--- a/lib/Crypto/PublicKey/ElGamal.py
|
|
+++ b/lib/Crypto/PublicKey/ElGamal.py
|
|
@@ -153,33 +153,33 @@ def generate(bits, randfunc, progress_fu
|
|
if number.isPrime(obj.p, randfunc=randfunc):
|
|
break
|
|
# Generate generator g
|
|
- # See Algorithm 4.80 in Handbook of Applied Cryptography
|
|
- # Note that the order of the group is n=p-1=2q, where q is prime
|
|
if progress_func:
|
|
progress_func('g\n')
|
|
while 1:
|
|
+ # Choose a square residue; it will generate a cyclic group of order q.
|
|
+ obj.g = pow(number.getRandomRange(2, obj.p, randfunc), 2, obj.p)
|
|
+
|
|
# We must avoid g=2 because of Bleichenbacher's attack described
|
|
# in "Generating ElGamal signatures without knowning the secret key",
|
|
# 1996
|
|
- #
|
|
- obj.g = number.getRandomRange(3, obj.p, randfunc)
|
|
- safe = 1
|
|
- if pow(obj.g, 2, obj.p)==1:
|
|
- safe=0
|
|
- if safe and pow(obj.g, q, obj.p)==1:
|
|
- safe=0
|
|
+ if obj.g in (1, 2):
|
|
+ continue
|
|
+
|
|
# Discard g if it divides p-1 because of the attack described
|
|
# in Note 11.67 (iii) in HAC
|
|
- if safe and divmod(obj.p-1, obj.g)[1]==0:
|
|
- safe=0
|
|
+ if (obj.p - 1) % obj.g == 0:
|
|
+ continue
|
|
+
|
|
# g^{-1} must not divide p-1 because of Khadir's attack
|
|
# described in "Conditions of the generator for forging ElGamal
|
|
# signature", 2011
|
|
ginv = number.inverse(obj.g, obj.p)
|
|
- if safe and divmod(obj.p-1, ginv)[1]==0:
|
|
- safe=0
|
|
- if safe:
|
|
- break
|
|
+ if (obj.p - 1) % ginv == 0:
|
|
+ continue
|
|
+
|
|
+ # Found
|
|
+ break
|
|
+
|
|
# Generate private key x
|
|
if progress_func:
|
|
progress_func('x\n')
|