis.
|
|
+**
|
|
+** $Id$
|
|
+*/
|
|
+#include "sqliteInt.h"
|
|
+#include "os.h"
|
|
+#include <ctype.h>
|
|
+#include <stdlib.h>
|
|
+
|
|
+/*
|
|
+** All the keywords of the SQL language are stored as in a hash
|
|
+** table composed of instances of the following structure.
|
|
+*/
|
|
+typedef struct Keyword Keyword;
|
|
+struct Keyword {
|
|
+ char *zName; /* The keyword name */
|
|
+ u8 tokenType; /* Token value for this keyword */
|
|
+ u8 len; /* Length of this keyword */
|
|
+ u8 iNext; /* Index in aKeywordTable[] of next with same hash */
|
|
+};
|
|
+
|
|
+/*
|
|
+** These are the keywords
|
|
+*/
|
|
+static Keyword aKeywordTable[] = {
|
|
+ { "ABORT", TK_ABORT, },
|
|
+ { "AFTER", TK_AFTER, },
|
|
+ { "ALL", TK_ALL, },
|
|
+ { "AND", TK_AND, },
|
|
+ { "AS", TK_AS, },
|
|
+ { "ASC", TK_ASC, },
|
|
+ { "ATTACH", TK_ATTACH, },
|
|
+ { "BEFORE", TK_BEFORE, },
|
|
+ { "BEGIN", TK_BEGIN, },
|
|
+ { "BETWEEN", TK_BETWEEN, },
|
|
+ { "BY", TK_BY, },
|
|
+ { "CASCADE", TK_CASCADE, },
|
|
+ { "CASE", TK_CASE, },
|
|
+ { "CHECK", TK_CHECK, },
|
|
+ { "CLUSTER", TK_CLUSTER, },
|
|
+ { "COLLATE", TK_COLLATE, },
|
|
+ { "COMMIT", TK_COMMIT, },
|
|
+ { "CONFLICT", TK_CONFLICT, },
|
|
+ { "CONSTRAINT", TK_CONSTRAINT, },
|
|
+ { "COPY", TK_COPY, },
|
|
+ { "CREATE", TK_CREATE, },
|
|
+ { "CROSS", TK_JOIN_KW, },
|
|
+ { "DATABASE", TK_DATABASE, },
|
|
+ { "DEFAULT", TK_DEFAULT, },
|
|
+ { "DEFERRED", TK_DEFERRED, },
|
|
+ { "DEFERRABLE", TK_DEFERRABLE, },
|
|
+ { "DELETE", TK_DELETE, },
|
|
+ { "DELIMITERS", TK_DELIMITERS, },
|
|
+ { "DESC", TK_DESC, },
|
|
+ { "DETACH", TK_DETACH, },
|
|
+ { "DISTINCT", TK_DISTINCT, },
|
|
+ { "DROP", TK_DROP, },
|
|
+ { "END", TK_END, },
|
|
+ { "EACH", TK_EACH, },
|
|
+ { "ELSE", TK_ELSE, },
|
|
+ { "EXCEPT", TK_EXCEPT, },
|
|
+ { "EXPLAIN", TK_EXPLAIN, },
|
|
+ { "FAIL", TK_FAIL, },
|
|
+ { "FOR", TK_FOR, },
|
|
+ { "FOREIGN", TK_FOREIGN, },
|
|
+ { "FROM", TK_FROM, },
|
|
+ { "FULL", TK_JOIN_KW, },
|
|
+ { "GLOB", TK_GLOB, },
|
|
+ { "GROUP", TK_GROUP, },
|
|
+ { "HAVING", TK_HAVING, },
|
|
+ { "IGNORE", TK_IGNORE, },
|
|
+ { "IMMEDIATE", TK_IMMEDIATE, },
|
|
+ { "IN", TK_IN, },
|
|
+ { "INDEX", TK_INDEX, },
|
|
+ { "INITIALLY", TK_INITIALLY, },
|
|
+ { "INNER", TK_JOIN_KW, },
|
|
+ { "INSERT", TK_INSERT, },
|
|
+ { "INSTEAD", TK_INSTEAD, },
|
|
+ { "INTERSECT", TK_INTERSECT, },
|
|
+ { "INTO", TK_INTO, },
|
|
+ { "IS", TK_IS, },
|
|
+ { "ISNULL", TK_ISNULL, },
|
|
+ { "JOIN", TK_JOIN, },
|
|
+ { "KEY", TK_KEY, },
|
|
+ { "LEFT", TK_JOIN_KW, },
|
|
+ { "LIKE", TK_LIKE, },
|
|
+ { "LIMIT", TK_LIMIT, },
|
|
+ { "MATCH", TK_MATCH, },
|
|
+ { "NATURAL", TK_JOIN_KW, },
|
|
+ { "NOT", TK_NOT, },
|
|
+ { "NOTNULL", TK_NOTNULL, },
|
|
+ { "NULL", TK_NULL, },
|
|
+ { "OF", TK_OF, },
|
|
+ { "OFFSET", TK_OFFSET, },
|
|
+ { "ON", TK_ON, },
|
|
+ { "OR", TK_OR, },
|
|
+ { "ORDER", TK_ORDER, },
|
|
+ { "OUTER", TK_JOIN_KW, },
|
|
+ { "PRAGMA", TK_PRAGMA, },
|
|
+ { "PRIMARY", TK_PRIMARY, },
|
|
+ { "RAISE", TK_RAISE, },
|
|
+ { "REFERENCES", TK_REFERENCES, },
|
|
+ { "REPLACE", TK_REPLACE, },
|
|
+ { "RESTRICT", TK_RESTRICT, },
|
|
+ { "RIGHT", TK_JOIN_KW, },
|
|
+ { "ROLLBACK", TK_ROLLBACK, },
|
|
+ { "ROW", TK_ROW, },
|
|
+ { "SELECT", TK_SELECT, },
|
|
+ { "SET", TK_SET, },
|
|
+ { "STATEMENT", TK_STATEMENT, },
|
|
+ { "TABLE", TK_TABLE, },
|
|
+ { "TEMP", TK_TEMP, },
|
|
+ { "TEMPORARY", TK_TEMP, },
|
|
+ { "THEN", TK_THEN, },
|
|
+ { "TRANSACTION", TK_TRANSACTION, },
|
|
+ { "TRIGGER", TK_TRIGGER, },
|
|
+ { "UNION", TK_UNION, },
|
|
+ { "UNIQUE", TK_UNIQUE, },
|
|
+ { "UPDATE", TK_UPDATE, },
|
|
+ { "USING", TK_USING, },
|
|
+ { "VACUUM", TK_VACUUM, },
|
|
+ { "VALUES", TK_VALUES, },
|
|
+ { "VIEW", TK_VIEW, },
|
|
+ { "WHEN", TK_WHEN, },
|
|
+ { "WHERE", TK_WHERE, },
|
|
+};
|
|
+
|
|
+/*
|
|
+** This is the hash table
|
|
+*/
|
|
+#define KEY_HASH_SIZE 101
|
|
+static u8 aiHashTable[KEY_HASH_SIZE];
|
|
+
|
|
+
|
|
+/*
|
|
+** This function looks up an identifier to determine if it is a
|
|
+** keyword. If it is a keyword, the token code of that keyword is
|
|
+** returned. If the input is not a keyword, TK_ID is returned.
|
|
+*/
|
|
+int sqliteKeywordCode(const char *z, int n){
|
|
+ int h, i;
|
|
+ Keyword *p;
|
|
+ static char needInit = 1;
|
|
+ if( needInit ){
|
|
+ /* Initialize the keyword hash table */
|
|
+ sqliteOsEnterMutex();
|
|
+ if( needInit ){
|
|
+ int nk;
|
|
+ nk = sizeof(aKeywordTable)/sizeof(aKeywordTable[0]);
|
|
+ for(i=0; i<nk; i++){
|
|
+ aKeywordTable[i].len = strlen(aKeywordTable[i].zName);
|
|
+ h = sqliteHashNoCase(aKeywordTable[i].zName, aKeywordTable[i].len);
|
|
+ h %= KEY_HASH_SIZE;
|
|
+ aKeywordTable[i].iNext = aiHashTable[h];
|
|
+ aiHashTable[h] = i+1;
|
|
+ }
|
|
+ needInit = 0;
|
|
+ }
|
|
+ sqliteOsLeaveMutex();
|
|
+ }
|
|
+ h = sqliteHashNoCase(z, n) % KEY_HASH_SIZE;
|
|
+ for(i=aiHashTable[h]; i; i=p->iNext){
|
|
+ p = &aKeywordTable[i-1];
|
|
+ if( p->len==n && sqliteStrNICmp(p->zName, z, n)==0 ){
|
|
+ return p->tokenType;
|
|
+ }
|
|
+ }
|
|
+ return TK_ID;
|
|
+}
|
|
+
|
|
+
|
|
+/*
|
|
+** If X is a character that can be used in an identifier and
|
|
+** X&0x80==0 then isIdChar[X] will be 1. If X&0x80==0x80 then
|
|
+** X is always an identifier character. (Hence all UTF-8
|
|
+** characters can be part of an identifier). isIdChar[X] will
|
|
+** be 0 for every character in the lower 128 ASCII characters
|
|
+** that cannot be used as part of an identifier.
|
|
+**
|
|
+** In this implementation, an identifier can be a string of
|
|
+** alphabetic characters, digits, and "_" plus any character
|
|
+** with the high-order bit set. The latter rule means that
|
|
+** any sequence of UTF-8 characters or characters taken from
|
|
+** an extended ISO8859 character set can form an identifier.
|
|
+*/
|
|
+static const char isIdChar[] = {
|
|
+/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
|
|
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */
|
|
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */
|
|
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
|
|
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
|
|
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
|
|
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
|
|
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
|
|
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
|
|
+};
|
|
+
|
|
+
|
|
+/*
|
|
+** Return the length of the token that begins at z[0].
|
|
+** Store the token type in *tokenType before returning.
|
|
+*/
|
|
+static int sqliteGetToken(const unsigned char *z, int *tokenType){
|
|
+ int i;
|
|
+ switch( *z ){
|
|
+ case ' ': case '\t': case '\n': case '\f': case '\r': {
|
|
+ for(i=1; isspace(z[i]); i++){}
|
|
+ *tokenType = TK_SPACE;
|
|
+ return i;
|
|
+ }
|
|
+ case '-': {
|
|
+ if( z[1]=='-' ){
|
|
+ for(i=2; z[i] && z[i]!='\n'; i++){}
|
|
+ *tokenType = TK_COMMENT;
|
|
+ return i;
|
|
+ }
|
|
+ *tokenType = TK_MINUS;
|
|
+ return 1;
|
|
+ }
|
|
+ case '(': {
|
|
+ *tokenType = TK_LP;
|
|
+ return 1;
|
|
+ }
|
|
+ case ')': {
|
|
+ *tokenType = TK_RP;
|
|
+ return 1;
|
|
+ }
|
|
+ case ';': {
|
|
+ *tokenType = TK_SEMI;
|
|
+ return 1;
|
|
+ }
|
|
+ case '+': {
|
|
+ *tokenType = TK_PLUS;
|
|
+ return 1;
|
|
+ }
|
|
+ case '*': {
|
|
+ *tokenType = TK_STAR;
|
|
+ return 1;
|
|
+ }
|
|
+ case '/': {
|
|
+ if( z[1]!='*' || z[2]==0 ){
|
|
+ *tokenType = TK_SLASH;
|
|
+ return 1;
|
|
+ }
|
|
+ for(i=3; z[i] && (z[i]!='/' || z[i-1]!='*'); i++){}
|
|
+ if( z[i] ) i++;
|
|
+ *tokenType = TK_COMMENT;
|
|
+ return i;
|
|
+ }
|
|
+ case '%': {
|
|
+ *tokenType = TK_REM;
|
|
+ return 1;
|
|
+ }
|
|
+ case '=': {
|
|
+ *tokenType = TK_EQ;
|
|
+ return 1 + (z[1]=='=');
|
|
+ }
|
|
+ case '<': {
|
|
+ if( z[1]=='=' ){
|
|
+ *tokenType = TK_LE;
|
|
+ return 2;
|
|
+ }else if( z[1]=='>' ){
|
|
+ *tokenType = TK_NE;
|
|
+ return 2;
|
|
+ }else if( z[1]=='<' ){
|
|
+ *tokenType = TK_LSHIFT;
|
|
+ return 2;
|
|
+ }else{
|
|
+ *tokenType = TK_LT;
|
|
+ return 1;
|
|
+ }
|
|
+ }
|
|
+ case '>': {
|
|
+ if( z[1]=='=' ){
|
|
+ *tokenType = TK_GE;
|
|
+ return 2;
|
|
+ }else if( z[1]=='>' ){
|
|
+ *tokenType = TK_RSHIFT;
|
|
+ return 2;
|
|
+ }else{
|
|
+ *tokenType = TK_GT;
|
|
+ return 1;
|
|
+ }
|
|
+ }
|
|
+ case '!': {
|
|
+ if( z[1]!='=' ){
|
|
+ *tokenType = TK_ILLEGAL;
|
|
+ return 2;
|
|
+ }else{
|
|
+ *tokenType = TK_NE;
|
|
+ return 2;
|
|
+ }
|
|
+ }
|
|
+ case '|': {
|
|
+ if( z[1]!='|' ){
|
|
+ *tokenType = TK_BITOR;
|
|
+ return 1;
|
|
+ }else{
|
|
+ *tokenType = TK_CONCAT;
|
|
+ return 2;
|
|
+ }
|
|
+ }
|
|
+ case ',': {
|
|
+ *tokenType = TK_COMMA;
|
|
+ return 1;
|
|
+ }
|
|
+ case '&': {
|
|
+ *tokenType = TK_BITAND;
|
|
+ return 1;
|
|
+ }
|
|
+ case '~': {
|
|
+ *tokenType = TK_BITNOT;
|
|
+ return 1;
|
|
+ }
|
|
+ case '\'': case '"': {
|
|
+ int delim = z[0];
|
|
+ for(i=1; z[i]; i++){
|
|
+ if( z[i]==delim ){
|
|
+ if( z[i+1]==delim ){
|
|
+ i++;
|
|
+ }else{
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ if( z[i] ) i++;
|
|
+ *tokenType = TK_STRING;
|
|
+ return i;
|
|
+ }
|
|
+ case '.': {
|
|
+ *tokenType = TK_DOT;
|
|
+ return 1;
|
|
+ }
|
|
+ case '0': case '1': case '2': case '3': case '4':
|
|
+ case '5': case '6': case '7': case '8': case '9': {
|
|
+ *tokenType = TK_INTEGER;
|
|
+ for(i=1; isdigit(z[i]); i++){}
|
|
+ if( z[i]=='.' && isdigit(z[i+1]) ){
|
|
+ i += 2;
|
|
+ while( isdigit(z[i]) ){ i++; }
|
|
+ *tokenType = TK_FLOAT;
|
|
+ }
|
|
+ if( (z[i]=='e' || z[i]=='E') &&
|
|
+ ( isdigit(z[i+1])
|
|
+ || ((z[i+1]=='+' || z[i+1]=='-') && isdigit(z[i+2]))
|
|
+ )
|
|
+ ){
|
|
+ i += 2;
|
|
+ while( isdigit(z[i]) ){ i++; }
|
|
+ *tokenType = TK_FLOAT;
|
|
+ }
|
|
+ return i;
|
|
+ }
|
|
+ case '[': {
|
|
+ for(i=1; z[i] && z[i-1]!=']'; i++){}
|
|
+ *tokenType = TK_ID;
|
|
+ return i;
|
|
+ }
|
|
+ case '?': {
|
|
+ *tokenType = TK_VARIABLE;
|
|
+ return 1;
|
|
+ }
|
|
+ default: {
|
|
+ if( (*z&0x80)==0 && !isIdChar[*z] ){
|
|
+ break;
|
|
+ }
|
|
+ for(i=1; (z[i]&0x80)!=0 || isIdChar[z[i]]; i++){}
|
|
+ *tokenType = sqliteKeywordCode((char*)z, i);
|
|
+ return i;
|
|
+ }
|
|
+ }
|
|
+ *tokenType = TK_ILLEGAL;
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Run the parser on the given SQL string. The parser structure is
|
|
+** passed in. An SQLITE_ status code is returned. If an error occurs
|
|
+** and pzErrMsg!=NULL then an error message might be written into
|
|
+** memory obtained from malloc() and *pzErrMsg made to point to that
|
|
+** error message. Or maybe not.
|
|
+*/
|
|
+int sqliteRunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
|
|
+ int nErr = 0;
|
|
+ int i;
|
|
+ void *pEngine;
|
|
+ int tokenType;
|
|
+ int lastTokenParsed = -1;
|
|
+ sqlite *db = pParse->db;
|
|
+ extern void *sqliteParserAlloc(void*(*)(int));
|
|
+ extern void sqliteParserFree(void*, void(*)(void*));
|
|
+ extern int sqliteParser(void*, int, Token, Parse*);
|
|
+
|
|
+ db->flags &= ~SQLITE_Interrupt;
|
|
+ pParse->rc = SQLITE_OK;
|
|
+ i = 0;
|
|
+ pEngine = sqliteParserAlloc((void*(*)(int))malloc);
|
|
+ if( pEngine==0 ){
|
|
+ sqliteSetString(pzErrMsg, "out of memory", (char*)0);
|
|
+ return 1;
|
|
+ }
|
|
+ pParse->sLastToken.dyn = 0;
|
|
+ pParse->zTail = zSql;
|
|
+ while( sqlite_malloc_failed==0 && zSql[i]!=0 ){
|
|
+ assert( i>=0 );
|
|
+ pParse->sLastToken.z = &zSql[i];
|
|
+ assert( pParse->sLastToken.dyn==0 );
|
|
+ pParse->sLastToken.n = sqliteGetToken((unsigned char*)&zSql[i], &tokenType);
|
|
+ i += pParse->sLastToken.n;
|
|
+ switch( tokenType ){
|
|
+ case TK_SPACE:
|
|
+ case TK_COMMENT: {
|
|
+ if( (db->flags & SQLITE_Interrupt)!=0 ){
|
|
+ pParse->rc = SQLITE_INTERRUPT;
|
|
+ sqliteSetString(pzErrMsg, "interrupt", (char*)0);
|
|
+ goto abort_parse;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ case TK_ILLEGAL: {
|
|
+ sqliteSetNString(pzErrMsg, "unrecognized token: \"", -1,
|
|
+ pParse->sLastToken.z, pParse->sLastToken.n, "\"", 1, 0);
|
|
+ nErr++;
|
|
+ goto abort_parse;
|
|
+ }
|
|
+ case TK_SEMI: {
|
|
+ pParse->zTail = &zSql[i];
|
|
+ /* Fall thru into the default case */
|
|
+ }
|
|
+ default: {
|
|
+ sqliteParser(pEngine, tokenType, pParse->sLastToken, pParse);
|
|
+ lastTokenParsed = tokenType;
|
|
+ if( pParse->rc!=SQLITE_OK ){
|
|
+ goto abort_parse;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+abort_parse:
|
|
+ if( zSql[i]==0 && nErr==0 && pParse->rc==SQLITE_OK ){
|
|
+ if( lastTokenParsed!=TK_SEMI ){
|
|
+ sqliteParser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
|
|
+ pParse->zTail = &zSql[i];
|
|
+ }
|
|
+ sqliteParser(pEngine, 0, pParse->sLastToken, pParse);
|
|
+ }
|
|
+ sqliteParserFree(pEngine, free);
|
|
+ if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
|
|
+ sqliteSetString(&pParse->zErrMsg, sqlite_error_string(pParse->rc),
|
|
+ (char*)0);
|
|
+ }
|
|
+ if( pParse->zErrMsg ){
|
|
+ if( pzErrMsg && *pzErrMsg==0 ){
|
|
+ *pzErrMsg = pParse->zErrMsg;
|
|
+ }else{
|
|
+ sqliteFree(pParse->zErrMsg);
|
|
+ }
|
|
+ pParse->zErrMsg = 0;
|
|
+ if( !nErr ) nErr++;
|
|
+ }
|
|
+ if( pParse->pVdbe && pParse->nErr>0 ){
|
|
+ sqliteVdbeDelete(pParse->pVdbe);
|
|
+ pParse->pVdbe = 0;
|
|
+ }
|
|
+ if( pParse->pNewTable ){
|
|
+ sqliteDeleteTable(pParse->db, pParse->pNewTable);
|
|
+ pParse->pNewTable = 0;
|
|
+ }
|
|
+ if( pParse->pNewTrigger ){
|
|
+ sqliteDeleteTrigger(pParse->pNewTrigger);
|
|
+ pParse->pNewTrigger = 0;
|
|
+ }
|
|
+ if( nErr>0 && (pParse->rc==SQLITE_OK || pParse->rc==SQLITE_DONE) ){
|
|
+ pParse->rc = SQLITE_ERROR;
|
|
+ }
|
|
+ return nErr;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Token types used by the sqlite_complete() routine. See the header
|
|
+** comments on that procedure for additional information.
|
|
+*/
|
|
+#define tkEXPLAIN 0
|
|
+#define tkCREATE 1
|
|
+#define tkTEMP 2
|
|
+#define tkTRIGGER 3
|
|
+#define tkEND 4
|
|
+#define tkSEMI 5
|
|
+#define tkWS 6
|
|
+#define tkOTHER 7
|
|
+
|
|
+/*
|
|
+** Return TRUE if the given SQL string ends in a semicolon.
|
|
+**
|
|
+** Special handling is require for CREATE TRIGGER statements.
|
|
+** Whenever the CREATE TRIGGER keywords are seen, the statement
|
|
+** must end with ";END;".
|
|
+**
|
|
+** This implementation uses a state machine with 7 states:
|
|
+**
|
|
+** (0) START At the beginning or end of an SQL statement. This routine
|
|
+** returns 1 if it ends in the START state and 0 if it ends
|
|
+** in any other state.
|
|
+**
|
|
+** (1) EXPLAIN The keyword EXPLAIN has been seen at the beginning of
|
|
+** a statement.
|
|
+**
|
|
+** (2) CREATE The keyword CREATE has been seen at the beginning of a
|
|
+** statement, possibly preceeded by EXPLAIN and/or followed by
|
|
+** TEMP or TEMPORARY
|
|
+**
|
|
+** (3) NORMAL We are in the middle of statement which ends with a single
|
|
+** semicolon.
|
|
+**
|
|
+** (4) TRIGGER We are in the middle of a trigger definition that must be
|
|
+** ended by a semicolon, the keyword END, and another semicolon.
|
|
+**
|
|
+** (5) SEMI We've seen the first semicolon in the ";END;" that occurs at
|
|
+** the end of a trigger definition.
|
|
+**
|
|
+** (6) END We've seen the ";END" of the ";END;" that occurs at the end
|
|
+** of a trigger difinition.
|
|
+**
|
|
+** Transitions between states above are determined by tokens extracted
|
|
+** from the input. The following tokens are significant:
|
|
+**
|
|
+** (0) tkEXPLAIN The "explain" keyword.
|
|
+** (1) tkCREATE The "create" keyword.
|
|
+** (2) tkTEMP The "temp" or "temporary" keyword.
|
|
+** (3) tkTRIGGER The "trigger" keyword.
|
|
+** (4) tkEND The "end" keyword.
|
|
+** (5) tkSEMI A semicolon.
|
|
+** (6) tkWS Whitespace
|
|
+** (7) tkOTHER Any other SQL token.
|
|
+**
|
|
+** Whitespace never causes a state transition and is always ignored.
|
|
+*/
|
|
+int sqlite_complete(const char *zSql){
|
|
+ u8 state = 0; /* Current state, using numbers defined in header comment */
|
|
+ u8 token; /* Value of the next token */
|
|
+
|
|
+ /* The following matrix defines the transition from one state to another
|
|
+ ** according to what token is seen. trans[state][token] returns the
|
|
+ ** next state.
|
|
+ */
|
|
+ static const u8 trans[7][8] = {
|
|
+ /* Token: */
|
|
+ /* State: ** EXPLAIN CREATE TEMP TRIGGER END SEMI WS OTHER */
|
|
+ /* 0 START: */ { 1, 2, 3, 3, 3, 0, 0, 3, },
|
|
+ /* 1 EXPLAIN: */ { 3, 2, 3, 3, 3, 0, 1, 3, },
|
|
+ /* 2 CREATE: */ { 3, 3, 2, 4, 3, 0, 2, 3, },
|
|
+ /* 3 NORMAL: */ { 3, 3, 3, 3, 3, 0, 3, 3, },
|
|
+ /* 4 TRIGGER: */ { 4, 4, 4, 4, 4, 5, 4, 4, },
|
|
+ /* 5 SEMI: */ { 4, 4, 4, 4, 6, 5, 5, 4, },
|
|
+ /* 6 END: */ { 4, 4, 4, 4, 4, 0, 6, 4, },
|
|
+ };
|
|
+
|
|
+ while( *zSql ){
|
|
+ switch( *zSql ){
|
|
+ case ';': { /* A semicolon */
|
|
+ token = tkSEMI;
|
|
+ break;
|
|
+ }
|
|
+ case ' ':
|
|
+ case '\r':
|
|
+ case '\t':
|
|
+ case '\n':
|
|
+ case '\f': { /* White space is ignored */
|
|
+ token = tkWS;
|
|
+ break;
|
|
+ }
|
|
+ case '/': { /* C-style comments */
|
|
+ if( zSql[1]!='*' ){
|
|
+ token = tkOTHER;
|
|
+ break;
|
|
+ }
|
|
+ zSql += 2;
|
|
+ while( zSql[0] && (zSql[0]!='*' || zSql[1]!='/') ){ zSql++; }
|
|
+ if( zSql[0]==0 ) return 0;
|
|
+ zSql++;
|
|
+ token = tkWS;
|
|
+ break;
|
|
+ }
|
|
+ case '-': { /* SQL-style comments from "--" to end of line */
|
|
+ if( zSql[1]!='-' ){
|
|
+ token = tkOTHER;
|
|
+ break;
|
|
+ }
|
|
+ while( *zSql && *zSql!='\n' ){ zSql++; }
|
|
+ if( *zSql==0 ) return state==0;
|
|
+ token = tkWS;
|
|
+ break;
|
|
+ }
|
|
+ case '[': { /* Microsoft-style identifiers in [...] */
|
|
+ zSql++;
|
|
+ while( *zSql && *zSql!=']' ){ zSql++; }
|
|
+ if( *zSql==0 ) return 0;
|
|
+ token = tkOTHER;
|
|
+ break;
|
|
+ }
|
|
+ case '"': /* single- and double-quoted strings */
|
|
+ case '\'': {
|
|
+ int c = *zSql;
|
|
+ zSql++;
|
|
+ while( *zSql && *zSql!=c ){ zSql++; }
|
|
+ if( *zSql==0 ) return 0;
|
|
+ token = tkOTHER;
|
|
+ break;
|
|
+ }
|
|
+ default: {
|
|
+ if( isIdChar[(u8)*zSql] ){
|
|
+ /* Keywords and unquoted identifiers */
|
|
+ int nId;
|
|
+ for(nId=1; isIdChar[(u8)zSql[nId]]; nId++){}
|
|
+ switch( *zSql ){
|
|
+ case 'c': case 'C': {
|
|
+ if( nId==6 && sqliteStrNICmp(zSql, "create", 6)==0 ){
|
|
+ token = tkCREATE;
|
|
+ }else{
|
|
+ token = tkOTHER;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ case 't': case 'T': {
|
|
+ if( nId==7 && sqliteStrNICmp(zSql, "trigger", 7)==0 ){
|
|
+ token = tkTRIGGER;
|
|
+ }else if( nId==4 && sqliteStrNICmp(zSql, "temp", 4)==0 ){
|
|
+ token = tkTEMP;
|
|
+ }else if( nId==9 && sqliteStrNICmp(zSql, "temporary", 9)==0 ){
|
|
+ token = tkTEMP;
|
|
+ }else{
|
|
+ token = tkOTHER;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ case 'e': case 'E': {
|
|
+ if( nId==3 && sqliteStrNICmp(zSql, "end", 3)==0 ){
|
|
+ token = tkEND;
|
|
+ }else if( nId==7 && sqliteStrNICmp(zSql, "explain", 7)==0 ){
|
|
+ token = tkEXPLAIN;
|
|
+ }else{
|
|
+ token = tkOTHER;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ default: {
|
|
+ token = tkOTHER;
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ zSql += nId-1;
|
|
+ }else{
|
|
+ /* Operators and special symbols */
|
|
+ token = tkOTHER;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ state = trans[state][token];
|
|
+ zSql++;
|
|
+ }
|
|
+ return state==0;
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/trigger.c
|
|
@@ -0,0 +1,764 @@
|
|
+/*
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+*
|
|
+*/
|
|
+#include "sqliteInt.h"
|
|
+
|
|
+/*
|
|
+** Delete a linked list of TriggerStep structures.
|
|
+*/
|
|
+void sqliteDeleteTriggerStep(TriggerStep *pTriggerStep){
|
|
+ while( pTriggerStep ){
|
|
+ TriggerStep * pTmp = pTriggerStep;
|
|
+ pTriggerStep = pTriggerStep->pNext;
|
|
+
|
|
+ if( pTmp->target.dyn ) sqliteFree((char*)pTmp->target.z);
|
|
+ sqliteExprDelete(pTmp->pWhere);
|
|
+ sqliteExprListDelete(pTmp->pExprList);
|
|
+ sqliteSelectDelete(pTmp->pSelect);
|
|
+ sqliteIdListDelete(pTmp->pIdList);
|
|
+
|
|
+ sqliteFree(pTmp);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** This is called by the parser when it sees a CREATE TRIGGER statement
|
|
+** up to the point of the BEGIN before the trigger actions. A Trigger
|
|
+** structure is generated based on the information available and stored
|
|
+** in pParse->pNewTrigger. After the trigger actions have been parsed, the
|
|
+** sqliteFinishTrigger() function is called to complete the trigger
|
|
+** construction process.
|
|
+*/
|
|
+void sqliteBeginTrigger(
|
|
+ Parse *pParse, /* The parse context of the CREATE TRIGGER statement */
|
|
+ Token *pName, /* The name of the trigger */
|
|
+ int tr_tm, /* One of TK_BEFORE, TK_AFTER, TK_INSTEAD */
|
|
+ int op, /* One of TK_INSERT, TK_UPDATE, TK_DELETE */
|
|
+ IdList *pColumns, /* column list if this is an UPDATE OF trigger */
|
|
+ SrcList *pTableName,/* The name of the table/view the trigger applies to */
|
|
+ int foreach, /* One of TK_ROW or TK_STATEMENT */
|
|
+ Expr *pWhen, /* WHEN clause */
|
|
+ int isTemp /* True if the TEMPORARY keyword is present */
|
|
+){
|
|
+ Trigger *nt;
|
|
+ Table *tab;
|
|
+ char *zName = 0; /* Name of the trigger */
|
|
+ sqlite *db = pParse->db;
|
|
+ int iDb; /* When database to store the trigger in */
|
|
+ DbFixer sFix;
|
|
+
|
|
+ /* Check that:
|
|
+ ** 1. the trigger name does not already exist.
|
|
+ ** 2. the table (or view) does exist in the same database as the trigger.
|
|
+ ** 3. that we are not trying to create a trigger on the sqlite_master table
|
|
+ ** 4. That we are not trying to create an INSTEAD OF trigger on a table.
|
|
+ ** 5. That we are not trying to create a BEFORE or AFTER trigger on a view.
|
|
+ */
|
|
+ if( sqlite_malloc_failed ) goto trigger_cleanup;
|
|
+ assert( pTableName->nSrc==1 );
|
|
+ if( db->init.busy
|
|
+ && sqliteFixInit(&sFix, pParse, db->init.iDb, "trigger", pName)
|
|
+ && sqliteFixSrcList(&sFix, pTableName)
|
|
+ ){
|
|
+ goto trigger_cleanup;
|
|
+ }
|
|
+ tab = sqliteSrcListLookup(pParse, pTableName);
|
|
+ if( !tab ){
|
|
+ goto trigger_cleanup;
|
|
+ }
|
|
+ iDb = isTemp ? 1 : tab->iDb;
|
|
+ if( iDb>=2 && !db->init.busy ){
|
|
+ sqliteErrorMsg(pParse, "triggers may not be added to auxiliary "
|
|
+ "database %s", db->aDb[tab->iDb].zName);
|
|
+ goto trigger_cleanup;
|
|
+ }
|
|
+
|
|
+ zName = sqliteStrNDup(pName->z, pName->n);
|
|
+ sqliteDequote(zName);
|
|
+ if( sqliteHashFind(&(db->aDb[iDb].trigHash), zName,pName->n+1) ){
|
|
+ sqliteErrorMsg(pParse, "trigger %T already exists", pName);
|
|
+ goto trigger_cleanup;
|
|
+ }
|
|
+ if( sqliteStrNICmp(tab->zName, "sqlite_", 7)==0 ){
|
|
+ sqliteErrorMsg(pParse, "cannot create trigger on system table");
|
|
+ pParse->nErr++;
|
|
+ goto trigger_cleanup;
|
|
+ }
|
|
+ if( tab->pSelect && tr_tm != TK_INSTEAD ){
|
|
+ sqliteErrorMsg(pParse, "cannot create %s trigger on view: %S",
|
|
+ (tr_tm == TK_BEFORE)?"BEFORE":"AFTER", pTableName, 0);
|
|
+ goto trigger_cleanup;
|
|
+ }
|
|
+ if( !tab->pSelect && tr_tm == TK_INSTEAD ){
|
|
+ sqliteErrorMsg(pParse, "cannot create INSTEAD OF"
|
|
+ " trigger on table: %S", pTableName, 0);
|
|
+ goto trigger_cleanup;
|
|
+ }
|
|
+#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
+ {
|
|
+ int code = SQLITE_CREATE_TRIGGER;
|
|
+ const char *zDb = db->aDb[tab->iDb].zName;
|
|
+ const char *zDbTrig = isTemp ? db->aDb[1].zName : zDb;
|
|
+ if( tab->iDb==1 || isTemp ) code = SQLITE_CREATE_TEMP_TRIGGER;
|
|
+ if( sqliteAuthCheck(pParse, code, zName, tab->zName, zDbTrig) ){
|
|
+ goto trigger_cleanup;
|
|
+ }
|
|
+ if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(tab->iDb), 0, zDb)){
|
|
+ goto trigger_cleanup;
|
|
+ }
|
|
+ }
|
|
+#endif
|
|
+
|
|
+ /* INSTEAD OF triggers can only appear on views and BEGIN triggers
|
|
+ ** cannot appear on views. So we might as well translate every
|
|
+ ** INSTEAD OF trigger into a BEFORE trigger. It simplifies code
|
|
+ ** elsewhere.
|
|
+ */
|
|
+ if (tr_tm == TK_INSTEAD){
|
|
+ tr_tm = TK_BEFORE;
|
|
+ }
|
|
+
|
|
+ /* Build the Trigger object */
|
|
+ nt = (Trigger*)sqliteMalloc(sizeof(Trigger));
|
|
+ if( nt==0 ) goto trigger_cleanup;
|
|
+ nt->name = zName;
|
|
+ zName = 0;
|
|
+ nt->table = sqliteStrDup(pTableName->a[0].zName);
|
|
+ if( sqlite_malloc_failed ) goto trigger_cleanup;
|
|
+ nt->iDb = iDb;
|
|
+ nt->iTabDb = tab->iDb;
|
|
+ nt->op = op;
|
|
+ nt->tr_tm = tr_tm;
|
|
+ nt->pWhen = sqliteExprDup(pWhen);
|
|
+ nt->pColumns = sqliteIdListDup(pColumns);
|
|
+ nt->foreach = foreach;
|
|
+ sqliteTokenCopy(&nt->nameToken,pName);
|
|
+ assert( pParse->pNewTrigger==0 );
|
|
+ pParse->pNewTrigger = nt;
|
|
+
|
|
+trigger_cleanup:
|
|
+ sqliteFree(zName);
|
|
+ sqliteSrcListDelete(pTableName);
|
|
+ sqliteIdListDelete(pColumns);
|
|
+ sqliteExprDelete(pWhen);
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine is called after all of the trigger actions have been parsed
|
|
+** in order to complete the process of building the trigger.
|
|
+*/
|
|
+void sqliteFinishTrigger(
|
|
+ Parse *pParse, /* Parser context */
|
|
+ TriggerStep *pStepList, /* The triggered program */
|
|
+ Token *pAll /* Token that describes the complete CREATE TRIGGER */
|
|
+){
|
|
+ Trigger *nt = 0; /* The trigger whose construction is finishing up */
|
|
+ sqlite *db = pParse->db; /* The database */
|
|
+ DbFixer sFix;
|
|
+
|
|
+ if( pParse->nErr || pParse->pNewTrigger==0 ) goto triggerfinish_cleanup;
|
|
+ nt = pParse->pNewTrigger;
|
|
+ pParse->pNewTrigger = 0;
|
|
+ nt->step_list = pStepList;
|
|
+ while( pStepList ){
|
|
+ pStepList->pTrig = nt;
|
|
+ pStepList = pStepList->pNext;
|
|
+ }
|
|
+ if( sqliteFixInit(&sFix, pParse, nt->iDb, "trigger", &nt->nameToken)
|
|
+ && sqliteFixTriggerStep(&sFix, nt->step_list) ){
|
|
+ goto triggerfinish_cleanup;
|
|
+ }
|
|
+
|
|
+ /* if we are not initializing, and this trigger is not on a TEMP table,
|
|
+ ** build the sqlite_master entry
|
|
+ */
|
|
+ if( !db->init.busy ){
|
|
+ static VdbeOpList insertTrig[] = {
|
|
+ { OP_NewRecno, 0, 0, 0 },
|
|
+ { OP_String, 0, 0, "trigger" },
|
|
+ { OP_String, 0, 0, 0 }, /* 2: trigger name */
|
|
+ { OP_String, 0, 0, 0 }, /* 3: table name */
|
|
+ { OP_Integer, 0, 0, 0 },
|
|
+ { OP_String, 0, 0, 0 }, /* 5: SQL */
|
|
+ { OP_MakeRecord, 5, 0, 0 },
|
|
+ { OP_PutIntKey, 0, 0, 0 },
|
|
+ };
|
|
+ int addr;
|
|
+ Vdbe *v;
|
|
+
|
|
+ /* Make an entry in the sqlite_master table */
|
|
+ v = sqliteGetVdbe(pParse);
|
|
+ if( v==0 ) goto triggerfinish_cleanup;
|
|
+ sqliteBeginWriteOperation(pParse, 0, 0);
|
|
+ sqliteOpenMasterTable(v, nt->iDb);
|
|
+ addr = sqliteVdbeAddOpList(v, ArraySize(insertTrig), insertTrig);
|
|
+ sqliteVdbeChangeP3(v, addr+2, nt->name, 0);
|
|
+ sqliteVdbeChangeP3(v, addr+3, nt->table, 0);
|
|
+ sqliteVdbeChangeP3(v, addr+5, pAll->z, pAll->n);
|
|
+ if( nt->iDb==0 ){
|
|
+ sqliteChangeCookie(db, v);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_Close, 0, 0);
|
|
+ sqliteEndWriteOperation(pParse);
|
|
+ }
|
|
+
|
|
+ if( !pParse->explain ){
|
|
+ Table *pTab;
|
|
+ sqliteHashInsert(&db->aDb[nt->iDb].trigHash,
|
|
+ nt->name, strlen(nt->name)+1, nt);
|
|
+ pTab = sqliteLocateTable(pParse, nt->table, db->aDb[nt->iTabDb].zName);
|
|
+ assert( pTab!=0 );
|
|
+ nt->pNext = pTab->pTrigger;
|
|
+ pTab->pTrigger = nt;
|
|
+ nt = 0;
|
|
+ }
|
|
+
|
|
+triggerfinish_cleanup:
|
|
+ sqliteDeleteTrigger(nt);
|
|
+ sqliteDeleteTrigger(pParse->pNewTrigger);
|
|
+ pParse->pNewTrigger = 0;
|
|
+ sqliteDeleteTriggerStep(pStepList);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Make a copy of all components of the given trigger step. This has
|
|
+** the effect of copying all Expr.token.z values into memory obtained
|
|
+** from sqliteMalloc(). As initially created, the Expr.token.z values
|
|
+** all point to the input string that was fed to the parser. But that
|
|
+** string is ephemeral - it will go away as soon as the sqlite_exec()
|
|
+** call that started the parser exits. This routine makes a persistent
|
|
+** copy of all the Expr.token.z strings so that the TriggerStep structure
|
|
+** will be valid even after the sqlite_exec() call returns.
|
|
+*/
|
|
+static void sqlitePersistTriggerStep(TriggerStep *p){
|
|
+ if( p->target.z ){
|
|
+ p->target.z = sqliteStrNDup(p->target.z, p->target.n);
|
|
+ p->target.dyn = 1;
|
|
+ }
|
|
+ if( p->pSelect ){
|
|
+ Select *pNew = sqliteSelectDup(p->pSelect);
|
|
+ sqliteSelectDelete(p->pSelect);
|
|
+ p->pSelect = pNew;
|
|
+ }
|
|
+ if( p->pWhere ){
|
|
+ Expr *pNew = sqliteExprDup(p->pWhere);
|
|
+ sqliteExprDelete(p->pWhere);
|
|
+ p->pWhere = pNew;
|
|
+ }
|
|
+ if( p->pExprList ){
|
|
+ ExprList *pNew = sqliteExprListDup(p->pExprList);
|
|
+ sqliteExprListDelete(p->pExprList);
|
|
+ p->pExprList = pNew;
|
|
+ }
|
|
+ if( p->pIdList ){
|
|
+ IdList *pNew = sqliteIdListDup(p->pIdList);
|
|
+ sqliteIdListDelete(p->pIdList);
|
|
+ p->pIdList = pNew;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Turn a SELECT statement (that the pSelect parameter points to) into
|
|
+** a trigger step. Return a pointer to a TriggerStep structure.
|
|
+**
|
|
+** The parser calls this routine when it finds a SELECT statement in
|
|
+** body of a TRIGGER.
|
|
+*/
|
|
+TriggerStep *sqliteTriggerSelectStep(Select *pSelect){
|
|
+ TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
|
|
+ if( pTriggerStep==0 ) return 0;
|
|
+
|
|
+ pTriggerStep->op = TK_SELECT;
|
|
+ pTriggerStep->pSelect = pSelect;
|
|
+ pTriggerStep->orconf = OE_Default;
|
|
+ sqlitePersistTriggerStep(pTriggerStep);
|
|
+
|
|
+ return pTriggerStep;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Build a trigger step out of an INSERT statement. Return a pointer
|
|
+** to the new trigger step.
|
|
+**
|
|
+** The parser calls this routine when it sees an INSERT inside the
|
|
+** body of a trigger.
|
|
+*/
|
|
+TriggerStep *sqliteTriggerInsertStep(
|
|
+ Token *pTableName, /* Name of the table into which we insert */
|
|
+ IdList *pColumn, /* List of columns in pTableName to insert into */
|
|
+ ExprList *pEList, /* The VALUE clause: a list of values to be inserted */
|
|
+ Select *pSelect, /* A SELECT statement that supplies values */
|
|
+ int orconf /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */
|
|
+){
|
|
+ TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
|
|
+ if( pTriggerStep==0 ) return 0;
|
|
+
|
|
+ assert(pEList == 0 || pSelect == 0);
|
|
+ assert(pEList != 0 || pSelect != 0);
|
|
+
|
|
+ pTriggerStep->op = TK_INSERT;
|
|
+ pTriggerStep->pSelect = pSelect;
|
|
+ pTriggerStep->target = *pTableName;
|
|
+ pTriggerStep->pIdList = pColumn;
|
|
+ pTriggerStep->pExprList = pEList;
|
|
+ pTriggerStep->orconf = orconf;
|
|
+ sqlitePersistTriggerStep(pTriggerStep);
|
|
+
|
|
+ return pTriggerStep;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Construct a trigger step that implements an UPDATE statement and return
|
|
+** a pointer to that trigger step. The parser calls this routine when it
|
|
+** sees an UPDATE statement inside the body of a CREATE TRIGGER.
|
|
+*/
|
|
+TriggerStep *sqliteTriggerUpdateStep(
|
|
+ Token *pTableName, /* Name of the table to be updated */
|
|
+ ExprList *pEList, /* The SET clause: list of column and new values */
|
|
+ Expr *pWhere, /* The WHERE clause */
|
|
+ int orconf /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */
|
|
+){
|
|
+ TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
|
|
+ if( pTriggerStep==0 ) return 0;
|
|
+
|
|
+ pTriggerStep->op = TK_UPDATE;
|
|
+ pTriggerStep->target = *pTableName;
|
|
+ pTriggerStep->pExprList = pEList;
|
|
+ pTriggerStep->pWhere = pWhere;
|
|
+ pTriggerStep->orconf = orconf;
|
|
+ sqlitePersistTriggerStep(pTriggerStep);
|
|
+
|
|
+ return pTriggerStep;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Construct a trigger step that implements a DELETE statement and return
|
|
+** a pointer to that trigger step. The parser calls this routine when it
|
|
+** sees a DELETE statement inside the body of a CREATE TRIGGER.
|
|
+*/
|
|
+TriggerStep *sqliteTriggerDeleteStep(Token *pTableName, Expr *pWhere){
|
|
+ TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
|
|
+ if( pTriggerStep==0 ) return 0;
|
|
+
|
|
+ pTriggerStep->op = TK_DELETE;
|
|
+ pTriggerStep->target = *pTableName;
|
|
+ pTriggerStep->pWhere = pWhere;
|
|
+ pTriggerStep->orconf = OE_Default;
|
|
+ sqlitePersistTriggerStep(pTriggerStep);
|
|
+
|
|
+ return pTriggerStep;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Recursively delete a Trigger structure
|
|
+*/
|
|
+void sqliteDeleteTrigger(Trigger *pTrigger){
|
|
+ if( pTrigger==0 ) return;
|
|
+ sqliteDeleteTriggerStep(pTrigger->step_list);
|
|
+ sqliteFree(pTrigger->name);
|
|
+ sqliteFree(pTrigger->table);
|
|
+ sqliteExprDelete(pTrigger->pWhen);
|
|
+ sqliteIdListDelete(pTrigger->pColumns);
|
|
+ if( pTrigger->nameToken.dyn ) sqliteFree((char*)pTrigger->nameToken.z);
|
|
+ sqliteFree(pTrigger);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * This function is called to drop a trigger from the database schema.
|
|
+ *
|
|
+ * This may be called directly from the parser and therefore identifies
|
|
+ * the trigger by name. The sqliteDropTriggerPtr() routine does the
|
|
+ * same job as this routine except it take a spointer to the trigger
|
|
+ * instead of the trigger name.
|
|
+ *
|
|
+ * Note that this function does not delete the trigger entirely. Instead it
|
|
+ * removes it from the internal schema and places it in the trigDrop hash
|
|
+ * table. This is so that the trigger can be restored into the database schema
|
|
+ * if the transaction is rolled back.
|
|
+ */
|
|
+void sqliteDropTrigger(Parse *pParse, SrcList *pName){
|
|
+ Trigger *pTrigger;
|
|
+ int i;
|
|
+ const char *zDb;
|
|
+ const char *zName;
|
|
+ int nName;
|
|
+ sqlite *db = pParse->db;
|
|
+
|
|
+ if( sqlite_malloc_failed ) goto drop_trigger_cleanup;
|
|
+ assert( pName->nSrc==1 );
|
|
+ zDb = pName->a[0].zDatabase;
|
|
+ zName = pName->a[0].zName;
|
|
+ nName = strlen(zName);
|
|
+ for(i=0; i<db->nDb; i++){
|
|
+ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
|
+ if( zDb && sqliteStrICmp(db->aDb[j].zName, zDb) ) continue;
|
|
+ pTrigger = sqliteHashFind(&(db->aDb[j].trigHash), zName, nName+1);
|
|
+ if( pTrigger ) break;
|
|
+ }
|
|
+ if( !pTrigger ){
|
|
+ sqliteErrorMsg(pParse, "no such trigger: %S", pName, 0);
|
|
+ goto drop_trigger_cleanup;
|
|
+ }
|
|
+ sqliteDropTriggerPtr(pParse, pTrigger, 0);
|
|
+
|
|
+drop_trigger_cleanup:
|
|
+ sqliteSrcListDelete(pName);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Drop a trigger given a pointer to that trigger. If nested is false,
|
|
+** then also generate code to remove the trigger from the SQLITE_MASTER
|
|
+** table.
|
|
+*/
|
|
+void sqliteDropTriggerPtr(Parse *pParse, Trigger *pTrigger, int nested){
|
|
+ Table *pTable;
|
|
+ Vdbe *v;
|
|
+ sqlite *db = pParse->db;
|
|
+
|
|
+ assert( pTrigger->iDb<db->nDb );
|
|
+ if( pTrigger->iDb>=2 ){
|
|
+ sqliteErrorMsg(pParse, "triggers may not be removed from "
|
|
+ "auxiliary database %s", db->aDb[pTrigger->iDb].zName);
|
|
+ return;
|
|
+ }
|
|
+ pTable = sqliteFindTable(db, pTrigger->table,db->aDb[pTrigger->iTabDb].zName);
|
|
+ assert(pTable);
|
|
+ assert( pTable->iDb==pTrigger->iDb || pTrigger->iDb==1 );
|
|
+#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
+ {
|
|
+ int code = SQLITE_DROP_TRIGGER;
|
|
+ const char *zDb = db->aDb[pTrigger->iDb].zName;
|
|
+ const char *zTab = SCHEMA_TABLE(pTrigger->iDb);
|
|
+ if( pTrigger->iDb ) code = SQLITE_DROP_TEMP_TRIGGER;
|
|
+ if( sqliteAuthCheck(pParse, code, pTrigger->name, pTable->zName, zDb) ||
|
|
+ sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
|
|
+ return;
|
|
+ }
|
|
+ }
|
|
+#endif
|
|
+
|
|
+ /* Generate code to destroy the database record of the trigger.
|
|
+ */
|
|
+ if( pTable!=0 && !nested && (v = sqliteGetVdbe(pParse))!=0 ){
|
|
+ int base;
|
|
+ static VdbeOpList dropTrigger[] = {
|
|
+ { OP_Rewind, 0, ADDR(9), 0},
|
|
+ { OP_String, 0, 0, 0}, /* 1 */
|
|
+ { OP_Column, 0, 1, 0},
|
|
+ { OP_Ne, 0, ADDR(8), 0},
|
|
+ { OP_String, 0, 0, "trigger"},
|
|
+ { OP_Column, 0, 0, 0},
|
|
+ { OP_Ne, 0, ADDR(8), 0},
|
|
+ { OP_Delete, 0, 0, 0},
|
|
+ { OP_Next, 0, ADDR(1), 0}, /* 8 */
|
|
+ };
|
|
+
|
|
+ sqliteBeginWriteOperation(pParse, 0, 0);
|
|
+ sqliteOpenMasterTable(v, pTrigger->iDb);
|
|
+ base = sqliteVdbeAddOpList(v, ArraySize(dropTrigger), dropTrigger);
|
|
+ sqliteVdbeChangeP3(v, base+1, pTrigger->name, 0);
|
|
+ if( pTrigger->iDb==0 ){
|
|
+ sqliteChangeCookie(db, v);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_Close, 0, 0);
|
|
+ sqliteEndWriteOperation(pParse);
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * If this is not an "explain", then delete the trigger structure.
|
|
+ */
|
|
+ if( !pParse->explain ){
|
|
+ const char *zName = pTrigger->name;
|
|
+ int nName = strlen(zName);
|
|
+ if( pTable->pTrigger == pTrigger ){
|
|
+ pTable->pTrigger = pTrigger->pNext;
|
|
+ }else{
|
|
+ Trigger *cc = pTable->pTrigger;
|
|
+ while( cc ){
|
|
+ if( cc->pNext == pTrigger ){
|
|
+ cc->pNext = cc->pNext->pNext;
|
|
+ break;
|
|
+ }
|
|
+ cc = cc->pNext;
|
|
+ }
|
|
+ assert(cc);
|
|
+ }
|
|
+ sqliteHashInsert(&(db->aDb[pTrigger->iDb].trigHash), zName, nName+1, 0);
|
|
+ sqliteDeleteTrigger(pTrigger);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** pEList is the SET clause of an UPDATE statement. Each entry
|
|
+** in pEList is of the format <id>=<expr>. If any of the entries
|
|
+** in pEList have an <id> which matches an identifier in pIdList,
|
|
+** then return TRUE. If pIdList==NULL, then it is considered a
|
|
+** wildcard that matches anything. Likewise if pEList==NULL then
|
|
+** it matches anything so always return true. Return false only
|
|
+** if there is no match.
|
|
+*/
|
|
+static int checkColumnOverLap(IdList *pIdList, ExprList *pEList){
|
|
+ int e;
|
|
+ if( !pIdList || !pEList ) return 1;
|
|
+ for(e=0; e<pEList->nExpr; e++){
|
|
+ if( sqliteIdListIndex(pIdList, pEList->a[e].zName)>=0 ) return 1;
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/* A global variable that is TRUE if we should always set up temp tables for
|
|
+ * for triggers, even if there are no triggers to code. This is used to test
|
|
+ * how much overhead the triggers algorithm is causing.
|
|
+ *
|
|
+ * This flag can be set or cleared using the "trigger_overhead_test" pragma.
|
|
+ * The pragma is not documented since it is not really part of the interface
|
|
+ * to SQLite, just the test procedure.
|
|
+*/
|
|
+int always_code_trigger_setup = 0;
|
|
+
|
|
+/*
|
|
+ * Returns true if a trigger matching op, tr_tm and foreach that is NOT already
|
|
+ * on the Parse objects trigger-stack (to prevent recursive trigger firing) is
|
|
+ * found in the list specified as pTrigger.
|
|
+ */
|
|
+int sqliteTriggersExist(
|
|
+ Parse *pParse, /* Used to check for recursive triggers */
|
|
+ Trigger *pTrigger, /* A list of triggers associated with a table */
|
|
+ int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */
|
|
+ int tr_tm, /* one of TK_BEFORE, TK_AFTER */
|
|
+ int foreach, /* one of TK_ROW or TK_STATEMENT */
|
|
+ ExprList *pChanges /* Columns that change in an UPDATE statement */
|
|
+){
|
|
+ Trigger * pTriggerCursor;
|
|
+
|
|
+ if( always_code_trigger_setup ){
|
|
+ return 1;
|
|
+ }
|
|
+
|
|
+ pTriggerCursor = pTrigger;
|
|
+ while( pTriggerCursor ){
|
|
+ if( pTriggerCursor->op == op &&
|
|
+ pTriggerCursor->tr_tm == tr_tm &&
|
|
+ pTriggerCursor->foreach == foreach &&
|
|
+ checkColumnOverLap(pTriggerCursor->pColumns, pChanges) ){
|
|
+ TriggerStack * ss;
|
|
+ ss = pParse->trigStack;
|
|
+ while( ss && ss->pTrigger != pTrigger ){
|
|
+ ss = ss->pNext;
|
|
+ }
|
|
+ if( !ss )return 1;
|
|
+ }
|
|
+ pTriggerCursor = pTriggerCursor->pNext;
|
|
+ }
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Convert the pStep->target token into a SrcList and return a pointer
|
|
+** to that SrcList.
|
|
+**
|
|
+** This routine adds a specific database name, if needed, to the target when
|
|
+** forming the SrcList. This prevents a trigger in one database from
|
|
+** referring to a target in another database. An exception is when the
|
|
+** trigger is in TEMP in which case it can refer to any other database it
|
|
+** wants.
|
|
+*/
|
|
+static SrcList *targetSrcList(
|
|
+ Parse *pParse, /* The parsing context */
|
|
+ TriggerStep *pStep /* The trigger containing the target token */
|
|
+){
|
|
+ Token sDb; /* Dummy database name token */
|
|
+ int iDb; /* Index of the database to use */
|
|
+ SrcList *pSrc; /* SrcList to be returned */
|
|
+
|
|
+ iDb = pStep->pTrig->iDb;
|
|
+ if( iDb==0 || iDb>=2 ){
|
|
+ assert( iDb<pParse->db->nDb );
|
|
+ sDb.z = pParse->db->aDb[iDb].zName;
|
|
+ sDb.n = strlen(sDb.z);
|
|
+ pSrc = sqliteSrcListAppend(0, &sDb, &pStep->target);
|
|
+ } else {
|
|
+ pSrc = sqliteSrcListAppend(0, &pStep->target, 0);
|
|
+ }
|
|
+ return pSrc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Generate VDBE code for zero or more statements inside the body of a
|
|
+** trigger.
|
|
+*/
|
|
+static int codeTriggerProgram(
|
|
+ Parse *pParse, /* The parser context */
|
|
+ TriggerStep *pStepList, /* List of statements inside the trigger body */
|
|
+ int orconfin /* Conflict algorithm. (OE_Abort, etc) */
|
|
+){
|
|
+ TriggerStep * pTriggerStep = pStepList;
|
|
+ int orconf;
|
|
+
|
|
+ while( pTriggerStep ){
|
|
+ int saveNTab = pParse->nTab;
|
|
+
|
|
+ orconf = (orconfin == OE_Default)?pTriggerStep->orconf:orconfin;
|
|
+ pParse->trigStack->orconf = orconf;
|
|
+ switch( pTriggerStep->op ){
|
|
+ case TK_SELECT: {
|
|
+ Select * ss = sqliteSelectDup(pTriggerStep->pSelect);
|
|
+ assert(ss);
|
|
+ assert(ss->pSrc);
|
|
+ sqliteSelect(pParse, ss, SRT_Discard, 0, 0, 0, 0);
|
|
+ sqliteSelectDelete(ss);
|
|
+ break;
|
|
+ }
|
|
+ case TK_UPDATE: {
|
|
+ SrcList *pSrc;
|
|
+ pSrc = targetSrcList(pParse, pTriggerStep);
|
|
+ sqliteVdbeAddOp(pParse->pVdbe, OP_ListPush, 0, 0);
|
|
+ sqliteUpdate(pParse, pSrc,
|
|
+ sqliteExprListDup(pTriggerStep->pExprList),
|
|
+ sqliteExprDup(pTriggerStep->pWhere), orconf);
|
|
+ sqliteVdbeAddOp(pParse->pVdbe, OP_ListPop, 0, 0);
|
|
+ break;
|
|
+ }
|
|
+ case TK_INSERT: {
|
|
+ SrcList *pSrc;
|
|
+ pSrc = targetSrcList(pParse, pTriggerStep);
|
|
+ sqliteInsert(pParse, pSrc,
|
|
+ sqliteExprListDup(pTriggerStep->pExprList),
|
|
+ sqliteSelectDup(pTriggerStep->pSelect),
|
|
+ sqliteIdListDup(pTriggerStep->pIdList), orconf);
|
|
+ break;
|
|
+ }
|
|
+ case TK_DELETE: {
|
|
+ SrcList *pSrc;
|
|
+ sqliteVdbeAddOp(pParse->pVdbe, OP_ListPush, 0, 0);
|
|
+ pSrc = targetSrcList(pParse, pTriggerStep);
|
|
+ sqliteDeleteFrom(pParse, pSrc, sqliteExprDup(pTriggerStep->pWhere));
|
|
+ sqliteVdbeAddOp(pParse->pVdbe, OP_ListPop, 0, 0);
|
|
+ break;
|
|
+ }
|
|
+ default:
|
|
+ assert(0);
|
|
+ }
|
|
+ pParse->nTab = saveNTab;
|
|
+ pTriggerStep = pTriggerStep->pNext;
|
|
+ }
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** This is called to code FOR EACH ROW triggers.
|
|
+**
|
|
+** When the code that this function generates is executed, the following
|
|
+** must be true:
|
|
+**
|
|
+** 1. No cursors may be open in the main database. (But newIdx and oldIdx
|
|
+** can be indices of cursors in temporary tables. See below.)
|
|
+**
|
|
+** 2. If the triggers being coded are ON INSERT or ON UPDATE triggers, then
|
|
+** a temporary vdbe cursor (index newIdx) must be open and pointing at
|
|
+** a row containing values to be substituted for new.* expressions in the
|
|
+** trigger program(s).
|
|
+**
|
|
+** 3. If the triggers being coded are ON DELETE or ON UPDATE triggers, then
|
|
+** a temporary vdbe cursor (index oldIdx) must be open and pointing at
|
|
+** a row containing values to be substituted for old.* expressions in the
|
|
+** trigger program(s).
|
|
+**
|
|
+*/
|
|
+int sqliteCodeRowTrigger(
|
|
+ Parse *pParse, /* Parse context */
|
|
+ int op, /* One of TK_UPDATE, TK_INSERT, TK_DELETE */
|
|
+ ExprList *pChanges, /* Changes list for any UPDATE OF triggers */
|
|
+ int tr_tm, /* One of TK_BEFORE, TK_AFTER */
|
|
+ Table *pTab, /* The table to code triggers from */
|
|
+ int newIdx, /* The indice of the "new" row to access */
|
|
+ int oldIdx, /* The indice of the "old" row to access */
|
|
+ int orconf, /* ON CONFLICT policy */
|
|
+ int ignoreJump /* Instruction to jump to for RAISE(IGNORE) */
|
|
+){
|
|
+ Trigger * pTrigger;
|
|
+ TriggerStack * pTriggerStack;
|
|
+
|
|
+ assert(op == TK_UPDATE || op == TK_INSERT || op == TK_DELETE);
|
|
+ assert(tr_tm == TK_BEFORE || tr_tm == TK_AFTER );
|
|
+
|
|
+ assert(newIdx != -1 || oldIdx != -1);
|
|
+
|
|
+ pTrigger = pTab->pTrigger;
|
|
+ while( pTrigger ){
|
|
+ int fire_this = 0;
|
|
+
|
|
+ /* determine whether we should code this trigger */
|
|
+ if( pTrigger->op == op && pTrigger->tr_tm == tr_tm &&
|
|
+ pTrigger->foreach == TK_ROW ){
|
|
+ fire_this = 1;
|
|
+ pTriggerStack = pParse->trigStack;
|
|
+ while( pTriggerStack ){
|
|
+ if( pTriggerStack->pTrigger == pTrigger ){
|
|
+ fire_this = 0;
|
|
+ }
|
|
+ pTriggerStack = pTriggerStack->pNext;
|
|
+ }
|
|
+ if( op == TK_UPDATE && pTrigger->pColumns &&
|
|
+ !checkColumnOverLap(pTrigger->pColumns, pChanges) ){
|
|
+ fire_this = 0;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ if( fire_this && (pTriggerStack = sqliteMalloc(sizeof(TriggerStack)))!=0 ){
|
|
+ int endTrigger;
|
|
+ SrcList dummyTablist;
|
|
+ Expr * whenExpr;
|
|
+ AuthContext sContext;
|
|
+
|
|
+ dummyTablist.nSrc = 0;
|
|
+
|
|
+ /* Push an entry on to the trigger stack */
|
|
+ pTriggerStack->pTrigger = pTrigger;
|
|
+ pTriggerStack->newIdx = newIdx;
|
|
+ pTriggerStack->oldIdx = oldIdx;
|
|
+ pTriggerStack->pTab = pTab;
|
|
+ pTriggerStack->pNext = pParse->trigStack;
|
|
+ pTriggerStack->ignoreJump = ignoreJump;
|
|
+ pParse->trigStack = pTriggerStack;
|
|
+ sqliteAuthContextPush(pParse, &sContext, pTrigger->name);
|
|
+
|
|
+ /* code the WHEN clause */
|
|
+ endTrigger = sqliteVdbeMakeLabel(pParse->pVdbe);
|
|
+ whenExpr = sqliteExprDup(pTrigger->pWhen);
|
|
+ if( sqliteExprResolveIds(pParse, &dummyTablist, 0, whenExpr) ){
|
|
+ pParse->trigStack = pParse->trigStack->pNext;
|
|
+ sqliteFree(pTriggerStack);
|
|
+ sqliteExprDelete(whenExpr);
|
|
+ return 1;
|
|
+ }
|
|
+ sqliteExprIfFalse(pParse, whenExpr, endTrigger, 1);
|
|
+ sqliteExprDelete(whenExpr);
|
|
+
|
|
+ sqliteVdbeAddOp(pParse->pVdbe, OP_ContextPush, 0, 0);
|
|
+ codeTriggerProgram(pParse, pTrigger->step_list, orconf);
|
|
+ sqliteVdbeAddOp(pParse->pVdbe, OP_ContextPop, 0, 0);
|
|
+
|
|
+ /* Pop the entry off the trigger stack */
|
|
+ pParse->trigStack = pParse->trigStack->pNext;
|
|
+ sqliteAuthContextPop(&sContext);
|
|
+ sqliteFree(pTriggerStack);
|
|
+
|
|
+ sqliteVdbeResolveLabel(pParse->pVdbe, endTrigger);
|
|
+ }
|
|
+ pTrigger = pTrigger->pNext;
|
|
+ }
|
|
+
|
|
+ return 0;
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/update.c
|
|
@@ -0,0 +1,459 @@
|
|
+/*
|
|
+** 2001 September 15
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This file contains C code routines that are called by the parser
|
|
+** to handle UPDATE statements.
|
|
+**
|
|
+** $Id$
|
|
+*/
|
|
+#include "sqliteInt.h"
|
|
+
|
|
+/*
|
|
+** Process an UPDATE statement.
|
|
+**
|
|
+** UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL;
|
|
+** \_______/ \________/ \______/ \________________/
|
|
+* onError pTabList pChanges pWhere
|
|
+*/
|
|
+void sqliteUpdate(
|
|
+ Parse *pParse, /* The parser context */
|
|
+ SrcList *pTabList, /* The table in which we should change things */
|
|
+ ExprList *pChanges, /* Things to be changed */
|
|
+ Expr *pWhere, /* The WHERE clause. May be null */
|
|
+ int onError /* How to handle constraint errors */
|
|
+){
|
|
+ int i, j; /* Loop counters */
|
|
+ Table *pTab; /* The table to be updated */
|
|
+ int loopStart; /* VDBE instruction address of the start of the loop */
|
|
+ int jumpInst; /* Addr of VDBE instruction to jump out of loop */
|
|
+ WhereInfo *pWInfo; /* Information about the WHERE clause */
|
|
+ Vdbe *v; /* The virtual database engine */
|
|
+ Index *pIdx; /* For looping over indices */
|
|
+ int nIdx; /* Number of indices that need updating */
|
|
+ int nIdxTotal; /* Total number of indices */
|
|
+ int iCur; /* VDBE Cursor number of pTab */
|
|
+ sqlite *db; /* The database structure */
|
|
+ Index **apIdx = 0; /* An array of indices that need updating too */
|
|
+ char *aIdxUsed = 0; /* aIdxUsed[i]==1 if the i-th index is used */
|
|
+ int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the
|
|
+ ** an expression for the i-th column of the table.
|
|
+ ** aXRef[i]==-1 if the i-th column is not changed. */
|
|
+ int chngRecno; /* True if the record number is being changed */
|
|
+ Expr *pRecnoExpr; /* Expression defining the new record number */
|
|
+ int openAll; /* True if all indices need to be opened */
|
|
+ int isView; /* Trying to update a view */
|
|
+ int iStackDepth; /* Index of memory cell holding stack depth */
|
|
+ AuthContext sContext; /* The authorization context */
|
|
+
|
|
+ int before_triggers; /* True if there are any BEFORE triggers */
|
|
+ int after_triggers; /* True if there are any AFTER triggers */
|
|
+ int row_triggers_exist = 0; /* True if any row triggers exist */
|
|
+
|
|
+ int newIdx = -1; /* index of trigger "new" temp table */
|
|
+ int oldIdx = -1; /* index of trigger "old" temp table */
|
|
+
|
|
+ sContext.pParse = 0;
|
|
+ if( pParse->nErr || sqlite_malloc_failed ) goto update_cleanup;
|
|
+ db = pParse->db;
|
|
+ assert( pTabList->nSrc==1 );
|
|
+ iStackDepth = pParse->nMem++;
|
|
+
|
|
+ /* Locate the table which we want to update.
|
|
+ */
|
|
+ pTab = sqliteSrcListLookup(pParse, pTabList);
|
|
+ if( pTab==0 ) goto update_cleanup;
|
|
+ before_triggers = sqliteTriggersExist(pParse, pTab->pTrigger,
|
|
+ TK_UPDATE, TK_BEFORE, TK_ROW, pChanges);
|
|
+ after_triggers = sqliteTriggersExist(pParse, pTab->pTrigger,
|
|
+ TK_UPDATE, TK_AFTER, TK_ROW, pChanges);
|
|
+ row_triggers_exist = before_triggers || after_triggers;
|
|
+ isView = pTab->pSelect!=0;
|
|
+ if( sqliteIsReadOnly(pParse, pTab, before_triggers) ){
|
|
+ goto update_cleanup;
|
|
+ }
|
|
+ if( isView ){
|
|
+ if( sqliteViewGetColumnNames(pParse, pTab) ){
|
|
+ goto update_cleanup;
|
|
+ }
|
|
+ }
|
|
+ aXRef = sqliteMalloc( sizeof(int) * pTab->nCol );
|
|
+ if( aXRef==0 ) goto update_cleanup;
|
|
+ for(i=0; i<pTab->nCol; i++) aXRef[i] = -1;
|
|
+
|
|
+ /* If there are FOR EACH ROW triggers, allocate cursors for the
|
|
+ ** special OLD and NEW tables
|
|
+ */
|
|
+ if( row_triggers_exist ){
|
|
+ newIdx = pParse->nTab++;
|
|
+ oldIdx = pParse->nTab++;
|
|
+ }
|
|
+
|
|
+ /* Allocate a cursors for the main database table and for all indices.
|
|
+ ** The index cursors might not be used, but if they are used they
|
|
+ ** need to occur right after the database cursor. So go ahead and
|
|
+ ** allocate enough space, just in case.
|
|
+ */
|
|
+ pTabList->a[0].iCursor = iCur = pParse->nTab++;
|
|
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
+ pParse->nTab++;
|
|
+ }
|
|
+
|
|
+ /* Resolve the column names in all the expressions of the
|
|
+ ** of the UPDATE statement. Also find the column index
|
|
+ ** for each column to be updated in the pChanges array. For each
|
|
+ ** column to be updated, make sure we have authorization to change
|
|
+ ** that column.
|
|
+ */
|
|
+ chngRecno = 0;
|
|
+ for(i=0; i<pChanges->nExpr; i++){
|
|
+ if( sqliteExprResolveIds(pParse, pTabList, 0, pChanges->a[i].pExpr) ){
|
|
+ goto update_cleanup;
|
|
+ }
|
|
+ if( sqliteExprCheck(pParse, pChanges->a[i].pExpr, 0, 0) ){
|
|
+ goto update_cleanup;
|
|
+ }
|
|
+ for(j=0; j<pTab->nCol; j++){
|
|
+ if( sqliteStrICmp(pTab->aCol[j].zName, pChanges->a[i].zName)==0 ){
|
|
+ if( j==pTab->iPKey ){
|
|
+ chngRecno = 1;
|
|
+ pRecnoExpr = pChanges->a[i].pExpr;
|
|
+ }
|
|
+ aXRef[j] = i;
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ if( j>=pTab->nCol ){
|
|
+ if( sqliteIsRowid(pChanges->a[i].zName) ){
|
|
+ chngRecno = 1;
|
|
+ pRecnoExpr = pChanges->a[i].pExpr;
|
|
+ }else{
|
|
+ sqliteErrorMsg(pParse, "no such column: %s", pChanges->a[i].zName);
|
|
+ goto update_cleanup;
|
|
+ }
|
|
+ }
|
|
+#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
+ {
|
|
+ int rc;
|
|
+ rc = sqliteAuthCheck(pParse, SQLITE_UPDATE, pTab->zName,
|
|
+ pTab->aCol[j].zName, db->aDb[pTab->iDb].zName);
|
|
+ if( rc==SQLITE_DENY ){
|
|
+ goto update_cleanup;
|
|
+ }else if( rc==SQLITE_IGNORE ){
|
|
+ aXRef[j] = -1;
|
|
+ }
|
|
+ }
|
|
+#endif
|
|
+ }
|
|
+
|
|
+ /* Allocate memory for the array apIdx[] and fill it with pointers to every
|
|
+ ** index that needs to be updated. Indices only need updating if their
|
|
+ ** key includes one of the columns named in pChanges or if the record
|
|
+ ** number of the original table entry is changing.
|
|
+ */
|
|
+ for(nIdx=nIdxTotal=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdxTotal++){
|
|
+ if( chngRecno ){
|
|
+ i = 0;
|
|
+ }else {
|
|
+ for(i=0; i<pIdx->nColumn; i++){
|
|
+ if( aXRef[pIdx->aiColumn[i]]>=0 ) break;
|
|
+ }
|
|
+ }
|
|
+ if( i<pIdx->nColumn ) nIdx++;
|
|
+ }
|
|
+ if( nIdxTotal>0 ){
|
|
+ apIdx = sqliteMalloc( sizeof(Index*) * nIdx + nIdxTotal );
|
|
+ if( apIdx==0 ) goto update_cleanup;
|
|
+ aIdxUsed = (char*)&apIdx[nIdx];
|
|
+ }
|
|
+ for(nIdx=j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
|
|
+ if( chngRecno ){
|
|
+ i = 0;
|
|
+ }else{
|
|
+ for(i=0; i<pIdx->nColumn; i++){
|
|
+ if( aXRef[pIdx->aiColumn[i]]>=0 ) break;
|
|
+ }
|
|
+ }
|
|
+ if( i<pIdx->nColumn ){
|
|
+ apIdx[nIdx++] = pIdx;
|
|
+ aIdxUsed[j] = 1;
|
|
+ }else{
|
|
+ aIdxUsed[j] = 0;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Resolve the column names in all the expressions in the
|
|
+ ** WHERE clause.
|
|
+ */
|
|
+ if( pWhere ){
|
|
+ if( sqliteExprResolveIds(pParse, pTabList, 0, pWhere) ){
|
|
+ goto update_cleanup;
|
|
+ }
|
|
+ if( sqliteExprCheck(pParse, pWhere, 0, 0) ){
|
|
+ goto update_cleanup;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Start the view context
|
|
+ */
|
|
+ if( isView ){
|
|
+ sqliteAuthContextPush(pParse, &sContext, pTab->zName);
|
|
+ }
|
|
+
|
|
+ /* Begin generating code.
|
|
+ */
|
|
+ v = sqliteGetVdbe(pParse);
|
|
+ if( v==0 ) goto update_cleanup;
|
|
+ sqliteBeginWriteOperation(pParse, 1, pTab->iDb);
|
|
+
|
|
+ /* If we are trying to update a view, construct that view into
|
|
+ ** a temporary table.
|
|
+ */
|
|
+ if( isView ){
|
|
+ Select *pView;
|
|
+ pView = sqliteSelectDup(pTab->pSelect);
|
|
+ sqliteSelect(pParse, pView, SRT_TempTable, iCur, 0, 0, 0);
|
|
+ sqliteSelectDelete(pView);
|
|
+ }
|
|
+
|
|
+ /* Begin the database scan
|
|
+ */
|
|
+ pWInfo = sqliteWhereBegin(pParse, pTabList, pWhere, 1, 0);
|
|
+ if( pWInfo==0 ) goto update_cleanup;
|
|
+
|
|
+ /* Remember the index of every item to be updated.
|
|
+ */
|
|
+ sqliteVdbeAddOp(v, OP_ListWrite, 0, 0);
|
|
+
|
|
+ /* End the database scan loop.
|
|
+ */
|
|
+ sqliteWhereEnd(pWInfo);
|
|
+
|
|
+ /* Initialize the count of updated rows
|
|
+ */
|
|
+ if( db->flags & SQLITE_CountRows && !pParse->trigStack ){
|
|
+ sqliteVdbeAddOp(v, OP_Integer, 0, 0);
|
|
+ }
|
|
+
|
|
+ if( row_triggers_exist ){
|
|
+ /* Create pseudo-tables for NEW and OLD
|
|
+ */
|
|
+ sqliteVdbeAddOp(v, OP_OpenPseudo, oldIdx, 0);
|
|
+ sqliteVdbeAddOp(v, OP_OpenPseudo, newIdx, 0);
|
|
+
|
|
+ /* The top of the update loop for when there are triggers.
|
|
+ */
|
|
+ sqliteVdbeAddOp(v, OP_ListRewind, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_StackDepth, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_MemStore, iStackDepth, 1);
|
|
+ loopStart = sqliteVdbeAddOp(v, OP_MemLoad, iStackDepth, 0);
|
|
+ sqliteVdbeAddOp(v, OP_StackReset, 0, 0);
|
|
+ jumpInst = sqliteVdbeAddOp(v, OP_ListRead, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
|
+
|
|
+ /* Open a cursor and make it point to the record that is
|
|
+ ** being updated.
|
|
+ */
|
|
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
|
+ if( !isView ){
|
|
+ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
|
|
+ sqliteVdbeAddOp(v, OP_OpenRead, iCur, pTab->tnum);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
|
|
+
|
|
+ /* Generate the OLD table
|
|
+ */
|
|
+ sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
|
|
+ sqliteVdbeAddOp(v, OP_RowData, iCur, 0);
|
|
+ sqliteVdbeAddOp(v, OP_PutIntKey, oldIdx, 0);
|
|
+
|
|
+ /* Generate the NEW table
|
|
+ */
|
|
+ if( chngRecno ){
|
|
+ sqliteExprCode(pParse, pRecnoExpr);
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
|
|
+ }
|
|
+ for(i=0; i<pTab->nCol; i++){
|
|
+ if( i==pTab->iPKey ){
|
|
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
+ continue;
|
|
+ }
|
|
+ j = aXRef[i];
|
|
+ if( j<0 ){
|
|
+ sqliteVdbeAddOp(v, OP_Column, iCur, i);
|
|
+ }else{
|
|
+ sqliteExprCode(pParse, pChanges->a[j].pExpr);
|
|
+ }
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
|
|
+ sqliteVdbeAddOp(v, OP_PutIntKey, newIdx, 0);
|
|
+ if( !isView ){
|
|
+ sqliteVdbeAddOp(v, OP_Close, iCur, 0);
|
|
+ }
|
|
+
|
|
+ /* Fire the BEFORE and INSTEAD OF triggers
|
|
+ */
|
|
+ if( sqliteCodeRowTrigger(pParse, TK_UPDATE, pChanges, TK_BEFORE, pTab,
|
|
+ newIdx, oldIdx, onError, loopStart) ){
|
|
+ goto update_cleanup;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ if( !isView ){
|
|
+ /*
|
|
+ ** Open every index that needs updating. Note that if any
|
|
+ ** index could potentially invoke a REPLACE conflict resolution
|
|
+ ** action, then we need to open all indices because we might need
|
|
+ ** to be deleting some records.
|
|
+ */
|
|
+ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
|
|
+ sqliteVdbeAddOp(v, OP_OpenWrite, iCur, pTab->tnum);
|
|
+ if( onError==OE_Replace ){
|
|
+ openAll = 1;
|
|
+ }else{
|
|
+ openAll = 0;
|
|
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
+ if( pIdx->onError==OE_Replace ){
|
|
+ openAll = 1;
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
|
|
+ if( openAll || aIdxUsed[i] ){
|
|
+ sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
|
|
+ sqliteVdbeAddOp(v, OP_OpenWrite, iCur+i+1, pIdx->tnum);
|
|
+ assert( pParse->nTab>iCur+i+1 );
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Loop over every record that needs updating. We have to load
|
|
+ ** the old data for each record to be updated because some columns
|
|
+ ** might not change and we will need to copy the old value.
|
|
+ ** Also, the old data is needed to delete the old index entires.
|
|
+ ** So make the cursor point at the old record.
|
|
+ */
|
|
+ if( !row_triggers_exist ){
|
|
+ sqliteVdbeAddOp(v, OP_ListRewind, 0, 0);
|
|
+ jumpInst = loopStart = sqliteVdbeAddOp(v, OP_ListRead, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_NotExists, iCur, loopStart);
|
|
+
|
|
+ /* If the record number will change, push the record number as it
|
|
+ ** will be after the update. (The old record number is currently
|
|
+ ** on top of the stack.)
|
|
+ */
|
|
+ if( chngRecno ){
|
|
+ sqliteExprCode(pParse, pRecnoExpr);
|
|
+ sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0);
|
|
+ }
|
|
+
|
|
+ /* Compute new data for this record.
|
|
+ */
|
|
+ for(i=0; i<pTab->nCol; i++){
|
|
+ if( i==pTab->iPKey ){
|
|
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
+ continue;
|
|
+ }
|
|
+ j = aXRef[i];
|
|
+ if( j<0 ){
|
|
+ sqliteVdbeAddOp(v, OP_Column, iCur, i);
|
|
+ }else{
|
|
+ sqliteExprCode(pParse, pChanges->a[j].pExpr);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Do constraint checks
|
|
+ */
|
|
+ sqliteGenerateConstraintChecks(pParse, pTab, iCur, aIdxUsed, chngRecno, 1,
|
|
+ onError, loopStart);
|
|
+
|
|
+ /* Delete the old indices for the current record.
|
|
+ */
|
|
+ sqliteGenerateRowIndexDelete(db, v, pTab, iCur, aIdxUsed);
|
|
+
|
|
+ /* If changing the record number, delete the old record.
|
|
+ */
|
|
+ if( chngRecno ){
|
|
+ sqliteVdbeAddOp(v, OP_Delete, iCur, 0);
|
|
+ }
|
|
+
|
|
+ /* Create the new index entries and the new record.
|
|
+ */
|
|
+ sqliteCompleteInsertion(pParse, pTab, iCur, aIdxUsed, chngRecno, 1, -1);
|
|
+ }
|
|
+
|
|
+ /* Increment the row counter
|
|
+ */
|
|
+ if( db->flags & SQLITE_CountRows && !pParse->trigStack){
|
|
+ sqliteVdbeAddOp(v, OP_AddImm, 1, 0);
|
|
+ }
|
|
+
|
|
+ /* If there are triggers, close all the cursors after each iteration
|
|
+ ** through the loop. The fire the after triggers.
|
|
+ */
|
|
+ if( row_triggers_exist ){
|
|
+ if( !isView ){
|
|
+ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
|
|
+ if( openAll || aIdxUsed[i] )
|
|
+ sqliteVdbeAddOp(v, OP_Close, iCur+i+1, 0);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_Close, iCur, 0);
|
|
+ pParse->nTab = iCur;
|
|
+ }
|
|
+ if( sqliteCodeRowTrigger(pParse, TK_UPDATE, pChanges, TK_AFTER, pTab,
|
|
+ newIdx, oldIdx, onError, loopStart) ){
|
|
+ goto update_cleanup;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Repeat the above with the next record to be updated, until
|
|
+ ** all record selected by the WHERE clause have been updated.
|
|
+ */
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, loopStart);
|
|
+ sqliteVdbeChangeP2(v, jumpInst, sqliteVdbeCurrentAddr(v));
|
|
+ sqliteVdbeAddOp(v, OP_ListReset, 0, 0);
|
|
+
|
|
+ /* Close all tables if there were no FOR EACH ROW triggers */
|
|
+ if( !row_triggers_exist ){
|
|
+ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
|
|
+ if( openAll || aIdxUsed[i] ){
|
|
+ sqliteVdbeAddOp(v, OP_Close, iCur+i+1, 0);
|
|
+ }
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_Close, iCur, 0);
|
|
+ pParse->nTab = iCur;
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_Close, newIdx, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Close, oldIdx, 0);
|
|
+ }
|
|
+
|
|
+ sqliteVdbeAddOp(v, OP_SetCounts, 0, 0);
|
|
+ sqliteEndWriteOperation(pParse);
|
|
+
|
|
+ /*
|
|
+ ** Return the number of rows that were changed.
|
|
+ */
|
|
+ if( db->flags & SQLITE_CountRows && !pParse->trigStack ){
|
|
+ sqliteVdbeOp3(v, OP_ColumnName, 0, 1, "rows updated", P3_STATIC);
|
|
+ sqliteVdbeAddOp(v, OP_Callback, 1, 0);
|
|
+ }
|
|
+
|
|
+update_cleanup:
|
|
+ sqliteAuthContextPop(&sContext);
|
|
+ sqliteFree(apIdx);
|
|
+ sqliteFree(aXRef);
|
|
+ sqliteSrcListDelete(pTabList);
|
|
+ sqliteExprListDelete(pChanges);
|
|
+ sqliteExprDelete(pWhere);
|
|
+ return;
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/util.c
|
|
@@ -0,0 +1,1134 @@
|
|
+/*
|
|
+** 2001 September 15
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** Utility functions used throughout sqlite.
|
|
+**
|
|
+** This file contains functions for allocating memory, comparing
|
|
+** strings, and stuff like that.
|
|
+**
|
|
+** $Id$
|
|
+*/
|
|
+#include "sqliteInt.h"
|
|
+#include <stdarg.h>
|
|
+#include <ctype.h>
|
|
+
|
|
+/*
|
|
+** If malloc() ever fails, this global variable gets set to 1.
|
|
+** This causes the library to abort and never again function.
|
|
+*/
|
|
+int sqlite_malloc_failed = 0;
|
|
+
|
|
+/*
|
|
+** If MEMORY_DEBUG is defined, then use versions of malloc() and
|
|
+** free() that track memory usage and check for buffer overruns.
|
|
+*/
|
|
+#ifdef MEMORY_DEBUG
|
|
+
|
|
+/*
|
|
+** For keeping track of the number of mallocs and frees. This
|
|
+** is used to check for memory leaks.
|
|
+*/
|
|
+int sqlite_nMalloc; /* Number of sqliteMalloc() calls */
|
|
+int sqlite_nFree; /* Number of sqliteFree() calls */
|
|
+int sqlite_iMallocFail; /* Fail sqliteMalloc() after this many calls */
|
|
+#if MEMORY_DEBUG>1
|
|
+static int memcnt = 0;
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** Number of 32-bit guard words
|
|
+*/
|
|
+#define N_GUARD 1
|
|
+
|
|
+/*
|
|
+** Allocate new memory and set it to zero. Return NULL if
|
|
+** no memory is available.
|
|
+*/
|
|
+void *sqliteMalloc_(int n, int bZero, char *zFile, int line){
|
|
+ void *p;
|
|
+ int *pi;
|
|
+ int i, k;
|
|
+ if( sqlite_iMallocFail>=0 ){
|
|
+ sqlite_iMallocFail--;
|
|
+ if( sqlite_iMallocFail==0 ){
|
|
+ sqlite_malloc_failed++;
|
|
+#if MEMORY_DEBUG>1
|
|
+ fprintf(stderr,"**** failed to allocate %d bytes at %s:%d\n",
|
|
+ n, zFile,line);
|
|
+#endif
|
|
+ sqlite_iMallocFail--;
|
|
+ return 0;
|
|
+ }
|
|
+ }
|
|
+ if( n==0 ) return 0;
|
|
+ k = (n+sizeof(int)-1)/sizeof(int);
|
|
+ pi = malloc( (N_GUARD*2+1+k)*sizeof(int));
|
|
+ if( pi==0 ){
|
|
+ sqlite_malloc_failed++;
|
|
+ return 0;
|
|
+ }
|
|
+ sqlite_nMalloc++;
|
|
+ for(i=0; i<N_GUARD; i++) pi[i] = 0xdead1122;
|
|
+ pi[N_GUARD] = n;
|
|
+ for(i=0; i<N_GUARD; i++) pi[k+1+N_GUARD+i] = 0xdead3344;
|
|
+ p = &pi[N_GUARD+1];
|
|
+ memset(p, bZero==0, n);
|
|
+#if MEMORY_DEBUG>1
|
|
+ fprintf(stderr,"%06d malloc %d bytes at 0x%x from %s:%d\n",
|
|
+ ++memcnt, n, (int)p, zFile,line);
|
|
+#endif
|
|
+ return p;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Check to see if the given pointer was obtained from sqliteMalloc()
|
|
+** and is able to hold at least N bytes. Raise an exception if this
|
|
+** is not the case.
|
|
+**
|
|
+** This routine is used for testing purposes only.
|
|
+*/
|
|
+void sqliteCheckMemory(void *p, int N){
|
|
+ int *pi = p;
|
|
+ int n, i, k;
|
|
+ pi -= N_GUARD+1;
|
|
+ for(i=0; i<N_GUARD; i++){
|
|
+ assert( pi[i]==0xdead1122 );
|
|
+ }
|
|
+ n = pi[N_GUARD];
|
|
+ assert( N>=0 && N<n );
|
|
+ k = (n+sizeof(int)-1)/sizeof(int);
|
|
+ for(i=0; i<N_GUARD; i++){
|
|
+ assert( pi[k+N_GUARD+1+i]==0xdead3344 );
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Free memory previously obtained from sqliteMalloc()
|
|
+*/
|
|
+void sqliteFree_(void *p, char *zFile, int line){
|
|
+ if( p ){
|
|
+ int *pi, i, k, n;
|
|
+ pi = p;
|
|
+ pi -= N_GUARD+1;
|
|
+ sqlite_nFree++;
|
|
+ for(i=0; i<N_GUARD; i++){
|
|
+ if( pi[i]!=0xdead1122 ){
|
|
+ fprintf(stderr,"Low-end memory corruption at 0x%x\n", (int)p);
|
|
+ return;
|
|
+ }
|
|
+ }
|
|
+ n = pi[N_GUARD];
|
|
+ k = (n+sizeof(int)-1)/sizeof(int);
|
|
+ for(i=0; i<N_GUARD; i++){
|
|
+ if( pi[k+N_GUARD+1+i]!=0xdead3344 ){
|
|
+ fprintf(stderr,"High-end memory corruption at 0x%x\n", (int)p);
|
|
+ return;
|
|
+ }
|
|
+ }
|
|
+ memset(pi, 0xff, (k+N_GUARD*2+1)*sizeof(int));
|
|
+#if MEMORY_DEBUG>1
|
|
+ fprintf(stderr,"%06d free %d bytes at 0x%x from %s:%d\n",
|
|
+ ++memcnt, n, (int)p, zFile,line);
|
|
+#endif
|
|
+ free(pi);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Resize a prior allocation. If p==0, then this routine
|
|
+** works just like sqliteMalloc(). If n==0, then this routine
|
|
+** works just like sqliteFree().
|
|
+*/
|
|
+void *sqliteRealloc_(void *oldP, int n, char *zFile, int line){
|
|
+ int *oldPi, *pi, i, k, oldN, oldK;
|
|
+ void *p;
|
|
+ if( oldP==0 ){
|
|
+ return sqliteMalloc_(n,1,zFile,line);
|
|
+ }
|
|
+ if( n==0 ){
|
|
+ sqliteFree_(oldP,zFile,line);
|
|
+ return 0;
|
|
+ }
|
|
+ oldPi = oldP;
|
|
+ oldPi -= N_GUARD+1;
|
|
+ if( oldPi[0]!=0xdead1122 ){
|
|
+ fprintf(stderr,"Low-end memory corruption in realloc at 0x%x\n", (int)oldP);
|
|
+ return 0;
|
|
+ }
|
|
+ oldN = oldPi[N_GUARD];
|
|
+ oldK = (oldN+sizeof(int)-1)/sizeof(int);
|
|
+ for(i=0; i<N_GUARD; i++){
|
|
+ if( oldPi[oldK+N_GUARD+1+i]!=0xdead3344 ){
|
|
+ fprintf(stderr,"High-end memory corruption in realloc at 0x%x\n",
|
|
+ (int)oldP);
|
|
+ return 0;
|
|
+ }
|
|
+ }
|
|
+ k = (n + sizeof(int) - 1)/sizeof(int);
|
|
+ pi = malloc( (k+N_GUARD*2+1)*sizeof(int) );
|
|
+ if( pi==0 ){
|
|
+ sqlite_malloc_failed++;
|
|
+ return 0;
|
|
+ }
|
|
+ for(i=0; i<N_GUARD; i++) pi[i] = 0xdead1122;
|
|
+ pi[N_GUARD] = n;
|
|
+ for(i=0; i<N_GUARD; i++) pi[k+N_GUARD+1+i] = 0xdead3344;
|
|
+ p = &pi[N_GUARD+1];
|
|
+ memcpy(p, oldP, n>oldN ? oldN : n);
|
|
+ if( n>oldN ){
|
|
+ memset(&((char*)p)[oldN], 0, n-oldN);
|
|
+ }
|
|
+ memset(oldPi, 0xab, (oldK+N_GUARD+2)*sizeof(int));
|
|
+ free(oldPi);
|
|
+#if MEMORY_DEBUG>1
|
|
+ fprintf(stderr,"%06d realloc %d to %d bytes at 0x%x to 0x%x at %s:%d\n",
|
|
+ ++memcnt, oldN, n, (int)oldP, (int)p, zFile, line);
|
|
+#endif
|
|
+ return p;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Make a duplicate of a string into memory obtained from malloc()
|
|
+** Free the original string using sqliteFree().
|
|
+**
|
|
+** This routine is called on all strings that are passed outside of
|
|
+** the SQLite library. That way clients can free the string using free()
|
|
+** rather than having to call sqliteFree().
|
|
+*/
|
|
+void sqliteStrRealloc(char **pz){
|
|
+ char *zNew;
|
|
+ if( pz==0 || *pz==0 ) return;
|
|
+ zNew = malloc( strlen(*pz) + 1 );
|
|
+ if( zNew==0 ){
|
|
+ sqlite_malloc_failed++;
|
|
+ sqliteFree(*pz);
|
|
+ *pz = 0;
|
|
+ }
|
|
+ strcpy(zNew, *pz);
|
|
+ sqliteFree(*pz);
|
|
+ *pz = zNew;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Make a copy of a string in memory obtained from sqliteMalloc()
|
|
+*/
|
|
+char *sqliteStrDup_(const char *z, char *zFile, int line){
|
|
+ char *zNew;
|
|
+ if( z==0 ) return 0;
|
|
+ zNew = sqliteMalloc_(strlen(z)+1, 0, zFile, line);
|
|
+ if( zNew ) strcpy(zNew, z);
|
|
+ return zNew;
|
|
+}
|
|
+char *sqliteStrNDup_(const char *z, int n, char *zFile, int line){
|
|
+ char *zNew;
|
|
+ if( z==0 ) return 0;
|
|
+ zNew = sqliteMalloc_(n+1, 0, zFile, line);
|
|
+ if( zNew ){
|
|
+ memcpy(zNew, z, n);
|
|
+ zNew[n] = 0;
|
|
+ }
|
|
+ return zNew;
|
|
+}
|
|
+#endif /* MEMORY_DEBUG */
|
|
+
|
|
+/*
|
|
+** The following versions of malloc() and free() are for use in a
|
|
+** normal build.
|
|
+*/
|
|
+#if !defined(MEMORY_DEBUG)
|
|
+
|
|
+/*
|
|
+** Allocate new memory and set it to zero. Return NULL if
|
|
+** no memory is available. See also sqliteMallocRaw().
|
|
+*/
|
|
+void *sqliteMalloc(int n){
|
|
+ void *p;
|
|
+ if( (p = malloc(n))==0 ){
|
|
+ if( n>0 ) sqlite_malloc_failed++;
|
|
+ }else{
|
|
+ memset(p, 0, n);
|
|
+ }
|
|
+ return p;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Allocate new memory but do not set it to zero. Return NULL if
|
|
+** no memory is available. See also sqliteMalloc().
|
|
+*/
|
|
+void *sqliteMallocRaw(int n){
|
|
+ void *p;
|
|
+ if( (p = malloc(n))==0 ){
|
|
+ if( n>0 ) sqlite_malloc_failed++;
|
|
+ }
|
|
+ return p;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Free memory previously obtained from sqliteMalloc()
|
|
+*/
|
|
+void sqliteFree(void *p){
|
|
+ if( p ){
|
|
+ free(p);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Resize a prior allocation. If p==0, then this routine
|
|
+** works just like sqliteMalloc(). If n==0, then this routine
|
|
+** works just like sqliteFree().
|
|
+*/
|
|
+void *sqliteRealloc(void *p, int n){
|
|
+ void *p2;
|
|
+ if( p==0 ){
|
|
+ return sqliteMalloc(n);
|
|
+ }
|
|
+ if( n==0 ){
|
|
+ sqliteFree(p);
|
|
+ return 0;
|
|
+ }
|
|
+ p2 = realloc(p, n);
|
|
+ if( p2==0 ){
|
|
+ sqlite_malloc_failed++;
|
|
+ }
|
|
+ return p2;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Make a copy of a string in memory obtained from sqliteMalloc()
|
|
+*/
|
|
+char *sqliteStrDup(const char *z){
|
|
+ char *zNew;
|
|
+ if( z==0 ) return 0;
|
|
+ zNew = sqliteMallocRaw(strlen(z)+1);
|
|
+ if( zNew ) strcpy(zNew, z);
|
|
+ return zNew;
|
|
+}
|
|
+char *sqliteStrNDup(const char *z, int n){
|
|
+ char *zNew;
|
|
+ if( z==0 ) return 0;
|
|
+ zNew = sqliteMallocRaw(n+1);
|
|
+ if( zNew ){
|
|
+ memcpy(zNew, z, n);
|
|
+ zNew[n] = 0;
|
|
+ }
|
|
+ return zNew;
|
|
+}
|
|
+#endif /* !defined(MEMORY_DEBUG) */
|
|
+
|
|
+/*
|
|
+** Create a string from the 2nd and subsequent arguments (up to the
|
|
+** first NULL argument), store the string in memory obtained from
|
|
+** sqliteMalloc() and make the pointer indicated by the 1st argument
|
|
+** point to that string. The 1st argument must either be NULL or
|
|
+** point to memory obtained from sqliteMalloc().
|
|
+*/
|
|
+void sqliteSetString(char **pz, ...){
|
|
+ va_list ap;
|
|
+ int nByte;
|
|
+ const char *z;
|
|
+ char *zResult;
|
|
+
|
|
+ if( pz==0 ) return;
|
|
+ nByte = 1;
|
|
+ va_start(ap, pz);
|
|
+ while( (z = va_arg(ap, const char*))!=0 ){
|
|
+ nByte += strlen(z);
|
|
+ }
|
|
+ va_end(ap);
|
|
+ sqliteFree(*pz);
|
|
+ *pz = zResult = sqliteMallocRaw( nByte );
|
|
+ if( zResult==0 ){
|
|
+ return;
|
|
+ }
|
|
+ *zResult = 0;
|
|
+ va_start(ap, pz);
|
|
+ while( (z = va_arg(ap, const char*))!=0 ){
|
|
+ strcpy(zResult, z);
|
|
+ zResult += strlen(zResult);
|
|
+ }
|
|
+ va_end(ap);
|
|
+#ifdef MEMORY_DEBUG
|
|
+#if MEMORY_DEBUG>1
|
|
+ fprintf(stderr,"string at 0x%x is %s\n", (int)*pz, *pz);
|
|
+#endif
|
|
+#endif
|
|
+}
|
|
+
|
|
+/*
|
|
+** Works like sqliteSetString, but each string is now followed by
|
|
+** a length integer which specifies how much of the source string
|
|
+** to copy (in bytes). -1 means use the whole string. The 1st
|
|
+** argument must either be NULL or point to memory obtained from
|
|
+** sqliteMalloc().
|
|
+*/
|
|
+void sqliteSetNString(char **pz, ...){
|
|
+ va_list ap;
|
|
+ int nByte;
|
|
+ const char *z;
|
|
+ char *zResult;
|
|
+ int n;
|
|
+
|
|
+ if( pz==0 ) return;
|
|
+ nByte = 0;
|
|
+ va_start(ap, pz);
|
|
+ while( (z = va_arg(ap, const char*))!=0 ){
|
|
+ n = va_arg(ap, int);
|
|
+ if( n<=0 ) n = strlen(z);
|
|
+ nByte += n;
|
|
+ }
|
|
+ va_end(ap);
|
|
+ sqliteFree(*pz);
|
|
+ *pz = zResult = sqliteMallocRaw( nByte + 1 );
|
|
+ if( zResult==0 ) return;
|
|
+ va_start(ap, pz);
|
|
+ while( (z = va_arg(ap, const char*))!=0 ){
|
|
+ n = va_arg(ap, int);
|
|
+ if( n<=0 ) n = strlen(z);
|
|
+ strncpy(zResult, z, n);
|
|
+ zResult += n;
|
|
+ }
|
|
+ *zResult = 0;
|
|
+#ifdef MEMORY_DEBUG
|
|
+#if MEMORY_DEBUG>1
|
|
+ fprintf(stderr,"string at 0x%x is %s\n", (int)*pz, *pz);
|
|
+#endif
|
|
+#endif
|
|
+ va_end(ap);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Add an error message to pParse->zErrMsg and increment pParse->nErr.
|
|
+** The following formatting characters are allowed:
|
|
+**
|
|
+** %s Insert a string
|
|
+** %z A string that should be freed after use
|
|
+** %d Insert an integer
|
|
+** %T Insert a token
|
|
+** %S Insert the first element of a SrcList
|
|
+*/
|
|
+void sqliteErrorMsg(Parse *pParse, const char *zFormat, ...){
|
|
+ va_list ap;
|
|
+ pParse->nErr++;
|
|
+ sqliteFree(pParse->zErrMsg);
|
|
+ va_start(ap, zFormat);
|
|
+ pParse->zErrMsg = sqliteVMPrintf(zFormat, ap);
|
|
+ va_end(ap);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Convert an SQL-style quoted string into a normal string by removing
|
|
+** the quote characters. The conversion is done in-place. If the
|
|
+** input does not begin with a quote character, then this routine
|
|
+** is a no-op.
|
|
+**
|
|
+** 2002-Feb-14: This routine is extended to remove MS-Access style
|
|
+** brackets from around identifers. For example: "[a-b-c]" becomes
|
|
+** "a-b-c".
|
|
+*/
|
|
+void sqliteDequote(char *z){
|
|
+ int quote;
|
|
+ int i, j;
|
|
+ if( z==0 ) return;
|
|
+ quote = z[0];
|
|
+ switch( quote ){
|
|
+ case '\'': break;
|
|
+ case '"': break;
|
|
+ case '[': quote = ']'; break;
|
|
+ default: return;
|
|
+ }
|
|
+ for(i=1, j=0; z[i]; i++){
|
|
+ if( z[i]==quote ){
|
|
+ if( z[i+1]==quote ){
|
|
+ z[j++] = quote;
|
|
+ i++;
|
|
+ }else{
|
|
+ z[j++] = 0;
|
|
+ break;
|
|
+ }
|
|
+ }else{
|
|
+ z[j++] = z[i];
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+/* An array to map all upper-case characters into their corresponding
|
|
+** lower-case character.
|
|
+*/
|
|
+static unsigned char UpperToLower[] = {
|
|
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
|
|
+ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
|
|
+ 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
|
|
+ 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
|
|
+ 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
|
|
+ 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
|
|
+ 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
|
|
+ 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
|
|
+ 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
|
|
+ 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
|
|
+ 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
|
|
+ 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
|
|
+ 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
|
|
+ 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
|
|
+ 252,253,254,255
|
|
+};
|
|
+
|
|
+/*
|
|
+** This function computes a hash on the name of a keyword.
|
|
+** Case is not significant.
|
|
+*/
|
|
+int sqliteHashNoCase(const char *z, int n){
|
|
+ int h = 0;
|
|
+ if( n<=0 ) n = strlen(z);
|
|
+ while( n > 0 ){
|
|
+ h = (h<<3) ^ h ^ UpperToLower[(unsigned char)*z++];
|
|
+ n--;
|
|
+ }
|
|
+ return h & 0x7fffffff;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Some systems have stricmp(). Others have strcasecmp(). Because
|
|
+** there is no consistency, we will define our own.
|
|
+*/
|
|
+int sqliteStrICmp(const char *zLeft, const char *zRight){
|
|
+ register unsigned char *a, *b;
|
|
+ a = (unsigned char *)zLeft;
|
|
+ b = (unsigned char *)zRight;
|
|
+ while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
|
|
+ return UpperToLower[*a] - UpperToLower[*b];
|
|
+}
|
|
+int sqliteStrNICmp(const char *zLeft, const char *zRight, int N){
|
|
+ register unsigned char *a, *b;
|
|
+ a = (unsigned char *)zLeft;
|
|
+ b = (unsigned char *)zRight;
|
|
+ while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
|
|
+ return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return TRUE if z is a pure numeric string. Return FALSE if the
|
|
+** string contains any character which is not part of a number.
|
|
+**
|
|
+** Am empty string is considered non-numeric.
|
|
+*/
|
|
+int sqliteIsNumber(const char *z){
|
|
+ if( *z=='-' || *z=='+' ) z++;
|
|
+ if( !isdigit(*z) ){
|
|
+ return 0;
|
|
+ }
|
|
+ z++;
|
|
+ while( isdigit(*z) ){ z++; }
|
|
+ if( *z=='.' ){
|
|
+ z++;
|
|
+ if( !isdigit(*z) ) return 0;
|
|
+ while( isdigit(*z) ){ z++; }
|
|
+ }
|
|
+ if( *z=='e' || *z=='E' ){
|
|
+ z++;
|
|
+ if( *z=='+' || *z=='-' ) z++;
|
|
+ if( !isdigit(*z) ) return 0;
|
|
+ while( isdigit(*z) ){ z++; }
|
|
+ }
|
|
+ return *z==0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** The string z[] is an ascii representation of a real number.
|
|
+** Convert this string to a double.
|
|
+**
|
|
+** This routine assumes that z[] really is a valid number. If it
|
|
+** is not, the result is undefined.
|
|
+**
|
|
+** This routine is used instead of the library atof() function because
|
|
+** the library atof() might want to use "," as the decimal point instead
|
|
+** of "." depending on how locale is set. But that would cause problems
|
|
+** for SQL. So this routine always uses "." regardless of locale.
|
|
+*/
|
|
+double sqliteAtoF(const char *z, const char **pzEnd){
|
|
+ int sign = 1;
|
|
+ LONGDOUBLE_TYPE v1 = 0.0;
|
|
+ if( *z=='-' ){
|
|
+ sign = -1;
|
|
+ z++;
|
|
+ }else if( *z=='+' ){
|
|
+ z++;
|
|
+ }
|
|
+ while( isdigit(*z) ){
|
|
+ v1 = v1*10.0 + (*z - '0');
|
|
+ z++;
|
|
+ }
|
|
+ if( *z=='.' ){
|
|
+ LONGDOUBLE_TYPE divisor = 1.0;
|
|
+ z++;
|
|
+ while( isdigit(*z) ){
|
|
+ v1 = v1*10.0 + (*z - '0');
|
|
+ divisor *= 10.0;
|
|
+ z++;
|
|
+ }
|
|
+ v1 /= divisor;
|
|
+ }
|
|
+ if( *z=='e' || *z=='E' ){
|
|
+ int esign = 1;
|
|
+ int eval = 0;
|
|
+ LONGDOUBLE_TYPE scale = 1.0;
|
|
+ z++;
|
|
+ if( *z=='-' ){
|
|
+ esign = -1;
|
|
+ z++;
|
|
+ }else if( *z=='+' ){
|
|
+ z++;
|
|
+ }
|
|
+ while( isdigit(*z) ){
|
|
+ eval = eval*10 + *z - '0';
|
|
+ z++;
|
|
+ }
|
|
+ while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; }
|
|
+ while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; }
|
|
+ while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; }
|
|
+ while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; }
|
|
+ if( esign<0 ){
|
|
+ v1 /= scale;
|
|
+ }else{
|
|
+ v1 *= scale;
|
|
+ }
|
|
+ }
|
|
+ if( pzEnd ) *pzEnd = z;
|
|
+ return sign<0 ? -v1 : v1;
|
|
+}
|
|
+
|
|
+/*
|
|
+** The string zNum represents an integer. There might be some other
|
|
+** information following the integer too, but that part is ignored.
|
|
+** If the integer that the prefix of zNum represents will fit in a
|
|
+** 32-bit signed integer, return TRUE. Otherwise return FALSE.
|
|
+**
|
|
+** This routine returns FALSE for the string -2147483648 even that
|
|
+** that number will, in theory fit in a 32-bit integer. But positive
|
|
+** 2147483648 will not fit in 32 bits. So it seems safer to return
|
|
+** false.
|
|
+*/
|
|
+int sqliteFitsIn32Bits(const char *zNum){
|
|
+ int i, c;
|
|
+ if( *zNum=='-' || *zNum=='+' ) zNum++;
|
|
+ for(i=0; (c=zNum[i])>='0' && c<='9'; i++){}
|
|
+ return i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0);
|
|
+}
|
|
+
|
|
+/* This comparison routine is what we use for comparison operations
|
|
+** between numeric values in an SQL expression. "Numeric" is a little
|
|
+** bit misleading here. What we mean is that the strings have a
|
|
+** type of "numeric" from the point of view of SQL. The strings
|
|
+** do not necessarily contain numbers. They could contain text.
|
|
+**
|
|
+** If the input strings both look like actual numbers then they
|
|
+** compare in numerical order. Numerical strings are always less
|
|
+** than non-numeric strings so if one input string looks like a
|
|
+** number and the other does not, then the one that looks like
|
|
+** a number is the smaller. Non-numeric strings compare in
|
|
+** lexigraphical order (the same order as strcmp()).
|
|
+*/
|
|
+int sqliteCompare(const char *atext, const char *btext){
|
|
+ int result;
|
|
+ int isNumA, isNumB;
|
|
+ if( atext==0 ){
|
|
+ return -1;
|
|
+ }else if( btext==0 ){
|
|
+ return 1;
|
|
+ }
|
|
+ isNumA = sqliteIsNumber(atext);
|
|
+ isNumB = sqliteIsNumber(btext);
|
|
+ if( isNumA ){
|
|
+ if( !isNumB ){
|
|
+ result = -1;
|
|
+ }else{
|
|
+ double rA, rB;
|
|
+ rA = sqliteAtoF(atext, 0);
|
|
+ rB = sqliteAtoF(btext, 0);
|
|
+ if( rA<rB ){
|
|
+ result = -1;
|
|
+ }else if( rA>rB ){
|
|
+ result = +1;
|
|
+ }else{
|
|
+ result = 0;
|
|
+ }
|
|
+ }
|
|
+ }else if( isNumB ){
|
|
+ result = +1;
|
|
+ }else {
|
|
+ result = strcmp(atext, btext);
|
|
+ }
|
|
+ return result;
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine is used for sorting. Each key is a list of one or more
|
|
+** null-terminated elements. The list is terminated by two nulls in
|
|
+** a row. For example, the following text is a key with three elements
|
|
+**
|
|
+** Aone\000Dtwo\000Athree\000\000
|
|
+**
|
|
+** All elements begin with one of the characters "+-AD" and end with "\000"
|
|
+** with zero or more text elements in between. Except, NULL elements
|
|
+** consist of the special two-character sequence "N\000".
|
|
+**
|
|
+** Both arguments will have the same number of elements. This routine
|
|
+** returns negative, zero, or positive if the first argument is less
|
|
+** than, equal to, or greater than the first. (Result is a-b).
|
|
+**
|
|
+** Each element begins with one of the characters "+", "-", "A", "D".
|
|
+** This character determines the sort order and collating sequence:
|
|
+**
|
|
+** + Sort numerically in ascending order
|
|
+** - Sort numerically in descending order
|
|
+** A Sort as strings in ascending order
|
|
+** D Sort as strings in descending order.
|
|
+**
|
|
+** For the "+" and "-" sorting, pure numeric strings (strings for which the
|
|
+** isNum() function above returns TRUE) always compare less than strings
|
|
+** that are not pure numerics. Non-numeric strings compare in memcmp()
|
|
+** order. This is the same sort order as the sqliteCompare() function
|
|
+** above generates.
|
|
+**
|
|
+** The last point is a change from version 2.6.3 to version 2.7.0. In
|
|
+** version 2.6.3 and earlier, substrings of digits compare in numerical
|
|
+** and case was used only to break a tie.
|
|
+**
|
|
+** Elements that begin with 'A' or 'D' compare in memcmp() order regardless
|
|
+** of whether or not they look like a number.
|
|
+**
|
|
+** Note that the sort order imposed by the rules above is the same
|
|
+** from the ordering defined by the "<", "<=", ">", and ">=" operators
|
|
+** of expressions and for indices. This was not the case for version
|
|
+** 2.6.3 and earlier.
|
|
+*/
|
|
+int sqliteSortCompare(const char *a, const char *b){
|
|
+ int res = 0;
|
|
+ int isNumA, isNumB;
|
|
+ int dir = 0;
|
|
+
|
|
+ while( res==0 && *a && *b ){
|
|
+ if( a[0]=='N' || b[0]=='N' ){
|
|
+ if( a[0]==b[0] ){
|
|
+ a += 2;
|
|
+ b += 2;
|
|
+ continue;
|
|
+ }
|
|
+ if( a[0]=='N' ){
|
|
+ dir = b[0];
|
|
+ res = -1;
|
|
+ }else{
|
|
+ dir = a[0];
|
|
+ res = +1;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ assert( a[0]==b[0] );
|
|
+ if( (dir=a[0])=='A' || a[0]=='D' ){
|
|
+ res = strcmp(&a[1],&b[1]);
|
|
+ if( res ) break;
|
|
+ }else{
|
|
+ isNumA = sqliteIsNumber(&a[1]);
|
|
+ isNumB = sqliteIsNumber(&b[1]);
|
|
+ if( isNumA ){
|
|
+ double rA, rB;
|
|
+ if( !isNumB ){
|
|
+ res = -1;
|
|
+ break;
|
|
+ }
|
|
+ rA = sqliteAtoF(&a[1], 0);
|
|
+ rB = sqliteAtoF(&b[1], 0);
|
|
+ if( rA<rB ){
|
|
+ res = -1;
|
|
+ break;
|
|
+ }
|
|
+ if( rA>rB ){
|
|
+ res = +1;
|
|
+ break;
|
|
+ }
|
|
+ }else if( isNumB ){
|
|
+ res = +1;
|
|
+ break;
|
|
+ }else{
|
|
+ res = strcmp(&a[1],&b[1]);
|
|
+ if( res ) break;
|
|
+ }
|
|
+ }
|
|
+ a += strlen(&a[1]) + 2;
|
|
+ b += strlen(&b[1]) + 2;
|
|
+ }
|
|
+ if( dir=='-' || dir=='D' ) res = -res;
|
|
+ return res;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Some powers of 64. These constants are needed in the
|
|
+** sqliteRealToSortable() routine below.
|
|
+*/
|
|
+#define _64e3 (64.0 * 64.0 * 64.0)
|
|
+#define _64e4 (64.0 * 64.0 * 64.0 * 64.0)
|
|
+#define _64e15 (_64e3 * _64e4 * _64e4 * _64e4)
|
|
+#define _64e16 (_64e4 * _64e4 * _64e4 * _64e4)
|
|
+#define _64e63 (_64e15 * _64e16 * _64e16 * _64e16)
|
|
+#define _64e64 (_64e16 * _64e16 * _64e16 * _64e16)
|
|
+
|
|
+/*
|
|
+** The following procedure converts a double-precision floating point
|
|
+** number into a string. The resulting string has the property that
|
|
+** two such strings comparied using strcmp() or memcmp() will give the
|
|
+** same results as a numeric comparison of the original floating point
|
|
+** numbers.
|
|
+**
|
|
+** This routine is used to generate database keys from floating point
|
|
+** numbers such that the keys sort in the same order as the original
|
|
+** floating point numbers even though the keys are compared using
|
|
+** memcmp().
|
|
+**
|
|
+** The calling function should have allocated at least 14 characters
|
|
+** of space for the buffer z[].
|
|
+*/
|
|
+void sqliteRealToSortable(double r, char *z){
|
|
+ int neg;
|
|
+ int exp;
|
|
+ int cnt = 0;
|
|
+
|
|
+ /* This array maps integers between 0 and 63 into base-64 digits.
|
|
+ ** The digits must be chosen such at their ASCII codes are increasing.
|
|
+ ** This means we can not use the traditional base-64 digit set. */
|
|
+ static const char zDigit[] =
|
|
+ "0123456789"
|
|
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
|
+ "abcdefghijklmnopqrstuvwxyz"
|
|
+ "|~";
|
|
+ if( r<0.0 ){
|
|
+ neg = 1;
|
|
+ r = -r;
|
|
+ *z++ = '-';
|
|
+ } else {
|
|
+ neg = 0;
|
|
+ *z++ = '0';
|
|
+ }
|
|
+ exp = 0;
|
|
+
|
|
+ if( r==0.0 ){
|
|
+ exp = -1024;
|
|
+ }else if( r<(0.5/64.0) ){
|
|
+ while( r < 0.5/_64e64 && exp > -961 ){ r *= _64e64; exp -= 64; }
|
|
+ while( r < 0.5/_64e16 && exp > -1009 ){ r *= _64e16; exp -= 16; }
|
|
+ while( r < 0.5/_64e4 && exp > -1021 ){ r *= _64e4; exp -= 4; }
|
|
+ while( r < 0.5/64.0 && exp > -1024 ){ r *= 64.0; exp -= 1; }
|
|
+ }else if( r>=0.5 ){
|
|
+ while( r >= 0.5*_64e63 && exp < 960 ){ r *= 1.0/_64e64; exp += 64; }
|
|
+ while( r >= 0.5*_64e15 && exp < 1008 ){ r *= 1.0/_64e16; exp += 16; }
|
|
+ while( r >= 0.5*_64e3 && exp < 1020 ){ r *= 1.0/_64e4; exp += 4; }
|
|
+ while( r >= 0.5 && exp < 1023 ){ r *= 1.0/64.0; exp += 1; }
|
|
+ }
|
|
+ if( neg ){
|
|
+ exp = -exp;
|
|
+ r = -r;
|
|
+ }
|
|
+ exp += 1024;
|
|
+ r += 0.5;
|
|
+ if( exp<0 ) return;
|
|
+ if( exp>=2048 || r>=1.0 ){
|
|
+ strcpy(z, "~~~~~~~~~~~~");
|
|
+ return;
|
|
+ }
|
|
+ *z++ = zDigit[(exp>>6)&0x3f];
|
|
+ *z++ = zDigit[exp & 0x3f];
|
|
+ while( r>0.0 && cnt<10 ){
|
|
+ int digit;
|
|
+ r *= 64.0;
|
|
+ digit = (int)r;
|
|
+ assert( digit>=0 && digit<64 );
|
|
+ *z++ = zDigit[digit & 0x3f];
|
|
+ r -= digit;
|
|
+ cnt++;
|
|
+ }
|
|
+ *z = 0;
|
|
+}
|
|
+
|
|
+#ifdef SQLITE_UTF8
|
|
+/*
|
|
+** X is a pointer to the first byte of a UTF-8 character. Increment
|
|
+** X so that it points to the next character. This only works right
|
|
+** if X points to a well-formed UTF-8 string.
|
|
+*/
|
|
+#define sqliteNextChar(X) while( (0xc0&*++(X))==0x80 ){}
|
|
+#define sqliteCharVal(X) sqlite_utf8_to_int(X)
|
|
+
|
|
+#else /* !defined(SQLITE_UTF8) */
|
|
+/*
|
|
+** For iso8859 encoding, the next character is just the next byte.
|
|
+*/
|
|
+#define sqliteNextChar(X) (++(X));
|
|
+#define sqliteCharVal(X) ((int)*(X))
|
|
+
|
|
+#endif /* defined(SQLITE_UTF8) */
|
|
+
|
|
+
|
|
+#ifdef SQLITE_UTF8
|
|
+/*
|
|
+** Convert the UTF-8 character to which z points into a 31-bit
|
|
+** UCS character. This only works right if z points to a well-formed
|
|
+** UTF-8 string.
|
|
+*/
|
|
+static int sqlite_utf8_to_int(const unsigned char *z){
|
|
+ int c;
|
|
+ static const int initVal[] = {
|
|
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
|
+ 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
|
|
+ 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
|
|
+ 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
|
|
+ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
|
|
+ 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
|
|
+ 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
|
|
+ 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119,
|
|
+ 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134,
|
|
+ 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149,
|
|
+ 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
|
|
+ 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
|
|
+ 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 0, 1, 2,
|
|
+ 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
|
|
+ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0,
|
|
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
|
+ 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 0, 1, 254,
|
|
+ 255,
|
|
+ };
|
|
+ c = initVal[*(z++)];
|
|
+ while( (0xc0&*z)==0x80 ){
|
|
+ c = (c<<6) | (0x3f&*(z++));
|
|
+ }
|
|
+ return c;
|
|
+}
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** Compare two UTF-8 strings for equality where the first string can
|
|
+** potentially be a "glob" expression. Return true (1) if they
|
|
+** are the same and false (0) if they are different.
|
|
+**
|
|
+** Globbing rules:
|
|
+**
|
|
+** '*' Matches any sequence of zero or more characters.
|
|
+**
|
|
+** '?' Matches exactly one character.
|
|
+**
|
|
+** [...] Matches one character from the enclosed list of
|
|
+** characters.
|
|
+**
|
|
+** [^...] Matches one character not in the enclosed list.
|
|
+**
|
|
+** With the [...] and [^...] matching, a ']' character can be included
|
|
+** in the list by making it the first character after '[' or '^'. A
|
|
+** range of characters can be specified using '-'. Example:
|
|
+** "[a-z]" matches any single lower-case letter. To match a '-', make
|
|
+** it the last character in the list.
|
|
+**
|
|
+** This routine is usually quick, but can be N**2 in the worst case.
|
|
+**
|
|
+** Hints: to match '*' or '?', put them in "[]". Like this:
|
|
+**
|
|
+** abc[*]xyz Matches "abc*xyz" only
|
|
+*/
|
|
+int
|
|
+sqliteGlobCompare(const unsigned char *zPattern, const unsigned char *zString){
|
|
+ register int c;
|
|
+ int invert;
|
|
+ int seen;
|
|
+ int c2;
|
|
+
|
|
+ while( (c = *zPattern)!=0 ){
|
|
+ switch( c ){
|
|
+ case '*':
|
|
+ while( (c=zPattern[1]) == '*' || c == '?' ){
|
|
+ if( c=='?' ){
|
|
+ if( *zString==0 ) return 0;
|
|
+ sqliteNextChar(zString);
|
|
+ }
|
|
+ zPattern++;
|
|
+ }
|
|
+ if( c==0 ) return 1;
|
|
+ if( c=='[' ){
|
|
+ while( *zString && sqliteGlobCompare(&zPattern[1],zString)==0 ){
|
|
+ sqliteNextChar(zString);
|
|
+ }
|
|
+ return *zString!=0;
|
|
+ }else{
|
|
+ while( (c2 = *zString)!=0 ){
|
|
+ while( c2 != 0 && c2 != c ){ c2 = *++zString; }
|
|
+ if( c2==0 ) return 0;
|
|
+ if( sqliteGlobCompare(&zPattern[1],zString) ) return 1;
|
|
+ sqliteNextChar(zString);
|
|
+ }
|
|
+ return 0;
|
|
+ }
|
|
+ case '?': {
|
|
+ if( *zString==0 ) return 0;
|
|
+ sqliteNextChar(zString);
|
|
+ zPattern++;
|
|
+ break;
|
|
+ }
|
|
+ case '[': {
|
|
+ int prior_c = 0;
|
|
+ seen = 0;
|
|
+ invert = 0;
|
|
+ c = sqliteCharVal(zString);
|
|
+ if( c==0 ) return 0;
|
|
+ c2 = *++zPattern;
|
|
+ if( c2=='^' ){ invert = 1; c2 = *++zPattern; }
|
|
+ if( c2==']' ){
|
|
+ if( c==']' ) seen = 1;
|
|
+ c2 = *++zPattern;
|
|
+ }
|
|
+ while( (c2 = sqliteCharVal(zPattern))!=0 && c2!=']' ){
|
|
+ if( c2=='-' && zPattern[1]!=']' && zPattern[1]!=0 && prior_c>0 ){
|
|
+ zPattern++;
|
|
+ c2 = sqliteCharVal(zPattern);
|
|
+ if( c>=prior_c && c<=c2 ) seen = 1;
|
|
+ prior_c = 0;
|
|
+ }else if( c==c2 ){
|
|
+ seen = 1;
|
|
+ prior_c = c2;
|
|
+ }else{
|
|
+ prior_c = c2;
|
|
+ }
|
|
+ sqliteNextChar(zPattern);
|
|
+ }
|
|
+ if( c2==0 || (seen ^ invert)==0 ) return 0;
|
|
+ sqliteNextChar(zString);
|
|
+ zPattern++;
|
|
+ break;
|
|
+ }
|
|
+ default: {
|
|
+ if( c != *zString ) return 0;
|
|
+ zPattern++;
|
|
+ zString++;
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ return *zString==0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Compare two UTF-8 strings for equality using the "LIKE" operator of
|
|
+** SQL. The '%' character matches any sequence of 0 or more
|
|
+** characters and '_' matches any single character. Case is
|
|
+** not significant.
|
|
+**
|
|
+** This routine is just an adaptation of the sqliteGlobCompare()
|
|
+** routine above.
|
|
+*/
|
|
+int
|
|
+sqliteLikeCompare(const unsigned char *zPattern, const unsigned char *zString){
|
|
+ register int c;
|
|
+ int c2;
|
|
+
|
|
+ while( (c = UpperToLower[*zPattern])!=0 ){
|
|
+ switch( c ){
|
|
+ case '%': {
|
|
+ while( (c=zPattern[1]) == '%' || c == '_' ){
|
|
+ if( c=='_' ){
|
|
+ if( *zString==0 ) return 0;
|
|
+ sqliteNextChar(zString);
|
|
+ }
|
|
+ zPattern++;
|
|
+ }
|
|
+ if( c==0 ) return 1;
|
|
+ c = UpperToLower[c];
|
|
+ while( (c2=UpperToLower[*zString])!=0 ){
|
|
+ while( c2 != 0 && c2 != c ){ c2 = UpperToLower[*++zString]; }
|
|
+ if( c2==0 ) return 0;
|
|
+ if( sqliteLikeCompare(&zPattern[1],zString) ) return 1;
|
|
+ sqliteNextChar(zString);
|
|
+ }
|
|
+ return 0;
|
|
+ }
|
|
+ case '_': {
|
|
+ if( *zString==0 ) return 0;
|
|
+ sqliteNextChar(zString);
|
|
+ zPattern++;
|
|
+ break;
|
|
+ }
|
|
+ default: {
|
|
+ if( c != UpperToLower[*zString] ) return 0;
|
|
+ zPattern++;
|
|
+ zString++;
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ return *zString==0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY.
|
|
+** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN
|
|
+** when this routine is called.
|
|
+**
|
|
+** This routine is a attempt to detect if two threads use the
|
|
+** same sqlite* pointer at the same time. There is a race
|
|
+** condition so it is possible that the error is not detected.
|
|
+** But usually the problem will be seen. The result will be an
|
|
+** error which can be used to debug the application that is
|
|
+** using SQLite incorrectly.
|
|
+**
|
|
+** Ticket #202: If db->magic is not a valid open value, take care not
|
|
+** to modify the db structure at all. It could be that db is a stale
|
|
+** pointer. In other words, it could be that there has been a prior
|
|
+** call to sqlite_close(db) and db has been deallocated. And we do
|
|
+** not want to write into deallocated memory.
|
|
+*/
|
|
+int sqliteSafetyOn(sqlite *db){
|
|
+ if( db->magic==SQLITE_MAGIC_OPEN ){
|
|
+ db->magic = SQLITE_MAGIC_BUSY;
|
|
+ return 0;
|
|
+ }else if( db->magic==SQLITE_MAGIC_BUSY || db->magic==SQLITE_MAGIC_ERROR
|
|
+ || db->want_to_close ){
|
|
+ db->magic = SQLITE_MAGIC_ERROR;
|
|
+ db->flags |= SQLITE_Interrupt;
|
|
+ }
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN.
|
|
+** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY
|
|
+** when this routine is called.
|
|
+*/
|
|
+int sqliteSafetyOff(sqlite *db){
|
|
+ if( db->magic==SQLITE_MAGIC_BUSY ){
|
|
+ db->magic = SQLITE_MAGIC_OPEN;
|
|
+ return 0;
|
|
+ }else if( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ERROR
|
|
+ || db->want_to_close ){
|
|
+ db->magic = SQLITE_MAGIC_ERROR;
|
|
+ db->flags |= SQLITE_Interrupt;
|
|
+ }
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Check to make sure we are not currently executing an sqlite_exec().
|
|
+** If we are currently in an sqlite_exec(), return true and set
|
|
+** sqlite.magic to SQLITE_MAGIC_ERROR. This will cause a complete
|
|
+** shutdown of the database.
|
|
+**
|
|
+** This routine is used to try to detect when API routines are called
|
|
+** at the wrong time or in the wrong sequence.
|
|
+*/
|
|
+int sqliteSafetyCheck(sqlite *db){
|
|
+ if( db->pVdbe!=0 ){
|
|
+ db->magic = SQLITE_MAGIC_ERROR;
|
|
+ return 1;
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/vacuum.c
|
|
@@ -0,0 +1,305 @@
|
|
+/*
|
|
+** 2003 April 6
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This file contains code used to implement the VACUUM command.
|
|
+**
|
|
+** Most of the code in this file may be omitted by defining the
|
|
+** SQLITE_OMIT_VACUUM macro.
|
|
+**
|
|
+** $Id$
|
|
+*/
|
|
+#include "sqliteInt.h"
|
|
+#include "os.h"
|
|
+
|
|
+/*
|
|
+** A structure for holding a dynamic string - a string that can grow
|
|
+** without bound.
|
|
+*/
|
|
+typedef struct dynStr dynStr;
|
|
+struct dynStr {
|
|
+ char *z; /* Text of the string in space obtained from sqliteMalloc() */
|
|
+ int nAlloc; /* Amount of space allocated to z[] */
|
|
+ int nUsed; /* Next unused slot in z[] */
|
|
+};
|
|
+
|
|
+/*
|
|
+** A structure that holds the vacuum context
|
|
+*/
|
|
+typedef struct vacuumStruct vacuumStruct;
|
|
+struct vacuumStruct {
|
|
+ sqlite *dbOld; /* Original database */
|
|
+ sqlite *dbNew; /* New database */
|
|
+ char **pzErrMsg; /* Write errors here */
|
|
+ int rc; /* Set to non-zero on an error */
|
|
+ const char *zTable; /* Name of a table being copied */
|
|
+ const char *zPragma; /* Pragma to execute with results */
|
|
+ dynStr s1, s2; /* Two dynamic strings */
|
|
+};
|
|
+
|
|
+#if !defined(SQLITE_OMIT_VACUUM) || SQLITE_OMIT_VACUUM
|
|
+/*
|
|
+** Append text to a dynamic string
|
|
+*/
|
|
+static void appendText(dynStr *p, const char *zText, int nText){
|
|
+ if( nText<0 ) nText = strlen(zText);
|
|
+ if( p->z==0 || p->nUsed + nText + 1 >= p->nAlloc ){
|
|
+ char *zNew;
|
|
+ p->nAlloc = p->nUsed + nText + 1000;
|
|
+ zNew = sqliteRealloc(p->z, p->nAlloc);
|
|
+ if( zNew==0 ){
|
|
+ sqliteFree(p->z);
|
|
+ memset(p, 0, sizeof(*p));
|
|
+ return;
|
|
+ }
|
|
+ p->z = zNew;
|
|
+ }
|
|
+ memcpy(&p->z[p->nUsed], zText, nText+1);
|
|
+ p->nUsed += nText;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Append text to a dynamic string, having first put the text in quotes.
|
|
+*/
|
|
+static void appendQuoted(dynStr *p, const char *zText){
|
|
+ int i, j;
|
|
+ appendText(p, "'", 1);
|
|
+ for(i=j=0; zText[i]; i++){
|
|
+ if( zText[i]=='\'' ){
|
|
+ appendText(p, &zText[j], i-j+1);
|
|
+ j = i + 1;
|
|
+ appendText(p, "'", 1);
|
|
+ }
|
|
+ }
|
|
+ if( j<i ){
|
|
+ appendText(p, &zText[j], i-j);
|
|
+ }
|
|
+ appendText(p, "'", 1);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Execute statements of SQL. If an error occurs, write the error
|
|
+** message into *pzErrMsg and return non-zero.
|
|
+*/
|
|
+static int execsql(char **pzErrMsg, sqlite *db, const char *zSql){
|
|
+ char *zErrMsg = 0;
|
|
+ int rc;
|
|
+
|
|
+ /* printf("***** executing *****\n%s\n", zSql); */
|
|
+ rc = sqlite_exec(db, zSql, 0, 0, &zErrMsg);
|
|
+ if( zErrMsg ){
|
|
+ sqliteSetString(pzErrMsg, zErrMsg, (char*)0);
|
|
+ sqlite_freemem(zErrMsg);
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** This is the second stage callback. Each invocation contains all the
|
|
+** data for a single row of a single table in the original database. This
|
|
+** routine must write that information into the new database.
|
|
+*/
|
|
+static int vacuumCallback2(void *pArg, int argc, char **argv, char **NotUsed){
|
|
+ vacuumStruct *p = (vacuumStruct*)pArg;
|
|
+ const char *zSep = "(";
|
|
+ int i;
|
|
+
|
|
+ if( argv==0 ) return 0;
|
|
+ p->s2.nUsed = 0;
|
|
+ appendText(&p->s2, "INSERT INTO ", -1);
|
|
+ appendQuoted(&p->s2, p->zTable);
|
|
+ appendText(&p->s2, " VALUES", -1);
|
|
+ for(i=0; i<argc; i++){
|
|
+ appendText(&p->s2, zSep, 1);
|
|
+ zSep = ",";
|
|
+ if( argv[i]==0 ){
|
|
+ appendText(&p->s2, "NULL", 4);
|
|
+ }else{
|
|
+ appendQuoted(&p->s2, argv[i]);
|
|
+ }
|
|
+ }
|
|
+ appendText(&p->s2,")", 1);
|
|
+ p->rc = execsql(p->pzErrMsg, p->dbNew, p->s2.z);
|
|
+ return p->rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** This is the first stage callback. Each invocation contains three
|
|
+** arguments where are taken from the SQLITE_MASTER table of the original
|
|
+** database: (1) the entry type, (2) the entry name, and (3) the SQL for
|
|
+** the entry. In all cases, execute the SQL of the third argument.
|
|
+** For tables, run a query to select all entries in that table and
|
|
+** transfer them to the second-stage callback.
|
|
+*/
|
|
+static int vacuumCallback1(void *pArg, int argc, char **argv, char **NotUsed){
|
|
+ vacuumStruct *p = (vacuumStruct*)pArg;
|
|
+ int rc = 0;
|
|
+ assert( argc==3 );
|
|
+ if( argv==0 ) return 0;
|
|
+ assert( argv[0]!=0 );
|
|
+ assert( argv[1]!=0 );
|
|
+ assert( argv[2]!=0 );
|
|
+ rc = execsql(p->pzErrMsg, p->dbNew, argv[2]);
|
|
+ if( rc==SQLITE_OK && strcmp(argv[0],"table")==0 ){
|
|
+ char *zErrMsg = 0;
|
|
+ p->s1.nUsed = 0;
|
|
+ appendText(&p->s1, "SELECT * FROM ", -1);
|
|
+ appendQuoted(&p->s1, argv[1]);
|
|
+ p->zTable = argv[1];
|
|
+ rc = sqlite_exec(p->dbOld, p->s1.z, vacuumCallback2, p, &zErrMsg);
|
|
+ if( zErrMsg ){
|
|
+ sqliteSetString(p->pzErrMsg, zErrMsg, (char*)0);
|
|
+ sqlite_freemem(zErrMsg);
|
|
+ }
|
|
+ }
|
|
+ if( rc!=SQLITE_ABORT ) p->rc = rc;
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Generate a random name of 20 character in length.
|
|
+*/
|
|
+static void randomName(unsigned char *zBuf){
|
|
+ static const unsigned char zChars[] =
|
|
+ "abcdefghijklmnopqrstuvwxyz"
|
|
+ "0123456789";
|
|
+ int i;
|
|
+ sqliteRandomness(20, zBuf);
|
|
+ for(i=0; i<20; i++){
|
|
+ zBuf[i] = zChars[ zBuf[i]%(sizeof(zChars)-1) ];
|
|
+ }
|
|
+}
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** The non-standard VACUUM command is used to clean up the database,
|
|
+** collapse free space, etc. It is modelled after the VACUUM command
|
|
+** in PostgreSQL.
|
|
+**
|
|
+** In version 1.0.x of SQLite, the VACUUM command would call
|
|
+** gdbm_reorganize() on all the database tables. But beginning
|
|
+** with 2.0.0, SQLite no longer uses GDBM so this command has
|
|
+** become a no-op.
|
|
+*/
|
|
+void sqliteVacuum(Parse *pParse, Token *pTableName){
|
|
+ Vdbe *v = sqliteGetVdbe(pParse);
|
|
+ sqliteVdbeAddOp(v, OP_Vacuum, 0, 0);
|
|
+ return;
|
|
+}
|
|
+
|
|
+/*
|
|
+** This routine implements the OP_Vacuum opcode of the VDBE.
|
|
+*/
|
|
+int sqliteRunVacuum(char **pzErrMsg, sqlite *db){
|
|
+#if !defined(SQLITE_OMIT_VACUUM) || SQLITE_OMIT_VACUUM
|
|
+ const char *zFilename; /* full pathname of the database file */
|
|
+ int nFilename; /* number of characters in zFilename[] */
|
|
+ char *zTemp = 0; /* a temporary file in same directory as zFilename */
|
|
+ sqlite *dbNew = 0; /* The new vacuumed database */
|
|
+ int rc = SQLITE_OK; /* Return code from service routines */
|
|
+ int i; /* Loop counter */
|
|
+ char *zErrMsg; /* Error message */
|
|
+ vacuumStruct sVac; /* Information passed to callbacks */
|
|
+
|
|
+ if( db->flags & SQLITE_InTrans ){
|
|
+ sqliteSetString(pzErrMsg, "cannot VACUUM from within a transaction",
|
|
+ (char*)0);
|
|
+ return SQLITE_ERROR;
|
|
+ }
|
|
+ if( db->flags & SQLITE_Interrupt ){
|
|
+ return SQLITE_INTERRUPT;
|
|
+ }
|
|
+ memset(&sVac, 0, sizeof(sVac));
|
|
+
|
|
+ /* Get the full pathname of the database file and create two
|
|
+ ** temporary filenames in the same directory as the original file.
|
|
+ */
|
|
+ zFilename = sqliteBtreeGetFilename(db->aDb[0].pBt);
|
|
+ if( zFilename==0 ){
|
|
+ /* This only happens with the in-memory database. VACUUM is a no-op
|
|
+ ** there, so just return */
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+ nFilename = strlen(zFilename);
|
|
+ zTemp = sqliteMalloc( nFilename+100 );
|
|
+ if( zTemp==0 ) return SQLITE_NOMEM;
|
|
+ strcpy(zTemp, zFilename);
|
|
+ for(i=0; i<10; i++){
|
|
+ zTemp[nFilename] = '-';
|
|
+ randomName((unsigned char*)&zTemp[nFilename+1]);
|
|
+ if( !sqliteOsFileExists(zTemp) ) break;
|
|
+ }
|
|
+ if( i>=10 ){
|
|
+ sqliteSetString(pzErrMsg, "unable to create a temporary database file "
|
|
+ "in the same directory as the original database", (char*)0);
|
|
+ goto end_of_vacuum;
|
|
+ }
|
|
+
|
|
+
|
|
+ dbNew = sqlite_open(zTemp, 0, &zErrMsg);
|
|
+ if( dbNew==0 ){
|
|
+ sqliteSetString(pzErrMsg, "unable to open a temporary database at ",
|
|
+ zTemp, " - ", zErrMsg, (char*)0);
|
|
+ goto end_of_vacuum;
|
|
+ }
|
|
+ if( (rc = execsql(pzErrMsg, db, "BEGIN"))!=0 ) goto end_of_vacuum;
|
|
+ if( (rc = execsql(pzErrMsg, dbNew, "PRAGMA synchronous=off; BEGIN"))!=0 ){
|
|
+ goto end_of_vacuum;
|
|
+ }
|
|
+
|
|
+ sVac.dbOld = db;
|
|
+ sVac.dbNew = dbNew;
|
|
+ sVac.pzErrMsg = pzErrMsg;
|
|
+ if( rc==SQLITE_OK ){
|
|
+ rc = sqlite_exec(db,
|
|
+ "SELECT type, name, sql FROM sqlite_master "
|
|
+ "WHERE sql NOT NULL AND type!='view' "
|
|
+ "UNION ALL "
|
|
+ "SELECT type, name, sql FROM sqlite_master "
|
|
+ "WHERE sql NOT NULL AND type=='view'",
|
|
+ vacuumCallback1, &sVac, &zErrMsg);
|
|
+ }
|
|
+ if( rc==SQLITE_OK ){
|
|
+ int meta1[SQLITE_N_BTREE_META];
|
|
+ int meta2[SQLITE_N_BTREE_META];
|
|
+ sqliteBtreeGetMeta(db->aDb[0].pBt, meta1);
|
|
+ sqliteBtreeGetMeta(dbNew->aDb[0].pBt, meta2);
|
|
+ meta2[1] = meta1[1]+1;
|
|
+ meta2[3] = meta1[3];
|
|
+ meta2[4] = meta1[4];
|
|
+ meta2[6] = meta1[6];
|
|
+ rc = sqliteBtreeUpdateMeta(dbNew->aDb[0].pBt, meta2);
|
|
+ }
|
|
+ if( rc==SQLITE_OK ){
|
|
+ rc = sqliteBtreeCopyFile(db->aDb[0].pBt, dbNew->aDb[0].pBt);
|
|
+ sqlite_exec(db, "COMMIT", 0, 0, 0);
|
|
+ sqliteResetInternalSchema(db, 0);
|
|
+ }
|
|
+
|
|
+end_of_vacuum:
|
|
+ if( rc && zErrMsg!=0 ){
|
|
+ sqliteSetString(pzErrMsg, "unable to vacuum database - ",
|
|
+ zErrMsg, (char*)0);
|
|
+ }
|
|
+ sqlite_exec(db, "ROLLBACK", 0, 0, 0);
|
|
+ if( (dbNew && (dbNew->flags & SQLITE_Interrupt))
|
|
+ || (db->flags & SQLITE_Interrupt) ){
|
|
+ rc = SQLITE_INTERRUPT;
|
|
+ }
|
|
+ if( dbNew ) sqlite_close(dbNew);
|
|
+ sqliteOsDelete(zTemp);
|
|
+ sqliteFree(zTemp);
|
|
+ sqliteFree(sVac.s1.z);
|
|
+ sqliteFree(sVac.s2.z);
|
|
+ if( zErrMsg ) sqlite_freemem(zErrMsg);
|
|
+ if( rc==SQLITE_ABORT && sVac.rc!=SQLITE_INTERRUPT ) sVac.rc = SQLITE_ERROR;
|
|
+ return sVac.rc;
|
|
+#endif
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/vdbeaux.c
|
|
@@ -0,0 +1,1061 @@
|
|
+/*
|
|
+** 2003 September 6
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This file contains code used for creating, destroying, and populating
|
|
+** a VDBE (or an "sqlite_vm" as it is known to the outside world.) Prior
|
|
+** to version 2.8.7, all this code was combined into the vdbe.c source file.
|
|
+** But that file was getting too big so this subroutines were split out.
|
|
+*/
|
|
+#include "sqliteInt.h"
|
|
+#include "os.h"
|
|
+#include <ctype.h>
|
|
+#include "vdbeInt.h"
|
|
+
|
|
+
|
|
+/*
|
|
+** When debugging the code generator in a symbolic debugger, one can
|
|
+** set the sqlite_vdbe_addop_trace to 1 and all opcodes will be printed
|
|
+** as they are added to the instruction stream.
|
|
+*/
|
|
+#ifndef NDEBUG
|
|
+int sqlite_vdbe_addop_trace = 0;
|
|
+#endif
|
|
+
|
|
+
|
|
+/*
|
|
+** Create a new virtual database engine.
|
|
+*/
|
|
+Vdbe *sqliteVdbeCreate(sqlite *db){
|
|
+ Vdbe *p;
|
|
+ p = sqliteMalloc( sizeof(Vdbe) );
|
|
+ if( p==0 ) return 0;
|
|
+ p->db = db;
|
|
+ if( db->pVdbe ){
|
|
+ db->pVdbe->pPrev = p;
|
|
+ }
|
|
+ p->pNext = db->pVdbe;
|
|
+ p->pPrev = 0;
|
|
+ db->pVdbe = p;
|
|
+ p->magic = VDBE_MAGIC_INIT;
|
|
+ return p;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Turn tracing on or off
|
|
+*/
|
|
+void sqliteVdbeTrace(Vdbe *p, FILE *trace){
|
|
+ p->trace = trace;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Add a new instruction to the list of instructions current in the
|
|
+** VDBE. Return the address of the new instruction.
|
|
+**
|
|
+** Parameters:
|
|
+**
|
|
+** p Pointer to the VDBE
|
|
+**
|
|
+** op The opcode for this instruction
|
|
+**
|
|
+** p1, p2 First two of the three possible operands.
|
|
+**
|
|
+** Use the sqliteVdbeResolveLabel() function to fix an address and
|
|
+** the sqliteVdbeChangeP3() function to change the value of the P3
|
|
+** operand.
|
|
+*/
|
|
+int sqliteVdbeAddOp(Vdbe *p, int op, int p1, int p2){
|
|
+ int i;
|
|
+ VdbeOp *pOp;
|
|
+
|
|
+ i = p->nOp;
|
|
+ p->nOp++;
|
|
+ assert( p->magic==VDBE_MAGIC_INIT );
|
|
+ if( i>=p->nOpAlloc ){
|
|
+ int oldSize = p->nOpAlloc;
|
|
+ Op *aNew;
|
|
+ p->nOpAlloc = p->nOpAlloc*2 + 100;
|
|
+ aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op));
|
|
+ if( aNew==0 ){
|
|
+ p->nOpAlloc = oldSize;
|
|
+ return 0;
|
|
+ }
|
|
+ p->aOp = aNew;
|
|
+ memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op));
|
|
+ }
|
|
+ pOp = &p->aOp[i];
|
|
+ pOp->opcode = op;
|
|
+ pOp->p1 = p1;
|
|
+ if( p2<0 && (-1-p2)<p->nLabel && p->aLabel[-1-p2]>=0 ){
|
|
+ p2 = p->aLabel[-1-p2];
|
|
+ }
|
|
+ pOp->p2 = p2;
|
|
+ pOp->p3 = 0;
|
|
+ pOp->p3type = P3_NOTUSED;
|
|
+#ifndef NDEBUG
|
|
+ if( sqlite_vdbe_addop_trace ) sqliteVdbePrintOp(0, i, &p->aOp[i]);
|
|
+#endif
|
|
+ return i;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Add an opcode that includes the p3 value.
|
|
+*/
|
|
+int sqliteVdbeOp3(Vdbe *p, int op, int p1, int p2, const char *zP3, int p3type){
|
|
+ int addr = sqliteVdbeAddOp(p, op, p1, p2);
|
|
+ sqliteVdbeChangeP3(p, addr, zP3, p3type);
|
|
+ return addr;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Add multiple opcodes. The list is terminated by an opcode of 0.
|
|
+*/
|
|
+int sqliteVdbeCode(Vdbe *p, ...){
|
|
+ int addr;
|
|
+ va_list ap;
|
|
+ int opcode, p1, p2;
|
|
+ va_start(ap, p);
|
|
+ addr = p->nOp;
|
|
+ while( (opcode = va_arg(ap,int))!=0 ){
|
|
+ p1 = va_arg(ap,int);
|
|
+ p2 = va_arg(ap,int);
|
|
+ sqliteVdbeAddOp(p, opcode, p1, p2);
|
|
+ }
|
|
+ va_end(ap);
|
|
+ return addr;
|
|
+}
|
|
+
|
|
+
|
|
+
|
|
+/*
|
|
+** Create a new symbolic label for an instruction that has yet to be
|
|
+** coded. The symbolic label is really just a negative number. The
|
|
+** label can be used as the P2 value of an operation. Later, when
|
|
+** the label is resolved to a specific address, the VDBE will scan
|
|
+** through its operation list and change all values of P2 which match
|
|
+** the label into the resolved address.
|
|
+**
|
|
+** The VDBE knows that a P2 value is a label because labels are
|
|
+** always negative and P2 values are suppose to be non-negative.
|
|
+** Hence, a negative P2 value is a label that has yet to be resolved.
|
|
+*/
|
|
+int sqliteVdbeMakeLabel(Vdbe *p){
|
|
+ int i;
|
|
+ i = p->nLabel++;
|
|
+ assert( p->magic==VDBE_MAGIC_INIT );
|
|
+ if( i>=p->nLabelAlloc ){
|
|
+ int *aNew;
|
|
+ p->nLabelAlloc = p->nLabelAlloc*2 + 10;
|
|
+ aNew = sqliteRealloc( p->aLabel, p->nLabelAlloc*sizeof(p->aLabel[0]));
|
|
+ if( aNew==0 ){
|
|
+ sqliteFree(p->aLabel);
|
|
+ }
|
|
+ p->aLabel = aNew;
|
|
+ }
|
|
+ if( p->aLabel==0 ){
|
|
+ p->nLabel = 0;
|
|
+ p->nLabelAlloc = 0;
|
|
+ return 0;
|
|
+ }
|
|
+ p->aLabel[i] = -1;
|
|
+ return -1-i;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Resolve label "x" to be the address of the next instruction to
|
|
+** be inserted. The parameter "x" must have been obtained from
|
|
+** a prior call to sqliteVdbeMakeLabel().
|
|
+*/
|
|
+void sqliteVdbeResolveLabel(Vdbe *p, int x){
|
|
+ int j;
|
|
+ assert( p->magic==VDBE_MAGIC_INIT );
|
|
+ if( x<0 && (-x)<=p->nLabel && p->aOp ){
|
|
+ if( p->aLabel[-1-x]==p->nOp ) return;
|
|
+ assert( p->aLabel[-1-x]<0 );
|
|
+ p->aLabel[-1-x] = p->nOp;
|
|
+ for(j=0; j<p->nOp; j++){
|
|
+ if( p->aOp[j].p2==x ) p->aOp[j].p2 = p->nOp;
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return the address of the next instruction to be inserted.
|
|
+*/
|
|
+int sqliteVdbeCurrentAddr(Vdbe *p){
|
|
+ assert( p->magic==VDBE_MAGIC_INIT );
|
|
+ return p->nOp;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Add a whole list of operations to the operation stack. Return the
|
|
+** address of the first operation added.
|
|
+*/
|
|
+int sqliteVdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
|
|
+ int addr;
|
|
+ assert( p->magic==VDBE_MAGIC_INIT );
|
|
+ if( p->nOp + nOp >= p->nOpAlloc ){
|
|
+ int oldSize = p->nOpAlloc;
|
|
+ Op *aNew;
|
|
+ p->nOpAlloc = p->nOpAlloc*2 + nOp + 10;
|
|
+ aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op));
|
|
+ if( aNew==0 ){
|
|
+ p->nOpAlloc = oldSize;
|
|
+ return 0;
|
|
+ }
|
|
+ p->aOp = aNew;
|
|
+ memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op));
|
|
+ }
|
|
+ addr = p->nOp;
|
|
+ if( nOp>0 ){
|
|
+ int i;
|
|
+ VdbeOpList const *pIn = aOp;
|
|
+ for(i=0; i<nOp; i++, pIn++){
|
|
+ int p2 = pIn->p2;
|
|
+ VdbeOp *pOut = &p->aOp[i+addr];
|
|
+ pOut->opcode = pIn->opcode;
|
|
+ pOut->p1 = pIn->p1;
|
|
+ pOut->p2 = p2<0 ? addr + ADDR(p2) : p2;
|
|
+ pOut->p3 = pIn->p3;
|
|
+ pOut->p3type = pIn->p3 ? P3_STATIC : P3_NOTUSED;
|
|
+#ifndef NDEBUG
|
|
+ if( sqlite_vdbe_addop_trace ){
|
|
+ sqliteVdbePrintOp(0, i+addr, &p->aOp[i+addr]);
|
|
+ }
|
|
+#endif
|
|
+ }
|
|
+ p->nOp += nOp;
|
|
+ }
|
|
+ return addr;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Change the value of the P1 operand for a specific instruction.
|
|
+** This routine is useful when a large program is loaded from a
|
|
+** static array using sqliteVdbeAddOpList but we want to make a
|
|
+** few minor changes to the program.
|
|
+*/
|
|
+void sqliteVdbeChangeP1(Vdbe *p, int addr, int val){
|
|
+ assert( p->magic==VDBE_MAGIC_INIT );
|
|
+ if( p && addr>=0 && p->nOp>addr && p->aOp ){
|
|
+ p->aOp[addr].p1 = val;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Change the value of the P2 operand for a specific instruction.
|
|
+** This routine is useful for setting a jump destination.
|
|
+*/
|
|
+void sqliteVdbeChangeP2(Vdbe *p, int addr, int val){
|
|
+ assert( val>=0 );
|
|
+ assert( p->magic==VDBE_MAGIC_INIT );
|
|
+ if( p && addr>=0 && p->nOp>addr && p->aOp ){
|
|
+ p->aOp[addr].p2 = val;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Change the value of the P3 operand for a specific instruction.
|
|
+** This routine is useful when a large program is loaded from a
|
|
+** static array using sqliteVdbeAddOpList but we want to make a
|
|
+** few minor changes to the program.
|
|
+**
|
|
+** If n>=0 then the P3 operand is dynamic, meaning that a copy of
|
|
+** the string is made into memory obtained from sqliteMalloc().
|
|
+** A value of n==0 means copy bytes of zP3 up to and including the
|
|
+** first null byte. If n>0 then copy n+1 bytes of zP3.
|
|
+**
|
|
+** If n==P3_STATIC it means that zP3 is a pointer to a constant static
|
|
+** string and we can just copy the pointer. n==P3_POINTER means zP3 is
|
|
+** a pointer to some object other than a string.
|
|
+**
|
|
+** If addr<0 then change P3 on the most recently inserted instruction.
|
|
+*/
|
|
+void sqliteVdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){
|
|
+ Op *pOp;
|
|
+ assert( p->magic==VDBE_MAGIC_INIT );
|
|
+ if( p==0 || p->aOp==0 ) return;
|
|
+ if( addr<0 || addr>=p->nOp ){
|
|
+ addr = p->nOp - 1;
|
|
+ if( addr<0 ) return;
|
|
+ }
|
|
+ pOp = &p->aOp[addr];
|
|
+ if( pOp->p3 && pOp->p3type==P3_DYNAMIC ){
|
|
+ sqliteFree(pOp->p3);
|
|
+ pOp->p3 = 0;
|
|
+ }
|
|
+ if( zP3==0 ){
|
|
+ pOp->p3 = 0;
|
|
+ pOp->p3type = P3_NOTUSED;
|
|
+ }else if( n<0 ){
|
|
+ pOp->p3 = (char*)zP3;
|
|
+ pOp->p3type = n;
|
|
+ }else{
|
|
+ sqliteSetNString(&pOp->p3, zP3, n, 0);
|
|
+ pOp->p3type = P3_DYNAMIC;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** If the P3 operand to the specified instruction appears
|
|
+** to be a quoted string token, then this procedure removes
|
|
+** the quotes.
|
|
+**
|
|
+** The quoting operator can be either a grave ascent (ASCII 0x27)
|
|
+** or a double quote character (ASCII 0x22). Two quotes in a row
|
|
+** resolve to be a single actual quote character within the string.
|
|
+*/
|
|
+void sqliteVdbeDequoteP3(Vdbe *p, int addr){
|
|
+ Op *pOp;
|
|
+ assert( p->magic==VDBE_MAGIC_INIT );
|
|
+ if( p->aOp==0 ) return;
|
|
+ if( addr<0 || addr>=p->nOp ){
|
|
+ addr = p->nOp - 1;
|
|
+ if( addr<0 ) return;
|
|
+ }
|
|
+ pOp = &p->aOp[addr];
|
|
+ if( pOp->p3==0 || pOp->p3[0]==0 ) return;
|
|
+ if( pOp->p3type==P3_POINTER ) return;
|
|
+ if( pOp->p3type!=P3_DYNAMIC ){
|
|
+ pOp->p3 = sqliteStrDup(pOp->p3);
|
|
+ pOp->p3type = P3_DYNAMIC;
|
|
+ }
|
|
+ sqliteDequote(pOp->p3);
|
|
+}
|
|
+
|
|
+/*
|
|
+** On the P3 argument of the given instruction, change all
|
|
+** strings of whitespace characters into a single space and
|
|
+** delete leading and trailing whitespace.
|
|
+*/
|
|
+void sqliteVdbeCompressSpace(Vdbe *p, int addr){
|
|
+ unsigned char *z;
|
|
+ int i, j;
|
|
+ Op *pOp;
|
|
+ assert( p->magic==VDBE_MAGIC_INIT );
|
|
+ if( p->aOp==0 || addr<0 || addr>=p->nOp ) return;
|
|
+ pOp = &p->aOp[addr];
|
|
+ if( pOp->p3type==P3_POINTER ){
|
|
+ return;
|
|
+ }
|
|
+ if( pOp->p3type!=P3_DYNAMIC ){
|
|
+ pOp->p3 = sqliteStrDup(pOp->p3);
|
|
+ pOp->p3type = P3_DYNAMIC;
|
|
+ }
|
|
+ z = (unsigned char*)pOp->p3;
|
|
+ if( z==0 ) return;
|
|
+ i = j = 0;
|
|
+ while( isspace(z[i]) ){ i++; }
|
|
+ while( z[i] ){
|
|
+ if( isspace(z[i]) ){
|
|
+ z[j++] = ' ';
|
|
+ while( isspace(z[++i]) ){}
|
|
+ }else{
|
|
+ z[j++] = z[i++];
|
|
+ }
|
|
+ }
|
|
+ while( j>0 && isspace(z[j-1]) ){ j--; }
|
|
+ z[j] = 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Search for the current program for the given opcode and P2
|
|
+** value. Return the address plus 1 if found and 0 if not found.
|
|
+*/
|
|
+int sqliteVdbeFindOp(Vdbe *p, int op, int p2){
|
|
+ int i;
|
|
+ assert( p->magic==VDBE_MAGIC_INIT );
|
|
+ for(i=0; i<p->nOp; i++){
|
|
+ if( p->aOp[i].opcode==op && p->aOp[i].p2==p2 ) return i+1;
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return the opcode for a given address.
|
|
+*/
|
|
+VdbeOp *sqliteVdbeGetOp(Vdbe *p, int addr){
|
|
+ assert( p->magic==VDBE_MAGIC_INIT );
|
|
+ assert( addr>=0 && addr<p->nOp );
|
|
+ return &p->aOp[addr];
|
|
+}
|
|
+
|
|
+/*
|
|
+** The following group or routines are employed by installable functions
|
|
+** to return their results.
|
|
+**
|
|
+** The sqlite_set_result_string() routine can be used to return a string
|
|
+** value or to return a NULL. To return a NULL, pass in NULL for zResult.
|
|
+** A copy is made of the string before this routine returns so it is safe
|
|
+** to pass in an ephemeral string.
|
|
+**
|
|
+** sqlite_set_result_error() works like sqlite_set_result_string() except
|
|
+** that it signals a fatal error. The string argument, if any, is the
|
|
+** error message. If the argument is NULL a generic substitute error message
|
|
+** is used.
|
|
+**
|
|
+** The sqlite_set_result_int() and sqlite_set_result_double() set the return
|
|
+** value of the user function to an integer or a double.
|
|
+**
|
|
+** These routines are defined here in vdbe.c because they depend on knowing
|
|
+** the internals of the sqlite_func structure which is only defined in
|
|
+** this source file.
|
|
+*/
|
|
+char *sqlite_set_result_string(sqlite_func *p, const char *zResult, int n){
|
|
+ assert( !p->isStep );
|
|
+ if( p->s.flags & MEM_Dyn ){
|
|
+ sqliteFree(p->s.z);
|
|
+ }
|
|
+ if( zResult==0 ){
|
|
+ p->s.flags = MEM_Null;
|
|
+ n = 0;
|
|
+ p->s.z = 0;
|
|
+ p->s.n = 0;
|
|
+ }else{
|
|
+ if( n<0 ) n = strlen(zResult);
|
|
+ if( n<NBFS-1 ){
|
|
+ memcpy(p->s.zShort, zResult, n);
|
|
+ p->s.zShort[n] = 0;
|
|
+ p->s.flags = MEM_Str | MEM_Short;
|
|
+ p->s.z = p->s.zShort;
|
|
+ }else{
|
|
+ p->s.z = sqliteMallocRaw( n+1 );
|
|
+ if( p->s.z ){
|
|
+ memcpy(p->s.z, zResult, n);
|
|
+ p->s.z[n] = 0;
|
|
+ }
|
|
+ p->s.flags = MEM_Str | MEM_Dyn;
|
|
+ }
|
|
+ p->s.n = n+1;
|
|
+ }
|
|
+ return p->s.z;
|
|
+}
|
|
+void sqlite_set_result_int(sqlite_func *p, int iResult){
|
|
+ assert( !p->isStep );
|
|
+ if( p->s.flags & MEM_Dyn ){
|
|
+ sqliteFree(p->s.z);
|
|
+ }
|
|
+ p->s.i = iResult;
|
|
+ p->s.flags = MEM_Int;
|
|
+}
|
|
+void sqlite_set_result_double(sqlite_func *p, double rResult){
|
|
+ assert( !p->isStep );
|
|
+ if( p->s.flags & MEM_Dyn ){
|
|
+ sqliteFree(p->s.z);
|
|
+ }
|
|
+ p->s.r = rResult;
|
|
+ p->s.flags = MEM_Real;
|
|
+}
|
|
+void sqlite_set_result_error(sqlite_func *p, const char *zMsg, int n){
|
|
+ assert( !p->isStep );
|
|
+ sqlite_set_result_string(p, zMsg, n);
|
|
+ p->isError = 1;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Extract the user data from a sqlite_func structure and return a
|
|
+** pointer to it.
|
|
+*/
|
|
+void *sqlite_user_data(sqlite_func *p){
|
|
+ assert( p && p->pFunc );
|
|
+ return p->pFunc->pUserData;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Allocate or return the aggregate context for a user function. A new
|
|
+** context is allocated on the first call. Subsequent calls return the
|
|
+** same context that was returned on prior calls.
|
|
+**
|
|
+** This routine is defined here in vdbe.c because it depends on knowing
|
|
+** the internals of the sqlite_func structure which is only defined in
|
|
+** this source file.
|
|
+*/
|
|
+void *sqlite_aggregate_context(sqlite_func *p, int nByte){
|
|
+ assert( p && p->pFunc && p->pFunc->xStep );
|
|
+ if( p->pAgg==0 ){
|
|
+ if( nByte<=NBFS ){
|
|
+ p->pAgg = (void*)p->s.z;
|
|
+ memset(p->pAgg, 0, nByte);
|
|
+ }else{
|
|
+ p->pAgg = sqliteMalloc( nByte );
|
|
+ }
|
|
+ }
|
|
+ return p->pAgg;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return the number of times the Step function of a aggregate has been
|
|
+** called.
|
|
+**
|
|
+** This routine is defined here in vdbe.c because it depends on knowing
|
|
+** the internals of the sqlite_func structure which is only defined in
|
|
+** this source file.
|
|
+*/
|
|
+int sqlite_aggregate_count(sqlite_func *p){
|
|
+ assert( p && p->pFunc && p->pFunc->xStep );
|
|
+ return p->cnt;
|
|
+}
|
|
+
|
|
+#if !defined(NDEBUG) || defined(VDBE_PROFILE)
|
|
+/*
|
|
+** Print a single opcode. This routine is used for debugging only.
|
|
+*/
|
|
+void sqliteVdbePrintOp(FILE *pOut, int pc, Op *pOp){
|
|
+ char *zP3;
|
|
+ char zPtr[40];
|
|
+ if( pOp->p3type==P3_POINTER ){
|
|
+ sprintf(zPtr, "ptr(%#lx)", (long)pOp->p3);
|
|
+ zP3 = zPtr;
|
|
+ }else{
|
|
+ zP3 = pOp->p3;
|
|
+ }
|
|
+ if( pOut==0 ) pOut = stdout;
|
|
+ fprintf(pOut,"%4d %-12s %4d %4d %s\n",
|
|
+ pc, sqliteOpcodeNames[pOp->opcode], pOp->p1, pOp->p2, zP3 ? zP3 : "");
|
|
+ fflush(pOut);
|
|
+}
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** Give a listing of the program in the virtual machine.
|
|
+**
|
|
+** The interface is the same as sqliteVdbeExec(). But instead of
|
|
+** running the code, it invokes the callback once for each instruction.
|
|
+** This feature is used to implement "EXPLAIN".
|
|
+*/
|
|
+int sqliteVdbeList(
|
|
+ Vdbe *p /* The VDBE */
|
|
+){
|
|
+ sqlite *db = p->db;
|
|
+ int i;
|
|
+ int rc = SQLITE_OK;
|
|
+ static char *azColumnNames[] = {
|
|
+ "addr", "opcode", "p1", "p2", "p3",
|
|
+ "int", "text", "int", "int", "text",
|
|
+ 0
|
|
+ };
|
|
+
|
|
+ assert( p->popStack==0 );
|
|
+ assert( p->explain );
|
|
+ p->azColName = azColumnNames;
|
|
+ p->azResColumn = p->zArgv;
|
|
+ for(i=0; i<5; i++) p->zArgv[i] = p->aStack[i].zShort;
|
|
+ i = p->pc;
|
|
+ if( i>=p->nOp ){
|
|
+ p->rc = SQLITE_OK;
|
|
+ rc = SQLITE_DONE;
|
|
+ }else if( db->flags & SQLITE_Interrupt ){
|
|
+ db->flags &= ~SQLITE_Interrupt;
|
|
+ if( db->magic!=SQLITE_MAGIC_BUSY ){
|
|
+ p->rc = SQLITE_MISUSE;
|
|
+ }else{
|
|
+ p->rc = SQLITE_INTERRUPT;
|
|
+ }
|
|
+ rc = SQLITE_ERROR;
|
|
+ sqliteSetString(&p->zErrMsg, sqlite_error_string(p->rc), (char*)0);
|
|
+ }else{
|
|
+ sprintf(p->zArgv[0],"%d",i);
|
|
+ sprintf(p->zArgv[2],"%d", p->aOp[i].p1);
|
|
+ sprintf(p->zArgv[3],"%d", p->aOp[i].p2);
|
|
+ if( p->aOp[i].p3type==P3_POINTER ){
|
|
+ sprintf(p->aStack[4].zShort, "ptr(%#lx)", (long)p->aOp[i].p3);
|
|
+ p->zArgv[4] = p->aStack[4].zShort;
|
|
+ }else{
|
|
+ p->zArgv[4] = p->aOp[i].p3;
|
|
+ }
|
|
+ p->zArgv[1] = sqliteOpcodeNames[p->aOp[i].opcode];
|
|
+ p->pc = i+1;
|
|
+ p->azResColumn = p->zArgv;
|
|
+ p->nResColumn = 5;
|
|
+ p->rc = SQLITE_OK;
|
|
+ rc = SQLITE_ROW;
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Prepare a virtual machine for execution. This involves things such
|
|
+** as allocating stack space and initializing the program counter.
|
|
+** After the VDBE has be prepped, it can be executed by one or more
|
|
+** calls to sqliteVdbeExec().
|
|
+*/
|
|
+void sqliteVdbeMakeReady(
|
|
+ Vdbe *p, /* The VDBE */
|
|
+ int nVar, /* Number of '?' see in the SQL statement */
|
|
+ int isExplain /* True if the EXPLAIN keywords is present */
|
|
+){
|
|
+ int n;
|
|
+
|
|
+ assert( p!=0 );
|
|
+ assert( p->magic==VDBE_MAGIC_INIT );
|
|
+
|
|
+ /* Add a HALT instruction to the very end of the program.
|
|
+ */
|
|
+ if( p->nOp==0 || (p->aOp && p->aOp[p->nOp-1].opcode!=OP_Halt) ){
|
|
+ sqliteVdbeAddOp(p, OP_Halt, 0, 0);
|
|
+ }
|
|
+
|
|
+ /* No instruction ever pushes more than a single element onto the
|
|
+ ** stack. And the stack never grows on successive executions of the
|
|
+ ** same loop. So the total number of instructions is an upper bound
|
|
+ ** on the maximum stack depth required.
|
|
+ **
|
|
+ ** Allocation all the stack space we will ever need.
|
|
+ */
|
|
+ if( p->aStack==0 ){
|
|
+ p->nVar = nVar;
|
|
+ assert( nVar>=0 );
|
|
+ n = isExplain ? 10 : p->nOp;
|
|
+ p->aStack = sqliteMalloc(
|
|
+ n*(sizeof(p->aStack[0]) + 2*sizeof(char*)) /* aStack and zArgv */
|
|
+ + p->nVar*(sizeof(char*)+sizeof(int)+1) /* azVar, anVar, abVar */
|
|
+ );
|
|
+ p->zArgv = (char**)&p->aStack[n];
|
|
+ p->azColName = (char**)&p->zArgv[n];
|
|
+ p->azVar = (char**)&p->azColName[n];
|
|
+ p->anVar = (int*)&p->azVar[p->nVar];
|
|
+ p->abVar = (u8*)&p->anVar[p->nVar];
|
|
+ }
|
|
+
|
|
+ sqliteHashInit(&p->agg.hash, SQLITE_HASH_BINARY, 0);
|
|
+ p->agg.pSearch = 0;
|
|
+#ifdef MEMORY_DEBUG
|
|
+ if( sqliteOsFileExists("vdbe_trace") ){
|
|
+ p->trace = stdout;
|
|
+ }
|
|
+#endif
|
|
+ p->pTos = &p->aStack[-1];
|
|
+ p->pc = 0;
|
|
+ p->rc = SQLITE_OK;
|
|
+ p->uniqueCnt = 0;
|
|
+ p->returnDepth = 0;
|
|
+ p->errorAction = OE_Abort;
|
|
+ p->undoTransOnError = 0;
|
|
+ p->popStack = 0;
|
|
+ p->explain |= isExplain;
|
|
+ p->magic = VDBE_MAGIC_RUN;
|
|
+#ifdef VDBE_PROFILE
|
|
+ {
|
|
+ int i;
|
|
+ for(i=0; i<p->nOp; i++){
|
|
+ p->aOp[i].cnt = 0;
|
|
+ p->aOp[i].cycles = 0;
|
|
+ }
|
|
+ }
|
|
+#endif
|
|
+}
|
|
+
|
|
+
|
|
+/*
|
|
+** Remove any elements that remain on the sorter for the VDBE given.
|
|
+*/
|
|
+void sqliteVdbeSorterReset(Vdbe *p){
|
|
+ while( p->pSort ){
|
|
+ Sorter *pSorter = p->pSort;
|
|
+ p->pSort = pSorter->pNext;
|
|
+ sqliteFree(pSorter->zKey);
|
|
+ sqliteFree(pSorter->pData);
|
|
+ sqliteFree(pSorter);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Reset an Agg structure. Delete all its contents.
|
|
+**
|
|
+** For installable aggregate functions, if the step function has been
|
|
+** called, make sure the finalizer function has also been called. The
|
|
+** finalizer might need to free memory that was allocated as part of its
|
|
+** private context. If the finalizer has not been called yet, call it
|
|
+** now.
|
|
+*/
|
|
+void sqliteVdbeAggReset(Agg *pAgg){
|
|
+ int i;
|
|
+ HashElem *p;
|
|
+ for(p = sqliteHashFirst(&pAgg->hash); p; p = sqliteHashNext(p)){
|
|
+ AggElem *pElem = sqliteHashData(p);
|
|
+ assert( pAgg->apFunc!=0 );
|
|
+ for(i=0; i<pAgg->nMem; i++){
|
|
+ Mem *pMem = &pElem->aMem[i];
|
|
+ if( pAgg->apFunc[i] && (pMem->flags & MEM_AggCtx)!=0 ){
|
|
+ sqlite_func ctx;
|
|
+ ctx.pFunc = pAgg->apFunc[i];
|
|
+ ctx.s.flags = MEM_Null;
|
|
+ ctx.pAgg = pMem->z;
|
|
+ ctx.cnt = pMem->i;
|
|
+ ctx.isStep = 0;
|
|
+ ctx.isError = 0;
|
|
+ (*pAgg->apFunc[i]->xFinalize)(&ctx);
|
|
+ if( pMem->z!=0 && pMem->z!=pMem->zShort ){
|
|
+ sqliteFree(pMem->z);
|
|
+ }
|
|
+ if( ctx.s.flags & MEM_Dyn ){
|
|
+ sqliteFree(ctx.s.z);
|
|
+ }
|
|
+ }else if( pMem->flags & MEM_Dyn ){
|
|
+ sqliteFree(pMem->z);
|
|
+ }
|
|
+ }
|
|
+ sqliteFree(pElem);
|
|
+ }
|
|
+ sqliteHashClear(&pAgg->hash);
|
|
+ sqliteFree(pAgg->apFunc);
|
|
+ pAgg->apFunc = 0;
|
|
+ pAgg->pCurrent = 0;
|
|
+ pAgg->pSearch = 0;
|
|
+ pAgg->nMem = 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Delete a keylist
|
|
+*/
|
|
+void sqliteVdbeKeylistFree(Keylist *p){
|
|
+ while( p ){
|
|
+ Keylist *pNext = p->pNext;
|
|
+ sqliteFree(p);
|
|
+ p = pNext;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Close a cursor and release all the resources that cursor happens
|
|
+** to hold.
|
|
+*/
|
|
+void sqliteVdbeCleanupCursor(Cursor *pCx){
|
|
+ if( pCx->pCursor ){
|
|
+ sqliteBtreeCloseCursor(pCx->pCursor);
|
|
+ }
|
|
+ if( pCx->pBt ){
|
|
+ sqliteBtreeClose(pCx->pBt);
|
|
+ }
|
|
+ sqliteFree(pCx->pData);
|
|
+ memset(pCx, 0, sizeof(Cursor));
|
|
+}
|
|
+
|
|
+/*
|
|
+** Close all cursors
|
|
+*/
|
|
+static void closeAllCursors(Vdbe *p){
|
|
+ int i;
|
|
+ for(i=0; i<p->nCursor; i++){
|
|
+ sqliteVdbeCleanupCursor(&p->aCsr[i]);
|
|
+ }
|
|
+ sqliteFree(p->aCsr);
|
|
+ p->aCsr = 0;
|
|
+ p->nCursor = 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Clean up the VM after execution.
|
|
+**
|
|
+** This routine will automatically close any cursors, lists, and/or
|
|
+** sorters that were left open. It also deletes the values of
|
|
+** variables in the azVariable[] array.
|
|
+*/
|
|
+static void Cleanup(Vdbe *p){
|
|
+ int i;
|
|
+ if( p->aStack ){
|
|
+ Mem *pTos = p->pTos;
|
|
+ while( pTos>=p->aStack ){
|
|
+ if( pTos->flags & MEM_Dyn ){
|
|
+ sqliteFree(pTos->z);
|
|
+ }
|
|
+ pTos--;
|
|
+ }
|
|
+ p->pTos = pTos;
|
|
+ }
|
|
+ closeAllCursors(p);
|
|
+ if( p->aMem ){
|
|
+ for(i=0; i<p->nMem; i++){
|
|
+ if( p->aMem[i].flags & MEM_Dyn ){
|
|
+ sqliteFree(p->aMem[i].z);
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ sqliteFree(p->aMem);
|
|
+ p->aMem = 0;
|
|
+ p->nMem = 0;
|
|
+ if( p->pList ){
|
|
+ sqliteVdbeKeylistFree(p->pList);
|
|
+ p->pList = 0;
|
|
+ }
|
|
+ sqliteVdbeSorterReset(p);
|
|
+ if( p->pFile ){
|
|
+ if( p->pFile!=stdin ) fclose(p->pFile);
|
|
+ p->pFile = 0;
|
|
+ }
|
|
+ if( p->azField ){
|
|
+ sqliteFree(p->azField);
|
|
+ p->azField = 0;
|
|
+ }
|
|
+ p->nField = 0;
|
|
+ if( p->zLine ){
|
|
+ sqliteFree(p->zLine);
|
|
+ p->zLine = 0;
|
|
+ }
|
|
+ p->nLineAlloc = 0;
|
|
+ sqliteVdbeAggReset(&p->agg);
|
|
+ if( p->aSet ){
|
|
+ for(i=0; i<p->nSet; i++){
|
|
+ sqliteHashClear(&p->aSet[i].hash);
|
|
+ }
|
|
+ }
|
|
+ sqliteFree(p->aSet);
|
|
+ p->aSet = 0;
|
|
+ p->nSet = 0;
|
|
+ if( p->keylistStack ){
|
|
+ int ii;
|
|
+ for(ii = 0; ii < p->keylistStackDepth; ii++){
|
|
+ sqliteVdbeKeylistFree(p->keylistStack[ii]);
|
|
+ }
|
|
+ sqliteFree(p->keylistStack);
|
|
+ p->keylistStackDepth = 0;
|
|
+ p->keylistStack = 0;
|
|
+ }
|
|
+ sqliteFree(p->contextStack);
|
|
+ p->contextStack = 0;
|
|
+ sqliteFree(p->zErrMsg);
|
|
+ p->zErrMsg = 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Clean up a VDBE after execution but do not delete the VDBE just yet.
|
|
+** Write any error messages into *pzErrMsg. Return the result code.
|
|
+**
|
|
+** After this routine is run, the VDBE should be ready to be executed
|
|
+** again.
|
|
+*/
|
|
+int sqliteVdbeReset(Vdbe *p, char **pzErrMsg){
|
|
+ sqlite *db = p->db;
|
|
+ int i;
|
|
+
|
|
+ if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
|
|
+ sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), (char*)0);
|
|
+ return SQLITE_MISUSE;
|
|
+ }
|
|
+ if( p->zErrMsg ){
|
|
+ if( pzErrMsg && *pzErrMsg==0 ){
|
|
+ *pzErrMsg = p->zErrMsg;
|
|
+ }else{
|
|
+ sqliteFree(p->zErrMsg);
|
|
+ }
|
|
+ p->zErrMsg = 0;
|
|
+ }else if( p->rc ){
|
|
+ sqliteSetString(pzErrMsg, sqlite_error_string(p->rc), (char*)0);
|
|
+ }
|
|
+ Cleanup(p);
|
|
+ if( p->rc!=SQLITE_OK ){
|
|
+ switch( p->errorAction ){
|
|
+ case OE_Abort: {
|
|
+ if( !p->undoTransOnError ){
|
|
+ for(i=0; i<db->nDb; i++){
|
|
+ if( db->aDb[i].pBt ){
|
|
+ sqliteBtreeRollbackCkpt(db->aDb[i].pBt);
|
|
+ }
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ /* Fall through to ROLLBACK */
|
|
+ }
|
|
+ case OE_Rollback: {
|
|
+ sqliteRollbackAll(db);
|
|
+ db->flags &= ~SQLITE_InTrans;
|
|
+ db->onError = OE_Default;
|
|
+ break;
|
|
+ }
|
|
+ default: {
|
|
+ if( p->undoTransOnError ){
|
|
+ sqliteRollbackAll(db);
|
|
+ db->flags &= ~SQLITE_InTrans;
|
|
+ db->onError = OE_Default;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ sqliteRollbackInternalChanges(db);
|
|
+ }
|
|
+ for(i=0; i<db->nDb; i++){
|
|
+ if( db->aDb[i].pBt && db->aDb[i].inTrans==2 ){
|
|
+ sqliteBtreeCommitCkpt(db->aDb[i].pBt);
|
|
+ db->aDb[i].inTrans = 1;
|
|
+ }
|
|
+ }
|
|
+ assert( p->pTos<&p->aStack[p->pc] || sqlite_malloc_failed==1 );
|
|
+#ifdef VDBE_PROFILE
|
|
+ {
|
|
+ FILE *out = fopen("vdbe_profile.out", "a");
|
|
+ if( out ){
|
|
+ int i;
|
|
+ fprintf(out, "---- ");
|
|
+ for(i=0; i<p->nOp; i++){
|
|
+ fprintf(out, "%02x", p->aOp[i].opcode);
|
|
+ }
|
|
+ fprintf(out, "\n");
|
|
+ for(i=0; i<p->nOp; i++){
|
|
+ fprintf(out, "%6d %10lld %8lld ",
|
|
+ p->aOp[i].cnt,
|
|
+ p->aOp[i].cycles,
|
|
+ p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
|
|
+ );
|
|
+ sqliteVdbePrintOp(out, i, &p->aOp[i]);
|
|
+ }
|
|
+ fclose(out);
|
|
+ }
|
|
+ }
|
|
+#endif
|
|
+ p->magic = VDBE_MAGIC_INIT;
|
|
+ return p->rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Clean up and delete a VDBE after execution. Return an integer which is
|
|
+** the result code. Write any error message text into *pzErrMsg.
|
|
+*/
|
|
+int sqliteVdbeFinalize(Vdbe *p, char **pzErrMsg){
|
|
+ int rc;
|
|
+ sqlite *db;
|
|
+
|
|
+ if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
|
|
+ sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), (char*)0);
|
|
+ return SQLITE_MISUSE;
|
|
+ }
|
|
+ db = p->db;
|
|
+ rc = sqliteVdbeReset(p, pzErrMsg);
|
|
+ sqliteVdbeDelete(p);
|
|
+ if( db->want_to_close && db->pVdbe==0 ){
|
|
+ sqlite_close(db);
|
|
+ }
|
|
+ if( rc==SQLITE_SCHEMA ){
|
|
+ sqliteResetInternalSchema(db, 0);
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Set the values of all variables. Variable $1 in the original SQL will
|
|
+** be the string azValue[0]. $2 will have the value azValue[1]. And
|
|
+** so forth. If a value is out of range (for example $3 when nValue==2)
|
|
+** then its value will be NULL.
|
|
+**
|
|
+** This routine overrides any prior call.
|
|
+*/
|
|
+int sqlite_bind(sqlite_vm *pVm, int i, const char *zVal, int len, int copy){
|
|
+ Vdbe *p = (Vdbe*)pVm;
|
|
+ if( p->magic!=VDBE_MAGIC_RUN || p->pc!=0 ){
|
|
+ return SQLITE_MISUSE;
|
|
+ }
|
|
+ if( i<1 || i>p->nVar ){
|
|
+ return SQLITE_RANGE;
|
|
+ }
|
|
+ i--;
|
|
+ if( p->abVar[i] ){
|
|
+ sqliteFree(p->azVar[i]);
|
|
+ }
|
|
+ if( zVal==0 ){
|
|
+ copy = 0;
|
|
+ len = 0;
|
|
+ }
|
|
+ if( len<0 ){
|
|
+ len = strlen(zVal)+1;
|
|
+ }
|
|
+ if( copy ){
|
|
+ p->azVar[i] = sqliteMalloc( len );
|
|
+ if( p->azVar[i] ) memcpy(p->azVar[i], zVal, len);
|
|
+ }else{
|
|
+ p->azVar[i] = (char*)zVal;
|
|
+ }
|
|
+ p->abVar[i] = copy;
|
|
+ p->anVar[i] = len;
|
|
+ return SQLITE_OK;
|
|
+}
|
|
+
|
|
+
|
|
+/*
|
|
+** Delete an entire VDBE.
|
|
+*/
|
|
+void sqliteVdbeDelete(Vdbe *p){
|
|
+ int i;
|
|
+ if( p==0 ) return;
|
|
+ Cleanup(p);
|
|
+ if( p->pPrev ){
|
|
+ p->pPrev->pNext = p->pNext;
|
|
+ }else{
|
|
+ assert( p->db->pVdbe==p );
|
|
+ p->db->pVdbe = p->pNext;
|
|
+ }
|
|
+ if( p->pNext ){
|
|
+ p->pNext->pPrev = p->pPrev;
|
|
+ }
|
|
+ p->pPrev = p->pNext = 0;
|
|
+ if( p->nOpAlloc==0 ){
|
|
+ p->aOp = 0;
|
|
+ p->nOp = 0;
|
|
+ }
|
|
+ for(i=0; i<p->nOp; i++){
|
|
+ if( p->aOp[i].p3type==P3_DYNAMIC ){
|
|
+ sqliteFree(p->aOp[i].p3);
|
|
+ }
|
|
+ }
|
|
+ for(i=0; i<p->nVar; i++){
|
|
+ if( p->abVar[i] ) sqliteFree(p->azVar[i]);
|
|
+ }
|
|
+ sqliteFree(p->aOp);
|
|
+ sqliteFree(p->aLabel);
|
|
+ sqliteFree(p->aStack);
|
|
+ p->magic = VDBE_MAGIC_DEAD;
|
|
+ sqliteFree(p);
|
|
+}
|
|
+
|
|
+/*
|
|
+** Convert an integer in between the native integer format and
|
|
+** the bigEndian format used as the record number for tables.
|
|
+**
|
|
+** The bigEndian format (most significant byte first) is used for
|
|
+** record numbers so that records will sort into the correct order
|
|
+** even though memcmp() is used to compare the keys. On machines
|
|
+** whose native integer format is little endian (ex: i486) the
|
|
+** order of bytes is reversed. On native big-endian machines
|
|
+** (ex: Alpha, Sparc, Motorola) the byte order is the same.
|
|
+**
|
|
+** This function is its own inverse. In other words
|
|
+**
|
|
+** X == byteSwap(byteSwap(X))
|
|
+*/
|
|
+int sqliteVdbeByteSwap(int x){
|
|
+ union {
|
|
+ char zBuf[sizeof(int)];
|
|
+ int i;
|
|
+ } ux;
|
|
+ ux.zBuf[3] = x&0xff;
|
|
+ ux.zBuf[2] = (x>>8)&0xff;
|
|
+ ux.zBuf[1] = (x>>16)&0xff;
|
|
+ ux.zBuf[0] = (x>>24)&0xff;
|
|
+ return ux.i;
|
|
+}
|
|
+
|
|
+/*
|
|
+** If a MoveTo operation is pending on the given cursor, then do that
|
|
+** MoveTo now. Return an error code. If no MoveTo is pending, this
|
|
+** routine does nothing and returns SQLITE_OK.
|
|
+*/
|
|
+int sqliteVdbeCursorMoveto(Cursor *p){
|
|
+ if( p->deferredMoveto ){
|
|
+ int res;
|
|
+ extern int sqlite_search_count;
|
|
+ sqliteBtreeMoveto(p->pCursor, (char*)&p->movetoTarget, sizeof(int), &res);
|
|
+ p->lastRecno = keyToInt(p->movetoTarget);
|
|
+ p->recnoIsValid = res==0;
|
|
+ if( res<0 ){
|
|
+ sqliteBtreeNext(p->pCursor, &res);
|
|
+ }
|
|
+ sqlite_search_count++;
|
|
+ p->deferredMoveto = 0;
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/vdbe.c
|
|
@@ -0,0 +1,4921 @@
|
|
+/*
|
|
+** 2001 September 15
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** The code in this file implements execution method of the
|
|
+** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
|
|
+** handles housekeeping details such as creating and deleting
|
|
+** VDBE instances. This file is solely interested in executing
|
|
+** the VDBE program.
|
|
+**
|
|
+** In the external interface, an "sqlite_vm*" is an opaque pointer
|
|
+** to a VDBE.
|
|
+**
|
|
+** The SQL parser generates a program which is then executed by
|
|
+** the VDBE to do the work of the SQL statement. VDBE programs are
|
|
+** similar in form to assembly language. The program consists of
|
|
+** a linear sequence of operations. Each operation has an opcode
|
|
+** and 3 operands. Operands P1 and P2 are integers. Operand P3
|
|
+** is a null-terminated string. The P2 operand must be non-negative.
|
|
+** Opcodes will typically ignore one or more operands. Many opcodes
|
|
+** ignore all three operands.
|
|
+**
|
|
+** Computation results are stored on a stack. Each entry on the
|
|
+** stack is either an integer, a null-terminated string, a floating point
|
|
+** number, or the SQL "NULL" value. An inplicit conversion from one
|
|
+** type to the other occurs as necessary.
|
|
+**
|
|
+** Most of the code in this file is taken up by the sqliteVdbeExec()
|
|
+** function which does the work of interpreting a VDBE program.
|
|
+** But other routines are also provided to help in building up
|
|
+** a program instruction by instruction.
|
|
+**
|
|
+** Various scripts scan this source file in order to generate HTML
|
|
+** documentation, headers files, or other derived files. The formatting
|
|
+** of the code in this file is, therefore, important. See other comments
|
|
+** in this file for details. If in doubt, do not deviate from existing
|
|
+** commenting and indentation practices when changing or adding code.
|
|
+**
|
|
+** $Id$
|
|
+*/
|
|
+#include "sqliteInt.h"
|
|
+#include "os.h"
|
|
+#include <ctype.h>
|
|
+#include "vdbeInt.h"
|
|
+
|
|
+/*
|
|
+** The following global variable is incremented every time a cursor
|
|
+** moves, either by the OP_MoveTo or the OP_Next opcode. The test
|
|
+** procedures use this information to make sure that indices are
|
|
+** working correctly. This variable has no function other than to
|
|
+** help verify the correct operation of the library.
|
|
+*/
|
|
+int sqlite_search_count = 0;
|
|
+
|
|
+/*
|
|
+** When this global variable is positive, it gets decremented once before
|
|
+** each instruction in the VDBE. When reaches zero, the SQLITE_Interrupt
|
|
+** of the db.flags field is set in order to simulate an interrupt.
|
|
+**
|
|
+** This facility is used for testing purposes only. It does not function
|
|
+** in an ordinary build.
|
|
+*/
|
|
+int sqlite_interrupt_count = 0;
|
|
+
|
|
+/*
|
|
+** Advance the virtual machine to the next output row.
|
|
+**
|
|
+** The return vale will be either SQLITE_BUSY, SQLITE_DONE,
|
|
+** SQLITE_ROW, SQLITE_ERROR, or SQLITE_MISUSE.
|
|
+**
|
|
+** SQLITE_BUSY means that the virtual machine attempted to open
|
|
+** a locked database and there is no busy callback registered.
|
|
+** Call sqlite_step() again to retry the open. *pN is set to 0
|
|
+** and *pazColName and *pazValue are both set to NULL.
|
|
+**
|
|
+** SQLITE_DONE means that the virtual machine has finished
|
|
+** executing. sqlite_step() should not be called again on this
|
|
+** virtual machine. *pN and *pazColName are set appropriately
|
|
+** but *pazValue is set to NULL.
|
|
+**
|
|
+** SQLITE_ROW means that the virtual machine has generated another
|
|
+** row of the result set. *pN is set to the number of columns in
|
|
+** the row. *pazColName is set to the names of the columns followed
|
|
+** by the column datatypes. *pazValue is set to the values of each
|
|
+** column in the row. The value of the i-th column is (*pazValue)[i].
|
|
+** The name of the i-th column is (*pazColName)[i] and the datatype
|
|
+** of the i-th column is (*pazColName)[i+*pN].
|
|
+**
|
|
+** SQLITE_ERROR means that a run-time error (such as a constraint
|
|
+** violation) has occurred. The details of the error will be returned
|
|
+** by the next call to sqlite_finalize(). sqlite_step() should not
|
|
+** be called again on the VM.
|
|
+**
|
|
+** SQLITE_MISUSE means that the this routine was called inappropriately.
|
|
+** Perhaps it was called on a virtual machine that had already been
|
|
+** finalized or on one that had previously returned SQLITE_ERROR or
|
|
+** SQLITE_DONE. Or it could be the case the the same database connection
|
|
+** is being used simulataneously by two or more threads.
|
|
+*/
|
|
+int sqlite_step(
|
|
+ sqlite_vm *pVm, /* The virtual machine to execute */
|
|
+ int *pN, /* OUT: Number of columns in result */
|
|
+ const char ***pazValue, /* OUT: Column data */
|
|
+ const char ***pazColName /* OUT: Column names and datatypes */
|
|
+){
|
|
+ Vdbe *p = (Vdbe*)pVm;
|
|
+ sqlite *db;
|
|
+ int rc;
|
|
+
|
|
+ if( !p || p->magic!=VDBE_MAGIC_RUN ){
|
|
+ return SQLITE_MISUSE;
|
|
+ }
|
|
+ db = p->db;
|
|
+ if( sqliteSafetyOn(db) ){
|
|
+ p->rc = SQLITE_MISUSE;
|
|
+ return SQLITE_MISUSE;
|
|
+ }
|
|
+ if( p->explain ){
|
|
+ rc = sqliteVdbeList(p);
|
|
+ }else{
|
|
+ rc = sqliteVdbeExec(p);
|
|
+ }
|
|
+ if( rc==SQLITE_DONE || rc==SQLITE_ROW ){
|
|
+ if( pazColName ) *pazColName = (const char**)p->azColName;
|
|
+ if( pN ) *pN = p->nResColumn;
|
|
+ }else{
|
|
+ if( pazColName) *pazColName = 0;
|
|
+ if( pN ) *pN = 0;
|
|
+ }
|
|
+ if( pazValue ){
|
|
+ if( rc==SQLITE_ROW ){
|
|
+ *pazValue = (const char**)p->azResColumn;
|
|
+ }else{
|
|
+ *pazValue = 0;
|
|
+ }
|
|
+ }
|
|
+ if( sqliteSafetyOff(db) ){
|
|
+ return SQLITE_MISUSE;
|
|
+ }
|
|
+ return rc;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Insert a new aggregate element and make it the element that
|
|
+** has focus.
|
|
+**
|
|
+** Return 0 on success and 1 if memory is exhausted.
|
|
+*/
|
|
+static int AggInsert(Agg *p, char *zKey, int nKey){
|
|
+ AggElem *pElem, *pOld;
|
|
+ int i;
|
|
+ Mem *pMem;
|
|
+ pElem = sqliteMalloc( sizeof(AggElem) + nKey +
|
|
+ (p->nMem-1)*sizeof(pElem->aMem[0]) );
|
|
+ if( pElem==0 ) return 1;
|
|
+ pElem->zKey = (char*)&pElem->aMem[p->nMem];
|
|
+ memcpy(pElem->zKey, zKey, nKey);
|
|
+ pElem->nKey = nKey;
|
|
+ pOld = sqliteHashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem);
|
|
+ if( pOld!=0 ){
|
|
+ assert( pOld==pElem ); /* Malloc failed on insert */
|
|
+ sqliteFree(pOld);
|
|
+ return 0;
|
|
+ }
|
|
+ for(i=0, pMem=pElem->aMem; i<p->nMem; i++, pMem++){
|
|
+ pMem->flags = MEM_Null;
|
|
+ }
|
|
+ p->pCurrent = pElem;
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Get the AggElem currently in focus
|
|
+*/
|
|
+#define AggInFocus(P) ((P).pCurrent ? (P).pCurrent : _AggInFocus(&(P)))
|
|
+static AggElem *_AggInFocus(Agg *p){
|
|
+ HashElem *pElem = sqliteHashFirst(&p->hash);
|
|
+ if( pElem==0 ){
|
|
+ AggInsert(p,"",1);
|
|
+ pElem = sqliteHashFirst(&p->hash);
|
|
+ }
|
|
+ return pElem ? sqliteHashData(pElem) : 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Convert the given stack entity into a string if it isn't one
|
|
+** already.
|
|
+*/
|
|
+#define Stringify(P) if(((P)->flags & MEM_Str)==0){hardStringify(P);}
|
|
+static int hardStringify(Mem *pStack){
|
|
+ int fg = pStack->flags;
|
|
+ if( fg & MEM_Real ){
|
|
+ sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%.15g",pStack->r);
|
|
+ }else if( fg & MEM_Int ){
|
|
+ sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%d",pStack->i);
|
|
+ }else{
|
|
+ pStack->zShort[0] = 0;
|
|
+ }
|
|
+ pStack->z = pStack->zShort;
|
|
+ pStack->n = strlen(pStack->zShort)+1;
|
|
+ pStack->flags = MEM_Str | MEM_Short;
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Convert the given stack entity into a string that has been obtained
|
|
+** from sqliteMalloc(). This is different from Stringify() above in that
|
|
+** Stringify() will use the NBFS bytes of static string space if the string
|
|
+** will fit but this routine always mallocs for space.
|
|
+** Return non-zero if we run out of memory.
|
|
+*/
|
|
+#define Dynamicify(P) (((P)->flags & MEM_Dyn)==0 ? hardDynamicify(P):0)
|
|
+static int hardDynamicify(Mem *pStack){
|
|
+ int fg = pStack->flags;
|
|
+ char *z;
|
|
+ if( (fg & MEM_Str)==0 ){
|
|
+ hardStringify(pStack);
|
|
+ }
|
|
+ assert( (fg & MEM_Dyn)==0 );
|
|
+ z = sqliteMallocRaw( pStack->n );
|
|
+ if( z==0 ) return 1;
|
|
+ memcpy(z, pStack->z, pStack->n);
|
|
+ pStack->z = z;
|
|
+ pStack->flags |= MEM_Dyn;
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** An ephemeral string value (signified by the MEM_Ephem flag) contains
|
|
+** a pointer to a dynamically allocated string where some other entity
|
|
+** is responsible for deallocating that string. Because the stack entry
|
|
+** does not control the string, it might be deleted without the stack
|
|
+** entry knowing it.
|
|
+**
|
|
+** This routine converts an ephemeral string into a dynamically allocated
|
|
+** string that the stack entry itself controls. In other words, it
|
|
+** converts an MEM_Ephem string into an MEM_Dyn string.
|
|
+*/
|
|
+#define Deephemeralize(P) \
|
|
+ if( ((P)->flags&MEM_Ephem)!=0 && hardDeephem(P) ){ goto no_mem;}
|
|
+static int hardDeephem(Mem *pStack){
|
|
+ char *z;
|
|
+ assert( (pStack->flags & MEM_Ephem)!=0 );
|
|
+ z = sqliteMallocRaw( pStack->n );
|
|
+ if( z==0 ) return 1;
|
|
+ memcpy(z, pStack->z, pStack->n);
|
|
+ pStack->z = z;
|
|
+ pStack->flags &= ~MEM_Ephem;
|
|
+ pStack->flags |= MEM_Dyn;
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Release the memory associated with the given stack level. This
|
|
+** leaves the Mem.flags field in an inconsistent state.
|
|
+*/
|
|
+#define Release(P) if((P)->flags&MEM_Dyn){ sqliteFree((P)->z); }
|
|
+
|
|
+/*
|
|
+** Pop the stack N times.
|
|
+*/
|
|
+static void popStack(Mem **ppTos, int N){
|
|
+ Mem *pTos = *ppTos;
|
|
+ while( N>0 ){
|
|
+ N--;
|
|
+ Release(pTos);
|
|
+ pTos--;
|
|
+ }
|
|
+ *ppTos = pTos;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return TRUE if zNum is a 32-bit signed integer and write
|
|
+** the value of the integer into *pNum. If zNum is not an integer
|
|
+** or is an integer that is too large to be expressed with just 32
|
|
+** bits, then return false.
|
|
+**
|
|
+** Under Linux (RedHat 7.2) this routine is much faster than atoi()
|
|
+** for converting strings into integers.
|
|
+*/
|
|
+static int toInt(const char *zNum, int *pNum){
|
|
+ int v = 0;
|
|
+ int neg;
|
|
+ int i, c;
|
|
+ if( *zNum=='-' ){
|
|
+ neg = 1;
|
|
+ zNum++;
|
|
+ }else if( *zNum=='+' ){
|
|
+ neg = 0;
|
|
+ zNum++;
|
|
+ }else{
|
|
+ neg = 0;
|
|
+ }
|
|
+ for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
|
|
+ v = v*10 + c - '0';
|
|
+ }
|
|
+ *pNum = neg ? -v : v;
|
|
+ return c==0 && i>0 && (i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0));
|
|
+}
|
|
+
|
|
+/*
|
|
+** Convert the given stack entity into a integer if it isn't one
|
|
+** already.
|
|
+**
|
|
+** Any prior string or real representation is invalidated.
|
|
+** NULLs are converted into 0.
|
|
+*/
|
|
+#define Integerify(P) if(((P)->flags&MEM_Int)==0){ hardIntegerify(P); }
|
|
+static void hardIntegerify(Mem *pStack){
|
|
+ if( pStack->flags & MEM_Real ){
|
|
+ pStack->i = (int)pStack->r;
|
|
+ Release(pStack);
|
|
+ }else if( pStack->flags & MEM_Str ){
|
|
+ toInt(pStack->z, &pStack->i);
|
|
+ Release(pStack);
|
|
+ }else{
|
|
+ pStack->i = 0;
|
|
+ }
|
|
+ pStack->flags = MEM_Int;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Get a valid Real representation for the given stack element.
|
|
+**
|
|
+** Any prior string or integer representation is retained.
|
|
+** NULLs are converted into 0.0.
|
|
+*/
|
|
+#define Realify(P) if(((P)->flags&MEM_Real)==0){ hardRealify(P); }
|
|
+static void hardRealify(Mem *pStack){
|
|
+ if( pStack->flags & MEM_Str ){
|
|
+ pStack->r = sqliteAtoF(pStack->z, 0);
|
|
+ }else if( pStack->flags & MEM_Int ){
|
|
+ pStack->r = pStack->i;
|
|
+ }else{
|
|
+ pStack->r = 0.0;
|
|
+ }
|
|
+ pStack->flags |= MEM_Real;
|
|
+}
|
|
+
|
|
+/*
|
|
+** The parameters are pointers to the head of two sorted lists
|
|
+** of Sorter structures. Merge these two lists together and return
|
|
+** a single sorted list. This routine forms the core of the merge-sort
|
|
+** algorithm.
|
|
+**
|
|
+** In the case of a tie, left sorts in front of right.
|
|
+*/
|
|
+static Sorter *Merge(Sorter *pLeft, Sorter *pRight){
|
|
+ Sorter sHead;
|
|
+ Sorter *pTail;
|
|
+ pTail = &sHead;
|
|
+ pTail->pNext = 0;
|
|
+ while( pLeft && pRight ){
|
|
+ int c = sqliteSortCompare(pLeft->zKey, pRight->zKey);
|
|
+ if( c<=0 ){
|
|
+ pTail->pNext = pLeft;
|
|
+ pLeft = pLeft->pNext;
|
|
+ }else{
|
|
+ pTail->pNext = pRight;
|
|
+ pRight = pRight->pNext;
|
|
+ }
|
|
+ pTail = pTail->pNext;
|
|
+ }
|
|
+ if( pLeft ){
|
|
+ pTail->pNext = pLeft;
|
|
+ }else if( pRight ){
|
|
+ pTail->pNext = pRight;
|
|
+ }
|
|
+ return sHead.pNext;
|
|
+}
|
|
+
|
|
+/*
|
|
+** The following routine works like a replacement for the standard
|
|
+** library routine fgets(). The difference is in how end-of-line (EOL)
|
|
+** is handled. Standard fgets() uses LF for EOL under unix, CRLF
|
|
+** under windows, and CR under mac. This routine accepts any of these
|
|
+** character sequences as an EOL mark. The EOL mark is replaced by
|
|
+** a single LF character in zBuf.
|
|
+*/
|
|
+static char *vdbe_fgets(char *zBuf, int nBuf, FILE *in){
|
|
+ int i, c;
|
|
+ for(i=0; i<nBuf-1 && (c=getc(in))!=EOF; i++){
|
|
+ zBuf[i] = c;
|
|
+ if( c=='\r' || c=='\n' ){
|
|
+ if( c=='\r' ){
|
|
+ zBuf[i] = '\n';
|
|
+ c = getc(in);
|
|
+ if( c!=EOF && c!='\n' ) ungetc(c, in);
|
|
+ }
|
|
+ i++;
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ zBuf[i] = 0;
|
|
+ return i>0 ? zBuf : 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Make sure there is space in the Vdbe structure to hold at least
|
|
+** mxCursor cursors. If there is not currently enough space, then
|
|
+** allocate more.
|
|
+**
|
|
+** If a memory allocation error occurs, return 1. Return 0 if
|
|
+** everything works.
|
|
+*/
|
|
+static int expandCursorArraySize(Vdbe *p, int mxCursor){
|
|
+ if( mxCursor>=p->nCursor ){
|
|
+ Cursor *aCsr = sqliteRealloc( p->aCsr, (mxCursor+1)*sizeof(Cursor) );
|
|
+ if( aCsr==0 ) return 1;
|
|
+ p->aCsr = aCsr;
|
|
+ memset(&p->aCsr[p->nCursor], 0, sizeof(Cursor)*(mxCursor+1-p->nCursor));
|
|
+ p->nCursor = mxCursor+1;
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+#ifdef VDBE_PROFILE
|
|
+/*
|
|
+** The following routine only works on pentium-class processors.
|
|
+** It uses the RDTSC opcode to read cycle count value out of the
|
|
+** processor and returns that value. This can be used for high-res
|
|
+** profiling.
|
|
+*/
|
|
+__inline__ unsigned long long int hwtime(void){
|
|
+ unsigned long long int x;
|
|
+ __asm__("rdtsc\n\t"
|
|
+ "mov %%edx, %%ecx\n\t"
|
|
+ :"=A" (x));
|
|
+ return x;
|
|
+}
|
|
+#endif
|
|
+
|
|
+/*
|
|
+** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
|
|
+** sqlite_interrupt() routine has been called. If it has been, then
|
|
+** processing of the VDBE program is interrupted.
|
|
+**
|
|
+** This macro added to every instruction that does a jump in order to
|
|
+** implement a loop. This test used to be on every single instruction,
|
|
+** but that meant we more testing that we needed. By only testing the
|
|
+** flag on jump instructions, we get a (small) speed improvement.
|
|
+*/
|
|
+#define CHECK_FOR_INTERRUPT \
|
|
+ if( db->flags & SQLITE_Interrupt ) goto abort_due_to_interrupt;
|
|
+
|
|
+
|
|
+/*
|
|
+** Execute as much of a VDBE program as we can then return.
|
|
+**
|
|
+** sqliteVdbeMakeReady() must be called before this routine in order to
|
|
+** close the program with a final OP_Halt and to set up the callbacks
|
|
+** and the error message pointer.
|
|
+**
|
|
+** Whenever a row or result data is available, this routine will either
|
|
+** invoke the result callback (if there is one) or return with
|
|
+** SQLITE_ROW.
|
|
+**
|
|
+** If an attempt is made to open a locked database, then this routine
|
|
+** will either invoke the busy callback (if there is one) or it will
|
|
+** return SQLITE_BUSY.
|
|
+**
|
|
+** If an error occurs, an error message is written to memory obtained
|
|
+** from sqliteMalloc() and p->zErrMsg is made to point to that memory.
|
|
+** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
|
|
+**
|
|
+** If the callback ever returns non-zero, then the program exits
|
|
+** immediately. There will be no error message but the p->rc field is
|
|
+** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
|
|
+**
|
|
+** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
|
|
+** routine to return SQLITE_ERROR.
|
|
+**
|
|
+** Other fatal errors return SQLITE_ERROR.
|
|
+**
|
|
+** After this routine has finished, sqliteVdbeFinalize() should be
|
|
+** used to clean up the mess that was left behind.
|
|
+*/
|
|
+int sqliteVdbeExec(
|
|
+ Vdbe *p /* The VDBE */
|
|
+){
|
|
+ int pc; /* The program counter */
|
|
+ Op *pOp; /* Current operation */
|
|
+ int rc = SQLITE_OK; /* Value to return */
|
|
+ sqlite *db = p->db; /* The database */
|
|
+ Mem *pTos; /* Top entry in the operand stack */
|
|
+ char zBuf[100]; /* Space to sprintf() an integer */
|
|
+#ifdef VDBE_PROFILE
|
|
+ unsigned long long start; /* CPU clock count at start of opcode */
|
|
+ int origPc; /* Program counter at start of opcode */
|
|
+#endif
|
|
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
+ int nProgressOps = 0; /* Opcodes executed since progress callback. */
|
|
+#endif
|
|
+
|
|
+ if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
|
|
+ assert( db->magic==SQLITE_MAGIC_BUSY );
|
|
+ assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
|
|
+ p->rc = SQLITE_OK;
|
|
+ assert( p->explain==0 );
|
|
+ if( sqlite_malloc_failed ) goto no_mem;
|
|
+ pTos = p->pTos;
|
|
+ if( p->popStack ){
|
|
+ popStack(&pTos, p->popStack);
|
|
+ p->popStack = 0;
|
|
+ }
|
|
+ CHECK_FOR_INTERRUPT;
|
|
+ for(pc=p->pc; rc==SQLITE_OK; pc++){
|
|
+ assert( pc>=0 && pc<p->nOp );
|
|
+ assert( pTos<=&p->aStack[pc] );
|
|
+#ifdef VDBE_PROFILE
|
|
+ origPc = pc;
|
|
+ start = hwtime();
|
|
+#endif
|
|
+ pOp = &p->aOp[pc];
|
|
+
|
|
+ /* Only allow tracing if NDEBUG is not defined.
|
|
+ */
|
|
+#ifndef NDEBUG
|
|
+ if( p->trace ){
|
|
+ sqliteVdbePrintOp(p->trace, pc, pOp);
|
|
+ }
|
|
+#endif
|
|
+
|
|
+ /* Check to see if we need to simulate an interrupt. This only happens
|
|
+ ** if we have a special test build.
|
|
+ */
|
|
+#ifdef SQLITE_TEST
|
|
+ if( sqlite_interrupt_count>0 ){
|
|
+ sqlite_interrupt_count--;
|
|
+ if( sqlite_interrupt_count==0 ){
|
|
+ sqlite_interrupt(db);
|
|
+ }
|
|
+ }
|
|
+#endif
|
|
+
|
|
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
+ /* Call the progress callback if it is configured and the required number
|
|
+ ** of VDBE ops have been executed (either since this invocation of
|
|
+ ** sqliteVdbeExec() or since last time the progress callback was called).
|
|
+ ** If the progress callback returns non-zero, exit the virtual machine with
|
|
+ ** a return code SQLITE_ABORT.
|
|
+ */
|
|
+ if( db->xProgress ){
|
|
+ if( db->nProgressOps==nProgressOps ){
|
|
+ if( db->xProgress(db->pProgressArg)!=0 ){
|
|
+ rc = SQLITE_ABORT;
|
|
+ continue; /* skip to the next iteration of the for loop */
|
|
+ }
|
|
+ nProgressOps = 0;
|
|
+ }
|
|
+ nProgressOps++;
|
|
+ }
|
|
+#endif
|
|
+
|
|
+ switch( pOp->opcode ){
|
|
+
|
|
+/*****************************************************************************
|
|
+** What follows is a massive switch statement where each case implements a
|
|
+** separate instruction in the virtual machine. If we follow the usual
|
|
+** indentation conventions, each case should be indented by 6 spaces. But
|
|
+** that is a lot of wasted space on the left margin. So the code within
|
|
+** the switch statement will break with convention and be flush-left. Another
|
|
+** big comment (similar to this one) will mark the point in the code where
|
|
+** we transition back to normal indentation.
|
|
+**
|
|
+** The formatting of each case is important. The makefile for SQLite
|
|
+** generates two C files "opcodes.h" and "opcodes.c" by scanning this
|
|
+** file looking for lines that begin with "case OP_". The opcodes.h files
|
|
+** will be filled with #defines that give unique integer values to each
|
|
+** opcode and the opcodes.c file is filled with an array of strings where
|
|
+** each string is the symbolic name for the corresponding opcode.
|
|
+**
|
|
+** Documentation about VDBE opcodes is generated by scanning this file
|
|
+** for lines of that contain "Opcode:". That line and all subsequent
|
|
+** comment lines are used in the generation of the opcode.html documentation
|
|
+** file.
|
|
+**
|
|
+** SUMMARY:
|
|
+**
|
|
+** Formatting is important to scripts that scan this file.
|
|
+** Do not deviate from the formatting style currently in use.
|
|
+**
|
|
+*****************************************************************************/
|
|
+
|
|
+/* Opcode: Goto * P2 *
|
|
+**
|
|
+** An unconditional jump to address P2.
|
|
+** The next instruction executed will be
|
|
+** the one at index P2 from the beginning of
|
|
+** the program.
|
|
+*/
|
|
+case OP_Goto: {
|
|
+ CHECK_FOR_INTERRUPT;
|
|
+ pc = pOp->p2 - 1;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Gosub * P2 *
|
|
+**
|
|
+** Push the current address plus 1 onto the return address stack
|
|
+** and then jump to address P2.
|
|
+**
|
|
+** The return address stack is of limited depth. If too many
|
|
+** OP_Gosub operations occur without intervening OP_Returns, then
|
|
+** the return address stack will fill up and processing will abort
|
|
+** with a fatal error.
|
|
+*/
|
|
+case OP_Gosub: {
|
|
+ if( p->returnDepth>=sizeof(p->returnStack)/sizeof(p->returnStack[0]) ){
|
|
+ sqliteSetString(&p->zErrMsg, "return address stack overflow", (char*)0);
|
|
+ p->rc = SQLITE_INTERNAL;
|
|
+ return SQLITE_ERROR;
|
|
+ }
|
|
+ p->returnStack[p->returnDepth++] = pc+1;
|
|
+ pc = pOp->p2 - 1;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Return * * *
|
|
+**
|
|
+** Jump immediately to the next instruction after the last unreturned
|
|
+** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then
|
|
+** processing aborts with a fatal error.
|
|
+*/
|
|
+case OP_Return: {
|
|
+ if( p->returnDepth<=0 ){
|
|
+ sqliteSetString(&p->zErrMsg, "return address stack underflow", (char*)0);
|
|
+ p->rc = SQLITE_INTERNAL;
|
|
+ return SQLITE_ERROR;
|
|
+ }
|
|
+ p->returnDepth--;
|
|
+ pc = p->returnStack[p->returnDepth] - 1;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Halt P1 P2 *
|
|
+**
|
|
+** Exit immediately. All open cursors, Lists, Sorts, etc are closed
|
|
+** automatically.
|
|
+**
|
|
+** P1 is the result code returned by sqlite_exec(). For a normal
|
|
+** halt, this should be SQLITE_OK (0). For errors, it can be some
|
|
+** other value. If P1!=0 then P2 will determine whether or not to
|
|
+** rollback the current transaction. Do not rollback if P2==OE_Fail.
|
|
+** Do the rollback if P2==OE_Rollback. If P2==OE_Abort, then back
|
|
+** out all changes that have occurred during this execution of the
|
|
+** VDBE, but do not rollback the transaction.
|
|
+**
|
|
+** There is an implied "Halt 0 0 0" instruction inserted at the very end of
|
|
+** every program. So a jump past the last instruction of the program
|
|
+** is the same as executing Halt.
|
|
+*/
|
|
+case OP_Halt: {
|
|
+ p->magic = VDBE_MAGIC_HALT;
|
|
+ p->pTos = pTos;
|
|
+ if( pOp->p1!=SQLITE_OK ){
|
|
+ p->rc = pOp->p1;
|
|
+ p->errorAction = pOp->p2;
|
|
+ if( pOp->p3 ){
|
|
+ sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0);
|
|
+ }
|
|
+ return SQLITE_ERROR;
|
|
+ }else{
|
|
+ p->rc = SQLITE_OK;
|
|
+ return SQLITE_DONE;
|
|
+ }
|
|
+}
|
|
+
|
|
+/* Opcode: Integer P1 * P3
|
|
+**
|
|
+** The integer value P1 is pushed onto the stack. If P3 is not zero
|
|
+** then it is assumed to be a string representation of the same integer.
|
|
+*/
|
|
+case OP_Integer: {
|
|
+ pTos++;
|
|
+ pTos->i = pOp->p1;
|
|
+ pTos->flags = MEM_Int;
|
|
+ if( pOp->p3 ){
|
|
+ pTos->z = pOp->p3;
|
|
+ pTos->flags |= MEM_Str | MEM_Static;
|
|
+ pTos->n = strlen(pOp->p3)+1;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: String * * P3
|
|
+**
|
|
+** The string value P3 is pushed onto the stack. If P3==0 then a
|
|
+** NULL is pushed onto the stack.
|
|
+*/
|
|
+case OP_String: {
|
|
+ char *z = pOp->p3;
|
|
+ pTos++;
|
|
+ if( z==0 ){
|
|
+ pTos->flags = MEM_Null;
|
|
+ }else{
|
|
+ pTos->z = z;
|
|
+ pTos->n = strlen(z) + 1;
|
|
+ pTos->flags = MEM_Str | MEM_Static;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Variable P1 * *
|
|
+**
|
|
+** Push the value of variable P1 onto the stack. A variable is
|
|
+** an unknown in the original SQL string as handed to sqlite_compile().
|
|
+** Any occurance of the '?' character in the original SQL is considered
|
|
+** a variable. Variables in the SQL string are number from left to
|
|
+** right beginning with 1. The values of variables are set using the
|
|
+** sqlite_bind() API.
|
|
+*/
|
|
+case OP_Variable: {
|
|
+ int j = pOp->p1 - 1;
|
|
+ pTos++;
|
|
+ if( j>=0 && j<p->nVar && p->azVar[j]!=0 ){
|
|
+ pTos->z = p->azVar[j];
|
|
+ pTos->n = p->anVar[j];
|
|
+ pTos->flags = MEM_Str | MEM_Static;
|
|
+ }else{
|
|
+ pTos->flags = MEM_Null;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Pop P1 * *
|
|
+**
|
|
+** P1 elements are popped off of the top of stack and discarded.
|
|
+*/
|
|
+case OP_Pop: {
|
|
+ assert( pOp->p1>=0 );
|
|
+ popStack(&pTos, pOp->p1);
|
|
+ assert( pTos>=&p->aStack[-1] );
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Dup P1 P2 *
|
|
+**
|
|
+** A copy of the P1-th element of the stack
|
|
+** is made and pushed onto the top of the stack.
|
|
+** The top of the stack is element 0. So the
|
|
+** instruction "Dup 0 0 0" will make a copy of the
|
|
+** top of the stack.
|
|
+**
|
|
+** If the content of the P1-th element is a dynamically
|
|
+** allocated string, then a new copy of that string
|
|
+** is made if P2==0. If P2!=0, then just a pointer
|
|
+** to the string is copied.
|
|
+**
|
|
+** Also see the Pull instruction.
|
|
+*/
|
|
+case OP_Dup: {
|
|
+ Mem *pFrom = &pTos[-pOp->p1];
|
|
+ assert( pFrom<=pTos && pFrom>=p->aStack );
|
|
+ pTos++;
|
|
+ memcpy(pTos, pFrom, sizeof(*pFrom)-NBFS);
|
|
+ if( pTos->flags & MEM_Str ){
|
|
+ if( pOp->p2 && (pTos->flags & (MEM_Dyn|MEM_Ephem)) ){
|
|
+ pTos->flags &= ~MEM_Dyn;
|
|
+ pTos->flags |= MEM_Ephem;
|
|
+ }else if( pTos->flags & MEM_Short ){
|
|
+ memcpy(pTos->zShort, pFrom->zShort, pTos->n);
|
|
+ pTos->z = pTos->zShort;
|
|
+ }else if( (pTos->flags & MEM_Static)==0 ){
|
|
+ pTos->z = sqliteMallocRaw(pFrom->n);
|
|
+ if( sqlite_malloc_failed ) goto no_mem;
|
|
+ memcpy(pTos->z, pFrom->z, pFrom->n);
|
|
+ pTos->flags &= ~(MEM_Static|MEM_Ephem|MEM_Short);
|
|
+ pTos->flags |= MEM_Dyn;
|
|
+ }
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Pull P1 * *
|
|
+**
|
|
+** The P1-th element is removed from its current location on
|
|
+** the stack and pushed back on top of the stack. The
|
|
+** top of the stack is element 0, so "Pull 0 0 0" is
|
|
+** a no-op. "Pull 1 0 0" swaps the top two elements of
|
|
+** the stack.
|
|
+**
|
|
+** See also the Dup instruction.
|
|
+*/
|
|
+case OP_Pull: {
|
|
+ Mem *pFrom = &pTos[-pOp->p1];
|
|
+ int i;
|
|
+ Mem ts;
|
|
+
|
|
+ ts = *pFrom;
|
|
+ Deephemeralize(pTos);
|
|
+ for(i=0; i<pOp->p1; i++, pFrom++){
|
|
+ Deephemeralize(&pFrom[1]);
|
|
+ *pFrom = pFrom[1];
|
|
+ assert( (pFrom->flags & MEM_Ephem)==0 );
|
|
+ if( pFrom->flags & MEM_Short ){
|
|
+ assert( pFrom->flags & MEM_Str );
|
|
+ assert( pFrom->z==pFrom[1].zShort );
|
|
+ pFrom->z = pFrom->zShort;
|
|
+ }
|
|
+ }
|
|
+ *pTos = ts;
|
|
+ if( pTos->flags & MEM_Short ){
|
|
+ assert( pTos->flags & MEM_Str );
|
|
+ assert( pTos->z==pTos[-pOp->p1].zShort );
|
|
+ pTos->z = pTos->zShort;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Push P1 * *
|
|
+**
|
|
+** Overwrite the value of the P1-th element down on the
|
|
+** stack (P1==0 is the top of the stack) with the value
|
|
+** of the top of the stack. Then pop the top of the stack.
|
|
+*/
|
|
+case OP_Push: {
|
|
+ Mem *pTo = &pTos[-pOp->p1];
|
|
+
|
|
+ assert( pTo>=p->aStack );
|
|
+ Deephemeralize(pTos);
|
|
+ Release(pTo);
|
|
+ *pTo = *pTos;
|
|
+ if( pTo->flags & MEM_Short ){
|
|
+ assert( pTo->z==pTos->zShort );
|
|
+ pTo->z = pTo->zShort;
|
|
+ }
|
|
+ pTos--;
|
|
+ break;
|
|
+}
|
|
+
|
|
+
|
|
+/* Opcode: ColumnName P1 P2 P3
|
|
+**
|
|
+** P3 becomes the P1-th column name (first is 0). An array of pointers
|
|
+** to all column names is passed as the 4th parameter to the callback.
|
|
+** If P2==1 then this is the last column in the result set and thus the
|
|
+** number of columns in the result set will be P1. There must be at least
|
|
+** one OP_ColumnName with a P2==1 before invoking OP_Callback and the
|
|
+** number of columns specified in OP_Callback must one more than the P1
|
|
+** value of the OP_ColumnName that has P2==1.
|
|
+*/
|
|
+case OP_ColumnName: {
|
|
+ assert( pOp->p1>=0 && pOp->p1<p->nOp );
|
|
+ p->azColName[pOp->p1] = pOp->p3;
|
|
+ p->nCallback = 0;
|
|
+ if( pOp->p2 ) p->nResColumn = pOp->p1+1;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Callback P1 * *
|
|
+**
|
|
+** Pop P1 values off the stack and form them into an array. Then
|
|
+** invoke the callback function using the newly formed array as the
|
|
+** 3rd parameter.
|
|
+*/
|
|
+case OP_Callback: {
|
|
+ int i;
|
|
+ char **azArgv = p->zArgv;
|
|
+ Mem *pCol;
|
|
+
|
|
+ pCol = &pTos[1-pOp->p1];
|
|
+ assert( pCol>=p->aStack );
|
|
+ for(i=0; i<pOp->p1; i++, pCol++){
|
|
+ if( pCol->flags & MEM_Null ){
|
|
+ azArgv[i] = 0;
|
|
+ }else{
|
|
+ Stringify(pCol);
|
|
+ azArgv[i] = pCol->z;
|
|
+ }
|
|
+ }
|
|
+ azArgv[i] = 0;
|
|
+ p->nCallback++;
|
|
+ p->azResColumn = azArgv;
|
|
+ assert( p->nResColumn==pOp->p1 );
|
|
+ p->popStack = pOp->p1;
|
|
+ p->pc = pc + 1;
|
|
+ p->pTos = pTos;
|
|
+ return SQLITE_ROW;
|
|
+}
|
|
+
|
|
+/* Opcode: Concat P1 P2 P3
|
|
+**
|
|
+** Look at the first P1 elements of the stack. Append them all
|
|
+** together with the lowest element first. Use P3 as a separator.
|
|
+** Put the result on the top of the stack. The original P1 elements
|
|
+** are popped from the stack if P2==0 and retained if P2==1. If
|
|
+** any element of the stack is NULL, then the result is NULL.
|
|
+**
|
|
+** If P3 is NULL, then use no separator. When P1==1, this routine
|
|
+** makes a copy of the top stack element into memory obtained
|
|
+** from sqliteMalloc().
|
|
+*/
|
|
+case OP_Concat: {
|
|
+ char *zNew;
|
|
+ int nByte;
|
|
+ int nField;
|
|
+ int i, j;
|
|
+ char *zSep;
|
|
+ int nSep;
|
|
+ Mem *pTerm;
|
|
+
|
|
+ nField = pOp->p1;
|
|
+ zSep = pOp->p3;
|
|
+ if( zSep==0 ) zSep = "";
|
|
+ nSep = strlen(zSep);
|
|
+ assert( &pTos[1-nField] >= p->aStack );
|
|
+ nByte = 1 - nSep;
|
|
+ pTerm = &pTos[1-nField];
|
|
+ for(i=0; i<nField; i++, pTerm++){
|
|
+ if( pTerm->flags & MEM_Null ){
|
|
+ nByte = -1;
|
|
+ break;
|
|
+ }else{
|
|
+ Stringify(pTerm);
|
|
+ nByte += pTerm->n - 1 + nSep;
|
|
+ }
|
|
+ }
|
|
+ if( nByte<0 ){
|
|
+ if( pOp->p2==0 ){
|
|
+ popStack(&pTos, nField);
|
|
+ }
|
|
+ pTos++;
|
|
+ pTos->flags = MEM_Null;
|
|
+ break;
|
|
+ }
|
|
+ zNew = sqliteMallocRaw( nByte );
|
|
+ if( zNew==0 ) goto no_mem;
|
|
+ j = 0;
|
|
+ pTerm = &pTos[1-nField];
|
|
+ for(i=j=0; i<nField; i++, pTerm++){
|
|
+ assert( pTerm->flags & MEM_Str );
|
|
+ memcpy(&zNew[j], pTerm->z, pTerm->n-1);
|
|
+ j += pTerm->n-1;
|
|
+ if( nSep>0 && i<nField-1 ){
|
|
+ memcpy(&zNew[j], zSep, nSep);
|
|
+ j += nSep;
|
|
+ }
|
|
+ }
|
|
+ zNew[j] = 0;
|
|
+ if( pOp->p2==0 ){
|
|
+ popStack(&pTos, nField);
|
|
+ }
|
|
+ pTos++;
|
|
+ pTos->n = nByte;
|
|
+ pTos->flags = MEM_Str|MEM_Dyn;
|
|
+ pTos->z = zNew;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Add * * *
|
|
+**
|
|
+** Pop the top two elements from the stack, add them together,
|
|
+** and push the result back onto the stack. If either element
|
|
+** is a string then it is converted to a double using the atof()
|
|
+** function before the addition.
|
|
+** If either operand is NULL, the result is NULL.
|
|
+*/
|
|
+/* Opcode: Multiply * * *
|
|
+**
|
|
+** Pop the top two elements from the stack, multiply them together,
|
|
+** and push the result back onto the stack. If either element
|
|
+** is a string then it is converted to a double using the atof()
|
|
+** function before the multiplication.
|
|
+** If either operand is NULL, the result is NULL.
|
|
+*/
|
|
+/* Opcode: Subtract * * *
|
|
+**
|
|
+** Pop the top two elements from the stack, subtract the
|
|
+** first (what was on top of the stack) from the second (the
|
|
+** next on stack)
|
|
+** and push the result back onto the stack. If either element
|
|
+** is a string then it is converted to a double using the atof()
|
|
+** function before the subtraction.
|
|
+** If either operand is NULL, the result is NULL.
|
|
+*/
|
|
+/* Opcode: Divide * * *
|
|
+**
|
|
+** Pop the top two elements from the stack, divide the
|
|
+** first (what was on top of the stack) from the second (the
|
|
+** next on stack)
|
|
+** and push the result back onto the stack. If either element
|
|
+** is a string then it is converted to a double using the atof()
|
|
+** function before the division. Division by zero returns NULL.
|
|
+** If either operand is NULL, the result is NULL.
|
|
+*/
|
|
+/* Opcode: Remainder * * *
|
|
+**
|
|
+** Pop the top two elements from the stack, divide the
|
|
+** first (what was on top of the stack) from the second (the
|
|
+** next on stack)
|
|
+** and push the remainder after division onto the stack. If either element
|
|
+** is a string then it is converted to a double using the atof()
|
|
+** function before the division. Division by zero returns NULL.
|
|
+** If either operand is NULL, the result is NULL.
|
|
+*/
|
|
+case OP_Add:
|
|
+case OP_Subtract:
|
|
+case OP_Multiply:
|
|
+case OP_Divide:
|
|
+case OP_Remainder: {
|
|
+ Mem *pNos = &pTos[-1];
|
|
+ assert( pNos>=p->aStack );
|
|
+ if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){
|
|
+ Release(pTos);
|
|
+ pTos--;
|
|
+ Release(pTos);
|
|
+ pTos->flags = MEM_Null;
|
|
+ }else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){
|
|
+ int a, b;
|
|
+ a = pTos->i;
|
|
+ b = pNos->i;
|
|
+ switch( pOp->opcode ){
|
|
+ case OP_Add: b += a; break;
|
|
+ case OP_Subtract: b -= a; break;
|
|
+ case OP_Multiply: b *= a; break;
|
|
+ case OP_Divide: {
|
|
+ if( a==0 ) goto divide_by_zero;
|
|
+ b /= a;
|
|
+ break;
|
|
+ }
|
|
+ default: {
|
|
+ if( a==0 ) goto divide_by_zero;
|
|
+ b %= a;
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ Release(pTos);
|
|
+ pTos--;
|
|
+ Release(pTos);
|
|
+ pTos->i = b;
|
|
+ pTos->flags = MEM_Int;
|
|
+ }else{
|
|
+ double a, b;
|
|
+ Realify(pTos);
|
|
+ Realify(pNos);
|
|
+ a = pTos->r;
|
|
+ b = pNos->r;
|
|
+ switch( pOp->opcode ){
|
|
+ case OP_Add: b += a; break;
|
|
+ case OP_Subtract: b -= a; break;
|
|
+ case OP_Multiply: b *= a; break;
|
|
+ case OP_Divide: {
|
|
+ if( a==0.0 ) goto divide_by_zero;
|
|
+ b /= a;
|
|
+ break;
|
|
+ }
|
|
+ default: {
|
|
+ int ia = (int)a;
|
|
+ int ib = (int)b;
|
|
+ if( ia==0.0 ) goto divide_by_zero;
|
|
+ b = ib % ia;
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ Release(pTos);
|
|
+ pTos--;
|
|
+ Release(pTos);
|
|
+ pTos->r = b;
|
|
+ pTos->flags = MEM_Real;
|
|
+ }
|
|
+ break;
|
|
+
|
|
+divide_by_zero:
|
|
+ Release(pTos);
|
|
+ pTos--;
|
|
+ Release(pTos);
|
|
+ pTos->flags = MEM_Null;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Function P1 * P3
|
|
+**
|
|
+** Invoke a user function (P3 is a pointer to a Function structure that
|
|
+** defines the function) with P1 string arguments taken from the stack.
|
|
+** Pop all arguments from the stack and push back the result.
|
|
+**
|
|
+** See also: AggFunc
|
|
+*/
|
|
+case OP_Function: {
|
|
+ int n, i;
|
|
+ Mem *pArg;
|
|
+ char **azArgv;
|
|
+ sqlite_func ctx;
|
|
+
|
|
+ n = pOp->p1;
|
|
+ pArg = &pTos[1-n];
|
|
+ azArgv = p->zArgv;
|
|
+ for(i=0; i<n; i++, pArg++){
|
|
+ if( pArg->flags & MEM_Null ){
|
|
+ azArgv[i] = 0;
|
|
+ }else{
|
|
+ Stringify(pArg);
|
|
+ azArgv[i] = pArg->z;
|
|
+ }
|
|
+ }
|
|
+ ctx.pFunc = (FuncDef*)pOp->p3;
|
|
+ ctx.s.flags = MEM_Null;
|
|
+ ctx.s.z = 0;
|
|
+ ctx.isError = 0;
|
|
+ ctx.isStep = 0;
|
|
+ if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
|
|
+ (*ctx.pFunc->xFunc)(&ctx, n, (const char**)azArgv);
|
|
+ if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
|
|
+ popStack(&pTos, n);
|
|
+ pTos++;
|
|
+ *pTos = ctx.s;
|
|
+ if( pTos->flags & MEM_Short ){
|
|
+ pTos->z = pTos->zShort;
|
|
+ }
|
|
+ if( ctx.isError ){
|
|
+ sqliteSetString(&p->zErrMsg,
|
|
+ (pTos->flags & MEM_Str)!=0 ? pTos->z : "user function error", (char*)0);
|
|
+ rc = SQLITE_ERROR;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: BitAnd * * *
|
|
+**
|
|
+** Pop the top two elements from the stack. Convert both elements
|
|
+** to integers. Push back onto the stack the bit-wise AND of the
|
|
+** two elements.
|
|
+** If either operand is NULL, the result is NULL.
|
|
+*/
|
|
+/* Opcode: BitOr * * *
|
|
+**
|
|
+** Pop the top two elements from the stack. Convert both elements
|
|
+** to integers. Push back onto the stack the bit-wise OR of the
|
|
+** two elements.
|
|
+** If either operand is NULL, the result is NULL.
|
|
+*/
|
|
+/* Opcode: ShiftLeft * * *
|
|
+**
|
|
+** Pop the top two elements from the stack. Convert both elements
|
|
+** to integers. Push back onto the stack the top element shifted
|
|
+** left by N bits where N is the second element on the stack.
|
|
+** If either operand is NULL, the result is NULL.
|
|
+*/
|
|
+/* Opcode: ShiftRight * * *
|
|
+**
|
|
+** Pop the top two elements from the stack. Convert both elements
|
|
+** to integers. Push back onto the stack the top element shifted
|
|
+** right by N bits where N is the second element on the stack.
|
|
+** If either operand is NULL, the result is NULL.
|
|
+*/
|
|
+case OP_BitAnd:
|
|
+case OP_BitOr:
|
|
+case OP_ShiftLeft:
|
|
+case OP_ShiftRight: {
|
|
+ Mem *pNos = &pTos[-1];
|
|
+ int a, b;
|
|
+
|
|
+ assert( pNos>=p->aStack );
|
|
+ if( (pTos->flags | pNos->flags) & MEM_Null ){
|
|
+ popStack(&pTos, 2);
|
|
+ pTos++;
|
|
+ pTos->flags = MEM_Null;
|
|
+ break;
|
|
+ }
|
|
+ Integerify(pTos);
|
|
+ Integerify(pNos);
|
|
+ a = pTos->i;
|
|
+ b = pNos->i;
|
|
+ switch( pOp->opcode ){
|
|
+ case OP_BitAnd: a &= b; break;
|
|
+ case OP_BitOr: a |= b; break;
|
|
+ case OP_ShiftLeft: a <<= b; break;
|
|
+ case OP_ShiftRight: a >>= b; break;
|
|
+ default: /* CANT HAPPEN */ break;
|
|
+ }
|
|
+ assert( (pTos->flags & MEM_Dyn)==0 );
|
|
+ assert( (pNos->flags & MEM_Dyn)==0 );
|
|
+ pTos--;
|
|
+ Release(pTos);
|
|
+ pTos->i = a;
|
|
+ pTos->flags = MEM_Int;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: AddImm P1 * *
|
|
+**
|
|
+** Add the value P1 to whatever is on top of the stack. The result
|
|
+** is always an integer.
|
|
+**
|
|
+** To force the top of the stack to be an integer, just add 0.
|
|
+*/
|
|
+case OP_AddImm: {
|
|
+ assert( pTos>=p->aStack );
|
|
+ Integerify(pTos);
|
|
+ pTos->i += pOp->p1;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: ForceInt P1 P2 *
|
|
+**
|
|
+** Convert the top of the stack into an integer. If the current top of
|
|
+** the stack is not numeric (meaning that is is a NULL or a string that
|
|
+** does not look like an integer or floating point number) then pop the
|
|
+** stack and jump to P2. If the top of the stack is numeric then
|
|
+** convert it into the least integer that is greater than or equal to its
|
|
+** current value if P1==0, or to the least integer that is strictly
|
|
+** greater than its current value if P1==1.
|
|
+*/
|
|
+case OP_ForceInt: {
|
|
+ int v;
|
|
+ assert( pTos>=p->aStack );
|
|
+ if( (pTos->flags & (MEM_Int|MEM_Real))==0
|
|
+ && ((pTos->flags & MEM_Str)==0 || sqliteIsNumber(pTos->z)==0) ){
|
|
+ Release(pTos);
|
|
+ pTos--;
|
|
+ pc = pOp->p2 - 1;
|
|
+ break;
|
|
+ }
|
|
+ if( pTos->flags & MEM_Int ){
|
|
+ v = pTos->i + (pOp->p1!=0);
|
|
+ }else{
|
|
+ Realify(pTos);
|
|
+ v = (int)pTos->r;
|
|
+ if( pTos->r>(double)v ) v++;
|
|
+ if( pOp->p1 && pTos->r==(double)v ) v++;
|
|
+ }
|
|
+ Release(pTos);
|
|
+ pTos->i = v;
|
|
+ pTos->flags = MEM_Int;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: MustBeInt P1 P2 *
|
|
+**
|
|
+** Force the top of the stack to be an integer. If the top of the
|
|
+** stack is not an integer and cannot be converted into an integer
|
|
+** with out data loss, then jump immediately to P2, or if P2==0
|
|
+** raise an SQLITE_MISMATCH exception.
|
|
+**
|
|
+** If the top of the stack is not an integer and P2 is not zero and
|
|
+** P1 is 1, then the stack is popped. In all other cases, the depth
|
|
+** of the stack is unchanged.
|
|
+*/
|
|
+case OP_MustBeInt: {
|
|
+ assert( pTos>=p->aStack );
|
|
+ if( pTos->flags & MEM_Int ){
|
|
+ /* Do nothing */
|
|
+ }else if( pTos->flags & MEM_Real ){
|
|
+ int i = (int)pTos->r;
|
|
+ double r = (double)i;
|
|
+ if( r!=pTos->r ){
|
|
+ goto mismatch;
|
|
+ }
|
|
+ pTos->i = i;
|
|
+ }else if( pTos->flags & MEM_Str ){
|
|
+ int v;
|
|
+ if( !toInt(pTos->z, &v) ){
|
|
+ double r;
|
|
+ if( !sqliteIsNumber(pTos->z) ){
|
|
+ goto mismatch;
|
|
+ }
|
|
+ Realify(pTos);
|
|
+ v = (int)pTos->r;
|
|
+ r = (double)v;
|
|
+ if( r!=pTos->r ){
|
|
+ goto mismatch;
|
|
+ }
|
|
+ }
|
|
+ pTos->i = v;
|
|
+ }else{
|
|
+ goto mismatch;
|
|
+ }
|
|
+ Release(pTos);
|
|
+ pTos->flags = MEM_Int;
|
|
+ break;
|
|
+
|
|
+mismatch:
|
|
+ if( pOp->p2==0 ){
|
|
+ rc = SQLITE_MISMATCH;
|
|
+ goto abort_due_to_error;
|
|
+ }else{
|
|
+ if( pOp->p1 ) popStack(&pTos, 1);
|
|
+ pc = pOp->p2 - 1;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Eq P1 P2 *
|
|
+**
|
|
+** Pop the top two elements from the stack. If they are equal, then
|
|
+** jump to instruction P2. Otherwise, continue to the next instruction.
|
|
+**
|
|
+** If either operand is NULL (and thus if the result is unknown) then
|
|
+** take the jump if P1 is true.
|
|
+**
|
|
+** If both values are numeric, they are converted to doubles using atof()
|
|
+** and compared for equality that way. Otherwise the strcmp() library
|
|
+** routine is used for the comparison. For a pure text comparison
|
|
+** use OP_StrEq.
|
|
+**
|
|
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
|
|
+** stack if the jump would have been taken, or a 0 if not. Push a
|
|
+** NULL if either operand was NULL.
|
|
+*/
|
|
+/* Opcode: Ne P1 P2 *
|
|
+**
|
|
+** Pop the top two elements from the stack. If they are not equal, then
|
|
+** jump to instruction P2. Otherwise, continue to the next instruction.
|
|
+**
|
|
+** If either operand is NULL (and thus if the result is unknown) then
|
|
+** take the jump if P1 is true.
|
|
+**
|
|
+** If both values are numeric, they are converted to doubles using atof()
|
|
+** and compared in that format. Otherwise the strcmp() library
|
|
+** routine is used for the comparison. For a pure text comparison
|
|
+** use OP_StrNe.
|
|
+**
|
|
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
|
|
+** stack if the jump would have been taken, or a 0 if not. Push a
|
|
+** NULL if either operand was NULL.
|
|
+*/
|
|
+/* Opcode: Lt P1 P2 *
|
|
+**
|
|
+** Pop the top two elements from the stack. If second element (the
|
|
+** next on stack) is less than the first (the top of stack), then
|
|
+** jump to instruction P2. Otherwise, continue to the next instruction.
|
|
+** In other words, jump if NOS<TOS.
|
|
+**
|
|
+** If either operand is NULL (and thus if the result is unknown) then
|
|
+** take the jump if P1 is true.
|
|
+**
|
|
+** If both values are numeric, they are converted to doubles using atof()
|
|
+** and compared in that format. Numeric values are always less than
|
|
+** non-numeric values. If both operands are non-numeric, the strcmp() library
|
|
+** routine is used for the comparison. For a pure text comparison
|
|
+** use OP_StrLt.
|
|
+**
|
|
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
|
|
+** stack if the jump would have been taken, or a 0 if not. Push a
|
|
+** NULL if either operand was NULL.
|
|
+*/
|
|
+/* Opcode: Le P1 P2 *
|
|
+**
|
|
+** Pop the top two elements from the stack. If second element (the
|
|
+** next on stack) is less than or equal to the first (the top of stack),
|
|
+** then jump to instruction P2. In other words, jump if NOS<=TOS.
|
|
+**
|
|
+** If either operand is NULL (and thus if the result is unknown) then
|
|
+** take the jump if P1 is true.
|
|
+**
|
|
+** If both values are numeric, they are converted to doubles using atof()
|
|
+** and compared in that format. Numeric values are always less than
|
|
+** non-numeric values. If both operands are non-numeric, the strcmp() library
|
|
+** routine is used for the comparison. For a pure text comparison
|
|
+** use OP_StrLe.
|
|
+**
|
|
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
|
|
+** stack if the jump would have been taken, or a 0 if not. Push a
|
|
+** NULL if either operand was NULL.
|
|
+*/
|
|
+/* Opcode: Gt P1 P2 *
|
|
+**
|
|
+** Pop the top two elements from the stack. If second element (the
|
|
+** next on stack) is greater than the first (the top of stack),
|
|
+** then jump to instruction P2. In other words, jump if NOS>TOS.
|
|
+**
|
|
+** If either operand is NULL (and thus if the result is unknown) then
|
|
+** take the jump if P1 is true.
|
|
+**
|
|
+** If both values are numeric, they are converted to doubles using atof()
|
|
+** and compared in that format. Numeric values are always less than
|
|
+** non-numeric values. If both operands are non-numeric, the strcmp() library
|
|
+** routine is used for the comparison. For a pure text comparison
|
|
+** use OP_StrGt.
|
|
+**
|
|
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
|
|
+** stack if the jump would have been taken, or a 0 if not. Push a
|
|
+** NULL if either operand was NULL.
|
|
+*/
|
|
+/* Opcode: Ge P1 P2 *
|
|
+**
|
|
+** Pop the top two elements from the stack. If second element (the next
|
|
+** on stack) is greater than or equal to the first (the top of stack),
|
|
+** then jump to instruction P2. In other words, jump if NOS>=TOS.
|
|
+**
|
|
+** If either operand is NULL (and thus if the result is unknown) then
|
|
+** take the jump if P1 is true.
|
|
+**
|
|
+** If both values are numeric, they are converted to doubles using atof()
|
|
+** and compared in that format. Numeric values are always less than
|
|
+** non-numeric values. If both operands are non-numeric, the strcmp() library
|
|
+** routine is used for the comparison. For a pure text comparison
|
|
+** use OP_StrGe.
|
|
+**
|
|
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
|
|
+** stack if the jump would have been taken, or a 0 if not. Push a
|
|
+** NULL if either operand was NULL.
|
|
+*/
|
|
+case OP_Eq:
|
|
+case OP_Ne:
|
|
+case OP_Lt:
|
|
+case OP_Le:
|
|
+case OP_Gt:
|
|
+case OP_Ge: {
|
|
+ Mem *pNos = &pTos[-1];
|
|
+ int c, v;
|
|
+ int ft, fn;
|
|
+ assert( pNos>=p->aStack );
|
|
+ ft = pTos->flags;
|
|
+ fn = pNos->flags;
|
|
+ if( (ft | fn) & MEM_Null ){
|
|
+ popStack(&pTos, 2);
|
|
+ if( pOp->p2 ){
|
|
+ if( pOp->p1 ) pc = pOp->p2-1;
|
|
+ }else{
|
|
+ pTos++;
|
|
+ pTos->flags = MEM_Null;
|
|
+ }
|
|
+ break;
|
|
+ }else if( (ft & fn & MEM_Int)==MEM_Int ){
|
|
+ c = pNos->i - pTos->i;
|
|
+ }else if( (ft & MEM_Int)!=0 && (fn & MEM_Str)!=0 && toInt(pNos->z,&v) ){
|
|
+ c = v - pTos->i;
|
|
+ }else if( (fn & MEM_Int)!=0 && (ft & MEM_Str)!=0 && toInt(pTos->z,&v) ){
|
|
+ c = pNos->i - v;
|
|
+ }else{
|
|
+ Stringify(pTos);
|
|
+ Stringify(pNos);
|
|
+ c = sqliteCompare(pNos->z, pTos->z);
|
|
+ }
|
|
+ switch( pOp->opcode ){
|
|
+ case OP_Eq: c = c==0; break;
|
|
+ case OP_Ne: c = c!=0; break;
|
|
+ case OP_Lt: c = c<0; break;
|
|
+ case OP_Le: c = c<=0; break;
|
|
+ case OP_Gt: c = c>0; break;
|
|
+ default: c = c>=0; break;
|
|
+ }
|
|
+ popStack(&pTos, 2);
|
|
+ if( pOp->p2 ){
|
|
+ if( c ) pc = pOp->p2-1;
|
|
+ }else{
|
|
+ pTos++;
|
|
+ pTos->i = c;
|
|
+ pTos->flags = MEM_Int;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+/* INSERT NO CODE HERE!
|
|
+**
|
|
+** The opcode numbers are extracted from this source file by doing
|
|
+**
|
|
+** grep '^case OP_' vdbe.c | ... >opcodes.h
|
|
+**
|
|
+** The opcodes are numbered in the order that they appear in this file.
|
|
+** But in order for the expression generating code to work right, the
|
|
+** string comparison operators that follow must be numbered exactly 6
|
|
+** greater than the numeric comparison opcodes above. So no other
|
|
+** cases can appear between the two.
|
|
+*/
|
|
+/* Opcode: StrEq P1 P2 *
|
|
+**
|
|
+** Pop the top two elements from the stack. If they are equal, then
|
|
+** jump to instruction P2. Otherwise, continue to the next instruction.
|
|
+**
|
|
+** If either operand is NULL (and thus if the result is unknown) then
|
|
+** take the jump if P1 is true.
|
|
+**
|
|
+** The strcmp() library routine is used for the comparison. For a
|
|
+** numeric comparison, use OP_Eq.
|
|
+**
|
|
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
|
|
+** stack if the jump would have been taken, or a 0 if not. Push a
|
|
+** NULL if either operand was NULL.
|
|
+*/
|
|
+/* Opcode: StrNe P1 P2 *
|
|
+**
|
|
+** Pop the top two elements from the stack. If they are not equal, then
|
|
+** jump to instruction P2. Otherwise, continue to the next instruction.
|
|
+**
|
|
+** If either operand is NULL (and thus if the result is unknown) then
|
|
+** take the jump if P1 is true.
|
|
+**
|
|
+** The strcmp() library routine is used for the comparison. For a
|
|
+** numeric comparison, use OP_Ne.
|
|
+**
|
|
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
|
|
+** stack if the jump would have been taken, or a 0 if not. Push a
|
|
+** NULL if either operand was NULL.
|
|
+*/
|
|
+/* Opcode: StrLt P1 P2 *
|
|
+**
|
|
+** Pop the top two elements from the stack. If second element (the
|
|
+** next on stack) is less than the first (the top of stack), then
|
|
+** jump to instruction P2. Otherwise, continue to the next instruction.
|
|
+** In other words, jump if NOS<TOS.
|
|
+**
|
|
+** If either operand is NULL (and thus if the result is unknown) then
|
|
+** take the jump if P1 is true.
|
|
+**
|
|
+** The strcmp() library routine is used for the comparison. For a
|
|
+** numeric comparison, use OP_Lt.
|
|
+**
|
|
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
|
|
+** stack if the jump would have been taken, or a 0 if not. Push a
|
|
+** NULL if either operand was NULL.
|
|
+*/
|
|
+/* Opcode: StrLe P1 P2 *
|
|
+**
|
|
+** Pop the top two elements from the stack. If second element (the
|
|
+** next on stack) is less than or equal to the first (the top of stack),
|
|
+** then jump to instruction P2. In other words, jump if NOS<=TOS.
|
|
+**
|
|
+** If either operand is NULL (and thus if the result is unknown) then
|
|
+** take the jump if P1 is true.
|
|
+**
|
|
+** The strcmp() library routine is used for the comparison. For a
|
|
+** numeric comparison, use OP_Le.
|
|
+**
|
|
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
|
|
+** stack if the jump would have been taken, or a 0 if not. Push a
|
|
+** NULL if either operand was NULL.
|
|
+*/
|
|
+/* Opcode: StrGt P1 P2 *
|
|
+**
|
|
+** Pop the top two elements from the stack. If second element (the
|
|
+** next on stack) is greater than the first (the top of stack),
|
|
+** then jump to instruction P2. In other words, jump if NOS>TOS.
|
|
+**
|
|
+** If either operand is NULL (and thus if the result is unknown) then
|
|
+** take the jump if P1 is true.
|
|
+**
|
|
+** The strcmp() library routine is used for the comparison. For a
|
|
+** numeric comparison, use OP_Gt.
|
|
+**
|
|
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
|
|
+** stack if the jump would have been taken, or a 0 if not. Push a
|
|
+** NULL if either operand was NULL.
|
|
+*/
|
|
+/* Opcode: StrGe P1 P2 *
|
|
+**
|
|
+** Pop the top two elements from the stack. If second element (the next
|
|
+** on stack) is greater than or equal to the first (the top of stack),
|
|
+** then jump to instruction P2. In other words, jump if NOS>=TOS.
|
|
+**
|
|
+** If either operand is NULL (and thus if the result is unknown) then
|
|
+** take the jump if P1 is true.
|
|
+**
|
|
+** The strcmp() library routine is used for the comparison. For a
|
|
+** numeric comparison, use OP_Ge.
|
|
+**
|
|
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
|
|
+** stack if the jump would have been taken, or a 0 if not. Push a
|
|
+** NULL if either operand was NULL.
|
|
+*/
|
|
+case OP_StrEq:
|
|
+case OP_StrNe:
|
|
+case OP_StrLt:
|
|
+case OP_StrLe:
|
|
+case OP_StrGt:
|
|
+case OP_StrGe: {
|
|
+ Mem *pNos = &pTos[-1];
|
|
+ int c;
|
|
+ assert( pNos>=p->aStack );
|
|
+ if( (pNos->flags | pTos->flags) & MEM_Null ){
|
|
+ popStack(&pTos, 2);
|
|
+ if( pOp->p2 ){
|
|
+ if( pOp->p1 ) pc = pOp->p2-1;
|
|
+ }else{
|
|
+ pTos++;
|
|
+ pTos->flags = MEM_Null;
|
|
+ }
|
|
+ break;
|
|
+ }else{
|
|
+ Stringify(pTos);
|
|
+ Stringify(pNos);
|
|
+ c = strcmp(pNos->z, pTos->z);
|
|
+ }
|
|
+ /* The asserts on each case of the following switch are there to verify
|
|
+ ** that string comparison opcodes are always exactly 6 greater than the
|
|
+ ** corresponding numeric comparison opcodes. The code generator depends
|
|
+ ** on this fact.
|
|
+ */
|
|
+ switch( pOp->opcode ){
|
|
+ case OP_StrEq: c = c==0; assert( pOp->opcode-6==OP_Eq ); break;
|
|
+ case OP_StrNe: c = c!=0; assert( pOp->opcode-6==OP_Ne ); break;
|
|
+ case OP_StrLt: c = c<0; assert( pOp->opcode-6==OP_Lt ); break;
|
|
+ case OP_StrLe: c = c<=0; assert( pOp->opcode-6==OP_Le ); break;
|
|
+ case OP_StrGt: c = c>0; assert( pOp->opcode-6==OP_Gt ); break;
|
|
+ default: c = c>=0; assert( pOp->opcode-6==OP_Ge ); break;
|
|
+ }
|
|
+ popStack(&pTos, 2);
|
|
+ if( pOp->p2 ){
|
|
+ if( c ) pc = pOp->p2-1;
|
|
+ }else{
|
|
+ pTos++;
|
|
+ pTos->flags = MEM_Int;
|
|
+ pTos->i = c;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: And * * *
|
|
+**
|
|
+** Pop two values off the stack. Take the logical AND of the
|
|
+** two values and push the resulting boolean value back onto the
|
|
+** stack.
|
|
+*/
|
|
+/* Opcode: Or * * *
|
|
+**
|
|
+** Pop two values off the stack. Take the logical OR of the
|
|
+** two values and push the resulting boolean value back onto the
|
|
+** stack.
|
|
+*/
|
|
+case OP_And:
|
|
+case OP_Or: {
|
|
+ Mem *pNos = &pTos[-1];
|
|
+ int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */
|
|
+
|
|
+ assert( pNos>=p->aStack );
|
|
+ if( pTos->flags & MEM_Null ){
|
|
+ v1 = 2;
|
|
+ }else{
|
|
+ Integerify(pTos);
|
|
+ v1 = pTos->i==0;
|
|
+ }
|
|
+ if( pNos->flags & MEM_Null ){
|
|
+ v2 = 2;
|
|
+ }else{
|
|
+ Integerify(pNos);
|
|
+ v2 = pNos->i==0;
|
|
+ }
|
|
+ if( pOp->opcode==OP_And ){
|
|
+ static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
|
|
+ v1 = and_logic[v1*3+v2];
|
|
+ }else{
|
|
+ static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
|
|
+ v1 = or_logic[v1*3+v2];
|
|
+ }
|
|
+ popStack(&pTos, 2);
|
|
+ pTos++;
|
|
+ if( v1==2 ){
|
|
+ pTos->flags = MEM_Null;
|
|
+ }else{
|
|
+ pTos->i = v1==0;
|
|
+ pTos->flags = MEM_Int;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Negative * * *
|
|
+**
|
|
+** Treat the top of the stack as a numeric quantity. Replace it
|
|
+** with its additive inverse. If the top of the stack is NULL
|
|
+** its value is unchanged.
|
|
+*/
|
|
+/* Opcode: AbsValue * * *
|
|
+**
|
|
+** Treat the top of the stack as a numeric quantity. Replace it
|
|
+** with its absolute value. If the top of the stack is NULL
|
|
+** its value is unchanged.
|
|
+*/
|
|
+case OP_Negative:
|
|
+case OP_AbsValue: {
|
|
+ assert( pTos>=p->aStack );
|
|
+ if( pTos->flags & MEM_Real ){
|
|
+ Release(pTos);
|
|
+ if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
|
|
+ pTos->r = -pTos->r;
|
|
+ }
|
|
+ pTos->flags = MEM_Real;
|
|
+ }else if( pTos->flags & MEM_Int ){
|
|
+ Release(pTos);
|
|
+ if( pOp->opcode==OP_Negative || pTos->i<0 ){
|
|
+ pTos->i = -pTos->i;
|
|
+ }
|
|
+ pTos->flags = MEM_Int;
|
|
+ }else if( pTos->flags & MEM_Null ){
|
|
+ /* Do nothing */
|
|
+ }else{
|
|
+ Realify(pTos);
|
|
+ Release(pTos);
|
|
+ if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
|
|
+ pTos->r = -pTos->r;
|
|
+ }
|
|
+ pTos->flags = MEM_Real;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Not * * *
|
|
+**
|
|
+** Interpret the top of the stack as a boolean value. Replace it
|
|
+** with its complement. If the top of the stack is NULL its value
|
|
+** is unchanged.
|
|
+*/
|
|
+case OP_Not: {
|
|
+ assert( pTos>=p->aStack );
|
|
+ if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
|
|
+ Integerify(pTos);
|
|
+ Release(pTos);
|
|
+ pTos->i = !pTos->i;
|
|
+ pTos->flags = MEM_Int;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: BitNot * * *
|
|
+**
|
|
+** Interpret the top of the stack as an value. Replace it
|
|
+** with its ones-complement. If the top of the stack is NULL its
|
|
+** value is unchanged.
|
|
+*/
|
|
+case OP_BitNot: {
|
|
+ assert( pTos>=p->aStack );
|
|
+ if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
|
|
+ Integerify(pTos);
|
|
+ Release(pTos);
|
|
+ pTos->i = ~pTos->i;
|
|
+ pTos->flags = MEM_Int;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Noop * * *
|
|
+**
|
|
+** Do nothing. This instruction is often useful as a jump
|
|
+** destination.
|
|
+*/
|
|
+case OP_Noop: {
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: If P1 P2 *
|
|
+**
|
|
+** Pop a single boolean from the stack. If the boolean popped is
|
|
+** true, then jump to p2. Otherwise continue to the next instruction.
|
|
+** An integer is false if zero and true otherwise. A string is
|
|
+** false if it has zero length and true otherwise.
|
|
+**
|
|
+** If the value popped of the stack is NULL, then take the jump if P1
|
|
+** is true and fall through if P1 is false.
|
|
+*/
|
|
+/* Opcode: IfNot P1 P2 *
|
|
+**
|
|
+** Pop a single boolean from the stack. If the boolean popped is
|
|
+** false, then jump to p2. Otherwise continue to the next instruction.
|
|
+** An integer is false if zero and true otherwise. A string is
|
|
+** false if it has zero length and true otherwise.
|
|
+**
|
|
+** If the value popped of the stack is NULL, then take the jump if P1
|
|
+** is true and fall through if P1 is false.
|
|
+*/
|
|
+case OP_If:
|
|
+case OP_IfNot: {
|
|
+ int c;
|
|
+ assert( pTos>=p->aStack );
|
|
+ if( pTos->flags & MEM_Null ){
|
|
+ c = pOp->p1;
|
|
+ }else{
|
|
+ Integerify(pTos);
|
|
+ c = pTos->i;
|
|
+ if( pOp->opcode==OP_IfNot ) c = !c;
|
|
+ }
|
|
+ assert( (pTos->flags & MEM_Dyn)==0 );
|
|
+ pTos--;
|
|
+ if( c ) pc = pOp->p2-1;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: IsNull P1 P2 *
|
|
+**
|
|
+** If any of the top abs(P1) values on the stack are NULL, then jump
|
|
+** to P2. Pop the stack P1 times if P1>0. If P1<0 leave the stack
|
|
+** unchanged.
|
|
+*/
|
|
+case OP_IsNull: {
|
|
+ int i, cnt;
|
|
+ Mem *pTerm;
|
|
+ cnt = pOp->p1;
|
|
+ if( cnt<0 ) cnt = -cnt;
|
|
+ pTerm = &pTos[1-cnt];
|
|
+ assert( pTerm>=p->aStack );
|
|
+ for(i=0; i<cnt; i++, pTerm++){
|
|
+ if( pTerm->flags & MEM_Null ){
|
|
+ pc = pOp->p2-1;
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ if( pOp->p1>0 ) popStack(&pTos, cnt);
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: NotNull P1 P2 *
|
|
+**
|
|
+** Jump to P2 if the top P1 values on the stack are all not NULL. Pop the
|
|
+** stack if P1 times if P1 is greater than zero. If P1 is less than
|
|
+** zero then leave the stack unchanged.
|
|
+*/
|
|
+case OP_NotNull: {
|
|
+ int i, cnt;
|
|
+ cnt = pOp->p1;
|
|
+ if( cnt<0 ) cnt = -cnt;
|
|
+ assert( &pTos[1-cnt] >= p->aStack );
|
|
+ for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
|
|
+ if( i>=cnt ) pc = pOp->p2-1;
|
|
+ if( pOp->p1>0 ) popStack(&pTos, cnt);
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: MakeRecord P1 P2 *
|
|
+**
|
|
+** Convert the top P1 entries of the stack into a single entry
|
|
+** suitable for use as a data record in a database table. The
|
|
+** details of the format are irrelavant as long as the OP_Column
|
|
+** opcode can decode the record later. Refer to source code
|
|
+** comments for the details of the record format.
|
|
+**
|
|
+** If P2 is true (non-zero) and one or more of the P1 entries
|
|
+** that go into building the record is NULL, then add some extra
|
|
+** bytes to the record to make it distinct for other entries created
|
|
+** during the same run of the VDBE. The extra bytes added are a
|
|
+** counter that is reset with each run of the VDBE, so records
|
|
+** created this way will not necessarily be distinct across runs.
|
|
+** But they should be distinct for transient tables (created using
|
|
+** OP_OpenTemp) which is what they are intended for.
|
|
+**
|
|
+** (Later:) The P2==1 option was intended to make NULLs distinct
|
|
+** for the UNION operator. But I have since discovered that NULLs
|
|
+** are indistinct for UNION. So this option is never used.
|
|
+*/
|
|
+case OP_MakeRecord: {
|
|
+ char *zNewRecord;
|
|
+ int nByte;
|
|
+ int nField;
|
|
+ int i, j;
|
|
+ int idxWidth;
|
|
+ u32 addr;
|
|
+ Mem *pRec;
|
|
+ int addUnique = 0; /* True to cause bytes to be added to make the
|
|
+ ** generated record distinct */
|
|
+ char zTemp[NBFS]; /* Temp space for small records */
|
|
+
|
|
+ /* Assuming the record contains N fields, the record format looks
|
|
+ ** like this:
|
|
+ **
|
|
+ ** -------------------------------------------------------------------
|
|
+ ** | idx0 | idx1 | ... | idx(N-1) | idx(N) | data0 | ... | data(N-1) |
|
|
+ ** -------------------------------------------------------------------
|
|
+ **
|
|
+ ** All data fields are converted to strings before being stored and
|
|
+ ** are stored with their null terminators. NULL entries omit the
|
|
+ ** null terminator. Thus an empty string uses 1 byte and a NULL uses
|
|
+ ** zero bytes. Data(0) is taken from the lowest element of the stack
|
|
+ ** and data(N-1) is the top of the stack.
|
|
+ **
|
|
+ ** Each of the idx() entries is either 1, 2, or 3 bytes depending on
|
|
+ ** how big the total record is. Idx(0) contains the offset to the start
|
|
+ ** of data(0). Idx(k) contains the offset to the start of data(k).
|
|
+ ** Idx(N) contains the total number of bytes in the record.
|
|
+ */
|
|
+ nField = pOp->p1;
|
|
+ pRec = &pTos[1-nField];
|
|
+ assert( pRec>=p->aStack );
|
|
+ nByte = 0;
|
|
+ for(i=0; i<nField; i++, pRec++){
|
|
+ if( pRec->flags & MEM_Null ){
|
|
+ addUnique = pOp->p2;
|
|
+ }else{
|
|
+ Stringify(pRec);
|
|
+ nByte += pRec->n;
|
|
+ }
|
|
+ }
|
|
+ if( addUnique ) nByte += sizeof(p->uniqueCnt);
|
|
+ if( nByte + nField + 1 < 256 ){
|
|
+ idxWidth = 1;
|
|
+ }else if( nByte + 2*nField + 2 < 65536 ){
|
|
+ idxWidth = 2;
|
|
+ }else{
|
|
+ idxWidth = 3;
|
|
+ }
|
|
+ nByte += idxWidth*(nField + 1);
|
|
+ if( nByte>MAX_BYTES_PER_ROW ){
|
|
+ rc = SQLITE_TOOBIG;
|
|
+ goto abort_due_to_error;
|
|
+ }
|
|
+ if( nByte<=NBFS ){
|
|
+ zNewRecord = zTemp;
|
|
+ }else{
|
|
+ zNewRecord = sqliteMallocRaw( nByte );
|
|
+ if( zNewRecord==0 ) goto no_mem;
|
|
+ }
|
|
+ j = 0;
|
|
+ addr = idxWidth*(nField+1) + addUnique*sizeof(p->uniqueCnt);
|
|
+ for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){
|
|
+ zNewRecord[j++] = addr & 0xff;
|
|
+ if( idxWidth>1 ){
|
|
+ zNewRecord[j++] = (addr>>8)&0xff;
|
|
+ if( idxWidth>2 ){
|
|
+ zNewRecord[j++] = (addr>>16)&0xff;
|
|
+ }
|
|
+ }
|
|
+ if( (pRec->flags & MEM_Null)==0 ){
|
|
+ addr += pRec->n;
|
|
+ }
|
|
+ }
|
|
+ zNewRecord[j++] = addr & 0xff;
|
|
+ if( idxWidth>1 ){
|
|
+ zNewRecord[j++] = (addr>>8)&0xff;
|
|
+ if( idxWidth>2 ){
|
|
+ zNewRecord[j++] = (addr>>16)&0xff;
|
|
+ }
|
|
+ }
|
|
+ if( addUnique ){
|
|
+ memcpy(&zNewRecord[j], &p->uniqueCnt, sizeof(p->uniqueCnt));
|
|
+ p->uniqueCnt++;
|
|
+ j += sizeof(p->uniqueCnt);
|
|
+ }
|
|
+ for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){
|
|
+ if( (pRec->flags & MEM_Null)==0 ){
|
|
+ memcpy(&zNewRecord[j], pRec->z, pRec->n);
|
|
+ j += pRec->n;
|
|
+ }
|
|
+ }
|
|
+ popStack(&pTos, nField);
|
|
+ pTos++;
|
|
+ pTos->n = nByte;
|
|
+ if( nByte<=NBFS ){
|
|
+ assert( zNewRecord==zTemp );
|
|
+ memcpy(pTos->zShort, zTemp, nByte);
|
|
+ pTos->z = pTos->zShort;
|
|
+ pTos->flags = MEM_Str | MEM_Short;
|
|
+ }else{
|
|
+ assert( zNewRecord!=zTemp );
|
|
+ pTos->z = zNewRecord;
|
|
+ pTos->flags = MEM_Str | MEM_Dyn;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: MakeKey P1 P2 P3
|
|
+**
|
|
+** Convert the top P1 entries of the stack into a single entry suitable
|
|
+** for use as the key in an index. The top P1 records are
|
|
+** converted to strings and merged. The null-terminators
|
|
+** are retained and used as separators.
|
|
+** The lowest entry in the stack is the first field and the top of the
|
|
+** stack becomes the last.
|
|
+**
|
|
+** If P2 is not zero, then the original entries remain on the stack
|
|
+** and the new key is pushed on top. If P2 is zero, the original
|
|
+** data is popped off the stack first then the new key is pushed
|
|
+** back in its place.
|
|
+**
|
|
+** P3 is a string that is P1 characters long. Each character is either
|
|
+** an 'n' or a 't' to indicates if the argument should be intepreted as
|
|
+** numeric or text type. The first character of P3 corresponds to the
|
|
+** lowest element on the stack. If P3 is NULL then all arguments are
|
|
+** assumed to be of the numeric type.
|
|
+**
|
|
+** The type makes a difference in that text-type fields may not be
|
|
+** introduced by 'b' (as described in the next paragraph). The
|
|
+** first character of a text-type field must be either 'a' (if it is NULL)
|
|
+** or 'c'. Numeric fields will be introduced by 'b' if their content
|
|
+** looks like a well-formed number. Otherwise the 'a' or 'c' will be
|
|
+** used.
|
|
+**
|
|
+** The key is a concatenation of fields. Each field is terminated by
|
|
+** a single 0x00 character. A NULL field is introduced by an 'a' and
|
|
+** is followed immediately by its 0x00 terminator. A numeric field is
|
|
+** introduced by a single character 'b' and is followed by a sequence
|
|
+** of characters that represent the number such that a comparison of
|
|
+** the character string using memcpy() sorts the numbers in numerical
|
|
+** order. The character strings for numbers are generated using the
|
|
+** sqliteRealToSortable() function. A text field is introduced by a
|
|
+** 'c' character and is followed by the exact text of the field. The
|
|
+** use of an 'a', 'b', or 'c' character at the beginning of each field
|
|
+** guarantees that NULLs sort before numbers and that numbers sort
|
|
+** before text. 0x00 characters do not occur except as separators
|
|
+** between fields.
|
|
+**
|
|
+** See also: MakeIdxKey, SortMakeKey
|
|
+*/
|
|
+/* Opcode: MakeIdxKey P1 P2 P3
|
|
+**
|
|
+** Convert the top P1 entries of the stack into a single entry suitable
|
|
+** for use as the key in an index. In addition, take one additional integer
|
|
+** off of the stack, treat that integer as a four-byte record number, and
|
|
+** append the four bytes to the key. Thus a total of P1+1 entries are
|
|
+** popped from the stack for this instruction and a single entry is pushed
|
|
+** back. The first P1 entries that are popped are strings and the last
|
|
+** entry (the lowest on the stack) is an integer record number.
|
|
+**
|
|
+** The converstion of the first P1 string entries occurs just like in
|
|
+** MakeKey. Each entry is separated from the others by a null.
|
|
+** The entire concatenation is null-terminated. The lowest entry
|
|
+** in the stack is the first field and the top of the stack becomes the
|
|
+** last.
|
|
+**
|
|
+** If P2 is not zero and one or more of the P1 entries that go into the
|
|
+** generated key is NULL, then jump to P2 after the new key has been
|
|
+** pushed on the stack. In other words, jump to P2 if the key is
|
|
+** guaranteed to be unique. This jump can be used to skip a subsequent
|
|
+** uniqueness test.
|
|
+**
|
|
+** P3 is a string that is P1 characters long. Each character is either
|
|
+** an 'n' or a 't' to indicates if the argument should be numeric or
|
|
+** text. The first character corresponds to the lowest element on the
|
|
+** stack. If P3 is null then all arguments are assumed to be numeric.
|
|
+**
|
|
+** See also: MakeKey, SortMakeKey
|
|
+*/
|
|
+case OP_MakeIdxKey:
|
|
+case OP_MakeKey: {
|
|
+ char *zNewKey;
|
|
+ int nByte;
|
|
+ int nField;
|
|
+ int addRowid;
|
|
+ int i, j;
|
|
+ int containsNull = 0;
|
|
+ Mem *pRec;
|
|
+ char zTemp[NBFS];
|
|
+
|
|
+ addRowid = pOp->opcode==OP_MakeIdxKey;
|
|
+ nField = pOp->p1;
|
|
+ pRec = &pTos[1-nField];
|
|
+ assert( pRec>=p->aStack );
|
|
+ nByte = 0;
|
|
+ for(j=0, i=0; i<nField; i++, j++, pRec++){
|
|
+ int flags = pRec->flags;
|
|
+ int len;
|
|
+ char *z;
|
|
+ if( flags & MEM_Null ){
|
|
+ nByte += 2;
|
|
+ containsNull = 1;
|
|
+ }else if( pOp->p3 && pOp->p3[j]=='t' ){
|
|
+ Stringify(pRec);
|
|
+ pRec->flags &= ~(MEM_Int|MEM_Real);
|
|
+ nByte += pRec->n+1;
|
|
+ }else if( (flags & (MEM_Real|MEM_Int))!=0 || sqliteIsNumber(pRec->z) ){
|
|
+ if( (flags & (MEM_Real|MEM_Int))==MEM_Int ){
|
|
+ pRec->r = pRec->i;
|
|
+ }else if( (flags & (MEM_Real|MEM_Int))==0 ){
|
|
+ pRec->r = sqliteAtoF(pRec->z, 0);
|
|
+ }
|
|
+ Release(pRec);
|
|
+ z = pRec->zShort;
|
|
+ sqliteRealToSortable(pRec->r, z);
|
|
+ len = strlen(z);
|
|
+ pRec->z = 0;
|
|
+ pRec->flags = MEM_Real;
|
|
+ pRec->n = len+1;
|
|
+ nByte += pRec->n+1;
|
|
+ }else{
|
|
+ nByte += pRec->n+1;
|
|
+ }
|
|
+ }
|
|
+ if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){
|
|
+ rc = SQLITE_TOOBIG;
|
|
+ goto abort_due_to_error;
|
|
+ }
|
|
+ if( addRowid ) nByte += sizeof(u32);
|
|
+ if( nByte<=NBFS ){
|
|
+ zNewKey = zTemp;
|
|
+ }else{
|
|
+ zNewKey = sqliteMallocRaw( nByte );
|
|
+ if( zNewKey==0 ) goto no_mem;
|
|
+ }
|
|
+ j = 0;
|
|
+ pRec = &pTos[1-nField];
|
|
+ for(i=0; i<nField; i++, pRec++){
|
|
+ if( pRec->flags & MEM_Null ){
|
|
+ zNewKey[j++] = 'a';
|
|
+ zNewKey[j++] = 0;
|
|
+ }else if( pRec->flags==MEM_Real ){
|
|
+ zNewKey[j++] = 'b';
|
|
+ memcpy(&zNewKey[j], pRec->zShort, pRec->n);
|
|
+ j += pRec->n;
|
|
+ }else{
|
|
+ assert( pRec->flags & MEM_Str );
|
|
+ zNewKey[j++] = 'c';
|
|
+ memcpy(&zNewKey[j], pRec->z, pRec->n);
|
|
+ j += pRec->n;
|
|
+ }
|
|
+ }
|
|
+ if( addRowid ){
|
|
+ u32 iKey;
|
|
+ pRec = &pTos[-nField];
|
|
+ assert( pRec>=p->aStack );
|
|
+ Integerify(pRec);
|
|
+ iKey = intToKey(pRec->i);
|
|
+ memcpy(&zNewKey[j], &iKey, sizeof(u32));
|
|
+ popStack(&pTos, nField+1);
|
|
+ if( pOp->p2 && containsNull ) pc = pOp->p2 - 1;
|
|
+ }else{
|
|
+ if( pOp->p2==0 ) popStack(&pTos, nField);
|
|
+ }
|
|
+ pTos++;
|
|
+ pTos->n = nByte;
|
|
+ if( nByte<=NBFS ){
|
|
+ assert( zNewKey==zTemp );
|
|
+ pTos->z = pTos->zShort;
|
|
+ memcpy(pTos->zShort, zTemp, nByte);
|
|
+ pTos->flags = MEM_Str | MEM_Short;
|
|
+ }else{
|
|
+ pTos->z = zNewKey;
|
|
+ pTos->flags = MEM_Str | MEM_Dyn;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: IncrKey * * *
|
|
+**
|
|
+** The top of the stack should contain an index key generated by
|
|
+** The MakeKey opcode. This routine increases the least significant
|
|
+** byte of that key by one. This is used so that the MoveTo opcode
|
|
+** will move to the first entry greater than the key rather than to
|
|
+** the key itself.
|
|
+*/
|
|
+case OP_IncrKey: {
|
|
+ assert( pTos>=p->aStack );
|
|
+ /* The IncrKey opcode is only applied to keys generated by
|
|
+ ** MakeKey or MakeIdxKey and the results of those operands
|
|
+ ** are always dynamic strings or zShort[] strings. So we
|
|
+ ** are always free to modify the string in place.
|
|
+ */
|
|
+ assert( pTos->flags & (MEM_Dyn|MEM_Short) );
|
|
+ pTos->z[pTos->n-1]++;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Checkpoint P1 * *
|
|
+**
|
|
+** Begin a checkpoint. A checkpoint is the beginning of a operation that
|
|
+** is part of a larger transaction but which might need to be rolled back
|
|
+** itself without effecting the containing transaction. A checkpoint will
|
|
+** be automatically committed or rollback when the VDBE halts.
|
|
+**
|
|
+** The checkpoint is begun on the database file with index P1. The main
|
|
+** database file has an index of 0 and the file used for temporary tables
|
|
+** has an index of 1.
|
|
+*/
|
|
+case OP_Checkpoint: {
|
|
+ int i = pOp->p1;
|
|
+ if( i>=0 && i<db->nDb && db->aDb[i].pBt && db->aDb[i].inTrans==1 ){
|
|
+ rc = sqliteBtreeBeginCkpt(db->aDb[i].pBt);
|
|
+ if( rc==SQLITE_OK ) db->aDb[i].inTrans = 2;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Transaction P1 * *
|
|
+**
|
|
+** Begin a transaction. The transaction ends when a Commit or Rollback
|
|
+** opcode is encountered. Depending on the ON CONFLICT setting, the
|
|
+** transaction might also be rolled back if an error is encountered.
|
|
+**
|
|
+** P1 is the index of the database file on which the transaction is
|
|
+** started. Index 0 is the main database file and index 1 is the
|
|
+** file used for temporary tables.
|
|
+**
|
|
+** A write lock is obtained on the database file when a transaction is
|
|
+** started. No other process can read or write the file while the
|
|
+** transaction is underway. Starting a transaction also creates a
|
|
+** rollback journal. A transaction must be started before any changes
|
|
+** can be made to the database.
|
|
+*/
|
|
+case OP_Transaction: {
|
|
+ int busy = 1;
|
|
+ int i = pOp->p1;
|
|
+ assert( i>=0 && i<db->nDb );
|
|
+ if( db->aDb[i].inTrans ) break;
|
|
+ while( db->aDb[i].pBt!=0 && busy ){
|
|
+ rc = sqliteBtreeBeginTrans(db->aDb[i].pBt);
|
|
+ switch( rc ){
|
|
+ case SQLITE_BUSY: {
|
|
+ if( db->xBusyCallback==0 ){
|
|
+ p->pc = pc;
|
|
+ p->undoTransOnError = 1;
|
|
+ p->rc = SQLITE_BUSY;
|
|
+ p->pTos = pTos;
|
|
+ return SQLITE_BUSY;
|
|
+ }else if( (*db->xBusyCallback)(db->pBusyArg, "", busy++)==0 ){
|
|
+ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
|
|
+ busy = 0;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ case SQLITE_READONLY: {
|
|
+ rc = SQLITE_OK;
|
|
+ /* Fall thru into the next case */
|
|
+ }
|
|
+ case SQLITE_OK: {
|
|
+ p->inTempTrans = 0;
|
|
+ busy = 0;
|
|
+ break;
|
|
+ }
|
|
+ default: {
|
|
+ goto abort_due_to_error;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ db->aDb[i].inTrans = 1;
|
|
+ p->undoTransOnError = 1;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Commit * * *
|
|
+**
|
|
+** Cause all modifications to the database that have been made since the
|
|
+** last Transaction to actually take effect. No additional modifications
|
|
+** are allowed until another transaction is started. The Commit instruction
|
|
+** deletes the journal file and releases the write lock on the database.
|
|
+** A read lock continues to be held if there are still cursors open.
|
|
+*/
|
|
+case OP_Commit: {
|
|
+ int i;
|
|
+ if( db->xCommitCallback!=0 ){
|
|
+ if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
|
|
+ if( db->xCommitCallback(db->pCommitArg)!=0 ){
|
|
+ rc = SQLITE_CONSTRAINT;
|
|
+ }
|
|
+ if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
|
|
+ }
|
|
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
|
|
+ if( db->aDb[i].inTrans ){
|
|
+ rc = sqliteBtreeCommit(db->aDb[i].pBt);
|
|
+ db->aDb[i].inTrans = 0;
|
|
+ }
|
|
+ }
|
|
+ if( rc==SQLITE_OK ){
|
|
+ sqliteCommitInternalChanges(db);
|
|
+ }else{
|
|
+ sqliteRollbackAll(db);
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Rollback P1 * *
|
|
+**
|
|
+** Cause all modifications to the database that have been made since the
|
|
+** last Transaction to be undone. The database is restored to its state
|
|
+** before the Transaction opcode was executed. No additional modifications
|
|
+** are allowed until another transaction is started.
|
|
+**
|
|
+** P1 is the index of the database file that is committed. An index of 0
|
|
+** is used for the main database and an index of 1 is used for the file used
|
|
+** to hold temporary tables.
|
|
+**
|
|
+** This instruction automatically closes all cursors and releases both
|
|
+** the read and write locks on the indicated database.
|
|
+*/
|
|
+case OP_Rollback: {
|
|
+ sqliteRollbackAll(db);
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: ReadCookie P1 P2 *
|
|
+**
|
|
+** Read cookie number P2 from database P1 and push it onto the stack.
|
|
+** P2==0 is the schema version. P2==1 is the database format.
|
|
+** P2==2 is the recommended pager cache size, and so forth. P1==0 is
|
|
+** the main database file and P1==1 is the database file used to store
|
|
+** temporary tables.
|
|
+**
|
|
+** There must be a read-lock on the database (either a transaction
|
|
+** must be started or there must be an open cursor) before
|
|
+** executing this instruction.
|
|
+*/
|
|
+case OP_ReadCookie: {
|
|
+ int aMeta[SQLITE_N_BTREE_META];
|
|
+ assert( pOp->p2<SQLITE_N_BTREE_META );
|
|
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
+ assert( db->aDb[pOp->p1].pBt!=0 );
|
|
+ rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
|
|
+ pTos++;
|
|
+ pTos->i = aMeta[1+pOp->p2];
|
|
+ pTos->flags = MEM_Int;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: SetCookie P1 P2 *
|
|
+**
|
|
+** Write the top of the stack into cookie number P2 of database P1.
|
|
+** P2==0 is the schema version. P2==1 is the database format.
|
|
+** P2==2 is the recommended pager cache size, and so forth. P1==0 is
|
|
+** the main database file and P1==1 is the database file used to store
|
|
+** temporary tables.
|
|
+**
|
|
+** A transaction must be started before executing this opcode.
|
|
+*/
|
|
+case OP_SetCookie: {
|
|
+ int aMeta[SQLITE_N_BTREE_META];
|
|
+ assert( pOp->p2<SQLITE_N_BTREE_META );
|
|
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
+ assert( db->aDb[pOp->p1].pBt!=0 );
|
|
+ assert( pTos>=p->aStack );
|
|
+ Integerify(pTos)
|
|
+ rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
|
|
+ if( rc==SQLITE_OK ){
|
|
+ aMeta[1+pOp->p2] = pTos->i;
|
|
+ rc = sqliteBtreeUpdateMeta(db->aDb[pOp->p1].pBt, aMeta);
|
|
+ }
|
|
+ Release(pTos);
|
|
+ pTos--;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: VerifyCookie P1 P2 *
|
|
+**
|
|
+** Check the value of global database parameter number 0 (the
|
|
+** schema version) and make sure it is equal to P2.
|
|
+** P1 is the database number which is 0 for the main database file
|
|
+** and 1 for the file holding temporary tables and some higher number
|
|
+** for auxiliary databases.
|
|
+**
|
|
+** The cookie changes its value whenever the database schema changes.
|
|
+** This operation is used to detect when that the cookie has changed
|
|
+** and that the current process needs to reread the schema.
|
|
+**
|
|
+** Either a transaction needs to have been started or an OP_Open needs
|
|
+** to be executed (to establish a read lock) before this opcode is
|
|
+** invoked.
|
|
+*/
|
|
+case OP_VerifyCookie: {
|
|
+ int aMeta[SQLITE_N_BTREE_META];
|
|
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
+ rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
|
|
+ if( rc==SQLITE_OK && aMeta[1]!=pOp->p2 ){
|
|
+ sqliteSetString(&p->zErrMsg, "database schema has changed", (char*)0);
|
|
+ rc = SQLITE_SCHEMA;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: OpenRead P1 P2 P3
|
|
+**
|
|
+** Open a read-only cursor for the database table whose root page is
|
|
+** P2 in a database file. The database file is determined by an
|
|
+** integer from the top of the stack. 0 means the main database and
|
|
+** 1 means the database used for temporary tables. Give the new
|
|
+** cursor an identifier of P1. The P1 values need not be contiguous
|
|
+** but all P1 values should be small integers. It is an error for
|
|
+** P1 to be negative.
|
|
+**
|
|
+** If P2==0 then take the root page number from the next of the stack.
|
|
+**
|
|
+** There will be a read lock on the database whenever there is an
|
|
+** open cursor. If the database was unlocked prior to this instruction
|
|
+** then a read lock is acquired as part of this instruction. A read
|
|
+** lock allows other processes to read the database but prohibits
|
|
+** any other process from modifying the database. The read lock is
|
|
+** released when all cursors are closed. If this instruction attempts
|
|
+** to get a read lock but fails, the script terminates with an
|
|
+** SQLITE_BUSY error code.
|
|
+**
|
|
+** The P3 value is the name of the table or index being opened.
|
|
+** The P3 value is not actually used by this opcode and may be
|
|
+** omitted. But the code generator usually inserts the index or
|
|
+** table name into P3 to make the code easier to read.
|
|
+**
|
|
+** See also OpenWrite.
|
|
+*/
|
|
+/* Opcode: OpenWrite P1 P2 P3
|
|
+**
|
|
+** Open a read/write cursor named P1 on the table or index whose root
|
|
+** page is P2. If P2==0 then take the root page number from the stack.
|
|
+**
|
|
+** The P3 value is the name of the table or index being opened.
|
|
+** The P3 value is not actually used by this opcode and may be
|
|
+** omitted. But the code generator usually inserts the index or
|
|
+** table name into P3 to make the code easier to read.
|
|
+**
|
|
+** This instruction works just like OpenRead except that it opens the cursor
|
|
+** in read/write mode. For a given table, there can be one or more read-only
|
|
+** cursors or a single read/write cursor but not both.
|
|
+**
|
|
+** See also OpenRead.
|
|
+*/
|
|
+case OP_OpenRead:
|
|
+case OP_OpenWrite: {
|
|
+ int busy = 0;
|
|
+ int i = pOp->p1;
|
|
+ int p2 = pOp->p2;
|
|
+ int wrFlag;
|
|
+ Btree *pX;
|
|
+ int iDb;
|
|
+
|
|
+ assert( pTos>=p->aStack );
|
|
+ Integerify(pTos);
|
|
+ iDb = pTos->i;
|
|
+ pTos--;
|
|
+ assert( iDb>=0 && iDb<db->nDb );
|
|
+ pX = db->aDb[iDb].pBt;
|
|
+ assert( pX!=0 );
|
|
+ wrFlag = pOp->opcode==OP_OpenWrite;
|
|
+ if( p2<=0 ){
|
|
+ assert( pTos>=p->aStack );
|
|
+ Integerify(pTos);
|
|
+ p2 = pTos->i;
|
|
+ pTos--;
|
|
+ if( p2<2 ){
|
|
+ sqliteSetString(&p->zErrMsg, "root page number less than 2", (char*)0);
|
|
+ rc = SQLITE_INTERNAL;
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ assert( i>=0 );
|
|
+ if( expandCursorArraySize(p, i) ) goto no_mem;
|
|
+ sqliteVdbeCleanupCursor(&p->aCsr[i]);
|
|
+ memset(&p->aCsr[i], 0, sizeof(Cursor));
|
|
+ p->aCsr[i].nullRow = 1;
|
|
+ if( pX==0 ) break;
|
|
+ do{
|
|
+ rc = sqliteBtreeCursor(pX, p2, wrFlag, &p->aCsr[i].pCursor);
|
|
+ switch( rc ){
|
|
+ case SQLITE_BUSY: {
|
|
+ if( db->xBusyCallback==0 ){
|
|
+ p->pc = pc;
|
|
+ p->rc = SQLITE_BUSY;
|
|
+ p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */
|
|
+ return SQLITE_BUSY;
|
|
+ }else if( (*db->xBusyCallback)(db->pBusyArg, pOp->p3, ++busy)==0 ){
|
|
+ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
|
|
+ busy = 0;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ case SQLITE_OK: {
|
|
+ busy = 0;
|
|
+ break;
|
|
+ }
|
|
+ default: {
|
|
+ goto abort_due_to_error;
|
|
+ }
|
|
+ }
|
|
+ }while( busy );
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: OpenTemp P1 P2 *
|
|
+**
|
|
+** Open a new cursor to a transient table.
|
|
+** The transient cursor is always opened read/write even if
|
|
+** the main database is read-only. The transient table is deleted
|
|
+** automatically when the cursor is closed.
|
|
+**
|
|
+** The cursor points to a BTree table if P2==0 and to a BTree index
|
|
+** if P2==1. A BTree table must have an integer key and can have arbitrary
|
|
+** data. A BTree index has no data but can have an arbitrary key.
|
|
+**
|
|
+** This opcode is used for tables that exist for the duration of a single
|
|
+** SQL statement only. Tables created using CREATE TEMPORARY TABLE
|
|
+** are opened using OP_OpenRead or OP_OpenWrite. "Temporary" in the
|
|
+** context of this opcode means for the duration of a single SQL statement
|
|
+** whereas "Temporary" in the context of CREATE TABLE means for the duration
|
|
+** of the connection to the database. Same word; different meanings.
|
|
+*/
|
|
+case OP_OpenTemp: {
|
|
+ int i = pOp->p1;
|
|
+ Cursor *pCx;
|
|
+ assert( i>=0 );
|
|
+ if( expandCursorArraySize(p, i) ) goto no_mem;
|
|
+ pCx = &p->aCsr[i];
|
|
+ sqliteVdbeCleanupCursor(pCx);
|
|
+ memset(pCx, 0, sizeof(*pCx));
|
|
+ pCx->nullRow = 1;
|
|
+ rc = sqliteBtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt);
|
|
+
|
|
+ if( rc==SQLITE_OK ){
|
|
+ rc = sqliteBtreeBeginTrans(pCx->pBt);
|
|
+ }
|
|
+ if( rc==SQLITE_OK ){
|
|
+ if( pOp->p2 ){
|
|
+ int pgno;
|
|
+ rc = sqliteBtreeCreateIndex(pCx->pBt, &pgno);
|
|
+ if( rc==SQLITE_OK ){
|
|
+ rc = sqliteBtreeCursor(pCx->pBt, pgno, 1, &pCx->pCursor);
|
|
+ }
|
|
+ }else{
|
|
+ rc = sqliteBtreeCursor(pCx->pBt, 2, 1, &pCx->pCursor);
|
|
+ }
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: OpenPseudo P1 * *
|
|
+**
|
|
+** Open a new cursor that points to a fake table that contains a single
|
|
+** row of data. Any attempt to write a second row of data causes the
|
|
+** first row to be deleted. All data is deleted when the cursor is
|
|
+** closed.
|
|
+**
|
|
+** A pseudo-table created by this opcode is useful for holding the
|
|
+** NEW or OLD tables in a trigger.
|
|
+*/
|
|
+case OP_OpenPseudo: {
|
|
+ int i = pOp->p1;
|
|
+ Cursor *pCx;
|
|
+ assert( i>=0 );
|
|
+ if( expandCursorArraySize(p, i) ) goto no_mem;
|
|
+ pCx = &p->aCsr[i];
|
|
+ sqliteVdbeCleanupCursor(pCx);
|
|
+ memset(pCx, 0, sizeof(*pCx));
|
|
+ pCx->nullRow = 1;
|
|
+ pCx->pseudoTable = 1;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Close P1 * *
|
|
+**
|
|
+** Close a cursor previously opened as P1. If P1 is not
|
|
+** currently open, this instruction is a no-op.
|
|
+*/
|
|
+case OP_Close: {
|
|
+ int i = pOp->p1;
|
|
+ if( i>=0 && i<p->nCursor ){
|
|
+ sqliteVdbeCleanupCursor(&p->aCsr[i]);
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: MoveTo P1 P2 *
|
|
+**
|
|
+** Pop the top of the stack and use its value as a key. Reposition
|
|
+** cursor P1 so that it points to an entry with a matching key. If
|
|
+** the table contains no record with a matching key, then the cursor
|
|
+** is left pointing at the first record that is greater than the key.
|
|
+** If there are no records greater than the key and P2 is not zero,
|
|
+** then an immediate jump to P2 is made.
|
|
+**
|
|
+** See also: Found, NotFound, Distinct, MoveLt
|
|
+*/
|
|
+/* Opcode: MoveLt P1 P2 *
|
|
+**
|
|
+** Pop the top of the stack and use its value as a key. Reposition
|
|
+** cursor P1 so that it points to the entry with the largest key that is
|
|
+** less than the key popped from the stack.
|
|
+** If there are no records less than than the key and P2
|
|
+** is not zero then an immediate jump to P2 is made.
|
|
+**
|
|
+** See also: MoveTo
|
|
+*/
|
|
+case OP_MoveLt:
|
|
+case OP_MoveTo: {
|
|
+ int i = pOp->p1;
|
|
+ Cursor *pC;
|
|
+
|
|
+ assert( pTos>=p->aStack );
|
|
+ assert( i>=0 && i<p->nCursor );
|
|
+ pC = &p->aCsr[i];
|
|
+ if( pC->pCursor!=0 ){
|
|
+ int res, oc;
|
|
+ pC->nullRow = 0;
|
|
+ if( pTos->flags & MEM_Int ){
|
|
+ int iKey = intToKey(pTos->i);
|
|
+ if( pOp->p2==0 && pOp->opcode==OP_MoveTo ){
|
|
+ pC->movetoTarget = iKey;
|
|
+ pC->deferredMoveto = 1;
|
|
+ Release(pTos);
|
|
+ pTos--;
|
|
+ break;
|
|
+ }
|
|
+ sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res);
|
|
+ pC->lastRecno = pTos->i;
|
|
+ pC->recnoIsValid = res==0;
|
|
+ }else{
|
|
+ Stringify(pTos);
|
|
+ sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
|
|
+ pC->recnoIsValid = 0;
|
|
+ }
|
|
+ pC->deferredMoveto = 0;
|
|
+ sqlite_search_count++;
|
|
+ oc = pOp->opcode;
|
|
+ if( oc==OP_MoveTo && res<0 ){
|
|
+ sqliteBtreeNext(pC->pCursor, &res);
|
|
+ pC->recnoIsValid = 0;
|
|
+ if( res && pOp->p2>0 ){
|
|
+ pc = pOp->p2 - 1;
|
|
+ }
|
|
+ }else if( oc==OP_MoveLt ){
|
|
+ if( res>=0 ){
|
|
+ sqliteBtreePrevious(pC->pCursor, &res);
|
|
+ pC->recnoIsValid = 0;
|
|
+ }else{
|
|
+ /* res might be negative because the table is empty. Check to
|
|
+ ** see if this is the case.
|
|
+ */
|
|
+ int keysize;
|
|
+ res = sqliteBtreeKeySize(pC->pCursor,&keysize)!=0 || keysize==0;
|
|
+ }
|
|
+ if( res && pOp->p2>0 ){
|
|
+ pc = pOp->p2 - 1;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ Release(pTos);
|
|
+ pTos--;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Distinct P1 P2 *
|
|
+**
|
|
+** Use the top of the stack as a string key. If a record with that key does
|
|
+** not exist in the table of cursor P1, then jump to P2. If the record
|
|
+** does already exist, then fall thru. The cursor is left pointing
|
|
+** at the record if it exists. The key is not popped from the stack.
|
|
+**
|
|
+** This operation is similar to NotFound except that this operation
|
|
+** does not pop the key from the stack.
|
|
+**
|
|
+** See also: Found, NotFound, MoveTo, IsUnique, NotExists
|
|
+*/
|
|
+/* Opcode: Found P1 P2 *
|
|
+**
|
|
+** Use the top of the stack as a string key. If a record with that key
|
|
+** does exist in table of P1, then jump to P2. If the record
|
|
+** does not exist, then fall thru. The cursor is left pointing
|
|
+** to the record if it exists. The key is popped from the stack.
|
|
+**
|
|
+** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists
|
|
+*/
|
|
+/* Opcode: NotFound P1 P2 *
|
|
+**
|
|
+** Use the top of the stack as a string key. If a record with that key
|
|
+** does not exist in table of P1, then jump to P2. If the record
|
|
+** does exist, then fall thru. The cursor is left pointing to the
|
|
+** record if it exists. The key is popped from the stack.
|
|
+**
|
|
+** The difference between this operation and Distinct is that
|
|
+** Distinct does not pop the key from the stack.
|
|
+**
|
|
+** See also: Distinct, Found, MoveTo, NotExists, IsUnique
|
|
+*/
|
|
+case OP_Distinct:
|
|
+case OP_NotFound:
|
|
+case OP_Found: {
|
|
+ int i = pOp->p1;
|
|
+ int alreadyExists = 0;
|
|
+ Cursor *pC;
|
|
+ assert( pTos>=p->aStack );
|
|
+ assert( i>=0 && i<p->nCursor );
|
|
+ if( (pC = &p->aCsr[i])->pCursor!=0 ){
|
|
+ int res, rx;
|
|
+ Stringify(pTos);
|
|
+ rx = sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
|
|
+ alreadyExists = rx==SQLITE_OK && res==0;
|
|
+ pC->deferredMoveto = 0;
|
|
+ }
|
|
+ if( pOp->opcode==OP_Found ){
|
|
+ if( alreadyExists ) pc = pOp->p2 - 1;
|
|
+ }else{
|
|
+ if( !alreadyExists ) pc = pOp->p2 - 1;
|
|
+ }
|
|
+ if( pOp->opcode!=OP_Distinct ){
|
|
+ Release(pTos);
|
|
+ pTos--;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: IsUnique P1 P2 *
|
|
+**
|
|
+** The top of the stack is an integer record number. Call this
|
|
+** record number R. The next on the stack is an index key created
|
|
+** using MakeIdxKey. Call it K. This instruction pops R from the
|
|
+** stack but it leaves K unchanged.
|
|
+**
|
|
+** P1 is an index. So all but the last four bytes of K are an
|
|
+** index string. The last four bytes of K are a record number.
|
|
+**
|
|
+** This instruction asks if there is an entry in P1 where the
|
|
+** index string matches K but the record number is different
|
|
+** from R. If there is no such entry, then there is an immediate
|
|
+** jump to P2. If any entry does exist where the index string
|
|
+** matches K but the record number is not R, then the record
|
|
+** number for that entry is pushed onto the stack and control
|
|
+** falls through to the next instruction.
|
|
+**
|
|
+** See also: Distinct, NotFound, NotExists, Found
|
|
+*/
|
|
+case OP_IsUnique: {
|
|
+ int i = pOp->p1;
|
|
+ Mem *pNos = &pTos[-1];
|
|
+ BtCursor *pCrsr;
|
|
+ int R;
|
|
+
|
|
+ /* Pop the value R off the top of the stack
|
|
+ */
|
|
+ assert( pNos>=p->aStack );
|
|
+ Integerify(pTos);
|
|
+ R = pTos->i;
|
|
+ pTos--;
|
|
+ assert( i>=0 && i<=p->nCursor );
|
|
+ if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
|
|
+ int res, rc;
|
|
+ int v; /* The record number on the P1 entry that matches K */
|
|
+ char *zKey; /* The value of K */
|
|
+ int nKey; /* Number of bytes in K */
|
|
+
|
|
+ /* Make sure K is a string and make zKey point to K
|
|
+ */
|
|
+ Stringify(pNos);
|
|
+ zKey = pNos->z;
|
|
+ nKey = pNos->n;
|
|
+ assert( nKey >= 4 );
|
|
+
|
|
+ /* Search for an entry in P1 where all but the last four bytes match K.
|
|
+ ** If there is no such entry, jump immediately to P2.
|
|
+ */
|
|
+ assert( p->aCsr[i].deferredMoveto==0 );
|
|
+ rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
|
|
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
+ if( res<0 ){
|
|
+ rc = sqliteBtreeNext(pCrsr, &res);
|
|
+ if( res ){
|
|
+ pc = pOp->p2 - 1;
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ rc = sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &res);
|
|
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
+ if( res>0 ){
|
|
+ pc = pOp->p2 - 1;
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ /* At this point, pCrsr is pointing to an entry in P1 where all but
|
|
+ ** the last for bytes of the key match K. Check to see if the last
|
|
+ ** four bytes of the key are different from R. If the last four
|
|
+ ** bytes equal R then jump immediately to P2.
|
|
+ */
|
|
+ sqliteBtreeKey(pCrsr, nKey - 4, 4, (char*)&v);
|
|
+ v = keyToInt(v);
|
|
+ if( v==R ){
|
|
+ pc = pOp->p2 - 1;
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ /* The last four bytes of the key are different from R. Convert the
|
|
+ ** last four bytes of the key into an integer and push it onto the
|
|
+ ** stack. (These bytes are the record number of an entry that
|
|
+ ** violates a UNIQUE constraint.)
|
|
+ */
|
|
+ pTos++;
|
|
+ pTos->i = v;
|
|
+ pTos->flags = MEM_Int;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: NotExists P1 P2 *
|
|
+**
|
|
+** Use the top of the stack as a integer key. If a record with that key
|
|
+** does not exist in table of P1, then jump to P2. If the record
|
|
+** does exist, then fall thru. The cursor is left pointing to the
|
|
+** record if it exists. The integer key is popped from the stack.
|
|
+**
|
|
+** The difference between this operation and NotFound is that this
|
|
+** operation assumes the key is an integer and NotFound assumes it
|
|
+** is a string.
|
|
+**
|
|
+** See also: Distinct, Found, MoveTo, NotFound, IsUnique
|
|
+*/
|
|
+case OP_NotExists: {
|
|
+ int i = pOp->p1;
|
|
+ BtCursor *pCrsr;
|
|
+ assert( pTos>=p->aStack );
|
|
+ assert( i>=0 && i<p->nCursor );
|
|
+ if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
|
|
+ int res, rx, iKey;
|
|
+ assert( pTos->flags & MEM_Int );
|
|
+ iKey = intToKey(pTos->i);
|
|
+ rx = sqliteBtreeMoveto(pCrsr, (char*)&iKey, sizeof(int), &res);
|
|
+ p->aCsr[i].lastRecno = pTos->i;
|
|
+ p->aCsr[i].recnoIsValid = res==0;
|
|
+ p->aCsr[i].nullRow = 0;
|
|
+ if( rx!=SQLITE_OK || res!=0 ){
|
|
+ pc = pOp->p2 - 1;
|
|
+ p->aCsr[i].recnoIsValid = 0;
|
|
+ }
|
|
+ }
|
|
+ Release(pTos);
|
|
+ pTos--;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: NewRecno P1 * *
|
|
+**
|
|
+** Get a new integer record number used as the key to a table.
|
|
+** The record number is not previously used as a key in the database
|
|
+** table that cursor P1 points to. The new record number is pushed
|
|
+** onto the stack.
|
|
+*/
|
|
+case OP_NewRecno: {
|
|
+ int i = pOp->p1;
|
|
+ int v = 0;
|
|
+ Cursor *pC;
|
|
+ assert( i>=0 && i<p->nCursor );
|
|
+ if( (pC = &p->aCsr[i])->pCursor==0 ){
|
|
+ v = 0;
|
|
+ }else{
|
|
+ /* The next rowid or record number (different terms for the same
|
|
+ ** thing) is obtained in a two-step algorithm.
|
|
+ **
|
|
+ ** First we attempt to find the largest existing rowid and add one
|
|
+ ** to that. But if the largest existing rowid is already the maximum
|
|
+ ** positive integer, we have to fall through to the second
|
|
+ ** probabilistic algorithm
|
|
+ **
|
|
+ ** The second algorithm is to select a rowid at random and see if
|
|
+ ** it already exists in the table. If it does not exist, we have
|
|
+ ** succeeded. If the random rowid does exist, we select a new one
|
|
+ ** and try again, up to 1000 times.
|
|
+ **
|
|
+ ** For a table with less than 2 billion entries, the probability
|
|
+ ** of not finding a unused rowid is about 1.0e-300. This is a
|
|
+ ** non-zero probability, but it is still vanishingly small and should
|
|
+ ** never cause a problem. You are much, much more likely to have a
|
|
+ ** hardware failure than for this algorithm to fail.
|
|
+ **
|
|
+ ** The analysis in the previous paragraph assumes that you have a good
|
|
+ ** source of random numbers. Is a library function like lrand48()
|
|
+ ** good enough? Maybe. Maybe not. It's hard to know whether there
|
|
+ ** might be subtle bugs is some implementations of lrand48() that
|
|
+ ** could cause problems. To avoid uncertainty, SQLite uses its own
|
|
+ ** random number generator based on the RC4 algorithm.
|
|
+ **
|
|
+ ** To promote locality of reference for repetitive inserts, the
|
|
+ ** first few attempts at chosing a random rowid pick values just a little
|
|
+ ** larger than the previous rowid. This has been shown experimentally
|
|
+ ** to double the speed of the COPY operation.
|
|
+ */
|
|
+ int res, rx, cnt, x;
|
|
+ cnt = 0;
|
|
+ if( !pC->useRandomRowid ){
|
|
+ if( pC->nextRowidValid ){
|
|
+ v = pC->nextRowid;
|
|
+ }else{
|
|
+ rx = sqliteBtreeLast(pC->pCursor, &res);
|
|
+ if( res ){
|
|
+ v = 1;
|
|
+ }else{
|
|
+ sqliteBtreeKey(pC->pCursor, 0, sizeof(v), (void*)&v);
|
|
+ v = keyToInt(v);
|
|
+ if( v==0x7fffffff ){
|
|
+ pC->useRandomRowid = 1;
|
|
+ }else{
|
|
+ v++;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ if( v<0x7fffffff ){
|
|
+ pC->nextRowidValid = 1;
|
|
+ pC->nextRowid = v+1;
|
|
+ }else{
|
|
+ pC->nextRowidValid = 0;
|
|
+ }
|
|
+ }
|
|
+ if( pC->useRandomRowid ){
|
|
+ v = db->priorNewRowid;
|
|
+ cnt = 0;
|
|
+ do{
|
|
+ if( v==0 || cnt>2 ){
|
|
+ sqliteRandomness(sizeof(v), &v);
|
|
+ if( cnt<5 ) v &= 0xffffff;
|
|
+ }else{
|
|
+ unsigned char r;
|
|
+ sqliteRandomness(1, &r);
|
|
+ v += r + 1;
|
|
+ }
|
|
+ if( v==0 ) continue;
|
|
+ x = intToKey(v);
|
|
+ rx = sqliteBtreeMoveto(pC->pCursor, &x, sizeof(int), &res);
|
|
+ cnt++;
|
|
+ }while( cnt<1000 && rx==SQLITE_OK && res==0 );
|
|
+ db->priorNewRowid = v;
|
|
+ if( rx==SQLITE_OK && res==0 ){
|
|
+ rc = SQLITE_FULL;
|
|
+ goto abort_due_to_error;
|
|
+ }
|
|
+ }
|
|
+ pC->recnoIsValid = 0;
|
|
+ pC->deferredMoveto = 0;
|
|
+ }
|
|
+ pTos++;
|
|
+ pTos->i = v;
|
|
+ pTos->flags = MEM_Int;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: PutIntKey P1 P2 *
|
|
+**
|
|
+** Write an entry into the table of cursor P1. A new entry is
|
|
+** created if it doesn't already exist or the data for an existing
|
|
+** entry is overwritten. The data is the value on the top of the
|
|
+** stack. The key is the next value down on the stack. The key must
|
|
+** be an integer. The stack is popped twice by this instruction.
|
|
+**
|
|
+** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
|
|
+** incremented (otherwise not). If the OPFLAG_CSCHANGE flag is set,
|
|
+** then the current statement change count is incremented (otherwise not).
|
|
+** If the OPFLAG_LASTROWID flag of P2 is set, then rowid is
|
|
+** stored for subsequent return by the sqlite_last_insert_rowid() function
|
|
+** (otherwise it's unmodified).
|
|
+*/
|
|
+/* Opcode: PutStrKey P1 * *
|
|
+**
|
|
+** Write an entry into the table of cursor P1. A new entry is
|
|
+** created if it doesn't already exist or the data for an existing
|
|
+** entry is overwritten. The data is the value on the top of the
|
|
+** stack. The key is the next value down on the stack. The key must
|
|
+** be a string. The stack is popped twice by this instruction.
|
|
+**
|
|
+** P1 may not be a pseudo-table opened using the OpenPseudo opcode.
|
|
+*/
|
|
+case OP_PutIntKey:
|
|
+case OP_PutStrKey: {
|
|
+ Mem *pNos = &pTos[-1];
|
|
+ int i = pOp->p1;
|
|
+ Cursor *pC;
|
|
+ assert( pNos>=p->aStack );
|
|
+ assert( i>=0 && i<p->nCursor );
|
|
+ if( ((pC = &p->aCsr[i])->pCursor!=0 || pC->pseudoTable) ){
|
|
+ char *zKey;
|
|
+ int nKey, iKey;
|
|
+ if( pOp->opcode==OP_PutStrKey ){
|
|
+ Stringify(pNos);
|
|
+ nKey = pNos->n;
|
|
+ zKey = pNos->z;
|
|
+ }else{
|
|
+ assert( pNos->flags & MEM_Int );
|
|
+ nKey = sizeof(int);
|
|
+ iKey = intToKey(pNos->i);
|
|
+ zKey = (char*)&iKey;
|
|
+ if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++;
|
|
+ if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->i;
|
|
+ if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++;
|
|
+ if( pC->nextRowidValid && pTos->i>=pC->nextRowid ){
|
|
+ pC->nextRowidValid = 0;
|
|
+ }
|
|
+ }
|
|
+ if( pTos->flags & MEM_Null ){
|
|
+ pTos->z = 0;
|
|
+ pTos->n = 0;
|
|
+ }else{
|
|
+ assert( pTos->flags & MEM_Str );
|
|
+ }
|
|
+ if( pC->pseudoTable ){
|
|
+ /* PutStrKey does not work for pseudo-tables.
|
|
+ ** The following assert makes sure we are not trying to use
|
|
+ ** PutStrKey on a pseudo-table
|
|
+ */
|
|
+ assert( pOp->opcode==OP_PutIntKey );
|
|
+ sqliteFree(pC->pData);
|
|
+ pC->iKey = iKey;
|
|
+ pC->nData = pTos->n;
|
|
+ if( pTos->flags & MEM_Dyn ){
|
|
+ pC->pData = pTos->z;
|
|
+ pTos->flags = MEM_Null;
|
|
+ }else{
|
|
+ pC->pData = sqliteMallocRaw( pC->nData );
|
|
+ if( pC->pData ){
|
|
+ memcpy(pC->pData, pTos->z, pC->nData);
|
|
+ }
|
|
+ }
|
|
+ pC->nullRow = 0;
|
|
+ }else{
|
|
+ rc = sqliteBtreeInsert(pC->pCursor, zKey, nKey, pTos->z, pTos->n);
|
|
+ }
|
|
+ pC->recnoIsValid = 0;
|
|
+ pC->deferredMoveto = 0;
|
|
+ }
|
|
+ popStack(&pTos, 2);
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Delete P1 P2 *
|
|
+**
|
|
+** Delete the record at which the P1 cursor is currently pointing.
|
|
+**
|
|
+** The cursor will be left pointing at either the next or the previous
|
|
+** record in the table. If it is left pointing at the next record, then
|
|
+** the next Next instruction will be a no-op. Hence it is OK to delete
|
|
+** a record from within an Next loop.
|
|
+**
|
|
+** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
|
|
+** incremented (otherwise not). If OPFLAG_CSCHANGE flag is set,
|
|
+** then the current statement change count is incremented (otherwise not).
|
|
+**
|
|
+** If P1 is a pseudo-table, then this instruction is a no-op.
|
|
+*/
|
|
+case OP_Delete: {
|
|
+ int i = pOp->p1;
|
|
+ Cursor *pC;
|
|
+ assert( i>=0 && i<p->nCursor );
|
|
+ pC = &p->aCsr[i];
|
|
+ if( pC->pCursor!=0 ){
|
|
+ sqliteVdbeCursorMoveto(pC);
|
|
+ rc = sqliteBtreeDelete(pC->pCursor);
|
|
+ pC->nextRowidValid = 0;
|
|
+ }
|
|
+ if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++;
|
|
+ if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: SetCounts * * *
|
|
+**
|
|
+** Called at end of statement. Updates lsChange (last statement change count)
|
|
+** and resets csChange (current statement change count) to 0.
|
|
+*/
|
|
+case OP_SetCounts: {
|
|
+ db->lsChange=db->csChange;
|
|
+ db->csChange=0;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: KeyAsData P1 P2 *
|
|
+**
|
|
+** Turn the key-as-data mode for cursor P1 either on (if P2==1) or
|
|
+** off (if P2==0). In key-as-data mode, the OP_Column opcode pulls
|
|
+** data off of the key rather than the data. This is used for
|
|
+** processing compound selects.
|
|
+*/
|
|
+case OP_KeyAsData: {
|
|
+ int i = pOp->p1;
|
|
+ assert( i>=0 && i<p->nCursor );
|
|
+ p->aCsr[i].keyAsData = pOp->p2;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: RowData P1 * *
|
|
+**
|
|
+** Push onto the stack the complete row data for cursor P1.
|
|
+** There is no interpretation of the data. It is just copied
|
|
+** onto the stack exactly as it is found in the database file.
|
|
+**
|
|
+** If the cursor is not pointing to a valid row, a NULL is pushed
|
|
+** onto the stack.
|
|
+*/
|
|
+/* Opcode: RowKey P1 * *
|
|
+**
|
|
+** Push onto the stack the complete row key for cursor P1.
|
|
+** There is no interpretation of the key. It is just copied
|
|
+** onto the stack exactly as it is found in the database file.
|
|
+**
|
|
+** If the cursor is not pointing to a valid row, a NULL is pushed
|
|
+** onto the stack.
|
|
+*/
|
|
+case OP_RowKey:
|
|
+case OP_RowData: {
|
|
+ int i = pOp->p1;
|
|
+ Cursor *pC;
|
|
+ int n;
|
|
+
|
|
+ pTos++;
|
|
+ assert( i>=0 && i<p->nCursor );
|
|
+ pC = &p->aCsr[i];
|
|
+ if( pC->nullRow ){
|
|
+ pTos->flags = MEM_Null;
|
|
+ }else if( pC->pCursor!=0 ){
|
|
+ BtCursor *pCrsr = pC->pCursor;
|
|
+ sqliteVdbeCursorMoveto(pC);
|
|
+ if( pC->nullRow ){
|
|
+ pTos->flags = MEM_Null;
|
|
+ break;
|
|
+ }else if( pC->keyAsData || pOp->opcode==OP_RowKey ){
|
|
+ sqliteBtreeKeySize(pCrsr, &n);
|
|
+ }else{
|
|
+ sqliteBtreeDataSize(pCrsr, &n);
|
|
+ }
|
|
+ pTos->n = n;
|
|
+ if( n<=NBFS ){
|
|
+ pTos->flags = MEM_Str | MEM_Short;
|
|
+ pTos->z = pTos->zShort;
|
|
+ }else{
|
|
+ char *z = sqliteMallocRaw( n );
|
|
+ if( z==0 ) goto no_mem;
|
|
+ pTos->flags = MEM_Str | MEM_Dyn;
|
|
+ pTos->z = z;
|
|
+ }
|
|
+ if( pC->keyAsData || pOp->opcode==OP_RowKey ){
|
|
+ sqliteBtreeKey(pCrsr, 0, n, pTos->z);
|
|
+ }else{
|
|
+ sqliteBtreeData(pCrsr, 0, n, pTos->z);
|
|
+ }
|
|
+ }else if( pC->pseudoTable ){
|
|
+ pTos->n = pC->nData;
|
|
+ pTos->z = pC->pData;
|
|
+ pTos->flags = MEM_Str|MEM_Ephem;
|
|
+ }else{
|
|
+ pTos->flags = MEM_Null;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Column P1 P2 *
|
|
+**
|
|
+** Interpret the data that cursor P1 points to as
|
|
+** a structure built using the MakeRecord instruction.
|
|
+** (See the MakeRecord opcode for additional information about
|
|
+** the format of the data.)
|
|
+** Push onto the stack the value of the P2-th column contained
|
|
+** in the data.
|
|
+**
|
|
+** If the KeyAsData opcode has previously executed on this cursor,
|
|
+** then the field might be extracted from the key rather than the
|
|
+** data.
|
|
+**
|
|
+** If P1 is negative, then the record is stored on the stack rather
|
|
+** than in a table. For P1==-1, the top of the stack is used.
|
|
+** For P1==-2, the next on the stack is used. And so forth. The
|
|
+** value pushed is always just a pointer into the record which is
|
|
+** stored further down on the stack. The column value is not copied.
|
|
+*/
|
|
+case OP_Column: {
|
|
+ int amt, offset, end, payloadSize;
|
|
+ int i = pOp->p1;
|
|
+ int p2 = pOp->p2;
|
|
+ Cursor *pC;
|
|
+ char *zRec;
|
|
+ BtCursor *pCrsr;
|
|
+ int idxWidth;
|
|
+ unsigned char aHdr[10];
|
|
+
|
|
+ assert( i<p->nCursor );
|
|
+ pTos++;
|
|
+ if( i<0 ){
|
|
+ assert( &pTos[i]>=p->aStack );
|
|
+ assert( pTos[i].flags & MEM_Str );
|
|
+ zRec = pTos[i].z;
|
|
+ payloadSize = pTos[i].n;
|
|
+ }else if( (pC = &p->aCsr[i])->pCursor!=0 ){
|
|
+ sqliteVdbeCursorMoveto(pC);
|
|
+ zRec = 0;
|
|
+ pCrsr = pC->pCursor;
|
|
+ if( pC->nullRow ){
|
|
+ payloadSize = 0;
|
|
+ }else if( pC->keyAsData ){
|
|
+ sqliteBtreeKeySize(pCrsr, &payloadSize);
|
|
+ }else{
|
|
+ sqliteBtreeDataSize(pCrsr, &payloadSize);
|
|
+ }
|
|
+ }else if( pC->pseudoTable ){
|
|
+ payloadSize = pC->nData;
|
|
+ zRec = pC->pData;
|
|
+ assert( payloadSize==0 || zRec!=0 );
|
|
+ }else{
|
|
+ payloadSize = 0;
|
|
+ }
|
|
+
|
|
+ /* Figure out how many bytes in the column data and where the column
|
|
+ ** data begins.
|
|
+ */
|
|
+ if( payloadSize==0 ){
|
|
+ pTos->flags = MEM_Null;
|
|
+ break;
|
|
+ }else if( payloadSize<256 ){
|
|
+ idxWidth = 1;
|
|
+ }else if( payloadSize<65536 ){
|
|
+ idxWidth = 2;
|
|
+ }else{
|
|
+ idxWidth = 3;
|
|
+ }
|
|
+
|
|
+ /* Figure out where the requested column is stored and how big it is.
|
|
+ */
|
|
+ if( payloadSize < idxWidth*(p2+1) ){
|
|
+ rc = SQLITE_CORRUPT;
|
|
+ goto abort_due_to_error;
|
|
+ }
|
|
+ if( zRec ){
|
|
+ memcpy(aHdr, &zRec[idxWidth*p2], idxWidth*2);
|
|
+ }else if( pC->keyAsData ){
|
|
+ sqliteBtreeKey(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
|
|
+ }else{
|
|
+ sqliteBtreeData(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
|
|
+ }
|
|
+ offset = aHdr[0];
|
|
+ end = aHdr[idxWidth];
|
|
+ if( idxWidth>1 ){
|
|
+ offset |= aHdr[1]<<8;
|
|
+ end |= aHdr[idxWidth+1]<<8;
|
|
+ if( idxWidth>2 ){
|
|
+ offset |= aHdr[2]<<16;
|
|
+ end |= aHdr[idxWidth+2]<<16;
|
|
+ }
|
|
+ }
|
|
+ amt = end - offset;
|
|
+ if( amt<0 || offset<0 || end>payloadSize ){
|
|
+ rc = SQLITE_CORRUPT;
|
|
+ goto abort_due_to_error;
|
|
+ }
|
|
+
|
|
+ /* amt and offset now hold the offset to the start of data and the
|
|
+ ** amount of data. Go get the data and put it on the stack.
|
|
+ */
|
|
+ pTos->n = amt;
|
|
+ if( amt==0 ){
|
|
+ pTos->flags = MEM_Null;
|
|
+ }else if( zRec ){
|
|
+ pTos->flags = MEM_Str | MEM_Ephem;
|
|
+ pTos->z = &zRec[offset];
|
|
+ }else{
|
|
+ if( amt<=NBFS ){
|
|
+ pTos->flags = MEM_Str | MEM_Short;
|
|
+ pTos->z = pTos->zShort;
|
|
+ }else{
|
|
+ char *z = sqliteMallocRaw( amt );
|
|
+ if( z==0 ) goto no_mem;
|
|
+ pTos->flags = MEM_Str | MEM_Dyn;
|
|
+ pTos->z = z;
|
|
+ }
|
|
+ if( pC->keyAsData ){
|
|
+ sqliteBtreeKey(pCrsr, offset, amt, pTos->z);
|
|
+ }else{
|
|
+ sqliteBtreeData(pCrsr, offset, amt, pTos->z);
|
|
+ }
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Recno P1 * *
|
|
+**
|
|
+** Push onto the stack an integer which is the first 4 bytes of the
|
|
+** the key to the current entry in a sequential scan of the database
|
|
+** file P1. The sequential scan should have been started using the
|
|
+** Next opcode.
|
|
+*/
|
|
+case OP_Recno: {
|
|
+ int i = pOp->p1;
|
|
+ Cursor *pC;
|
|
+ int v;
|
|
+
|
|
+ assert( i>=0 && i<p->nCursor );
|
|
+ pC = &p->aCsr[i];
|
|
+ sqliteVdbeCursorMoveto(pC);
|
|
+ pTos++;
|
|
+ if( pC->recnoIsValid ){
|
|
+ v = pC->lastRecno;
|
|
+ }else if( pC->pseudoTable ){
|
|
+ v = keyToInt(pC->iKey);
|
|
+ }else if( pC->nullRow || pC->pCursor==0 ){
|
|
+ pTos->flags = MEM_Null;
|
|
+ break;
|
|
+ }else{
|
|
+ assert( pC->pCursor!=0 );
|
|
+ sqliteBtreeKey(pC->pCursor, 0, sizeof(u32), (char*)&v);
|
|
+ v = keyToInt(v);
|
|
+ }
|
|
+ pTos->i = v;
|
|
+ pTos->flags = MEM_Int;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: FullKey P1 * *
|
|
+**
|
|
+** Extract the complete key from the record that cursor P1 is currently
|
|
+** pointing to and push the key onto the stack as a string.
|
|
+**
|
|
+** Compare this opcode to Recno. The Recno opcode extracts the first
|
|
+** 4 bytes of the key and pushes those bytes onto the stack as an
|
|
+** integer. This instruction pushes the entire key as a string.
|
|
+**
|
|
+** This opcode may not be used on a pseudo-table.
|
|
+*/
|
|
+case OP_FullKey: {
|
|
+ int i = pOp->p1;
|
|
+ BtCursor *pCrsr;
|
|
+
|
|
+ assert( p->aCsr[i].keyAsData );
|
|
+ assert( !p->aCsr[i].pseudoTable );
|
|
+ assert( i>=0 && i<p->nCursor );
|
|
+ pTos++;
|
|
+ if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
|
|
+ int amt;
|
|
+ char *z;
|
|
+
|
|
+ sqliteVdbeCursorMoveto(&p->aCsr[i]);
|
|
+ sqliteBtreeKeySize(pCrsr, &amt);
|
|
+ if( amt<=0 ){
|
|
+ rc = SQLITE_CORRUPT;
|
|
+ goto abort_due_to_error;
|
|
+ }
|
|
+ if( amt>NBFS ){
|
|
+ z = sqliteMallocRaw( amt );
|
|
+ if( z==0 ) goto no_mem;
|
|
+ pTos->flags = MEM_Str | MEM_Dyn;
|
|
+ }else{
|
|
+ z = pTos->zShort;
|
|
+ pTos->flags = MEM_Str | MEM_Short;
|
|
+ }
|
|
+ sqliteBtreeKey(pCrsr, 0, amt, z);
|
|
+ pTos->z = z;
|
|
+ pTos->n = amt;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: NullRow P1 * *
|
|
+**
|
|
+** Move the cursor P1 to a null row. Any OP_Column operations
|
|
+** that occur while the cursor is on the null row will always push
|
|
+** a NULL onto the stack.
|
|
+*/
|
|
+case OP_NullRow: {
|
|
+ int i = pOp->p1;
|
|
+
|
|
+ assert( i>=0 && i<p->nCursor );
|
|
+ p->aCsr[i].nullRow = 1;
|
|
+ p->aCsr[i].recnoIsValid = 0;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Last P1 P2 *
|
|
+**
|
|
+** The next use of the Recno or Column or Next instruction for P1
|
|
+** will refer to the last entry in the database table or index.
|
|
+** If the table or index is empty and P2>0, then jump immediately to P2.
|
|
+** If P2 is 0 or if the table or index is not empty, fall through
|
|
+** to the following instruction.
|
|
+*/
|
|
+case OP_Last: {
|
|
+ int i = pOp->p1;
|
|
+ Cursor *pC;
|
|
+ BtCursor *pCrsr;
|
|
+
|
|
+ assert( i>=0 && i<p->nCursor );
|
|
+ pC = &p->aCsr[i];
|
|
+ if( (pCrsr = pC->pCursor)!=0 ){
|
|
+ int res;
|
|
+ rc = sqliteBtreeLast(pCrsr, &res);
|
|
+ pC->nullRow = res;
|
|
+ pC->deferredMoveto = 0;
|
|
+ if( res && pOp->p2>0 ){
|
|
+ pc = pOp->p2 - 1;
|
|
+ }
|
|
+ }else{
|
|
+ pC->nullRow = 0;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Rewind P1 P2 *
|
|
+**
|
|
+** The next use of the Recno or Column or Next instruction for P1
|
|
+** will refer to the first entry in the database table or index.
|
|
+** If the table or index is empty and P2>0, then jump immediately to P2.
|
|
+** If P2 is 0 or if the table or index is not empty, fall through
|
|
+** to the following instruction.
|
|
+*/
|
|
+case OP_Rewind: {
|
|
+ int i = pOp->p1;
|
|
+ Cursor *pC;
|
|
+ BtCursor *pCrsr;
|
|
+
|
|
+ assert( i>=0 && i<p->nCursor );
|
|
+ pC = &p->aCsr[i];
|
|
+ if( (pCrsr = pC->pCursor)!=0 ){
|
|
+ int res;
|
|
+ rc = sqliteBtreeFirst(pCrsr, &res);
|
|
+ pC->atFirst = res==0;
|
|
+ pC->nullRow = res;
|
|
+ pC->deferredMoveto = 0;
|
|
+ if( res && pOp->p2>0 ){
|
|
+ pc = pOp->p2 - 1;
|
|
+ }
|
|
+ }else{
|
|
+ pC->nullRow = 0;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Next P1 P2 *
|
|
+**
|
|
+** Advance cursor P1 so that it points to the next key/data pair in its
|
|
+** table or index. If there are no more key/value pairs then fall through
|
|
+** to the following instruction. But if the cursor advance was successful,
|
|
+** jump immediately to P2.
|
|
+**
|
|
+** See also: Prev
|
|
+*/
|
|
+/* Opcode: Prev P1 P2 *
|
|
+**
|
|
+** Back up cursor P1 so that it points to the previous key/data pair in its
|
|
+** table or index. If there is no previous key/value pairs then fall through
|
|
+** to the following instruction. But if the cursor backup was successful,
|
|
+** jump immediately to P2.
|
|
+*/
|
|
+case OP_Prev:
|
|
+case OP_Next: {
|
|
+ Cursor *pC;
|
|
+ BtCursor *pCrsr;
|
|
+
|
|
+ CHECK_FOR_INTERRUPT;
|
|
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
+ pC = &p->aCsr[pOp->p1];
|
|
+ if( (pCrsr = pC->pCursor)!=0 ){
|
|
+ int res;
|
|
+ if( pC->nullRow ){
|
|
+ res = 1;
|
|
+ }else{
|
|
+ assert( pC->deferredMoveto==0 );
|
|
+ rc = pOp->opcode==OP_Next ? sqliteBtreeNext(pCrsr, &res) :
|
|
+ sqliteBtreePrevious(pCrsr, &res);
|
|
+ pC->nullRow = res;
|
|
+ }
|
|
+ if( res==0 ){
|
|
+ pc = pOp->p2 - 1;
|
|
+ sqlite_search_count++;
|
|
+ }
|
|
+ }else{
|
|
+ pC->nullRow = 1;
|
|
+ }
|
|
+ pC->recnoIsValid = 0;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: IdxPut P1 P2 P3
|
|
+**
|
|
+** The top of the stack holds a SQL index key made using the
|
|
+** MakeIdxKey instruction. This opcode writes that key into the
|
|
+** index P1. Data for the entry is nil.
|
|
+**
|
|
+** If P2==1, then the key must be unique. If the key is not unique,
|
|
+** the program aborts with a SQLITE_CONSTRAINT error and the database
|
|
+** is rolled back. If P3 is not null, then it becomes part of the
|
|
+** error message returned with the SQLITE_CONSTRAINT.
|
|
+*/
|
|
+case OP_IdxPut: {
|
|
+ int i = pOp->p1;
|
|
+ BtCursor *pCrsr;
|
|
+ assert( pTos>=p->aStack );
|
|
+ assert( i>=0 && i<p->nCursor );
|
|
+ assert( pTos->flags & MEM_Str );
|
|
+ if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
|
|
+ int nKey = pTos->n;
|
|
+ const char *zKey = pTos->z;
|
|
+ if( pOp->p2 ){
|
|
+ int res, n;
|
|
+ assert( nKey >= 4 );
|
|
+ rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
|
|
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
+ while( res!=0 ){
|
|
+ int c;
|
|
+ sqliteBtreeKeySize(pCrsr, &n);
|
|
+ if( n==nKey
|
|
+ && sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &c)==SQLITE_OK
|
|
+ && c==0
|
|
+ ){
|
|
+ rc = SQLITE_CONSTRAINT;
|
|
+ if( pOp->p3 && pOp->p3[0] ){
|
|
+ sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0);
|
|
+ }
|
|
+ goto abort_due_to_error;
|
|
+ }
|
|
+ if( res<0 ){
|
|
+ sqliteBtreeNext(pCrsr, &res);
|
|
+ res = +1;
|
|
+ }else{
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ rc = sqliteBtreeInsert(pCrsr, zKey, nKey, "", 0);
|
|
+ assert( p->aCsr[i].deferredMoveto==0 );
|
|
+ }
|
|
+ Release(pTos);
|
|
+ pTos--;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: IdxDelete P1 * *
|
|
+**
|
|
+** The top of the stack is an index key built using the MakeIdxKey opcode.
|
|
+** This opcode removes that entry from the index.
|
|
+*/
|
|
+case OP_IdxDelete: {
|
|
+ int i = pOp->p1;
|
|
+ BtCursor *pCrsr;
|
|
+ assert( pTos>=p->aStack );
|
|
+ assert( pTos->flags & MEM_Str );
|
|
+ assert( i>=0 && i<p->nCursor );
|
|
+ if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
|
|
+ int rx, res;
|
|
+ rx = sqliteBtreeMoveto(pCrsr, pTos->z, pTos->n, &res);
|
|
+ if( rx==SQLITE_OK && res==0 ){
|
|
+ rc = sqliteBtreeDelete(pCrsr);
|
|
+ }
|
|
+ assert( p->aCsr[i].deferredMoveto==0 );
|
|
+ }
|
|
+ Release(pTos);
|
|
+ pTos--;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: IdxRecno P1 * *
|
|
+**
|
|
+** Push onto the stack an integer which is the last 4 bytes of the
|
|
+** the key to the current entry in index P1. These 4 bytes should
|
|
+** be the record number of the table entry to which this index entry
|
|
+** points.
|
|
+**
|
|
+** See also: Recno, MakeIdxKey.
|
|
+*/
|
|
+case OP_IdxRecno: {
|
|
+ int i = pOp->p1;
|
|
+ BtCursor *pCrsr;
|
|
+
|
|
+ assert( i>=0 && i<p->nCursor );
|
|
+ pTos++;
|
|
+ if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
|
|
+ int v;
|
|
+ int sz;
|
|
+ assert( p->aCsr[i].deferredMoveto==0 );
|
|
+ sqliteBtreeKeySize(pCrsr, &sz);
|
|
+ if( sz<sizeof(u32) ){
|
|
+ pTos->flags = MEM_Null;
|
|
+ }else{
|
|
+ sqliteBtreeKey(pCrsr, sz - sizeof(u32), sizeof(u32), (char*)&v);
|
|
+ v = keyToInt(v);
|
|
+ pTos->i = v;
|
|
+ pTos->flags = MEM_Int;
|
|
+ }
|
|
+ }else{
|
|
+ pTos->flags = MEM_Null;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: IdxGT P1 P2 *
|
|
+**
|
|
+** Compare the top of the stack against the key on the index entry that
|
|
+** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
|
|
+** index entry. If the index entry is greater than the top of the stack
|
|
+** then jump to P2. Otherwise fall through to the next instruction.
|
|
+** In either case, the stack is popped once.
|
|
+*/
|
|
+/* Opcode: IdxGE P1 P2 *
|
|
+**
|
|
+** Compare the top of the stack against the key on the index entry that
|
|
+** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
|
|
+** index entry. If the index entry is greater than or equal to
|
|
+** the top of the stack
|
|
+** then jump to P2. Otherwise fall through to the next instruction.
|
|
+** In either case, the stack is popped once.
|
|
+*/
|
|
+/* Opcode: IdxLT P1 P2 *
|
|
+**
|
|
+** Compare the top of the stack against the key on the index entry that
|
|
+** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
|
|
+** index entry. If the index entry is less than the top of the stack
|
|
+** then jump to P2. Otherwise fall through to the next instruction.
|
|
+** In either case, the stack is popped once.
|
|
+*/
|
|
+case OP_IdxLT:
|
|
+case OP_IdxGT:
|
|
+case OP_IdxGE: {
|
|
+ int i= pOp->p1;
|
|
+ BtCursor *pCrsr;
|
|
+
|
|
+ assert( i>=0 && i<p->nCursor );
|
|
+ assert( pTos>=p->aStack );
|
|
+ if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
|
|
+ int res, rc;
|
|
+
|
|
+ Stringify(pTos);
|
|
+ assert( p->aCsr[i].deferredMoveto==0 );
|
|
+ rc = sqliteBtreeKeyCompare(pCrsr, pTos->z, pTos->n, 4, &res);
|
|
+ if( rc!=SQLITE_OK ){
|
|
+ break;
|
|
+ }
|
|
+ if( pOp->opcode==OP_IdxLT ){
|
|
+ res = -res;
|
|
+ }else if( pOp->opcode==OP_IdxGE ){
|
|
+ res++;
|
|
+ }
|
|
+ if( res>0 ){
|
|
+ pc = pOp->p2 - 1 ;
|
|
+ }
|
|
+ }
|
|
+ Release(pTos);
|
|
+ pTos--;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: IdxIsNull P1 P2 *
|
|
+**
|
|
+** The top of the stack contains an index entry such as might be generated
|
|
+** by the MakeIdxKey opcode. This routine looks at the first P1 fields of
|
|
+** that key. If any of the first P1 fields are NULL, then a jump is made
|
|
+** to address P2. Otherwise we fall straight through.
|
|
+**
|
|
+** The index entry is always popped from the stack.
|
|
+*/
|
|
+case OP_IdxIsNull: {
|
|
+ int i = pOp->p1;
|
|
+ int k, n;
|
|
+ const char *z;
|
|
+
|
|
+ assert( pTos>=p->aStack );
|
|
+ assert( pTos->flags & MEM_Str );
|
|
+ z = pTos->z;
|
|
+ n = pTos->n;
|
|
+ for(k=0; k<n && i>0; i--){
|
|
+ if( z[k]=='a' ){
|
|
+ pc = pOp->p2-1;
|
|
+ break;
|
|
+ }
|
|
+ while( k<n && z[k] ){ k++; }
|
|
+ k++;
|
|
+ }
|
|
+ Release(pTos);
|
|
+ pTos--;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Destroy P1 P2 *
|
|
+**
|
|
+** Delete an entire database table or index whose root page in the database
|
|
+** file is given by P1.
|
|
+**
|
|
+** The table being destroyed is in the main database file if P2==0. If
|
|
+** P2==1 then the table to be clear is in the auxiliary database file
|
|
+** that is used to store tables create using CREATE TEMPORARY TABLE.
|
|
+**
|
|
+** See also: Clear
|
|
+*/
|
|
+case OP_Destroy: {
|
|
+ rc = sqliteBtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1);
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Clear P1 P2 *
|
|
+**
|
|
+** Delete all contents of the database table or index whose root page
|
|
+** in the database file is given by P1. But, unlike Destroy, do not
|
|
+** remove the table or index from the database file.
|
|
+**
|
|
+** The table being clear is in the main database file if P2==0. If
|
|
+** P2==1 then the table to be clear is in the auxiliary database file
|
|
+** that is used to store tables create using CREATE TEMPORARY TABLE.
|
|
+**
|
|
+** See also: Destroy
|
|
+*/
|
|
+case OP_Clear: {
|
|
+ rc = sqliteBtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: CreateTable * P2 P3
|
|
+**
|
|
+** Allocate a new table in the main database file if P2==0 or in the
|
|
+** auxiliary database file if P2==1. Push the page number
|
|
+** for the root page of the new table onto the stack.
|
|
+**
|
|
+** The root page number is also written to a memory location that P3
|
|
+** points to. This is the mechanism is used to write the root page
|
|
+** number into the parser's internal data structures that describe the
|
|
+** new table.
|
|
+**
|
|
+** The difference between a table and an index is this: A table must
|
|
+** have a 4-byte integer key and can have arbitrary data. An index
|
|
+** has an arbitrary key but no data.
|
|
+**
|
|
+** See also: CreateIndex
|
|
+*/
|
|
+/* Opcode: CreateIndex * P2 P3
|
|
+**
|
|
+** Allocate a new index in the main database file if P2==0 or in the
|
|
+** auxiliary database file if P2==1. Push the page number of the
|
|
+** root page of the new index onto the stack.
|
|
+**
|
|
+** See documentation on OP_CreateTable for additional information.
|
|
+*/
|
|
+case OP_CreateIndex:
|
|
+case OP_CreateTable: {
|
|
+ int pgno;
|
|
+ assert( pOp->p3!=0 && pOp->p3type==P3_POINTER );
|
|
+ assert( pOp->p2>=0 && pOp->p2<db->nDb );
|
|
+ assert( db->aDb[pOp->p2].pBt!=0 );
|
|
+ if( pOp->opcode==OP_CreateTable ){
|
|
+ rc = sqliteBtreeCreateTable(db->aDb[pOp->p2].pBt, &pgno);
|
|
+ }else{
|
|
+ rc = sqliteBtreeCreateIndex(db->aDb[pOp->p2].pBt, &pgno);
|
|
+ }
|
|
+ pTos++;
|
|
+ if( rc==SQLITE_OK ){
|
|
+ pTos->i = pgno;
|
|
+ pTos->flags = MEM_Int;
|
|
+ *(u32*)pOp->p3 = pgno;
|
|
+ pOp->p3 = 0;
|
|
+ }else{
|
|
+ pTos->flags = MEM_Null;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: IntegrityCk P1 P2 *
|
|
+**
|
|
+** Do an analysis of the currently open database. Push onto the
|
|
+** stack the text of an error message describing any problems.
|
|
+** If there are no errors, push a "ok" onto the stack.
|
|
+**
|
|
+** P1 is the index of a set that contains the root page numbers
|
|
+** for all tables and indices in the main database file. The set
|
|
+** is cleared by this opcode. In other words, after this opcode
|
|
+** has executed, the set will be empty.
|
|
+**
|
|
+** If P2 is not zero, the check is done on the auxiliary database
|
|
+** file, not the main database file.
|
|
+**
|
|
+** This opcode is used for testing purposes only.
|
|
+*/
|
|
+case OP_IntegrityCk: {
|
|
+ int nRoot;
|
|
+ int *aRoot;
|
|
+ int iSet = pOp->p1;
|
|
+ Set *pSet;
|
|
+ int j;
|
|
+ HashElem *i;
|
|
+ char *z;
|
|
+
|
|
+ assert( iSet>=0 && iSet<p->nSet );
|
|
+ pTos++;
|
|
+ pSet = &p->aSet[iSet];
|
|
+ nRoot = sqliteHashCount(&pSet->hash);
|
|
+ aRoot = sqliteMallocRaw( sizeof(int)*(nRoot+1) );
|
|
+ if( aRoot==0 ) goto no_mem;
|
|
+ for(j=0, i=sqliteHashFirst(&pSet->hash); i; i=sqliteHashNext(i), j++){
|
|
+ toInt((char*)sqliteHashKey(i), &aRoot[j]);
|
|
+ }
|
|
+ aRoot[j] = 0;
|
|
+ sqliteHashClear(&pSet->hash);
|
|
+ pSet->prev = 0;
|
|
+ z = sqliteBtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot);
|
|
+ if( z==0 || z[0]==0 ){
|
|
+ if( z ) sqliteFree(z);
|
|
+ pTos->z = "ok";
|
|
+ pTos->n = 3;
|
|
+ pTos->flags = MEM_Str | MEM_Static;
|
|
+ }else{
|
|
+ pTos->z = z;
|
|
+ pTos->n = strlen(z) + 1;
|
|
+ pTos->flags = MEM_Str | MEM_Dyn;
|
|
+ }
|
|
+ sqliteFree(aRoot);
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: ListWrite * * *
|
|
+**
|
|
+** Write the integer on the top of the stack
|
|
+** into the temporary storage list.
|
|
+*/
|
|
+case OP_ListWrite: {
|
|
+ Keylist *pKeylist;
|
|
+ assert( pTos>=p->aStack );
|
|
+ pKeylist = p->pList;
|
|
+ if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){
|
|
+ pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) );
|
|
+ if( pKeylist==0 ) goto no_mem;
|
|
+ pKeylist->nKey = 1000;
|
|
+ pKeylist->nRead = 0;
|
|
+ pKeylist->nUsed = 0;
|
|
+ pKeylist->pNext = p->pList;
|
|
+ p->pList = pKeylist;
|
|
+ }
|
|
+ Integerify(pTos);
|
|
+ pKeylist->aKey[pKeylist->nUsed++] = pTos->i;
|
|
+ Release(pTos);
|
|
+ pTos--;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: ListRewind * * *
|
|
+**
|
|
+** Rewind the temporary buffer back to the beginning.
|
|
+*/
|
|
+case OP_ListRewind: {
|
|
+ /* What this opcode codes, really, is reverse the order of the
|
|
+ ** linked list of Keylist structures so that they are read out
|
|
+ ** in the same order that they were read in. */
|
|
+ Keylist *pRev, *pTop;
|
|
+ pRev = 0;
|
|
+ while( p->pList ){
|
|
+ pTop = p->pList;
|
|
+ p->pList = pTop->pNext;
|
|
+ pTop->pNext = pRev;
|
|
+ pRev = pTop;
|
|
+ }
|
|
+ p->pList = pRev;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: ListRead * P2 *
|
|
+**
|
|
+** Attempt to read an integer from the temporary storage buffer
|
|
+** and push it onto the stack. If the storage buffer is empty,
|
|
+** push nothing but instead jump to P2.
|
|
+*/
|
|
+case OP_ListRead: {
|
|
+ Keylist *pKeylist;
|
|
+ CHECK_FOR_INTERRUPT;
|
|
+ pKeylist = p->pList;
|
|
+ if( pKeylist!=0 ){
|
|
+ assert( pKeylist->nRead>=0 );
|
|
+ assert( pKeylist->nRead<pKeylist->nUsed );
|
|
+ assert( pKeylist->nRead<pKeylist->nKey );
|
|
+ pTos++;
|
|
+ pTos->i = pKeylist->aKey[pKeylist->nRead++];
|
|
+ pTos->flags = MEM_Int;
|
|
+ if( pKeylist->nRead>=pKeylist->nUsed ){
|
|
+ p->pList = pKeylist->pNext;
|
|
+ sqliteFree(pKeylist);
|
|
+ }
|
|
+ }else{
|
|
+ pc = pOp->p2 - 1;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: ListReset * * *
|
|
+**
|
|
+** Reset the temporary storage buffer so that it holds nothing.
|
|
+*/
|
|
+case OP_ListReset: {
|
|
+ if( p->pList ){
|
|
+ sqliteVdbeKeylistFree(p->pList);
|
|
+ p->pList = 0;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: ListPush * * *
|
|
+**
|
|
+** Save the current Vdbe list such that it can be restored by a ListPop
|
|
+** opcode. The list is empty after this is executed.
|
|
+*/
|
|
+case OP_ListPush: {
|
|
+ p->keylistStackDepth++;
|
|
+ assert(p->keylistStackDepth > 0);
|
|
+ p->keylistStack = sqliteRealloc(p->keylistStack,
|
|
+ sizeof(Keylist *) * p->keylistStackDepth);
|
|
+ if( p->keylistStack==0 ) goto no_mem;
|
|
+ p->keylistStack[p->keylistStackDepth - 1] = p->pList;
|
|
+ p->pList = 0;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: ListPop * * *
|
|
+**
|
|
+** Restore the Vdbe list to the state it was in when ListPush was last
|
|
+** executed.
|
|
+*/
|
|
+case OP_ListPop: {
|
|
+ assert(p->keylistStackDepth > 0);
|
|
+ p->keylistStackDepth--;
|
|
+ sqliteVdbeKeylistFree(p->pList);
|
|
+ p->pList = p->keylistStack[p->keylistStackDepth];
|
|
+ p->keylistStack[p->keylistStackDepth] = 0;
|
|
+ if( p->keylistStackDepth == 0 ){
|
|
+ sqliteFree(p->keylistStack);
|
|
+ p->keylistStack = 0;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: ContextPush * * *
|
|
+**
|
|
+** Save the current Vdbe context such that it can be restored by a ContextPop
|
|
+** opcode. The context stores the last insert row id, the last statement change
|
|
+** count, and the current statement change count.
|
|
+*/
|
|
+case OP_ContextPush: {
|
|
+ p->contextStackDepth++;
|
|
+ assert(p->contextStackDepth > 0);
|
|
+ p->contextStack = sqliteRealloc(p->contextStack,
|
|
+ sizeof(Context) * p->contextStackDepth);
|
|
+ if( p->contextStack==0 ) goto no_mem;
|
|
+ p->contextStack[p->contextStackDepth - 1].lastRowid = p->db->lastRowid;
|
|
+ p->contextStack[p->contextStackDepth - 1].lsChange = p->db->lsChange;
|
|
+ p->contextStack[p->contextStackDepth - 1].csChange = p->db->csChange;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: ContextPop * * *
|
|
+**
|
|
+** Restore the Vdbe context to the state it was in when contextPush was last
|
|
+** executed. The context stores the last insert row id, the last statement
|
|
+** change count, and the current statement change count.
|
|
+*/
|
|
+case OP_ContextPop: {
|
|
+ assert(p->contextStackDepth > 0);
|
|
+ p->contextStackDepth--;
|
|
+ p->db->lastRowid = p->contextStack[p->contextStackDepth].lastRowid;
|
|
+ p->db->lsChange = p->contextStack[p->contextStackDepth].lsChange;
|
|
+ p->db->csChange = p->contextStack[p->contextStackDepth].csChange;
|
|
+ if( p->contextStackDepth == 0 ){
|
|
+ sqliteFree(p->contextStack);
|
|
+ p->contextStack = 0;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: SortPut * * *
|
|
+**
|
|
+** The TOS is the key and the NOS is the data. Pop both from the stack
|
|
+** and put them on the sorter. The key and data should have been
|
|
+** made using SortMakeKey and SortMakeRec, respectively.
|
|
+*/
|
|
+case OP_SortPut: {
|
|
+ Mem *pNos = &pTos[-1];
|
|
+ Sorter *pSorter;
|
|
+ assert( pNos>=p->aStack );
|
|
+ if( Dynamicify(pTos) || Dynamicify(pNos) ) goto no_mem;
|
|
+ pSorter = sqliteMallocRaw( sizeof(Sorter) );
|
|
+ if( pSorter==0 ) goto no_mem;
|
|
+ pSorter->pNext = p->pSort;
|
|
+ p->pSort = pSorter;
|
|
+ assert( pTos->flags & MEM_Dyn );
|
|
+ pSorter->nKey = pTos->n;
|
|
+ pSorter->zKey = pTos->z;
|
|
+ assert( pNos->flags & MEM_Dyn );
|
|
+ pSorter->nData = pNos->n;
|
|
+ pSorter->pData = pNos->z;
|
|
+ pTos -= 2;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: SortMakeRec P1 * *
|
|
+**
|
|
+** The top P1 elements are the arguments to a callback. Form these
|
|
+** elements into a single data entry that can be stored on a sorter
|
|
+** using SortPut and later fed to a callback using SortCallback.
|
|
+*/
|
|
+case OP_SortMakeRec: {
|
|
+ char *z;
|
|
+ char **azArg;
|
|
+ int nByte;
|
|
+ int nField;
|
|
+ int i;
|
|
+ Mem *pRec;
|
|
+
|
|
+ nField = pOp->p1;
|
|
+ pRec = &pTos[1-nField];
|
|
+ assert( pRec>=p->aStack );
|
|
+ nByte = 0;
|
|
+ for(i=0; i<nField; i++, pRec++){
|
|
+ if( (pRec->flags & MEM_Null)==0 ){
|
|
+ Stringify(pRec);
|
|
+ nByte += pRec->n;
|
|
+ }
|
|
+ }
|
|
+ nByte += sizeof(char*)*(nField+1);
|
|
+ azArg = sqliteMallocRaw( nByte );
|
|
+ if( azArg==0 ) goto no_mem;
|
|
+ z = (char*)&azArg[nField+1];
|
|
+ for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){
|
|
+ if( pRec->flags & MEM_Null ){
|
|
+ azArg[i] = 0;
|
|
+ }else{
|
|
+ azArg[i] = z;
|
|
+ memcpy(z, pRec->z, pRec->n);
|
|
+ z += pRec->n;
|
|
+ }
|
|
+ }
|
|
+ popStack(&pTos, nField);
|
|
+ pTos++;
|
|
+ pTos->n = nByte;
|
|
+ pTos->z = (char*)azArg;
|
|
+ pTos->flags = MEM_Str | MEM_Dyn;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: SortMakeKey * * P3
|
|
+**
|
|
+** Convert the top few entries of the stack into a sort key. The
|
|
+** number of stack entries consumed is the number of characters in
|
|
+** the string P3. One character from P3 is prepended to each entry.
|
|
+** The first character of P3 is prepended to the element lowest in
|
|
+** the stack and the last character of P3 is prepended to the top of
|
|
+** the stack. All stack entries are separated by a \000 character
|
|
+** in the result. The whole key is terminated by two \000 characters
|
|
+** in a row.
|
|
+**
|
|
+** "N" is substituted in place of the P3 character for NULL values.
|
|
+**
|
|
+** See also the MakeKey and MakeIdxKey opcodes.
|
|
+*/
|
|
+case OP_SortMakeKey: {
|
|
+ char *zNewKey;
|
|
+ int nByte;
|
|
+ int nField;
|
|
+ int i, j, k;
|
|
+ Mem *pRec;
|
|
+
|
|
+ nField = strlen(pOp->p3);
|
|
+ pRec = &pTos[1-nField];
|
|
+ nByte = 1;
|
|
+ for(i=0; i<nField; i++, pRec++){
|
|
+ if( pRec->flags & MEM_Null ){
|
|
+ nByte += 2;
|
|
+ }else{
|
|
+ Stringify(pRec);
|
|
+ nByte += pRec->n+2;
|
|
+ }
|
|
+ }
|
|
+ zNewKey = sqliteMallocRaw( nByte );
|
|
+ if( zNewKey==0 ) goto no_mem;
|
|
+ j = 0;
|
|
+ k = 0;
|
|
+ for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){
|
|
+ if( pRec->flags & MEM_Null ){
|
|
+ zNewKey[j++] = 'N';
|
|
+ zNewKey[j++] = 0;
|
|
+ k++;
|
|
+ }else{
|
|
+ zNewKey[j++] = pOp->p3[k++];
|
|
+ memcpy(&zNewKey[j], pRec->z, pRec->n-1);
|
|
+ j += pRec->n-1;
|
|
+ zNewKey[j++] = 0;
|
|
+ }
|
|
+ }
|
|
+ zNewKey[j] = 0;
|
|
+ assert( j<nByte );
|
|
+ popStack(&pTos, nField);
|
|
+ pTos++;
|
|
+ pTos->n = nByte;
|
|
+ pTos->flags = MEM_Str|MEM_Dyn;
|
|
+ pTos->z = zNewKey;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Sort * * *
|
|
+**
|
|
+** Sort all elements on the sorter. The algorithm is a
|
|
+** mergesort.
|
|
+*/
|
|
+case OP_Sort: {
|
|
+ int i;
|
|
+ Sorter *pElem;
|
|
+ Sorter *apSorter[NSORT];
|
|
+ for(i=0; i<NSORT; i++){
|
|
+ apSorter[i] = 0;
|
|
+ }
|
|
+ while( p->pSort ){
|
|
+ pElem = p->pSort;
|
|
+ p->pSort = pElem->pNext;
|
|
+ pElem->pNext = 0;
|
|
+ for(i=0; i<NSORT-1; i++){
|
|
+ if( apSorter[i]==0 ){
|
|
+ apSorter[i] = pElem;
|
|
+ break;
|
|
+ }else{
|
|
+ pElem = Merge(apSorter[i], pElem);
|
|
+ apSorter[i] = 0;
|
|
+ }
|
|
+ }
|
|
+ if( i>=NSORT-1 ){
|
|
+ apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem);
|
|
+ }
|
|
+ }
|
|
+ pElem = 0;
|
|
+ for(i=0; i<NSORT; i++){
|
|
+ pElem = Merge(apSorter[i], pElem);
|
|
+ }
|
|
+ p->pSort = pElem;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: SortNext * P2 *
|
|
+**
|
|
+** Push the data for the topmost element in the sorter onto the
|
|
+** stack, then remove the element from the sorter. If the sorter
|
|
+** is empty, push nothing on the stack and instead jump immediately
|
|
+** to instruction P2.
|
|
+*/
|
|
+case OP_SortNext: {
|
|
+ Sorter *pSorter = p->pSort;
|
|
+ CHECK_FOR_INTERRUPT;
|
|
+ if( pSorter!=0 ){
|
|
+ p->pSort = pSorter->pNext;
|
|
+ pTos++;
|
|
+ pTos->z = pSorter->pData;
|
|
+ pTos->n = pSorter->nData;
|
|
+ pTos->flags = MEM_Str|MEM_Dyn;
|
|
+ sqliteFree(pSorter->zKey);
|
|
+ sqliteFree(pSorter);
|
|
+ }else{
|
|
+ pc = pOp->p2 - 1;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: SortCallback P1 * *
|
|
+**
|
|
+** The top of the stack contains a callback record built using
|
|
+** the SortMakeRec operation with the same P1 value as this
|
|
+** instruction. Pop this record from the stack and invoke the
|
|
+** callback on it.
|
|
+*/
|
|
+case OP_SortCallback: {
|
|
+ assert( pTos>=p->aStack );
|
|
+ assert( pTos->flags & MEM_Str );
|
|
+ p->nCallback++;
|
|
+ p->pc = pc+1;
|
|
+ p->azResColumn = (char**)pTos->z;
|
|
+ assert( p->nResColumn==pOp->p1 );
|
|
+ p->popStack = 1;
|
|
+ p->pTos = pTos;
|
|
+ return SQLITE_ROW;
|
|
+}
|
|
+
|
|
+/* Opcode: SortReset * * *
|
|
+**
|
|
+** Remove any elements that remain on the sorter.
|
|
+*/
|
|
+case OP_SortReset: {
|
|
+ sqliteVdbeSorterReset(p);
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: FileOpen * * P3
|
|
+**
|
|
+** Open the file named by P3 for reading using the FileRead opcode.
|
|
+** If P3 is "stdin" then open standard input for reading.
|
|
+*/
|
|
+case OP_FileOpen: {
|
|
+ assert( pOp->p3!=0 );
|
|
+ if( p->pFile ){
|
|
+ if( p->pFile!=stdin ) fclose(p->pFile);
|
|
+ p->pFile = 0;
|
|
+ }
|
|
+ if( sqliteStrICmp(pOp->p3,"stdin")==0 ){
|
|
+ p->pFile = stdin;
|
|
+ }else{
|
|
+ p->pFile = fopen(pOp->p3, "r");
|
|
+ }
|
|
+ if( p->pFile==0 ){
|
|
+ sqliteSetString(&p->zErrMsg,"unable to open file: ", pOp->p3, (char*)0);
|
|
+ rc = SQLITE_ERROR;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: FileRead P1 P2 P3
|
|
+**
|
|
+** Read a single line of input from the open file (the file opened using
|
|
+** FileOpen). If we reach end-of-file, jump immediately to P2. If
|
|
+** we are able to get another line, split the line apart using P3 as
|
|
+** a delimiter. There should be P1 fields. If the input line contains
|
|
+** more than P1 fields, ignore the excess. If the input line contains
|
|
+** fewer than P1 fields, assume the remaining fields contain NULLs.
|
|
+**
|
|
+** Input ends if a line consists of just "\.". A field containing only
|
|
+** "\N" is a null field. The backslash \ character can be used be used
|
|
+** to escape newlines or the delimiter.
|
|
+*/
|
|
+case OP_FileRead: {
|
|
+ int n, eol, nField, i, c, nDelim;
|
|
+ char *zDelim, *z;
|
|
+ CHECK_FOR_INTERRUPT;
|
|
+ if( p->pFile==0 ) goto fileread_jump;
|
|
+ nField = pOp->p1;
|
|
+ if( nField<=0 ) goto fileread_jump;
|
|
+ if( nField!=p->nField || p->azField==0 ){
|
|
+ char **azField = sqliteRealloc(p->azField, sizeof(char*)*nField+1);
|
|
+ if( azField==0 ){ goto no_mem; }
|
|
+ p->azField = azField;
|
|
+ p->nField = nField;
|
|
+ }
|
|
+ n = 0;
|
|
+ eol = 0;
|
|
+ while( eol==0 ){
|
|
+ if( p->zLine==0 || n+200>p->nLineAlloc ){
|
|
+ char *zLine;
|
|
+ p->nLineAlloc = p->nLineAlloc*2 + 300;
|
|
+ zLine = sqliteRealloc(p->zLine, p->nLineAlloc);
|
|
+ if( zLine==0 ){
|
|
+ p->nLineAlloc = 0;
|
|
+ sqliteFree(p->zLine);
|
|
+ p->zLine = 0;
|
|
+ goto no_mem;
|
|
+ }
|
|
+ p->zLine = zLine;
|
|
+ }
|
|
+ if( vdbe_fgets(&p->zLine[n], p->nLineAlloc-n, p->pFile)==0 ){
|
|
+ eol = 1;
|
|
+ p->zLine[n] = 0;
|
|
+ }else{
|
|
+ int c;
|
|
+ while( (c = p->zLine[n])!=0 ){
|
|
+ if( c=='\\' ){
|
|
+ if( p->zLine[n+1]==0 ) break;
|
|
+ n += 2;
|
|
+ }else if( c=='\n' ){
|
|
+ p->zLine[n] = 0;
|
|
+ eol = 1;
|
|
+ break;
|
|
+ }else{
|
|
+ n++;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ if( n==0 ) goto fileread_jump;
|
|
+ z = p->zLine;
|
|
+ if( z[0]=='\\' && z[1]=='.' && z[2]==0 ){
|
|
+ goto fileread_jump;
|
|
+ }
|
|
+ zDelim = pOp->p3;
|
|
+ if( zDelim==0 ) zDelim = "\t";
|
|
+ c = zDelim[0];
|
|
+ nDelim = strlen(zDelim);
|
|
+ p->azField[0] = z;
|
|
+ for(i=1; *z!=0 && i<=nField; i++){
|
|
+ int from, to;
|
|
+ from = to = 0;
|
|
+ if( z[0]=='\\' && z[1]=='N'
|
|
+ && (z[2]==0 || strncmp(&z[2],zDelim,nDelim)==0) ){
|
|
+ if( i<=nField ) p->azField[i-1] = 0;
|
|
+ z += 2 + nDelim;
|
|
+ if( i<nField ) p->azField[i] = z;
|
|
+ continue;
|
|
+ }
|
|
+ while( z[from] ){
|
|
+ if( z[from]=='\\' && z[from+1]!=0 ){
|
|
+ int tx = z[from+1];
|
|
+ switch( tx ){
|
|
+ case 'b': tx = '\b'; break;
|
|
+ case 'f': tx = '\f'; break;
|
|
+ case 'n': tx = '\n'; break;
|
|
+ case 'r': tx = '\r'; break;
|
|
+ case 't': tx = '\t'; break;
|
|
+ case 'v': tx = '\v'; break;
|
|
+ default: break;
|
|
+ }
|
|
+ z[to++] = tx;
|
|
+ from += 2;
|
|
+ continue;
|
|
+ }
|
|
+ if( z[from]==c && strncmp(&z[from],zDelim,nDelim)==0 ) break;
|
|
+ z[to++] = z[from++];
|
|
+ }
|
|
+ if( z[from] ){
|
|
+ z[to] = 0;
|
|
+ z += from + nDelim;
|
|
+ if( i<nField ) p->azField[i] = z;
|
|
+ }else{
|
|
+ z[to] = 0;
|
|
+ z = "";
|
|
+ }
|
|
+ }
|
|
+ while( i<nField ){
|
|
+ p->azField[i++] = 0;
|
|
+ }
|
|
+ break;
|
|
+
|
|
+ /* If we reach end-of-file, or if anything goes wrong, jump here.
|
|
+ ** This code will cause a jump to P2 */
|
|
+fileread_jump:
|
|
+ pc = pOp->p2 - 1;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: FileColumn P1 * *
|
|
+**
|
|
+** Push onto the stack the P1-th column of the most recently read line
|
|
+** from the input file.
|
|
+*/
|
|
+case OP_FileColumn: {
|
|
+ int i = pOp->p1;
|
|
+ char *z;
|
|
+ assert( i>=0 && i<p->nField );
|
|
+ if( p->azField ){
|
|
+ z = p->azField[i];
|
|
+ }else{
|
|
+ z = 0;
|
|
+ }
|
|
+ pTos++;
|
|
+ if( z ){
|
|
+ pTos->n = strlen(z) + 1;
|
|
+ pTos->z = z;
|
|
+ pTos->flags = MEM_Str | MEM_Ephem;
|
|
+ }else{
|
|
+ pTos->flags = MEM_Null;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: MemStore P1 P2 *
|
|
+**
|
|
+** Write the top of the stack into memory location P1.
|
|
+** P1 should be a small integer since space is allocated
|
|
+** for all memory locations between 0 and P1 inclusive.
|
|
+**
|
|
+** After the data is stored in the memory location, the
|
|
+** stack is popped once if P2 is 1. If P2 is zero, then
|
|
+** the original data remains on the stack.
|
|
+*/
|
|
+case OP_MemStore: {
|
|
+ int i = pOp->p1;
|
|
+ Mem *pMem;
|
|
+ assert( pTos>=p->aStack );
|
|
+ if( i>=p->nMem ){
|
|
+ int nOld = p->nMem;
|
|
+ Mem *aMem;
|
|
+ p->nMem = i + 5;
|
|
+ aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0]));
|
|
+ if( aMem==0 ) goto no_mem;
|
|
+ if( aMem!=p->aMem ){
|
|
+ int j;
|
|
+ for(j=0; j<nOld; j++){
|
|
+ if( aMem[j].flags & MEM_Short ){
|
|
+ aMem[j].z = aMem[j].zShort;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ p->aMem = aMem;
|
|
+ if( nOld<p->nMem ){
|
|
+ memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld));
|
|
+ }
|
|
+ }
|
|
+ Deephemeralize(pTos);
|
|
+ pMem = &p->aMem[i];
|
|
+ Release(pMem);
|
|
+ *pMem = *pTos;
|
|
+ if( pMem->flags & MEM_Dyn ){
|
|
+ if( pOp->p2 ){
|
|
+ pTos->flags = MEM_Null;
|
|
+ }else{
|
|
+ pMem->z = sqliteMallocRaw( pMem->n );
|
|
+ if( pMem->z==0 ) goto no_mem;
|
|
+ memcpy(pMem->z, pTos->z, pMem->n);
|
|
+ }
|
|
+ }else if( pMem->flags & MEM_Short ){
|
|
+ pMem->z = pMem->zShort;
|
|
+ }
|
|
+ if( pOp->p2 ){
|
|
+ Release(pTos);
|
|
+ pTos--;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: MemLoad P1 * *
|
|
+**
|
|
+** Push a copy of the value in memory location P1 onto the stack.
|
|
+**
|
|
+** If the value is a string, then the value pushed is a pointer to
|
|
+** the string that is stored in the memory location. If the memory
|
|
+** location is subsequently changed (using OP_MemStore) then the
|
|
+** value pushed onto the stack will change too.
|
|
+*/
|
|
+case OP_MemLoad: {
|
|
+ int i = pOp->p1;
|
|
+ assert( i>=0 && i<p->nMem );
|
|
+ pTos++;
|
|
+ memcpy(pTos, &p->aMem[i], sizeof(pTos[0])-NBFS);;
|
|
+ if( pTos->flags & MEM_Str ){
|
|
+ pTos->flags |= MEM_Ephem;
|
|
+ pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: MemIncr P1 P2 *
|
|
+**
|
|
+** Increment the integer valued memory cell P1 by 1. If P2 is not zero
|
|
+** and the result after the increment is greater than zero, then jump
|
|
+** to P2.
|
|
+**
|
|
+** This instruction throws an error if the memory cell is not initially
|
|
+** an integer.
|
|
+*/
|
|
+case OP_MemIncr: {
|
|
+ int i = pOp->p1;
|
|
+ Mem *pMem;
|
|
+ assert( i>=0 && i<p->nMem );
|
|
+ pMem = &p->aMem[i];
|
|
+ assert( pMem->flags==MEM_Int );
|
|
+ pMem->i++;
|
|
+ if( pOp->p2>0 && pMem->i>0 ){
|
|
+ pc = pOp->p2 - 1;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: AggReset * P2 *
|
|
+**
|
|
+** Reset the aggregator so that it no longer contains any data.
|
|
+** Future aggregator elements will contain P2 values each.
|
|
+*/
|
|
+case OP_AggReset: {
|
|
+ sqliteVdbeAggReset(&p->agg);
|
|
+ p->agg.nMem = pOp->p2;
|
|
+ p->agg.apFunc = sqliteMalloc( p->agg.nMem*sizeof(p->agg.apFunc[0]) );
|
|
+ if( p->agg.apFunc==0 ) goto no_mem;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: AggInit * P2 P3
|
|
+**
|
|
+** Initialize the function parameters for an aggregate function.
|
|
+** The aggregate will operate out of aggregate column P2.
|
|
+** P3 is a pointer to the FuncDef structure for the function.
|
|
+*/
|
|
+case OP_AggInit: {
|
|
+ int i = pOp->p2;
|
|
+ assert( i>=0 && i<p->agg.nMem );
|
|
+ p->agg.apFunc[i] = (FuncDef*)pOp->p3;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: AggFunc * P2 P3
|
|
+**
|
|
+** Execute the step function for an aggregate. The
|
|
+** function has P2 arguments. P3 is a pointer to the FuncDef
|
|
+** structure that specifies the function.
|
|
+**
|
|
+** The top of the stack must be an integer which is the index of
|
|
+** the aggregate column that corresponds to this aggregate function.
|
|
+** Ideally, this index would be another parameter, but there are
|
|
+** no free parameters left. The integer is popped from the stack.
|
|
+*/
|
|
+case OP_AggFunc: {
|
|
+ int n = pOp->p2;
|
|
+ int i;
|
|
+ Mem *pMem, *pRec;
|
|
+ char **azArgv = p->zArgv;
|
|
+ sqlite_func ctx;
|
|
+
|
|
+ assert( n>=0 );
|
|
+ assert( pTos->flags==MEM_Int );
|
|
+ pRec = &pTos[-n];
|
|
+ assert( pRec>=p->aStack );
|
|
+ for(i=0; i<n; i++, pRec++){
|
|
+ if( pRec->flags & MEM_Null ){
|
|
+ azArgv[i] = 0;
|
|
+ }else{
|
|
+ Stringify(pRec);
|
|
+ azArgv[i] = pRec->z;
|
|
+ }
|
|
+ }
|
|
+ i = pTos->i;
|
|
+ assert( i>=0 && i<p->agg.nMem );
|
|
+ ctx.pFunc = (FuncDef*)pOp->p3;
|
|
+ pMem = &p->agg.pCurrent->aMem[i];
|
|
+ ctx.s.z = pMem->zShort; /* Space used for small aggregate contexts */
|
|
+ ctx.pAgg = pMem->z;
|
|
+ ctx.cnt = ++pMem->i;
|
|
+ ctx.isError = 0;
|
|
+ ctx.isStep = 1;
|
|
+ (ctx.pFunc->xStep)(&ctx, n, (const char**)azArgv);
|
|
+ pMem->z = ctx.pAgg;
|
|
+ pMem->flags = MEM_AggCtx;
|
|
+ popStack(&pTos, n+1);
|
|
+ if( ctx.isError ){
|
|
+ rc = SQLITE_ERROR;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: AggFocus * P2 *
|
|
+**
|
|
+** Pop the top of the stack and use that as an aggregator key. If
|
|
+** an aggregator with that same key already exists, then make the
|
|
+** aggregator the current aggregator and jump to P2. If no aggregator
|
|
+** with the given key exists, create one and make it current but
|
|
+** do not jump.
|
|
+**
|
|
+** The order of aggregator opcodes is important. The order is:
|
|
+** AggReset AggFocus AggNext. In other words, you must execute
|
|
+** AggReset first, then zero or more AggFocus operations, then
|
|
+** zero or more AggNext operations. You must not execute an AggFocus
|
|
+** in between an AggNext and an AggReset.
|
|
+*/
|
|
+case OP_AggFocus: {
|
|
+ AggElem *pElem;
|
|
+ char *zKey;
|
|
+ int nKey;
|
|
+
|
|
+ assert( pTos>=p->aStack );
|
|
+ Stringify(pTos);
|
|
+ zKey = pTos->z;
|
|
+ nKey = pTos->n;
|
|
+ pElem = sqliteHashFind(&p->agg.hash, zKey, nKey);
|
|
+ if( pElem ){
|
|
+ p->agg.pCurrent = pElem;
|
|
+ pc = pOp->p2 - 1;
|
|
+ }else{
|
|
+ AggInsert(&p->agg, zKey, nKey);
|
|
+ if( sqlite_malloc_failed ) goto no_mem;
|
|
+ }
|
|
+ Release(pTos);
|
|
+ pTos--;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: AggSet * P2 *
|
|
+**
|
|
+** Move the top of the stack into the P2-th field of the current
|
|
+** aggregate. String values are duplicated into new memory.
|
|
+*/
|
|
+case OP_AggSet: {
|
|
+ AggElem *pFocus = AggInFocus(p->agg);
|
|
+ Mem *pMem;
|
|
+ int i = pOp->p2;
|
|
+ assert( pTos>=p->aStack );
|
|
+ if( pFocus==0 ) goto no_mem;
|
|
+ assert( i>=0 && i<p->agg.nMem );
|
|
+ Deephemeralize(pTos);
|
|
+ pMem = &pFocus->aMem[i];
|
|
+ Release(pMem);
|
|
+ *pMem = *pTos;
|
|
+ if( pMem->flags & MEM_Dyn ){
|
|
+ pTos->flags = MEM_Null;
|
|
+ }else if( pMem->flags & MEM_Short ){
|
|
+ pMem->z = pMem->zShort;
|
|
+ }
|
|
+ Release(pTos);
|
|
+ pTos--;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: AggGet * P2 *
|
|
+**
|
|
+** Push a new entry onto the stack which is a copy of the P2-th field
|
|
+** of the current aggregate. Strings are not duplicated so
|
|
+** string values will be ephemeral.
|
|
+*/
|
|
+case OP_AggGet: {
|
|
+ AggElem *pFocus = AggInFocus(p->agg);
|
|
+ Mem *pMem;
|
|
+ int i = pOp->p2;
|
|
+ if( pFocus==0 ) goto no_mem;
|
|
+ assert( i>=0 && i<p->agg.nMem );
|
|
+ pTos++;
|
|
+ pMem = &pFocus->aMem[i];
|
|
+ *pTos = *pMem;
|
|
+ if( pTos->flags & MEM_Str ){
|
|
+ pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
|
|
+ pTos->flags |= MEM_Ephem;
|
|
+ }
|
|
+ if( pTos->flags & MEM_AggCtx ){
|
|
+ Release(pTos);
|
|
+ pTos->flags = MEM_Null;
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: AggNext * P2 *
|
|
+**
|
|
+** Make the next aggregate value the current aggregate. The prior
|
|
+** aggregate is deleted. If all aggregate values have been consumed,
|
|
+** jump to P2.
|
|
+**
|
|
+** The order of aggregator opcodes is important. The order is:
|
|
+** AggReset AggFocus AggNext. In other words, you must execute
|
|
+** AggReset first, then zero or more AggFocus operations, then
|
|
+** zero or more AggNext operations. You must not execute an AggFocus
|
|
+** in between an AggNext and an AggReset.
|
|
+*/
|
|
+case OP_AggNext: {
|
|
+ CHECK_FOR_INTERRUPT;
|
|
+ if( p->agg.pSearch==0 ){
|
|
+ p->agg.pSearch = sqliteHashFirst(&p->agg.hash);
|
|
+ }else{
|
|
+ p->agg.pSearch = sqliteHashNext(p->agg.pSearch);
|
|
+ }
|
|
+ if( p->agg.pSearch==0 ){
|
|
+ pc = pOp->p2 - 1;
|
|
+ } else {
|
|
+ int i;
|
|
+ sqlite_func ctx;
|
|
+ Mem *aMem;
|
|
+ p->agg.pCurrent = sqliteHashData(p->agg.pSearch);
|
|
+ aMem = p->agg.pCurrent->aMem;
|
|
+ for(i=0; i<p->agg.nMem; i++){
|
|
+ int freeCtx;
|
|
+ if( p->agg.apFunc[i]==0 ) continue;
|
|
+ if( p->agg.apFunc[i]->xFinalize==0 ) continue;
|
|
+ ctx.s.flags = MEM_Null;
|
|
+ ctx.s.z = aMem[i].zShort;
|
|
+ ctx.pAgg = (void*)aMem[i].z;
|
|
+ freeCtx = aMem[i].z && aMem[i].z!=aMem[i].zShort;
|
|
+ ctx.cnt = aMem[i].i;
|
|
+ ctx.isStep = 0;
|
|
+ ctx.pFunc = p->agg.apFunc[i];
|
|
+ (*p->agg.apFunc[i]->xFinalize)(&ctx);
|
|
+ if( freeCtx ){
|
|
+ sqliteFree( aMem[i].z );
|
|
+ }
|
|
+ aMem[i] = ctx.s;
|
|
+ if( aMem[i].flags & MEM_Short ){
|
|
+ aMem[i].z = aMem[i].zShort;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: SetInsert P1 * P3
|
|
+**
|
|
+** If Set P1 does not exist then create it. Then insert value
|
|
+** P3 into that set. If P3 is NULL, then insert the top of the
|
|
+** stack into the set.
|
|
+*/
|
|
+case OP_SetInsert: {
|
|
+ int i = pOp->p1;
|
|
+ if( p->nSet<=i ){
|
|
+ int k;
|
|
+ Set *aSet = sqliteRealloc(p->aSet, (i+1)*sizeof(p->aSet[0]) );
|
|
+ if( aSet==0 ) goto no_mem;
|
|
+ p->aSet = aSet;
|
|
+ for(k=p->nSet; k<=i; k++){
|
|
+ sqliteHashInit(&p->aSet[k].hash, SQLITE_HASH_BINARY, 1);
|
|
+ }
|
|
+ p->nSet = i+1;
|
|
+ }
|
|
+ if( pOp->p3 ){
|
|
+ sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p);
|
|
+ }else{
|
|
+ assert( pTos>=p->aStack );
|
|
+ Stringify(pTos);
|
|
+ sqliteHashInsert(&p->aSet[i].hash, pTos->z, pTos->n, p);
|
|
+ Release(pTos);
|
|
+ pTos--;
|
|
+ }
|
|
+ if( sqlite_malloc_failed ) goto no_mem;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: SetFound P1 P2 *
|
|
+**
|
|
+** Pop the stack once and compare the value popped off with the
|
|
+** contents of set P1. If the element popped exists in set P1,
|
|
+** then jump to P2. Otherwise fall through.
|
|
+*/
|
|
+case OP_SetFound: {
|
|
+ int i = pOp->p1;
|
|
+ assert( pTos>=p->aStack );
|
|
+ Stringify(pTos);
|
|
+ if( i>=0 && i<p->nSet && sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)){
|
|
+ pc = pOp->p2 - 1;
|
|
+ }
|
|
+ Release(pTos);
|
|
+ pTos--;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: SetNotFound P1 P2 *
|
|
+**
|
|
+** Pop the stack once and compare the value popped off with the
|
|
+** contents of set P1. If the element popped does not exists in
|
|
+** set P1, then jump to P2. Otherwise fall through.
|
|
+*/
|
|
+case OP_SetNotFound: {
|
|
+ int i = pOp->p1;
|
|
+ assert( pTos>=p->aStack );
|
|
+ Stringify(pTos);
|
|
+ if( i<0 || i>=p->nSet ||
|
|
+ sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)==0 ){
|
|
+ pc = pOp->p2 - 1;
|
|
+ }
|
|
+ Release(pTos);
|
|
+ pTos--;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: SetFirst P1 P2 *
|
|
+**
|
|
+** Read the first element from set P1 and push it onto the stack. If the
|
|
+** set is empty, push nothing and jump immediately to P2. This opcode is
|
|
+** used in combination with OP_SetNext to loop over all elements of a set.
|
|
+*/
|
|
+/* Opcode: SetNext P1 P2 *
|
|
+**
|
|
+** Read the next element from set P1 and push it onto the stack. If there
|
|
+** are no more elements in the set, do not do the push and fall through.
|
|
+** Otherwise, jump to P2 after pushing the next set element.
|
|
+*/
|
|
+case OP_SetFirst:
|
|
+case OP_SetNext: {
|
|
+ Set *pSet;
|
|
+ CHECK_FOR_INTERRUPT;
|
|
+ if( pOp->p1<0 || pOp->p1>=p->nSet ){
|
|
+ if( pOp->opcode==OP_SetFirst ) pc = pOp->p2 - 1;
|
|
+ break;
|
|
+ }
|
|
+ pSet = &p->aSet[pOp->p1];
|
|
+ if( pOp->opcode==OP_SetFirst ){
|
|
+ pSet->prev = sqliteHashFirst(&pSet->hash);
|
|
+ if( pSet->prev==0 ){
|
|
+ pc = pOp->p2 - 1;
|
|
+ break;
|
|
+ }
|
|
+ }else{
|
|
+ if( pSet->prev ){
|
|
+ pSet->prev = sqliteHashNext(pSet->prev);
|
|
+ }
|
|
+ if( pSet->prev==0 ){
|
|
+ break;
|
|
+ }else{
|
|
+ pc = pOp->p2 - 1;
|
|
+ }
|
|
+ }
|
|
+ pTos++;
|
|
+ pTos->z = sqliteHashKey(pSet->prev);
|
|
+ pTos->n = sqliteHashKeysize(pSet->prev);
|
|
+ pTos->flags = MEM_Str | MEM_Ephem;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: Vacuum * * *
|
|
+**
|
|
+** Vacuum the entire database. This opcode will cause other virtual
|
|
+** machines to be created and run. It may not be called from within
|
|
+** a transaction.
|
|
+*/
|
|
+case OP_Vacuum: {
|
|
+ if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
|
|
+ rc = sqliteRunVacuum(&p->zErrMsg, db);
|
|
+ if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: StackDepth * * *
|
|
+**
|
|
+** Push an integer onto the stack which is the depth of the stack prior
|
|
+** to that integer being pushed.
|
|
+*/
|
|
+case OP_StackDepth: {
|
|
+ int depth = (&pTos[1]) - p->aStack;
|
|
+ pTos++;
|
|
+ pTos->i = depth;
|
|
+ pTos->flags = MEM_Int;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* Opcode: StackReset * * *
|
|
+**
|
|
+** Pop a single integer off of the stack. Then pop the stack
|
|
+** as many times as necessary to get the depth of the stack down
|
|
+** to the value of the integer that was popped.
|
|
+*/
|
|
+case OP_StackReset: {
|
|
+ int depth, goal;
|
|
+ assert( pTos>=p->aStack );
|
|
+ Integerify(pTos);
|
|
+ goal = pTos->i;
|
|
+ depth = (&pTos[1]) - p->aStack;
|
|
+ assert( goal<depth );
|
|
+ popStack(&pTos, depth-goal);
|
|
+ break;
|
|
+}
|
|
+
|
|
+/* An other opcode is illegal...
|
|
+*/
|
|
+default: {
|
|
+ sqlite_snprintf(sizeof(zBuf),zBuf,"%d",pOp->opcode);
|
|
+ sqliteSetString(&p->zErrMsg, "unknown opcode ", zBuf, (char*)0);
|
|
+ rc = SQLITE_INTERNAL;
|
|
+ break;
|
|
+}
|
|
+
|
|
+/*****************************************************************************
|
|
+** The cases of the switch statement above this line should all be indented
|
|
+** by 6 spaces. But the left-most 6 spaces have been removed to improve the
|
|
+** readability. From this point on down, the normal indentation rules are
|
|
+** restored.
|
|
+*****************************************************************************/
|
|
+ }
|
|
+
|
|
+#ifdef VDBE_PROFILE
|
|
+ {
|
|
+ long long elapse = hwtime() - start;
|
|
+ pOp->cycles += elapse;
|
|
+ pOp->cnt++;
|
|
+#if 0
|
|
+ fprintf(stdout, "%10lld ", elapse);
|
|
+ sqliteVdbePrintOp(stdout, origPc, &p->aOp[origPc]);
|
|
+#endif
|
|
+ }
|
|
+#endif
|
|
+
|
|
+ /* The following code adds nothing to the actual functionality
|
|
+ ** of the program. It is only here for testing and debugging.
|
|
+ ** On the other hand, it does burn CPU cycles every time through
|
|
+ ** the evaluator loop. So we can leave it out when NDEBUG is defined.
|
|
+ */
|
|
+#ifndef NDEBUG
|
|
+ /* Sanity checking on the top element of the stack */
|
|
+ if( pTos>=p->aStack ){
|
|
+ assert( pTos->flags!=0 ); /* Must define some type */
|
|
+ if( pTos->flags & MEM_Str ){
|
|
+ int x = pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
|
|
+ assert( x!=0 ); /* Strings must define a string subtype */
|
|
+ assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */
|
|
+ assert( pTos->z!=0 ); /* Strings must have a value */
|
|
+ /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
|
|
+ assert( (pTos->flags & MEM_Short)==0 || pTos->z==pTos->zShort );
|
|
+ assert( (pTos->flags & MEM_Short)!=0 || pTos->z!=pTos->zShort );
|
|
+ }else{
|
|
+ /* Cannot define a string subtype for non-string objects */
|
|
+ assert( (pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
|
|
+ }
|
|
+ /* MEM_Null excludes all other types */
|
|
+ assert( pTos->flags==MEM_Null || (pTos->flags&MEM_Null)==0 );
|
|
+ }
|
|
+ if( pc<-1 || pc>=p->nOp ){
|
|
+ sqliteSetString(&p->zErrMsg, "jump destination out of range", (char*)0);
|
|
+ rc = SQLITE_INTERNAL;
|
|
+ }
|
|
+ if( p->trace && pTos>=p->aStack ){
|
|
+ int i;
|
|
+ fprintf(p->trace, "Stack:");
|
|
+ for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){
|
|
+ if( pTos[i].flags & MEM_Null ){
|
|
+ fprintf(p->trace, " NULL");
|
|
+ }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
|
|
+ fprintf(p->trace, " si:%d", pTos[i].i);
|
|
+ }else if( pTos[i].flags & MEM_Int ){
|
|
+ fprintf(p->trace, " i:%d", pTos[i].i);
|
|
+ }else if( pTos[i].flags & MEM_Real ){
|
|
+ fprintf(p->trace, " r:%g", pTos[i].r);
|
|
+ }else if( pTos[i].flags & MEM_Str ){
|
|
+ int j, k;
|
|
+ char zBuf[100];
|
|
+ zBuf[0] = ' ';
|
|
+ if( pTos[i].flags & MEM_Dyn ){
|
|
+ zBuf[1] = 'z';
|
|
+ assert( (pTos[i].flags & (MEM_Static|MEM_Ephem))==0 );
|
|
+ }else if( pTos[i].flags & MEM_Static ){
|
|
+ zBuf[1] = 't';
|
|
+ assert( (pTos[i].flags & (MEM_Dyn|MEM_Ephem))==0 );
|
|
+ }else if( pTos[i].flags & MEM_Ephem ){
|
|
+ zBuf[1] = 'e';
|
|
+ assert( (pTos[i].flags & (MEM_Static|MEM_Dyn))==0 );
|
|
+ }else{
|
|
+ zBuf[1] = 's';
|
|
+ }
|
|
+ zBuf[2] = '[';
|
|
+ k = 3;
|
|
+ for(j=0; j<20 && j<pTos[i].n; j++){
|
|
+ int c = pTos[i].z[j];
|
|
+ if( c==0 && j==pTos[i].n-1 ) break;
|
|
+ if( isprint(c) && !isspace(c) ){
|
|
+ zBuf[k++] = c;
|
|
+ }else{
|
|
+ zBuf[k++] = '.';
|
|
+ }
|
|
+ }
|
|
+ zBuf[k++] = ']';
|
|
+ zBuf[k++] = 0;
|
|
+ fprintf(p->trace, "%s", zBuf);
|
|
+ }else{
|
|
+ fprintf(p->trace, " ???");
|
|
+ }
|
|
+ }
|
|
+ if( rc!=0 ) fprintf(p->trace," rc=%d",rc);
|
|
+ fprintf(p->trace,"\n");
|
|
+ }
|
|
+#endif
|
|
+ } /* The end of the for(;;) loop the loops through opcodes */
|
|
+
|
|
+ /* If we reach this point, it means that execution is finished.
|
|
+ */
|
|
+vdbe_halt:
|
|
+ CHECK_FOR_INTERRUPT
|
|
+ if( rc ){
|
|
+ p->rc = rc;
|
|
+ rc = SQLITE_ERROR;
|
|
+ }else{
|
|
+ rc = SQLITE_DONE;
|
|
+ }
|
|
+ p->magic = VDBE_MAGIC_HALT;
|
|
+ p->pTos = pTos;
|
|
+ return rc;
|
|
+
|
|
+ /* Jump to here if a malloc() fails. It's hard to get a malloc()
|
|
+ ** to fail on a modern VM computer, so this code is untested.
|
|
+ */
|
|
+no_mem:
|
|
+ sqliteSetString(&p->zErrMsg, "out of memory", (char*)0);
|
|
+ rc = SQLITE_NOMEM;
|
|
+ goto vdbe_halt;
|
|
+
|
|
+ /* Jump to here for an SQLITE_MISUSE error.
|
|
+ */
|
|
+abort_due_to_misuse:
|
|
+ rc = SQLITE_MISUSE;
|
|
+ /* Fall thru into abort_due_to_error */
|
|
+
|
|
+ /* Jump to here for any other kind of fatal error. The "rc" variable
|
|
+ ** should hold the error number.
|
|
+ */
|
|
+abort_due_to_error:
|
|
+ if( p->zErrMsg==0 ){
|
|
+ if( sqlite_malloc_failed ) rc = SQLITE_NOMEM;
|
|
+ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
|
|
+ }
|
|
+ goto vdbe_halt;
|
|
+
|
|
+ /* Jump to here if the sqlite_interrupt() API sets the interrupt
|
|
+ ** flag.
|
|
+ */
|
|
+abort_due_to_interrupt:
|
|
+ assert( db->flags & SQLITE_Interrupt );
|
|
+ db->flags &= ~SQLITE_Interrupt;
|
|
+ if( db->magic!=SQLITE_MAGIC_BUSY ){
|
|
+ rc = SQLITE_MISUSE;
|
|
+ }else{
|
|
+ rc = SQLITE_INTERRUPT;
|
|
+ }
|
|
+ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
|
|
+ goto vdbe_halt;
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/vdbe.h
|
|
@@ -0,0 +1,112 @@
|
|
+/*
|
|
+** 2001 September 15
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** Header file for the Virtual DataBase Engine (VDBE)
|
|
+**
|
|
+** This header defines the interface to the virtual database engine
|
|
+** or VDBE. The VDBE implements an abstract machine that runs a
|
|
+** simple program to access and modify the underlying database.
|
|
+**
|
|
+** $Id$
|
|
+*/
|
|
+#ifndef _SQLITE_VDBE_H_
|
|
+#define _SQLITE_VDBE_H_
|
|
+#include <stdio.h>
|
|
+
|
|
+/*
|
|
+** A single VDBE is an opaque structure named "Vdbe". Only routines
|
|
+** in the source file sqliteVdbe.c are allowed to see the insides
|
|
+** of this structure.
|
|
+*/
|
|
+typedef struct Vdbe Vdbe;
|
|
+
|
|
+/*
|
|
+** A single instruction of the virtual machine has an opcode
|
|
+** and as many as three operands. The instruction is recorded
|
|
+** as an instance of the following structure:
|
|
+*/
|
|
+struct VdbeOp {
|
|
+ u8 opcode; /* What operation to perform */
|
|
+ int p1; /* First operand */
|
|
+ int p2; /* Second parameter (often the jump destination) */
|
|
+ char *p3; /* Third parameter */
|
|
+ int p3type; /* P3_STATIC, P3_DYNAMIC or P3_POINTER */
|
|
+#ifdef VDBE_PROFILE
|
|
+ int cnt; /* Number of times this instruction was executed */
|
|
+ long long cycles; /* Total time spend executing this instruction */
|
|
+#endif
|
|
+};
|
|
+typedef struct VdbeOp VdbeOp;
|
|
+
|
|
+/*
|
|
+** A smaller version of VdbeOp used for the VdbeAddOpList() function because
|
|
+** it takes up less space.
|
|
+*/
|
|
+struct VdbeOpList {
|
|
+ u8 opcode; /* What operation to perform */
|
|
+ signed char p1; /* First operand */
|
|
+ short int p2; /* Second parameter (often the jump destination) */
|
|
+ char *p3; /* Third parameter */
|
|
+};
|
|
+typedef struct VdbeOpList VdbeOpList;
|
|
+
|
|
+/*
|
|
+** Allowed values of VdbeOp.p3type
|
|
+*/
|
|
+#define P3_NOTUSED 0 /* The P3 parameter is not used */
|
|
+#define P3_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */
|
|
+#define P3_STATIC (-2) /* Pointer to a static string */
|
|
+#define P3_POINTER (-3) /* P3 is a pointer to some structure or object */
|
|
+
|
|
+/*
|
|
+** The following macro converts a relative address in the p2 field
|
|
+** of a VdbeOp structure into a negative number so that
|
|
+** sqliteVdbeAddOpList() knows that the address is relative. Calling
|
|
+** the macro again restores the address.
|
|
+*/
|
|
+#define ADDR(X) (-1-(X))
|
|
+
|
|
+/*
|
|
+** The makefile scans the vdbe.c source file and creates the "opcodes.h"
|
|
+** header file that defines a number for each opcode used by the VDBE.
|
|
+*/
|
|
+#include "opcodes.h"
|
|
+
|
|
+/*
|
|
+** Prototypes for the VDBE interface. See comments on the implementation
|
|
+** for a description of what each of these routines does.
|
|
+*/
|
|
+Vdbe *sqliteVdbeCreate(sqlite*);
|
|
+void sqliteVdbeCreateCallback(Vdbe*, int*);
|
|
+int sqliteVdbeAddOp(Vdbe*,int,int,int);
|
|
+int sqliteVdbeOp3(Vdbe*,int,int,int,const char *zP3,int);
|
|
+int sqliteVdbeCode(Vdbe*,...);
|
|
+int sqliteVdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
|
|
+void sqliteVdbeChangeP1(Vdbe*, int addr, int P1);
|
|
+void sqliteVdbeChangeP2(Vdbe*, int addr, int P2);
|
|
+void sqliteVdbeChangeP3(Vdbe*, int addr, const char *zP1, int N);
|
|
+void sqliteVdbeDequoteP3(Vdbe*, int addr);
|
|
+int sqliteVdbeFindOp(Vdbe*, int, int);
|
|
+VdbeOp *sqliteVdbeGetOp(Vdbe*, int);
|
|
+int sqliteVdbeMakeLabel(Vdbe*);
|
|
+void sqliteVdbeDelete(Vdbe*);
|
|
+void sqliteVdbeMakeReady(Vdbe*,int,int);
|
|
+int sqliteVdbeExec(Vdbe*);
|
|
+int sqliteVdbeList(Vdbe*);
|
|
+int sqliteVdbeFinalize(Vdbe*,char**);
|
|
+void sqliteVdbeResolveLabel(Vdbe*, int);
|
|
+int sqliteVdbeCurrentAddr(Vdbe*);
|
|
+void sqliteVdbeTrace(Vdbe*,FILE*);
|
|
+void sqliteVdbeCompressSpace(Vdbe*,int);
|
|
+int sqliteVdbeReset(Vdbe*,char **);
|
|
+int sqliteVdbeSetVariables(Vdbe*,int,const char**);
|
|
+
|
|
+#endif
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/vdbeInt.h
|
|
@@ -0,0 +1,303 @@
|
|
+/*
|
|
+** 2003 September 6
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This is the header file for information that is private to the
|
|
+** VDBE. This information used to all be at the top of the single
|
|
+** source code file "vdbe.c". When that file became too big (over
|
|
+** 6000 lines long) it was split up into several smaller files and
|
|
+** this header information was factored out.
|
|
+*/
|
|
+
|
|
+/*
|
|
+** When converting from the native format to the key format and back
|
|
+** again, in addition to changing the byte order we invert the high-order
|
|
+** bit of the most significant byte. This causes negative numbers to
|
|
+** sort before positive numbers in the memcmp() function.
|
|
+*/
|
|
+#define keyToInt(X) (sqliteVdbeByteSwap(X) ^ 0x80000000)
|
|
+#define intToKey(X) (sqliteVdbeByteSwap((X) ^ 0x80000000))
|
|
+
|
|
+/*
|
|
+** The makefile scans this source file and creates the following
|
|
+** array of string constants which are the names of all VDBE opcodes.
|
|
+** This array is defined in a separate source code file named opcode.c
|
|
+** which is automatically generated by the makefile.
|
|
+*/
|
|
+extern char *sqliteOpcodeNames[];
|
|
+
|
|
+/*
|
|
+** SQL is translated into a sequence of instructions to be
|
|
+** executed by a virtual machine. Each instruction is an instance
|
|
+** of the following structure.
|
|
+*/
|
|
+typedef struct VdbeOp Op;
|
|
+
|
|
+/*
|
|
+** Boolean values
|
|
+*/
|
|
+typedef unsigned char Bool;
|
|
+
|
|
+/*
|
|
+** A cursor is a pointer into a single BTree within a database file.
|
|
+** The cursor can seek to a BTree entry with a particular key, or
|
|
+** loop over all entries of the Btree. You can also insert new BTree
|
|
+** entries or retrieve the key or data from the entry that the cursor
|
|
+** is currently pointing to.
|
|
+**
|
|
+** Every cursor that the virtual machine has open is represented by an
|
|
+** instance of the following structure.
|
|
+**
|
|
+** If the Cursor.isTriggerRow flag is set it means that this cursor is
|
|
+** really a single row that represents the NEW or OLD pseudo-table of
|
|
+** a row trigger. The data for the row is stored in Cursor.pData and
|
|
+** the rowid is in Cursor.iKey.
|
|
+*/
|
|
+struct Cursor {
|
|
+ BtCursor *pCursor; /* The cursor structure of the backend */
|
|
+ int lastRecno; /* Last recno from a Next or NextIdx operation */
|
|
+ int nextRowid; /* Next rowid returned by OP_NewRowid */
|
|
+ Bool recnoIsValid; /* True if lastRecno is valid */
|
|
+ Bool keyAsData; /* The OP_Column command works on key instead of data */
|
|
+ Bool atFirst; /* True if pointing to first entry */
|
|
+ Bool useRandomRowid; /* Generate new record numbers semi-randomly */
|
|
+ Bool nullRow; /* True if pointing to a row with no data */
|
|
+ Bool nextRowidValid; /* True if the nextRowid field is valid */
|
|
+ Bool pseudoTable; /* This is a NEW or OLD pseudo-tables of a trigger */
|
|
+ Bool deferredMoveto; /* A call to sqliteBtreeMoveto() is needed */
|
|
+ int movetoTarget; /* Argument to the deferred sqliteBtreeMoveto() */
|
|
+ Btree *pBt; /* Separate file holding temporary table */
|
|
+ int nData; /* Number of bytes in pData */
|
|
+ char *pData; /* Data for a NEW or OLD pseudo-table */
|
|
+ int iKey; /* Key for the NEW or OLD pseudo-table row */
|
|
+};
|
|
+typedef struct Cursor Cursor;
|
|
+
|
|
+/*
|
|
+** A sorter builds a list of elements to be sorted. Each element of
|
|
+** the list is an instance of the following structure.
|
|
+*/
|
|
+typedef struct Sorter Sorter;
|
|
+struct Sorter {
|
|
+ int nKey; /* Number of bytes in the key */
|
|
+ char *zKey; /* The key by which we will sort */
|
|
+ int nData; /* Number of bytes in the data */
|
|
+ char *pData; /* The data associated with this key */
|
|
+ Sorter *pNext; /* Next in the list */
|
|
+};
|
|
+
|
|
+/*
|
|
+** Number of buckets used for merge-sort.
|
|
+*/
|
|
+#define NSORT 30
|
|
+
|
|
+/*
|
|
+** Number of bytes of string storage space available to each stack
|
|
+** layer without having to malloc. NBFS is short for Number of Bytes
|
|
+** For Strings.
|
|
+*/
|
|
+#define NBFS 32
|
|
+
|
|
+/*
|
|
+** A single level of the stack or a single memory cell
|
|
+** is an instance of the following structure.
|
|
+*/
|
|
+struct Mem {
|
|
+ int i; /* Integer value */
|
|
+ int n; /* Number of characters in string value, including '\0' */
|
|
+ int flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
|
|
+ double r; /* Real value */
|
|
+ char *z; /* String value */
|
|
+ char zShort[NBFS]; /* Space for short strings */
|
|
+};
|
|
+typedef struct Mem Mem;
|
|
+
|
|
+/*
|
|
+** Allowed values for Mem.flags
|
|
+*/
|
|
+#define MEM_Null 0x0001 /* Value is NULL */
|
|
+#define MEM_Str 0x0002 /* Value is a string */
|
|
+#define MEM_Int 0x0004 /* Value is an integer */
|
|
+#define MEM_Real 0x0008 /* Value is a real number */
|
|
+#define MEM_Dyn 0x0010 /* Need to call sqliteFree() on Mem.z */
|
|
+#define MEM_Static 0x0020 /* Mem.z points to a static string */
|
|
+#define MEM_Ephem 0x0040 /* Mem.z points to an ephemeral string */
|
|
+#define MEM_Short 0x0080 /* Mem.z points to Mem.zShort */
|
|
+
|
|
+/* The following MEM_ value appears only in AggElem.aMem.s.flag fields.
|
|
+** It indicates that the corresponding AggElem.aMem.z points to a
|
|
+** aggregate function context that needs to be finalized.
|
|
+*/
|
|
+#define MEM_AggCtx 0x0100 /* Mem.z points to an agg function context */
|
|
+
|
|
+/*
|
|
+** The "context" argument for a installable function. A pointer to an
|
|
+** instance of this structure is the first argument to the routines used
|
|
+** implement the SQL functions.
|
|
+**
|
|
+** There is a typedef for this structure in sqlite.h. So all routines,
|
|
+** even the public interface to SQLite, can use a pointer to this structure.
|
|
+** But this file is the only place where the internal details of this
|
|
+** structure are known.
|
|
+**
|
|
+** This structure is defined inside of vdbe.c because it uses substructures
|
|
+** (Mem) which are only defined there.
|
|
+*/
|
|
+struct sqlite_func {
|
|
+ FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */
|
|
+ Mem s; /* The return value is stored here */
|
|
+ void *pAgg; /* Aggregate context */
|
|
+ u8 isError; /* Set to true for an error */
|
|
+ u8 isStep; /* Current in the step function */
|
|
+ int cnt; /* Number of times that the step function has been called */
|
|
+};
|
|
+
|
|
+/*
|
|
+** An Agg structure describes an Aggregator. Each Agg consists of
|
|
+** zero or more Aggregator elements (AggElem). Each AggElem contains
|
|
+** a key and one or more values. The values are used in processing
|
|
+** aggregate functions in a SELECT. The key is used to implement
|
|
+** the GROUP BY clause of a select.
|
|
+*/
|
|
+typedef struct Agg Agg;
|
|
+typedef struct AggElem AggElem;
|
|
+struct Agg {
|
|
+ int nMem; /* Number of values stored in each AggElem */
|
|
+ AggElem *pCurrent; /* The AggElem currently in focus */
|
|
+ HashElem *pSearch; /* The hash element for pCurrent */
|
|
+ Hash hash; /* Hash table of all aggregate elements */
|
|
+ FuncDef **apFunc; /* Information about aggregate functions */
|
|
+};
|
|
+struct AggElem {
|
|
+ char *zKey; /* The key to this AggElem */
|
|
+ int nKey; /* Number of bytes in the key, including '\0' at end */
|
|
+ Mem aMem[1]; /* The values for this AggElem */
|
|
+};
|
|
+
|
|
+/*
|
|
+** A Set structure is used for quick testing to see if a value
|
|
+** is part of a small set. Sets are used to implement code like
|
|
+** this:
|
|
+** x.y IN ('hi','hoo','hum')
|
|
+*/
|
|
+typedef struct Set Set;
|
|
+struct Set {
|
|
+ Hash hash; /* A set is just a hash table */
|
|
+ HashElem *prev; /* Previously accessed hash elemen */
|
|
+};
|
|
+
|
|
+/*
|
|
+** A Keylist is a bunch of keys into a table. The keylist can
|
|
+** grow without bound. The keylist stores the ROWIDs of database
|
|
+** records that need to be deleted or updated.
|
|
+*/
|
|
+typedef struct Keylist Keylist;
|
|
+struct Keylist {
|
|
+ int nKey; /* Number of slots in aKey[] */
|
|
+ int nUsed; /* Next unwritten slot in aKey[] */
|
|
+ int nRead; /* Next unread slot in aKey[] */
|
|
+ Keylist *pNext; /* Next block of keys */
|
|
+ int aKey[1]; /* One or more keys. Extra space allocated as needed */
|
|
+};
|
|
+
|
|
+/*
|
|
+** A Context stores the last insert rowid, the last statement change count,
|
|
+** and the current statement change count (i.e. changes since last statement).
|
|
+** Elements of Context structure type make up the ContextStack, which is
|
|
+** updated by the ContextPush and ContextPop opcodes (used by triggers)
|
|
+*/
|
|
+typedef struct Context Context;
|
|
+struct Context {
|
|
+ int lastRowid; /* Last insert rowid (from db->lastRowid) */
|
|
+ int lsChange; /* Last statement change count (from db->lsChange) */
|
|
+ int csChange; /* Current statement change count (from db->csChange) */
|
|
+};
|
|
+
|
|
+/*
|
|
+** An instance of the virtual machine. This structure contains the complete
|
|
+** state of the virtual machine.
|
|
+**
|
|
+** The "sqlite_vm" structure pointer that is returned by sqlite_compile()
|
|
+** is really a pointer to an instance of this structure.
|
|
+*/
|
|
+struct Vdbe {
|
|
+ sqlite *db; /* The whole database */
|
|
+ Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */
|
|
+ FILE *trace; /* Write an execution trace here, if not NULL */
|
|
+ int nOp; /* Number of instructions in the program */
|
|
+ int nOpAlloc; /* Number of slots allocated for aOp[] */
|
|
+ Op *aOp; /* Space to hold the virtual machine's program */
|
|
+ int nLabel; /* Number of labels used */
|
|
+ int nLabelAlloc; /* Number of slots allocated in aLabel[] */
|
|
+ int *aLabel; /* Space to hold the labels */
|
|
+ Mem *aStack; /* The operand stack, except string values */
|
|
+ Mem *pTos; /* Top entry in the operand stack */
|
|
+ char **zArgv; /* Text values used by the callback */
|
|
+ char **azColName; /* Becomes the 4th parameter to callbacks */
|
|
+ int nCursor; /* Number of slots in aCsr[] */
|
|
+ Cursor *aCsr; /* One element of this array for each open cursor */
|
|
+ Sorter *pSort; /* A linked list of objects to be sorted */
|
|
+ FILE *pFile; /* At most one open file handler */
|
|
+ int nField; /* Number of file fields */
|
|
+ char **azField; /* Data for each file field */
|
|
+ int nVar; /* Number of entries in azVariable[] */
|
|
+ char **azVar; /* Values for the OP_Variable opcode */
|
|
+ int *anVar; /* Length of each value in azVariable[] */
|
|
+ u8 *abVar; /* TRUE if azVariable[i] needs to be sqliteFree()ed */
|
|
+ char *zLine; /* A single line from the input file */
|
|
+ int nLineAlloc; /* Number of spaces allocated for zLine */
|
|
+ int magic; /* Magic number for sanity checking */
|
|
+ int nMem; /* Number of memory locations currently allocated */
|
|
+ Mem *aMem; /* The memory locations */
|
|
+ Agg agg; /* Aggregate information */
|
|
+ int nSet; /* Number of sets allocated */
|
|
+ Set *aSet; /* An array of sets */
|
|
+ int nCallback; /* Number of callbacks invoked so far */
|
|
+ Keylist *pList; /* A list of ROWIDs */
|
|
+ int keylistStackDepth; /* The size of the "keylist" stack */
|
|
+ Keylist **keylistStack; /* The stack used by opcodes ListPush & ListPop */
|
|
+ int contextStackDepth; /* The size of the "context" stack */
|
|
+ Context *contextStack; /* Stack used by opcodes ContextPush & ContextPop*/
|
|
+ int pc; /* The program counter */
|
|
+ int rc; /* Value to return */
|
|
+ unsigned uniqueCnt; /* Used by OP_MakeRecord when P2!=0 */
|
|
+ int errorAction; /* Recovery action to do in case of an error */
|
|
+ int undoTransOnError; /* If error, either ROLLBACK or COMMIT */
|
|
+ int inTempTrans; /* True if temp database is transactioned */
|
|
+ int returnStack[100]; /* Return address stack for OP_Gosub & OP_Return */
|
|
+ int returnDepth; /* Next unused element in returnStack[] */
|
|
+ int nResColumn; /* Number of columns in one row of the result set */
|
|
+ char **azResColumn; /* Values for one row of result */
|
|
+ int popStack; /* Pop the stack this much on entry to VdbeExec() */
|
|
+ char *zErrMsg; /* Error message written here */
|
|
+ u8 explain; /* True if EXPLAIN present on SQL command */
|
|
+};
|
|
+
|
|
+/*
|
|
+** The following are allowed values for Vdbe.magic
|
|
+*/
|
|
+#define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */
|
|
+#define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */
|
|
+#define VDBE_MAGIC_HALT 0x519c2973 /* VDBE has completed execution */
|
|
+#define VDBE_MAGIC_DEAD 0xb606c3c8 /* The VDBE has been deallocated */
|
|
+
|
|
+/*
|
|
+** Function prototypes
|
|
+*/
|
|
+void sqliteVdbeCleanupCursor(Cursor*);
|
|
+void sqliteVdbeSorterReset(Vdbe*);
|
|
+void sqliteVdbeAggReset(Agg*);
|
|
+void sqliteVdbeKeylistFree(Keylist*);
|
|
+void sqliteVdbePopStack(Vdbe*,int);
|
|
+int sqliteVdbeCursorMoveto(Cursor*);
|
|
+int sqliteVdbeByteSwap(int);
|
|
+#if !defined(NDEBUG) || defined(VDBE_PROFILE)
|
|
+void sqliteVdbePrintOp(FILE*, int, Op*);
|
|
+#endif
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/src/where.c
|
|
@@ -0,0 +1,1235 @@
|
|
+/*
|
|
+** 2001 September 15
|
|
+**
|
|
+** The author disclaims copyright to this source code. In place of
|
|
+** a legal notice, here is a blessing:
|
|
+**
|
|
+** May you do good and not evil.
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
+** May you share freely, never taking more than you give.
|
|
+**
|
|
+*************************************************************************
|
|
+** This module contains C code that generates VDBE code used to process
|
|
+** the WHERE clause of SQL statements.
|
|
+**
|
|
+** $Id$
|
|
+*/
|
|
+#include "sqliteInt.h"
|
|
+
|
|
+/*
|
|
+** The query generator uses an array of instances of this structure to
|
|
+** help it analyze the subexpressions of the WHERE clause. Each WHERE
|
|
+** clause subexpression is separated from the others by an AND operator.
|
|
+*/
|
|
+typedef struct ExprInfo ExprInfo;
|
|
+struct ExprInfo {
|
|
+ Expr *p; /* Pointer to the subexpression */
|
|
+ u8 indexable; /* True if this subexprssion is usable by an index */
|
|
+ short int idxLeft; /* p->pLeft is a column in this table number. -1 if
|
|
+ ** p->pLeft is not the column of any table */
|
|
+ short int idxRight; /* p->pRight is a column in this table number. -1 if
|
|
+ ** p->pRight is not the column of any table */
|
|
+ unsigned prereqLeft; /* Bitmask of tables referenced by p->pLeft */
|
|
+ unsigned prereqRight; /* Bitmask of tables referenced by p->pRight */
|
|
+ unsigned prereqAll; /* Bitmask of tables referenced by p */
|
|
+};
|
|
+
|
|
+/*
|
|
+** An instance of the following structure keeps track of a mapping
|
|
+** between VDBE cursor numbers and bitmasks. The VDBE cursor numbers
|
|
+** are small integers contained in SrcList_item.iCursor and Expr.iTable
|
|
+** fields. For any given WHERE clause, we want to track which cursors
|
|
+** are being used, so we assign a single bit in a 32-bit word to track
|
|
+** that cursor. Then a 32-bit integer is able to show the set of all
|
|
+** cursors being used.
|
|
+*/
|
|
+typedef struct ExprMaskSet ExprMaskSet;
|
|
+struct ExprMaskSet {
|
|
+ int n; /* Number of assigned cursor values */
|
|
+ int ix[31]; /* Cursor assigned to each bit */
|
|
+};
|
|
+
|
|
+/*
|
|
+** Determine the number of elements in an array.
|
|
+*/
|
|
+#define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0]))
|
|
+
|
|
+/*
|
|
+** This routine is used to divide the WHERE expression into subexpressions
|
|
+** separated by the AND operator.
|
|
+**
|
|
+** aSlot[] is an array of subexpressions structures.
|
|
+** There are nSlot spaces left in this array. This routine attempts to
|
|
+** split pExpr into subexpressions and fills aSlot[] with those subexpressions.
|
|
+** The return value is the number of slots filled.
|
|
+*/
|
|
+static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){
|
|
+ int cnt = 0;
|
|
+ if( pExpr==0 || nSlot<1 ) return 0;
|
|
+ if( nSlot==1 || pExpr->op!=TK_AND ){
|
|
+ aSlot[0].p = pExpr;
|
|
+ return 1;
|
|
+ }
|
|
+ if( pExpr->pLeft->op!=TK_AND ){
|
|
+ aSlot[0].p = pExpr->pLeft;
|
|
+ cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight);
|
|
+ }else{
|
|
+ cnt = exprSplit(nSlot, aSlot, pExpr->pLeft);
|
|
+ cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight);
|
|
+ }
|
|
+ return cnt;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Initialize an expression mask set
|
|
+*/
|
|
+#define initMaskSet(P) memset(P, 0, sizeof(*P))
|
|
+
|
|
+/*
|
|
+** Return the bitmask for the given cursor. Assign a new bitmask
|
|
+** if this is the first time the cursor has been seen.
|
|
+*/
|
|
+static int getMask(ExprMaskSet *pMaskSet, int iCursor){
|
|
+ int i;
|
|
+ for(i=0; i<pMaskSet->n; i++){
|
|
+ if( pMaskSet->ix[i]==iCursor ) return 1<<i;
|
|
+ }
|
|
+ if( i==pMaskSet->n && i<ARRAYSIZE(pMaskSet->ix) ){
|
|
+ pMaskSet->n++;
|
|
+ pMaskSet->ix[i] = iCursor;
|
|
+ return 1<<i;
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Destroy an expression mask set
|
|
+*/
|
|
+#define freeMaskSet(P) /* NO-OP */
|
|
+
|
|
+/*
|
|
+** This routine walks (recursively) an expression tree and generates
|
|
+** a bitmask indicating which tables are used in that expression
|
|
+** tree.
|
|
+**
|
|
+** In order for this routine to work, the calling function must have
|
|
+** previously invoked sqliteExprResolveIds() on the expression. See
|
|
+** the header comment on that routine for additional information.
|
|
+** The sqliteExprResolveIds() routines looks for column names and
|
|
+** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
|
|
+** the VDBE cursor number of the table.
|
|
+*/
|
|
+static int exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
|
|
+ unsigned int mask = 0;
|
|
+ if( p==0 ) return 0;
|
|
+ if( p->op==TK_COLUMN ){
|
|
+ mask = getMask(pMaskSet, p->iTable);
|
|
+ if( mask==0 ) mask = -1;
|
|
+ return mask;
|
|
+ }
|
|
+ if( p->pRight ){
|
|
+ mask = exprTableUsage(pMaskSet, p->pRight);
|
|
+ }
|
|
+ if( p->pLeft ){
|
|
+ mask |= exprTableUsage(pMaskSet, p->pLeft);
|
|
+ }
|
|
+ if( p->pList ){
|
|
+ int i;
|
|
+ for(i=0; i<p->pList->nExpr; i++){
|
|
+ mask |= exprTableUsage(pMaskSet, p->pList->a[i].pExpr);
|
|
+ }
|
|
+ }
|
|
+ return mask;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Return TRUE if the given operator is one of the operators that is
|
|
+** allowed for an indexable WHERE clause. The allowed operators are
|
|
+** "=", "<", ">", "<=", ">=", and "IN".
|
|
+*/
|
|
+static int allowedOp(int op){
|
|
+ switch( op ){
|
|
+ case TK_LT:
|
|
+ case TK_LE:
|
|
+ case TK_GT:
|
|
+ case TK_GE:
|
|
+ case TK_EQ:
|
|
+ case TK_IN:
|
|
+ return 1;
|
|
+ default:
|
|
+ return 0;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** The input to this routine is an ExprInfo structure with only the
|
|
+** "p" field filled in. The job of this routine is to analyze the
|
|
+** subexpression and populate all the other fields of the ExprInfo
|
|
+** structure.
|
|
+*/
|
|
+static void exprAnalyze(ExprMaskSet *pMaskSet, ExprInfo *pInfo){
|
|
+ Expr *pExpr = pInfo->p;
|
|
+ pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
|
|
+ pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
|
|
+ pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr);
|
|
+ pInfo->indexable = 0;
|
|
+ pInfo->idxLeft = -1;
|
|
+ pInfo->idxRight = -1;
|
|
+ if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){
|
|
+ if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){
|
|
+ pInfo->idxRight = pExpr->pRight->iTable;
|
|
+ pInfo->indexable = 1;
|
|
+ }
|
|
+ if( pExpr->pLeft->op==TK_COLUMN ){
|
|
+ pInfo->idxLeft = pExpr->pLeft->iTable;
|
|
+ pInfo->indexable = 1;
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
|
|
+** left-most table in the FROM clause of that same SELECT statement and
|
|
+** the table has a cursor number of "base".
|
|
+**
|
|
+** This routine attempts to find an index for pTab that generates the
|
|
+** correct record sequence for the given ORDER BY clause. The return value
|
|
+** is a pointer to an index that does the job. NULL is returned if the
|
|
+** table has no index that will generate the correct sort order.
|
|
+**
|
|
+** If there are two or more indices that generate the correct sort order
|
|
+** and pPreferredIdx is one of those indices, then return pPreferredIdx.
|
|
+**
|
|
+** nEqCol is the number of columns of pPreferredIdx that are used as
|
|
+** equality constraints. Any index returned must have exactly this same
|
|
+** set of columns. The ORDER BY clause only matches index columns beyond the
|
|
+** the first nEqCol columns.
|
|
+**
|
|
+** All terms of the ORDER BY clause must be either ASC or DESC. The
|
|
+** *pbRev value is set to 1 if the ORDER BY clause is all DESC and it is
|
|
+** set to 0 if the ORDER BY clause is all ASC.
|
|
+*/
|
|
+static Index *findSortingIndex(
|
|
+ Table *pTab, /* The table to be sorted */
|
|
+ int base, /* Cursor number for pTab */
|
|
+ ExprList *pOrderBy, /* The ORDER BY clause */
|
|
+ Index *pPreferredIdx, /* Use this index, if possible and not NULL */
|
|
+ int nEqCol, /* Number of index columns used with == constraints */
|
|
+ int *pbRev /* Set to 1 if ORDER BY is DESC */
|
|
+){
|
|
+ int i, j;
|
|
+ Index *pMatch;
|
|
+ Index *pIdx;
|
|
+ int sortOrder;
|
|
+
|
|
+ assert( pOrderBy!=0 );
|
|
+ assert( pOrderBy->nExpr>0 );
|
|
+ sortOrder = pOrderBy->a[0].sortOrder & SQLITE_SO_DIRMASK;
|
|
+ for(i=0; i<pOrderBy->nExpr; i++){
|
|
+ Expr *p;
|
|
+ if( (pOrderBy->a[i].sortOrder & SQLITE_SO_DIRMASK)!=sortOrder ){
|
|
+ /* Indices can only be used if all ORDER BY terms are either
|
|
+ ** DESC or ASC. Indices cannot be used on a mixture. */
|
|
+ return 0;
|
|
+ }
|
|
+ if( (pOrderBy->a[i].sortOrder & SQLITE_SO_TYPEMASK)!=SQLITE_SO_UNK ){
|
|
+ /* Do not sort by index if there is a COLLATE clause */
|
|
+ return 0;
|
|
+ }
|
|
+ p = pOrderBy->a[i].pExpr;
|
|
+ if( p->op!=TK_COLUMN || p->iTable!=base ){
|
|
+ /* Can not use an index sort on anything that is not a column in the
|
|
+ ** left-most table of the FROM clause */
|
|
+ return 0;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* If we get this far, it means the ORDER BY clause consists only of
|
|
+ ** ascending columns in the left-most table of the FROM clause. Now
|
|
+ ** check for a matching index.
|
|
+ */
|
|
+ pMatch = 0;
|
|
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
+ int nExpr = pOrderBy->nExpr;
|
|
+ if( pIdx->nColumn < nEqCol || pIdx->nColumn < nExpr ) continue;
|
|
+ for(i=j=0; i<nEqCol; i++){
|
|
+ if( pPreferredIdx->aiColumn[i]!=pIdx->aiColumn[i] ) break;
|
|
+ if( j<nExpr && pOrderBy->a[j].pExpr->iColumn==pIdx->aiColumn[i] ){ j++; }
|
|
+ }
|
|
+ if( i<nEqCol ) continue;
|
|
+ for(i=0; i+j<nExpr; i++){
|
|
+ if( pOrderBy->a[i+j].pExpr->iColumn!=pIdx->aiColumn[i+nEqCol] ) break;
|
|
+ }
|
|
+ if( i+j>=nExpr ){
|
|
+ pMatch = pIdx;
|
|
+ if( pIdx==pPreferredIdx ) break;
|
|
+ }
|
|
+ }
|
|
+ if( pMatch && pbRev ){
|
|
+ *pbRev = sortOrder==SQLITE_SO_DESC;
|
|
+ }
|
|
+ return pMatch;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Disable a term in the WHERE clause. Except, do not disable the term
|
|
+** if it controls a LEFT OUTER JOIN and it did not originate in the ON
|
|
+** or USING clause of that join.
|
|
+**
|
|
+** Consider the term t2.z='ok' in the following queries:
|
|
+**
|
|
+** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
|
|
+** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
|
|
+** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
|
|
+**
|
|
+** The t2.z='ok' is disabled in the in (2) because it did not originate
|
|
+** in the ON clause. The term is disabled in (3) because it is not part
|
|
+** of a LEFT OUTER JOIN. In (1), the term is not disabled.
|
|
+**
|
|
+** Disabling a term causes that term to not be tested in the inner loop
|
|
+** of the join. Disabling is an optimization. We would get the correct
|
|
+** results if nothing were ever disabled, but joins might run a little
|
|
+** slower. The trick is to disable as much as we can without disabling
|
|
+** too much. If we disabled in (1), we'd get the wrong answer.
|
|
+** See ticket #813.
|
|
+*/
|
|
+static void disableTerm(WhereLevel *pLevel, Expr **ppExpr){
|
|
+ Expr *pExpr = *ppExpr;
|
|
+ if( pLevel->iLeftJoin==0 || ExprHasProperty(pExpr, EP_FromJoin) ){
|
|
+ *ppExpr = 0;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+** Generate the beginning of the loop used for WHERE clause processing.
|
|
+** The return value is a pointer to an (opaque) structure that contains
|
|
+** information needed to terminate the loop. Later, the calling routine
|
|
+** should invoke sqliteWhereEnd() with the return value of this function
|
|
+** in order to complete the WHERE clause processing.
|
|
+**
|
|
+** If an error occurs, this routine returns NULL.
|
|
+**
|
|
+** The basic idea is to do a nested loop, one loop for each table in
|
|
+** the FROM clause of a select. (INSERT and UPDATE statements are the
|
|
+** same as a SELECT with only a single table in the FROM clause.) For
|
|
+** example, if the SQL is this:
|
|
+**
|
|
+** SELECT * FROM t1, t2, t3 WHERE ...;
|
|
+**
|
|
+** Then the code generated is conceptually like the following:
|
|
+**
|
|
+** foreach row1 in t1 do \ Code generated
|
|
+** foreach row2 in t2 do |-- by sqliteWhereBegin()
|
|
+** foreach row3 in t3 do /
|
|
+** ...
|
|
+** end \ Code generated
|
|
+** end |-- by sqliteWhereEnd()
|
|
+** end /
|
|
+**
|
|
+** There are Btree cursors associated with each table. t1 uses cursor
|
|
+** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
|
|
+** And so forth. This routine generates code to open those VDBE cursors
|
|
+** and sqliteWhereEnd() generates the code to close them.
|
|
+**
|
|
+** If the WHERE clause is empty, the foreach loops must each scan their
|
|
+** entire tables. Thus a three-way join is an O(N^3) operation. But if
|
|
+** the tables have indices and there are terms in the WHERE clause that
|
|
+** refer to those indices, a complete table scan can be avoided and the
|
|
+** code will run much faster. Most of the work of this routine is checking
|
|
+** to see if there are indices that can be used to speed up the loop.
|
|
+**
|
|
+** Terms of the WHERE clause are also used to limit which rows actually
|
|
+** make it to the "..." in the middle of the loop. After each "foreach",
|
|
+** terms of the WHERE clause that use only terms in that loop and outer
|
|
+** loops are evaluated and if false a jump is made around all subsequent
|
|
+** inner loops (or around the "..." if the test occurs within the inner-
|
|
+** most loop)
|
|
+**
|
|
+** OUTER JOINS
|
|
+**
|
|
+** An outer join of tables t1 and t2 is conceptally coded as follows:
|
|
+**
|
|
+** foreach row1 in t1 do
|
|
+** flag = 0
|
|
+** foreach row2 in t2 do
|
|
+** start:
|
|
+** ...
|
|
+** flag = 1
|
|
+** end
|
|
+** if flag==0 then
|
|
+** move the row2 cursor to a null row
|
|
+** goto start
|
|
+** fi
|
|
+** end
|
|
+**
|
|
+** ORDER BY CLAUSE PROCESSING
|
|
+**
|
|
+** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
|
|
+** if there is one. If there is no ORDER BY clause or if this routine
|
|
+** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
|
|
+**
|
|
+** If an index can be used so that the natural output order of the table
|
|
+** scan is correct for the ORDER BY clause, then that index is used and
|
|
+** *ppOrderBy is set to NULL. This is an optimization that prevents an
|
|
+** unnecessary sort of the result set if an index appropriate for the
|
|
+** ORDER BY clause already exists.
|
|
+**
|
|
+** If the where clause loops cannot be arranged to provide the correct
|
|
+** output order, then the *ppOrderBy is unchanged.
|
|
+*/
|
|
+WhereInfo *sqliteWhereBegin(
|
|
+ Parse *pParse, /* The parser context */
|
|
+ SrcList *pTabList, /* A list of all tables to be scanned */
|
|
+ Expr *pWhere, /* The WHERE clause */
|
|
+ int pushKey, /* If TRUE, leave the table key on the stack */
|
|
+ ExprList **ppOrderBy /* An ORDER BY clause, or NULL */
|
|
+){
|
|
+ int i; /* Loop counter */
|
|
+ WhereInfo *pWInfo; /* Will become the return value of this function */
|
|
+ Vdbe *v = pParse->pVdbe; /* The virtual database engine */
|
|
+ int brk, cont = 0; /* Addresses used during code generation */
|
|
+ int nExpr; /* Number of subexpressions in the WHERE clause */
|
|
+ int loopMask; /* One bit set for each outer loop */
|
|
+ int haveKey; /* True if KEY is on the stack */
|
|
+ ExprMaskSet maskSet; /* The expression mask set */
|
|
+ int iDirectEq[32]; /* Term of the form ROWID==X for the N-th table */
|
|
+ int iDirectLt[32]; /* Term of the form ROWID<X or ROWID<=X */
|
|
+ int iDirectGt[32]; /* Term of the form ROWID>X or ROWID>=X */
|
|
+ ExprInfo aExpr[101]; /* The WHERE clause is divided into these expressions */
|
|
+
|
|
+ /* pushKey is only allowed if there is a single table (as in an INSERT or
|
|
+ ** UPDATE statement)
|
|
+ */
|
|
+ assert( pushKey==0 || pTabList->nSrc==1 );
|
|
+
|
|
+ /* Split the WHERE clause into separate subexpressions where each
|
|
+ ** subexpression is separated by an AND operator. If the aExpr[]
|
|
+ ** array fills up, the last entry might point to an expression which
|
|
+ ** contains additional unfactored AND operators.
|
|
+ */
|
|
+ initMaskSet(&maskSet);
|
|
+ memset(aExpr, 0, sizeof(aExpr));
|
|
+ nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
|
|
+ if( nExpr==ARRAYSIZE(aExpr) ){
|
|
+ sqliteErrorMsg(pParse, "WHERE clause too complex - no more "
|
|
+ "than %d terms allowed", (int)ARRAYSIZE(aExpr)-1);
|
|
+ return 0;
|
|
+ }
|
|
+
|
|
+ /* Allocate and initialize the WhereInfo structure that will become the
|
|
+ ** return value.
|
|
+ */
|
|
+ pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
|
|
+ if( sqlite_malloc_failed ){
|
|
+ sqliteFree(pWInfo);
|
|
+ return 0;
|
|
+ }
|
|
+ pWInfo->pParse = pParse;
|
|
+ pWInfo->pTabList = pTabList;
|
|
+ pWInfo->peakNTab = pWInfo->savedNTab = pParse->nTab;
|
|
+ pWInfo->iBreak = sqliteVdbeMakeLabel(v);
|
|
+
|
|
+ /* Special case: a WHERE clause that is constant. Evaluate the
|
|
+ ** expression and either jump over all of the code or fall thru.
|
|
+ */
|
|
+ if( pWhere && (pTabList->nSrc==0 || sqliteExprIsConstant(pWhere)) ){
|
|
+ sqliteExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
|
|
+ pWhere = 0;
|
|
+ }
|
|
+
|
|
+ /* Analyze all of the subexpressions.
|
|
+ */
|
|
+ for(i=0; i<nExpr; i++){
|
|
+ exprAnalyze(&maskSet, &aExpr[i]);
|
|
+
|
|
+ /* If we are executing a trigger body, remove all references to
|
|
+ ** new.* and old.* tables from the prerequisite masks.
|
|
+ */
|
|
+ if( pParse->trigStack ){
|
|
+ int x;
|
|
+ if( (x = pParse->trigStack->newIdx) >= 0 ){
|
|
+ int mask = ~getMask(&maskSet, x);
|
|
+ aExpr[i].prereqRight &= mask;
|
|
+ aExpr[i].prereqLeft &= mask;
|
|
+ aExpr[i].prereqAll &= mask;
|
|
+ }
|
|
+ if( (x = pParse->trigStack->oldIdx) >= 0 ){
|
|
+ int mask = ~getMask(&maskSet, x);
|
|
+ aExpr[i].prereqRight &= mask;
|
|
+ aExpr[i].prereqLeft &= mask;
|
|
+ aExpr[i].prereqAll &= mask;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Figure out what index to use (if any) for each nested loop.
|
|
+ ** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested
|
|
+ ** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner
|
|
+ ** loop.
|
|
+ **
|
|
+ ** If terms exist that use the ROWID of any table, then set the
|
|
+ ** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table
|
|
+ ** to the index of the term containing the ROWID. We always prefer
|
|
+ ** to use a ROWID which can directly access a table rather than an
|
|
+ ** index which requires reading an index first to get the rowid then
|
|
+ ** doing a second read of the actual database table.
|
|
+ **
|
|
+ ** Actually, if there are more than 32 tables in the join, only the
|
|
+ ** first 32 tables are candidates for indices. This is (again) due
|
|
+ ** to the limit of 32 bits in an integer bitmask.
|
|
+ */
|
|
+ loopMask = 0;
|
|
+ for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(iDirectEq); i++){
|
|
+ int j;
|
|
+ int iCur = pTabList->a[i].iCursor; /* The cursor for this table */
|
|
+ int mask = getMask(&maskSet, iCur); /* Cursor mask for this table */
|
|
+ Table *pTab = pTabList->a[i].pTab;
|
|
+ Index *pIdx;
|
|
+ Index *pBestIdx = 0;
|
|
+ int bestScore = 0;
|
|
+
|
|
+ /* Check to see if there is an expression that uses only the
|
|
+ ** ROWID field of this table. For terms of the form ROWID==expr
|
|
+ ** set iDirectEq[i] to the index of the term. For terms of the
|
|
+ ** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index.
|
|
+ ** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i].
|
|
+ **
|
|
+ ** (Added:) Treat ROWID IN expr like ROWID=expr.
|
|
+ */
|
|
+ pWInfo->a[i].iCur = -1;
|
|
+ iDirectEq[i] = -1;
|
|
+ iDirectLt[i] = -1;
|
|
+ iDirectGt[i] = -1;
|
|
+ for(j=0; j<nExpr; j++){
|
|
+ if( aExpr[j].idxLeft==iCur && aExpr[j].p->pLeft->iColumn<0
|
|
+ && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
|
|
+ switch( aExpr[j].p->op ){
|
|
+ case TK_IN:
|
|
+ case TK_EQ: iDirectEq[i] = j; break;
|
|
+ case TK_LE:
|
|
+ case TK_LT: iDirectLt[i] = j; break;
|
|
+ case TK_GE:
|
|
+ case TK_GT: iDirectGt[i] = j; break;
|
|
+ }
|
|
+ }
|
|
+ if( aExpr[j].idxRight==iCur && aExpr[j].p->pRight->iColumn<0
|
|
+ && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
|
|
+ switch( aExpr[j].p->op ){
|
|
+ case TK_EQ: iDirectEq[i] = j; break;
|
|
+ case TK_LE:
|
|
+ case TK_LT: iDirectGt[i] = j; break;
|
|
+ case TK_GE:
|
|
+ case TK_GT: iDirectLt[i] = j; break;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ if( iDirectEq[i]>=0 ){
|
|
+ loopMask |= mask;
|
|
+ pWInfo->a[i].pIdx = 0;
|
|
+ continue;
|
|
+ }
|
|
+
|
|
+ /* Do a search for usable indices. Leave pBestIdx pointing to
|
|
+ ** the "best" index. pBestIdx is left set to NULL if no indices
|
|
+ ** are usable.
|
|
+ **
|
|
+ ** The best index is determined as follows. For each of the
|
|
+ ** left-most terms that is fixed by an equality operator, add
|
|
+ ** 8 to the score. The right-most term of the index may be
|
|
+ ** constrained by an inequality. Add 1 if for an "x<..." constraint
|
|
+ ** and add 2 for an "x>..." constraint. Chose the index that
|
|
+ ** gives the best score.
|
|
+ **
|
|
+ ** This scoring system is designed so that the score can later be
|
|
+ ** used to determine how the index is used. If the score&7 is 0
|
|
+ ** then all constraints are equalities. If score&1 is not 0 then
|
|
+ ** there is an inequality used as a termination key. (ex: "x<...")
|
|
+ ** If score&2 is not 0 then there is an inequality used as the
|
|
+ ** start key. (ex: "x>..."). A score or 4 is the special case
|
|
+ ** of an IN operator constraint. (ex: "x IN ...").
|
|
+ **
|
|
+ ** The IN operator (as in "<expr> IN (...)") is treated the same as
|
|
+ ** an equality comparison except that it can only be used on the
|
|
+ ** left-most column of an index and other terms of the WHERE clause
|
|
+ ** cannot be used in conjunction with the IN operator to help satisfy
|
|
+ ** other columns of the index.
|
|
+ */
|
|
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
+ int eqMask = 0; /* Index columns covered by an x=... term */
|
|
+ int ltMask = 0; /* Index columns covered by an x<... term */
|
|
+ int gtMask = 0; /* Index columns covered by an x>... term */
|
|
+ int inMask = 0; /* Index columns covered by an x IN .. term */
|
|
+ int nEq, m, score;
|
|
+
|
|
+ if( pIdx->nColumn>32 ) continue; /* Ignore indices too many columns */
|
|
+ for(j=0; j<nExpr; j++){
|
|
+ if( aExpr[j].idxLeft==iCur
|
|
+ && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
|
|
+ int iColumn = aExpr[j].p->pLeft->iColumn;
|
|
+ int k;
|
|
+ for(k=0; k<pIdx->nColumn; k++){
|
|
+ if( pIdx->aiColumn[k]==iColumn ){
|
|
+ switch( aExpr[j].p->op ){
|
|
+ case TK_IN: {
|
|
+ if( k==0 ) inMask |= 1;
|
|
+ break;
|
|
+ }
|
|
+ case TK_EQ: {
|
|
+ eqMask |= 1<<k;
|
|
+ break;
|
|
+ }
|
|
+ case TK_LE:
|
|
+ case TK_LT: {
|
|
+ ltMask |= 1<<k;
|
|
+ break;
|
|
+ }
|
|
+ case TK_GE:
|
|
+ case TK_GT: {
|
|
+ gtMask |= 1<<k;
|
|
+ break;
|
|
+ }
|
|
+ default: {
|
|
+ /* CANT_HAPPEN */
|
|
+ assert( 0 );
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ if( aExpr[j].idxRight==iCur
|
|
+ && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
|
|
+ int iColumn = aExpr[j].p->pRight->iColumn;
|
|
+ int k;
|
|
+ for(k=0; k<pIdx->nColumn; k++){
|
|
+ if( pIdx->aiColumn[k]==iColumn ){
|
|
+ switch( aExpr[j].p->op ){
|
|
+ case TK_EQ: {
|
|
+ eqMask |= 1<<k;
|
|
+ break;
|
|
+ }
|
|
+ case TK_LE:
|
|
+ case TK_LT: {
|
|
+ gtMask |= 1<<k;
|
|
+ break;
|
|
+ }
|
|
+ case TK_GE:
|
|
+ case TK_GT: {
|
|
+ ltMask |= 1<<k;
|
|
+ break;
|
|
+ }
|
|
+ default: {
|
|
+ /* CANT_HAPPEN */
|
|
+ assert( 0 );
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* The following loop ends with nEq set to the number of columns
|
|
+ ** on the left of the index with == constraints.
|
|
+ */
|
|
+ for(nEq=0; nEq<pIdx->nColumn; nEq++){
|
|
+ m = (1<<(nEq+1))-1;
|
|
+ if( (m & eqMask)!=m ) break;
|
|
+ }
|
|
+ score = nEq*8; /* Base score is 8 times number of == constraints */
|
|
+ m = 1<<nEq;
|
|
+ if( m & ltMask ) score++; /* Increase score for a < constraint */
|
|
+ if( m & gtMask ) score+=2; /* Increase score for a > constraint */
|
|
+ if( score==0 && inMask ) score = 4; /* Default score for IN constraint */
|
|
+ if( score>bestScore ){
|
|
+ pBestIdx = pIdx;
|
|
+ bestScore = score;
|
|
+ }
|
|
+ }
|
|
+ pWInfo->a[i].pIdx = pBestIdx;
|
|
+ pWInfo->a[i].score = bestScore;
|
|
+ pWInfo->a[i].bRev = 0;
|
|
+ loopMask |= mask;
|
|
+ if( pBestIdx ){
|
|
+ pWInfo->a[i].iCur = pParse->nTab++;
|
|
+ pWInfo->peakNTab = pParse->nTab;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Check to see if the ORDER BY clause is or can be satisfied by the
|
|
+ ** use of an index on the first table.
|
|
+ */
|
|
+ if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){
|
|
+ Index *pSortIdx;
|
|
+ Index *pIdx;
|
|
+ Table *pTab;
|
|
+ int bRev = 0;
|
|
+
|
|
+ pTab = pTabList->a[0].pTab;
|
|
+ pIdx = pWInfo->a[0].pIdx;
|
|
+ if( pIdx && pWInfo->a[0].score==4 ){
|
|
+ /* If there is already an IN index on the left-most table,
|
|
+ ** it will not give the correct sort order.
|
|
+ ** So, pretend that no suitable index is found.
|
|
+ */
|
|
+ pSortIdx = 0;
|
|
+ }else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){
|
|
+ /* If the left-most column is accessed using its ROWID, then do
|
|
+ ** not try to sort by index.
|
|
+ */
|
|
+ pSortIdx = 0;
|
|
+ }else{
|
|
+ int nEqCol = (pWInfo->a[0].score+4)/8;
|
|
+ pSortIdx = findSortingIndex(pTab, pTabList->a[0].iCursor,
|
|
+ *ppOrderBy, pIdx, nEqCol, &bRev);
|
|
+ }
|
|
+ if( pSortIdx && (pIdx==0 || pIdx==pSortIdx) ){
|
|
+ if( pIdx==0 ){
|
|
+ pWInfo->a[0].pIdx = pSortIdx;
|
|
+ pWInfo->a[0].iCur = pParse->nTab++;
|
|
+ pWInfo->peakNTab = pParse->nTab;
|
|
+ }
|
|
+ pWInfo->a[0].bRev = bRev;
|
|
+ *ppOrderBy = 0;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Open all tables in the pTabList and all indices used by those tables.
|
|
+ */
|
|
+ for(i=0; i<pTabList->nSrc; i++){
|
|
+ Table *pTab;
|
|
+ Index *pIx;
|
|
+
|
|
+ pTab = pTabList->a[i].pTab;
|
|
+ if( pTab->isTransient || pTab->pSelect ) continue;
|
|
+ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
|
|
+ sqliteVdbeOp3(v, OP_OpenRead, pTabList->a[i].iCursor, pTab->tnum,
|
|
+ pTab->zName, P3_STATIC);
|
|
+ sqliteCodeVerifySchema(pParse, pTab->iDb);
|
|
+ if( (pIx = pWInfo->a[i].pIdx)!=0 ){
|
|
+ sqliteVdbeAddOp(v, OP_Integer, pIx->iDb, 0);
|
|
+ sqliteVdbeOp3(v, OP_OpenRead, pWInfo->a[i].iCur, pIx->tnum, pIx->zName,0);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Generate the code to do the search
|
|
+ */
|
|
+ loopMask = 0;
|
|
+ for(i=0; i<pTabList->nSrc; i++){
|
|
+ int j, k;
|
|
+ int iCur = pTabList->a[i].iCursor;
|
|
+ Index *pIdx;
|
|
+ WhereLevel *pLevel = &pWInfo->a[i];
|
|
+
|
|
+ /* If this is the right table of a LEFT OUTER JOIN, allocate and
|
|
+ ** initialize a memory cell that records if this table matches any
|
|
+ ** row of the left table of the join.
|
|
+ */
|
|
+ if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){
|
|
+ if( !pParse->nMem ) pParse->nMem++;
|
|
+ pLevel->iLeftJoin = pParse->nMem++;
|
|
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
|
|
+ }
|
|
+
|
|
+ pIdx = pLevel->pIdx;
|
|
+ pLevel->inOp = OP_Noop;
|
|
+ if( i<ARRAYSIZE(iDirectEq) && iDirectEq[i]>=0 ){
|
|
+ /* Case 1: We can directly reference a single row using an
|
|
+ ** equality comparison against the ROWID field. Or
|
|
+ ** we reference multiple rows using a "rowid IN (...)"
|
|
+ ** construct.
|
|
+ */
|
|
+ k = iDirectEq[i];
|
|
+ assert( k<nExpr );
|
|
+ assert( aExpr[k].p!=0 );
|
|
+ assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
|
|
+ brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
|
+ if( aExpr[k].idxLeft==iCur ){
|
|
+ Expr *pX = aExpr[k].p;
|
|
+ if( pX->op!=TK_IN ){
|
|
+ sqliteExprCode(pParse, aExpr[k].p->pRight);
|
|
+ }else if( pX->pList ){
|
|
+ sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
|
|
+ pLevel->inOp = OP_SetNext;
|
|
+ pLevel->inP1 = pX->iTable;
|
|
+ pLevel->inP2 = sqliteVdbeCurrentAddr(v);
|
|
+ }else{
|
|
+ assert( pX->pSelect );
|
|
+ sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
|
|
+ sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
|
|
+ pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
|
|
+ pLevel->inOp = OP_Next;
|
|
+ pLevel->inP1 = pX->iTable;
|
|
+ }
|
|
+ }else{
|
|
+ sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
|
+ }
|
|
+ disableTerm(pLevel, &aExpr[k].p);
|
|
+ cont = pLevel->cont = sqliteVdbeMakeLabel(v);
|
|
+ sqliteVdbeAddOp(v, OP_MustBeInt, 1, brk);
|
|
+ haveKey = 0;
|
|
+ sqliteVdbeAddOp(v, OP_NotExists, iCur, brk);
|
|
+ pLevel->op = OP_Noop;
|
|
+ }else if( pIdx!=0 && pLevel->score>0 && pLevel->score%4==0 ){
|
|
+ /* Case 2: There is an index and all terms of the WHERE clause that
|
|
+ ** refer to the index use the "==" or "IN" operators.
|
|
+ */
|
|
+ int start;
|
|
+ int testOp;
|
|
+ int nColumn = (pLevel->score+4)/8;
|
|
+ brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
|
+ for(j=0; j<nColumn; j++){
|
|
+ for(k=0; k<nExpr; k++){
|
|
+ Expr *pX = aExpr[k].p;
|
|
+ if( pX==0 ) continue;
|
|
+ if( aExpr[k].idxLeft==iCur
|
|
+ && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
|
|
+ && pX->pLeft->iColumn==pIdx->aiColumn[j]
|
|
+ ){
|
|
+ if( pX->op==TK_EQ ){
|
|
+ sqliteExprCode(pParse, pX->pRight);
|
|
+ disableTerm(pLevel, &aExpr[k].p);
|
|
+ break;
|
|
+ }
|
|
+ if( pX->op==TK_IN && nColumn==1 ){
|
|
+ if( pX->pList ){
|
|
+ sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
|
|
+ pLevel->inOp = OP_SetNext;
|
|
+ pLevel->inP1 = pX->iTable;
|
|
+ pLevel->inP2 = sqliteVdbeCurrentAddr(v);
|
|
+ }else{
|
|
+ assert( pX->pSelect );
|
|
+ sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
|
|
+ sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
|
|
+ pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
|
|
+ pLevel->inOp = OP_Next;
|
|
+ pLevel->inP1 = pX->iTable;
|
|
+ }
|
|
+ disableTerm(pLevel, &aExpr[k].p);
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ if( aExpr[k].idxRight==iCur
|
|
+ && aExpr[k].p->op==TK_EQ
|
|
+ && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
|
|
+ && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
|
|
+ ){
|
|
+ sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
|
+ disableTerm(pLevel, &aExpr[k].p);
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ pLevel->iMem = pParse->nMem++;
|
|
+ cont = pLevel->cont = sqliteVdbeMakeLabel(v);
|
|
+ sqliteVdbeAddOp(v, OP_NotNull, -nColumn, sqliteVdbeCurrentAddr(v)+3);
|
|
+ sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, brk);
|
|
+ sqliteVdbeAddOp(v, OP_MakeKey, nColumn, 0);
|
|
+ sqliteAddIdxKeyType(v, pIdx);
|
|
+ if( nColumn==pIdx->nColumn || pLevel->bRev ){
|
|
+ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
|
|
+ testOp = OP_IdxGT;
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
|
+ testOp = OP_IdxGE;
|
|
+ }
|
|
+ if( pLevel->bRev ){
|
|
+ /* Scan in reverse order */
|
|
+ sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
|
|
+ sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk);
|
|
+ start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
|
+ sqliteVdbeAddOp(v, OP_IdxLT, pLevel->iCur, brk);
|
|
+ pLevel->op = OP_Prev;
|
|
+ }else{
|
|
+ /* Scan in the forward order */
|
|
+ sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
|
|
+ start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
|
+ sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
|
|
+ pLevel->op = OP_Next;
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0);
|
|
+ sqliteVdbeAddOp(v, OP_IdxIsNull, nColumn, cont);
|
|
+ sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
|
|
+ if( i==pTabList->nSrc-1 && pushKey ){
|
|
+ haveKey = 1;
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
|
|
+ haveKey = 0;
|
|
+ }
|
|
+ pLevel->p1 = pLevel->iCur;
|
|
+ pLevel->p2 = start;
|
|
+ }else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){
|
|
+ /* Case 3: We have an inequality comparison against the ROWID field.
|
|
+ */
|
|
+ int testOp = OP_Noop;
|
|
+ int start;
|
|
+
|
|
+ brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
|
+ cont = pLevel->cont = sqliteVdbeMakeLabel(v);
|
|
+ if( iDirectGt[i]>=0 ){
|
|
+ k = iDirectGt[i];
|
|
+ assert( k<nExpr );
|
|
+ assert( aExpr[k].p!=0 );
|
|
+ assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
|
|
+ if( aExpr[k].idxLeft==iCur ){
|
|
+ sqliteExprCode(pParse, aExpr[k].p->pRight);
|
|
+ }else{
|
|
+ sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_ForceInt,
|
|
+ aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT, brk);
|
|
+ sqliteVdbeAddOp(v, OP_MoveTo, iCur, brk);
|
|
+ disableTerm(pLevel, &aExpr[k].p);
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_Rewind, iCur, brk);
|
|
+ }
|
|
+ if( iDirectLt[i]>=0 ){
|
|
+ k = iDirectLt[i];
|
|
+ assert( k<nExpr );
|
|
+ assert( aExpr[k].p!=0 );
|
|
+ assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
|
|
+ if( aExpr[k].idxLeft==iCur ){
|
|
+ sqliteExprCode(pParse, aExpr[k].p->pRight);
|
|
+ }else{
|
|
+ sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
|
+ }
|
|
+ /* sqliteVdbeAddOp(v, OP_MustBeInt, 0, sqliteVdbeCurrentAddr(v)+1); */
|
|
+ pLevel->iMem = pParse->nMem++;
|
|
+ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
|
+ if( aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT ){
|
|
+ testOp = OP_Ge;
|
|
+ }else{
|
|
+ testOp = OP_Gt;
|
|
+ }
|
|
+ disableTerm(pLevel, &aExpr[k].p);
|
|
+ }
|
|
+ start = sqliteVdbeCurrentAddr(v);
|
|
+ pLevel->op = OP_Next;
|
|
+ pLevel->p1 = iCur;
|
|
+ pLevel->p2 = start;
|
|
+ if( testOp!=OP_Noop ){
|
|
+ sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
|
|
+ sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
|
+ sqliteVdbeAddOp(v, testOp, 0, brk);
|
|
+ }
|
|
+ haveKey = 0;
|
|
+ }else if( pIdx==0 ){
|
|
+ /* Case 4: There is no usable index. We must do a complete
|
|
+ ** scan of the entire database table.
|
|
+ */
|
|
+ int start;
|
|
+
|
|
+ brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
|
+ cont = pLevel->cont = sqliteVdbeMakeLabel(v);
|
|
+ sqliteVdbeAddOp(v, OP_Rewind, iCur, brk);
|
|
+ start = sqliteVdbeCurrentAddr(v);
|
|
+ pLevel->op = OP_Next;
|
|
+ pLevel->p1 = iCur;
|
|
+ pLevel->p2 = start;
|
|
+ haveKey = 0;
|
|
+ }else{
|
|
+ /* Case 5: The WHERE clause term that refers to the right-most
|
|
+ ** column of the index is an inequality. For example, if
|
|
+ ** the index is on (x,y,z) and the WHERE clause is of the
|
|
+ ** form "x=5 AND y<10" then this case is used. Only the
|
|
+ ** right-most column can be an inequality - the rest must
|
|
+ ** use the "==" operator.
|
|
+ **
|
|
+ ** This case is also used when there are no WHERE clause
|
|
+ ** constraints but an index is selected anyway, in order
|
|
+ ** to force the output order to conform to an ORDER BY.
|
|
+ */
|
|
+ int score = pLevel->score;
|
|
+ int nEqColumn = score/8;
|
|
+ int start;
|
|
+ int leFlag, geFlag;
|
|
+ int testOp;
|
|
+
|
|
+ /* Evaluate the equality constraints
|
|
+ */
|
|
+ for(j=0; j<nEqColumn; j++){
|
|
+ for(k=0; k<nExpr; k++){
|
|
+ if( aExpr[k].p==0 ) continue;
|
|
+ if( aExpr[k].idxLeft==iCur
|
|
+ && aExpr[k].p->op==TK_EQ
|
|
+ && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
|
|
+ && aExpr[k].p->pLeft->iColumn==pIdx->aiColumn[j]
|
|
+ ){
|
|
+ sqliteExprCode(pParse, aExpr[k].p->pRight);
|
|
+ disableTerm(pLevel, &aExpr[k].p);
|
|
+ break;
|
|
+ }
|
|
+ if( aExpr[k].idxRight==iCur
|
|
+ && aExpr[k].p->op==TK_EQ
|
|
+ && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
|
|
+ && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
|
|
+ ){
|
|
+ sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
|
+ disableTerm(pLevel, &aExpr[k].p);
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* Duplicate the equality term values because they will all be
|
|
+ ** used twice: once to make the termination key and once to make the
|
|
+ ** start key.
|
|
+ */
|
|
+ for(j=0; j<nEqColumn; j++){
|
|
+ sqliteVdbeAddOp(v, OP_Dup, nEqColumn-1, 0);
|
|
+ }
|
|
+
|
|
+ /* Labels for the beginning and end of the loop
|
|
+ */
|
|
+ cont = pLevel->cont = sqliteVdbeMakeLabel(v);
|
|
+ brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
|
+
|
|
+ /* Generate the termination key. This is the key value that
|
|
+ ** will end the search. There is no termination key if there
|
|
+ ** are no equality terms and no "X<..." term.
|
|
+ **
|
|
+ ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
|
|
+ ** key computed here really ends up being the start key.
|
|
+ */
|
|
+ if( (score & 1)!=0 ){
|
|
+ for(k=0; k<nExpr; k++){
|
|
+ Expr *pExpr = aExpr[k].p;
|
|
+ if( pExpr==0 ) continue;
|
|
+ if( aExpr[k].idxLeft==iCur
|
|
+ && (pExpr->op==TK_LT || pExpr->op==TK_LE)
|
|
+ && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
|
|
+ && pExpr->pLeft->iColumn==pIdx->aiColumn[j]
|
|
+ ){
|
|
+ sqliteExprCode(pParse, pExpr->pRight);
|
|
+ leFlag = pExpr->op==TK_LE;
|
|
+ disableTerm(pLevel, &aExpr[k].p);
|
|
+ break;
|
|
+ }
|
|
+ if( aExpr[k].idxRight==iCur
|
|
+ && (pExpr->op==TK_GT || pExpr->op==TK_GE)
|
|
+ && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
|
|
+ && pExpr->pRight->iColumn==pIdx->aiColumn[j]
|
|
+ ){
|
|
+ sqliteExprCode(pParse, pExpr->pLeft);
|
|
+ leFlag = pExpr->op==TK_GE;
|
|
+ disableTerm(pLevel, &aExpr[k].p);
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ testOp = OP_IdxGE;
|
|
+ }else{
|
|
+ testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop;
|
|
+ leFlag = 1;
|
|
+ }
|
|
+ if( testOp!=OP_Noop ){
|
|
+ int nCol = nEqColumn + (score & 1);
|
|
+ pLevel->iMem = pParse->nMem++;
|
|
+ sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3);
|
|
+ sqliteVdbeAddOp(v, OP_Pop, nCol, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, brk);
|
|
+ sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0);
|
|
+ sqliteAddIdxKeyType(v, pIdx);
|
|
+ if( leFlag ){
|
|
+ sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
|
|
+ }
|
|
+ if( pLevel->bRev ){
|
|
+ sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk);
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
|
+ }
|
|
+ }else if( pLevel->bRev ){
|
|
+ sqliteVdbeAddOp(v, OP_Last, pLevel->iCur, brk);
|
|
+ }
|
|
+
|
|
+ /* Generate the start key. This is the key that defines the lower
|
|
+ ** bound on the search. There is no start key if there are no
|
|
+ ** equality terms and if there is no "X>..." term. In
|
|
+ ** that case, generate a "Rewind" instruction in place of the
|
|
+ ** start key search.
|
|
+ **
|
|
+ ** 2002-Dec-04: In the case of a reverse-order search, the so-called
|
|
+ ** "start" key really ends up being used as the termination key.
|
|
+ */
|
|
+ if( (score & 2)!=0 ){
|
|
+ for(k=0; k<nExpr; k++){
|
|
+ Expr *pExpr = aExpr[k].p;
|
|
+ if( pExpr==0 ) continue;
|
|
+ if( aExpr[k].idxLeft==iCur
|
|
+ && (pExpr->op==TK_GT || pExpr->op==TK_GE)
|
|
+ && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
|
|
+ && pExpr->pLeft->iColumn==pIdx->aiColumn[j]
|
|
+ ){
|
|
+ sqliteExprCode(pParse, pExpr->pRight);
|
|
+ geFlag = pExpr->op==TK_GE;
|
|
+ disableTerm(pLevel, &aExpr[k].p);
|
|
+ break;
|
|
+ }
|
|
+ if( aExpr[k].idxRight==iCur
|
|
+ && (pExpr->op==TK_LT || pExpr->op==TK_LE)
|
|
+ && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
|
|
+ && pExpr->pRight->iColumn==pIdx->aiColumn[j]
|
|
+ ){
|
|
+ sqliteExprCode(pParse, pExpr->pLeft);
|
|
+ geFlag = pExpr->op==TK_LE;
|
|
+ disableTerm(pLevel, &aExpr[k].p);
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ }else{
|
|
+ geFlag = 1;
|
|
+ }
|
|
+ if( nEqColumn>0 || (score&2)!=0 ){
|
|
+ int nCol = nEqColumn + ((score&2)!=0);
|
|
+ sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3);
|
|
+ sqliteVdbeAddOp(v, OP_Pop, nCol, 0);
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, brk);
|
|
+ sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0);
|
|
+ sqliteAddIdxKeyType(v, pIdx);
|
|
+ if( !geFlag ){
|
|
+ sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
|
|
+ }
|
|
+ if( pLevel->bRev ){
|
|
+ pLevel->iMem = pParse->nMem++;
|
|
+ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
|
+ testOp = OP_IdxLT;
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
|
|
+ }
|
|
+ }else if( pLevel->bRev ){
|
|
+ testOp = OP_Noop;
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_Rewind, pLevel->iCur, brk);
|
|
+ }
|
|
+
|
|
+ /* Generate the the top of the loop. If there is a termination
|
|
+ ** key we have to test for that key and abort at the top of the
|
|
+ ** loop.
|
|
+ */
|
|
+ start = sqliteVdbeCurrentAddr(v);
|
|
+ if( testOp!=OP_Noop ){
|
|
+ sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
|
+ sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0);
|
|
+ sqliteVdbeAddOp(v, OP_IdxIsNull, nEqColumn + (score & 1), cont);
|
|
+ sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
|
|
+ if( i==pTabList->nSrc-1 && pushKey ){
|
|
+ haveKey = 1;
|
|
+ }else{
|
|
+ sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
|
|
+ haveKey = 0;
|
|
+ }
|
|
+
|
|
+ /* Record the instruction used to terminate the loop.
|
|
+ */
|
|
+ pLevel->op = pLevel->bRev ? OP_Prev : OP_Next;
|
|
+ pLevel->p1 = pLevel->iCur;
|
|
+ pLevel->p2 = start;
|
|
+ }
|
|
+ loopMask |= getMask(&maskSet, iCur);
|
|
+
|
|
+ /* Insert code to test every subexpression that can be completely
|
|
+ ** computed using the current set of tables.
|
|
+ */
|
|
+ for(j=0; j<nExpr; j++){
|
|
+ if( aExpr[j].p==0 ) continue;
|
|
+ if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue;
|
|
+ if( pLevel->iLeftJoin && !ExprHasProperty(aExpr[j].p,EP_FromJoin) ){
|
|
+ continue;
|
|
+ }
|
|
+ if( haveKey ){
|
|
+ haveKey = 0;
|
|
+ sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
|
|
+ }
|
|
+ sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
|
|
+ aExpr[j].p = 0;
|
|
+ }
|
|
+ brk = cont;
|
|
+
|
|
+ /* For a LEFT OUTER JOIN, generate code that will record the fact that
|
|
+ ** at least one row of the right table has matched the left table.
|
|
+ */
|
|
+ if( pLevel->iLeftJoin ){
|
|
+ pLevel->top = sqliteVdbeCurrentAddr(v);
|
|
+ sqliteVdbeAddOp(v, OP_Integer, 1, 0);
|
|
+ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
|
|
+ for(j=0; j<nExpr; j++){
|
|
+ if( aExpr[j].p==0 ) continue;
|
|
+ if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue;
|
|
+ if( haveKey ){
|
|
+ /* Cannot happen. "haveKey" can only be true if pushKey is true
|
|
+ ** an pushKey can only be true for DELETE and UPDATE and there are
|
|
+ ** no outer joins with DELETE and UPDATE.
|
|
+ */
|
|
+ haveKey = 0;
|
|
+ sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
|
|
+ }
|
|
+ sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
|
|
+ aExpr[j].p = 0;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ pWInfo->iContinue = cont;
|
|
+ if( pushKey && !haveKey ){
|
|
+ sqliteVdbeAddOp(v, OP_Recno, pTabList->a[0].iCursor, 0);
|
|
+ }
|
|
+ freeMaskSet(&maskSet);
|
|
+ return pWInfo;
|
|
+}
|
|
+
|
|
+/*
|
|
+** Generate the end of the WHERE loop. See comments on
|
|
+** sqliteWhereBegin() for additional information.
|
|
+*/
|
|
+void sqliteWhereEnd(WhereInfo *pWInfo){
|
|
+ Vdbe *v = pWInfo->pParse->pVdbe;
|
|
+ int i;
|
|
+ WhereLevel *pLevel;
|
|
+ SrcList *pTabList = pWInfo->pTabList;
|
|
+
|
|
+ for(i=pTabList->nSrc-1; i>=0; i--){
|
|
+ pLevel = &pWInfo->a[i];
|
|
+ sqliteVdbeResolveLabel(v, pLevel->cont);
|
|
+ if( pLevel->op!=OP_Noop ){
|
|
+ sqliteVdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
|
|
+ }
|
|
+ sqliteVdbeResolveLabel(v, pLevel->brk);
|
|
+ if( pLevel->inOp!=OP_Noop ){
|
|
+ sqliteVdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2);
|
|
+ }
|
|
+ if( pLevel->iLeftJoin ){
|
|
+ int addr;
|
|
+ addr = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0);
|
|
+ sqliteVdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iCur>=0));
|
|
+ sqliteVdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
|
|
+ if( pLevel->iCur>=0 ){
|
|
+ sqliteVdbeAddOp(v, OP_NullRow, pLevel->iCur, 0);
|
|
+ }
|
|
+ sqliteVdbeAddOp(v, OP_Goto, 0, pLevel->top);
|
|
+ }
|
|
+ }
|
|
+ sqliteVdbeResolveLabel(v, pWInfo->iBreak);
|
|
+ for(i=0; i<pTabList->nSrc; i++){
|
|
+ Table *pTab = pTabList->a[i].pTab;
|
|
+ assert( pTab!=0 );
|
|
+ if( pTab->isTransient || pTab->pSelect ) continue;
|
|
+ pLevel = &pWInfo->a[i];
|
|
+ sqliteVdbeAddOp(v, OP_Close, pTabList->a[i].iCursor, 0);
|
|
+ if( pLevel->pIdx!=0 ){
|
|
+ sqliteVdbeAddOp(v, OP_Close, pLevel->iCur, 0);
|
|
+ }
|
|
+ }
|
|
+#if 0 /* Never reuse a cursor */
|
|
+ if( pWInfo->pParse->nTab==pWInfo->peakNTab ){
|
|
+ pWInfo->pParse->nTab = pWInfo->savedNTab;
|
|
+ }
|
|
+#endif
|
|
+ sqliteFree(pWInfo);
|
|
+ return;
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/libsqlite/VERSION
|
|
@@ -0,0 +1 @@
|
|
+2.8.17
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/Makefile.frag
|
|
@@ -0,0 +1,2 @@
|
|
+$(srcdir)/libsqlite/src/parse.c: $(srcdir)/libsqlite/src/parse.y
|
|
+ @$(LEMON) $(srcdir)/libsqlite/src/parse.y
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/package.xml
|
|
@@ -0,0 +1,136 @@
|
|
+<?xml version="1.0" encoding="ISO-8859-1" ?>
|
|
+<!DOCTYPE package SYSTEM "../pear/package.dtd">
|
|
+<package>
|
|
+ <name>SQLite</name>
|
|
+ <summary>SQLite database bindings</summary>
|
|
+ <maintainers>
|
|
+ <maintainer>
|
|
+ <user>wez</user>
|
|
+ <name>Wez Furlong</name>
|
|
+ <email>wez@php.net</email>
|
|
+ <role>lead</role>
|
|
+ </maintainer>
|
|
+ <maintainer>
|
|
+ <user>tal</user>
|
|
+ <name>Tal Peer</name>
|
|
+ <email>tal@php.net</email>
|
|
+ <role>developer</role>
|
|
+ </maintainer>
|
|
+ <maintainer>
|
|
+ <user>helly</user>
|
|
+ <name>Marcus Börger</name>
|
|
+ <email>helly@php.net</email>
|
|
+ <role>lead</role>
|
|
+ </maintainer>
|
|
+ <maintainer>
|
|
+ <user>iliaa</user>
|
|
+ <name>Ilia Alshanetsky</name>
|
|
+ <email>ilia@php.net</email>
|
|
+ <role>developer</role>
|
|
+ </maintainer>
|
|
+ </maintainers>
|
|
+ <description>
|
|
+SQLite is a C library that implements an embeddable SQL database engine.
|
|
+Programs that link with the SQLite library can have SQL database access
|
|
+without running a separate RDBMS process.
|
|
+This extension allows you to access SQLite databases from within PHP.
|
|
+
|
|
+Windows binary available from:
|
|
+http://snaps.php.net/win32/PECL_STABLE/php_sqlite.dll
|
|
+ </description>
|
|
+ <license>PHP</license>
|
|
+ <release>
|
|
+ <state>stable</state>
|
|
+ <version>2.0-dev</version>
|
|
+ <date>TBA</date>
|
|
+ <notes>
|
|
+ Added:
|
|
+ OO API (Marcus).
|
|
+ </notes>
|
|
+ <filelist>
|
|
+ <file role="src" name="config.m4"/>
|
|
+ <file role="src" name="config.w32"/>
|
|
+ <file role="src" name="sqlite.c"/>
|
|
+ <file role="src" name="sqlite.dsp"/>
|
|
+ <file role="src" name="php_sqlite.h"/>
|
|
+ <file role="src" name="php_sqlite.def"/>
|
|
+ <file role="doc" name="CREDITS"/>
|
|
+ <file role="doc" name="README"/>
|
|
+ <file role="doc" name="TODO"/>
|
|
+ <file role="doc" name="sqlite.php"/>
|
|
+ <file role="test" name="tests/sqlite_001.phpt"/>
|
|
+ <file role="test" name="tests/sqlite_002.phpt"/>
|
|
+ <file role="test" name="tests/sqlite_003.phpt"/>
|
|
+ <file role="test" name="tests/sqlite_004.phpt"/>
|
|
+ <file role="test" name="tests/sqlite_005.phpt"/>
|
|
+ <file role="test" name="tests/sqlite_006.phpt"/>
|
|
+ <file role="test" name="tests/sqlite_007.phpt"/>
|
|
+ <file role="test" name="tests/sqlite_008.phpt"/>
|
|
+ <file role="test" name="tests/sqlite_009.phpt"/>
|
|
+ <file role="test" name="tests/sqlite_010.phpt"/>
|
|
+ <file role="test" name="tests/sqlite_011.phpt"/>
|
|
+ <file role="test" name="tests/sqlite_012.phpt"/>
|
|
+ <file role="test" name="tests/sqlite_013.phpt"/>
|
|
+ <file role="test" name="tests/sqlite_014.phpt"/>
|
|
+ <file role="test" name="tests/sqlite_015.phpt"/>
|
|
+ <file role="test" name="tests/sqlite_016.phpt"/>
|
|
+ <file role="test" name="tests/sqlite_017.phpt"/>
|
|
+ <file role="test" name="tests/blankdb.inc"/>
|
|
+
|
|
+ <dir name="libsqlite">
|
|
+ <file role="doc" name="README"/>
|
|
+ <file role="src" name="VERSION"/>
|
|
+
|
|
+ <dir name="src">
|
|
+ <file role="src" name="attach.c"/>
|
|
+ <file role="src" name="auth.c"/>
|
|
+ <file role="src" name="btree.c"/>
|
|
+ <file role="src" name="btree_rb.c"/>
|
|
+ <file role="src" name="build.c"/>
|
|
+ <file role="src" name="copy.c"/>
|
|
+ <file role="src" name="delete.c"/>
|
|
+ <file role="src" name="encode.c"/>
|
|
+ <file role="src" name="expr.c"/>
|
|
+ <file role="src" name="func.c"/>
|
|
+ <file role="src" name="hash.c"/>
|
|
+ <file role="src" name="insert.c"/>
|
|
+ <file role="src" name="main.c"/>
|
|
+ <file role="src" name="opcodes.c"/>
|
|
+ <file role="src" name="os.c"/>
|
|
+ <file role="src" name="pager.c"/>
|
|
+ <file role="src" name="parse.c"/>
|
|
+ <file role="src" name="parse.y"/>
|
|
+ <file role="src" name="pragma.c"/>
|
|
+ <file role="src" name="printf.c"/>
|
|
+ <file role="src" name="random.c"/>
|
|
+ <file role="src" name="select.c"/>
|
|
+ <file role="src" name="table.c"/>
|
|
+ <file role="src" name="tokenize.c"/>
|
|
+ <file role="src" name="trigger.c"/>
|
|
+ <file role="src" name="update.c"/>
|
|
+ <file role="src" name="util.c"/>
|
|
+ <file role="src" name="vacuum.c"/>
|
|
+ <file role="src" name="vdbe.c"/>
|
|
+ <file role="src" name="where.c"/>
|
|
+ <file role="src" name="btree.h"/>
|
|
+ <file role="src" name="hash.h"/>
|
|
+ <file role="src" name="opcodes.h"/>
|
|
+ <file role="src" name="os.h"/>
|
|
+ <file role="src" name="pager.h"/>
|
|
+ <file role="src" name="parse.h"/>
|
|
+ <file role="src" name="sqlite_config.w32.h"/>
|
|
+ <file role="src" name="sqlite.h.in"/>
|
|
+ <file role="src" name="sqliteInt.h"/>
|
|
+ <file role="src" name="sqlite.w32.h"/>
|
|
+ <file role="src" name="vdbe.h"/>
|
|
+ </dir>
|
|
+ </dir>
|
|
+ </filelist>
|
|
+ <deps>
|
|
+ <dep type="php" rel="ge" version="5" />
|
|
+ </deps>
|
|
+ </release>
|
|
+</package>
|
|
+<!--
|
|
+vim:et:ts=1:sw=1
|
|
+-->
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/pdo_sqlite2.c
|
|
@@ -0,0 +1,638 @@
|
|
+/*
|
|
+ +----------------------------------------------------------------------+
|
|
+ | PHP Version 5 |
|
|
+ +----------------------------------------------------------------------+
|
|
+ | Copyright (c) 1997-2012 The PHP Group |
|
|
+ +----------------------------------------------------------------------+
|
|
+ | This source file is subject to version 3.01 of the PHP license, |
|
|
+ | that is bundled with this package in the file LICENSE, and is |
|
|
+ | available through the world-wide-web at the following url: |
|
|
+ | http://www.php.net/license/3_01.txt |
|
|
+ | If you did not receive a copy of the PHP license and are unable to |
|
|
+ | obtain it through the world-wide-web, please send a note to |
|
|
+ | license@php.net so we can mail you a copy immediately. |
|
|
+ +----------------------------------------------------------------------+
|
|
+ | Author: Wez Furlong <wez@php.net> |
|
|
+ +----------------------------------------------------------------------+
|
|
+*/
|
|
+
|
|
+/* $Id$ */
|
|
+#ifdef HAVE_CONFIG_H
|
|
+#include "config.h"
|
|
+#endif
|
|
+#include "php.h"
|
|
+
|
|
+#ifdef PHP_SQLITE2_HAVE_PDO
|
|
+#include "sqlite.h"
|
|
+#include "pdo/php_pdo.h"
|
|
+#include "pdo/php_pdo_driver.h"
|
|
+#include "zend_exceptions.h"
|
|
+
|
|
+#define php_sqlite_encode_binary(in, n, out) sqlite_encode_binary((const unsigned char *)in, n, (unsigned char *)out)
|
|
+#define php_sqlite_decode_binary(in, out) sqlite_decode_binary((const unsigned char *)in, (unsigned char *)out)
|
|
+
|
|
+
|
|
+typedef struct {
|
|
+ const char *file;
|
|
+ int line;
|
|
+ unsigned int errcode;
|
|
+ char *errmsg;
|
|
+} pdo_sqlite2_error_info;
|
|
+
|
|
+typedef struct {
|
|
+ sqlite *db;
|
|
+ pdo_sqlite2_error_info einfo;
|
|
+} pdo_sqlite2_db_handle;
|
|
+
|
|
+typedef struct {
|
|
+ pdo_sqlite2_db_handle *H;
|
|
+ sqlite_vm *vm;
|
|
+ const char **rowdata, **colnames;
|
|
+ int ncols;
|
|
+ unsigned pre_fetched:1;
|
|
+ unsigned done:1;
|
|
+ pdo_sqlite2_error_info einfo;
|
|
+} pdo_sqlite2_stmt;
|
|
+
|
|
+extern int _pdo_sqlite2_error(pdo_dbh_t *dbh, pdo_stmt_t *stmt, char *errmsg, const char *file, int line TSRMLS_DC);
|
|
+#define pdo_sqlite2_error(msg, s) _pdo_sqlite2_error(s, NULL, msg, __FILE__, __LINE__ TSRMLS_CC)
|
|
+#define pdo_sqlite2_error_stmt(msg, s) _pdo_sqlite2_error(stmt->dbh, stmt, msg, __FILE__, __LINE__ TSRMLS_CC)
|
|
+
|
|
+extern struct pdo_stmt_methods sqlite2_stmt_methods;
|
|
+
|
|
+static int pdo_sqlite2_stmt_dtor(pdo_stmt_t *stmt TSRMLS_DC)
|
|
+{
|
|
+ pdo_sqlite2_stmt *S = (pdo_sqlite2_stmt*)stmt->driver_data;
|
|
+
|
|
+ if (S->vm) {
|
|
+ char *errmsg = NULL;
|
|
+ sqlite_finalize(S->vm, &errmsg);
|
|
+ if (errmsg) {
|
|
+ sqlite_freemem(errmsg);
|
|
+ }
|
|
+ S->vm = NULL;
|
|
+ }
|
|
+ if (S->einfo.errmsg) {
|
|
+ pefree(S->einfo.errmsg, stmt->dbh->is_persistent);
|
|
+ }
|
|
+ efree(S);
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+static int pdo_sqlite2_stmt_execute(pdo_stmt_t *stmt TSRMLS_DC)
|
|
+{
|
|
+ pdo_sqlite2_stmt *S = (pdo_sqlite2_stmt*)stmt->driver_data;
|
|
+ char *errmsg = NULL;
|
|
+ const char *tail;
|
|
+
|
|
+ if (stmt->executed && !S->done) {
|
|
+ sqlite_finalize(S->vm, &errmsg);
|
|
+ pdo_sqlite2_error_stmt(errmsg, stmt);
|
|
+ errmsg = NULL;
|
|
+ S->vm = NULL;
|
|
+ }
|
|
+
|
|
+ S->einfo.errcode = sqlite_compile(S->H->db, stmt->active_query_string, &tail, &S->vm, &errmsg);
|
|
+ if (S->einfo.errcode != SQLITE_OK) {
|
|
+ pdo_sqlite2_error_stmt(errmsg, stmt);
|
|
+ return 0;
|
|
+ }
|
|
+
|
|
+ S->done = 0;
|
|
+ S->einfo.errcode = sqlite_step(S->vm, &S->ncols, &S->rowdata, &S->colnames);
|
|
+ switch (S->einfo.errcode) {
|
|
+ case SQLITE_ROW:
|
|
+ S->pre_fetched = 1;
|
|
+ stmt->column_count = S->ncols;
|
|
+ return 1;
|
|
+
|
|
+ case SQLITE_DONE:
|
|
+ stmt->column_count = S->ncols;
|
|
+ stmt->row_count = sqlite_changes(S->H->db);
|
|
+ S->einfo.errcode = sqlite_reset(S->vm, &errmsg);
|
|
+ if (S->einfo.errcode != SQLITE_OK) {
|
|
+ pdo_sqlite2_error_stmt(errmsg, stmt);
|
|
+ }
|
|
+ S->done = 1;
|
|
+ return 1;
|
|
+
|
|
+ case SQLITE_ERROR:
|
|
+ case SQLITE_MISUSE:
|
|
+ case SQLITE_BUSY:
|
|
+ default:
|
|
+ pdo_sqlite2_error_stmt(errmsg, stmt);
|
|
+ return 0;
|
|
+ }
|
|
+}
|
|
+
|
|
+static int pdo_sqlite2_stmt_param_hook(pdo_stmt_t *stmt, struct pdo_bound_param_data *param,
|
|
+ enum pdo_param_event event_type TSRMLS_DC)
|
|
+{
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+static int pdo_sqlite2_stmt_fetch(pdo_stmt_t *stmt,
|
|
+ enum pdo_fetch_orientation ori, long offset TSRMLS_DC)
|
|
+{
|
|
+ pdo_sqlite2_stmt *S = (pdo_sqlite2_stmt*)stmt->driver_data;
|
|
+ char *errmsg = NULL;
|
|
+
|
|
+ if (!S->vm) {
|
|
+ return 0;
|
|
+ }
|
|
+ if (S->pre_fetched) {
|
|
+ S->pre_fetched = 0;
|
|
+ return 1;
|
|
+ }
|
|
+ if (S->done) {
|
|
+ return 0;
|
|
+ }
|
|
+
|
|
+ S->einfo.errcode = sqlite_step(S->vm, &S->ncols, &S->rowdata, &S->colnames);
|
|
+ switch (S->einfo.errcode) {
|
|
+ case SQLITE_ROW:
|
|
+ return 1;
|
|
+
|
|
+ case SQLITE_DONE:
|
|
+ S->done = 1;
|
|
+ S->einfo.errcode = sqlite_reset(S->vm, &errmsg);
|
|
+ if (S->einfo.errcode != SQLITE_OK) {
|
|
+ pdo_sqlite2_error_stmt(errmsg, stmt);
|
|
+ errmsg = NULL;
|
|
+ }
|
|
+ return 0;
|
|
+
|
|
+ default:
|
|
+ pdo_sqlite2_error_stmt(errmsg, stmt);
|
|
+ return 0;
|
|
+ }
|
|
+}
|
|
+
|
|
+static int pdo_sqlite2_stmt_describe(pdo_stmt_t *stmt, int colno TSRMLS_DC)
|
|
+{
|
|
+ pdo_sqlite2_stmt *S = (pdo_sqlite2_stmt*)stmt->driver_data;
|
|
+
|
|
+ if(colno >= S->ncols) {
|
|
+ /* error invalid column */
|
|
+ pdo_sqlite2_error_stmt(NULL, stmt);
|
|
+ return 0;
|
|
+ }
|
|
+
|
|
+ stmt->columns[colno].name = estrdup(S->colnames[colno]);
|
|
+ stmt->columns[colno].namelen = strlen(stmt->columns[colno].name);
|
|
+ stmt->columns[colno].maxlen = 0xffffffff;
|
|
+ stmt->columns[colno].precision = 0;
|
|
+ stmt->columns[colno].param_type = PDO_PARAM_STR;
|
|
+
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+static int pdo_sqlite2_stmt_get_col(pdo_stmt_t *stmt, int colno, char **ptr, unsigned long *len, int *caller_frees TSRMLS_DC)
|
|
+{
|
|
+ pdo_sqlite2_stmt *S = (pdo_sqlite2_stmt*)stmt->driver_data;
|
|
+ if (!S->vm) {
|
|
+ return 0;
|
|
+ }
|
|
+ if(colno >= S->ncols) {
|
|
+ /* error invalid column */
|
|
+ pdo_sqlite2_error_stmt(NULL, stmt);
|
|
+ return 0;
|
|
+ }
|
|
+ if (S->rowdata[colno]) {
|
|
+ if (S->rowdata[colno][0] == '\x01') {
|
|
+ /* encoded */
|
|
+ *caller_frees = 1;
|
|
+ *ptr = emalloc(strlen(S->rowdata[colno]));
|
|
+ *len = php_sqlite_decode_binary(S->rowdata[colno]+1, *ptr);
|
|
+ (*(char**)ptr)[*len] = '\0';
|
|
+ } else {
|
|
+ *ptr = (char*)S->rowdata[colno];
|
|
+ *len = strlen(*ptr);
|
|
+ }
|
|
+ } else {
|
|
+ *ptr = NULL;
|
|
+ *len = 0;
|
|
+ }
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+struct pdo_stmt_methods sqlite2_stmt_methods = {
|
|
+ pdo_sqlite2_stmt_dtor,
|
|
+ pdo_sqlite2_stmt_execute,
|
|
+ pdo_sqlite2_stmt_fetch,
|
|
+ pdo_sqlite2_stmt_describe,
|
|
+ pdo_sqlite2_stmt_get_col,
|
|
+ pdo_sqlite2_stmt_param_hook,
|
|
+ NULL, /* set_attr */
|
|
+ NULL, /* get_attr */
|
|
+ NULL
|
|
+};
|
|
+
|
|
+
|
|
+int _pdo_sqlite2_error(pdo_dbh_t *dbh, pdo_stmt_t *stmt, char *errmsg, const char *file, int line TSRMLS_DC) /* {{{ */
|
|
+{
|
|
+ pdo_sqlite2_db_handle *H = (pdo_sqlite2_db_handle *)dbh->driver_data;
|
|
+ pdo_error_type *pdo_err = stmt ? &stmt->error_code : &dbh->error_code;
|
|
+ pdo_sqlite2_error_info *einfo = &H->einfo;
|
|
+ pdo_sqlite2_stmt *S;
|
|
+
|
|
+ if (stmt) {
|
|
+ S = stmt->driver_data;
|
|
+ einfo = &S->einfo;
|
|
+ }
|
|
+
|
|
+ einfo->file = file;
|
|
+ einfo->line = line;
|
|
+
|
|
+ if (einfo->errmsg) {
|
|
+ pefree(einfo->errmsg, dbh->is_persistent);
|
|
+ einfo->errmsg = NULL;
|
|
+ }
|
|
+
|
|
+ if (einfo->errcode != SQLITE_OK) {
|
|
+ if (errmsg) {
|
|
+ einfo->errmsg = pestrdup(errmsg, dbh->is_persistent);
|
|
+ sqlite_freemem(errmsg);
|
|
+ } else {
|
|
+ einfo->errmsg = pestrdup(sqlite_error_string(einfo->errcode), dbh->is_persistent);
|
|
+ }
|
|
+ } else { /* no error */
|
|
+ strcpy(*pdo_err, PDO_ERR_NONE);
|
|
+ return 0;
|
|
+ }
|
|
+ switch (einfo->errcode) {
|
|
+ case SQLITE_NOTFOUND:
|
|
+ strcpy(*pdo_err, "42S02");
|
|
+ break;
|
|
+
|
|
+ case SQLITE_INTERRUPT:
|
|
+ strcpy(*pdo_err, "01002");
|
|
+ break;
|
|
+
|
|
+ case SQLITE_NOLFS:
|
|
+ strcpy(*pdo_err, "HYC00");
|
|
+ break;
|
|
+
|
|
+ case SQLITE_TOOBIG:
|
|
+ strcpy(*pdo_err, "22001");
|
|
+ break;
|
|
+
|
|
+ case SQLITE_CONSTRAINT:
|
|
+ strcpy(*pdo_err, "23000");
|
|
+ break;
|
|
+
|
|
+ case SQLITE_ERROR:
|
|
+ default:
|
|
+ strcpy(*pdo_err, "HY000");
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ if (!dbh->methods) {
|
|
+ zend_throw_exception_ex(php_pdo_get_exception(), 0 TSRMLS_CC, "SQLSTATE[%s] [%d] %s",
|
|
+ *pdo_err, einfo->errcode, einfo->errmsg);
|
|
+ }
|
|
+
|
|
+ return einfo->errcode;
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+static int pdo_sqlite2_fetch_error_func(pdo_dbh_t *dbh, pdo_stmt_t *stmt, zval *info TSRMLS_DC)
|
|
+{
|
|
+ pdo_sqlite2_db_handle *H = (pdo_sqlite2_db_handle *)dbh->driver_data;
|
|
+ pdo_sqlite2_error_info *einfo = &H->einfo;
|
|
+ pdo_sqlite2_stmt *S;
|
|
+
|
|
+ if (stmt) {
|
|
+ S = stmt->driver_data;
|
|
+ einfo = &S->einfo;
|
|
+ }
|
|
+
|
|
+ if (einfo->errcode) {
|
|
+ add_next_index_long(info, einfo->errcode);
|
|
+ if (einfo->errmsg) {
|
|
+ add_next_index_string(info, einfo->errmsg, 1);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+static int sqlite2_handle_closer(pdo_dbh_t *dbh TSRMLS_DC) /* {{{ */
|
|
+{
|
|
+ pdo_sqlite2_db_handle *H = (pdo_sqlite2_db_handle *)dbh->driver_data;
|
|
+
|
|
+ if (H) {
|
|
+ if (H->db) {
|
|
+ sqlite_close(H->db);
|
|
+ H->db = NULL;
|
|
+ }
|
|
+ if (H->einfo.errmsg) {
|
|
+ pefree(H->einfo.errmsg, dbh->is_persistent);
|
|
+ H->einfo.errmsg = NULL;
|
|
+ }
|
|
+ pefree(H, dbh->is_persistent);
|
|
+ dbh->driver_data = NULL;
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+static int sqlite2_handle_preparer(pdo_dbh_t *dbh, const char *sql, long sql_len, pdo_stmt_t *stmt, zval *driver_options TSRMLS_DC)
|
|
+{
|
|
+ pdo_sqlite2_db_handle *H = (pdo_sqlite2_db_handle *)dbh->driver_data;
|
|
+ pdo_sqlite2_stmt *S = ecalloc(1, sizeof(pdo_sqlite2_stmt));
|
|
+
|
|
+ S->H = H;
|
|
+ stmt->driver_data = S;
|
|
+ stmt->methods = &sqlite2_stmt_methods;
|
|
+ stmt->supports_placeholders = PDO_PLACEHOLDER_NONE;
|
|
+
|
|
+ if (PDO_CURSOR_FWDONLY != pdo_attr_lval(driver_options, PDO_ATTR_CURSOR, PDO_CURSOR_FWDONLY TSRMLS_CC)) {
|
|
+ H->einfo.errcode = SQLITE_ERROR;
|
|
+ pdo_sqlite2_error(NULL, dbh);
|
|
+ return 0;
|
|
+ }
|
|
+
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+static long sqlite2_handle_doer(pdo_dbh_t *dbh, const char *sql, long sql_len TSRMLS_DC)
|
|
+{
|
|
+ pdo_sqlite2_db_handle *H = (pdo_sqlite2_db_handle *)dbh->driver_data;
|
|
+ char *errmsg = NULL;
|
|
+
|
|
+ if ((H->einfo.errcode = sqlite_exec(H->db, sql, NULL, NULL, &errmsg)) != SQLITE_OK) {
|
|
+ pdo_sqlite2_error(errmsg, dbh);
|
|
+ return -1;
|
|
+ } else {
|
|
+ return sqlite_changes(H->db);
|
|
+ }
|
|
+}
|
|
+
|
|
+static char *pdo_sqlite2_last_insert_id(pdo_dbh_t *dbh, const char *name, unsigned int *len TSRMLS_DC)
|
|
+{
|
|
+ pdo_sqlite2_db_handle *H = (pdo_sqlite2_db_handle *)dbh->driver_data;
|
|
+ char *id;
|
|
+
|
|
+ id = php_pdo_int64_to_str(sqlite_last_insert_rowid(H->db) TSRMLS_CC);
|
|
+ *len = strlen(id);
|
|
+ return id;
|
|
+}
|
|
+
|
|
+static int sqlite2_handle_quoter(pdo_dbh_t *dbh, const char *unquoted, int unquotedlen, char **quoted, int *quotedlen, enum pdo_param_type paramtype TSRMLS_DC)
|
|
+{
|
|
+ char *ret;
|
|
+
|
|
+ if (unquotedlen && (unquoted[0] == '\x01' || memchr(unquoted, '\0', unquotedlen) != NULL)) {
|
|
+ /* binary string */
|
|
+ int len;
|
|
+ ret = safe_emalloc(1 + unquotedlen / 254, 257, 5);
|
|
+ ret[0] = '\'';
|
|
+ ret[1] = '\x01';
|
|
+ len = php_sqlite_encode_binary(unquoted, unquotedlen, ret+2);
|
|
+ ret[len + 2] = '\'';
|
|
+ ret[len + 3] = '\0';
|
|
+ *quoted = ret;
|
|
+ *quotedlen = len + 3;
|
|
+ /* fprintf(stderr, "Quoting:%d:%.*s:\n", *quotedlen, *quotedlen, *quoted); */
|
|
+ return 1;
|
|
+ } else if (unquotedlen) {
|
|
+ ret = sqlite_mprintf("'%q'", unquoted);
|
|
+ if (ret) {
|
|
+ *quoted = estrdup(ret);
|
|
+ *quotedlen = strlen(ret);
|
|
+ sqlite_freemem(ret);
|
|
+ return 1;
|
|
+ }
|
|
+ return 0;
|
|
+ } else {
|
|
+ *quoted = estrdup("''");
|
|
+ *quotedlen = 2;
|
|
+ return 1;
|
|
+ }
|
|
+}
|
|
+
|
|
+static int sqlite2_handle_begin(pdo_dbh_t *dbh TSRMLS_DC)
|
|
+{
|
|
+ pdo_sqlite2_db_handle *H = (pdo_sqlite2_db_handle *)dbh->driver_data;
|
|
+ char *errmsg = NULL;
|
|
+
|
|
+ if (sqlite_exec(H->db, "BEGIN", NULL, NULL, &errmsg) != SQLITE_OK) {
|
|
+ pdo_sqlite2_error(errmsg, dbh);
|
|
+ return 0;
|
|
+ }
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+static int sqlite2_handle_commit(pdo_dbh_t *dbh TSRMLS_DC)
|
|
+{
|
|
+ pdo_sqlite2_db_handle *H = (pdo_sqlite2_db_handle *)dbh->driver_data;
|
|
+ char *errmsg = NULL;
|
|
+
|
|
+ if (sqlite_exec(H->db, "COMMIT", NULL, NULL, &errmsg) != SQLITE_OK) {
|
|
+ pdo_sqlite2_error(errmsg, dbh);
|
|
+ return 0;
|
|
+ }
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+static int sqlite2_handle_rollback(pdo_dbh_t *dbh TSRMLS_DC)
|
|
+{
|
|
+ pdo_sqlite2_db_handle *H = (pdo_sqlite2_db_handle *)dbh->driver_data;
|
|
+ char *errmsg = NULL;
|
|
+
|
|
+ if (sqlite_exec(H->db, "ROLLBACK", NULL, NULL, &errmsg) != SQLITE_OK) {
|
|
+ pdo_sqlite2_error(errmsg, dbh);
|
|
+ return 0;
|
|
+ }
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+static int pdo_sqlite2_get_attribute(pdo_dbh_t *dbh, long attr, zval *return_value TSRMLS_DC)
|
|
+{
|
|
+ switch (attr) {
|
|
+ case PDO_ATTR_CLIENT_VERSION:
|
|
+ case PDO_ATTR_SERVER_VERSION:
|
|
+ ZVAL_STRING(return_value, (char *)sqlite_libversion(), 1);
|
|
+ break;
|
|
+
|
|
+ default:
|
|
+ return 0;
|
|
+ }
|
|
+
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+static int pdo_sqlite2_set_attr(pdo_dbh_t *dbh, long attr, zval *val TSRMLS_DC)
|
|
+{
|
|
+ pdo_sqlite2_db_handle *H = (pdo_sqlite2_db_handle *)dbh->driver_data;
|
|
+
|
|
+ switch (attr) {
|
|
+ case PDO_ATTR_TIMEOUT:
|
|
+ convert_to_long(val);
|
|
+ sqlite_busy_timeout(H->db, Z_LVAL_P(val) * 1000);
|
|
+ return 1;
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+static PHP_FUNCTION(sqlite2_create_function)
|
|
+{
|
|
+ /* TODO: implement this stuff */
|
|
+}
|
|
+
|
|
+static const zend_function_entry dbh_methods[] = {
|
|
+ PHP_FE(sqlite2_create_function, NULL)
|
|
+ {NULL, NULL, NULL}
|
|
+};
|
|
+
|
|
+static const zend_function_entry *get_driver_methods(pdo_dbh_t *dbh, int kind TSRMLS_DC)
|
|
+{
|
|
+ switch (kind) {
|
|
+ case PDO_DBH_DRIVER_METHOD_KIND_DBH:
|
|
+ return dbh_methods;
|
|
+
|
|
+ default:
|
|
+ return NULL;
|
|
+ }
|
|
+}
|
|
+
|
|
+static struct pdo_dbh_methods sqlite2_methods = {
|
|
+ sqlite2_handle_closer,
|
|
+ sqlite2_handle_preparer,
|
|
+ sqlite2_handle_doer,
|
|
+ sqlite2_handle_quoter,
|
|
+ sqlite2_handle_begin,
|
|
+ sqlite2_handle_commit,
|
|
+ sqlite2_handle_rollback,
|
|
+ pdo_sqlite2_set_attr,
|
|
+ pdo_sqlite2_last_insert_id,
|
|
+ pdo_sqlite2_fetch_error_func,
|
|
+ pdo_sqlite2_get_attribute,
|
|
+ NULL, /* check_liveness: not needed */
|
|
+ get_driver_methods
|
|
+};
|
|
+
|
|
+static char *make_filename_safe(const char *filename TSRMLS_DC)
|
|
+{
|
|
+ if (*filename && strncmp(filename, ":memory:", sizeof(":memory:")-1)) {
|
|
+ char *fullpath = expand_filepath(filename, NULL TSRMLS_CC);
|
|
+
|
|
+ if (!fullpath) {
|
|
+ return NULL;
|
|
+ }
|
|
+
|
|
+ if (PG(safe_mode) && (!php_checkuid(fullpath, NULL, CHECKUID_CHECK_FILE_AND_DIR))) {
|
|
+ efree(fullpath);
|
|
+ return NULL;
|
|
+ }
|
|
+
|
|
+ if (php_check_open_basedir(fullpath TSRMLS_CC)) {
|
|
+ efree(fullpath);
|
|
+ return NULL;
|
|
+ }
|
|
+ return fullpath;
|
|
+ }
|
|
+ return estrdup(filename);
|
|
+}
|
|
+
|
|
+static int authorizer(void *autharg, int access_type, const char *arg3, const char *arg4,
|
|
+ const char *arg5, const char *arg6)
|
|
+{
|
|
+ char *filename;
|
|
+ switch (access_type) {
|
|
+ case SQLITE_COPY: {
|
|
+ TSRMLS_FETCH();
|
|
+ filename = make_filename_safe(arg4 TSRMLS_CC);
|
|
+ if (!filename) {
|
|
+ return SQLITE_DENY;
|
|
+ }
|
|
+ efree(filename);
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+
|
|
+ case SQLITE_ATTACH: {
|
|
+ TSRMLS_FETCH();
|
|
+ filename = make_filename_safe(arg3 TSRMLS_CC);
|
|
+ if (!filename) {
|
|
+ return SQLITE_DENY;
|
|
+ }
|
|
+ efree(filename);
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+
|
|
+ default:
|
|
+ /* access allowed */
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+}
|
|
+
|
|
+static int pdo_sqlite2_handle_factory(pdo_dbh_t *dbh, zval *driver_options TSRMLS_DC) /* {{{ */
|
|
+{
|
|
+ pdo_sqlite2_db_handle *H;
|
|
+ int ret = 0;
|
|
+ long timeout = 60;
|
|
+ char *filename;
|
|
+ char *errmsg = NULL;
|
|
+
|
|
+ H = pecalloc(1, sizeof(pdo_sqlite2_db_handle), dbh->is_persistent);
|
|
+
|
|
+ H->einfo.errcode = 0;
|
|
+ H->einfo.errmsg = NULL;
|
|
+ dbh->driver_data = H;
|
|
+
|
|
+ filename = make_filename_safe(dbh->data_source TSRMLS_CC);
|
|
+
|
|
+ if (!filename) {
|
|
+ zend_throw_exception_ex(php_pdo_get_exception(), 0 TSRMLS_CC,
|
|
+ "safe_mode/open_basedir prohibits opening %s",
|
|
+ dbh->data_source);
|
|
+ goto cleanup;
|
|
+ }
|
|
+
|
|
+ H->db = sqlite_open(filename, 0666, &errmsg);
|
|
+ efree(filename);
|
|
+
|
|
+ if (!H->db) {
|
|
+ H->einfo.errcode = SQLITE_ERROR;
|
|
+ pdo_sqlite2_error(errmsg, dbh);
|
|
+ goto cleanup;
|
|
+ }
|
|
+
|
|
+ sqlite_set_authorizer(H->db, authorizer, NULL);
|
|
+
|
|
+ if (driver_options) {
|
|
+ timeout = pdo_attr_lval(driver_options, PDO_ATTR_TIMEOUT, timeout TSRMLS_CC);
|
|
+ }
|
|
+ sqlite_busy_timeout(H->db, timeout * 1000);
|
|
+
|
|
+ dbh->alloc_own_columns = 1;
|
|
+ dbh->max_escaped_char_length = 2;
|
|
+
|
|
+ ret = 1;
|
|
+
|
|
+cleanup:
|
|
+ dbh->methods = &sqlite2_methods;
|
|
+
|
|
+ return ret;
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+pdo_driver_t pdo_sqlite2_driver = {
|
|
+ PDO_DRIVER_HEADER(sqlite2),
|
|
+ pdo_sqlite2_handle_factory
|
|
+};
|
|
+
|
|
+
|
|
+
|
|
+#endif
|
|
+
|
|
+
|
|
+/*
|
|
+ * Local variables:
|
|
+ * tab-width: 4
|
|
+ * c-basic-offset: 4
|
|
+ * End:
|
|
+ * vim600: noet sw=4 ts=4 fdm=marker
|
|
+ * vim<600: noet sw=4 ts=4
|
|
+ */
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/php_sqlite.def
|
|
@@ -0,0 +1,43 @@
|
|
+EXPORTS
|
|
+sqlite_open
|
|
+sqlite_close
|
|
+sqlite_exec
|
|
+sqlite_last_insert_rowid
|
|
+sqlite_changes
|
|
+sqlite_error_string
|
|
+sqlite_interrupt
|
|
+sqlite_complete
|
|
+sqlite_busy_handler
|
|
+sqlite_busy_timeout
|
|
+sqlite_get_table
|
|
+sqlite_free_table
|
|
+sqlite_exec_printf
|
|
+sqlite_exec_vprintf
|
|
+sqlite_get_table_printf
|
|
+sqlite_get_table_vprintf
|
|
+sqlite_mprintf
|
|
+sqlite_vmprintf
|
|
+sqlite_freemem
|
|
+sqlite_libversion
|
|
+sqlite_libencoding
|
|
+sqlite_create_function
|
|
+sqlite_create_aggregate
|
|
+sqlite_function_type
|
|
+sqlite_set_result_string
|
|
+sqlite_set_result_int
|
|
+sqlite_set_result_double
|
|
+sqlite_set_result_error
|
|
+sqlite_user_data
|
|
+sqlite_aggregate_context
|
|
+sqlite_aggregate_count
|
|
+sqlite_set_authorizer
|
|
+sqlite_trace
|
|
+sqlite_compile
|
|
+sqlite_step
|
|
+sqlite_finalize
|
|
+; some experimental stuff
|
|
+sqlite_last_statement_changes
|
|
+sqlite_reset
|
|
+sqlite_bind
|
|
+sqlite_progress_handler
|
|
+sqlite_commit_hook
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/php_sqlite.h
|
|
@@ -0,0 +1,107 @@
|
|
+/*
|
|
+ +----------------------------------------------------------------------+
|
|
+ | PHP Version 5 |
|
|
+ +----------------------------------------------------------------------+
|
|
+ | Copyright (c) 1997-2012 The PHP Group |
|
|
+ +----------------------------------------------------------------------+
|
|
+ | This source file is subject to version 3.01 of the PHP license, |
|
|
+ | that is bundled with this package in the file LICENSE, and is |
|
|
+ | available through the world-wide-web at the following url: |
|
|
+ | http://www.php.net/license/3_01.txt |
|
|
+ | If you did not receive a copy of the PHP license and are unable to |
|
|
+ | obtain it through the world-wide-web, please send a note to |
|
|
+ | license@php.net so we can mail you a copy immediately. |
|
|
+ +----------------------------------------------------------------------+
|
|
+ | Authors: Wez Furlong <wez@thebrainroom.com> |
|
|
+ | Tal Peer <tal@php.net> |
|
|
+ | Marcus Boerger <helly@php.net> |
|
|
+ +----------------------------------------------------------------------+
|
|
+
|
|
+ $Id$
|
|
+*/
|
|
+
|
|
+#ifndef PHP_SQLITE_H
|
|
+#define PHP_SQLITE_H
|
|
+
|
|
+extern zend_module_entry sqlite_module_entry;
|
|
+#define phpext_sqlite_ptr &sqlite_module_entry
|
|
+
|
|
+#ifdef ZTS
|
|
+#include "TSRM.h"
|
|
+#endif
|
|
+
|
|
+PHP_MINIT_FUNCTION(sqlite);
|
|
+PHP_MSHUTDOWN_FUNCTION(sqlite);
|
|
+PHP_RSHUTDOWN_FUNCTION(sqlite);
|
|
+PHP_MINFO_FUNCTION(sqlite);
|
|
+
|
|
+PHP_FUNCTION(sqlite_open);
|
|
+PHP_FUNCTION(sqlite_popen);
|
|
+PHP_FUNCTION(sqlite_close);
|
|
+PHP_FUNCTION(sqlite_query);
|
|
+PHP_FUNCTION(sqlite_exec);
|
|
+PHP_FUNCTION(sqlite_unbuffered_query);
|
|
+PHP_FUNCTION(sqlite_array_query);
|
|
+PHP_FUNCTION(sqlite_single_query);
|
|
+
|
|
+PHP_FUNCTION(sqlite_fetch_array);
|
|
+PHP_FUNCTION(sqlite_fetch_object);
|
|
+PHP_FUNCTION(sqlite_fetch_single);
|
|
+PHP_FUNCTION(sqlite_fetch_all);
|
|
+PHP_FUNCTION(sqlite_current);
|
|
+PHP_FUNCTION(sqlite_column);
|
|
+
|
|
+PHP_FUNCTION(sqlite_num_rows);
|
|
+PHP_FUNCTION(sqlite_num_fields);
|
|
+PHP_FUNCTION(sqlite_field_name);
|
|
+PHP_FUNCTION(sqlite_seek);
|
|
+PHP_FUNCTION(sqlite_rewind);
|
|
+PHP_FUNCTION(sqlite_next);
|
|
+PHP_FUNCTION(sqlite_prev);
|
|
+PHP_FUNCTION(sqlite_key);
|
|
+
|
|
+PHP_FUNCTION(sqlite_valid);
|
|
+PHP_FUNCTION(sqlite_has_prev);
|
|
+
|
|
+PHP_FUNCTION(sqlite_libversion);
|
|
+PHP_FUNCTION(sqlite_libencoding);
|
|
+
|
|
+PHP_FUNCTION(sqlite_changes);
|
|
+PHP_FUNCTION(sqlite_last_insert_rowid);
|
|
+
|
|
+PHP_FUNCTION(sqlite_escape_string);
|
|
+
|
|
+PHP_FUNCTION(sqlite_busy_timeout);
|
|
+
|
|
+PHP_FUNCTION(sqlite_last_error);
|
|
+PHP_FUNCTION(sqlite_error_string);
|
|
+
|
|
+PHP_FUNCTION(sqlite_create_aggregate);
|
|
+PHP_FUNCTION(sqlite_create_function);
|
|
+PHP_FUNCTION(sqlite_udf_decode_binary);
|
|
+PHP_FUNCTION(sqlite_udf_encode_binary);
|
|
+
|
|
+PHP_FUNCTION(sqlite_factory);
|
|
+
|
|
+PHP_FUNCTION(sqlite_fetch_column_types);
|
|
+
|
|
+ZEND_BEGIN_MODULE_GLOBALS(sqlite)
|
|
+ long assoc_case;
|
|
+ZEND_END_MODULE_GLOBALS(sqlite)
|
|
+
|
|
+#ifdef ZTS
|
|
+#define SQLITE_G(v) TSRMG(sqlite_globals_id, zend_sqlite_globals *, v)
|
|
+#else
|
|
+#define SQLITE_G(v) (sqlite_globals.v)
|
|
+#endif
|
|
+
|
|
+#endif
|
|
+
|
|
+
|
|
+/*
|
|
+ * Local variables:
|
|
+ * tab-width: 4
|
|
+ * c-basic-offset: 4
|
|
+ * indent-tabs-mode: t
|
|
+ * End:
|
|
+ */
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/README
|
|
@@ -0,0 +1,14 @@
|
|
+This is an extension for the SQLite Embeddable SQL Database Engine.
|
|
+http://www.sqlite.org/
|
|
+
|
|
+SQLite is a C library that implements an embeddable SQL database engine.
|
|
+Programs that link with the SQLite library can have SQL database access
|
|
+without running a separate RDBMS process.
|
|
+
|
|
+SQLite is not a client library used to connect to a big database server.
|
|
+SQLite is the server. The SQLite library reads and writes directly to and from
|
|
+the database files on disk
|
|
+
|
|
+
|
|
+
|
|
+vim:tw=78:et
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/sess_sqlite.c
|
|
@@ -0,0 +1,201 @@
|
|
+/*
|
|
+ +----------------------------------------------------------------------+
|
|
+ | PHP Version 5 |
|
|
+ +----------------------------------------------------------------------+
|
|
+ | Copyright (c) 1997-2012 The PHP Group |
|
|
+ +----------------------------------------------------------------------+
|
|
+ | This source file is subject to version 3.01 of the PHP license, |
|
|
+ | that is bundled with this package in the file LICENSE, and is |
|
|
+ | available through the world-wide-web at the following url: |
|
|
+ | http://www.php.net/license/3_01.txt |
|
|
+ | If you did not receive a copy of the PHP license and are unable to |
|
|
+ | obtain it through the world-wide-web, please send a note to |
|
|
+ | license@php.net so we can mail you a copy immediately. |
|
|
+ +----------------------------------------------------------------------+
|
|
+ | Authors: John Coggeshall <john@php.net> |
|
|
+ | Wez Furlong <wez@thebrainroom.com> |
|
|
+ +----------------------------------------------------------------------+
|
|
+ */
|
|
+
|
|
+/* $Id$ */
|
|
+
|
|
+#include "php.h"
|
|
+
|
|
+#if HAVE_PHP_SESSION && !defined(COMPILE_DL_SESSION)
|
|
+
|
|
+#include "ext/session/php_session.h"
|
|
+#include "ext/standard/php_lcg.h"
|
|
+#include <sqlite.h>
|
|
+#define SQLITE_RETVAL(__r) ((__r) == SQLITE_OK ? SUCCESS : FAILURE)
|
|
+#define PS_SQLITE_DATA sqlite *db = (sqlite*)PS_GET_MOD_DATA()
|
|
+extern int sqlite_encode_binary(const unsigned char *in, int n, unsigned char *out);
|
|
+extern int sqlite_decode_binary(const unsigned char *in, unsigned char *out);
|
|
+
|
|
+PS_FUNCS(sqlite);
|
|
+
|
|
+ps_module ps_mod_sqlite = {
|
|
+ PS_MOD(sqlite)
|
|
+};
|
|
+
|
|
+PS_OPEN_FUNC(sqlite)
|
|
+{
|
|
+ char *errmsg = NULL;
|
|
+ sqlite *db;
|
|
+
|
|
+ /* TODO: do we need a safe_mode check here? */
|
|
+ db = sqlite_open(save_path, 0666, &errmsg);
|
|
+ if (db == NULL) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING,
|
|
+ "SQLite: failed to open/create session database `%s' - %s", save_path, errmsg);
|
|
+ sqlite_freemem(errmsg);
|
|
+ return FAILURE;
|
|
+ }
|
|
+
|
|
+ /* allow up to 1 minute when busy */
|
|
+ sqlite_busy_timeout(db, 60000);
|
|
+
|
|
+ sqlite_exec(db, "PRAGMA default_synchronous = OFF", NULL, NULL, NULL);
|
|
+ sqlite_exec(db, "PRAGMA count_changes = OFF", NULL, NULL, NULL);
|
|
+
|
|
+ /* This will fail if the table already exists, but that's not a big problem. I'm
|
|
+ unclear as to how to check for a table's existence in SQLite -- that would be better here. */
|
|
+ sqlite_exec(db,
|
|
+ "CREATE TABLE session_data ("
|
|
+ " sess_id PRIMARY KEY,"
|
|
+ " value TEXT, "
|
|
+ " updated INTEGER "
|
|
+ ")", NULL, NULL, NULL);
|
|
+
|
|
+ PS_SET_MOD_DATA(db);
|
|
+
|
|
+ return SUCCESS;
|
|
+}
|
|
+
|
|
+PS_CLOSE_FUNC(sqlite)
|
|
+{
|
|
+ PS_SQLITE_DATA;
|
|
+
|
|
+ sqlite_close(db);
|
|
+
|
|
+ return SUCCESS;
|
|
+}
|
|
+
|
|
+PS_READ_FUNC(sqlite)
|
|
+{
|
|
+ PS_SQLITE_DATA;
|
|
+ char *query;
|
|
+ const char *tail;
|
|
+ sqlite_vm *vm;
|
|
+ int colcount, result;
|
|
+ const char **rowdata, **colnames;
|
|
+ char *error;
|
|
+
|
|
+ *val = NULL;
|
|
+ *vallen = 0;
|
|
+
|
|
+ query = sqlite_mprintf("SELECT value FROM session_data WHERE sess_id='%q' LIMIT 1", key);
|
|
+ if (query == NULL) {
|
|
+ /* no memory */
|
|
+ return FAILURE;
|
|
+ }
|
|
+
|
|
+ if (sqlite_compile(db, query, &tail, &vm, &error) != SQLITE_OK) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "SQLite: Could not compile session read query: %s", error);
|
|
+ sqlite_freemem(error);
|
|
+ sqlite_freemem(query);
|
|
+ return FAILURE;
|
|
+ }
|
|
+
|
|
+ switch ((result = sqlite_step(vm, &colcount, &rowdata, &colnames))) {
|
|
+ case SQLITE_ROW:
|
|
+ if (rowdata[0] != NULL) {
|
|
+ *vallen = strlen(rowdata[0]);
|
|
+ if (*vallen) {
|
|
+ *val = emalloc(*vallen);
|
|
+ *vallen = sqlite_decode_binary(rowdata[0], *val);
|
|
+ (*val)[*vallen] = '\0';
|
|
+ } else {
|
|
+ *val = STR_EMPTY_ALLOC();
|
|
+ }
|
|
+ }
|
|
+ break;
|
|
+ default:
|
|
+ sqlite_freemem(error);
|
|
+ error = NULL;
|
|
+ }
|
|
+
|
|
+ if (SQLITE_OK != sqlite_finalize(vm, &error)) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "SQLite: session read: error %s", error);
|
|
+ sqlite_freemem(error);
|
|
+ error = NULL;
|
|
+ }
|
|
+
|
|
+ sqlite_freemem(query);
|
|
+
|
|
+ return *val == NULL ? FAILURE : SUCCESS;
|
|
+}
|
|
+
|
|
+PS_WRITE_FUNC(sqlite)
|
|
+{
|
|
+ PS_SQLITE_DATA;
|
|
+ char *error;
|
|
+ time_t t;
|
|
+ char *binary;
|
|
+ int binlen;
|
|
+ int rv;
|
|
+
|
|
+ t = time(NULL);
|
|
+
|
|
+ binary = safe_emalloc(1 + vallen / 254, 257, 3);
|
|
+ binlen = sqlite_encode_binary((const unsigned char*)val, vallen, binary);
|
|
+
|
|
+ rv = sqlite_exec_printf(db, "REPLACE INTO session_data VALUES('%q', '%q', %d)", NULL, NULL, &error, key, binary, t);
|
|
+ if (rv != SQLITE_OK) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "SQLite: session write query failed: %s", error);
|
|
+ sqlite_freemem(error);
|
|
+ }
|
|
+ efree(binary);
|
|
+
|
|
+ return SQLITE_RETVAL(rv);
|
|
+}
|
|
+
|
|
+PS_DESTROY_FUNC(sqlite)
|
|
+{
|
|
+ int rv;
|
|
+ PS_SQLITE_DATA;
|
|
+
|
|
+ rv = sqlite_exec_printf(db, "DELETE FROM session_data WHERE sess_id='%q'", NULL, NULL, NULL, key);
|
|
+
|
|
+ return SQLITE_RETVAL(rv);
|
|
+}
|
|
+
|
|
+PS_GC_FUNC(sqlite)
|
|
+{
|
|
+ PS_SQLITE_DATA;
|
|
+ int rv;
|
|
+ time_t t = time(NULL);
|
|
+
|
|
+ rv = sqlite_exec_printf(db,
|
|
+ "DELETE FROM session_data WHERE (%d - updated) > %d",
|
|
+ NULL, NULL, NULL, t, maxlifetime);
|
|
+
|
|
+ /* because SQLite does not actually clear the deleted data from the database
|
|
+ * we need to occassionaly do so manually to prevent the sessions database
|
|
+ * from growing endlessly.
|
|
+ */
|
|
+ if ((int) ((float) PS(gc_divisor) * PS(gc_divisor) * php_combined_lcg(TSRMLS_C)) < PS(gc_probability)) {
|
|
+ rv = sqlite_exec_printf(db, "VACUUM", NULL, NULL, NULL);
|
|
+ }
|
|
+ return SQLITE_RETVAL(rv);
|
|
+}
|
|
+
|
|
+#endif /* HAVE_PHP_SESSION && !defined(COMPILE_DL_SESSION) */
|
|
+
|
|
+/*
|
|
+ * Local variables:
|
|
+ * tab-width: 4
|
|
+ * c-basic-offset: 4
|
|
+ * End:
|
|
+ * vim600: sw=4 ts=4 fdm=marker
|
|
+ * vim<600: sw=4 ts=4
|
|
+ */
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/sqlite.c
|
|
@@ -0,0 +1,3448 @@
|
|
+/*
|
|
+ +----------------------------------------------------------------------+
|
|
+ | PHP Version 5 |
|
|
+ +----------------------------------------------------------------------+
|
|
+ | Copyright (c) 1997-2012 The PHP Group |
|
|
+ +----------------------------------------------------------------------+
|
|
+ | This source file is subject to version 3.01 of the PHP license, |
|
|
+ | that is bundled with this package in the file LICENSE, and is |
|
|
+ | available through the world-wide-web at the following url: |
|
|
+ | http://www.php.net/license/3_01.txt |
|
|
+ | If you did not receive a copy of the PHP license and are unable to |
|
|
+ | obtain it through the world-wide-web, please send a note to |
|
|
+ | license@php.net so we can mail you a copy immediately. |
|
|
+ +----------------------------------------------------------------------+
|
|
+ | Authors: Wez Furlong <wez@thebrainroom.com> |
|
|
+ | Tal Peer <tal@php.net> |
|
|
+ | Marcus Boerger <helly@php.net> |
|
|
+ +----------------------------------------------------------------------+
|
|
+
|
|
+ $Id$
|
|
+*/
|
|
+
|
|
+#ifdef HAVE_CONFIG_H
|
|
+#include "config.h"
|
|
+#endif
|
|
+
|
|
+#define PHP_SQLITE_MODULE_VERSION "2.0-dev"
|
|
+
|
|
+#include "php.h"
|
|
+#include "php_ini.h"
|
|
+#include "ext/standard/info.h"
|
|
+#if HAVE_PHP_SESSION && !defined(COMPILE_DL_SESSION)
|
|
+#include "ext/session/php_session.h"
|
|
+#endif
|
|
+#include "php_sqlite.h"
|
|
+
|
|
+#if HAVE_TIME_H
|
|
+# include <time.h>
|
|
+#endif
|
|
+#if HAVE_UNISTD_H
|
|
+#include <unistd.h>
|
|
+#endif
|
|
+
|
|
+#include <sqlite.h>
|
|
+
|
|
+#include "zend_exceptions.h"
|
|
+#include "zend_interfaces.h"
|
|
+
|
|
+#if defined(HAVE_SPL) && ((PHP_MAJOR_VERSION > 5) || (PHP_MAJOR_VERSION == 5 && PHP_MINOR_VERSION >= 1))
|
|
+extern PHPAPI zend_class_entry *spl_ce_RuntimeException;
|
|
+extern PHPAPI zend_class_entry *spl_ce_Countable;
|
|
+#endif
|
|
+
|
|
+#if PHP_SQLITE2_HAVE_PDO
|
|
+# include "pdo/php_pdo.h"
|
|
+# include "pdo/php_pdo_driver.h"
|
|
+extern pdo_driver_t pdo_sqlite2_driver;
|
|
+#endif
|
|
+
|
|
+#ifndef safe_emalloc
|
|
+# define safe_emalloc(a,b,c) emalloc((a)*(b)+(c))
|
|
+#endif
|
|
+
|
|
+ZEND_DECLARE_MODULE_GLOBALS(sqlite)
|
|
+static PHP_GINIT_FUNCTION(sqlite);
|
|
+
|
|
+#if HAVE_PHP_SESSION && !defined(COMPILE_DL_SESSION)
|
|
+extern ps_module ps_mod_sqlite;
|
|
+#define ps_sqlite_ptr &ps_mod_sqlite
|
|
+#endif
|
|
+
|
|
+extern int sqlite_encode_binary(const unsigned char *in, int n, unsigned char *out);
|
|
+extern int sqlite_decode_binary(const unsigned char *in, unsigned char *out);
|
|
+
|
|
+#define php_sqlite_encode_binary(in, n, out) sqlite_encode_binary((const unsigned char *)in, n, (unsigned char *)out)
|
|
+#define php_sqlite_decode_binary(in, out) in && *in ? sqlite_decode_binary((const unsigned char *)in, (unsigned char *)out) : 0
|
|
+
|
|
+static int sqlite_count_elements(zval *object, long *count TSRMLS_DC);
|
|
+
|
|
+static int le_sqlite_db, le_sqlite_result, le_sqlite_pdb;
|
|
+
|
|
+static inline void php_sqlite_strtoupper(char *s)
|
|
+{
|
|
+ while (*s!='\0') {
|
|
+ *s = toupper(*s);
|
|
+ s++;
|
|
+ }
|
|
+}
|
|
+
|
|
+static inline void php_sqlite_strtolower(char *s)
|
|
+{
|
|
+ while (*s!='\0') {
|
|
+ *s = tolower(*s);
|
|
+ s++;
|
|
+ }
|
|
+}
|
|
+
|
|
+/* {{{ PHP_INI
|
|
+ */
|
|
+PHP_INI_BEGIN()
|
|
+STD_PHP_INI_ENTRY_EX("sqlite.assoc_case", "0", PHP_INI_ALL, OnUpdateLong, assoc_case, zend_sqlite_globals, sqlite_globals, display_link_numbers)
|
|
+PHP_INI_END()
|
|
+/* }}} */
|
|
+
|
|
+#define DB_FROM_ZVAL(db, zv) ZEND_FETCH_RESOURCE2(db, struct php_sqlite_db *, zv, -1, "sqlite database", le_sqlite_db, le_sqlite_pdb)
|
|
+
|
|
+#define DB_FROM_OBJECT(db, object) \
|
|
+ { \
|
|
+ sqlite_object *obj = (sqlite_object*) zend_object_store_get_object(object TSRMLS_CC); \
|
|
+ db = obj->u.db; \
|
|
+ if (!db) { \
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "The database wasn't opened"); \
|
|
+ RETURN_NULL(); \
|
|
+ } \
|
|
+ }
|
|
+
|
|
+#define RES_FROM_OBJECT_RESTORE_ERH(res, object, error_handling) \
|
|
+ { \
|
|
+ sqlite_object *obj = (sqlite_object*) zend_object_store_get_object(object TSRMLS_CC); \
|
|
+ res = obj->u.res; \
|
|
+ if (!res) { \
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "No result set available"); \
|
|
+ if (error_handling) \
|
|
+ zend_restore_error_handling(error_handling TSRMLS_CC); \
|
|
+ RETURN_NULL(); \
|
|
+ } \
|
|
+ }
|
|
+
|
|
+#define RES_FROM_OBJECT(res, object) RES_FROM_OBJECT_RESTORE_ERH(res, object, NULL)
|
|
+
|
|
+#define PHP_SQLITE_EMPTY_QUERY \
|
|
+ if (!sql_len || !*sql) { \
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "Cannot execute empty query."); \
|
|
+ RETURN_FALSE; \
|
|
+ }
|
|
+
|
|
+struct php_sqlite_result {
|
|
+ struct php_sqlite_db *db;
|
|
+ sqlite_vm *vm;
|
|
+ int buffered;
|
|
+ int ncolumns;
|
|
+ int nrows;
|
|
+ int curr_row;
|
|
+ char **col_names;
|
|
+ int alloc_rows;
|
|
+ int mode;
|
|
+ char **table;
|
|
+};
|
|
+
|
|
+struct php_sqlite_db {
|
|
+ sqlite *db;
|
|
+ int last_err_code;
|
|
+ zend_bool is_persistent;
|
|
+ long rsrc_id;
|
|
+
|
|
+ HashTable callbacks;
|
|
+};
|
|
+
|
|
+struct php_sqlite_agg_functions {
|
|
+ struct php_sqlite_db *db;
|
|
+ int is_valid;
|
|
+ zval *step;
|
|
+ zval *fini;
|
|
+};
|
|
+
|
|
+static void php_sqlite_fetch_array(struct php_sqlite_result *res, int mode, zend_bool decode_binary, int move_next, zval *return_value TSRMLS_DC);
|
|
+static int php_sqlite_fetch(struct php_sqlite_result *rres TSRMLS_DC);
|
|
+
|
|
+enum { PHPSQLITE_ASSOC = 1, PHPSQLITE_NUM = 2, PHPSQLITE_BOTH = PHPSQLITE_ASSOC|PHPSQLITE_NUM };
|
|
+
|
|
+/* {{{ arginfo */
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_popen, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, filename)
|
|
+ ZEND_ARG_INFO(0, mode)
|
|
+ ZEND_ARG_INFO(1, error_message)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_open, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, filename)
|
|
+ ZEND_ARG_INFO(0, mode)
|
|
+ ZEND_ARG_INFO(1, error_message)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_factory, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, filename)
|
|
+ ZEND_ARG_INFO(0, mode)
|
|
+ ZEND_ARG_INFO(1, error_message)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_busy_timeout, 0, 0, 2)
|
|
+ ZEND_ARG_INFO(0, db)
|
|
+ ZEND_ARG_INFO(0, ms)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_busy_timeout, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, ms)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_close, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, db)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_unbuffered_query, 0, 0, 2)
|
|
+ ZEND_ARG_INFO(0, query)
|
|
+ ZEND_ARG_INFO(0, db)
|
|
+ ZEND_ARG_INFO(0, result_type)
|
|
+ ZEND_ARG_INFO(1, error_message)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_unbuffered_query, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, query)
|
|
+ ZEND_ARG_INFO(0, result_type)
|
|
+ ZEND_ARG_INFO(1, error_message)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_fetch_column_types, 0, 0, 2)
|
|
+ ZEND_ARG_INFO(0, table_name)
|
|
+ ZEND_ARG_INFO(0, db)
|
|
+ ZEND_ARG_INFO(0, result_type)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_fetch_column_types, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, table_name)
|
|
+ ZEND_ARG_INFO(0, result_type)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_query, 0, 0, 2)
|
|
+ ZEND_ARG_INFO(0, query)
|
|
+ ZEND_ARG_INFO(0, db)
|
|
+ ZEND_ARG_INFO(0, result_type)
|
|
+ ZEND_ARG_INFO(1, error_message)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_query, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, query)
|
|
+ ZEND_ARG_INFO(0, result_type)
|
|
+ ZEND_ARG_INFO(1, error_message)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_exec, 0, 0, 2)
|
|
+ ZEND_ARG_INFO(0, query)
|
|
+ ZEND_ARG_INFO(0, db)
|
|
+ ZEND_ARG_INFO(1, error_message)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_exec, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, query)
|
|
+ ZEND_ARG_INFO(1, error_message)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_fetch_all, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, result)
|
|
+ ZEND_ARG_INFO(0, result_type)
|
|
+ ZEND_ARG_INFO(0, decode_binary)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_fetch_all, 0, 0, 0)
|
|
+ ZEND_ARG_INFO(0, result_type)
|
|
+ ZEND_ARG_INFO(0, decode_binary)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_fetch_array, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, result)
|
|
+ ZEND_ARG_INFO(0, result_type)
|
|
+ ZEND_ARG_INFO(0, decode_binary)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_fetch_array, 0, 0, 0)
|
|
+ ZEND_ARG_INFO(0, result_type)
|
|
+ ZEND_ARG_INFO(0, decode_binary)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_fetch_object, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, result)
|
|
+ ZEND_ARG_INFO(0, class_name)
|
|
+ ZEND_ARG_INFO(0, ctor_params)
|
|
+ ZEND_ARG_INFO(0, decode_binary)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_fetch_object, 0, 0, 0)
|
|
+ ZEND_ARG_INFO(0, class_name)
|
|
+ ZEND_ARG_INFO(0, ctor_params)
|
|
+ ZEND_ARG_INFO(0, decode_binary)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_array_query, 0, 0, 2)
|
|
+ ZEND_ARG_INFO(0, db)
|
|
+ ZEND_ARG_INFO(0, query)
|
|
+ ZEND_ARG_INFO(0, result_type)
|
|
+ ZEND_ARG_INFO(0, decode_binary)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_array_query, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, query)
|
|
+ ZEND_ARG_INFO(0, result_type)
|
|
+ ZEND_ARG_INFO(0, decode_binary)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_single_query, 0, 0, 2)
|
|
+ ZEND_ARG_INFO(0, db)
|
|
+ ZEND_ARG_INFO(0, query)
|
|
+ ZEND_ARG_INFO(0, first_row_only)
|
|
+ ZEND_ARG_INFO(0, decode_binary)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_single_query, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, query)
|
|
+ ZEND_ARG_INFO(0, first_row_only)
|
|
+ ZEND_ARG_INFO(0, decode_binary)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_fetch_single, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, result)
|
|
+ ZEND_ARG_INFO(0, decode_binary)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_fetch_single, 0, 0, 0)
|
|
+ ZEND_ARG_INFO(0, decode_binary)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_current, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, result)
|
|
+ ZEND_ARG_INFO(0, result_type)
|
|
+ ZEND_ARG_INFO(0, decode_binary)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_current, 0, 0, 0)
|
|
+ ZEND_ARG_INFO(0, result_type)
|
|
+ ZEND_ARG_INFO(0, decode_binary)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_column, 0, 0, 2)
|
|
+ ZEND_ARG_INFO(0, result)
|
|
+ ZEND_ARG_INFO(0, index_or_name)
|
|
+ ZEND_ARG_INFO(0, decode_binary)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_column, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, index_or_name)
|
|
+ ZEND_ARG_INFO(0, decode_binary)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO(arginfo_sqlite_libversion, 0)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO(arginfo_sqlite_libencoding, 0)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_changes, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, db)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO(arginfo_sqlite_method_changes, 0)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_last_insert_rowid, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, db)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO(arginfo_sqlite_method_last_insert_rowid, 0)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_num_rows, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, result)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO(arginfo_sqlite_method_num_rows, 0)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_valid, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, result)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO(arginfo_sqlite_method_valid, 0)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_has_prev, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, result)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO(arginfo_sqlite_method_has_prev, 0)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_num_fields, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, result)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO(arginfo_sqlite_method_num_fields, 0)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_field_name, 0, 0, 2)
|
|
+ ZEND_ARG_INFO(0, result)
|
|
+ ZEND_ARG_INFO(0, field_index)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_field_name, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, field_index)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_seek, 0, 0, 2)
|
|
+ ZEND_ARG_INFO(0, result)
|
|
+ ZEND_ARG_INFO(0, row)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_seek, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, row)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_rewind, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, result)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO(arginfo_sqlite_method_rewind, 0)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_next, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, result)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO(arginfo_sqlite_method_next, 0)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_key, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, result)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO(arginfo_sqlite_method_key, 0)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_prev, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, result)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO(arginfo_sqlite_method_prev, 0)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_escape_string, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, item)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_last_error, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, db)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO(arginfo_sqlite_method_last_error, 0)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_error_string, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, error_code)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_create_aggregate, 0, 0, 4)
|
|
+ ZEND_ARG_INFO(0, db)
|
|
+ ZEND_ARG_INFO(0, funcname)
|
|
+ ZEND_ARG_INFO(0, step_func)
|
|
+ ZEND_ARG_INFO(0, finalize_func)
|
|
+ ZEND_ARG_INFO(0, num_args)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_create_aggregate, 0, 0, 3)
|
|
+ ZEND_ARG_INFO(0, funcname)
|
|
+ ZEND_ARG_INFO(0, step_func)
|
|
+ ZEND_ARG_INFO(0, finalize_func)
|
|
+ ZEND_ARG_INFO(0, num_args)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_create_function, 0, 0, 3)
|
|
+ ZEND_ARG_INFO(0, db)
|
|
+ ZEND_ARG_INFO(0, funcname)
|
|
+ ZEND_ARG_INFO(0, callback)
|
|
+ ZEND_ARG_INFO(0, num_args)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_create_function, 0, 0, 2)
|
|
+ ZEND_ARG_INFO(0, funcname)
|
|
+ ZEND_ARG_INFO(0, callback)
|
|
+ ZEND_ARG_INFO(0, num_args)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_udf_encode_binary, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, data)
|
|
+ZEND_END_ARG_INFO()
|
|
+
|
|
+ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_udf_decode_binary, 0, 0, 1)
|
|
+ ZEND_ARG_INFO(0, data)
|
|
+ZEND_END_ARG_INFO()
|
|
+/* }}} */
|
|
+
|
|
+const zend_function_entry sqlite_functions[] = {
|
|
+ PHP_FE(sqlite_open, arginfo_sqlite_open)
|
|
+ PHP_FE(sqlite_popen, arginfo_sqlite_popen)
|
|
+ PHP_FE(sqlite_close, arginfo_sqlite_close)
|
|
+ PHP_FE(sqlite_query, arginfo_sqlite_query)
|
|
+ PHP_FE(sqlite_exec, arginfo_sqlite_exec)
|
|
+ PHP_FE(sqlite_array_query, arginfo_sqlite_array_query)
|
|
+ PHP_FE(sqlite_single_query, arginfo_sqlite_single_query)
|
|
+ PHP_FE(sqlite_fetch_array, arginfo_sqlite_fetch_array)
|
|
+ PHP_FE(sqlite_fetch_object, arginfo_sqlite_fetch_object)
|
|
+ PHP_FE(sqlite_fetch_single, arginfo_sqlite_fetch_single)
|
|
+ PHP_FALIAS(sqlite_fetch_string, sqlite_fetch_single, arginfo_sqlite_fetch_single)
|
|
+ PHP_FE(sqlite_fetch_all, arginfo_sqlite_fetch_all)
|
|
+ PHP_FE(sqlite_current, arginfo_sqlite_current)
|
|
+ PHP_FE(sqlite_column, arginfo_sqlite_column)
|
|
+ PHP_FE(sqlite_libversion, arginfo_sqlite_libversion)
|
|
+ PHP_FE(sqlite_libencoding, arginfo_sqlite_libencoding)
|
|
+ PHP_FE(sqlite_changes, arginfo_sqlite_changes)
|
|
+ PHP_FE(sqlite_last_insert_rowid, arginfo_sqlite_last_insert_rowid)
|
|
+ PHP_FE(sqlite_num_rows, arginfo_sqlite_num_rows)
|
|
+ PHP_FE(sqlite_num_fields, arginfo_sqlite_num_fields)
|
|
+ PHP_FE(sqlite_field_name, arginfo_sqlite_field_name)
|
|
+ PHP_FE(sqlite_seek, arginfo_sqlite_seek)
|
|
+ PHP_FE(sqlite_rewind, arginfo_sqlite_rewind)
|
|
+ PHP_FE(sqlite_next, arginfo_sqlite_next)
|
|
+ PHP_FE(sqlite_prev, arginfo_sqlite_prev)
|
|
+ PHP_FE(sqlite_valid, arginfo_sqlite_valid)
|
|
+ PHP_FALIAS(sqlite_has_more, sqlite_valid, arginfo_sqlite_valid)
|
|
+ PHP_FE(sqlite_has_prev, arginfo_sqlite_has_prev)
|
|
+ PHP_FE(sqlite_escape_string, arginfo_sqlite_escape_string)
|
|
+ PHP_FE(sqlite_busy_timeout, arginfo_sqlite_busy_timeout)
|
|
+ PHP_FE(sqlite_last_error, arginfo_sqlite_last_error)
|
|
+ PHP_FE(sqlite_error_string, arginfo_sqlite_error_string)
|
|
+ PHP_FE(sqlite_unbuffered_query, arginfo_sqlite_unbuffered_query)
|
|
+ PHP_FE(sqlite_create_aggregate, arginfo_sqlite_create_aggregate)
|
|
+ PHP_FE(sqlite_create_function, arginfo_sqlite_create_function)
|
|
+ PHP_FE(sqlite_factory, arginfo_sqlite_factory)
|
|
+ PHP_FE(sqlite_udf_encode_binary, arginfo_sqlite_udf_encode_binary)
|
|
+ PHP_FE(sqlite_udf_decode_binary, arginfo_sqlite_udf_decode_binary)
|
|
+ PHP_FE(sqlite_fetch_column_types, arginfo_sqlite_fetch_column_types)
|
|
+ {NULL, NULL, NULL}
|
|
+};
|
|
+
|
|
+const zend_function_entry sqlite_funcs_db[] = {
|
|
+ PHP_ME_MAPPING(__construct, sqlite_open, arginfo_sqlite_open, 0)
|
|
+/* PHP_ME_MAPPING(close, sqlite_close, NULL, 0)*/
|
|
+ PHP_ME_MAPPING(query, sqlite_query, arginfo_sqlite_method_query, 0)
|
|
+ PHP_ME_MAPPING(queryExec, sqlite_exec, arginfo_sqlite_method_exec, 0)
|
|
+ PHP_ME_MAPPING(arrayQuery, sqlite_array_query, arginfo_sqlite_method_array_query, 0)
|
|
+ PHP_ME_MAPPING(singleQuery, sqlite_single_query, arginfo_sqlite_method_single_query, 0)
|
|
+ PHP_ME_MAPPING(unbufferedQuery, sqlite_unbuffered_query, arginfo_sqlite_method_unbuffered_query, 0)
|
|
+ PHP_ME_MAPPING(lastInsertRowid, sqlite_last_insert_rowid, arginfo_sqlite_method_last_insert_rowid, 0)
|
|
+ PHP_ME_MAPPING(changes, sqlite_changes, arginfo_sqlite_method_changes, 0)
|
|
+ PHP_ME_MAPPING(createAggregate, sqlite_create_aggregate, arginfo_sqlite_method_create_aggregate, 0)
|
|
+ PHP_ME_MAPPING(createFunction, sqlite_create_function, arginfo_sqlite_method_create_function, 0)
|
|
+ PHP_ME_MAPPING(busyTimeout, sqlite_busy_timeout, arginfo_sqlite_method_busy_timeout, 0)
|
|
+ PHP_ME_MAPPING(lastError, sqlite_last_error, arginfo_sqlite_method_last_error, 0)
|
|
+ PHP_ME_MAPPING(fetchColumnTypes, sqlite_fetch_column_types, arginfo_sqlite_method_fetch_column_types, 0)
|
|
+/* PHP_ME_MAPPING(error_string, sqlite_error_string, NULL, 0) static */
|
|
+/* PHP_ME_MAPPING(escape_string, sqlite_escape_string, NULL, 0) static */
|
|
+ {NULL, NULL, NULL}
|
|
+};
|
|
+
|
|
+const zend_function_entry sqlite_funcs_query[] = {
|
|
+ PHP_ME_MAPPING(fetch, sqlite_fetch_array, arginfo_sqlite_method_fetch_array, 0)
|
|
+ PHP_ME_MAPPING(fetchObject, sqlite_fetch_object, arginfo_sqlite_method_fetch_object, 0)
|
|
+ PHP_ME_MAPPING(fetchSingle, sqlite_fetch_single, arginfo_sqlite_method_fetch_single, 0)
|
|
+ PHP_ME_MAPPING(fetchAll, sqlite_fetch_all, arginfo_sqlite_method_fetch_all, 0)
|
|
+ PHP_ME_MAPPING(column, sqlite_column, arginfo_sqlite_method_column, 0)
|
|
+ PHP_ME_MAPPING(numFields, sqlite_num_fields, arginfo_sqlite_method_num_fields, 0)
|
|
+ PHP_ME_MAPPING(fieldName, sqlite_field_name, arginfo_sqlite_method_field_name, 0)
|
|
+ /* iterator */
|
|
+ PHP_ME_MAPPING(current, sqlite_current, arginfo_sqlite_method_current, 0)
|
|
+ PHP_ME_MAPPING(key, sqlite_key, arginfo_sqlite_method_key, 0)
|
|
+ PHP_ME_MAPPING(next, sqlite_next, arginfo_sqlite_method_next, 0)
|
|
+ PHP_ME_MAPPING(valid, sqlite_valid, arginfo_sqlite_method_valid, 0)
|
|
+ PHP_ME_MAPPING(rewind, sqlite_rewind, arginfo_sqlite_method_rewind, 0)
|
|
+ /* countable */
|
|
+ PHP_ME_MAPPING(count, sqlite_num_rows, arginfo_sqlite_method_num_rows, 0)
|
|
+ /* additional */
|
|
+ PHP_ME_MAPPING(prev, sqlite_prev, arginfo_sqlite_method_prev, 0)
|
|
+ PHP_ME_MAPPING(hasPrev, sqlite_has_prev, arginfo_sqlite_method_has_prev, 0)
|
|
+ PHP_ME_MAPPING(numRows, sqlite_num_rows, arginfo_sqlite_method_num_rows, 0)
|
|
+ PHP_ME_MAPPING(seek, sqlite_seek, arginfo_sqlite_method_seek, 0)
|
|
+ {NULL, NULL, NULL}
|
|
+};
|
|
+
|
|
+const zend_function_entry sqlite_funcs_ub_query[] = {
|
|
+ PHP_ME_MAPPING(fetch, sqlite_fetch_array, arginfo_sqlite_method_fetch_array, 0)
|
|
+ PHP_ME_MAPPING(fetchObject, sqlite_fetch_object, arginfo_sqlite_method_fetch_object, 0)
|
|
+ PHP_ME_MAPPING(fetchSingle, sqlite_fetch_single, arginfo_sqlite_method_fetch_single, 0)
|
|
+ PHP_ME_MAPPING(fetchAll, sqlite_fetch_all, arginfo_sqlite_method_fetch_all, 0)
|
|
+ PHP_ME_MAPPING(column, sqlite_column, arginfo_sqlite_method_column, 0)
|
|
+ PHP_ME_MAPPING(numFields, sqlite_num_fields, arginfo_sqlite_method_num_fields, 0)
|
|
+ PHP_ME_MAPPING(fieldName, sqlite_field_name, arginfo_sqlite_method_field_name, 0)
|
|
+ /* iterator */
|
|
+ PHP_ME_MAPPING(current, sqlite_current, arginfo_sqlite_method_current, 0)
|
|
+ PHP_ME_MAPPING(next, sqlite_next, arginfo_sqlite_method_next, 0)
|
|
+ PHP_ME_MAPPING(valid, sqlite_valid, arginfo_sqlite_method_valid, 0)
|
|
+ {NULL, NULL, NULL}
|
|
+};
|
|
+
|
|
+const zend_function_entry sqlite_funcs_exception[] = {
|
|
+ {NULL, NULL, NULL}
|
|
+};
|
|
+
|
|
+/* Dependancies */
|
|
+static const zend_module_dep sqlite_deps[] = {
|
|
+#if defined(HAVE_SPL) && ((PHP_MAJOR_VERSION > 5) || (PHP_MAJOR_VERSION == 5 && PHP_MINOR_VERSION >= 1))
|
|
+ ZEND_MOD_REQUIRED("spl")
|
|
+#endif
|
|
+#if HAVE_PHP_SESSION && !defined(COMPILE_DL_SESSION)
|
|
+ ZEND_MOD_REQUIRED("session")
|
|
+#endif
|
|
+#ifdef PHP_SQLITE2_HAVE_PDO
|
|
+ ZEND_MOD_REQUIRED("pdo")
|
|
+#endif
|
|
+ {NULL, NULL, NULL}
|
|
+};
|
|
+
|
|
+zend_module_entry sqlite_module_entry = {
|
|
+#if ZEND_MODULE_API_NO >= 20050922
|
|
+ STANDARD_MODULE_HEADER_EX, NULL,
|
|
+ sqlite_deps,
|
|
+#elif ZEND_MODULE_API_NO >= 20010901
|
|
+ STANDARD_MODULE_HEADER,
|
|
+#endif
|
|
+ "SQLite",
|
|
+ sqlite_functions,
|
|
+ PHP_MINIT(sqlite),
|
|
+ PHP_MSHUTDOWN(sqlite),
|
|
+ NULL,
|
|
+ PHP_RSHUTDOWN(sqlite),
|
|
+ PHP_MINFO(sqlite),
|
|
+#if ZEND_MODULE_API_NO >= 20010901
|
|
+ PHP_SQLITE_MODULE_VERSION,
|
|
+#endif
|
|
+#if ZEND_MODULE_API_NO >= 20060613
|
|
+ PHP_MODULE_GLOBALS(sqlite),
|
|
+ PHP_GINIT(sqlite),
|
|
+ NULL,
|
|
+ NULL,
|
|
+ STANDARD_MODULE_PROPERTIES_EX
|
|
+#else
|
|
+ STANDARD_MODULE_PROPERTIES
|
|
+#endif
|
|
+};
|
|
+
|
|
+
|
|
+#ifdef COMPILE_DL_SQLITE
|
|
+ZEND_GET_MODULE(sqlite)
|
|
+#endif
|
|
+
|
|
+static int php_sqlite_callback_invalidator(struct php_sqlite_agg_functions *funcs TSRMLS_DC)
|
|
+{
|
|
+ if (!funcs->is_valid) {
|
|
+ return 0;
|
|
+ }
|
|
+
|
|
+ if (funcs->step) {
|
|
+ zval_ptr_dtor(&funcs->step);
|
|
+ funcs->step = NULL;
|
|
+ }
|
|
+
|
|
+ if (funcs->fini) {
|
|
+ zval_ptr_dtor(&funcs->fini);
|
|
+ funcs->fini = NULL;
|
|
+ }
|
|
+
|
|
+ funcs->is_valid = 0;
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+
|
|
+static void php_sqlite_callback_dtor(void *pDest)
|
|
+{
|
|
+ struct php_sqlite_agg_functions *funcs = (struct php_sqlite_agg_functions*)pDest;
|
|
+
|
|
+ if (funcs->is_valid) {
|
|
+ TSRMLS_FETCH();
|
|
+
|
|
+ php_sqlite_callback_invalidator(funcs TSRMLS_CC);
|
|
+ }
|
|
+}
|
|
+
|
|
+static ZEND_RSRC_DTOR_FUNC(php_sqlite_db_dtor)
|
|
+{
|
|
+ if (rsrc->ptr) {
|
|
+ struct php_sqlite_db *db = (struct php_sqlite_db*)rsrc->ptr;
|
|
+
|
|
+ sqlite_close(db->db);
|
|
+
|
|
+ zend_hash_destroy(&db->callbacks);
|
|
+
|
|
+ pefree(db, db->is_persistent);
|
|
+
|
|
+ rsrc->ptr = NULL;
|
|
+ }
|
|
+}
|
|
+
|
|
+static void real_result_dtor(struct php_sqlite_result *res TSRMLS_DC)
|
|
+{
|
|
+ int i, j, base;
|
|
+
|
|
+ if (res->vm) {
|
|
+ sqlite_finalize(res->vm, NULL);
|
|
+ }
|
|
+
|
|
+ if (res->table) {
|
|
+ if (!res->buffered && res->nrows) {
|
|
+ res->nrows = 1; /* only one row is stored */
|
|
+ }
|
|
+ for (i = 0; i < res->nrows; i++) {
|
|
+ base = i * res->ncolumns;
|
|
+ for (j = 0; j < res->ncolumns; j++) {
|
|
+ if (res->table[base + j] != NULL) {
|
|
+ efree(res->table[base + j]);
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ efree(res->table);
|
|
+ }
|
|
+ if (res->col_names) {
|
|
+ for (j = 0; j < res->ncolumns; j++) {
|
|
+ efree(res->col_names[j]);
|
|
+ }
|
|
+ efree(res->col_names);
|
|
+ }
|
|
+
|
|
+ if (res->db) {
|
|
+ zend_list_delete(res->db->rsrc_id);
|
|
+ }
|
|
+ efree(res);
|
|
+}
|
|
+
|
|
+static int _clean_unfinished_results(zend_rsrc_list_entry *le, void *db TSRMLS_DC)
|
|
+{
|
|
+ if (Z_TYPE_P(le) == le_sqlite_result) {
|
|
+ struct php_sqlite_result *res = (struct php_sqlite_result *)le->ptr;
|
|
+ if (res->db->rsrc_id == ((struct php_sqlite_db*)db)->rsrc_id) {
|
|
+ return ZEND_HASH_APPLY_REMOVE;
|
|
+ }
|
|
+ }
|
|
+ return ZEND_HASH_APPLY_KEEP;
|
|
+}
|
|
+
|
|
+static ZEND_RSRC_DTOR_FUNC(php_sqlite_result_dtor)
|
|
+{
|
|
+ struct php_sqlite_result *res = (struct php_sqlite_result *)rsrc->ptr;
|
|
+ real_result_dtor(res TSRMLS_CC);
|
|
+}
|
|
+
|
|
+static int php_sqlite_forget_persistent_id_numbers(zend_rsrc_list_entry *rsrc TSRMLS_DC)
|
|
+{
|
|
+ struct php_sqlite_db *db = (struct php_sqlite_db*)rsrc->ptr;
|
|
+
|
|
+ if (Z_TYPE_P(rsrc) != le_sqlite_pdb) {
|
|
+ return 0;
|
|
+ }
|
|
+
|
|
+ /* prevent bad mojo if someone tries to use a previously registered function in the next request */
|
|
+ zend_hash_apply(&db->callbacks, (apply_func_t)php_sqlite_callback_invalidator TSRMLS_CC);
|
|
+
|
|
+ db->rsrc_id = FAILURE;
|
|
+
|
|
+ /* don't leave pending commits hanging around */
|
|
+ sqlite_exec(db->db, "ROLLBACK", NULL, NULL, NULL);
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+PHP_RSHUTDOWN_FUNCTION(sqlite)
|
|
+{
|
|
+ zend_hash_apply(&EG(persistent_list), (apply_func_t)php_sqlite_forget_persistent_id_numbers TSRMLS_CC);
|
|
+ return SUCCESS;
|
|
+}
|
|
+
|
|
+/* {{{ PHP Function interface */
|
|
+static void php_sqlite_generic_function_callback(sqlite_func *func, int argc, const char **argv)
|
|
+{
|
|
+ zval *retval = NULL;
|
|
+ zval ***zargs = NULL;
|
|
+ zval funcname;
|
|
+ int i, res;
|
|
+ char *callable = NULL, *errbuf=NULL;
|
|
+ TSRMLS_FETCH();
|
|
+
|
|
+ /* sanity check the args */
|
|
+ if (argc == 0) {
|
|
+ sqlite_set_result_error(func, "not enough parameters", -1);
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ ZVAL_STRING(&funcname, (char*)argv[0], 1);
|
|
+
|
|
+ if (!zend_make_callable(&funcname, &callable TSRMLS_CC)) {
|
|
+ spprintf(&errbuf, 0, "function `%s' is not a function name", callable);
|
|
+ sqlite_set_result_error(func, errbuf, -1);
|
|
+ efree(errbuf);
|
|
+ efree(callable);
|
|
+ zval_dtor(&funcname);
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ if (argc > 1) {
|
|
+ zargs = (zval ***)safe_emalloc((argc - 1), sizeof(zval **), 0);
|
|
+
|
|
+ for (i = 0; i < argc-1; i++) {
|
|
+ zargs[i] = emalloc(sizeof(zval *));
|
|
+ MAKE_STD_ZVAL(*zargs[i]);
|
|
+ ZVAL_STRING(*zargs[i], (char*)argv[i+1], 1);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ res = call_user_function_ex(EG(function_table),
|
|
+ NULL,
|
|
+ &funcname,
|
|
+ &retval,
|
|
+ argc-1,
|
|
+ zargs,
|
|
+ 0, NULL TSRMLS_CC);
|
|
+
|
|
+ zval_dtor(&funcname);
|
|
+
|
|
+ if (res == SUCCESS) {
|
|
+ if (retval == NULL) {
|
|
+ sqlite_set_result_string(func, NULL, 0);
|
|
+ } else {
|
|
+ switch (Z_TYPE_P(retval)) {
|
|
+ case IS_STRING:
|
|
+ sqlite_set_result_string(func, Z_STRVAL_P(retval), Z_STRLEN_P(retval));
|
|
+ break;
|
|
+ case IS_LONG:
|
|
+ case IS_BOOL:
|
|
+ sqlite_set_result_int(func, Z_LVAL_P(retval));
|
|
+ break;
|
|
+ case IS_DOUBLE:
|
|
+ sqlite_set_result_double(func, Z_DVAL_P(retval));
|
|
+ break;
|
|
+ case IS_NULL:
|
|
+ default:
|
|
+ sqlite_set_result_string(func, NULL, 0);
|
|
+ }
|
|
+ }
|
|
+ } else {
|
|
+ char *errbuf;
|
|
+ spprintf(&errbuf, 0, "call_user_function_ex failed for function %s()", callable);
|
|
+ sqlite_set_result_error(func, errbuf, -1);
|
|
+ efree(errbuf);
|
|
+ }
|
|
+
|
|
+ efree(callable);
|
|
+
|
|
+ if (retval) {
|
|
+ zval_ptr_dtor(&retval);
|
|
+ }
|
|
+
|
|
+ if (zargs) {
|
|
+ for (i = 0; i < argc-1; i++) {
|
|
+ zval_ptr_dtor(zargs[i]);
|
|
+ efree(zargs[i]);
|
|
+ }
|
|
+ efree(zargs);
|
|
+ }
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ callback for sqlite_create_function */
|
|
+static void php_sqlite_function_callback(sqlite_func *func, int argc, const char **argv)
|
|
+{
|
|
+ zval *retval = NULL;
|
|
+ zval ***zargs = NULL;
|
|
+ int i, res;
|
|
+ struct php_sqlite_agg_functions *funcs = sqlite_user_data(func);
|
|
+ TSRMLS_FETCH();
|
|
+
|
|
+ if (!funcs->is_valid) {
|
|
+ sqlite_set_result_error(func, "this function has not been correctly defined for this request", -1);
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ if (argc > 0) {
|
|
+ zargs = (zval ***)safe_emalloc(argc, sizeof(zval **), 0);
|
|
+
|
|
+ for (i = 0; i < argc; i++) {
|
|
+ zargs[i] = emalloc(sizeof(zval *));
|
|
+ MAKE_STD_ZVAL(*zargs[i]);
|
|
+
|
|
+ if (argv[i] == NULL) {
|
|
+ ZVAL_NULL(*zargs[i]);
|
|
+ } else {
|
|
+ ZVAL_STRING(*zargs[i], (char*)argv[i], 1);
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+
|
|
+ res = call_user_function_ex(EG(function_table),
|
|
+ NULL,
|
|
+ funcs->step,
|
|
+ &retval,
|
|
+ argc,
|
|
+ zargs,
|
|
+ 0, NULL TSRMLS_CC);
|
|
+
|
|
+ if (res == SUCCESS) {
|
|
+ if (retval == NULL) {
|
|
+ sqlite_set_result_string(func, NULL, 0);
|
|
+ } else {
|
|
+ switch (Z_TYPE_P(retval)) {
|
|
+ case IS_STRING:
|
|
+ /* TODO: for binary results, need to encode the string */
|
|
+ sqlite_set_result_string(func, Z_STRVAL_P(retval), Z_STRLEN_P(retval));
|
|
+ break;
|
|
+ case IS_LONG:
|
|
+ case IS_BOOL:
|
|
+ sqlite_set_result_int(func, Z_LVAL_P(retval));
|
|
+ break;
|
|
+ case IS_DOUBLE:
|
|
+ sqlite_set_result_double(func, Z_DVAL_P(retval));
|
|
+ break;
|
|
+ case IS_NULL:
|
|
+ default:
|
|
+ sqlite_set_result_string(func, NULL, 0);
|
|
+ }
|
|
+ }
|
|
+ } else {
|
|
+ sqlite_set_result_error(func, "call_user_function_ex failed", -1);
|
|
+ }
|
|
+
|
|
+ if (retval) {
|
|
+ zval_ptr_dtor(&retval);
|
|
+ }
|
|
+
|
|
+ if (zargs) {
|
|
+ for (i = 0; i < argc; i++) {
|
|
+ zval_ptr_dtor(zargs[i]);
|
|
+ efree(zargs[i]);
|
|
+ }
|
|
+ efree(zargs);
|
|
+ }
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ callback for sqlite_create_aggregate: step function */
|
|
+static void php_sqlite_agg_step_function_callback(sqlite_func *func, int argc, const char **argv)
|
|
+{
|
|
+ zval *retval = NULL;
|
|
+ zval ***zargs;
|
|
+ zval **context_p;
|
|
+ int i, res, zargc;
|
|
+ struct php_sqlite_agg_functions *funcs = sqlite_user_data(func);
|
|
+ TSRMLS_FETCH();
|
|
+
|
|
+ if (!funcs->is_valid) {
|
|
+ sqlite_set_result_error(func, "this function has not been correctly defined for this request", -1);
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ /* sanity check the args */
|
|
+ if (argc < 1) {
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ zargc = argc + 1;
|
|
+ zargs = (zval ***)safe_emalloc(zargc, sizeof(zval **), 0);
|
|
+
|
|
+ /* first arg is always the context zval */
|
|
+ context_p = (zval **)sqlite_aggregate_context(func, sizeof(*context_p));
|
|
+
|
|
+ if (*context_p == NULL) {
|
|
+ MAKE_STD_ZVAL(*context_p);
|
|
+ Z_SET_ISREF_PP(context_p);
|
|
+ Z_TYPE_PP(context_p) = IS_NULL;
|
|
+ }
|
|
+
|
|
+ zargs[0] = context_p;
|
|
+
|
|
+ /* copy the other args */
|
|
+ for (i = 0; i < argc; i++) {
|
|
+ zargs[i+1] = emalloc(sizeof(zval *));
|
|
+ MAKE_STD_ZVAL(*zargs[i+1]);
|
|
+ if (argv[i] == NULL) {
|
|
+ ZVAL_NULL(*zargs[i+1]);
|
|
+ } else {
|
|
+ ZVAL_STRING(*zargs[i+1], (char*)argv[i], 1);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ res = call_user_function_ex(EG(function_table),
|
|
+ NULL,
|
|
+ funcs->step,
|
|
+ &retval,
|
|
+ zargc,
|
|
+ zargs,
|
|
+ 0, NULL TSRMLS_CC);
|
|
+
|
|
+ if (res != SUCCESS) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "call_user_function_ex failed");
|
|
+ }
|
|
+
|
|
+ if (retval) {
|
|
+ zval_ptr_dtor(&retval);
|
|
+ }
|
|
+
|
|
+ if (zargs) {
|
|
+ for (i = 1; i < zargc; i++) {
|
|
+ zval_ptr_dtor(zargs[i]);
|
|
+ efree(zargs[i]);
|
|
+ }
|
|
+ efree(zargs);
|
|
+ }
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ callback for sqlite_create_aggregate: finalize function */
|
|
+static void php_sqlite_agg_fini_function_callback(sqlite_func *func)
|
|
+{
|
|
+ zval *retval = NULL;
|
|
+ int res;
|
|
+ struct php_sqlite_agg_functions *funcs = sqlite_user_data(func);
|
|
+ zval **context_p;
|
|
+ TSRMLS_FETCH();
|
|
+
|
|
+ if (!funcs->is_valid) {
|
|
+ sqlite_set_result_error(func, "this function has not been correctly defined for this request", -1);
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ context_p = (zval **)sqlite_aggregate_context(func, sizeof(*context_p));
|
|
+
|
|
+ res = call_user_function_ex(EG(function_table),
|
|
+ NULL,
|
|
+ funcs->fini,
|
|
+ &retval,
|
|
+ 1,
|
|
+ &context_p,
|
|
+ 0, NULL TSRMLS_CC);
|
|
+
|
|
+ if (res == SUCCESS) {
|
|
+ if (retval == NULL) {
|
|
+ sqlite_set_result_string(func, NULL, 0);
|
|
+ } else {
|
|
+ switch (Z_TYPE_P(retval)) {
|
|
+ case IS_STRING:
|
|
+ /* TODO: for binary results, need to encode the string */
|
|
+ sqlite_set_result_string(func, Z_STRVAL_P(retval), Z_STRLEN_P(retval));
|
|
+ break;
|
|
+ case IS_LONG:
|
|
+ case IS_BOOL:
|
|
+ sqlite_set_result_int(func, Z_LVAL_P(retval));
|
|
+ break;
|
|
+ case IS_DOUBLE:
|
|
+ sqlite_set_result_double(func, Z_DVAL_P(retval));
|
|
+ break;
|
|
+ case IS_NULL:
|
|
+ default:
|
|
+ sqlite_set_result_string(func, NULL, 0);
|
|
+ }
|
|
+ }
|
|
+ } else {
|
|
+ sqlite_set_result_error(func, "call_user_function_ex failed", -1);
|
|
+ }
|
|
+
|
|
+ if (retval) {
|
|
+ zval_ptr_dtor(&retval);
|
|
+ }
|
|
+
|
|
+ zval_ptr_dtor(context_p);
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ Authorization Callback */
|
|
+static int php_sqlite_authorizer(void *autharg, int access_type, const char *arg3, const char *arg4,
|
|
+ const char *arg5, const char *arg6)
|
|
+{
|
|
+ switch (access_type) {
|
|
+ case SQLITE_COPY:
|
|
+ if (strncmp(arg4, ":memory:", sizeof(":memory:") - 1)) {
|
|
+ TSRMLS_FETCH();
|
|
+ if (PG(safe_mode) && (!php_checkuid(arg4, NULL, CHECKUID_CHECK_FILE_AND_DIR))) {
|
|
+ return SQLITE_DENY;
|
|
+ }
|
|
+
|
|
+ if (php_check_open_basedir(arg4 TSRMLS_CC)) {
|
|
+ return SQLITE_DENY;
|
|
+ }
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+#ifdef SQLITE_ATTACH
|
|
+ case SQLITE_ATTACH:
|
|
+ if (strncmp(arg3, ":memory:", sizeof(":memory:") - 1)) {
|
|
+ TSRMLS_FETCH();
|
|
+ if (PG(safe_mode) && (!php_checkuid(arg3, NULL, CHECKUID_CHECK_FILE_AND_DIR))) {
|
|
+ return SQLITE_DENY;
|
|
+ }
|
|
+
|
|
+ if (php_check_open_basedir(arg3 TSRMLS_CC)) {
|
|
+ return SQLITE_DENY;
|
|
+ }
|
|
+ }
|
|
+ return SQLITE_OK;
|
|
+#endif
|
|
+
|
|
+ default:
|
|
+ /* access allowed */
|
|
+ return SQLITE_OK;
|
|
+ }
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ OO init/structure stuff */
|
|
+#define REGISTER_SQLITE_CLASS(name, c_name, parent) \
|
|
+ { \
|
|
+ zend_class_entry ce; \
|
|
+ INIT_CLASS_ENTRY(ce, "SQLite" # name, sqlite_funcs_ ## c_name); \
|
|
+ ce.create_object = sqlite_object_new_ ## c_name; \
|
|
+ sqlite_ce_ ## c_name = zend_register_internal_class_ex(&ce, parent, NULL TSRMLS_CC); \
|
|
+ memcpy(&sqlite_object_handlers_ ## c_name, zend_get_std_object_handlers(), sizeof(zend_object_handlers)); \
|
|
+ sqlite_object_handlers_ ## c_name.clone_obj = NULL; \
|
|
+ sqlite_ce_ ## c_name->ce_flags |= ZEND_ACC_FINAL_CLASS; \
|
|
+ }
|
|
+
|
|
+zend_class_entry *sqlite_ce_db, *sqlite_ce_exception;
|
|
+zend_class_entry *sqlite_ce_query, *sqlite_ce_ub_query;
|
|
+
|
|
+static zend_object_handlers sqlite_object_handlers_db;
|
|
+static zend_object_handlers sqlite_object_handlers_query;
|
|
+static zend_object_handlers sqlite_object_handlers_ub_query;
|
|
+static zend_object_handlers sqlite_object_handlers_exception;
|
|
+
|
|
+typedef enum {
|
|
+ is_db,
|
|
+ is_result
|
|
+} sqlite_obj_type;
|
|
+
|
|
+typedef struct _sqlite_object {
|
|
+ zend_object std;
|
|
+ sqlite_obj_type type;
|
|
+ union {
|
|
+ struct php_sqlite_db *db;
|
|
+ struct php_sqlite_result *res;
|
|
+ void *ptr;
|
|
+ } u;
|
|
+} sqlite_object;
|
|
+
|
|
+static int sqlite_free_persistent(zend_rsrc_list_entry *le, void *ptr TSRMLS_DC)
|
|
+{
|
|
+ return le->ptr == ptr ? ZEND_HASH_APPLY_REMOVE : ZEND_HASH_APPLY_KEEP;
|
|
+}
|
|
+
|
|
+static void sqlite_object_free_storage(void *object TSRMLS_DC)
|
|
+{
|
|
+ sqlite_object *intern = (sqlite_object *)object;
|
|
+
|
|
+ zend_object_std_dtor(&intern->std TSRMLS_CC);
|
|
+
|
|
+ if (intern->u.ptr) {
|
|
+ if (intern->type == is_db) {
|
|
+ if (intern->u.db->rsrc_id) {
|
|
+ zend_list_delete(intern->u.db->rsrc_id);
|
|
+ zend_hash_apply_with_argument(&EG(persistent_list), (apply_func_arg_t) sqlite_free_persistent, &intern->u.ptr TSRMLS_CC);
|
|
+ }
|
|
+ } else {
|
|
+ real_result_dtor(intern->u.res TSRMLS_CC);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ efree(object);
|
|
+}
|
|
+
|
|
+static void sqlite_object_new(zend_class_entry *class_type, zend_object_handlers *handlers, zend_object_value *retval TSRMLS_DC)
|
|
+{
|
|
+ sqlite_object *intern;
|
|
+ zval *tmp;
|
|
+
|
|
+ intern = emalloc(sizeof(sqlite_object));
|
|
+ memset(intern, 0, sizeof(sqlite_object));
|
|
+
|
|
+ zend_object_std_init(&intern->std, class_type TSRMLS_CC);
|
|
+ zend_hash_copy(intern->std.properties, &class_type->default_properties, (copy_ctor_func_t) zval_add_ref, (void *) &tmp, sizeof(zval *));
|
|
+
|
|
+ retval->handle = zend_objects_store_put(intern, (zend_objects_store_dtor_t)zend_objects_destroy_object, (zend_objects_free_object_storage_t) sqlite_object_free_storage, NULL TSRMLS_CC);
|
|
+ retval->handlers = handlers;
|
|
+}
|
|
+
|
|
+static zend_object_value sqlite_object_new_db(zend_class_entry *class_type TSRMLS_DC)
|
|
+{
|
|
+ zend_object_value retval;
|
|
+
|
|
+ sqlite_object_new(class_type, &sqlite_object_handlers_db, &retval TSRMLS_CC);
|
|
+ return retval;
|
|
+}
|
|
+
|
|
+static zend_object_value sqlite_object_new_query(zend_class_entry *class_type TSRMLS_DC)
|
|
+{
|
|
+ zend_object_value retval;
|
|
+
|
|
+ sqlite_object_new(class_type, &sqlite_object_handlers_query, &retval TSRMLS_CC);
|
|
+ return retval;
|
|
+}
|
|
+
|
|
+static zend_object_value sqlite_object_new_ub_query(zend_class_entry *class_type TSRMLS_DC)
|
|
+{
|
|
+ zend_object_value retval;
|
|
+
|
|
+ sqlite_object_new(class_type, &sqlite_object_handlers_ub_query, &retval TSRMLS_CC);
|
|
+ return retval;
|
|
+}
|
|
+
|
|
+static zend_object_value sqlite_object_new_exception(zend_class_entry *class_type TSRMLS_DC)
|
|
+{
|
|
+ zend_object_value retval;
|
|
+
|
|
+ sqlite_object_new(class_type, &sqlite_object_handlers_exception, &retval TSRMLS_CC);
|
|
+ return retval;
|
|
+}
|
|
+
|
|
+#define SQLITE_REGISTER_OBJECT(_type, _object, _ptr) \
|
|
+ { \
|
|
+ sqlite_object *obj; \
|
|
+ obj = (sqlite_object*)zend_object_store_get_object(_object TSRMLS_CC); \
|
|
+ obj->type = is_ ## _type; \
|
|
+ obj->u._type = _ptr; \
|
|
+ }
|
|
+
|
|
+static zend_class_entry *sqlite_get_ce_query(const zval *object TSRMLS_DC)
|
|
+{
|
|
+ return sqlite_ce_query;
|
|
+}
|
|
+
|
|
+static zend_class_entry *sqlite_get_ce_ub_query(const zval *object TSRMLS_DC)
|
|
+{
|
|
+ return sqlite_ce_ub_query;
|
|
+}
|
|
+
|
|
+static zval * sqlite_instanciate(zend_class_entry *pce, zval *object TSRMLS_DC)
|
|
+{
|
|
+ if (!object) {
|
|
+ ALLOC_ZVAL(object);
|
|
+ }
|
|
+ Z_TYPE_P(object) = IS_OBJECT;
|
|
+ object_init_ex(object, pce);
|
|
+ Z_SET_REFCOUNT_P(object, 1);
|
|
+ Z_SET_ISREF_P(object);
|
|
+ return object;
|
|
+}
|
|
+
|
|
+typedef struct _sqlite_object_iterator {
|
|
+ zend_object_iterator it;
|
|
+ struct php_sqlite_result *res;
|
|
+ zval *value;
|
|
+} sqlite_object_iterator;
|
|
+
|
|
+void sqlite_iterator_dtor(zend_object_iterator *iter TSRMLS_DC)
|
|
+{
|
|
+ zval *object = (zval*)((sqlite_object_iterator*)iter)->it.data;
|
|
+
|
|
+ if (((sqlite_object_iterator*)iter)->value) {
|
|
+ zval_ptr_dtor(&((sqlite_object_iterator*)iter)->value);
|
|
+ ((sqlite_object_iterator*)iter)->value = NULL;
|
|
+ }
|
|
+ zval_ptr_dtor(&object);
|
|
+ efree(iter);
|
|
+}
|
|
+
|
|
+void sqlite_iterator_rewind(zend_object_iterator *iter TSRMLS_DC)
|
|
+{
|
|
+ struct php_sqlite_result *res = ((sqlite_object_iterator*)iter)->res;
|
|
+
|
|
+ if (((sqlite_object_iterator*)iter)->value) {
|
|
+ zval_ptr_dtor(&((sqlite_object_iterator*)iter)->value);
|
|
+ ((sqlite_object_iterator*)iter)->value = NULL;
|
|
+ }
|
|
+ if (res) {
|
|
+ res->curr_row = 0;
|
|
+ }
|
|
+}
|
|
+
|
|
+int sqlite_iterator_valid(zend_object_iterator *iter TSRMLS_DC)
|
|
+{
|
|
+ struct php_sqlite_result *res = ((sqlite_object_iterator*)iter)->res;
|
|
+
|
|
+ if (res && res->curr_row < res->nrows && res->nrows) { /* curr_row may be -1 */
|
|
+ return SUCCESS;
|
|
+ } else {
|
|
+ return FAILURE;
|
|
+ }
|
|
+}
|
|
+
|
|
+void sqlite_iterator_get_current_data(zend_object_iterator *iter, zval ***data TSRMLS_DC)
|
|
+{
|
|
+ struct php_sqlite_result *res = ((sqlite_object_iterator*)iter)->res;
|
|
+
|
|
+ *data = &((sqlite_object_iterator*)iter)->value;
|
|
+ if (res && !**data) {
|
|
+ MAKE_STD_ZVAL(**data);
|
|
+ php_sqlite_fetch_array(res, res->mode, 1, 0, **data TSRMLS_CC);
|
|
+ }
|
|
+
|
|
+}
|
|
+
|
|
+int sqlite_iterator_get_current_key(zend_object_iterator *iter, char **str_key, uint *str_key_len, ulong *int_key TSRMLS_DC)
|
|
+{
|
|
+ struct php_sqlite_result *res = ((sqlite_object_iterator*)iter)->res;
|
|
+
|
|
+ *str_key = NULL;
|
|
+ *str_key_len = 0;
|
|
+ *int_key = res ? res->curr_row : 0;
|
|
+ return HASH_KEY_IS_LONG;
|
|
+}
|
|
+
|
|
+void sqlite_iterator_move_forward(zend_object_iterator *iter TSRMLS_DC)
|
|
+{
|
|
+ struct php_sqlite_result *res = ((sqlite_object_iterator*)iter)->res;
|
|
+
|
|
+ if (((sqlite_object_iterator*)iter)->value) {
|
|
+ zval_ptr_dtor(&((sqlite_object_iterator*)iter)->value);
|
|
+ ((sqlite_object_iterator*)iter)->value = NULL;
|
|
+ }
|
|
+ if (res) {
|
|
+ if (!res->buffered && res->vm) {
|
|
+ php_sqlite_fetch(res TSRMLS_CC);
|
|
+ }
|
|
+ if (res->curr_row >= res->nrows) {
|
|
+ /* php_error_docref(NULL TSRMLS_CC, E_WARNING, "no more rows available"); */
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ res->curr_row++;
|
|
+ }
|
|
+}
|
|
+
|
|
+zend_object_iterator_funcs sqlite_ub_query_iterator_funcs = {
|
|
+ sqlite_iterator_dtor,
|
|
+ sqlite_iterator_valid,
|
|
+ sqlite_iterator_get_current_data,
|
|
+ sqlite_iterator_get_current_key,
|
|
+ sqlite_iterator_move_forward,
|
|
+ NULL
|
|
+};
|
|
+
|
|
+zend_object_iterator_funcs sqlite_query_iterator_funcs = {
|
|
+ sqlite_iterator_dtor,
|
|
+ sqlite_iterator_valid,
|
|
+ sqlite_iterator_get_current_data,
|
|
+ sqlite_iterator_get_current_key,
|
|
+ sqlite_iterator_move_forward,
|
|
+ sqlite_iterator_rewind
|
|
+};
|
|
+
|
|
+zend_object_iterator *sqlite_get_iterator(zend_class_entry *ce, zval *object, int by_ref TSRMLS_DC)
|
|
+{
|
|
+ sqlite_object_iterator *iterator = emalloc(sizeof(sqlite_object_iterator));
|
|
+
|
|
+ sqlite_object *obj = (sqlite_object*) zend_object_store_get_object(object TSRMLS_CC);
|
|
+
|
|
+ if (by_ref) {
|
|
+ zend_error(E_RECOVERABLE_ERROR, "An iterator cannot be used with foreach by reference");
|
|
+ }
|
|
+ Z_ADDREF_P(object);
|
|
+ iterator->it.data = (void*)object;
|
|
+ iterator->it.funcs = ce->iterator_funcs.funcs;
|
|
+ iterator->res = obj->u.res;
|
|
+ iterator->value = NULL;
|
|
+ return (zend_object_iterator*)iterator;
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+static PHP_GINIT_FUNCTION(sqlite)
|
|
+{
|
|
+ sqlite_globals->assoc_case = 0;
|
|
+}
|
|
+
|
|
+PHP_MINIT_FUNCTION(sqlite)
|
|
+{
|
|
+ REGISTER_SQLITE_CLASS(Database, db, NULL);
|
|
+ REGISTER_SQLITE_CLASS(Result, query, NULL);
|
|
+ REGISTER_SQLITE_CLASS(Unbuffered, ub_query, NULL);
|
|
+#if defined(HAVE_SPL) && ((PHP_MAJOR_VERSION > 5) || (PHP_MAJOR_VERSION == 5 && PHP_MINOR_VERSION >= 1))
|
|
+ REGISTER_SQLITE_CLASS(Exception, exception, spl_ce_RuntimeException);
|
|
+#else
|
|
+ REGISTER_SQLITE_CLASS(Exception, exception, zend_exception_get_default(TSRMLS_C));
|
|
+#endif
|
|
+
|
|
+ sqlite_ce_db->ce_flags &= ~ZEND_ACC_FINAL_CLASS;
|
|
+ sqlite_ce_db->constructor->common.fn_flags |= ZEND_ACC_FINAL;
|
|
+
|
|
+ sqlite_object_handlers_query.get_class_entry = sqlite_get_ce_query;
|
|
+ sqlite_object_handlers_ub_query.get_class_entry = sqlite_get_ce_ub_query;
|
|
+ sqlite_object_handlers_ub_query.count_elements = sqlite_count_elements;
|
|
+
|
|
+ sqlite_ce_ub_query->get_iterator = sqlite_get_iterator;
|
|
+ sqlite_ce_ub_query->iterator_funcs.funcs = &sqlite_ub_query_iterator_funcs;
|
|
+
|
|
+#if defined(HAVE_SPL) && ((PHP_MAJOR_VERSION > 5) || (PHP_MAJOR_VERSION == 5 && PHP_MINOR_VERSION >= 1))
|
|
+ zend_class_implements(sqlite_ce_query TSRMLS_CC, 2, zend_ce_iterator, spl_ce_Countable);
|
|
+#else
|
|
+ zend_class_implements(sqlite_ce_query TSRMLS_CC, 1, zend_ce_iterator);
|
|
+#endif
|
|
+ sqlite_ce_query->get_iterator = sqlite_get_iterator;
|
|
+ sqlite_ce_query->iterator_funcs.funcs = &sqlite_query_iterator_funcs;
|
|
+
|
|
+ REGISTER_INI_ENTRIES();
|
|
+
|
|
+#if HAVE_PHP_SESSION && !defined(COMPILE_DL_SESSION)
|
|
+ php_session_register_module(ps_sqlite_ptr);
|
|
+#endif
|
|
+
|
|
+ le_sqlite_db = zend_register_list_destructors_ex(php_sqlite_db_dtor, NULL, "sqlite database", module_number);
|
|
+ le_sqlite_pdb = zend_register_list_destructors_ex(NULL, php_sqlite_db_dtor, "sqlite database (persistent)", module_number);
|
|
+ le_sqlite_result = zend_register_list_destructors_ex(php_sqlite_result_dtor, NULL, "sqlite result", module_number);
|
|
+
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_BOTH", PHPSQLITE_BOTH, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_NUM", PHPSQLITE_NUM, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_ASSOC", PHPSQLITE_ASSOC, CONST_CS|CONST_PERSISTENT);
|
|
+
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_OK", SQLITE_OK, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_ERROR", SQLITE_ERROR, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_INTERNAL", SQLITE_INTERNAL, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_PERM", SQLITE_PERM, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_ABORT", SQLITE_ABORT, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_BUSY", SQLITE_BUSY, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_LOCKED", SQLITE_LOCKED, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_NOMEM", SQLITE_NOMEM, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_READONLY", SQLITE_READONLY, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_INTERRUPT", SQLITE_INTERRUPT, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_IOERR", SQLITE_IOERR, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_CORRUPT", SQLITE_CORRUPT, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_NOTFOUND", SQLITE_NOTFOUND, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_FULL", SQLITE_FULL, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_CANTOPEN", SQLITE_CANTOPEN, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_PROTOCOL", SQLITE_PROTOCOL, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_EMPTY", SQLITE_EMPTY, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_SCHEMA", SQLITE_SCHEMA, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_TOOBIG", SQLITE_TOOBIG, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_CONSTRAINT", SQLITE_CONSTRAINT, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_MISMATCH", SQLITE_MISMATCH, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_MISUSE", SQLITE_MISUSE, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_NOLFS", SQLITE_NOLFS, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_AUTH", SQLITE_AUTH, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_NOTADB", SQLITE_NOTADB, CONST_CS|CONST_PERSISTENT);
|
|
+#ifdef SQLITE_FORMAT
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_FORMAT", SQLITE_FORMAT, CONST_CS|CONST_PERSISTENT);
|
|
+#endif
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_ROW", SQLITE_ROW, CONST_CS|CONST_PERSISTENT);
|
|
+ REGISTER_LONG_CONSTANT("SQLITE_DONE", SQLITE_DONE, CONST_CS|CONST_PERSISTENT);
|
|
+
|
|
+#ifdef PHP_SQLITE2_HAVE_PDO
|
|
+ if (FAILURE == php_pdo_register_driver(&pdo_sqlite2_driver)) {
|
|
+ return FAILURE;
|
|
+ }
|
|
+#endif
|
|
+
|
|
+ return SUCCESS;
|
|
+}
|
|
+
|
|
+PHP_MSHUTDOWN_FUNCTION(sqlite)
|
|
+{
|
|
+ UNREGISTER_INI_ENTRIES();
|
|
+
|
|
+#ifdef PHP_SQLITE2_HAVE_PDO
|
|
+ php_pdo_unregister_driver(&pdo_sqlite2_driver);
|
|
+#endif
|
|
+
|
|
+ return SUCCESS;
|
|
+}
|
|
+
|
|
+PHP_MINFO_FUNCTION(sqlite)
|
|
+{
|
|
+ php_info_print_table_start();
|
|
+ php_info_print_table_header(2, "SQLite support", "enabled");
|
|
+ php_info_print_table_row(2, "PECL Module version", PHP_SQLITE_MODULE_VERSION " $Id$");
|
|
+ php_info_print_table_row(2, "SQLite Library", sqlite_libversion());
|
|
+ php_info_print_table_row(2, "SQLite Encoding", sqlite_libencoding());
|
|
+ php_info_print_table_end();
|
|
+
|
|
+ DISPLAY_INI_ENTRIES();
|
|
+}
|
|
+
|
|
+static struct php_sqlite_db *php_sqlite_open(char *filename, int mode, char *persistent_id, zval *return_value, zval *errmsg, zval *object TSRMLS_DC)
|
|
+{
|
|
+ char *errtext = NULL;
|
|
+ sqlite *sdb = NULL;
|
|
+ struct php_sqlite_db *db = NULL;
|
|
+
|
|
+ sdb = sqlite_open(filename, mode, &errtext);
|
|
+
|
|
+ if (sdb == NULL) {
|
|
+
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "%s", errtext);
|
|
+
|
|
+ if (errmsg) {
|
|
+ ZVAL_STRING(errmsg, errtext, 1);
|
|
+ }
|
|
+
|
|
+ sqlite_freemem(errtext);
|
|
+
|
|
+ /* if object is not an object then we're called from the factory() function */
|
|
+ if (object && Z_TYPE_P(object) != IS_OBJECT) {
|
|
+ RETVAL_NULL();
|
|
+ } else {
|
|
+ RETVAL_FALSE;
|
|
+ }
|
|
+ return NULL;
|
|
+ }
|
|
+
|
|
+ db = (struct php_sqlite_db *)pemalloc(sizeof(struct php_sqlite_db), persistent_id ? 1 : 0);
|
|
+ db->is_persistent = persistent_id ? 1 : 0;
|
|
+ db->last_err_code = SQLITE_OK;
|
|
+ db->db = sdb;
|
|
+
|
|
+ zend_hash_init(&db->callbacks, 0, NULL, php_sqlite_callback_dtor, db->is_persistent);
|
|
+
|
|
+ /* register the PHP functions */
|
|
+ sqlite_create_function(sdb, "php", -1, php_sqlite_generic_function_callback, 0);
|
|
+
|
|
+ /* set default busy handler; keep retrying up until 1 minute has passed,
|
|
+ * then fail with a busy status code */
|
|
+ sqlite_busy_timeout(sdb, 60000);
|
|
+
|
|
+ /* authorizer hook so we can enforce safe mode
|
|
+ * Note: the declaration of php_sqlite_authorizer is correct for 2.8.2 of libsqlite,
|
|
+ * and IS backwards binary compatible with earlier versions */
|
|
+ if (PG(safe_mode) || (PG(open_basedir) && *PG(open_basedir))) {
|
|
+ sqlite_set_authorizer(sdb, php_sqlite_authorizer, NULL);
|
|
+ }
|
|
+
|
|
+ db->rsrc_id = ZEND_REGISTER_RESOURCE(object ? NULL : return_value, db, persistent_id ? le_sqlite_pdb : le_sqlite_db);
|
|
+ if (object) {
|
|
+ /* if object is not an object then we're called from the factory() function */
|
|
+ if (Z_TYPE_P(object) != IS_OBJECT) {
|
|
+ sqlite_instanciate(sqlite_ce_db, object TSRMLS_CC);
|
|
+ }
|
|
+ /* and now register the object */
|
|
+ SQLITE_REGISTER_OBJECT(db, object, db)
|
|
+ }
|
|
+
|
|
+ if (persistent_id) {
|
|
+ zend_rsrc_list_entry le;
|
|
+
|
|
+ Z_TYPE(le) = le_sqlite_pdb;
|
|
+ le.ptr = db;
|
|
+
|
|
+ if (FAILURE == zend_hash_update(&EG(persistent_list), persistent_id,
|
|
+ strlen(persistent_id)+1,
|
|
+ (void *)&le, sizeof(le), NULL)) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "Failed to register persistent resource");
|
|
+ }
|
|
+ }
|
|
+
|
|
+ return db;
|
|
+}
|
|
+
|
|
+/* {{{ proto resource sqlite_popen(string filename [, int mode [, string &error_message]])
|
|
+ Opens a persistent handle to a SQLite database. Will create the database if it does not exist. */
|
|
+PHP_FUNCTION(sqlite_popen)
|
|
+{
|
|
+ long mode = 0666;
|
|
+ char *filename, *fullpath, *hashkey;
|
|
+ int filename_len, hashkeylen;
|
|
+ zval *errmsg = NULL;
|
|
+ struct php_sqlite_db *db = NULL;
|
|
+ zend_rsrc_list_entry *le;
|
|
+
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|lz/",
|
|
+ &filename, &filename_len, &mode, &errmsg)) {
|
|
+ return;
|
|
+ }
|
|
+ if (errmsg) {
|
|
+ zval_dtor(errmsg);
|
|
+ ZVAL_NULL(errmsg);
|
|
+ }
|
|
+
|
|
+ if (strlen(filename) != filename_len) {
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+ if (strncmp(filename, ":memory:", sizeof(":memory:") - 1)) {
|
|
+ /* resolve the fully-qualified path name to use as the hash key */
|
|
+ if (!(fullpath = expand_filepath(filename, NULL TSRMLS_CC))) {
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+
|
|
+ if ((PG(safe_mode) && (!php_checkuid(fullpath, NULL, CHECKUID_CHECK_FILE_AND_DIR))) ||
|
|
+ php_check_open_basedir(fullpath TSRMLS_CC)) {
|
|
+ efree(fullpath);
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+ } else {
|
|
+ fullpath = estrndup(filename, filename_len);
|
|
+ }
|
|
+
|
|
+ hashkeylen = spprintf(&hashkey, 0, "sqlite_pdb_%s:%ld", fullpath, mode);
|
|
+
|
|
+ /* do we have an existing persistent connection ? */
|
|
+ if (SUCCESS == zend_hash_find(&EG(persistent_list), hashkey, hashkeylen+1, (void*)&le)) {
|
|
+ if (Z_TYPE_P(le) == le_sqlite_pdb) {
|
|
+ db = (struct php_sqlite_db*)le->ptr;
|
|
+
|
|
+ if (db->rsrc_id == FAILURE) {
|
|
+ /* give it a valid resource id for this request */
|
|
+ db->rsrc_id = ZEND_REGISTER_RESOURCE(return_value, db, le_sqlite_pdb);
|
|
+ } else {
|
|
+ int type;
|
|
+ /* sanity check to ensure that the resource is still a valid regular resource
|
|
+ * number */
|
|
+ if (zend_list_find(db->rsrc_id, &type) == db) {
|
|
+ /* already accessed this request; map it */
|
|
+ zend_list_addref(db->rsrc_id);
|
|
+ ZVAL_RESOURCE(return_value, db->rsrc_id);
|
|
+ } else {
|
|
+ db->rsrc_id = ZEND_REGISTER_RESOURCE(return_value, db, le_sqlite_pdb);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* all set */
|
|
+ goto done;
|
|
+ }
|
|
+
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "Some other type of persistent resource is using this hash key!?");
|
|
+ RETVAL_FALSE;
|
|
+ goto done;
|
|
+ }
|
|
+
|
|
+ /* now we need to open the database */
|
|
+ php_sqlite_open(fullpath, (int)mode, hashkey, return_value, errmsg, NULL TSRMLS_CC);
|
|
+done:
|
|
+ efree(fullpath);
|
|
+ efree(hashkey);
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto resource sqlite_open(string filename [, int mode [, string &error_message]])
|
|
+ Opens a SQLite database. Will create the database if it does not exist. */
|
|
+PHP_FUNCTION(sqlite_open)
|
|
+{
|
|
+ long mode = 0666;
|
|
+ char *filename, *fullpath = NULL;
|
|
+ int filename_len;
|
|
+ zval *errmsg = NULL;
|
|
+ zval *object = getThis();
|
|
+ zend_error_handling error_handling;
|
|
+
|
|
+ zend_replace_error_handling(object ? EH_THROW : EH_NORMAL, sqlite_ce_exception, &error_handling TSRMLS_CC);
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|lz/",
|
|
+ &filename, &filename_len, &mode, &errmsg)) {
|
|
+ zend_restore_error_handling(&error_handling TSRMLS_CC);
|
|
+ return;
|
|
+ }
|
|
+ if (errmsg) {
|
|
+ zval_dtor(errmsg);
|
|
+ ZVAL_NULL(errmsg);
|
|
+ }
|
|
+
|
|
+ if (strlen(filename) != filename_len) {
|
|
+ zend_restore_error_handling(&error_handling TSRMLS_CC);
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+
|
|
+ if (strncmp(filename, ":memory:", sizeof(":memory:") - 1)) {
|
|
+ /* resolve the fully-qualified path name to use as the hash key */
|
|
+ if (!(fullpath = expand_filepath(filename, NULL TSRMLS_CC))) {
|
|
+ zend_restore_error_handling(&error_handling TSRMLS_CC);
|
|
+ if (object) {
|
|
+ RETURN_NULL();
|
|
+ } else {
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ if ((PG(safe_mode) && (!php_checkuid(fullpath, NULL, CHECKUID_CHECK_FILE_AND_DIR))) ||
|
|
+ php_check_open_basedir(fullpath TSRMLS_CC)) {
|
|
+ efree(fullpath);
|
|
+ zend_restore_error_handling(&error_handling TSRMLS_CC);
|
|
+ if (object) {
|
|
+ RETURN_NULL();
|
|
+ } else {
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+
|
|
+ php_sqlite_open(fullpath ? fullpath : filename, (int)mode, NULL, return_value, errmsg, object TSRMLS_CC);
|
|
+
|
|
+ if (fullpath) {
|
|
+ efree(fullpath);
|
|
+ }
|
|
+ zend_restore_error_handling(&error_handling TSRMLS_CC);
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto object sqlite_factory(string filename [, int mode [, string &error_message]])
|
|
+ Opens a SQLite database and creates an object for it. Will create the database if it does not exist. */
|
|
+PHP_FUNCTION(sqlite_factory)
|
|
+{
|
|
+ long mode = 0666;
|
|
+ char *filename, *fullpath = NULL;
|
|
+ int filename_len;
|
|
+ zval *errmsg = NULL;
|
|
+ zend_error_handling error_handling;
|
|
+
|
|
+ zend_replace_error_handling(EH_THROW, sqlite_ce_exception, &error_handling TSRMLS_CC);
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|lz/",
|
|
+ &filename, &filename_len, &mode, &errmsg)) {
|
|
+ zend_restore_error_handling(&error_handling TSRMLS_CC);
|
|
+ RETURN_NULL();
|
|
+ }
|
|
+ if (errmsg) {
|
|
+ zval_dtor(errmsg);
|
|
+ ZVAL_NULL(errmsg);
|
|
+ }
|
|
+
|
|
+ if (strlen(filename) != filename_len) {
|
|
+ zend_restore_error_handling(&error_handling TSRMLS_CC);
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+
|
|
+ if (strncmp(filename, ":memory:", sizeof(":memory:") - 1)) {
|
|
+ /* resolve the fully-qualified path name to use as the hash key */
|
|
+ if (!(fullpath = expand_filepath(filename, NULL TSRMLS_CC))) {
|
|
+ zend_restore_error_handling(&error_handling TSRMLS_CC);
|
|
+ RETURN_NULL();
|
|
+ }
|
|
+
|
|
+ if ((PG(safe_mode) && (!php_checkuid(fullpath, NULL, CHECKUID_CHECK_FILE_AND_DIR))) ||
|
|
+ php_check_open_basedir(fullpath TSRMLS_CC)) {
|
|
+ efree(fullpath);
|
|
+ zend_restore_error_handling(&error_handling TSRMLS_CC);
|
|
+ RETURN_NULL();
|
|
+ }
|
|
+ }
|
|
+
|
|
+ php_sqlite_open(fullpath ? fullpath : filename, (int)mode, NULL, return_value, errmsg, return_value TSRMLS_CC);
|
|
+ if (fullpath) {
|
|
+ efree(fullpath);
|
|
+ }
|
|
+ zend_restore_error_handling(&error_handling TSRMLS_CC);
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto void sqlite_busy_timeout(resource db, int ms)
|
|
+ Set busy timeout duration. If ms <= 0, all busy handlers are disabled. */
|
|
+PHP_FUNCTION(sqlite_busy_timeout)
|
|
+{
|
|
+ zval *zdb;
|
|
+ struct php_sqlite_db *db;
|
|
+ long ms;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "l", &ms)) {
|
|
+ return;
|
|
+ }
|
|
+ DB_FROM_OBJECT(db, object);
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rl", &zdb, &ms)) {
|
|
+ return;
|
|
+ }
|
|
+ DB_FROM_ZVAL(db, &zdb);
|
|
+ }
|
|
+
|
|
+ sqlite_busy_timeout(db->db, ms);
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto void sqlite_close(resource db)
|
|
+ Closes an open sqlite database. */
|
|
+PHP_FUNCTION(sqlite_close)
|
|
+{
|
|
+ zval *zdb;
|
|
+ struct php_sqlite_db *db;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_NOTICE, "Ignored, you must destruct the object instead");
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &zdb)) {
|
|
+ return;
|
|
+ }
|
|
+ DB_FROM_ZVAL(db, &zdb);
|
|
+ }
|
|
+
|
|
+ zend_hash_apply_with_argument(&EG(regular_list),
|
|
+ (apply_func_arg_t) _clean_unfinished_results,
|
|
+ db TSRMLS_CC);
|
|
+
|
|
+ zend_list_delete(Z_RESVAL_P(zdb));
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ php_sqlite_fetch */
|
|
+static int php_sqlite_fetch(struct php_sqlite_result *rres TSRMLS_DC)
|
|
+{
|
|
+ const char **rowdata, **colnames;
|
|
+ int ret, i, base;
|
|
+ char *errtext = NULL;
|
|
+
|
|
+next_row:
|
|
+ ret = sqlite_step(rres->vm, &rres->ncolumns, &rowdata, &colnames);
|
|
+ if (!rres->nrows) {
|
|
+ /* first row - lets copy the column names */
|
|
+ rres->col_names = safe_emalloc(rres->ncolumns, sizeof(char *), 0);
|
|
+ for (i = 0; i < rres->ncolumns; i++) {
|
|
+ rres->col_names[i] = estrdup((char*)colnames[i]);
|
|
+
|
|
+ if (SQLITE_G(assoc_case) == 1) {
|
|
+ php_sqlite_strtoupper(rres->col_names[i]);
|
|
+ } else if (SQLITE_G(assoc_case) == 2) {
|
|
+ php_sqlite_strtolower(rres->col_names[i]);
|
|
+ }
|
|
+ }
|
|
+ if (!rres->buffered) {
|
|
+ /* non buffered mode - also fetch memory for on single row */
|
|
+ rres->table = safe_emalloc(rres->ncolumns, sizeof(char *), 0);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ switch (ret) {
|
|
+ case SQLITE_ROW:
|
|
+ if (rres->buffered) {
|
|
+ /* add the row to our collection */
|
|
+ if (rres->nrows + 1 >= rres->alloc_rows) {
|
|
+ rres->alloc_rows = rres->alloc_rows ? rres->alloc_rows * 2 : 16;
|
|
+ rres->table = safe_erealloc(rres->table, rres->alloc_rows, rres->ncolumns*sizeof(char *), 0);
|
|
+ }
|
|
+ base = rres->nrows * rres->ncolumns;
|
|
+ for (i = 0; i < rres->ncolumns; i++) {
|
|
+ if (rowdata[i]) {
|
|
+ rres->table[base + i] = estrdup(rowdata[i]);
|
|
+ } else {
|
|
+ rres->table[base + i] = NULL;
|
|
+ }
|
|
+ }
|
|
+ rres->nrows++;
|
|
+ goto next_row;
|
|
+ } else {
|
|
+ /* non buffered: only fetch one row but first free data if not first row */
|
|
+ if (rres->nrows++) {
|
|
+ for (i = 0; i < rres->ncolumns; i++) {
|
|
+ if (rres->table[i]) {
|
|
+ efree(rres->table[i]);
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ for (i = 0; i < rres->ncolumns; i++) {
|
|
+ if (rowdata[i]) {
|
|
+ rres->table[i] = estrdup(rowdata[i]);
|
|
+ } else {
|
|
+ rres->table[i] = NULL;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ ret = SQLITE_OK;
|
|
+ break;
|
|
+
|
|
+ case SQLITE_BUSY:
|
|
+ case SQLITE_ERROR:
|
|
+ case SQLITE_MISUSE:
|
|
+ case SQLITE_DONE:
|
|
+ default:
|
|
+ if (rres->vm) {
|
|
+ ret = sqlite_finalize(rres->vm, &errtext);
|
|
+ }
|
|
+ rres->vm = NULL;
|
|
+ if (ret != SQLITE_OK) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "%s", errtext);
|
|
+ sqlite_freemem(errtext);
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ rres->db->last_err_code = ret;
|
|
+
|
|
+ return ret;
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ sqlite_query */
|
|
+void sqlite_query(zval *object, struct php_sqlite_db *db, char *sql, long sql_len, int mode, int buffered, zval *return_value, struct php_sqlite_result **prres, zval *errmsg TSRMLS_DC)
|
|
+{
|
|
+ struct php_sqlite_result res, *rres;
|
|
+ int ret;
|
|
+ char *errtext = NULL;
|
|
+ const char *tail;
|
|
+
|
|
+ memset(&res, 0, sizeof(res));
|
|
+ res.buffered = buffered;
|
|
+ res.mode = mode;
|
|
+
|
|
+ ret = sqlite_compile(db->db, sql, &tail, &res.vm, &errtext);
|
|
+ db->last_err_code = ret;
|
|
+
|
|
+ if (ret != SQLITE_OK) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "%s", errtext);
|
|
+ if (errmsg) {
|
|
+ ZVAL_STRING(errmsg, errtext, 1);
|
|
+ }
|
|
+ sqlite_freemem(errtext);
|
|
+ goto terminate;
|
|
+ } else if (!res.vm) { /* empty query */
|
|
+terminate:
|
|
+ if (return_value) {
|
|
+ RETURN_FALSE;
|
|
+ } else {
|
|
+ return;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ if (!prres) {
|
|
+ rres = NULL;
|
|
+ prres = &rres;
|
|
+ }
|
|
+ if (!*prres) {
|
|
+ *prres = (struct php_sqlite_result*)emalloc(sizeof(**prres));
|
|
+ }
|
|
+ memcpy(*prres, &res, sizeof(**prres));
|
|
+ (*prres)->db = db;
|
|
+ zend_list_addref(db->rsrc_id);
|
|
+
|
|
+
|
|
+ /* now the result set is ready for stepping: get first row */
|
|
+ if (php_sqlite_fetch((*prres) TSRMLS_CC) != SQLITE_OK) {
|
|
+ real_result_dtor((*prres) TSRMLS_CC);
|
|
+ *prres = NULL;
|
|
+ if (return_value) {
|
|
+ RETURN_FALSE;
|
|
+ } else {
|
|
+ return;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ (*prres)->curr_row = 0;
|
|
+
|
|
+ if (object) {
|
|
+ sqlite_object *obj;
|
|
+ if (buffered) {
|
|
+ sqlite_instanciate(sqlite_ce_query, return_value TSRMLS_CC);
|
|
+ } else {
|
|
+ sqlite_instanciate(sqlite_ce_ub_query, return_value TSRMLS_CC);
|
|
+ }
|
|
+ obj = (sqlite_object *) zend_object_store_get_object(return_value TSRMLS_CC);
|
|
+ obj->type = is_result;
|
|
+ obj->u.res = (*prres);
|
|
+ } else if (return_value) {
|
|
+ ZEND_REGISTER_RESOURCE(object ? NULL : return_value, (*prres), le_sqlite_result);
|
|
+ }
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto resource sqlite_unbuffered_query(string query, resource db [ , int result_type [, string &error_message]])
|
|
+ Executes a query that does not prefetch and buffer all data. */
|
|
+PHP_FUNCTION(sqlite_unbuffered_query)
|
|
+{
|
|
+ zval *zdb;
|
|
+ struct php_sqlite_db *db;
|
|
+ char *sql;
|
|
+ int sql_len;
|
|
+ long mode = PHPSQLITE_BOTH;
|
|
+ char *errtext = NULL;
|
|
+ zval *errmsg = NULL;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|lz/", &sql, &sql_len, &mode, &errmsg)) {
|
|
+ return;
|
|
+ }
|
|
+ DB_FROM_OBJECT(db, object);
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters_ex(ZEND_PARSE_PARAMS_QUIET,
|
|
+ ZEND_NUM_ARGS() TSRMLS_CC, "sr|lz/", &sql, &sql_len, &zdb, &mode, &errmsg) &&
|
|
+ FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rs|lz/", &zdb, &sql, &sql_len, &mode, &errmsg)) {
|
|
+ return;
|
|
+ }
|
|
+ DB_FROM_ZVAL(db, &zdb);
|
|
+ }
|
|
+
|
|
+ if (errmsg) {
|
|
+ zval_dtor(errmsg);
|
|
+ ZVAL_NULL(errmsg);
|
|
+ }
|
|
+
|
|
+ PHP_SQLITE_EMPTY_QUERY;
|
|
+
|
|
+ /* avoid doing work if we can */
|
|
+ if (!return_value_used) {
|
|
+ db->last_err_code = sqlite_exec(db->db, sql, NULL, NULL, &errtext);
|
|
+
|
|
+ if (db->last_err_code != SQLITE_OK) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "%s", errtext);
|
|
+ if (errmsg) {
|
|
+ ZVAL_STRING(errmsg, errtext, 1);
|
|
+ }
|
|
+ sqlite_freemem(errtext);
|
|
+ }
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ sqlite_query(object, db, sql, sql_len, (int)mode, 0, return_value, NULL, errmsg TSRMLS_CC);
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto resource sqlite_fetch_column_types(string table_name, resource db [, int result_type])
|
|
+ Return an array of column types from a particular table. */
|
|
+PHP_FUNCTION(sqlite_fetch_column_types)
|
|
+{
|
|
+ zval *zdb;
|
|
+ struct php_sqlite_db *db;
|
|
+ char *tbl, *sql;
|
|
+ int tbl_len;
|
|
+ char *errtext = NULL;
|
|
+ zval *object = getThis();
|
|
+ struct php_sqlite_result res;
|
|
+ const char **rowdata, **colnames, *tail;
|
|
+ int i, ncols;
|
|
+ long result_type = PHPSQLITE_ASSOC;
|
|
+
|
|
+ if (object) {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|l", &tbl, &tbl_len, &result_type)) {
|
|
+ return;
|
|
+ }
|
|
+ DB_FROM_OBJECT(db, object);
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters_ex(ZEND_PARSE_PARAMS_QUIET,
|
|
+ ZEND_NUM_ARGS() TSRMLS_CC, "sr|l", &tbl, &tbl_len, &zdb, &result_type) &&
|
|
+ FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rs|l", &zdb, &tbl, &tbl_len, &result_type)) {
|
|
+ return;
|
|
+ }
|
|
+ DB_FROM_ZVAL(db, &zdb);
|
|
+ }
|
|
+
|
|
+ if (!(sql = sqlite_mprintf("SELECT * FROM '%q' LIMIT 1", tbl))) {
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+
|
|
+ sqlite_exec(db->db, "PRAGMA show_datatypes = ON", NULL, NULL, NULL);
|
|
+
|
|
+ db->last_err_code = sqlite_compile(db->db, sql, &tail, &res.vm, &errtext);
|
|
+
|
|
+ sqlite_freemem(sql);
|
|
+
|
|
+ if (db->last_err_code != SQLITE_OK) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "%s", errtext);
|
|
+ sqlite_freemem(errtext);
|
|
+ RETVAL_FALSE;
|
|
+ goto done;
|
|
+ }
|
|
+
|
|
+ sqlite_step(res.vm, &ncols, &rowdata, &colnames);
|
|
+
|
|
+ array_init(return_value);
|
|
+
|
|
+ for (i = 0; i < ncols; i++) {
|
|
+ if (result_type == PHPSQLITE_ASSOC) {
|
|
+ char *colname = estrdup((char *)colnames[i]);
|
|
+
|
|
+ if (SQLITE_G(assoc_case) == 1) {
|
|
+ php_sqlite_strtoupper(colname);
|
|
+ } else if (SQLITE_G(assoc_case) == 2) {
|
|
+ php_sqlite_strtolower(colname);
|
|
+ }
|
|
+
|
|
+ add_assoc_string(return_value, colname, colnames[ncols + i] ? (char *)colnames[ncols + i] : "", 1);
|
|
+ efree(colname);
|
|
+ }
|
|
+ if (result_type == PHPSQLITE_NUM) {
|
|
+ add_index_string(return_value, i, colnames[ncols + i] ? (char *)colnames[ncols + i] : "", 1);
|
|
+ }
|
|
+ }
|
|
+ if (res.vm) {
|
|
+ sqlite_finalize(res.vm, NULL);
|
|
+ }
|
|
+done:
|
|
+ sqlite_exec(db->db, "PRAGMA show_datatypes = OFF", NULL, NULL, NULL);
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto resource sqlite_query(string query, resource db [, int result_type [, string &error_message]])
|
|
+ Executes a query against a given database and returns a result handle. */
|
|
+PHP_FUNCTION(sqlite_query)
|
|
+{
|
|
+ zval *zdb;
|
|
+ struct php_sqlite_db *db;
|
|
+ char *sql;
|
|
+ int sql_len;
|
|
+ long mode = PHPSQLITE_BOTH;
|
|
+ char *errtext = NULL;
|
|
+ zval *errmsg = NULL;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|lz/", &sql, &sql_len, &mode, &errmsg)) {
|
|
+ return;
|
|
+ }
|
|
+ DB_FROM_OBJECT(db, object);
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters_ex(ZEND_PARSE_PARAMS_QUIET,
|
|
+ ZEND_NUM_ARGS() TSRMLS_CC, "sr|lz/", &sql, &sql_len, &zdb, &mode, &errmsg) &&
|
|
+ FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rs|lz/", &zdb, &sql, &sql_len, &mode, &errmsg)) {
|
|
+ return;
|
|
+ }
|
|
+ DB_FROM_ZVAL(db, &zdb);
|
|
+ }
|
|
+
|
|
+ if (errmsg) {
|
|
+ zval_dtor(errmsg);
|
|
+ ZVAL_NULL(errmsg);
|
|
+ }
|
|
+
|
|
+ PHP_SQLITE_EMPTY_QUERY;
|
|
+
|
|
+ /* avoid doing work if we can */
|
|
+ if (!return_value_used) {
|
|
+ db->last_err_code = sqlite_exec(db->db, sql, NULL, NULL, &errtext);
|
|
+
|
|
+ if (db->last_err_code != SQLITE_OK) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "%s", errtext);
|
|
+ if (errmsg) {
|
|
+ ZVAL_STRING(errmsg, errtext, 1);
|
|
+ }
|
|
+ sqlite_freemem(errtext);
|
|
+ }
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ sqlite_query(object, db, sql, sql_len, (int)mode, 1, return_value, NULL, errmsg TSRMLS_CC);
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto boolean sqlite_exec(string query, resource db[, string &error_message])
|
|
+ Executes a result-less query against a given database */
|
|
+PHP_FUNCTION(sqlite_exec)
|
|
+{
|
|
+ zval *zdb;
|
|
+ struct php_sqlite_db *db;
|
|
+ char *sql;
|
|
+ int sql_len;
|
|
+ char *errtext = NULL;
|
|
+ zval *errmsg = NULL;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|z/", &sql, &sql_len, &errmsg)) {
|
|
+ return;
|
|
+ }
|
|
+ DB_FROM_OBJECT(db, object);
|
|
+ } else {
|
|
+ if(FAILURE == zend_parse_parameters_ex(ZEND_PARSE_PARAMS_QUIET,
|
|
+ ZEND_NUM_ARGS() TSRMLS_CC, "sr", &sql, &sql_len, &zdb) &&
|
|
+ FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rs|z/", &zdb, &sql, &sql_len, &errmsg)) {
|
|
+ return;
|
|
+ }
|
|
+ DB_FROM_ZVAL(db, &zdb);
|
|
+ }
|
|
+
|
|
+ if (errmsg) {
|
|
+ zval_dtor(errmsg);
|
|
+ ZVAL_NULL(errmsg);
|
|
+ }
|
|
+
|
|
+ PHP_SQLITE_EMPTY_QUERY;
|
|
+
|
|
+ db->last_err_code = sqlite_exec(db->db, sql, NULL, NULL, &errtext);
|
|
+
|
|
+ if (db->last_err_code != SQLITE_OK) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "%s", errtext);
|
|
+ if (errmsg) {
|
|
+ ZVAL_STRING(errmsg, errtext, 1);
|
|
+ }
|
|
+ sqlite_freemem(errtext);
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+
|
|
+ RETURN_TRUE;
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ php_sqlite_fetch_array */
|
|
+static void php_sqlite_fetch_array(struct php_sqlite_result *res, int mode, zend_bool decode_binary, int move_next, zval *return_value TSRMLS_DC)
|
|
+{
|
|
+ int j, n = res->ncolumns, buffered = res->buffered;
|
|
+ const char **rowdata, **colnames;
|
|
+
|
|
+ /* check range of the row */
|
|
+ if (res->curr_row >= res->nrows) {
|
|
+ /* no more */
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+ colnames = (const char**)res->col_names;
|
|
+ if (res->buffered) {
|
|
+ rowdata = (const char**)&res->table[res->curr_row * res->ncolumns];
|
|
+ } else {
|
|
+ rowdata = (const char**)res->table;
|
|
+ }
|
|
+
|
|
+ /* now populate the result */
|
|
+ array_init(return_value);
|
|
+
|
|
+ for (j = 0; j < n; j++) {
|
|
+ zval *decoded;
|
|
+ MAKE_STD_ZVAL(decoded);
|
|
+
|
|
+ if (rowdata[j] == NULL) {
|
|
+ ZVAL_NULL(decoded);
|
|
+ } else if (decode_binary && rowdata[j][0] == '\x01') {
|
|
+ Z_STRVAL_P(decoded) = emalloc(strlen(rowdata[j]));
|
|
+ Z_STRLEN_P(decoded) = php_sqlite_decode_binary(rowdata[j]+1, Z_STRVAL_P(decoded));
|
|
+ Z_STRVAL_P(decoded)[Z_STRLEN_P(decoded)] = '\0';
|
|
+ Z_TYPE_P(decoded) = IS_STRING;
|
|
+ if (!buffered) {
|
|
+ efree((char*)rowdata[j]);
|
|
+ rowdata[j] = NULL;
|
|
+ }
|
|
+ } else {
|
|
+ ZVAL_STRING(decoded, (char*)rowdata[j], buffered);
|
|
+ if (!buffered) {
|
|
+ rowdata[j] = NULL;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ if (mode & PHPSQLITE_NUM) {
|
|
+ if (mode & PHPSQLITE_ASSOC) {
|
|
+ add_index_zval(return_value, j, decoded);
|
|
+ Z_ADDREF_P(decoded);
|
|
+ add_assoc_zval(return_value, (char*)colnames[j], decoded);
|
|
+ } else {
|
|
+ add_next_index_zval(return_value, decoded);
|
|
+ }
|
|
+ } else {
|
|
+ add_assoc_zval(return_value, (char*)colnames[j], decoded);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ if (move_next) {
|
|
+ if (!res->buffered) {
|
|
+ /* non buffered: fetch next row */
|
|
+ php_sqlite_fetch(res TSRMLS_CC);
|
|
+ }
|
|
+ /* advance the row pointer */
|
|
+ res->curr_row++;
|
|
+ }
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ php_sqlite_fetch_column */
|
|
+static void php_sqlite_fetch_column(struct php_sqlite_result *res, zval *which, zend_bool decode_binary, zval *return_value TSRMLS_DC)
|
|
+{
|
|
+ int j;
|
|
+ const char **rowdata, **colnames;
|
|
+
|
|
+ /* check range of the row */
|
|
+ if (res->curr_row >= res->nrows) {
|
|
+ /* no more */
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+ colnames = (const char**)res->col_names;
|
|
+
|
|
+ if (Z_TYPE_P(which) == IS_LONG) {
|
|
+ j = Z_LVAL_P(which);
|
|
+ } else {
|
|
+ convert_to_string_ex(&which);
|
|
+ for (j = 0; j < res->ncolumns; j++) {
|
|
+ if (!strcasecmp((char*)colnames[j], Z_STRVAL_P(which))) {
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+ if (j < 0 || j >= res->ncolumns) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "No such column %d", j);
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+
|
|
+ if (res->buffered) {
|
|
+ rowdata = (const char**)&res->table[res->curr_row * res->ncolumns];
|
|
+ } else {
|
|
+ rowdata = (const char**)res->table;
|
|
+ }
|
|
+
|
|
+ if (rowdata[j] == NULL) {
|
|
+ RETURN_NULL();
|
|
+ } else if (decode_binary && rowdata[j] != NULL && rowdata[j][0] == '\x01') {
|
|
+ int l = strlen(rowdata[j]);
|
|
+ char *decoded = emalloc(l);
|
|
+ l = php_sqlite_decode_binary(rowdata[j]+1, decoded);
|
|
+ decoded[l] = '\0';
|
|
+ RETVAL_STRINGL(decoded, l, 0);
|
|
+ if (!res->buffered) {
|
|
+ efree((char*)rowdata[j]);
|
|
+ rowdata[j] = NULL;
|
|
+ }
|
|
+ } else {
|
|
+ RETVAL_STRING((char*)rowdata[j], res->buffered);
|
|
+ if (!res->buffered) {
|
|
+ rowdata[j] = NULL;
|
|
+ }
|
|
+ }
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto array sqlite_fetch_all(resource result [, int result_type [, bool decode_binary]])
|
|
+ Fetches all rows from a result set as an array of arrays. */
|
|
+PHP_FUNCTION(sqlite_fetch_all)
|
|
+{
|
|
+ zval *zres, *ent;
|
|
+ long mode = PHPSQLITE_BOTH;
|
|
+ zend_bool decode_binary = 1;
|
|
+ struct php_sqlite_result *res;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "|lb", &mode, &decode_binary)) {
|
|
+ return;
|
|
+ }
|
|
+ RES_FROM_OBJECT(res, object);
|
|
+ if (!ZEND_NUM_ARGS()) {
|
|
+ mode = res->mode;
|
|
+ }
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r|lb", &zres, &mode, &decode_binary)) {
|
|
+ return;
|
|
+ }
|
|
+ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
|
|
+ if (ZEND_NUM_ARGS() < 2) {
|
|
+ mode = res->mode;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ if (res->curr_row >= res->nrows && res->nrows) {
|
|
+ if (!res->buffered) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "One or more rowsets were already returned; returning NULL this time");
|
|
+ } else {
|
|
+ res->curr_row = 0;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ array_init(return_value);
|
|
+
|
|
+ while (res->curr_row < res->nrows) {
|
|
+ MAKE_STD_ZVAL(ent);
|
|
+ php_sqlite_fetch_array(res, mode, decode_binary, 1, ent TSRMLS_CC);
|
|
+ add_next_index_zval(return_value, ent);
|
|
+ }
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto array sqlite_fetch_array(resource result [, int result_type [, bool decode_binary]])
|
|
+ Fetches the next row from a result set as an array. */
|
|
+PHP_FUNCTION(sqlite_fetch_array)
|
|
+{
|
|
+ zval *zres;
|
|
+ long mode = PHPSQLITE_BOTH;
|
|
+ zend_bool decode_binary = 1;
|
|
+ struct php_sqlite_result *res;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "|lb", &mode, &decode_binary)) {
|
|
+ return;
|
|
+ }
|
|
+ RES_FROM_OBJECT(res, object);
|
|
+ if (!ZEND_NUM_ARGS()) {
|
|
+ mode = res->mode;
|
|
+ }
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r|lb", &zres, &mode, &decode_binary)) {
|
|
+ return;
|
|
+ }
|
|
+ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
|
|
+ if (ZEND_NUM_ARGS() < 2) {
|
|
+ mode = res->mode;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ php_sqlite_fetch_array(res, mode, decode_binary, 1, return_value TSRMLS_CC);
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto object sqlite_fetch_object(resource result [, string class_name [, NULL|array ctor_params [, bool decode_binary]]])
|
|
+ Fetches the next row from a result set as an object. */
|
|
+ /* note that you can do array(&$val) for param ctor_params */
|
|
+PHP_FUNCTION(sqlite_fetch_object)
|
|
+{
|
|
+ zval *zres;
|
|
+ zend_bool decode_binary = 1;
|
|
+ struct php_sqlite_result *res;
|
|
+ zval *object = getThis();
|
|
+ char *class_name = NULL;
|
|
+ int class_name_len;
|
|
+ zend_class_entry *ce;
|
|
+ zval dataset;
|
|
+ zend_fcall_info fci;
|
|
+ zend_fcall_info_cache fcc;
|
|
+ zval *retval_ptr;
|
|
+ zval *ctor_params = NULL;
|
|
+ zend_error_handling error_handling;
|
|
+
|
|
+ zend_replace_error_handling(object ? EH_THROW : EH_NORMAL, sqlite_ce_exception, &error_handling TSRMLS_CC);
|
|
+ if (object) {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "|szb", &class_name, &class_name_len, &ctor_params, &decode_binary)) {
|
|
+ zend_restore_error_handling(&error_handling TSRMLS_CC);
|
|
+ return;
|
|
+ }
|
|
+ RES_FROM_OBJECT_RESTORE_ERH(res, object, &error_handling);
|
|
+ if (!class_name) {
|
|
+ ce = zend_standard_class_def;
|
|
+ } else {
|
|
+ ce = zend_fetch_class(class_name, class_name_len, ZEND_FETCH_CLASS_AUTO TSRMLS_CC);
|
|
+ }
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r|szb", &zres, &class_name, &class_name_len, &ctor_params, &decode_binary)) {
|
|
+ zend_restore_error_handling(&error_handling TSRMLS_CC);
|
|
+ return;
|
|
+ }
|
|
+ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
|
|
+ if (!class_name) {
|
|
+ ce = zend_standard_class_def;
|
|
+ } else {
|
|
+ ce = zend_fetch_class(class_name, class_name_len, ZEND_FETCH_CLASS_AUTO TSRMLS_CC);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ if (!ce) {
|
|
+ zend_throw_exception_ex(sqlite_ce_exception, 0 TSRMLS_CC, "Could not find class '%s'", class_name);
|
|
+ zend_restore_error_handling(&error_handling TSRMLS_CC);
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ if (res->curr_row < res->nrows) {
|
|
+ php_sqlite_fetch_array(res, PHPSQLITE_ASSOC, decode_binary, 1, &dataset TSRMLS_CC);
|
|
+ } else {
|
|
+ zend_restore_error_handling(&error_handling TSRMLS_CC);
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+
|
|
+ object_and_properties_init(return_value, ce, NULL);
|
|
+ zend_merge_properties(return_value, Z_ARRVAL(dataset), 1 TSRMLS_CC);
|
|
+
|
|
+ zend_restore_error_handling(&error_handling TSRMLS_CC);
|
|
+
|
|
+ if (ce->constructor) {
|
|
+ fci.size = sizeof(fci);
|
|
+ fci.function_table = &ce->function_table;
|
|
+ fci.function_name = NULL;
|
|
+ fci.symbol_table = NULL;
|
|
+ fci.object_ptr = return_value;
|
|
+ fci.retval_ptr_ptr = &retval_ptr;
|
|
+ if (ctor_params && Z_TYPE_P(ctor_params) != IS_NULL) {
|
|
+ if (Z_TYPE_P(ctor_params) == IS_ARRAY) {
|
|
+ HashTable *ht = Z_ARRVAL_P(ctor_params);
|
|
+ Bucket *p;
|
|
+
|
|
+ fci.param_count = 0;
|
|
+ fci.params = safe_emalloc(sizeof(zval*), ht->nNumOfElements, 0);
|
|
+ p = ht->pListHead;
|
|
+ while (p != NULL) {
|
|
+ fci.params[fci.param_count++] = (zval**)p->pData;
|
|
+ p = p->pListNext;
|
|
+ }
|
|
+ } else {
|
|
+ /* Two problems why we throw exceptions here: PHP is typeless
|
|
+ * and hence passing one argument that's not an array could be
|
|
+ * by mistake and the other way round is possible, too. The
|
|
+ * single value is an array. Also we'd have to make that one
|
|
+ * argument passed by reference.
|
|
+ */
|
|
+ zend_throw_exception(sqlite_ce_exception, "Parameter ctor_params must be an array", 0 TSRMLS_CC);
|
|
+ return;
|
|
+ }
|
|
+ } else {
|
|
+ fci.param_count = 0;
|
|
+ fci.params = NULL;
|
|
+ }
|
|
+ fci.no_separation = 1;
|
|
+
|
|
+ fcc.initialized = 1;
|
|
+ fcc.function_handler = ce->constructor;
|
|
+ fcc.calling_scope = EG(scope);
|
|
+ fcc.called_scope = Z_OBJCE_P(return_value);
|
|
+ fcc.object_ptr = return_value;
|
|
+
|
|
+ if (zend_call_function(&fci, &fcc TSRMLS_CC) == FAILURE) {
|
|
+ zend_throw_exception_ex(sqlite_ce_exception, 0 TSRMLS_CC, "Could not execute %s::%s()", class_name, ce->constructor->common.function_name);
|
|
+ } else {
|
|
+ if (retval_ptr) {
|
|
+ zval_ptr_dtor(&retval_ptr);
|
|
+ }
|
|
+ }
|
|
+ if (fci.params) {
|
|
+ efree(fci.params);
|
|
+ }
|
|
+ } else if (ctor_params && Z_TYPE_P(ctor_params) != IS_NULL) {
|
|
+ zend_throw_exception_ex(sqlite_ce_exception, 0 TSRMLS_CC, "Class %s does not have a constructor, use NULL for parameter ctor_params or omit it", class_name);
|
|
+ }
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto array sqlite_array_query(resource db, string query [ , int result_type [, bool decode_binary]])
|
|
+ Executes a query against a given database and returns an array of arrays. */
|
|
+PHP_FUNCTION(sqlite_array_query)
|
|
+{
|
|
+ zval *zdb, *ent;
|
|
+ struct php_sqlite_db *db;
|
|
+ struct php_sqlite_result *rres;
|
|
+ char *sql;
|
|
+ int sql_len;
|
|
+ long mode = PHPSQLITE_BOTH;
|
|
+ char *errtext = NULL;
|
|
+ zend_bool decode_binary = 1;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|lb", &sql, &sql_len, &mode, &decode_binary)) {
|
|
+ return;
|
|
+ }
|
|
+ DB_FROM_OBJECT(db, object);
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters_ex(ZEND_PARSE_PARAMS_QUIET,
|
|
+ ZEND_NUM_ARGS() TSRMLS_CC, "sr|lb", &sql, &sql_len, &zdb, &mode, &decode_binary) &&
|
|
+ FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rs|lb", &zdb, &sql, &sql_len, &mode, &decode_binary)) {
|
|
+ return;
|
|
+ }
|
|
+ DB_FROM_ZVAL(db, &zdb);
|
|
+ }
|
|
+
|
|
+ PHP_SQLITE_EMPTY_QUERY;
|
|
+
|
|
+ /* avoid doing work if we can */
|
|
+ if (!return_value_used) {
|
|
+ db->last_err_code = sqlite_exec(db->db, sql, NULL, NULL, &errtext);
|
|
+
|
|
+ if (db->last_err_code != SQLITE_OK) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "%s", errtext);
|
|
+ sqlite_freemem(errtext);
|
|
+ }
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ rres = (struct php_sqlite_result *)ecalloc(1, sizeof(*rres));
|
|
+ sqlite_query(NULL, db, sql, sql_len, (int)mode, 0, NULL, &rres, NULL TSRMLS_CC);
|
|
+ if (db->last_err_code != SQLITE_OK) {
|
|
+ if (rres) {
|
|
+ efree(rres);
|
|
+ }
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+
|
|
+ array_init(return_value);
|
|
+
|
|
+ while (rres->curr_row < rres->nrows) {
|
|
+ MAKE_STD_ZVAL(ent);
|
|
+ php_sqlite_fetch_array(rres, mode, decode_binary, 1, ent TSRMLS_CC);
|
|
+ add_next_index_zval(return_value, ent);
|
|
+ }
|
|
+ real_result_dtor(rres TSRMLS_CC);
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ php_sqlite_fetch_single */
|
|
+static void php_sqlite_fetch_single(struct php_sqlite_result *res, zend_bool decode_binary, zval *return_value TSRMLS_DC)
|
|
+{
|
|
+ const char **rowdata;
|
|
+ char *decoded;
|
|
+ int decoded_len;
|
|
+
|
|
+ /* check range of the row */
|
|
+ if (res->curr_row >= res->nrows) {
|
|
+ /* no more */
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+
|
|
+ if (res->buffered) {
|
|
+ rowdata = (const char**)&res->table[res->curr_row * res->ncolumns];
|
|
+ } else {
|
|
+ rowdata = (const char**)res->table;
|
|
+ }
|
|
+
|
|
+ if (decode_binary && rowdata[0] != NULL && rowdata[0][0] == '\x01') {
|
|
+ decoded = emalloc(strlen(rowdata[0]));
|
|
+ decoded_len = php_sqlite_decode_binary(rowdata[0]+1, decoded);
|
|
+ if (!res->buffered) {
|
|
+ efree((char*)rowdata[0]);
|
|
+ rowdata[0] = NULL;
|
|
+ }
|
|
+ } else if (rowdata[0]) {
|
|
+ decoded_len = strlen((char*)rowdata[0]);
|
|
+ if (res->buffered) {
|
|
+ decoded = estrndup((char*)rowdata[0], decoded_len);
|
|
+ } else {
|
|
+ decoded = (char*)rowdata[0];
|
|
+ rowdata[0] = NULL;
|
|
+ }
|
|
+ } else {
|
|
+ decoded = NULL;
|
|
+ decoded_len = 0;
|
|
+ }
|
|
+
|
|
+ if (!res->buffered) {
|
|
+ /* non buffered: fetch next row */
|
|
+ php_sqlite_fetch(res TSRMLS_CC);
|
|
+ }
|
|
+ /* advance the row pointer */
|
|
+ res->curr_row++;
|
|
+
|
|
+ if (decoded == NULL) {
|
|
+ RETURN_NULL();
|
|
+ } else {
|
|
+ RETURN_STRINGL(decoded, decoded_len, 0);
|
|
+ }
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+
|
|
+/* {{{ proto array sqlite_single_query(resource db, string query [, bool first_row_only [, bool decode_binary]])
|
|
+ Executes a query and returns either an array for one single column or the value of the first row. */
|
|
+PHP_FUNCTION(sqlite_single_query)
|
|
+{
|
|
+ zval *zdb, *ent;
|
|
+ struct php_sqlite_db *db;
|
|
+ struct php_sqlite_result *rres;
|
|
+ char *sql;
|
|
+ int sql_len;
|
|
+ char *errtext = NULL;
|
|
+ zend_bool decode_binary = 1;
|
|
+ zend_bool srow = 1;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|bb", &sql, &sql_len, &srow, &decode_binary)) {
|
|
+ return;
|
|
+ }
|
|
+ RES_FROM_OBJECT(db, object);
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters_ex(ZEND_PARSE_PARAMS_QUIET,
|
|
+ ZEND_NUM_ARGS() TSRMLS_CC, "sr|bb", &sql, &sql_len, &zdb, &srow, &decode_binary) &&
|
|
+ FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rs|bb", &zdb, &sql, &sql_len, &srow, &decode_binary)) {
|
|
+ return;
|
|
+ }
|
|
+ DB_FROM_ZVAL(db, &zdb);
|
|
+ }
|
|
+
|
|
+ PHP_SQLITE_EMPTY_QUERY;
|
|
+
|
|
+ /* avoid doing work if we can */
|
|
+ if (!return_value_used) {
|
|
+ db->last_err_code = sqlite_exec(db->db, sql, NULL, NULL, &errtext);
|
|
+
|
|
+ if (db->last_err_code != SQLITE_OK) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "%s", errtext);
|
|
+ sqlite_freemem(errtext);
|
|
+ }
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ rres = (struct php_sqlite_result *)ecalloc(1, sizeof(*rres));
|
|
+ sqlite_query(NULL, db, sql, sql_len, PHPSQLITE_NUM, 0, NULL, &rres, NULL TSRMLS_CC);
|
|
+ if (db->last_err_code != SQLITE_OK) {
|
|
+ if (rres) {
|
|
+ efree(rres);
|
|
+ }
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+
|
|
+ if (!srow) {
|
|
+ array_init(return_value);
|
|
+ }
|
|
+
|
|
+ while (rres->curr_row < rres->nrows) {
|
|
+ MAKE_STD_ZVAL(ent);
|
|
+ php_sqlite_fetch_single(rres, decode_binary, ent TSRMLS_CC);
|
|
+
|
|
+ /* if set and we only have 1 row in the result set, return the result as a string. */
|
|
+ if (srow) {
|
|
+ if (rres->curr_row == 1 && rres->curr_row >= rres->nrows) {
|
|
+ *return_value = *ent;
|
|
+ zval_copy_ctor(return_value);
|
|
+ zval_dtor(ent);
|
|
+ FREE_ZVAL(ent);
|
|
+ break;
|
|
+ } else {
|
|
+ srow = 0;
|
|
+ array_init(return_value);
|
|
+ }
|
|
+ }
|
|
+ add_next_index_zval(return_value, ent);
|
|
+ }
|
|
+
|
|
+ real_result_dtor(rres TSRMLS_CC);
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+
|
|
+/* {{{ proto string sqlite_fetch_single(resource result [, bool decode_binary])
|
|
+ Fetches the first column of a result set as a string. */
|
|
+PHP_FUNCTION(sqlite_fetch_single)
|
|
+{
|
|
+ zval *zres;
|
|
+ zend_bool decode_binary = 1;
|
|
+ struct php_sqlite_result *res;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "|b", &decode_binary)) {
|
|
+ return;
|
|
+ }
|
|
+ RES_FROM_OBJECT(res, object);
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r|b", &zres, &decode_binary)) {
|
|
+ return;
|
|
+ }
|
|
+ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
|
|
+ }
|
|
+
|
|
+ php_sqlite_fetch_single(res, decode_binary, return_value TSRMLS_CC);
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto array sqlite_current(resource result [, int result_type [, bool decode_binary]])
|
|
+ Fetches the current row from a result set as an array. */
|
|
+PHP_FUNCTION(sqlite_current)
|
|
+{
|
|
+ zval *zres;
|
|
+ long mode = PHPSQLITE_BOTH;
|
|
+ zend_bool decode_binary = 1;
|
|
+ struct php_sqlite_result *res;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (ZEND_NUM_ARGS() && FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "|lb", &mode, &decode_binary)) {
|
|
+ return;
|
|
+ }
|
|
+ RES_FROM_OBJECT(res, object);
|
|
+ if (!ZEND_NUM_ARGS()) {
|
|
+ mode = res->mode;
|
|
+ }
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r|lb", &zres, &mode, &decode_binary)) {
|
|
+ return;
|
|
+ }
|
|
+ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
|
|
+ if (ZEND_NUM_ARGS() < 2) {
|
|
+ mode = res->mode;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ php_sqlite_fetch_array(res, mode, decode_binary, 0, return_value TSRMLS_CC);
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto mixed sqlite_column(resource result, mixed index_or_name [, bool decode_binary])
|
|
+ Fetches a column from the current row of a result set. */
|
|
+PHP_FUNCTION(sqlite_column)
|
|
+{
|
|
+ zval *zres;
|
|
+ zval *which;
|
|
+ zend_bool decode_binary = 1;
|
|
+ struct php_sqlite_result *res;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "z|b", &which, &decode_binary)) {
|
|
+ return;
|
|
+ }
|
|
+ RES_FROM_OBJECT(res, object);
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rz|b", &zres, &which, &decode_binary)) {
|
|
+ return;
|
|
+ }
|
|
+ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
|
|
+ }
|
|
+
|
|
+ php_sqlite_fetch_column(res, which, decode_binary, return_value TSRMLS_CC);
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto string sqlite_libversion()
|
|
+ Returns the version of the linked SQLite library. */
|
|
+PHP_FUNCTION(sqlite_libversion)
|
|
+{
|
|
+ if (zend_parse_parameters_none() == FAILURE) {
|
|
+ return;
|
|
+ }
|
|
+ RETURN_STRING((char*)sqlite_libversion(), 1);
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto string sqlite_libencoding()
|
|
+ Returns the encoding (iso8859 or UTF-8) of the linked SQLite library. */
|
|
+PHP_FUNCTION(sqlite_libencoding)
|
|
+{
|
|
+ if (zend_parse_parameters_none() == FAILURE) {
|
|
+ return;
|
|
+ }
|
|
+ RETURN_STRING((char*)sqlite_libencoding(), 1);
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto int sqlite_changes(resource db)
|
|
+ Returns the number of rows that were changed by the most recent SQL statement. */
|
|
+PHP_FUNCTION(sqlite_changes)
|
|
+{
|
|
+ zval *zdb;
|
|
+ struct php_sqlite_db *db;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (zend_parse_parameters_none() == FAILURE) {
|
|
+ return;
|
|
+ }
|
|
+ DB_FROM_OBJECT(db, object);
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &zdb)) {
|
|
+ return;
|
|
+ }
|
|
+ DB_FROM_ZVAL(db, &zdb);
|
|
+ }
|
|
+
|
|
+ RETURN_LONG(sqlite_changes(db->db));
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto int sqlite_last_insert_rowid(resource db)
|
|
+ Returns the rowid of the most recently inserted row. */
|
|
+PHP_FUNCTION(sqlite_last_insert_rowid)
|
|
+{
|
|
+ zval *zdb;
|
|
+ struct php_sqlite_db *db;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (zend_parse_parameters_none() == FAILURE) {
|
|
+ return;
|
|
+ }
|
|
+ DB_FROM_OBJECT(db, object);
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &zdb)) {
|
|
+ return;
|
|
+ }
|
|
+ DB_FROM_ZVAL(db, &zdb);
|
|
+ }
|
|
+
|
|
+ RETURN_LONG(sqlite_last_insert_rowid(db->db));
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+static int sqlite_count_elements(zval *object, long *count TSRMLS_DC) /* {{{ */
|
|
+{
|
|
+ sqlite_object *obj = (sqlite_object*) zend_object_store_get_object(object TSRMLS_CC);
|
|
+
|
|
+ if (obj->u.res == NULL) {
|
|
+ zend_throw_exception(sqlite_ce_exception, "Row count is not available for this query", 0 TSRMLS_CC);
|
|
+ return FAILURE;
|
|
+ }
|
|
+
|
|
+ if (obj->u.res->buffered) {
|
|
+ * count = obj->u.res->nrows;
|
|
+ return SUCCESS;
|
|
+ } else {
|
|
+ zend_throw_exception(sqlite_ce_exception, "Row count is not available for unbuffered queries", 0 TSRMLS_CC);
|
|
+ return FAILURE;
|
|
+ }
|
|
+} /* }}} */
|
|
+
|
|
+/* {{{ proto int sqlite_num_rows(resource result)
|
|
+ Returns the number of rows in a buffered result set. */
|
|
+PHP_FUNCTION(sqlite_num_rows)
|
|
+{
|
|
+ zval *zres;
|
|
+ struct php_sqlite_result *res;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (zend_parse_parameters_none() == FAILURE) {
|
|
+ return;
|
|
+ }
|
|
+ RES_FROM_OBJECT(res, object);
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &zres)) {
|
|
+ return;
|
|
+ }
|
|
+ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
|
|
+ }
|
|
+
|
|
+ if (res->buffered) {
|
|
+ RETURN_LONG(res->nrows);
|
|
+ } else {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "Row count is not available for unbuffered queries");
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto bool sqlite_valid(resource result)
|
|
+ Returns whether more rows are available. */
|
|
+PHP_FUNCTION(sqlite_valid)
|
|
+{
|
|
+ zval *zres;
|
|
+ struct php_sqlite_result *res;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (zend_parse_parameters_none() == FAILURE) {
|
|
+ return;
|
|
+ }
|
|
+ RES_FROM_OBJECT(res, object);
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &zres)) {
|
|
+ return;
|
|
+ }
|
|
+ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
|
|
+ }
|
|
+
|
|
+ RETURN_BOOL(res->curr_row < res->nrows && res->nrows); /* curr_row may be -1 */
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto bool sqlite_has_prev(resource result)
|
|
+ * Returns whether a previous row is available. */
|
|
+PHP_FUNCTION(sqlite_has_prev)
|
|
+{
|
|
+ zval *zres;
|
|
+ struct php_sqlite_result *res;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (zend_parse_parameters_none() == FAILURE) {
|
|
+ return;
|
|
+ }
|
|
+ RES_FROM_OBJECT(res, object);
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &zres)) {
|
|
+ return;
|
|
+ }
|
|
+ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
|
|
+ }
|
|
+
|
|
+ if(!res->buffered) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "you cannot use sqlite_has_prev on unbuffered querys");
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+
|
|
+ RETURN_BOOL(res->curr_row);
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto int sqlite_num_fields(resource result)
|
|
+ Returns the number of fields in a result set. */
|
|
+PHP_FUNCTION(sqlite_num_fields)
|
|
+{
|
|
+ zval *zres;
|
|
+ struct php_sqlite_result *res;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (zend_parse_parameters_none() == FAILURE) {
|
|
+ return;
|
|
+ }
|
|
+ RES_FROM_OBJECT(res, object);
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &zres)) {
|
|
+ return;
|
|
+ }
|
|
+ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
|
|
+ }
|
|
+
|
|
+ RETURN_LONG(res->ncolumns);
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto string sqlite_field_name(resource result, int field_index)
|
|
+ Returns the name of a particular field of a result set. */
|
|
+PHP_FUNCTION(sqlite_field_name)
|
|
+{
|
|
+ zval *zres;
|
|
+ struct php_sqlite_result *res;
|
|
+ long field;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "l", &field)) {
|
|
+ return;
|
|
+ }
|
|
+ RES_FROM_OBJECT(res, object);
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rl", &zres, &field)) {
|
|
+ return;
|
|
+ }
|
|
+ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
|
|
+ }
|
|
+
|
|
+ if (field < 0 || field >= res->ncolumns) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "field %ld out of range", field);
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+
|
|
+ RETURN_STRING(res->col_names[field], 1);
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto bool sqlite_seek(resource result, int row)
|
|
+ Seek to a particular row number of a buffered result set. */
|
|
+PHP_FUNCTION(sqlite_seek)
|
|
+{
|
|
+ zval *zres;
|
|
+ struct php_sqlite_result *res;
|
|
+ long row;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "l", &row)) {
|
|
+ return;
|
|
+ }
|
|
+ RES_FROM_OBJECT(res, object);
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rl", &zres, &row)) {
|
|
+ return;
|
|
+ }
|
|
+ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
|
|
+ }
|
|
+
|
|
+ if (!res->buffered) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "Cannot seek an unbuffered result set");
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+
|
|
+ if (row < 0 || row >= res->nrows) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "row %ld out of range", row);
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+
|
|
+ res->curr_row = row;
|
|
+ RETURN_TRUE;
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto bool sqlite_rewind(resource result)
|
|
+ Seek to the first row number of a buffered result set. */
|
|
+PHP_FUNCTION(sqlite_rewind)
|
|
+{
|
|
+ zval *zres;
|
|
+ struct php_sqlite_result *res;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (zend_parse_parameters_none() == FAILURE) {
|
|
+ return;
|
|
+ }
|
|
+ RES_FROM_OBJECT(res, object);
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &zres)) {
|
|
+ return;
|
|
+ }
|
|
+ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
|
|
+ }
|
|
+
|
|
+ if (!res->buffered) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "Cannot rewind an unbuffered result set");
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+
|
|
+ if (!res->nrows) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_NOTICE, "no rows received");
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+
|
|
+ res->curr_row = 0;
|
|
+ RETURN_TRUE;
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto bool sqlite_next(resource result)
|
|
+ Seek to the next row number of a result set. */
|
|
+PHP_FUNCTION(sqlite_next)
|
|
+{
|
|
+ zval *zres;
|
|
+ struct php_sqlite_result *res;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (zend_parse_parameters_none() == FAILURE) {
|
|
+ return;
|
|
+ }
|
|
+ RES_FROM_OBJECT(res, object);
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &zres)) {
|
|
+ return;
|
|
+ }
|
|
+ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
|
|
+ }
|
|
+
|
|
+ if (!res->buffered && res->vm) {
|
|
+ php_sqlite_fetch(res TSRMLS_CC);
|
|
+ }
|
|
+
|
|
+ if (res->curr_row >= res->nrows) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "no more rows available");
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+
|
|
+ res->curr_row++;
|
|
+
|
|
+ RETURN_TRUE;
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto int sqlite_key(resource result)
|
|
+ Return the current row index of a buffered result. */
|
|
+PHP_FUNCTION(sqlite_key)
|
|
+{
|
|
+ zval *zres;
|
|
+ struct php_sqlite_result *res;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (zend_parse_parameters_none() == FAILURE) {
|
|
+ return;
|
|
+ }
|
|
+ RES_FROM_OBJECT(res, object);
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &zres)) {
|
|
+ return;
|
|
+ }
|
|
+ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
|
|
+ }
|
|
+
|
|
+ RETURN_LONG(res->curr_row);
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto bool sqlite_prev(resource result)
|
|
+ * Seek to the previous row number of a result set. */
|
|
+PHP_FUNCTION(sqlite_prev)
|
|
+{
|
|
+ zval *zres;
|
|
+ struct php_sqlite_result *res;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (zend_parse_parameters_none() == FAILURE) {
|
|
+ return;
|
|
+ }
|
|
+ RES_FROM_OBJECT(res, object);
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &zres)) {
|
|
+ return;
|
|
+ }
|
|
+ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
|
|
+ }
|
|
+
|
|
+ if (!res->buffered) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "you cannot use sqlite_prev on unbuffered querys");
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+
|
|
+ if (res->curr_row <= 0) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "no previous row available");
|
|
+ RETURN_FALSE;
|
|
+ }
|
|
+
|
|
+ res->curr_row--;
|
|
+
|
|
+ RETURN_TRUE;
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto string sqlite_escape_string(string item)
|
|
+ Escapes a string for use as a query parameter. */
|
|
+PHP_FUNCTION(sqlite_escape_string)
|
|
+{
|
|
+ char *string = NULL;
|
|
+ int stringlen;
|
|
+ char *ret;
|
|
+
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s", &string, &stringlen)) {
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ if (stringlen && (string[0] == '\x01' || memchr(string, '\0', stringlen) != NULL)) {
|
|
+ /* binary string */
|
|
+ int enclen;
|
|
+
|
|
+ ret = safe_emalloc(1 + stringlen / 254, 257, 3);
|
|
+ ret[0] = '\x01';
|
|
+ enclen = php_sqlite_encode_binary(string, stringlen, ret+1);
|
|
+ RETVAL_STRINGL(ret, enclen+1, 0);
|
|
+
|
|
+ } else if (stringlen) {
|
|
+ ret = sqlite_mprintf("%q", string);
|
|
+ if (ret) {
|
|
+ RETVAL_STRING(ret, 1);
|
|
+ sqlite_freemem(ret);
|
|
+ }
|
|
+ } else {
|
|
+ RETURN_EMPTY_STRING();
|
|
+ }
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto int sqlite_last_error(resource db)
|
|
+ Returns the error code of the last error for a database. */
|
|
+PHP_FUNCTION(sqlite_last_error)
|
|
+{
|
|
+ zval *zdb;
|
|
+ struct php_sqlite_db *db;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (zend_parse_parameters_none() == FAILURE) {
|
|
+ return;
|
|
+ }
|
|
+ DB_FROM_OBJECT(db, object);
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &zdb)) {
|
|
+ return;
|
|
+ }
|
|
+ DB_FROM_ZVAL(db, &zdb);
|
|
+ }
|
|
+
|
|
+ RETURN_LONG(db->last_err_code);
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto string sqlite_error_string(int error_code)
|
|
+ Returns the textual description of an error code. */
|
|
+PHP_FUNCTION(sqlite_error_string)
|
|
+{
|
|
+ long code;
|
|
+ const char *msg;
|
|
+
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "l", &code)) {
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ msg = sqlite_error_string(code);
|
|
+
|
|
+ if (msg) {
|
|
+ RETURN_STRING((char*)msg, 1);
|
|
+ } else {
|
|
+ RETURN_NULL();
|
|
+ }
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* manages duplicate registrations of a particular function, and
|
|
+ * also handles the case where the db is using a persistent connection */
|
|
+enum callback_prep_t { DO_REG, SKIP_REG, ERR };
|
|
+
|
|
+static enum callback_prep_t prep_callback_struct(struct php_sqlite_db *db, int is_agg,
|
|
+ char *funcname,
|
|
+ zval *step, zval *fini, struct php_sqlite_agg_functions **funcs)
|
|
+{
|
|
+ struct php_sqlite_agg_functions *alloc_funcs, func_tmp;
|
|
+ char *hashkey;
|
|
+ int hashkeylen;
|
|
+ enum callback_prep_t ret;
|
|
+
|
|
+ hashkeylen = spprintf(&hashkey, 0, "%s-%s", is_agg ? "agg" : "reg", funcname);
|
|
+
|
|
+ /* is it already registered ? */
|
|
+ if (SUCCESS == zend_hash_find(&db->callbacks, hashkey, hashkeylen+1, (void*)&alloc_funcs)) {
|
|
+ /* override the previous definition */
|
|
+
|
|
+ if (alloc_funcs->is_valid) {
|
|
+ /* release these */
|
|
+
|
|
+ if (alloc_funcs->step) {
|
|
+ zval_ptr_dtor(&alloc_funcs->step);
|
|
+ alloc_funcs->step = NULL;
|
|
+ }
|
|
+
|
|
+ if (alloc_funcs->fini) {
|
|
+ zval_ptr_dtor(&alloc_funcs->fini);
|
|
+ alloc_funcs->fini = NULL;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ ret = SKIP_REG;
|
|
+ } else {
|
|
+ /* add a new one */
|
|
+ func_tmp.db = db;
|
|
+
|
|
+ ret = SUCCESS == zend_hash_update(&db->callbacks, hashkey, hashkeylen+1,
|
|
+ (void*)&func_tmp, sizeof(func_tmp), (void**)&alloc_funcs) ? DO_REG : ERR;
|
|
+ }
|
|
+
|
|
+ efree(hashkey);
|
|
+
|
|
+ MAKE_STD_ZVAL(alloc_funcs->step);
|
|
+ *(alloc_funcs->step) = *step;
|
|
+ zval_copy_ctor(alloc_funcs->step);
|
|
+ INIT_PZVAL(alloc_funcs->step);
|
|
+
|
|
+ if (is_agg) {
|
|
+ MAKE_STD_ZVAL(alloc_funcs->fini);
|
|
+ *(alloc_funcs->fini) = *fini;
|
|
+ zval_copy_ctor(alloc_funcs->fini);
|
|
+ INIT_PZVAL(alloc_funcs->fini);
|
|
+ } else {
|
|
+ alloc_funcs->fini = NULL;
|
|
+ }
|
|
+ alloc_funcs->is_valid = 1;
|
|
+ *funcs = alloc_funcs;
|
|
+
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+
|
|
+/* {{{ proto bool sqlite_create_aggregate(resource db, string funcname, mixed step_func, mixed finalize_func[, long num_args])
|
|
+ Registers an aggregate function for queries. */
|
|
+PHP_FUNCTION(sqlite_create_aggregate)
|
|
+{
|
|
+ char *funcname = NULL;
|
|
+ int funcname_len;
|
|
+ zval *zstep, *zfinal, *zdb;
|
|
+ struct php_sqlite_db *db;
|
|
+ struct php_sqlite_agg_functions *funcs;
|
|
+ char *callable = NULL;
|
|
+ long num_args = -1;
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "szz|l", &funcname, &funcname_len, &zstep, &zfinal, &num_args)) {
|
|
+ return;
|
|
+ }
|
|
+ DB_FROM_OBJECT(db, object);
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rszz|l", &zdb, &funcname, &funcname_len, &zstep, &zfinal, &num_args)) {
|
|
+ return;
|
|
+ }
|
|
+ DB_FROM_ZVAL(db, &zdb);
|
|
+ }
|
|
+
|
|
+ if (!zend_is_callable(zstep, 0, &callable TSRMLS_CC)) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "step function `%s' is not callable", callable);
|
|
+ efree(callable);
|
|
+ return;
|
|
+ }
|
|
+ efree(callable);
|
|
+
|
|
+ if (!zend_is_callable(zfinal, 0, &callable TSRMLS_CC)) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "finalize function `%s' is not callable", callable);
|
|
+ efree(callable);
|
|
+ return;
|
|
+ }
|
|
+ efree(callable);
|
|
+
|
|
+
|
|
+ if (prep_callback_struct(db, 1, funcname, zstep, zfinal, &funcs) == DO_REG) {
|
|
+ sqlite_create_aggregate(db->db, funcname, num_args,
|
|
+ php_sqlite_agg_step_function_callback,
|
|
+ php_sqlite_agg_fini_function_callback, funcs);
|
|
+ }
|
|
+
|
|
+
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto bool sqlite_create_function(resource db, string funcname, mixed callback[, long num_args])
|
|
+ Registers a "regular" function for queries. */
|
|
+PHP_FUNCTION(sqlite_create_function)
|
|
+{
|
|
+ char *funcname = NULL;
|
|
+ int funcname_len;
|
|
+ zval *zcall, *zdb;
|
|
+ struct php_sqlite_db *db;
|
|
+ struct php_sqlite_agg_functions *funcs;
|
|
+ char *callable = NULL;
|
|
+ long num_args = -1;
|
|
+
|
|
+ zval *object = getThis();
|
|
+
|
|
+ if (object) {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "sz|l", &funcname, &funcname_len, &zcall, &num_args)) {
|
|
+ return;
|
|
+ }
|
|
+ DB_FROM_OBJECT(db, object);
|
|
+ } else {
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rsz|l", &zdb, &funcname, &funcname_len, &zcall, &num_args)) {
|
|
+ return;
|
|
+ }
|
|
+ DB_FROM_ZVAL(db, &zdb);
|
|
+ }
|
|
+
|
|
+ if (!zend_is_callable(zcall, 0, &callable TSRMLS_CC)) {
|
|
+ php_error_docref(NULL TSRMLS_CC, E_WARNING, "function `%s' is not callable", callable);
|
|
+ efree(callable);
|
|
+ return;
|
|
+ }
|
|
+ efree(callable);
|
|
+
|
|
+ if (prep_callback_struct(db, 0, funcname, zcall, NULL, &funcs) == DO_REG) {
|
|
+ sqlite_create_function(db->db, funcname, num_args, php_sqlite_function_callback, funcs);
|
|
+ }
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto string sqlite_udf_encode_binary(string data)
|
|
+ Apply binary encoding (if required) to a string to return from an UDF. */
|
|
+PHP_FUNCTION(sqlite_udf_encode_binary)
|
|
+{
|
|
+ char *data = NULL;
|
|
+ int datalen;
|
|
+
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s!", &data, &datalen)) {
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ if (data == NULL) {
|
|
+ RETURN_NULL();
|
|
+ }
|
|
+ if (datalen && (data[0] == '\x01' || memchr(data, '\0', datalen) != NULL)) {
|
|
+ /* binary string */
|
|
+ int enclen;
|
|
+ char *ret;
|
|
+
|
|
+ ret = safe_emalloc(1 + datalen / 254, 257, 3);
|
|
+ ret[0] = '\x01';
|
|
+ enclen = php_sqlite_encode_binary(data, datalen, ret+1);
|
|
+ RETVAL_STRINGL(ret, enclen+1, 0);
|
|
+ } else {
|
|
+ RETVAL_STRINGL(data, datalen, 1);
|
|
+ }
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+/* {{{ proto string sqlite_udf_decode_binary(string data)
|
|
+ Decode binary encoding on a string parameter passed to an UDF. */
|
|
+PHP_FUNCTION(sqlite_udf_decode_binary)
|
|
+{
|
|
+ char *data = NULL;
|
|
+ int datalen;
|
|
+
|
|
+ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s!", &data, &datalen)) {
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ if (data == NULL) {
|
|
+ RETURN_NULL();
|
|
+ }
|
|
+ if (datalen && data[0] == '\x01') {
|
|
+ /* encoded string */
|
|
+ int enclen;
|
|
+ char *ret;
|
|
+
|
|
+ ret = emalloc(datalen);
|
|
+ enclen = php_sqlite_decode_binary(data+1, ret);
|
|
+ ret[enclen] = '\0';
|
|
+ RETVAL_STRINGL(ret, enclen, 0);
|
|
+ } else {
|
|
+ RETVAL_STRINGL(data, datalen, 1);
|
|
+ }
|
|
+}
|
|
+/* }}} */
|
|
+
|
|
+
|
|
+/*
|
|
+ * Local variables:
|
|
+ * tab-width: 4
|
|
+ * c-basic-offset: 4
|
|
+ * End:
|
|
+ * vim600: sw=4 ts=4 fdm=marker
|
|
+ * vim<600: sw=4 ts=4
|
|
+ */
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/sqlite.dsp
|
|
@@ -0,0 +1,339 @@
|
|
+# Microsoft Developer Studio Project File - Name="sqlite" - Package Owner=<4>
|
|
+# Microsoft Developer Studio Generated Build File, Format Version 6.00
|
|
+# ** DO NOT EDIT **
|
|
+
|
|
+# TARGTYPE "Win32 (x86) Dynamic-Link Library" 0x0102
|
|
+
|
|
+CFG=sqlite - Win32 Debug_TS
|
|
+!MESSAGE This is not a valid makefile. To build this project using NMAKE,
|
|
+!MESSAGE use the Export Makefile command and run
|
|
+!MESSAGE
|
|
+!MESSAGE NMAKE /f "sqlite.mak".
|
|
+!MESSAGE
|
|
+!MESSAGE You can specify a configuration when running NMAKE
|
|
+!MESSAGE by defining the macro CFG on the command line. For example:
|
|
+!MESSAGE
|
|
+!MESSAGE NMAKE /f "sqlite.mak" CFG="sqlite - Win32 Debug_TS"
|
|
+!MESSAGE
|
|
+!MESSAGE Possible choices for configuration are:
|
|
+!MESSAGE
|
|
+!MESSAGE "sqlite - Win32 Release_TS" (based on "Win32 (x86) Dynamic-Link Library")
|
|
+!MESSAGE "sqlite - Win32 Debug_TS" (based on "Win32 (x86) Dynamic-Link Library")
|
|
+!MESSAGE
|
|
+
|
|
+# Begin Project
|
|
+# PROP AllowPerConfigDependencies 0
|
|
+# PROP Scc_ProjName ""
|
|
+# PROP Scc_LocalPath ""
|
|
+CPP=cl.exe
|
|
+MTL=midl.exe
|
|
+RSC=rc.exe
|
|
+
|
|
+!IF "$(CFG)" == "sqlite - Win32 Release_TS"
|
|
+
|
|
+# PROP BASE Use_MFC 0
|
|
+# PROP BASE Use_Debug_Libraries 0
|
|
+# PROP BASE Output_Dir "Release_TS"
|
|
+# PROP BASE Intermediate_Dir "Release_TS"
|
|
+# PROP BASE Ignore_Export_Lib 0
|
|
+# PROP BASE Target_Dir ""
|
|
+# PROP Use_MFC 0
|
|
+# PROP Use_Debug_Libraries 0
|
|
+# PROP Output_Dir "Release_TS"
|
|
+# PROP Intermediate_Dir "Release_TS"
|
|
+# PROP Ignore_Export_Lib 0
|
|
+# PROP Target_Dir ""
|
|
+# ADD BASE CPP /nologo /MD /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "SQLITE_EXPORTS" /YX /FD /c
|
|
+# ADD CPP /nologo /MD /W3 /GX /O2 /I "..\.." /I "..\..\main" /I "..\..\Zend" /I "..\..\TSRM" /I "..\..\win32" /I "..\..\..\php_build" /D ZEND_DEBUG=0 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "COMPILE_DL_SQLITE" /D ZTS=1 /D "ZEND_WIN32" /D "PHP_WIN32" /D HAVE_SQLITE=1 /D "PHP_SQLITE_EXPORTS" /FR /YX /FD /c
|
|
+# ADD BASE MTL /nologo /D "NDEBUG" /mktyplib203 /win32
|
|
+# ADD MTL /nologo /D "NDEBUG" /mktyplib203 /win32
|
|
+# ADD BASE RSC /l 0x407 /d "NDEBUG"
|
|
+# ADD RSC /l 0x407 /d "NDEBUG"
|
|
+BSC32=bscmake.exe
|
|
+# ADD BASE BSC32 /nologo
|
|
+# ADD BSC32 /nologo
|
|
+LINK32=link.exe
|
|
+# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386
|
|
+# ADD LINK32 php5ts.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386 /out:"..\..\Release_TS\php_sqlite.dll" /libpath:"..\..\Release_TS" /libpath:"..\..\Release_TS_Inline" /libpath:"..\..\..\php_build\release"
|
|
+
|
|
+!ELSEIF "$(CFG)" == "sqlite - Win32 Debug_TS"
|
|
+
|
|
+# PROP BASE Use_MFC 0
|
|
+# PROP BASE Use_Debug_Libraries 1
|
|
+# PROP BASE Output_Dir "Debug_TS"
|
|
+# PROP BASE Intermediate_Dir "Debug_TS"
|
|
+# PROP BASE Target_Dir ""
|
|
+# PROP Use_MFC 0
|
|
+# PROP Use_Debug_Libraries 1
|
|
+# PROP Output_Dir "Debug_TS"
|
|
+# PROP Intermediate_Dir "Debug_TS"
|
|
+# PROP Ignore_Export_Lib 0
|
|
+# PROP Target_Dir ""
|
|
+# ADD BASE CPP /nologo /MDd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "SQLITE_EXPORTS" /YX /FD /GZ /c
|
|
+# ADD CPP /nologo /MDd /W3 /Gm /GX /ZI /Od /I "..\.." /I "..\..\main" /I "..\..\Zend" /I "..\..\TSRM" /I "..\..\win32" /I "..\..\..\php_build" /D ZEND_DEBUG=1 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "COMPILE_DL_SQLITE" /D ZTS=1 /D "ZEND_WIN32" /D "PHP_WIN32" /D HAVE_SQLITE=1 /D "PHP_SQLITE_EXPORTS" /YX /FD /GZ /c
|
|
+# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32
|
|
+# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
|
|
+# ADD BASE RSC /l 0x407 /d "_DEBUG"
|
|
+# ADD RSC /l 0x407 /d "_DEBUG"
|
|
+BSC32=bscmake.exe
|
|
+# ADD BASE BSC32 /nologo
|
|
+# ADD BSC32 /nologo
|
|
+LINK32=link.exe
|
|
+# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /debug /machine:I386 /pdbtype:sept
|
|
+# ADD LINK32 php5ts_debug.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /debug /machine:I386 /out:"..\..\Debug_TS\php_sqlite.dll" /pdbtype:sept /libpath:"..\..\Debug_TS" /libpath:"..\..\..\php_build\release"
|
|
+
|
|
+!ENDIF
|
|
+
|
|
+# Begin Target
|
|
+
|
|
+# Name "sqlite - Win32 Release_TS"
|
|
+# Name "sqlite - Win32 Debug_TS"
|
|
+# Begin Group "Source Files"
|
|
+
|
|
+# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat"
|
|
+# Begin Group "libsqlite"
|
|
+
|
|
+# PROP Default_Filter ""
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\attach.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\auth.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\btree.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\btree.h
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\btree_rb.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\build.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\config.h
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\copy.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\date.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\delete.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\encode.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\expr.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\func.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\hash.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\hash.h
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\insert.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\main.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\opcodes.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\opcodes.h
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\os.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\os.h
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\pager.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\pager.h
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\parse.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\parse.h
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\pragma.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\printf.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\random.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\select.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\sqlite.h
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\sqlite.w32.h
|
|
+
|
|
+!IF "$(CFG)" == "sqlite - Win32 Release_TS"
|
|
+
|
|
+# Begin Custom Build
|
|
+InputDir=.\libsqlite\src
|
|
+InputPath=.\libsqlite\src\sqlite.w32.h
|
|
+
|
|
+"$(InputDir)\sqlite.h" : $(SOURCE) "$(INTDIR)" "$(OUTDIR)"
|
|
+ copy $(InputPath) $(InputDir)\sqlite.h
|
|
+
|
|
+# End Custom Build
|
|
+
|
|
+!ELSEIF "$(CFG)" == "sqlite - Win32 Debug_TS"
|
|
+
|
|
+# Begin Custom Build
|
|
+InputDir=.\libsqlite\src
|
|
+InputPath=.\libsqlite\src\sqlite.w32.h
|
|
+
|
|
+"$(InputDir)\sqlite.h" : $(SOURCE) "$(INTDIR)" "$(OUTDIR)"
|
|
+ copy $(InputPath) $(InputDir)\sqlite.h
|
|
+
|
|
+# End Custom Build
|
|
+
|
|
+!ENDIF
|
|
+
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\sqlite_config.w32.h
|
|
+
|
|
+!IF "$(CFG)" == "sqlite - Win32 Release_TS"
|
|
+
|
|
+# Begin Custom Build
|
|
+InputDir=.\libsqlite\src
|
|
+InputPath=.\libsqlite\src\sqlite_config.w32.h
|
|
+
|
|
+"$(InputDir)\config.h" : $(SOURCE) "$(INTDIR)" "$(OUTDIR)"
|
|
+ copy $(InputPath) $(InputDir)\config.h
|
|
+
|
|
+# End Custom Build
|
|
+
|
|
+!ELSEIF "$(CFG)" == "sqlite - Win32 Debug_TS"
|
|
+
|
|
+# Begin Custom Build
|
|
+InputDir=.\libsqlite\src
|
|
+InputPath=.\libsqlite\src\sqlite_config.w32.h
|
|
+
|
|
+"$(InputDir)\config.h" : $(SOURCE) "$(INTDIR)" "$(OUTDIR)"
|
|
+ copy $(InputPath) $(InputDir)\config.h
|
|
+
|
|
+# End Custom Build
|
|
+
|
|
+!ENDIF
|
|
+
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\sqliteInt.h
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\table.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\tokenize.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\trigger.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\update.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\util.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\vacuum.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\vdbe.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\vdbe.h
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\vdbeaux.c
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\libsqlite\src\where.c
|
|
+# End Source File
|
|
+# End Group
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\php_sqlite.def
|
|
+# End Source File
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\sqlite.c
|
|
+# ADD CPP /I "libsqlite\src"
|
|
+# End Source File
|
|
+# End Group
|
|
+# Begin Group "Header Files"
|
|
+
|
|
+# PROP Default_Filter "h;hpp;hxx;hm;inl"
|
|
+# Begin Source File
|
|
+
|
|
+SOURCE=.\php_sqlite.h
|
|
+# End Source File
|
|
+# End Group
|
|
+# End Target
|
|
+# End Project
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/sqlite.php
|
|
@@ -0,0 +1,36 @@
|
|
+<?php
|
|
+if (!extension_loaded("sqlite")) {
|
|
+ dl("sqlite.so");
|
|
+ if (!extension_loaded("sqlite")) {
|
|
+ exit("Please enable SQLite support\n");
|
|
+ }
|
|
+}
|
|
+
|
|
+debug_zval_dump(sqlite_libversion());
|
|
+debug_zval_dump(sqlite_libencoding());
|
|
+
|
|
+$s = sqlite_open("weztest.sqlite", 0666, $err);
|
|
+
|
|
+debug_zval_dump($err);
|
|
+debug_zval_dump($s);
|
|
+
|
|
+$r = sqlite_query("create table foo (a INTEGER PRIMARY KEY, b INTEGER )", $s);
|
|
+debug_zval_dump(sqlite_last_error($s));
|
|
+debug_zval_dump(sqlite_error_string(sqlite_last_error($s)));
|
|
+
|
|
+$r = sqlite_query("select *, php('md5', sql) as o from sqlite_master", $s);
|
|
+debug_zval_dump($r);
|
|
+debug_zval_dump(sqlite_num_rows($r));
|
|
+debug_zval_dump(sqlite_num_fields($r));
|
|
+
|
|
+for ($j = 0; $j < sqlite_num_fields($r); $j++) {
|
|
+ echo "Field $j is " . sqlite_field_name($r, $j) . "\n";
|
|
+}
|
|
+
|
|
+while ($row = sqlite_fetch_array($r, SQLITE_ASSOC)) {
|
|
+ print_r($row);
|
|
+}
|
|
+
|
|
+sqlite_close($s);
|
|
+
|
|
+?>
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/blankdb.inc
|
|
@@ -0,0 +1,3 @@
|
|
+<?php #vim:ft=php
|
|
+$db = sqlite_open(":memory:");
|
|
+?>
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/blankdb_oo.inc
|
|
@@ -0,0 +1,3 @@
|
|
+<?php #vim:ft=php
|
|
+$db = new SQLiteDatabase(":memory:");
|
|
+?>
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/bug26911.phpt
|
|
@@ -0,0 +1,12 @@
|
|
+--TEST--
|
|
+Bug #26911 (crash when fetching data from empty queries)
|
|
+--SKIPIF--
|
|
+<?php if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+ $db = sqlite_open(":memory:");
|
|
+ $a = sqlite_query($db, " ");
|
|
+ echo "I am ok\n";
|
|
+?>
|
|
+--EXPECT--
|
|
+I am ok
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/bug28112.phpt
|
|
@@ -0,0 +1,16 @@
|
|
+--TEST--
|
|
+Bug #28112 (sqlite_query() crashing apache on malformed query)
|
|
+--SKIPIF--
|
|
+<?php if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+
|
|
+if (!($db = sqlite_open(":memory:", 666, $error))) die ("Couldn't open the database");
|
|
+sqlite_query($db, "create table frob (foo INTEGER PRIMARY KEY, bar text);");
|
|
+$res = @sqlite_array_query($db, "");
|
|
+
|
|
+?>
|
|
+===DONE===
|
|
+<?php exit(0); ?>
|
|
+--EXPECTF--
|
|
+===DONE===
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/bug35248.phpt
|
|
@@ -0,0 +1,15 @@
|
|
+--TEST--
|
|
+Bug #35248 (sqlite_query does not return parse error message)
|
|
+--SKIPIF--
|
|
+<?php if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+ $db = sqlite_open(":memory:");
|
|
+ $res = @sqlite_query($db, "asdfesdfa", SQLITE_NUM, $err);
|
|
+ var_dump($err);
|
|
+ $res = @sqlite_unbuffered_query($db, "asdfesdfa", SQLITE_NUM, $err);
|
|
+ var_dump($err);
|
|
+?>
|
|
+--EXPECT--
|
|
+string(30) "near "asdfesdfa": syntax error"
|
|
+string(30) "near "asdfesdfa": syntax error"
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/bug38759.phpt
|
|
@@ -0,0 +1,18 @@
|
|
+--TEST--
|
|
+Bug #38759 (sqlite2 empty query causes segfault)
|
|
+--SKIPIF--
|
|
+<?php
|
|
+if (!extension_loaded("pdo")) print "skip";
|
|
+if (!extension_loaded("sqlite")) print "skip";
|
|
+?>
|
|
+--FILE--
|
|
+<?php
|
|
+
|
|
+$dbh = new PDO('sqlite2::memory:');
|
|
+var_dump($dbh->query(" "));
|
|
+
|
|
+echo "Done\n";
|
|
+?>
|
|
+--EXPECTF--
|
|
+bool(false)
|
|
+Done
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/bug48679.phpt
|
|
@@ -0,0 +1,20 @@
|
|
+--TEST--
|
|
+Bug #48679 (sqlite2 count on unbuffered query causes segfault)
|
|
+--SKIPIF--
|
|
+<?php
|
|
+if (!extension_loaded("sqlite")) print "skip";
|
|
+?>
|
|
+--FILE--
|
|
+<?php
|
|
+
|
|
+try {
|
|
+ $x = new sqliteunbuffered;
|
|
+ count($x);
|
|
+} catch (SQLiteException $e) {
|
|
+ var_dump($e->getMessage());
|
|
+}
|
|
+echo "Done\n";
|
|
+?>
|
|
+--EXPECT--
|
|
+string(41) "Row count is not available for this query"
|
|
+Done
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/pdo/common.phpt
|
|
@@ -0,0 +1,12 @@
|
|
+--TEST--
|
|
+SQLite2
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded('pdo') || !extension_loaded('sqlite')) print 'skip'; ?>
|
|
+--REDIRECTTEST--
|
|
+return array(
|
|
+ 'ENV' => array(
|
|
+ 'PDOTEST_DSN' => 'sqlite2::memory:'
|
|
+ ),
|
|
+ 'TESTS' => 'ext/pdo/tests'
|
|
+ );
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_001.phpt
|
|
@@ -0,0 +1,16 @@
|
|
+--TEST--
|
|
+sqlite: sqlite_open/close
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+require_once('blankdb.inc');
|
|
+echo "$db\n";
|
|
+sqlite_close($db);
|
|
+echo "Done\n";
|
|
+?>
|
|
+--EXPECTF--
|
|
+Resource id #%d
|
|
+Done
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_002.phpt
|
|
@@ -0,0 +1,32 @@
|
|
+--TEST--
|
|
+sqlite: Simple insert/select
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb.inc";
|
|
+
|
|
+sqlite_query("CREATE TABLE foo(c1 date, c2 time, c3 varchar(64))", $db);
|
|
+sqlite_query("INSERT INTO foo VALUES ('2002-01-02', '12:49:00', NULL)", $db);
|
|
+$r = sqlite_query("SELECT * from foo", $db);
|
|
+var_dump(sqlite_fetch_array($r));
|
|
+sqlite_close($db);
|
|
+?>
|
|
+--EXPECT--
|
|
+array(6) {
|
|
+ [0]=>
|
|
+ string(10) "2002-01-02"
|
|
+ ["c1"]=>
|
|
+ string(10) "2002-01-02"
|
|
+ [1]=>
|
|
+ string(8) "12:49:00"
|
|
+ ["c2"]=>
|
|
+ string(8) "12:49:00"
|
|
+ [2]=>
|
|
+ NULL
|
|
+ ["c3"]=>
|
|
+ NULL
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_003.phpt
|
|
@@ -0,0 +1,52 @@
|
|
+--TEST--
|
|
+sqlite: Simple insert/select, different result represenatation
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb.inc";
|
|
+
|
|
+sqlite_query("CREATE TABLE foo(c1 date, c2 time, c3 varchar(64))", $db);
|
|
+sqlite_query("INSERT INTO foo VALUES ('2002-01-02', '12:49:00', NULL)", $db);
|
|
+$r = sqlite_query("SELECT * from foo", $db);
|
|
+var_dump(sqlite_fetch_array($r, SQLITE_BOTH));
|
|
+$r = sqlite_query("SELECT * from foo", $db);
|
|
+var_dump(sqlite_fetch_array($r, SQLITE_NUM));
|
|
+$r = sqlite_query("SELECT * from foo", $db);
|
|
+var_dump(sqlite_fetch_array($r, SQLITE_ASSOC));
|
|
+sqlite_close($db);
|
|
+?>
|
|
+--EXPECT--
|
|
+array(6) {
|
|
+ [0]=>
|
|
+ string(10) "2002-01-02"
|
|
+ ["c1"]=>
|
|
+ string(10) "2002-01-02"
|
|
+ [1]=>
|
|
+ string(8) "12:49:00"
|
|
+ ["c2"]=>
|
|
+ string(8) "12:49:00"
|
|
+ [2]=>
|
|
+ NULL
|
|
+ ["c3"]=>
|
|
+ NULL
|
|
+}
|
|
+array(3) {
|
|
+ [0]=>
|
|
+ string(10) "2002-01-02"
|
|
+ [1]=>
|
|
+ string(8) "12:49:00"
|
|
+ [2]=>
|
|
+ NULL
|
|
+}
|
|
+array(3) {
|
|
+ ["c1"]=>
|
|
+ string(10) "2002-01-02"
|
|
+ ["c2"]=>
|
|
+ string(8) "12:49:00"
|
|
+ ["c3"]=>
|
|
+ NULL
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_004.phpt
|
|
@@ -0,0 +1,49 @@
|
|
+--TEST--
|
|
+sqlite: binary encoding
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb.inc";
|
|
+
|
|
+$strings = array(
|
|
+ "hello",
|
|
+ "hello\x01o",
|
|
+ "\x01hello there",
|
|
+ "hello\x00there",
|
|
+ ""
|
|
+);
|
|
+
|
|
+sqlite_query("CREATE TABLE strings(a)", $db);
|
|
+
|
|
+foreach ($strings as $str) {
|
|
+ sqlite_query("INSERT INTO strings VALUES('" . sqlite_escape_string($str) . "')", $db);
|
|
+}
|
|
+
|
|
+$i = 0;
|
|
+$r = sqlite_query("SELECT * from strings", $db);
|
|
+while ($row = sqlite_fetch_array($r, SQLITE_NUM)) {
|
|
+ if ($row[0] !== $strings[$i]) {
|
|
+ echo "FAIL!\n";
|
|
+ var_dump($row[0]);
|
|
+ var_dump($strings[$i]);
|
|
+ } else {
|
|
+ echo "OK!\n";
|
|
+ }
|
|
+ $i++;
|
|
+}
|
|
+
|
|
+sqlite_close($db);
|
|
+
|
|
+echo "DONE!\n";
|
|
+?>
|
|
+--EXPECT--
|
|
+OK!
|
|
+OK!
|
|
+OK!
|
|
+OK!
|
|
+OK!
|
|
+DONE!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_005.phpt
|
|
@@ -0,0 +1,50 @@
|
|
+--TEST--
|
|
+sqlite: aggregate functions
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb.inc";
|
|
+
|
|
+$data = array(
|
|
+ "one",
|
|
+ "two",
|
|
+ "three"
|
|
+ );
|
|
+
|
|
+sqlite_query("CREATE TABLE strings(a)", $db);
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ sqlite_query("INSERT INTO strings VALUES('" . sqlite_escape_string($str) . "')", $db);
|
|
+}
|
|
+
|
|
+function cat_step(&$context, $string)
|
|
+{
|
|
+ $context .= $string;
|
|
+}
|
|
+
|
|
+function cat_fin(&$context)
|
|
+{
|
|
+ return $context;
|
|
+}
|
|
+
|
|
+sqlite_create_aggregate($db, "cat", "cat_step", "cat_fin");
|
|
+
|
|
+$r = sqlite_query("SELECT cat(a) from strings", $db);
|
|
+while ($row = sqlite_fetch_array($r, SQLITE_NUM)) {
|
|
+ var_dump($row);
|
|
+}
|
|
+
|
|
+sqlite_close($db);
|
|
+
|
|
+echo "DONE!\n";
|
|
+?>
|
|
+--EXPECT--
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(11) "onetwothree"
|
|
+}
|
|
+DONE!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_006.phpt
|
|
@@ -0,0 +1,55 @@
|
|
+--TEST--
|
|
+sqlite: regular functions
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb.inc";
|
|
+
|
|
+$data = array(
|
|
+ array("one", "uno"),
|
|
+ array("two", "dos"),
|
|
+ array("three", "tres"),
|
|
+ );
|
|
+
|
|
+sqlite_query("CREATE TABLE strings(a,b)", $db);
|
|
+
|
|
+function implode_args()
|
|
+{
|
|
+ $args = func_get_args();
|
|
+ $sep = array_shift($args);
|
|
+ return implode($sep, $args);
|
|
+}
|
|
+
|
|
+foreach ($data as $row) {
|
|
+ sqlite_query("INSERT INTO strings VALUES('" . sqlite_escape_string($row[0]) . "','" . sqlite_escape_string($row[1]) . "')", $db);
|
|
+}
|
|
+
|
|
+sqlite_create_function($db, "implode", "implode_args");
|
|
+
|
|
+$r = sqlite_query("SELECT implode('-', a, b) from strings", $db);
|
|
+while ($row = sqlite_fetch_array($r, SQLITE_NUM)) {
|
|
+ var_dump($row);
|
|
+}
|
|
+
|
|
+sqlite_close($db);
|
|
+
|
|
+echo "DONE!\n";
|
|
+?>
|
|
+--EXPECT--
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(7) "one-uno"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(7) "two-dos"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(10) "three-tres"
|
|
+}
|
|
+DONE!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_007.phpt
|
|
@@ -0,0 +1,52 @@
|
|
+--TEST--
|
|
+sqlite: Simple insert/select (unbuffered)
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb.inc";
|
|
+
|
|
+sqlite_query("CREATE TABLE foo(c1 date, c2 time, c3 varchar(64))", $db);
|
|
+sqlite_query("INSERT INTO foo VALUES ('2002-01-02', '12:49:00', NULL)", $db);
|
|
+$r = sqlite_unbuffered_query("SELECT * from foo", $db);
|
|
+var_dump(sqlite_fetch_array($r, SQLITE_BOTH));
|
|
+$r = sqlite_unbuffered_query("SELECT * from foo", $db);
|
|
+var_dump(sqlite_fetch_array($r, SQLITE_NUM));
|
|
+$r = sqlite_unbuffered_query("SELECT * from foo", $db);
|
|
+var_dump(sqlite_fetch_array($r, SQLITE_ASSOC));
|
|
+sqlite_close($db);
|
|
+?>
|
|
+--EXPECT--
|
|
+array(6) {
|
|
+ [0]=>
|
|
+ string(10) "2002-01-02"
|
|
+ ["c1"]=>
|
|
+ string(10) "2002-01-02"
|
|
+ [1]=>
|
|
+ string(8) "12:49:00"
|
|
+ ["c2"]=>
|
|
+ string(8) "12:49:00"
|
|
+ [2]=>
|
|
+ NULL
|
|
+ ["c3"]=>
|
|
+ NULL
|
|
+}
|
|
+array(3) {
|
|
+ [0]=>
|
|
+ string(10) "2002-01-02"
|
|
+ [1]=>
|
|
+ string(8) "12:49:00"
|
|
+ [2]=>
|
|
+ NULL
|
|
+}
|
|
+array(3) {
|
|
+ ["c1"]=>
|
|
+ string(10) "2002-01-02"
|
|
+ ["c2"]=>
|
|
+ string(8) "12:49:00"
|
|
+ ["c3"]=>
|
|
+ NULL
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_008.phpt
|
|
@@ -0,0 +1,46 @@
|
|
+--TEST--
|
|
+sqlite: fetch all (buffered)
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb.inc";
|
|
+
|
|
+$data = array(
|
|
+ "one",
|
|
+ "two",
|
|
+ "three"
|
|
+ );
|
|
+
|
|
+sqlite_query("CREATE TABLE strings(a VARCHAR)", $db);
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ sqlite_query("INSERT INTO strings VALUES('$str')", $db);
|
|
+}
|
|
+
|
|
+$r = sqlite_query("SELECT a from strings", $db);
|
|
+while ($row = sqlite_fetch_array($r, SQLITE_NUM)) {
|
|
+ var_dump($row);
|
|
+}
|
|
+
|
|
+sqlite_close($db);
|
|
+
|
|
+echo "DONE!\n";
|
|
+?>
|
|
+--EXPECT--
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+DONE!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_009.phpt
|
|
@@ -0,0 +1,46 @@
|
|
+--TEST--
|
|
+sqlite: fetch all (unbuffered)
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb.inc";
|
|
+
|
|
+$data = array(
|
|
+ "one",
|
|
+ "two",
|
|
+ "three"
|
|
+ );
|
|
+
|
|
+sqlite_query("CREATE TABLE strings(a VARCHAR)", $db);
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ sqlite_query("INSERT INTO strings VALUES('$str')", $db);
|
|
+}
|
|
+
|
|
+$r = sqlite_unbuffered_query("SELECT a from strings", $db);
|
|
+while ($row = sqlite_fetch_array($r, SQLITE_NUM)) {
|
|
+ var_dump($row);
|
|
+}
|
|
+
|
|
+sqlite_close($db);
|
|
+
|
|
+echo "DONE!\n";
|
|
+?>
|
|
+--EXPECT--
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+DONE!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_010.phpt
|
|
@@ -0,0 +1,81 @@
|
|
+--TEST--
|
|
+sqlite: fetch all (iterator)
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb.inc";
|
|
+
|
|
+$data = array(
|
|
+ "one",
|
|
+ "two",
|
|
+ "three"
|
|
+ );
|
|
+
|
|
+sqlite_query("CREATE TABLE strings(a VARCHAR)", $db);
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ sqlite_query("INSERT INTO strings VALUES('$str')", $db);
|
|
+}
|
|
+
|
|
+$r = sqlite_unbuffered_query("SELECT a from strings", $db);
|
|
+while (sqlite_valid($r)) {
|
|
+ var_dump(sqlite_current($r, SQLITE_NUM));
|
|
+ sqlite_next($r);
|
|
+}
|
|
+$r = sqlite_query("SELECT a from strings", $db);
|
|
+while (sqlite_valid($r)) {
|
|
+ var_dump(sqlite_current($r, SQLITE_NUM));
|
|
+ sqlite_next($r);
|
|
+}
|
|
+sqlite_rewind($r);
|
|
+while (sqlite_valid($r)) {
|
|
+ var_dump(sqlite_current($r, SQLITE_NUM));
|
|
+ sqlite_next($r);
|
|
+}
|
|
+
|
|
+sqlite_close($db);
|
|
+
|
|
+echo "DONE!\n";
|
|
+?>
|
|
+--EXPECT--
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+DONE!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_011.phpt
|
|
@@ -0,0 +1,34 @@
|
|
+--TEST--
|
|
+sqlite: returned associative column names
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb.inc";
|
|
+
|
|
+sqlite_query("CREATE TABLE foo (c1 char, c2 char, c3 char)", $db);
|
|
+sqlite_query("CREATE TABLE bar (c1 char, c2 char, c3 char)", $db);
|
|
+sqlite_query("INSERT INTO foo VALUES ('1', '2', '3')", $db);
|
|
+sqlite_query("INSERT INTO bar VALUES ('4', '5', '6')", $db);
|
|
+$r = sqlite_query("SELECT * from foo, bar", $db, SQLITE_ASSOC);
|
|
+var_dump(sqlite_fetch_array($r));
|
|
+sqlite_close($db);
|
|
+?>
|
|
+--EXPECT--
|
|
+array(6) {
|
|
+ ["foo.c1"]=>
|
|
+ string(1) "1"
|
|
+ ["foo.c2"]=>
|
|
+ string(1) "2"
|
|
+ ["foo.c3"]=>
|
|
+ string(1) "3"
|
|
+ ["bar.c1"]=>
|
|
+ string(1) "4"
|
|
+ ["bar.c2"]=>
|
|
+ string(1) "5"
|
|
+ ["bar.c3"]=>
|
|
+ string(1) "6"
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_012.phpt
|
|
@@ -0,0 +1,38 @@
|
|
+--TEST--
|
|
+sqlite: read field names
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb.inc";
|
|
+
|
|
+sqlite_query("CREATE TABLE strings(foo VARCHAR, bar VARCHAR, baz VARCHAR)", $db);
|
|
+
|
|
+echo "Buffered\n";
|
|
+$r = sqlite_query("SELECT * from strings", $db);
|
|
+for($i=0; $i<sqlite_num_fields($r); $i++) {
|
|
+ var_dump(sqlite_field_name($r, $i));
|
|
+}
|
|
+echo "Unbuffered\n";
|
|
+$r = sqlite_unbuffered_query("SELECT * from strings", $db);
|
|
+for($i=0; $i<sqlite_num_fields($r); $i++) {
|
|
+ var_dump(sqlite_field_name($r, $i));
|
|
+}
|
|
+
|
|
+sqlite_close($db);
|
|
+
|
|
+echo "DONE!\n";
|
|
+?>
|
|
+--EXPECT--
|
|
+Buffered
|
|
+string(3) "foo"
|
|
+string(3) "bar"
|
|
+string(3) "baz"
|
|
+Unbuffered
|
|
+string(3) "foo"
|
|
+string(3) "bar"
|
|
+string(3) "baz"
|
|
+DONE!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_013.phpt
|
|
@@ -0,0 +1,78 @@
|
|
+--TEST--
|
|
+sqlite: fetch column
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb.inc";
|
|
+
|
|
+$data = array(
|
|
+ array (0 => 'one', 1 => 'two'),
|
|
+ array (0 => 'three', 1 => 'four')
|
|
+ );
|
|
+
|
|
+sqlite_query("CREATE TABLE strings(a VARCHAR, b VARCHAR)", $db);
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ sqlite_query("INSERT INTO strings VALUES('${str[0]}','${str[1]}')", $db);
|
|
+}
|
|
+
|
|
+echo "====BUFFERED====\n";
|
|
+$r = sqlite_query("SELECT a, b from strings", $db);
|
|
+while (sqlite_valid($r)) {
|
|
+ var_dump(sqlite_current($r, SQLITE_NUM));
|
|
+ var_dump(sqlite_column($r, 0));
|
|
+ var_dump(sqlite_column($r, 1));
|
|
+ var_dump(sqlite_column($r, 'a'));
|
|
+ var_dump(sqlite_column($r, 'b'));
|
|
+ sqlite_next($r);
|
|
+}
|
|
+echo "====UNBUFFERED====\n";
|
|
+$r = sqlite_unbuffered_query("SELECT a, b from strings", $db);
|
|
+while (sqlite_valid($r)) {
|
|
+ var_dump(sqlite_column($r, 0));
|
|
+ var_dump(sqlite_column($r, 'b'));
|
|
+ var_dump(sqlite_column($r, 1));
|
|
+ var_dump(sqlite_column($r, 'a'));
|
|
+ sqlite_next($r);
|
|
+}
|
|
+
|
|
+sqlite_close($db);
|
|
+
|
|
+echo "DONE!\n";
|
|
+?>
|
|
+--EXPECT--
|
|
+====BUFFERED====
|
|
+array(2) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+ [1]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+string(3) "one"
|
|
+string(3) "two"
|
|
+string(3) "one"
|
|
+string(3) "two"
|
|
+array(2) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+ [1]=>
|
|
+ string(4) "four"
|
|
+}
|
|
+string(5) "three"
|
|
+string(4) "four"
|
|
+string(5) "three"
|
|
+string(4) "four"
|
|
+====UNBUFFERED====
|
|
+string(3) "one"
|
|
+string(3) "two"
|
|
+NULL
|
|
+NULL
|
|
+string(5) "three"
|
|
+string(4) "four"
|
|
+NULL
|
|
+NULL
|
|
+DONE!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_014.phpt
|
|
@@ -0,0 +1,120 @@
|
|
+--TEST--
|
|
+sqlite: fetch all (fetch_all)
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb.inc";
|
|
+
|
|
+$data = array(
|
|
+ "one",
|
|
+ "two",
|
|
+ "three"
|
|
+ );
|
|
+
|
|
+sqlite_query("CREATE TABLE strings(a VARCHAR)", $db);
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ sqlite_query("INSERT INTO strings VALUES('$str')", $db);
|
|
+}
|
|
+
|
|
+echo "unbuffered twice\n";
|
|
+$r = sqlite_unbuffered_query("SELECT a from strings", $db, SQLITE_NUM);
|
|
+var_dump(sqlite_fetch_all($r));
|
|
+var_dump(sqlite_fetch_all($r));
|
|
+
|
|
+echo "unbuffered with fetch_array\n";
|
|
+$r = sqlite_unbuffered_query("SELECT a from strings", $db, SQLITE_NUM);
|
|
+var_dump(sqlite_fetch_array($r));
|
|
+var_dump(sqlite_fetch_all($r));
|
|
+
|
|
+echo "buffered\n";
|
|
+$r = sqlite_query("SELECT a from strings", $db, SQLITE_NUM);
|
|
+var_dump(sqlite_fetch_all($r));
|
|
+var_dump(sqlite_fetch_array($r));
|
|
+var_dump(sqlite_fetch_all($r));
|
|
+
|
|
+sqlite_close($db);
|
|
+
|
|
+echo "DONE!\n";
|
|
+?>
|
|
+--EXPECTF--
|
|
+unbuffered twice
|
|
+array(3) {
|
|
+ [0]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+ }
|
|
+ [1]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+ }
|
|
+ [2]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+ }
|
|
+}
|
|
+
|
|
+Warning: sqlite_fetch_all(): One or more rowsets were already returned; returning NULL this time in %ssqlite_014.php on line %d
|
|
+array(0) {
|
|
+}
|
|
+unbuffered with fetch_array
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+array(2) {
|
|
+ [0]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+ }
|
|
+ [1]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+ }
|
|
+}
|
|
+buffered
|
|
+array(3) {
|
|
+ [0]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+ }
|
|
+ [1]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+ }
|
|
+ [2]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+ }
|
|
+}
|
|
+bool(false)
|
|
+array(3) {
|
|
+ [0]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+ }
|
|
+ [1]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+ }
|
|
+ [2]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+ }
|
|
+}
|
|
+DONE!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_015.phpt
|
|
@@ -0,0 +1,49 @@
|
|
+--TEST--
|
|
+sqlite: fetch all (array_query)
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb.inc";
|
|
+
|
|
+$data = array(
|
|
+ "one",
|
|
+ "two",
|
|
+ "three"
|
|
+ );
|
|
+
|
|
+sqlite_query("CREATE TABLE strings(a VARCHAR)", $db);
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ sqlite_query("INSERT INTO strings VALUES('$str')", $db);
|
|
+}
|
|
+
|
|
+$res = sqlite_array_query("SELECT a from strings", $db, SQLITE_NUM);
|
|
+var_dump($res);
|
|
+
|
|
+$db = null;
|
|
+
|
|
+echo "DONE!\n";
|
|
+?>
|
|
+--EXPECTF--
|
|
+array(3) {
|
|
+ [0]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+ }
|
|
+ [1]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+ }
|
|
+ [2]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+ }
|
|
+}
|
|
+DONE!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_016.phpt
|
|
@@ -0,0 +1,45 @@
|
|
+--TEST--
|
|
+sqlite: fetch single
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb.inc";
|
|
+
|
|
+$data = array(
|
|
+ array (0 => 'one', 1 => 'two'),
|
|
+ array (0 => 'three', 1 => 'four')
|
|
+ );
|
|
+
|
|
+sqlite_query("CREATE TABLE strings(a VARCHAR, b VARCHAR)", $db);
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ sqlite_query("INSERT INTO strings VALUES('${str[0]}','${str[1]}')", $db);
|
|
+}
|
|
+
|
|
+echo "====BUFFERED====\n";
|
|
+$r = sqlite_query("SELECT a, b from strings", $db);
|
|
+while (sqlite_valid($r)) {
|
|
+ var_dump(sqlite_fetch_single($r));
|
|
+}
|
|
+echo "====UNBUFFERED====\n";
|
|
+$r = sqlite_unbuffered_query("SELECT a, b from strings", $db);
|
|
+while (sqlite_valid($r)) {
|
|
+ var_dump(sqlite_fetch_single($r));
|
|
+}
|
|
+
|
|
+sqlite_close($db);
|
|
+
|
|
+echo "DONE!\n";
|
|
+?>
|
|
+--EXPECT--
|
|
+====BUFFERED====
|
|
+string(3) "one"
|
|
+string(5) "three"
|
|
+====UNBUFFERED====
|
|
+string(3) "one"
|
|
+string(5) "three"
|
|
+DONE!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_017.phpt
|
|
@@ -0,0 +1,33 @@
|
|
+--TEST--
|
|
+sqlite: UDF binary handling functions
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+
|
|
+$data = array(
|
|
+ "hello there",
|
|
+ "this has a \x00 char in the middle",
|
|
+ "\x01 this has an 0x01 at the start",
|
|
+ "this has \x01 in the middle"
|
|
+ );
|
|
+
|
|
+foreach ($data as $item) {
|
|
+ $coded = sqlite_udf_encode_binary($item);
|
|
+ echo bin2hex($coded) . "\n";
|
|
+ $decoded = sqlite_udf_decode_binary($coded);
|
|
+ if ($item != $decoded) {
|
|
+ echo "FAIL! $item decoded is $decoded\n";
|
|
+ }
|
|
+}
|
|
+
|
|
+echo "OK!\n";
|
|
+
|
|
+?>
|
|
+--EXPECT--
|
|
+68656c6c6f207468657265
|
|
+0101736768721f6760721f601fff1f626760711f686d1f7367641f6c6863636b64
|
|
+0102ff1e726667711e665f711e5f6c1e2e762e2f1e5f721e7266631e71725f7072
|
|
+7468697320686173200120696e20746865206d6964646c65
|
|
+OK!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_018.phpt
|
|
@@ -0,0 +1,14 @@
|
|
+--TEST--
|
|
+sqlite: crash on bad queries inside sqlite_array_query()
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb.inc";
|
|
+
|
|
+sqlite_array_query($db, "SELECT foo FROM foobar");
|
|
+sqlite_close($db);
|
|
+?>
|
|
+--EXPECTF--
|
|
+Warning: sqlite_array_query(): no such table: foobar in %s on line %d
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_019.phpt
|
|
@@ -0,0 +1,47 @@
|
|
+--TEST--
|
|
+sqlite: single query
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb.inc";
|
|
+
|
|
+sqlite_query($db, "CREATE TABLE test_db ( id INTEGER PRIMARY KEY, data VARCHAR(100) )");
|
|
+for ($i = 0; $i < 10; $i++) {
|
|
+ sqlite_query($db, "INSERT INTO test_db (data) VALUES('{$i}data')");
|
|
+}
|
|
+sqlite_query($db, "INSERT INTO test_db (data) VALUES(NULL)");
|
|
+
|
|
+var_dump(sqlite_single_query($db, "SELECT id FROM test_db WHERE id=5"));
|
|
+var_dump(sqlite_single_query($db, "SELECT * FROM test_db WHERE id=4"));
|
|
+var_dump(sqlite_single_query($db, "SELECT data FROM test_db WHERE id=6"));
|
|
+var_dump(sqlite_single_query($db, "SELECT * FROM test_db WHERE id < 5"));
|
|
+var_dump(sqlite_single_query($db, "SELECT * FROM test db WHERE id < 4"));
|
|
+var_dump(sqlite_single_query($db, "SELECT * FROM test_db WHERE id=999999"));
|
|
+var_dump(sqlite_single_query($db, "SELECT id FROM test_db WHERE id=5", FALSE));
|
|
+
|
|
+sqlite_close($db);
|
|
+?>
|
|
+--EXPECTF--
|
|
+string(1) "5"
|
|
+string(1) "4"
|
|
+string(5) "5data"
|
|
+array(4) {
|
|
+ [0]=>
|
|
+ string(1) "1"
|
|
+ [1]=>
|
|
+ string(1) "2"
|
|
+ [2]=>
|
|
+ string(1) "3"
|
|
+ [3]=>
|
|
+ string(1) "4"
|
|
+}
|
|
+
|
|
+Warning: sqlite_single_query(): no such table: test in %s on line %d
|
|
+bool(false)
|
|
+NULL
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(1) "5"
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_022.phpt
|
|
@@ -0,0 +1,101 @@
|
|
+--TEST--
|
|
+sqlite: sqlite_seek
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb.inc";
|
|
+
|
|
+$data = array(
|
|
+ "one",
|
|
+ "two",
|
|
+ "three"
|
|
+ );
|
|
+
|
|
+sqlite_query("CREATE TABLE strings(a)", $db);
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ sqlite_query("INSERT INTO strings VALUES('$str')", $db);
|
|
+}
|
|
+
|
|
+$res = sqlite_query("SELECT a FROM strings", $db, SQLITE_NUM);
|
|
+for ($idx = -1; $idx < 4; $idx++) {
|
|
+ echo "====SEEK:$idx====\n";
|
|
+ sqlite_seek($res, $idx);
|
|
+ var_dump(sqlite_current($res));
|
|
+}
|
|
+echo "====AGAIN====\n";
|
|
+for ($idx = -1; $idx < 4; $idx++) {
|
|
+ echo "====SEEK:$idx====\n";
|
|
+ sqlite_seek($res, $idx);
|
|
+ var_dump(sqlite_current($res));
|
|
+}
|
|
+
|
|
+sqlite_close($db);
|
|
+
|
|
+echo "====DONE!====\n";
|
|
+?>
|
|
+--EXPECTF--
|
|
+====SEEK:-1====
|
|
+
|
|
+Warning: sqlite_seek(): row -1 out of range in %ssqlite_022.php on line %d
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+====SEEK:0====
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+====SEEK:1====
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+====SEEK:2====
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+====SEEK:3====
|
|
+
|
|
+Warning: sqlite_seek(): row 3 out of range in %ssqlite_022.php on line %d
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+====AGAIN====
|
|
+====SEEK:-1====
|
|
+
|
|
+Warning: sqlite_seek(): row -1 out of range in %ssqlite_022.php on line %d
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+====SEEK:0====
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+====SEEK:1====
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+====SEEK:2====
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+====SEEK:3====
|
|
+
|
|
+Warning: sqlite_seek(): row 3 out of range in %ssqlite_022.php on line %d
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+====DONE!====
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_023.phpt
|
|
@@ -0,0 +1,105 @@
|
|
+--TEST--
|
|
+sqlite: sqlite_[has_]prev
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb.inc";
|
|
+
|
|
+$data = array(
|
|
+ "one",
|
|
+ "two",
|
|
+ "three"
|
|
+ );
|
|
+
|
|
+sqlite_query("CREATE TABLE strings(a)", $db);
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ sqlite_query("INSERT INTO strings VALUES('$str')", $db);
|
|
+}
|
|
+
|
|
+$r = sqlite_query("SELECT a FROM strings", $db, SQLITE_NUM);
|
|
+
|
|
+echo "====TRAVERSE====\n";
|
|
+for(sqlite_rewind($r); sqlite_valid($r); sqlite_next($r)) {
|
|
+ var_dump(sqlite_current($r));
|
|
+
|
|
+}
|
|
+echo "====REVERSE====\n";
|
|
+do {
|
|
+ sqlite_prev($r);
|
|
+ var_dump(sqlite_current($r));
|
|
+} while(sqlite_has_prev($r));
|
|
+
|
|
+echo "====UNBUFFERED====\n";
|
|
+
|
|
+$r = sqlite_unbuffered_query("SELECT a FROM strings", $db, SQLITE_NUM);
|
|
+
|
|
+echo "====TRAVERSE====\n";
|
|
+for(sqlite_rewind($r); sqlite_valid($r); sqlite_next($r)) {
|
|
+ var_dump(sqlite_current($r));
|
|
+
|
|
+}
|
|
+echo "====REVERSE====\n";
|
|
+do {
|
|
+ sqlite_prev($r);
|
|
+ var_dump(sqlite_current($r));
|
|
+} while(sqlite_has_prev($r));
|
|
+
|
|
+sqlite_close($db);
|
|
+
|
|
+echo "====DONE!====\n";
|
|
+?>
|
|
+--EXPECTF--
|
|
+====TRAVERSE====
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+====REVERSE====
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+====UNBUFFERED====
|
|
+====TRAVERSE====
|
|
+
|
|
+Warning: sqlite_rewind(): Cannot rewind an unbuffered result set in %ssqlite_023.php on line %d
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+====REVERSE====
|
|
+
|
|
+Warning: sqlite_prev(): you cannot use sqlite_prev on unbuffered querys in %ssqlite_023.php on line %d
|
|
+bool(false)
|
|
+
|
|
+Warning: sqlite_has_prev(): you cannot use sqlite_has_prev on unbuffered querys in %ssqlite_023.php on line %d
|
|
+====DONE!====
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_024.phpt
|
|
@@ -0,0 +1,76 @@
|
|
+--TEST--
|
|
+sqlite: sqlite_fetch_object
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb.inc";
|
|
+
|
|
+class class24 {
|
|
+ function __construct() {
|
|
+ echo __METHOD__ . "\n";
|
|
+ }
|
|
+}
|
|
+
|
|
+$data = array(
|
|
+ "one",
|
|
+ "two",
|
|
+ "three"
|
|
+ );
|
|
+
|
|
+sqlite_query($db, "CREATE TABLE strings(a)");
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ sqlite_query($db, "INSERT INTO strings VALUES('$str')");
|
|
+}
|
|
+
|
|
+echo "====class24====\n";
|
|
+$res = sqlite_query($db, "SELECT a FROM strings", SQLITE_ASSOC);
|
|
+while (sqlite_valid($res)) {
|
|
+ var_dump(sqlite_fetch_object($res, 'class24'));
|
|
+}
|
|
+
|
|
+echo "====stdclass====\n";
|
|
+$res = sqlite_query($db, "SELECT a FROM strings", SQLITE_ASSOC);
|
|
+while (sqlite_valid($res)) {
|
|
+ var_dump(sqlite_fetch_object($res));
|
|
+}
|
|
+
|
|
+sqlite_close($db);
|
|
+
|
|
+echo "====DONE!====\n";
|
|
+?>
|
|
+--EXPECTF--
|
|
+====class24====
|
|
+class24::__construct
|
|
+object(class24)#%d (1) {
|
|
+ ["a"]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+class24::__construct
|
|
+object(class24)#%d (1) {
|
|
+ ["a"]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+class24::__construct
|
|
+object(class24)#%d (1) {
|
|
+ ["a"]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+====stdclass====
|
|
+object(stdClass)#%d (1) {
|
|
+ ["a"]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+object(stdClass)#%d (1) {
|
|
+ ["a"]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+object(stdClass)#%d (1) {
|
|
+ ["a"]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+====DONE!====
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_025.phpt
|
|
@@ -0,0 +1,38 @@
|
|
+--TEST--
|
|
+sqlite: sqlite_fetch_object in a loop
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb.inc";
|
|
+
|
|
+sqlite_query($db, "CREATE TABLE strings(a)");
|
|
+
|
|
+foreach (array("one", "two", "three") as $str) {
|
|
+ sqlite_query($db, "INSERT INTO strings VALUES('$str')");
|
|
+}
|
|
+
|
|
+$res = sqlite_query("SELECT * FROM strings", $db);
|
|
+
|
|
+while (($obj = sqlite_fetch_object($res))) {
|
|
+ var_dump($obj);
|
|
+}
|
|
+
|
|
+sqlite_close($db);
|
|
+?>
|
|
+--EXPECTF--
|
|
+object(stdClass)#1 (1) {
|
|
+ ["a"]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+object(stdClass)#2 (1) {
|
|
+ ["a"]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+object(stdClass)#1 (1) {
|
|
+ ["a"]=>
|
|
+ string(5) "three"
|
|
+}
|
|
\ No newline at end of file
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_026.phpt
|
|
@@ -0,0 +1,27 @@
|
|
+--TEST--
|
|
+sqlite: sqlite_fetch_column_types
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb.inc";
|
|
+
|
|
+sqlite_query($db, "CREATE TABLE strings(a, b INTEGER, c VARCHAR(10), d)");
|
|
+sqlite_query($db, "INSERT INTO strings VALUES('1', '2', '3', 'abc')");
|
|
+
|
|
+var_dump(sqlite_fetch_column_types($db, "strings"));
|
|
+
|
|
+sqlite_close($db);
|
|
+?>
|
|
+--EXPECT--
|
|
+array(4) {
|
|
+ ["a"]=>
|
|
+ string(0) ""
|
|
+ ["b"]=>
|
|
+ string(7) "INTEGER"
|
|
+ ["c"]=>
|
|
+ string(11) "VARCHAR(10)"
|
|
+ ["d"]=>
|
|
+ string(0) ""
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_027.phpt
|
|
@@ -0,0 +1,15 @@
|
|
+--TEST--
|
|
+sqlite: crash inside sqlite_escape_string() & sqlite_udf_encode_binary
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--INI--
|
|
+memory_limit=-1
|
|
+--FILE--
|
|
+<?php
|
|
+ var_dump(strlen(sqlite_escape_string(str_repeat("\0", 20000000))));
|
|
+ var_dump(strlen(sqlite_udf_encode_binary(str_repeat("\0", 20000000))));
|
|
+?>
|
|
+--EXPECT--
|
|
+int(20000002)
|
|
+int(20000002)
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_closures_001.phpt
|
|
@@ -0,0 +1,54 @@
|
|
+--TEST--
|
|
+sqlite: aggregate functions with closures
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb.inc";
|
|
+
|
|
+$data = array(
|
|
+ "one",
|
|
+ "two",
|
|
+ "three"
|
|
+ );
|
|
+
|
|
+sqlite_query("CREATE TABLE strings(a)", $db);
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ sqlite_query("INSERT INTO strings VALUES('" . sqlite_escape_string($str) . "')", $db);
|
|
+}
|
|
+
|
|
+function cat_step(&$context, $string)
|
|
+{
|
|
+ $context .= $string;
|
|
+}
|
|
+
|
|
+function cat_fin(&$context)
|
|
+{
|
|
+ return $context;
|
|
+}
|
|
+
|
|
+sqlite_create_aggregate($db, "cat", function (&$context, $string) {
|
|
+ $context .= $string;
|
|
+}, function (&$context) {
|
|
+ return $context;
|
|
+});
|
|
+
|
|
+$r = sqlite_query("SELECT cat(a) from strings", $db);
|
|
+while ($row = sqlite_fetch_array($r, SQLITE_NUM)) {
|
|
+ var_dump($row);
|
|
+}
|
|
+
|
|
+sqlite_close($db);
|
|
+
|
|
+echo "DONE!\n";
|
|
+?>
|
|
+--EXPECT--
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(11) "onetwothree"
|
|
+}
|
|
+DONE!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_closures_002.phpt
|
|
@@ -0,0 +1,52 @@
|
|
+--TEST--
|
|
+sqlite: regular functions with closures
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb.inc";
|
|
+
|
|
+$data = array(
|
|
+ array("one", "uno"),
|
|
+ array("two", "dos"),
|
|
+ array("three", "tres"),
|
|
+ );
|
|
+
|
|
+sqlite_query("CREATE TABLE strings(a,b)", $db);
|
|
+
|
|
+foreach ($data as $row) {
|
|
+ sqlite_query("INSERT INTO strings VALUES('" . sqlite_escape_string($row[0]) . "','" . sqlite_escape_string($row[1]) . "')", $db);
|
|
+}
|
|
+
|
|
+sqlite_create_function($db, "implode", function () {
|
|
+ $args = func_get_args();
|
|
+ $sep = array_shift($args);
|
|
+ return implode($sep, $args);
|
|
+});
|
|
+
|
|
+$r = sqlite_query("SELECT implode('-', a, b) from strings", $db);
|
|
+while ($row = sqlite_fetch_array($r, SQLITE_NUM)) {
|
|
+ var_dump($row);
|
|
+}
|
|
+
|
|
+sqlite_close($db);
|
|
+
|
|
+echo "DONE!\n";
|
|
+?>
|
|
+--EXPECT--
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(7) "one-uno"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(7) "two-dos"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(10) "three-tres"
|
|
+}
|
|
+DONE!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlitedatabase_arrayquery.phpt
|
|
@@ -0,0 +1,23 @@
|
|
+--TEST--
|
|
+Testing SQLiteDatabase::ArrayQuery with NULL-byte string
|
|
+--SKIPIF--
|
|
+<?php
|
|
+if (!extension_loaded("sqlite")) print "skip";
|
|
+?>
|
|
+--FILE--
|
|
+<?php
|
|
+
|
|
+$method = new ReflectionMethod('sqlitedatabase::arrayquery');
|
|
+
|
|
+$class = $method->getDeclaringClass()->newInstanceArgs(array(':memory:'));
|
|
+
|
|
+$p = "\0";
|
|
+
|
|
+$method->invokeArgs($class, array_fill(0, 2, $p));
|
|
+$method->invokeArgs($class, array_fill(0, 1, $p));
|
|
+
|
|
+?>
|
|
+--EXPECTF--
|
|
+Warning: SQLiteDatabase::arrayQuery() expects parameter 2 to be long, string given in %s on line %d
|
|
+
|
|
+Warning: SQLiteDatabase::arrayQuery(): Cannot execute empty query. in %s on line %d
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_exec_basic.phpt
|
|
@@ -0,0 +1,34 @@
|
|
+--TEST--
|
|
+Test sqlite_exec() function : basic functionality
|
|
+--SKIPIF--
|
|
+<?php if (!extension_loaded("sqlite")) print "skip sqlite extension not loaded"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+/* Prototype : boolean sqlite_exec(string query, resource db[, string &error_message])
|
|
+ * Description: Executes a result-less query against a given database
|
|
+ * Source code: ext/sqlite/sqlite.c
|
|
+ * Alias to functions:
|
|
+ */
|
|
+
|
|
+echo "*** Testing sqlite_exec() : basic functionality ***\n";
|
|
+
|
|
+// set up variables
|
|
+$query = 'CREATE TABLE foobar (id INTEGER PRIMARY KEY, name CHAR(255));';
|
|
+$error_message = null;
|
|
+
|
|
+// procedural
|
|
+$db = sqlite_open(':memory:');
|
|
+var_dump( sqlite_exec($db, $query) );
|
|
+sqlite_close($db);
|
|
+
|
|
+// oo-style
|
|
+$db = new SQLiteDatabase(':memory:');
|
|
+var_dump( $db->queryExec($query, $error_message) );
|
|
+
|
|
+?>
|
|
+===DONE===
|
|
+--EXPECTF--
|
|
+*** Testing sqlite_exec() : basic functionality ***
|
|
+bool(true)
|
|
+bool(true)
|
|
+===DONE===
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_exec_error.phpt
|
|
@@ -0,0 +1,44 @@
|
|
+--TEST--
|
|
+Test sqlite_exec() function : error behaviour and functionality
|
|
+--SKIPIF--
|
|
+<?php if (!extension_loaded("sqlite")) print "skip sqlite extension not loaded"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+/* Prototype : boolean sqlite_exec(string query, resource db[, string &error_message])
|
|
+ * Description: Executes a result-less query against a given database
|
|
+ * Source code: ext/sqlite/sqlite.c
|
|
+ * Alias to functions:
|
|
+ */
|
|
+
|
|
+echo "*** Testing sqlite_exec() : error functionality ***\n";
|
|
+
|
|
+// set up variables
|
|
+$fail = 'CRE ATE TABLE';
|
|
+$error_message = null;
|
|
+
|
|
+// procedural
|
|
+$db = sqlite_open(':memory:');
|
|
+var_dump( sqlite_exec($db, $fail, $error_message) );
|
|
+var_dump( $error_message );
|
|
+var_dump( sqlite_exec($db) );
|
|
+sqlite_close($db);
|
|
+
|
|
+// oo-style
|
|
+$db = new SQLiteDatabase(':memory:');
|
|
+var_dump( $db->queryExec($fail, $error_message, 'fooparam') );
|
|
+
|
|
+?>
|
|
+===DONE===
|
|
+--EXPECTF--
|
|
+*** Testing sqlite_exec() : error functionality ***
|
|
+
|
|
+Warning: sqlite_exec(): near "CRE": syntax error in %s on line %d
|
|
+bool(false)
|
|
+%string|unicode%(24) "near "CRE": syntax error"
|
|
+
|
|
+Warning: sqlite_exec() expects at least 2 parameters, 1 given in %s on line %d
|
|
+NULL
|
|
+
|
|
+Warning: SQLiteDatabase::queryExec() expects at most 2 parameters, 3 given in %s on line %d
|
|
+NULL
|
|
+===DONE===
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_last_error_basic.phpt
|
|
@@ -0,0 +1,48 @@
|
|
+--TEST--
|
|
+Test sqlite_last_error() function : basic functionality
|
|
+--SKIPIF--
|
|
+<?php if (!extension_loaded("sqlite")) print "skip sqlite extension not loaded"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+/* Prototype : int sqlite_last_error(resource db)
|
|
+ * Description: Returns the error code of the last error for a database.
|
|
+ * Source code: ext/sqlite/sqlite.c
|
|
+ * Alias to functions:
|
|
+ */
|
|
+
|
|
+echo "*** Testing sqlite_last_error() : basic functionality ***\n";
|
|
+
|
|
+// set up variables
|
|
+$query = 'CREATE TAB LE foobar (id INTEGER PRIMARY KEY, name CHAR(255));';
|
|
+$query_ok = 'CREATE TABLE foobar (id INTEGER, name CHAR(255));';
|
|
+
|
|
+// procedural
|
|
+$db = sqlite_open(':memory:');
|
|
+var_dump( sqlite_last_error($db) === SQLITE_OK );
|
|
+sqlite_exec($db, $query);
|
|
+var_dump( sqlite_last_error($db) === SQLITE_ERROR );
|
|
+sqlite_exec($db, $query_ok);
|
|
+var_dump( sqlite_last_error($db) === SQLITE_OK );
|
|
+sqlite_close($db);
|
|
+
|
|
+// oo-style
|
|
+$db = new SQLiteDatabase(':memory:');
|
|
+$db->queryExec($query);
|
|
+var_dump( $db->lastError() === SQLITE_ERROR );
|
|
+$db->queryExec($query_ok);
|
|
+var_dump( $db->lastError() === SQLITE_OK );
|
|
+
|
|
+?>
|
|
+===DONE===
|
|
+--EXPECTF--
|
|
+*** Testing sqlite_last_error() : basic functionality ***
|
|
+bool(true)
|
|
+
|
|
+Warning: sqlite_exec(): near "TAB": syntax error in %s on line %d
|
|
+bool(true)
|
|
+bool(true)
|
|
+
|
|
+Warning: SQLiteDatabase::queryExec(): near "TAB": syntax error in %s on line %d
|
|
+bool(true)
|
|
+bool(true)
|
|
+===DONE===
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_last_error_error.phpt
|
|
@@ -0,0 +1,47 @@
|
|
+--TEST--
|
|
+Test sqlite_last_error() function : error conditions
|
|
+--SKIPIF--
|
|
+<?php if (!extension_loaded("sqlite")) print "skip sqlite extension not loaded"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+/* Prototype : int sqlite_last_error(resource db)
|
|
+ * Description: Returns the error code of the last error for a database.
|
|
+ * Source code: ext/sqlite/sqlite.c
|
|
+ * Alias to functions:
|
|
+ */
|
|
+
|
|
+echo "*** Testing sqlite_last_error() : error conditions ***\n";
|
|
+
|
|
+// Zero arguments
|
|
+echo "\n-- Testing sqlite_last_error() function with Zero arguments --\n";
|
|
+var_dump( sqlite_last_error() );
|
|
+
|
|
+//Test sqlite_last_error with one more than the expected number of arguments
|
|
+echo "\n-- Testing sqlite_last_error() function with more than expected no. of arguments --\n";
|
|
+
|
|
+$db = sqlite_open(':memory:');
|
|
+$extra_arg = 10;
|
|
+var_dump( sqlite_last_error($db, $extra_arg) );
|
|
+sqlite_close($db);
|
|
+
|
|
+$db = new SQLiteDatabase(':memory:');
|
|
+var_dump( $db->lastError($extra_arg) );
|
|
+
|
|
+?>
|
|
+===DONE===
|
|
+--EXPECTF--
|
|
+*** Testing sqlite_last_error() : error conditions ***
|
|
+
|
|
+-- Testing sqlite_last_error() function with Zero arguments --
|
|
+
|
|
+Warning: sqlite_last_error() expects exactly 1 parameter, 0 given in %s on line %d
|
|
+NULL
|
|
+
|
|
+-- Testing sqlite_last_error() function with more than expected no. of arguments --
|
|
+
|
|
+Warning: sqlite_last_error() expects exactly 1 parameter, 2 given in %s on line %d
|
|
+NULL
|
|
+
|
|
+Warning: SQLiteDatabase::lastError() expects exactly 0 parameters, 1 given in %s on line %d
|
|
+NULL
|
|
+===DONE===
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_oo_001.phpt
|
|
@@ -0,0 +1,17 @@
|
|
+--TEST--
|
|
+sqlite-oo: sqlite_open/close
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+require_once('blankdb_oo.inc');
|
|
+var_dump($db);
|
|
+$db = NULL;
|
|
+echo "Done\n";
|
|
+?>
|
|
+--EXPECTF--
|
|
+object(SQLiteDatabase)#%d (0) {
|
|
+}
|
|
+Done
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_oo_002.phpt
|
|
@@ -0,0 +1,41 @@
|
|
+--TEST--
|
|
+sqlite-oo: Simple insert/select
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+require_once('blankdb_oo.inc');
|
|
+var_dump($db);
|
|
+
|
|
+var_dump($db->query("CREATE TABLE foo(c1 date, c2 time, c3 varchar(64))"));
|
|
+var_dump($db->query("INSERT INTO foo VALUES ('2002-01-02', '12:49:00', NULL)"));
|
|
+$r = $db->query("SELECT * from foo");
|
|
+var_dump($r);
|
|
+var_dump($r->fetch());
|
|
+?>
|
|
+--EXPECTF--
|
|
+object(SQLiteDatabase)#%d (0) {
|
|
+}
|
|
+object(SQLiteResult)#%d (0) {
|
|
+}
|
|
+object(SQLiteResult)#%d (0) {
|
|
+}
|
|
+object(SQLiteResult)#%d (0) {
|
|
+}
|
|
+array(6) {
|
|
+ [0]=>
|
|
+ string(10) "2002-01-02"
|
|
+ ["c1"]=>
|
|
+ string(10) "2002-01-02"
|
|
+ [1]=>
|
|
+ string(8) "12:49:00"
|
|
+ ["c2"]=>
|
|
+ string(8) "12:49:00"
|
|
+ [2]=>
|
|
+ NULL
|
|
+ ["c3"]=>
|
|
+ NULL
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_oo_003.phpt
|
|
@@ -0,0 +1,51 @@
|
|
+--TEST--
|
|
+sqlite-oo: Simple insert/select, different result representation
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb_oo.inc";
|
|
+
|
|
+$db->query("CREATE TABLE foo(c1 date, c2 time, c3 varchar(64))");
|
|
+$db->query("INSERT INTO foo VALUES ('2002-01-02', '12:49:00', NULL)");
|
|
+$r = $db->query("SELECT * from foo");
|
|
+var_dump($r->fetch(SQLITE_BOTH));
|
|
+$r = $db->query("SELECT * from foo");
|
|
+var_dump($r->fetch(SQLITE_NUM));
|
|
+$r = $db->query("SELECT * from foo");
|
|
+var_dump($r->fetch(SQLITE_ASSOC));
|
|
+?>
|
|
+--EXPECT--
|
|
+array(6) {
|
|
+ [0]=>
|
|
+ string(10) "2002-01-02"
|
|
+ ["c1"]=>
|
|
+ string(10) "2002-01-02"
|
|
+ [1]=>
|
|
+ string(8) "12:49:00"
|
|
+ ["c2"]=>
|
|
+ string(8) "12:49:00"
|
|
+ [2]=>
|
|
+ NULL
|
|
+ ["c3"]=>
|
|
+ NULL
|
|
+}
|
|
+array(3) {
|
|
+ [0]=>
|
|
+ string(10) "2002-01-02"
|
|
+ [1]=>
|
|
+ string(8) "12:49:00"
|
|
+ [2]=>
|
|
+ NULL
|
|
+}
|
|
+array(3) {
|
|
+ ["c1"]=>
|
|
+ string(10) "2002-01-02"
|
|
+ ["c2"]=>
|
|
+ string(8) "12:49:00"
|
|
+ ["c3"]=>
|
|
+ NULL
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_oo_008.phpt
|
|
@@ -0,0 +1,43 @@
|
|
+--TEST--
|
|
+sqlite-oo: fetch all (buffered)
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb_oo.inc";
|
|
+
|
|
+$data = array(
|
|
+ "one",
|
|
+ "two",
|
|
+ "three"
|
|
+ );
|
|
+
|
|
+$db->query("CREATE TABLE strings(a VARCHAR)");
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ $db->query("INSERT INTO strings VALUES('$str')");
|
|
+}
|
|
+
|
|
+$r = $db->query("SELECT a from strings");
|
|
+while ($row = $r->fetch(SQLITE_NUM)) {
|
|
+ var_dump($row);
|
|
+}
|
|
+echo "DONE!\n";
|
|
+?>
|
|
+--EXPECT--
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+DONE!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_oo_009.phpt
|
|
@@ -0,0 +1,43 @@
|
|
+--TEST--
|
|
+sqlite-oo: fetch all (unbuffered)
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb_oo.inc";
|
|
+
|
|
+$data = array(
|
|
+ "one",
|
|
+ "two",
|
|
+ "three"
|
|
+ );
|
|
+
|
|
+$db->query("CREATE TABLE strings(a VARCHAR)");
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ $db->query("INSERT INTO strings VALUES('$str')");
|
|
+}
|
|
+
|
|
+$r = $db->unbufferedQuery("SELECT a from strings");
|
|
+while ($row = $r->fetch(SQLITE_NUM)) {
|
|
+ var_dump($row);
|
|
+}
|
|
+echo "DONE!\n";
|
|
+?>
|
|
+--EXPECT--
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+DONE!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_oo_010.phpt
|
|
@@ -0,0 +1,44 @@
|
|
+--TEST--
|
|
+sqlite-oo: fetch all (iterator)
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb_oo.inc";
|
|
+
|
|
+$data = array(
|
|
+ "one",
|
|
+ "two",
|
|
+ "three"
|
|
+ );
|
|
+
|
|
+$db->query("CREATE TABLE strings(a VARCHAR)");
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ $db->query("INSERT INTO strings VALUES('$str')");
|
|
+}
|
|
+
|
|
+$r = $db->unbufferedQuery("SELECT a from strings", SQLITE_NUM);
|
|
+while ($row = $r->valid()) {
|
|
+ var_dump($r->current());
|
|
+ $r->next();
|
|
+}
|
|
+echo "DONE!\n";
|
|
+?>
|
|
+--EXPECT--
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+DONE!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_oo_011.phpt
|
|
@@ -0,0 +1,33 @@
|
|
+--TEST--
|
|
+sqlite-oo: returned associative column names
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb_oo.inc";
|
|
+
|
|
+$db->query("CREATE TABLE foo (c1 char, c2 char, c3 char)");
|
|
+$db->query("CREATE TABLE bar (c1 char, c2 char, c3 char)");
|
|
+$db->query("INSERT INTO foo VALUES ('1', '2', '3')");
|
|
+$db->query("INSERT INTO bar VALUES ('4', '5', '6')");
|
|
+$r = $db->query("SELECT * from foo, bar", SQLITE_ASSOC);
|
|
+var_dump($r->fetch());
|
|
+?>
|
|
+--EXPECT--
|
|
+array(6) {
|
|
+ ["foo.c1"]=>
|
|
+ string(1) "1"
|
|
+ ["foo.c2"]=>
|
|
+ string(1) "2"
|
|
+ ["foo.c3"]=>
|
|
+ string(1) "3"
|
|
+ ["bar.c1"]=>
|
|
+ string(1) "4"
|
|
+ ["bar.c2"]=>
|
|
+ string(1) "5"
|
|
+ ["bar.c3"]=>
|
|
+ string(1) "6"
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_oo_012.phpt
|
|
@@ -0,0 +1,35 @@
|
|
+--TEST--
|
|
+sqlite-oo: read field names
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb_oo.inc";
|
|
+
|
|
+$db->query("CREATE TABLE strings(foo VARCHAR, bar VARCHAR, baz VARCHAR)");
|
|
+
|
|
+echo "Buffered\n";
|
|
+$r = $db->query("SELECT * from strings");
|
|
+for($i=0; $i<$r->numFields(); $i++) {
|
|
+ var_dump($r->fieldName($i));
|
|
+}
|
|
+echo "Unbuffered\n";
|
|
+$r = $db->unbufferedQuery("SELECT * from strings");
|
|
+for($i=0; $i<$r->numFields(); $i++) {
|
|
+ var_dump($r->fieldName($i));
|
|
+}
|
|
+echo "DONE!\n";
|
|
+?>
|
|
+--EXPECT--
|
|
+Buffered
|
|
+string(3) "foo"
|
|
+string(3) "bar"
|
|
+string(3) "baz"
|
|
+Unbuffered
|
|
+string(3) "foo"
|
|
+string(3) "bar"
|
|
+string(3) "baz"
|
|
+DONE!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_oo_013.phpt
|
|
@@ -0,0 +1,75 @@
|
|
+--TEST--
|
|
+sqlite-oo: fetch column
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb_oo.inc";
|
|
+
|
|
+$data = array(
|
|
+ array (0 => 'one', 1 => 'two'),
|
|
+ array (0 => 'three', 1 => 'four')
|
|
+ );
|
|
+
|
|
+$db->query("CREATE TABLE strings(a VARCHAR, b VARCHAR)");
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ $db->query("INSERT INTO strings VALUES('${str[0]}','${str[1]}')");
|
|
+}
|
|
+
|
|
+echo "====BUFFERED====\n";
|
|
+$r = $db->query("SELECT a, b from strings");
|
|
+while ($r->valid()) {
|
|
+ var_dump($r->current(SQLITE_NUM));
|
|
+ var_dump($r->column(0));
|
|
+ var_dump($r->column(1));
|
|
+ var_dump($r->column('a'));
|
|
+ var_dump($r->column('b'));
|
|
+ $r->next();
|
|
+}
|
|
+echo "====UNBUFFERED====\n";
|
|
+$r = $db->unbufferedQuery("SELECT a, b from strings");
|
|
+while ($r->valid()) {
|
|
+ var_dump($r->column(0));
|
|
+ var_dump($r->column('b'));
|
|
+ var_dump($r->column(1));
|
|
+ var_dump($r->column('a'));
|
|
+ $r->next();
|
|
+}
|
|
+echo "DONE!\n";
|
|
+?>
|
|
+--EXPECT--
|
|
+====BUFFERED====
|
|
+array(2) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+ [1]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+string(3) "one"
|
|
+string(3) "two"
|
|
+string(3) "one"
|
|
+string(3) "two"
|
|
+array(2) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+ [1]=>
|
|
+ string(4) "four"
|
|
+}
|
|
+string(5) "three"
|
|
+string(4) "four"
|
|
+string(5) "three"
|
|
+string(4) "four"
|
|
+====UNBUFFERED====
|
|
+string(3) "one"
|
|
+string(3) "two"
|
|
+NULL
|
|
+NULL
|
|
+string(5) "three"
|
|
+string(4) "four"
|
|
+NULL
|
|
+NULL
|
|
+DONE!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_oo_014.phpt
|
|
@@ -0,0 +1,118 @@
|
|
+--TEST--
|
|
+sqlite-oo: fetch all
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb_oo.inc";
|
|
+
|
|
+$data = array(
|
|
+ "one",
|
|
+ "two",
|
|
+ "three"
|
|
+ );
|
|
+
|
|
+$db->query("CREATE TABLE strings(a VARCHAR)");
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ $db->query("INSERT INTO strings VALUES('$str')");
|
|
+}
|
|
+
|
|
+echo "unbuffered twice\n";
|
|
+$r = $db->unbufferedQuery("SELECT a from strings", SQLITE_NUM);
|
|
+var_dump($r->fetchAll());
|
|
+var_dump($r->fetchAll());
|
|
+
|
|
+echo "unbuffered with fetch_array\n";
|
|
+$r = $db->unbufferedQuery("SELECT a from strings", SQLITE_NUM);
|
|
+var_dump($r->fetch());
|
|
+var_dump($r->fetchAll());
|
|
+
|
|
+echo "buffered\n";
|
|
+$r = $db->query("SELECT a from strings", SQLITE_NUM);
|
|
+var_dump($r->fetchAll());
|
|
+var_dump($r->fetch());
|
|
+var_dump($r->fetchAll());
|
|
+
|
|
+echo "DONE!\n";
|
|
+?>
|
|
+--EXPECTF--
|
|
+unbuffered twice
|
|
+array(3) {
|
|
+ [0]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+ }
|
|
+ [1]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+ }
|
|
+ [2]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+ }
|
|
+}
|
|
+
|
|
+Warning: SQLiteUnbuffered::fetchAll(): One or more rowsets were already returned; returning NULL this time in %ssqlite_oo_014.php on line %d
|
|
+array(0) {
|
|
+}
|
|
+unbuffered with fetch_array
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+array(2) {
|
|
+ [0]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+ }
|
|
+ [1]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+ }
|
|
+}
|
|
+buffered
|
|
+array(3) {
|
|
+ [0]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+ }
|
|
+ [1]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+ }
|
|
+ [2]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+ }
|
|
+}
|
|
+bool(false)
|
|
+array(3) {
|
|
+ [0]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+ }
|
|
+ [1]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+ }
|
|
+ [2]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+ }
|
|
+}
|
|
+DONE!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_oo_015.phpt
|
|
@@ -0,0 +1,47 @@
|
|
+--TEST--
|
|
+sqlite-oo: array_query
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb_oo.inc";
|
|
+
|
|
+$data = array(
|
|
+ "one",
|
|
+ "two",
|
|
+ "three"
|
|
+ );
|
|
+
|
|
+$db->query("CREATE TABLE strings(a VARCHAR)");
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ $db->query("INSERT INTO strings VALUES('$str')");
|
|
+}
|
|
+
|
|
+$res = $db->arrayQuery("SELECT a from strings", SQLITE_NUM);
|
|
+var_dump($res);
|
|
+
|
|
+echo "DONE!\n";
|
|
+?>
|
|
+--EXPECTF--
|
|
+array(3) {
|
|
+ [0]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+ }
|
|
+ [1]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+ }
|
|
+ [2]=>
|
|
+ array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+ }
|
|
+}
|
|
+DONE!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_oo_016.phpt
|
|
@@ -0,0 +1,42 @@
|
|
+--TEST--
|
|
+sqlite-oo: fetch single
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb_oo.inc";
|
|
+
|
|
+$data = array(
|
|
+ array (0 => 'one', 1 => 'two'),
|
|
+ array (0 => 'three', 1 => 'four')
|
|
+ );
|
|
+
|
|
+$db->query("CREATE TABLE strings(a VARCHAR, b VARCHAR)");
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ $db->query("INSERT INTO strings VALUES('${str[0]}','${str[1]}')");
|
|
+}
|
|
+
|
|
+echo "====BUFFERED====\n";
|
|
+$r = $db->query("SELECT a, b from strings");
|
|
+while ($r->valid()) {
|
|
+ var_dump($r->fetchSingle());
|
|
+}
|
|
+echo "====UNBUFFERED====\n";
|
|
+$r = $db->unbufferedQuery("SELECT a, b from strings");
|
|
+while ($r->valid()) {
|
|
+ var_dump($r->fetchSingle());
|
|
+}
|
|
+echo "DONE!\n";
|
|
+?>
|
|
+--EXPECT--
|
|
+====BUFFERED====
|
|
+string(3) "one"
|
|
+string(5) "three"
|
|
+====UNBUFFERED====
|
|
+string(3) "one"
|
|
+string(5) "three"
|
|
+DONE!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_oo_020.phpt
|
|
@@ -0,0 +1,66 @@
|
|
+--TEST--
|
|
+sqlite-oo: factory and exception
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+$dbname = tempnam(dirname(__FILE__), "phpsql");
|
|
+function cleanup() {
|
|
+ global $db, $dbname;
|
|
+
|
|
+ $db = NULL;
|
|
+ unlink($dbname);
|
|
+}
|
|
+register_shutdown_function("cleanup");
|
|
+
|
|
+try {
|
|
+ $db = sqlite_factory();
|
|
+} catch(SQLiteException $err) {
|
|
+ echo "Message: ".$err->getMessage()."\n";
|
|
+ echo "File: ".$err->getFile()."\n";
|
|
+ //echo "Line: ".$err->getLine()."\n";
|
|
+ //print_r($err->getTrace());
|
|
+ //echo "BackTrace: ".$err->getTraceAsString()."\n";
|
|
+}
|
|
+
|
|
+$db = sqlite_factory($dbname);
|
|
+
|
|
+$data = array(
|
|
+ array (0 => 'one', 1 => 'two'),
|
|
+ array (0 => 'three', 1 => 'four')
|
|
+ );
|
|
+
|
|
+$db->query("CREATE TABLE strings(a VARCHAR, b VARCHAR)");
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ $db->query("INSERT INTO strings VALUES('${str[0]}','${str[1]}')");
|
|
+}
|
|
+
|
|
+$r = $db->unbufferedQuery("SELECT a, b from strings");
|
|
+while ($r->valid()) {
|
|
+ var_dump($r->current(SQLITE_NUM));
|
|
+ $r->next();
|
|
+}
|
|
+$r = null;
|
|
+$db = null;
|
|
+echo "DONE!\n";
|
|
+?>
|
|
+--EXPECTF--
|
|
+Message: sqlite_factory() expects at least 1 parameter, 0 given
|
|
+File: %ssqlite_oo_020.php
|
|
+array(2) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+ [1]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+array(2) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+ [1]=>
|
|
+ string(4) "four"
|
|
+}
|
|
+DONE!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_oo_021.phpt
|
|
@@ -0,0 +1,48 @@
|
|
+--TEST--
|
|
+sqlite-oo: single query
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb_oo.inc";
|
|
+
|
|
+$db->query("CREATE TABLE test_db ( id INTEGER PRIMARY KEY, data VARCHAR(100) )");
|
|
+for ($i = 0; $i < 10; $i++) {
|
|
+ $db->query("INSERT INTO test_db (data) VALUES('{$i}data')");
|
|
+}
|
|
+$db->query("INSERT INTO test_db (data) VALUES(NULL)");
|
|
+
|
|
+var_dump($db->singleQuery("SELECT id FROM test_db WHERE id=5"));
|
|
+var_dump($db->singleQuery("SELECT * FROM test_db WHERE id=4"));
|
|
+var_dump($db->singleQuery("SELECT data FROM test_db WHERE id=6"));
|
|
+var_dump($db->singleQuery("SELECT * FROM test_db WHERE id < 5"));
|
|
+var_dump($db->singleQuery("SELECT * FROM test db WHERE id < 4"));
|
|
+var_dump($db->singleQuery("SELECT * FROM test_db WHERE id=999999"));
|
|
+var_dump($db->singleQuery("SELECT id FROM test_db WHERE id=5", FALSE));
|
|
+
|
|
+echo "DONE!\n";
|
|
+?>
|
|
+--EXPECTF--
|
|
+string(1) "5"
|
|
+string(1) "4"
|
|
+string(5) "5data"
|
|
+array(4) {
|
|
+ [0]=>
|
|
+ string(1) "1"
|
|
+ [1]=>
|
|
+ string(1) "2"
|
|
+ [2]=>
|
|
+ string(1) "3"
|
|
+ [3]=>
|
|
+ string(1) "4"
|
|
+}
|
|
+
|
|
+Warning: SQLiteDatabase::singleQuery(): no such table: test in %s on line %d
|
|
+bool(false)
|
|
+NULL
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(1) "5"
|
|
+}
|
|
+DONE!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_oo_022.phpt
|
|
@@ -0,0 +1,98 @@
|
|
+--TEST--
|
|
+sqlite-oo: sqlite::seek
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb_oo.inc";
|
|
+
|
|
+$data = array(
|
|
+ "one",
|
|
+ "two",
|
|
+ "three"
|
|
+ );
|
|
+
|
|
+$db->query("CREATE TABLE strings(a)");
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ $db->query("INSERT INTO strings VALUES('$str')");
|
|
+}
|
|
+
|
|
+$res = $db->query("SELECT a FROM strings", SQLITE_NUM);
|
|
+for ($idx = -1; $idx < 4; $idx++) {
|
|
+ echo "====SEEK:$idx====\n";
|
|
+ $res->seek($idx);
|
|
+ var_dump($res->current());
|
|
+}
|
|
+echo "====AGAIN====\n";
|
|
+for ($idx = -1; $idx < 4; $idx++) {
|
|
+ echo "====SEEK:$idx====\n";
|
|
+ $res->seek($idx);
|
|
+ var_dump($res->current());
|
|
+}
|
|
+echo "====DONE!====\n";
|
|
+?>
|
|
+--EXPECTF--
|
|
+====SEEK:-1====
|
|
+
|
|
+Warning: SQLiteResult::seek(): row -1 out of range in %ssqlite_oo_022.php on line %d
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+====SEEK:0====
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+====SEEK:1====
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+====SEEK:2====
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+====SEEK:3====
|
|
+
|
|
+Warning: SQLiteResult::seek(): row 3 out of range in %ssqlite_oo_022.php on line %d
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+====AGAIN====
|
|
+====SEEK:-1====
|
|
+
|
|
+Warning: SQLiteResult::seek(): row -1 out of range in %ssqlite_oo_022.php on line %d
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+====SEEK:0====
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+====SEEK:1====
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+====SEEK:2====
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+====SEEK:3====
|
|
+
|
|
+Warning: SQLiteResult::seek(): row 3 out of range in %ssqlite_oo_022.php on line %d
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+====DONE!====
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_oo_024.phpt
|
|
@@ -0,0 +1,74 @@
|
|
+--TEST--
|
|
+sqlite-oo: sqlite::fetch_object
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb_oo.inc";
|
|
+
|
|
+class class24 {
|
|
+ function __construct() {
|
|
+ echo __METHOD__ . "\n";
|
|
+ }
|
|
+}
|
|
+
|
|
+$data = array(
|
|
+ "one",
|
|
+ "two",
|
|
+ "three"
|
|
+ );
|
|
+
|
|
+$db->query("CREATE TABLE strings(a)");
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ $db->query("INSERT INTO strings VALUES('$str')");
|
|
+}
|
|
+
|
|
+echo "====class24====\n";
|
|
+$res = $db->query("SELECT a FROM strings", SQLITE_ASSOC);
|
|
+while ($res->valid()) {
|
|
+ var_dump($res->fetchObject('class24'));
|
|
+}
|
|
+
|
|
+echo "====stdclass====\n";
|
|
+$res = $db->query("SELECT a FROM strings", SQLITE_ASSOC);
|
|
+while ($res->valid()) {
|
|
+ var_dump($res->fetchObject());
|
|
+}
|
|
+
|
|
+echo "====DONE!====\n";
|
|
+?>
|
|
+--EXPECTF--
|
|
+====class24====
|
|
+class24::__construct
|
|
+object(class24)#%d (1) {
|
|
+ ["a"]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+class24::__construct
|
|
+object(class24)#%d (1) {
|
|
+ ["a"]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+class24::__construct
|
|
+object(class24)#%d (1) {
|
|
+ ["a"]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+====stdclass====
|
|
+object(stdClass)#%d (1) {
|
|
+ ["a"]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+object(stdClass)#%d (1) {
|
|
+ ["a"]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+object(stdClass)#%d (1) {
|
|
+ ["a"]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+====DONE!====
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_oo_025.phpt
|
|
@@ -0,0 +1,103 @@
|
|
+--TEST--
|
|
+sqlite-oo: sqlite / foreach
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip";
|
|
+?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb_oo.inc";
|
|
+
|
|
+$data = array(
|
|
+ "one",
|
|
+ "two",
|
|
+ "three"
|
|
+ );
|
|
+
|
|
+$db->query("CREATE TABLE strings(a VARCHAR)");
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ $db->query("INSERT INTO strings VALUES('$str')");
|
|
+}
|
|
+
|
|
+echo "====UNBUFFERED====\n";
|
|
+$r = $db->unbufferedQuery("SELECT a from strings", SQLITE_NUM);
|
|
+//var_dump(class_implements($r));
|
|
+foreach($r as $row) {
|
|
+ var_dump($row);
|
|
+}
|
|
+echo "====NO-MORE====\n";
|
|
+foreach($r as $row) {
|
|
+ var_dump($row);
|
|
+}
|
|
+echo "====DIRECT====\n";
|
|
+foreach($db->unbufferedQuery("SELECT a from strings", SQLITE_NUM) as $row) {
|
|
+ var_dump($row);
|
|
+}
|
|
+echo "====BUFFERED====\n";
|
|
+$r = $db->query("SELECT a from strings", SQLITE_NUM);
|
|
+//var_dump(class_implements($r));
|
|
+foreach($r as $row) {
|
|
+ var_dump($row);
|
|
+}
|
|
+foreach($r as $row) {
|
|
+ var_dump($row);
|
|
+}
|
|
+echo "DONE!\n";
|
|
+?>
|
|
+--EXPECT--
|
|
+====UNBUFFERED====
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+====NO-MORE====
|
|
+====DIRECT====
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+====BUFFERED====
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "one"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(3) "two"
|
|
+}
|
|
+array(1) {
|
|
+ [0]=>
|
|
+ string(5) "three"
|
|
+}
|
|
+DONE!
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_oo_026.phpt
|
|
@@ -0,0 +1,56 @@
|
|
+--TEST--
|
|
+sqlite-oo: unbuffered
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip";
|
|
+?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb_oo.inc";
|
|
+
|
|
+$data = array(
|
|
+ "one",
|
|
+ "two",
|
|
+ "three"
|
|
+ );
|
|
+
|
|
+$db->query("CREATE TABLE strings(a VARCHAR)");
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ $db->query("INSERT INTO strings VALUES('$str')");
|
|
+}
|
|
+
|
|
+echo "====FOREACH====\n";
|
|
+$r = $db->unbufferedQuery("SELECT a from strings", SQLITE_NUM);
|
|
+foreach($r as $idx => $row) {
|
|
+ var_dump($row[0]);
|
|
+ var_dump($row[0]);
|
|
+}
|
|
+echo "====FOR====\n";
|
|
+$r = $db->unbufferedQuery("SELECT a from strings", SQLITE_NUM);
|
|
+for(;$r->valid(); $r->next()) {
|
|
+ $v = $r->column(0);
|
|
+ var_dump($v);
|
|
+ $c = $r->column(0);
|
|
+ var_dump(is_null($c) || $c==$v);
|
|
+}
|
|
+echo "===DONE===\n";
|
|
+?>
|
|
+--EXPECT--
|
|
+====FOREACH====
|
|
+string(3) "one"
|
|
+string(3) "one"
|
|
+string(3) "two"
|
|
+string(3) "two"
|
|
+string(5) "three"
|
|
+string(5) "three"
|
|
+====FOR====
|
|
+string(3) "one"
|
|
+bool(true)
|
|
+string(3) "two"
|
|
+bool(true)
|
|
+string(5) "three"
|
|
+bool(true)
|
|
+===DONE===
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_oo_027.phpt
|
|
@@ -0,0 +1,42 @@
|
|
+--TEST--
|
|
+sqlite-oo: changes
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip";
|
|
+?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb_oo.inc";
|
|
+
|
|
+$data = array("one", "two", "three");
|
|
+
|
|
+$db->query("CREATE TABLE strings(a VARCHAR)");
|
|
+
|
|
+foreach ($data as $str) {
|
|
+ $db->query("INSERT INTO strings VALUES('$str')");
|
|
+ echo $db->changes() . "\n";
|
|
+}
|
|
+
|
|
+$db->query("UPDATE strings SET a='foo' WHERE a!='two'");
|
|
+echo $db->changes() . "\n";
|
|
+
|
|
+$db->query("DELETE FROM strings WHERE 1");
|
|
+echo $db->changes() . "\n";
|
|
+
|
|
+$str = '';
|
|
+foreach ($data as $s) {
|
|
+ $str .= "INSERT INTO strings VALUES('".$s."');";
|
|
+}
|
|
+$db->query($str);
|
|
+echo $db->changes() . "\n";
|
|
+
|
|
+?>
|
|
+--EXPECT--
|
|
+1
|
|
+1
|
|
+1
|
|
+2
|
|
+3
|
|
+3
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_oo_028.phpt
|
|
@@ -0,0 +1,25 @@
|
|
+--TEST--
|
|
+sqlite-oo: sqlite_fetch_column_types
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb_oo.inc";
|
|
+
|
|
+$db->query("CREATE TABLE strings(a, b INTEGER, c VARCHAR(10), d)");
|
|
+$db->query("INSERT INTO strings VALUES('1', '2', '3', 'abc')");
|
|
+
|
|
+var_dump($db->fetchColumnTypes("strings"));
|
|
+?>
|
|
+--EXPECT--
|
|
+array(4) {
|
|
+ ["a"]=>
|
|
+ string(0) ""
|
|
+ ["b"]=>
|
|
+ string(7) "INTEGER"
|
|
+ ["c"]=>
|
|
+ string(11) "VARCHAR(10)"
|
|
+ ["d"]=>
|
|
+ string(0) ""
|
|
+}
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_oo_029.phpt
|
|
@@ -0,0 +1,53 @@
|
|
+--TEST--
|
|
+sqlite-oo: call method with $this
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip";
|
|
+?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb_oo.inc";
|
|
+
|
|
+$db->query("CREATE TABLE strings(key VARCHAR(10), var VARCHAR(10))");
|
|
+$db->query("INSERT INTO strings VALUES('foo', 'foo')");
|
|
+
|
|
+class sqlite_help
|
|
+{
|
|
+ function __construct($db){
|
|
+ $this->db = $db;
|
|
+ $this->db->createFunction('link_keywords', array(&$this, 'linkers'), 1);
|
|
+ }
|
|
+
|
|
+ function getSingle($key)
|
|
+ {
|
|
+ return $this->db->singleQuery('SELECT link_keywords(var) FROM strings WHERE key=\''.$key.'\'', 1);
|
|
+ }
|
|
+
|
|
+ function linkers($str)
|
|
+ {
|
|
+ $str = str_replace('foo', 'bar', $str);
|
|
+ return $str;
|
|
+ }
|
|
+
|
|
+ function free()
|
|
+ {
|
|
+ unset($this->db);
|
|
+ }
|
|
+
|
|
+ function __destruct()
|
|
+ {
|
|
+ echo "DESTRUCTED\n";
|
|
+ }
|
|
+}
|
|
+
|
|
+$obj = new sqlite_help($db);
|
|
+echo $obj->getSingle('foo')."\n";
|
|
+$obj->free();
|
|
+unset($obj);
|
|
+
|
|
+?>
|
|
+===DONE===
|
|
+--EXPECT--
|
|
+bar
|
|
+===DONE===
|
|
+DESTRUCTED
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_oo_030.phpt
|
|
@@ -0,0 +1,44 @@
|
|
+--TEST--
|
|
+sqlite-oo: calling static methods
|
|
+--INI--
|
|
+sqlite.assoc_case=0
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip";
|
|
+?>
|
|
+--FILE--
|
|
+<?php
|
|
+
|
|
+require_once('blankdb_oo.inc');
|
|
+
|
|
+class foo {
|
|
+ static function bar($param = NULL) {
|
|
+ return $param;
|
|
+ }
|
|
+}
|
|
+
|
|
+function baz($param = NULL) {
|
|
+ return $param;
|
|
+}
|
|
+
|
|
+var_dump($db->singleQuery("select php('baz')", 1));
|
|
+var_dump($db->singleQuery("select php('baz', 1)", 1));
|
|
+var_dump($db->singleQuery("select php('baz', \"PHP\")", 1));
|
|
+var_dump($db->singleQuery("select php('foo::bar')", 1));
|
|
+var_dump($db->singleQuery("select php('foo::bar', 1)", 1));
|
|
+var_dump($db->singleQuery("select php('foo::bar', \"PHP\")", 1));
|
|
+var_dump($db->singleQuery("select php('foo::bar(\"PHP\")')", 1));
|
|
+
|
|
+?>
|
|
+===DONE===
|
|
+--EXPECTF--
|
|
+NULL
|
|
+string(1) "1"
|
|
+string(3) "PHP"
|
|
+NULL
|
|
+string(1) "1"
|
|
+string(3) "PHP"
|
|
+
|
|
+Warning: SQLiteDatabase::singleQuery(): function `foo::bar("PHP")' is not a function name in %ssqlite_oo_030.php on line %d
|
|
+bool(false)
|
|
+===DONE===
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_popen_basic.phpt
|
|
@@ -0,0 +1,27 @@
|
|
+--TEST--
|
|
+SQLite: sqlite_popen() basic tests
|
|
+--SKIPIF--
|
|
+<?php if (!extension_loaded("sqlite")) print "skip"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+/* Prototype : resource sqlite_popen(string filename [, int mode [, string &error_message]])
|
|
+ * Description: Opens a persistent handle to a SQLite database. Will create the database if it does not exist.
|
|
+ * Source code: ext/sqlite/sqlite.c
|
|
+ * Alias to functions:
|
|
+*/
|
|
+
|
|
+ $db1 = sqlite_popen(":memory:");
|
|
+ $db2 = sqlite_popen(":memory:");
|
|
+
|
|
+ var_dump($db1);
|
|
+ var_dump($db2);
|
|
+
|
|
+ list($resourceId1) = sscanf((string) $db1, "resource(%d) of type (sqlite database (persistent))");
|
|
+ list($resourceId2) = sscanf((string) $db2, "resource(%d) of type (sqlite database (persistent))");
|
|
+
|
|
+ var_dump($resourceId1 === $resourceId2);
|
|
+?>
|
|
+--EXPECTF--
|
|
+resource(%d) of type (sqlite database (persistent))
|
|
+resource(%d) of type (sqlite database (persistent))
|
|
+bool(true)
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_popen_error.phpt
|
|
@@ -0,0 +1,34 @@
|
|
+--TEST--
|
|
+Test sqlite_popen() function : error conditions
|
|
+--SKIPIF--
|
|
+<?php if (!extension_loaded("sqlite")) print "skip sqlite extension not loaded"; ?>
|
|
+--FILE--
|
|
+<?php
|
|
+/* Prototype : resource sqlite_popen(string filename [, int mode [, string &error_message]])
|
|
+ * Description: Opens a persistent handle to a SQLite database. Will create the database if it does not exist.
|
|
+ * Source code: ext/sqlite/sqlite.c
|
|
+ * Alias to functions:
|
|
+ */
|
|
+
|
|
+$message = '';
|
|
+
|
|
+echo "*** Testing sqlite_popen() : error conditions ***\n";
|
|
+
|
|
+var_dump( sqlite_popen() );
|
|
+var_dump( sqlite_popen(":memory:", 0666, $message, 'foobar') );
|
|
+var_dump( sqlite_popen("", 0666, $message) );
|
|
+var_dump( $message );
|
|
+
|
|
+?>
|
|
+===DONE===
|
|
+--EXPECTF--
|
|
+*** Testing sqlite_popen() : error conditions ***
|
|
+
|
|
+Warning: sqlite_popen() expects at least 1 parameter, 0 given in %s on line %d
|
|
+NULL
|
|
+
|
|
+Warning: sqlite_popen() expects at most 3 parameters, 4 given in %s on line %d
|
|
+NULL
|
|
+bool(false)
|
|
+NULL
|
|
+===DONE===
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_session_001.phpt
|
|
@@ -0,0 +1,46 @@
|
|
+--TEST--
|
|
+sqlite, session storage test
|
|
+--CREDITS--
|
|
+Mats Lindh <mats at lindh.no>
|
|
+#Testfest php.no
|
|
+--INI--
|
|
+session.save_handler = sqlite
|
|
+--SKIPIF--
|
|
+if (!extension_loaded("session"))
|
|
+{
|
|
+ die("skip Session module not loaded");
|
|
+}
|
|
+if (!extension_loaded("sqlite"))
|
|
+{
|
|
+ die("skip Session module not loaded");
|
|
+}
|
|
+--FILE--
|
|
+<?php
|
|
+/* Description: Tests that sqlite can be used as a session save handler
|
|
+* Source code: ext/sqlite/sess_sqlite.c
|
|
+*/
|
|
+
|
|
+ob_start();
|
|
+session_save_path(__DIR__ . "/sessiondb.sdb");
|
|
+
|
|
+// create the session and set a session value
|
|
+session_start();
|
|
+$_SESSION["test"] = "foo_bar";
|
|
+
|
|
+// close the session and unset the value
|
|
+session_write_close();
|
|
+unset($_SESSION["test"]);
|
|
+var_dump(isset($_SESSION["test"]));
|
|
+
|
|
+// start the session again and check that we have the proper value
|
|
+session_start();
|
|
+var_dump($_SESSION["test"]);
|
|
+ob_end_flush();
|
|
+?>
|
|
+--EXPECTF--
|
|
+bool(false)
|
|
+%unicode|string%(7) "foo_bar"
|
|
+--CLEAN--
|
|
+<?php
|
|
+ unlink(__DIR__ . "/sessiondb.sdb")
|
|
+?>
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_session_002.phpt
|
|
@@ -0,0 +1,54 @@
|
|
+--TEST--
|
|
+sqlite, session destroy test
|
|
+--CREDITS--
|
|
+Mats Lindh <mats at lindh.no>
|
|
+#Testfest php.no
|
|
+--INI--
|
|
+session.save_handler = sqlite
|
|
+--SKIPIF--
|
|
+if (!extension_loaded("session"))
|
|
+{
|
|
+ die("skip Session module not loaded");
|
|
+}
|
|
+if (!extension_loaded("sqlite"))
|
|
+{
|
|
+ die("skip sqlite module not loaded");
|
|
+}
|
|
+--FILE--
|
|
+<?php
|
|
+/* Description: Tests that sqlite will destroy a session when used as a session handler
|
|
+* Source code: ext/sqlite/sess_sqlite.c
|
|
+*/
|
|
+ob_start();
|
|
+session_save_path(__DIR__ . "/sessiondb.sdb");
|
|
+
|
|
+// start a session and save a value to it before commiting the session to the database
|
|
+session_start();
|
|
+$_SESSION["test"] = "foo_bar";
|
|
+session_write_close();
|
|
+
|
|
+// remove the session value
|
|
+unset($_SESSION["test"]);
|
|
+var_dump(isset($_SESSION["test"]));
|
|
+
|
|
+// start the session again and destroy it
|
|
+session_start();
|
|
+var_dump($_SESSION["test"]);
|
|
+session_destroy();
|
|
+session_write_close();
|
|
+
|
|
+unset($_SESSION["test"]);
|
|
+
|
|
+// check that the session has been destroyed
|
|
+session_start();
|
|
+var_dump(isset($_SESSION["test"]));
|
|
+ob_end_flush();
|
|
+?>
|
|
+--EXPECTF--
|
|
+bool(false)
|
|
+%unicode|string%(7) "foo_bar"
|
|
+bool(false)
|
|
+--CLEAN--
|
|
+<?php
|
|
+ unlink(__DIR__ . "/sessiondb.sdb")
|
|
+?>
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_spl_001.phpt
|
|
@@ -0,0 +1,125 @@
|
|
+--TEST--
|
|
+sqlite-spl: Iteration
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip";
|
|
+if (!extension_loaded("spl")) print "skip SPL is not present";
|
|
+?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb_oo.inc";
|
|
+
|
|
+$db->query("CREATE TABLE menu(id_l int PRIMARY KEY, id_r int UNIQUE, key VARCHAR(10))");
|
|
+$db->query("INSERT INTO menu VALUES( 1, 12, 'A')");
|
|
+$db->query("INSERT INTO menu VALUES( 2, 9, 'B')");
|
|
+$db->query("INSERT INTO menu VALUES(10, 11, 'F')");
|
|
+$db->query("INSERT INTO menu VALUES( 3, 6, 'C')");
|
|
+$db->query("INSERT INTO menu VALUES( 7, 8, 'E')");
|
|
+$db->query("INSERT INTO menu VALUES( 4, 5, 'D')");
|
|
+
|
|
+class SqliteNestedsetElement
|
|
+{
|
|
+ protected $id_l;
|
|
+ protected $id_r;
|
|
+ protected $key;
|
|
+
|
|
+ function __construct($db)
|
|
+ {
|
|
+ $this->db = $db;
|
|
+ }
|
|
+
|
|
+ function getLeft()
|
|
+ {
|
|
+ return $this->id_l;
|
|
+ }
|
|
+
|
|
+ function getRight()
|
|
+ {
|
|
+ return $this->id_r;
|
|
+ }
|
|
+
|
|
+ function __toString()
|
|
+ {
|
|
+ return $this->key;
|
|
+ }
|
|
+
|
|
+ function key()
|
|
+ {
|
|
+ return $this->key;
|
|
+ }
|
|
+}
|
|
+
|
|
+class SqliteNestedset implements RecursiveIterator
|
|
+{
|
|
+ protected $id;
|
|
+ protected $id_l;
|
|
+ protected $id_r;
|
|
+ protected $entry;
|
|
+
|
|
+ function __construct($db, $id_l = 1)
|
|
+ {
|
|
+ $this->db = $db;
|
|
+ $this->id_l = $id_l;
|
|
+ $this->id_r = $this->db->singleQuery('SELECT id_r FROM menu WHERE id_l='.$id_l, 1);
|
|
+ $this->id = $id_l;
|
|
+ }
|
|
+
|
|
+ function rewind()
|
|
+ {
|
|
+ $this->id = $this->id_l;
|
|
+ $this->fetch();
|
|
+ }
|
|
+
|
|
+ function valid()
|
|
+ {
|
|
+ return is_object($this->entry);
|
|
+ }
|
|
+
|
|
+ function current()
|
|
+ {
|
|
+ return $this->entry->__toString();
|
|
+ }
|
|
+
|
|
+ function key()
|
|
+ {
|
|
+ return $this->entry->key();;
|
|
+ }
|
|
+
|
|
+ function next()
|
|
+ {
|
|
+ $this->id = $this->entry->getRight() + 1;
|
|
+ $this->fetch();
|
|
+ }
|
|
+
|
|
+ protected function fetch()
|
|
+ {
|
|
+ $res = $this->db->unbufferedQuery('SELECT * FROM menu WHERE id_l='.$this->id);
|
|
+ $this->entry = $res->fetchObject('SqliteNestedsetElement', array(&$this->db));
|
|
+ unset($res);
|
|
+ }
|
|
+
|
|
+ function hasChildren()
|
|
+ {
|
|
+ return $this->entry->getLeft() + 1 < $this->entry->getRight();
|
|
+ }
|
|
+
|
|
+ function getChildren()
|
|
+ {
|
|
+ return new SqliteNestedset($this->db, $this->entry->getLeft() + 1, $this->entry->getRight() - 1);
|
|
+ }
|
|
+}
|
|
+
|
|
+$menu_iterator = new RecursiveIteratorIterator(new SqliteNestedset($db), RecursiveIteratorIterator::SELF_FIRST);
|
|
+foreach($menu_iterator as $entry) {
|
|
+ echo $menu_iterator->getDepth() . $entry . "\n";
|
|
+}
|
|
+?>
|
|
+===DONE===
|
|
+--EXPECT--
|
|
+0A
|
|
+1B
|
|
+2C
|
|
+3D
|
|
+2E
|
|
+1F
|
|
+===DONE===
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_spl_002.phpt
|
|
@@ -0,0 +1,29 @@
|
|
+--TEST--
|
|
+sqlite-spl: Countable
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip";
|
|
+if (!extension_loaded("spl")) print "skip SPL is not present";
|
|
+?>
|
|
+--FILE--
|
|
+<?php
|
|
+include "blankdb_oo.inc";
|
|
+
|
|
+$db->query("CREATE TABLE menu(id_l int PRIMARY KEY, id_r int UNIQUE, key VARCHAR(10))");
|
|
+$db->query("INSERT INTO menu VALUES( 1, 12, 'A')");
|
|
+$db->query("INSERT INTO menu VALUES( 2, 9, 'B')");
|
|
+$db->query("INSERT INTO menu VALUES(10, 11, 'F')");
|
|
+$db->query("INSERT INTO menu VALUES( 3, 6, 'C')");
|
|
+$db->query("INSERT INTO menu VALUES( 7, 8, 'E')");
|
|
+$db->query("INSERT INTO menu VALUES( 4, 5, 'D')");
|
|
+
|
|
+$res = $db->query("SELECT * from menu");
|
|
+
|
|
+var_dump($res->count());
|
|
+var_dump(count($res));
|
|
+?>
|
|
+===DONE===
|
|
+--EXPECT--
|
|
+int(6)
|
|
+int(6)
|
|
+===DONE===
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/tests/sqlite_spl_003.phpt
|
|
@@ -0,0 +1,28 @@
|
|
+--TEST--
|
|
+sqlite-spl: Exception
|
|
+--SKIPIF--
|
|
+<?php # vim:ft=php
|
|
+if (!extension_loaded("sqlite")) print "skip";
|
|
+if (!extension_loaded("spl")) print "skip SPL is not present";
|
|
+?>
|
|
+--FILE--
|
|
+<?php
|
|
+
|
|
+try
|
|
+{
|
|
+ $db = sqlite_factory();
|
|
+}
|
|
+catch(SQLiteException $e)
|
|
+{
|
|
+ $parents = class_parents($e);
|
|
+ if (array_key_exists('RuntimeException', $parents))
|
|
+ {
|
|
+ echo "GOOD\n";
|
|
+ }
|
|
+}
|
|
+
|
|
+?>
|
|
+===DONE===
|
|
+--EXPECT--
|
|
+GOOD
|
|
+===DONE===
|
|
--- /dev/null
|
|
+++ b/ext/sqlite/TODO
|
|
@@ -0,0 +1,19 @@
|
|
+- Implement a PDO driver, called sqlite2
|
|
+
|
|
+- Transparent binary encoding of return values from PHP callback functions.
|
|
+
|
|
+- Add user-space callback for the authorizer function (this is potentially
|
|
+ very slow, so it needs to be implemented carefully).
|
|
+
|
|
+- Add user-space callback to handle busy databases.
|
|
+
|
|
+ o Test how robust we are when a user-space function is registered as
|
|
+ a callback for a persistent connection in script A, then script B is
|
|
+ called that doesn't register the callback but does make use of the
|
|
+ function in an SQL query.
|
|
+ --> Our test suite doesn't allow us to test persistent connections
|
|
+ at this time :/
|
|
+
|
|
+- Use later version of built-in library
|
|
+
|
|
+vim:tw=78
|