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Abstract e Each row returned by an SQL query is a heterogeneous map
A heterogeneous collection is a datatype that is capabléoof s from column names to cells. The result of a query is a homo-
ing data of different types, while providing operations limok-up, geneous stream of heterpgeneous rows. .
update, iteration, and others. There are various kinds tefrbge- e Adding an advanced object system to a functional language
neous collections, differing in representation, invatsaand access requires heterogeneous collections of a kind that combine e
operations. We describe H&T — a Haskell library for strongly tensible records with subtyping and an enumeration interfa

typed heterogeneous collections including extensiblertsc We Weakly typed encodings are feasible for all the listed sdesaFor
illustrate HLIST's benefits in the context of type-safe database ac- instance, a heterogeneously typed symbol table can be etiersd
cess in Haskell. The HisT library relies on common extensions  ing a suitably universal type, or dynamic typing, or typéeszast.

of Haskell 98. Our exploration raises interesting iSSugaN&ing  The present paper introduces a strong typing disciplinehtr
Haskell's type system, in particular, avoidance of oveplag in- erogeneous collections. We deliver a dedicated Haskatarjb
stances, and reification of type equality and type unificatio HL1sT, which covers collection types such as lists, arrays, ex-

Categories and Subject DescriptorsE.2 [Data Storage Represen-  €nsible records, type-indexed products and co-produdtsthis
tations]; D.2.13 [Software Engineering]: Reusable Sofay®.3.1 end, we advance techniques for dependently typed progmagnmi

[Programming Languages]: Formal Definitions and Theory in Haskell [12, 21], and we rely on Haskell 98 with common ex-
) tensions for multi-parameter classes and functional digrasies,
General Terms: Design, Languages. as available in the GHC and Hugs implementations. (We manage

to avoid overlapping instances — in the end!) Our develogmen
does not introduce yet another language extension, whigh iis-
provement over earlier proposals for extensible recordscther
collection types [10, 31, 23, 29]. We explore some murky veabé
Haskell's type system, such as the reification of type etualid
1 Introduction type unification. While we have found portable, sound andtjal

Programmers in typed functional languages are used to hemog V@S around, more research is needed to deliver foundattara
neous collections, where values of the same type are stofits, ifications that enable fundamental solutions. We identigyissues

sets, and others. There exist collection libraries, ddisonfor that need to be resolved.

Keywords: Collections, Extensible records, Type-safe database ac-
cess, Dependently typed programming, Type-indexed rowge T
equality, Type improvement, Haskell.

Haskell [26]. Homogeneous collections rely on parametdlyp The paper is structured as follows. In Sec. 2, we review weakl
morphism. C++ programmers are also used to homogeneous coltyped techniques for dealing with heterogeneous collestioln
lections such as those in the Standard Template Libragyyiie for Sec. 3, we introductypeful heterogeneous listshich provide the

Ada and Eiffel. Java programmers are about to receive stifiguor basis for the HLST library. We then work out different kinds of
parametric polymorphism, finally. This may end the use ofkliea  access operations and collection types:

typed collections (“Everything is of typébj ect !"), which require e Sec. 4 — numeral-based access operations,

run-time type casts with the potential of unappreciatedptions. e Sec. 5 — labelled collections (or records),

Unfortunately, the notion of typeful homogeneous colleasi fails * Sec.6— type-pased access operations,

to work for all the scenarios that require storing valueslitferent e Sec. 7 — type-indexed products. _
types. Here is an open-ended list of typical examples thafara 0 Sec. 8, we demonstrate the merits of heterogeneous tofisc
heterogeneous collections in the context of type-safe database access in Haskell.dndwae

o A symbol table that is supposed to store entries of different "€View our take on Haskell's type system. In Sec. 10, we discu
types is heterogeneous. It is a finite map, where the result '€lateéd work, and we conclude in Sec. 11. There are sevepahap

type depends on the argument value. dices with various details. The source code from the paperbea

e An XML element is heterogeneously typed. In fact, XML retrieved from [1].
elements are nested collections that are constrained biareg
expressions and the 1-ambiguity property.

*A shorter version of this paper appeared in the proceedifigs o
the ACM SIGPLAN Haskell Workshop 2004, September 22, 2004,
Snowbird, Utah, USA, Published by ACM Press. This longer ver
sion provides several appendices and some extra paragraphs



2 Not so strongly typed collections

We use database programming for the motivation of thed+ lLi-
brary in this paper. We want to get to a point where SQL queries
can be rephrased in Haskell in a typed and structured maAgsex.
simple example, let us attempt to encapsulate a simple S@tyqu
in a Haskell function. The query should retrieve all anin{&eir
keys and names) of a given breed from the ‘foot-n-mouth’lczda.

A query for sheep (rather than cows) looks as follows:

SELECT key, name FROM Ani mal WHERE breed = 'sheep’;

Cheap strings
The following Haskell code encodes the parameterised query

selectBreed :: String -> Sgl Handl e Sgl QueryResul t
sel ectBreed b =
sql Query (" SELECT key, nane FROM Ani mal "
++ "WHERE breed =" ++ b ++ "'")

Here we use a low-level ODBC binding for database access. The
query is wrapped in agql Handl e type, which encapsulates an 10
action for an ODBC connection. The query function is parame-
terised in aString for the breed parameter. The type of query
results is defined as follows:

type Sql QueryResult = ([ Col Nane], [ Row])

type Col Name = String
type Row = [Cell]
type Cell = String

That is, the result of a query consists of a list of column naamed

a list of rows, where a row in turn is a list of cells. Both colum
names and cells are plain strings. This is painful code irettecof
most programmers, but it is often a cheap way to make thingk.wo
Prominent database access techniques for all kinds ofgrogimg
languages are string-based just like that.

Hand-made universes

If we wanted to maintain at least the primitive datatypes eifs¢
then we could replace the use of the string type with a unévefs
cell types (or a tagged union):

data Cell = Intnject I nt
| Fl oat Ovj ect Fl oat
| Stringoject String

| ... -- and perhaps a few nore cases

Arow is still a list of such cells, but itis effectively a hetgeneous
list. Instead ofl nt andl nt Gbj ect we can use types and tags that
are more descriptive of the columns, as below. Clearly, arch
application-specific universe is subject to change whartbeadata
dictionary changes.

These are the types for the columns in the ‘foot-n-mouthéblase:

newtype Key = Key Integer deriving (Show Eq, Ord)
newtype Name = Name String deriving (Show, Eq)
data Breed = Cow | Sheep deriving (Show, Eq)
newtype Price = Price Float deriving (Show Eq, Ord)
data Disease = BSE| FM deriving (Show, Eq)

We deriveShow, Eq, andOr d instances to allow for printing of query
results, and comparison of cells\WERE conditions. We redefine
Cel I such that it is complete for the ‘foot-n-mouth’ database.

data Cell = KeyCell Key
| NameCell Nane
BreedCel | Breed

... -- and certainly nore cases

The universal universe

Rather than introducing problem-specific universes of tgles,

we can employdynamics2, 3]. Haskell’s libraryDat a. Dynam ¢
provides the typ&nani ¢ and an injectiort oDyn as well as a pro-
jectionf r onDynanmi c. Although this approach does not seem more
typed, at least it is more extensible: we can make each new use
defined type amenable to injection and projection by pragidin
instance of Haskell's type clagypeabl e. There is a fully equiv-
alent alternative: we can use existentially quantified tgles to-
gether with a nominal, extensible, type-safe cast [19].

Using dynamic typing, the encoding of column names in cglésy
allows us to leave them out in the type of query results. A rodse
up being a heterogeneous listynan cs. That is:

type Sql QueryResult = [Rowj
type Row = HLi st
type HList = [ Dynani c]

Using injection we construct aii st -typed value for cow Angus:
angus = [ toDyn (Key 42)

, toDyn (Nane "Angus")

, toDyn Cow

, toDyn (Price 75.5) ]

We can process sudtLi st s with ordinary list-processing func-
tions, e.g.,head, tail, null, andfol dr. We can also provide
type-based operations, e.g., an operatiGocur sMany to retrieve
all elements of a given type:

hQccurshany :: Typeable a => HList -> [a]
hQccurshany = map fromjust -- unwap Just
. filter isJust -- remove Nothing
map fromDynanmic -- get out of Dynamic

For instance, we can attempt to look up the breed of cow Angus:

ghci - or - hugs> hQccurshMany angus :: [Breed]

[ Cowi
Note that printingHLi st s such asngus requires extra effort. A
value of typeDynami ¢ is normally opaque. We can reviseDyn
to include aShow constraint in addition to th& peabl e constraint.
Alternatively, we can provide Show instance foiDynani ¢, which
attemptd r onDynani ¢ towards all showable types that we can pos-
sibly think of. These two options account for weak exterisjbi

Too few or too many types

Most programmers are likely to loath operating on stringsis i
completely untyped. A non-Haskell programmer might regard
tagged unions as reasonably typed. The Haskell programiitler w
ask for much more typing. Most notably, the above type-based
look-up gives no static guarantee that an element of theaete
type will be found at run-time.

In database programming, these guarantees correspondtito st
checks on column access WWERE phrases and elsewhere. Static
checks would require a mapping of the data dictionary to Hihsk
types. For example, we could define arev ype per database ta-
ble, with each newtype describing table columns as a prooluct
a record. We can process values of these newtypes with generi
functions [19]. However, we are stuck: it is not enough toehav
precise types for database tables. We also would need pitgpiss
for queries and their intermediate expressions. So we fecaded
for an open-ended set of product or record types. This aigdiés
addressed below.

1To avoid confusion, we prefix all heterogeneously typed func
tions, types, and classes with an “h” (or, an “H") such as in
hQccur sMany andHLi st .



3 Typeful heterogeneous lists

We seek a notion of heterogeneous lists that is more typeéun t

[ Dynami c] . The type of a list should precisely describe the types
of its elements, as a type sequence or product. This wilhall®to
make static promises, e.g., a guarantee that a look-uptogefar

a type delivers a result. As we will see, precision of typiogsinot
impair our ability to define ‘normal’ list-processing fuianality.

Heterogeneous list constructors
We start by defining datatypes for lining up type sequences:

data HNi | = HNi | deriving (Eq, Show, Read)
data HCons e | HCons e | deriving (Eq, Show, Read)

These datatypes reify normal list structure at the typel,|eued
thereby they allow us to statically distinguish empty and-empty
lists just as in dependently typed programming [12, 21].therr
more, each list element may have a different type.

For less parentheses, we assume right-associative infiatops:

type e :*: | = HCons e | -- type level constructor
e.* | = HCons e | -- value level constructor
Here is a type sequence for animals:
type Animal =
Key :*: Name :*: Breed :*: Price :*; HN
Here is a heterogeneous list that represents cow Angus:
angus :: Animal -- optional type declaration
angus = Key 42
*. Nane "Angus"
.*. Cow
*. Price 75.5
*. HNi

We note that heterogeneous lists are essentially nestéasiuo
we could use the normal type constructojsand(,) instead of
HNi | andHCons as in:( Key, (Nane, (Breed, (Price,())))). We
favour fresh datatypes for building heterogeneous listis Hielps
avoiding confusion and clashes with ‘normal’ applicatiafy()
and(,). We could also consider implicitly terminated type se-
qguences. Again, we require a terminathig | to avoid a mess.

A class of heterogeneous lists

When usingHCons such as iHCons e |, we want the tail to be a
heterogeneous list type again. To this end, we will now warka
classHLi st whose extension is the set of all proper type sequences,
i.e., the set of all nested, right-associative, binary potsl This
classreplaces théype[ Dynani ¢] from the previous section.

class HList |
instance HList HNil
instance HList | => HList (HCons e I)

List-processing operations

Functions on normal lists (e.diead, t ai | , andnul | ) can be sys-
tematically transposed to the type level. Normally, eagletievel
operation is subject to a dedicated class; see App. A for some
amples, and the HilsT source distribution for additional examples.
Let us consider the recursive function for concatenatiosdme
detail. For comparison, we recall normal list concatematio

append :: [a] ->[a] -> [a]
append [] =id
append (x:1) = (:) x .

We define a clasdAppend for concatenation of heterogeneous lists:

class Happend | 1" 1" | T 1" -> 1"
where hAppend :: | -> 1" -> 1"’

Here we use Haskell's extensions for multi-parameter elassid
functional dependencies — which, incidentally, were idtrced
for the sake of ‘normal’ collection libraries. So it is notrpris-
ing that we end up using these extensions for heterogenetas-c
tions. The functional dependentyl’ -> |’ indicates that the
class is a type-level function — rather than a mere relatiotypes.

The instances follow the definition append very closely:

instance HList | => HAppend HNil | |
where hAppend HNi | id

instance (HList |, HAppend | |I' 1'")
=> HAppend (HCons x |) I’ (HCons x |I'")
where  hAppend (HCons x |) = HCons x . hAppend |

We note thasippend’s equational term patterns show up twice in the
classHAppend: once in the instance headsHfppend and once in
its method definitions. Also, the instance constraintHorst are
like type checks to be performed at type checking ‘run-tiniut
otherwise we transcribe list processing to the heterogenease in

a systematic manner. There is just a constant factor of noise

Rather than defining all kinds of specific list-processingctions,
one might wonder if the general recursion schemes for lstgss-
ing can also be transcribed to the heterogeneous situafiois. is
indeed the case; see App. B for a heterogeneous fold ope i
the HLIST source distribution for further higher-order operations
onHLists.

append |

Aside: stanamic lists

The clasdi st, and all the classes with list-processing operations
(e.g., the showrHAppend) are in no way restricted to lists built
from HNi | and HCons. We can easily add instances fdki st ,
HAppend, and others such that we also deal with less typeful het-
erogeneous lists (e.d.Pynani c] ), or with less generic heteroge-
neous lists (such as hand-made universes). This allowsusetour

What is the purpose of this class? Some readers might wondercollection framework even in cases when the precise typeesex

whether we want to constrain the type construéfams like that:
data HList | => HCons e | = HCons e | deriving ...

After due discussion we decided: NO, being in good companj [2
The problem with constraints on datatypes is that they anply a
proof obligation, but type inference does not propagatmthieely.
This would lead to a proliferation d¢fLi st constraints.

We rather placéiLi st constraints on list-processing functionality
whenever we want them. A user of the KT library does not
employ the unconstrained construdtons, but only a constrained
version of it. To this end, we retyge *.) :

(.*.) HLi st | -> HCons e |

s = e ->|
(.*.) = HCons

for a collection is not known statically, e.g., when collent are
built from user input. One can even mix statically and dyreaihy
typed collections. An advanced example of such a “standlyiica
constrained data structure are the balanced trees in [@Bth& rest
of the paper we will focus on statically typed heterogendists.

4 Numeral-based access operations

We will now define array-like (or numeral-based) accessatars
for HLi st s. Thatis, we will use type-level naturals to address list el
ements. These access operations provide a basic layertithe
library because type-based and label-based access operatn
actually be implemented in terms of numeral-based operatio



class HNat n  => HLookupByHNat nl e | nl ->e where hLookupByHNat :: n ->1 ->e
class HNat n  => HDel et eAt HNat nl I’ | nl -> | where hDeleteAtHNat :: n->1 -> 1’
class HNat n  => HUpdat eAt HNat nel I’ | nel ->1" where hUpdateAtHNat :: n->e ->1 ->|
class HNats ns => HProjectByHNats ns | |’ | nsl ->1’ where hProjectByHNats :: ns ->1 -> 1’
class HNats ns => HSplitByHNats ns |l 1" 1" ] nsl ->1" 1" where hSplitByHNats :: ns ->1 -> (1',1"")
Figure 1. Numeral-based access operations for heterogeneocollections
Type-level naturals class (HList |, HNat n) => Hleength | n| | ->n

Type-level naturals are represented by datatypes for zefsac-
cessor function. These datatypes are solely for the ty:I¢he
only value of these types is.2

class HNat n

data HZero; instance HNat HZero

data HSucc n; instance HNat n => HNat (HSucc n)

hZero :: HZero; hZero = L
hSucc :: HNat n => n -> HSucc n; hSucc _ = L
hPred :: HNat n => HSucc n ->n; hPred _ = L

Eventually, one needs to perform all kinds of operationsyqe-t
level naturals such as arithmetics or comparison. As an pbam
we present (type-level) equality, as needed elsewhereipdper.

First, we need type-level Booleans:

class HBool x

data HTrue; instance HBool
data HFal se; instance HBool
hTrue :: HTrue; hTrue = L
hFal se :: HFalse; hFalse = L

-- classes for HAnd and HO onmitted

Here are the classes for general type-level equality anghadson
including the straightforward instances for the equalftpaturals:
class HBool b => HEg x y b | xy ->b
class HBool b => Ht xyb| xy->b
i nstance HEq HZero HZero HTrue
instance HNat n => HEq HZero (HSucc n) HFal se
instance HNat n => HEq (HSucc n) HZero HFal se
instance (HNat n, HNat n', HEQ n n’ b)

=> HEq (HSucc n) (HSucc n') b
|'i kewi se for HLt

HTr ue
HFal se

Induction on type-level naturals

One can define various access operations using naturaldiessn
see Fig. 1 for an overview. For instance, the delete operdiiils
down to two instances: one féZer o; another foHSucc:

i nstance HDel et eAt HNat HZer o (HCons e |) |

where hDel eteAtHNat _ (HCons _ |) =1

instance (HDel eteAtHNat n | |’', HNat n)

=> HDel et eAtHNat (HSucc n) (HCons e I) (HCons e |')

where hDel et eAt HNat n (HCons e |)

= HCons e (hDel eteAtHNat (hPred n) 1)

Extra constraints

Functionality on collections carrieégmplied constraints due to all
the involved access operations. In addition, one might waatd

instance HLength HNi| HZero
instance (HLength | n, HNat n, HList |)
=> HLength (HCons a |) (HSucc n)

By addingHvaxLengt h constraints to signatures or instances, one
instructs Haskell to enforce size boundaries at compiletim

5 Extensible records

We will now define labelled collections, i.e., maps from lsbi®
values. In essence, we will employ type-level naturals &tels,
but we will enrich the structure of labels for conveniencepos-
gramming with labelled collections. We end up defining exten
sible records this way, without requiring the language rsitens
of earlier proposals. From the point of view of database sxce
records provide the ultimate expressiveness for mappitgnoo
names to values in a typeful manner. Extensibility (andriapil-
ity) of records is key to dealing with types of joins and puiens.

Haskell's nonextensible records recalled
In Haskell 98, we can define record types like this:

data Unpriced = Unpriced { key I nteger
, hame String
, breed :: Breed }

Here is a unpriced cow Angus:

unpri cedAngus = Unpriced { key = 42
, hane = "Angus"
, breed = Cow}

What are access operations that are available for Haskell 98
records? We can retrieve components, and we can updatelsecor
in a point-wise fashion:

ghci - or-hugs> breed unpri cedAngus

Cow

ghci - or - hugs> unpricedAngus { breed = Sheep }

Unpri ced{ key=42, nane="Angus", br eed=Sheep}
We can not extend such records (unless we were thinking tifiges
records and using polymorphic dummy fields for extension. [6]
Also, we can not reuse labels among different record typather
can we treat labels as data; so labels are not first-clagsiuiti

An extensible record demo
We place related labels in a namespace modelled by a sibyyqbee:
data FootNwbuth = FootNMbuth -- a namespace

Labels in a namespace are constructed in a sequence staitting
firstLabel , withnext Label generating the next distinguished la-

extraconstraints. For instance, we can use the following class to pel. Each label is also annotated with a string for the labehe

restrict the maximum length of a list (or an array):

class HvaxLength | s

instance (HLength | s’, HLt s’ (HSucc s) HTrue)
=> HvaxLength | s

2We also prefix all faked dependently typed functions andgype
with an “h” (or, an “H") such as ihTr ue andHBool . These types
correspond to subsets of values of normal types suthtasand so
let us discriminate the subsets of values at compile time.

These are the labels for animals:

key = firstLabel FootNwbuth "key"

nane = nextLabel key "nang"
breed = nextLabel nane "breed"
price = nextLabel breed "price"



We build the record for the unpriced cow Angus as follows:

unpri cedAngus = key =. (42::Integer)
.*. nane =. "Angus"
.*. breed .= Cow
.*. enptyRecord

That is, record construction starts fraenpt yRecor d; the label-
value pairs are connected by=."; and each label-value pair is
added by using an overloaded operatioh.”.

Extensible records are printed more or less like Haskele@8nds:
ghci - or - hugs> unpri cedAngus
Recor d{ key=42, nane="Angus", br eed=Cow}

We retrieve a component from a record as follows:

ghci - or-hugs> unpricedAngus .!. breed
Cow

We can update components as follows:

ghci - or - hugs> unpricedAngus . @ breed .=.
Recor d{ key=42, name="Angus", br eed=Sheep}

We can really extend such records:
ghci -or-hugs> price .= 8.8 .*. unpricedAngus
Record{pri ce=8. 8, key=42, nane="Angus", br eed=Cow}

Sheep

One possible model of extensible records

Labels can be implemented by type-level naturals, qualifigc
namespace, and annotated by a string for the label name:

data HNat x => Label x ns = Label x ns String

firstLabel = Label hZero

next Label (Label x ns _) = Label (hSucc x) ns

Records are maps from labels to values. We could go for hetero
geneous lists of pairs; we could also go for pairs of heteregas
lists of equal length. We abstract from this choice as folipw

class HZipxy I | xy ->1, 1 ->xy
where hZip @ x ->y -> |
hUnzip :: | ->(X,y)

A record is a zipped list wrapped withRecor d:
newtype Record r = Record r -- to be constrained
Record construction is constrained as follows:

mkRecord :: (HzZip I's vs r, HLabel Set Is)
>r -> Record r

nmkRecord = Record
For instance, the empty record is denoted as follows:
enpt yRecord = nkRecord $ hzip HNiI HNi |
Labels in a record must be distinct:
class HLabel Set |s

i nstance HLabel Set HNi |
instance ( HNat n, Hwermber (Label
, HLabel Set |s )

HLabel Set (HCons (Label n ns) Is)
To this end, we definBEq-based membership test as follows:

n ns) |Is Hral se

=>

class HBool b => Hvenber e | b | el ->b

i nstance Hvenber e HNil Hral se

instance ( HEq e €' b -- conpare e and head €’
, Hvenmber e | b -- use of label in tail
, HOr b b b’ -- type-level QR

) => Hwenber e (HCons e’ |) b’
We also extend equality, which was already defined for tyvell
naturals, such that we can compute equality of labels. Here w
assume that the labels in a record are in the same namespace:
instance HEq x x' b -- conmpare naturals in |abels
=> HEq (Label x ns) (Label x' ns) b

Access operations

In the demo, we encountered access operations for lookpajate,
and extension. There are also operations for appendingdsco
for deletion of a label and its value in a record, for renanthg
label in a record, for projection and splitting of a record¢@al-
ing to a label set. We can implement these operations djreatl
the representation of records (cf. “pair of lists” vs. “leftpairs”).
Alternatively, we can use numeral-based access complechdyt
zipping and unzipping.

For instance, deletion (*. ") can be defined as follows:

(Record r) .-. | = Record r’
where (ls,vs) = hUnzip r
n = hFind | Is -- uses HEq on | abels
I's’ = hDel eteAtHNat n I's
vs' = hDel et eAt HNat n vs

r hzip Is' vs’
That is, we unzip the record; we find the indewf the given label

| in the listl s of labels; we delete the subscripted elements in the
lists| s andvs of labels and values; we finally re-zip the record.

6 Type-based access operations

Numeral-based and label-based access is in some sensalsgH
based— even though we had to reify naturals at the type level.
We will now work out truly type-based access operations.niFeo
database perspective, type-based operations are useful tybes
are descriptive of columns. In that case, there is no neethjoy
label-to-value mappings.

As for the coding style, we will mak&ansientuse of overlapping
instances, as supported by the GHC and Hugs implementaifons
Haskell. We later circumvent overlapping instances.

Filter an HLi st for elements of a given type

The operatiorhCccur sMany from Sec. 2 is an example of a type-
based operation. The type of elements to be extracted frast a |
of dynamics is specified by fixing the result typeh@tcur sMany.
We will now define such type-based operationgfonst including
more strongly typed ones; see Fig. 2 for an overview.

We dedicate a class tdxcur sMany:

class HOccursMany e | where hCccurshMany :: | -> [e€]
The instance foHN | returng[] :

i nstance HOccurshany e HNil where hQccurshany _ =[]

Another instance deals with a non-empiyi st whose head is of
the type of interest; notice thatis used twice in the instance head:

instance (HList |, HOccurshany e |)
=> HOccursMany e (HCons e |)
where hQccurshany (HCons e |) = e : hCccursMany |

There is yet another instance for a non-entityst whose head is
not of the same type as the element typé@acur s’s result type:

instance (HList |, HOccurshany e |)
=> HOccursMany e (HCons e’ 1)
where hQccursMany (HCons _ I) = hQccurshMany |

The twoHCons instances are overlapping, while the former is more
specific than the latter, which is thereby only applied whenfor-
mer is not applicable, i.e., whenever the typesde’ are different.

hQccur sMany is the regular #” operation for type-based look-
up. Then there are similar operatiomSccur sMany1 (i.e., “+”),
hQccursOpt (i.e., “?"), andhCccur sFst (for the first occurrence).
The clasHCOccur s and its complementiCccur sNot require more
thought. Most notably, a type-checked applicatioh®fcurs is
supposed to assure that there is exactly one element of flbdrty



class HCoccurshMany e | where hQccur shany | -> €]
class HCoccursManyl e | where hQccur sManyl I -> (e, [€])
class HoccursOpt e | where hQccur sOpt :o | -> Maybe e
class HOccursFst e | where hGCccursFst | ->e

class HCccurs el where hQccurs | ->e

class HOccursNot e |

- return as many occurrences of type e as there are
- return at |east one occurrence but all again

- return the first occurrence if any

- return the first occurrence out of one ore nore

- establish that there is precisely one occurrence
- constraint-only class for lack of occurrences

Figure 2. Type-based look-up operations for heterogeneouwsllections

question. Successful type checkingh@tcurs angus :: Breed
implies thatangus’s breed is defined unambiguously. We will de-
velop the definitions offCccur s andHCccur sNot in detail.

Documenting potential type errors

At first sight, there is ndiCccur s instance forHNi |, but we can
provide one — be it for the sake of instructive error messafres
stances like the following make class-based dependemgdtpro-
gramming more manageable:

instance Fail (TypeNotFound e) => HCccurs e HNi |

where hCccurs = L

Here we use a vacuous cla&s | without instances, which just
implements what its name promises, and we also assume gmatat
TypeNot Found that serves for nothing but an error message:

class Fail x -- no nethods, no instances!
data TypeNot Found e -- no val ues, no operations!

Hence we obtain somewhat suggestive error messages:
ghci - or-hugs> hCccurs (HCons True HNil) :: Int
No instance for (Fail (TypeNotFound Int))

So we try to look up a value of a type that’s not in the list. Henc
iteration ends up &N | , andTypeNot Found is reported. Such doc-
umentary failure instances are used throughoutithest library.

Static look-up

We will now provide the actual definition dfCccurs. There are
again two overlapping instances for non-empty lists; onetlie
case that the head fits with the type of interest, and anotieef
cursion in case we haven't found an occurrence yet:

instance (HList |, HOccursNot e 1)

=> HOccurs e (HCons e )
where hQccurs (HCons e () = e
instance (HList |, HOccurs e |)
=> HOccurs e (HCons e’ 1)
where hQccurs (HCons _ |) = hQccurs |

The constrainHCccur sNot e | in the first instance assures that
no elements of type occur in the tail . The clas$HCccur sNot is
for constraining only rather than actual look-up. Consedjyeits
definition does not comprise any method:

class HOccursNot e | -- no net hods!
data TypeFound e for a failure instance
i nstance HOccursNot e HNi |
instance (HList |, HOccursNot e 1)
=> HOccursNot e (HCons e’ )
instance Fail (TypeFound e)
=> HOccursNot e (HCons e |)

The instances fold ovdr to test that each type is different from
e. The last instance leads to failure for an offending headis Th
failure instance is obligatory because the more genertdrics for
HCons would otherwise silently skip over the offending occurrenc
Notice that Haskell's instance selection is solely basedyotacti-

cal matching. Hence, the failure of the more specific ingan@

Fai | ) will notlead to reconsideration of the more general instance.

From look-up to projection

We can now readily define projection by mapping over a listesf r
gquested element types using simple look-up for each eletypeat
see the HILST source distribution for the actual code. For instance,
the following query retrieves the key and the name of cow Angu

ghci - or - hugs> hProj ect angus

:: (HCons Key (HCons Name HNil))

HCons (Key 42) (HCons (Name "Angus") HNil)
This operation resembles projection in the sense of relakial-
gebra, or in the sense of SQI3&LECT statements. (Think of the
column names following the keywo&ELECT.)

Type-based mutation operations
We also need mutation operations such as the following:

e Delete list elements identified by their type.

e Update list elements by values of the same type.

e Split a list into a projected list and its complement.
The update operation(s) mutate at the value level only, e.g.

-- Repl ace the occurrences of type e
class HupdateMany e |
where hUpdateMany :: e -> | -> |
So the type-level programming bits of look-up can be adofied
type-preserving update. Deletion requires functionakdelencies:

-- Delete the occurrences of type einl, return |’

class HDeleteMany el |I' | el -> 1’

where hDel et eMany :: -- to be conpleted
Such mutation operations also mutate types. Without fanati
dependencies, users had to specify the result type explighich
is impractical. The trouble is that the combination of oapging
instances and functional dependencies leads us into muakgrw
We take this as an incentive to identify an overlapping-fcéem.

Passing on types as proxies
Let us first get the type dfDel et eMany right. It could be this one:

class HDeleteMany el |I' | el -> 1’
where hDeleteMany :: e -> 1| -> |’

The argument of type would merely describe the type of the ele-
ments that should be deleted. We might not have any suitahle v
around (exceptl). Also, the above type obscures the role of the
first argument. So we go for this type instead:

hDel eteMany :: Proxy e -> 1| -> |’
Proxies are defined as follow:

data Proxy e; proxy :: Proxy e; proxy = L
Hence, the only value of a proxy type is the specific valuef the

constructed proxy type — not to be confused with the valugd
the type being proxied. We can reduce values to proxies dexe

toProxy :: e -> Proxy e; toProxy _ = L
For example, we delete the name of cow Angus as follows:

ghci - or-hugs> hDel et eMany (proxy::Proxy Nane) angus
HCons (Key 42) (HCons Cow (HCons (Price 75.5) HNil))



A non-solution

Adopting the style that we offered for look-up operations,would
want to implemenhDel et eMany with one instance foHNi | ; one
instance for ‘delete head’; one instance for ‘keep head’:

i nstance HDel eteMany e HNil HNil
where hDeleteMany _ HNil = HNi |

instance (HList |, HDeleteMany e | 1)
=> HDel eteMany e (HCons e |I) I’
where  hDel eteMany p (HCons _ 1) = hDel eteMany p |

instance (HList |, HDeleteMany e | 1)
=> HDel eteMany e (HCons e’ |) (HCons €’
where  hDel eteMany p (HCons e’ I)
= HCons e' (hDeleteMany p |)
Alas, the two overlapping instance headsHBons are in no substi-

tution ordering. (Neither GHC nor Hugs can be persuadeddeyc
this code.)

")

Move patterns from the head to constraints

There is a rescue. We simply need to generalise one instaack h
so that it becomes more general than the other. Then, irestahec-
tion will be re-enabled. We generalise the head of the latance:

e before:HDel et eMany e (HCons e’ |) (HCons e’ 1)
e after:HDel eteMany e (HCons €' |) |’

But we must maintain the type equation’ equalsHCons e’ |'!
To this end, we employ type cast. We add an instance conistrain
TypeCast (HCons e’ 1') |'', and we also cast in the method:

instance ( HList |, HDeleteMany e | |’

, TypeCast (HCons e |") '’ )
HDel et eMany e (HCons e |) |’
hDel et eMany p (HCons e’ 1)

= typeCast (HCons e’ (hDeleteMany p |))

There is no shortage of type-safe casts for Haskell [34, 894,
The one we need here is really resolved at the type-levelh&e t
is noMaybe involved, sincd ypeCast cannot fail at run-time:

class TypeCast x y | X ->y, y -> X
where typeCast :: x ->y

The functional dependencies capture our expectation ef¢ggt to
be an isomorphism on types (in fact, the identity functidfe will
discuss the implementation dfpeCast in Sec. 9.

=>
wher e

Ended up in murky water

There is no real consensus on the overlapping instance misoha
as soon as functional dependencies are involved. Our rieeuit
above fits with GHC’s model, but Hugs reports that the inganc
are inconsistent with the functional dependencyHel et eMany.
Here is a simple example that exercises this disagreement:

data Foo x y

class Bar x y | x ->y

class Zoo x y | x ->y

instance Zoo y r => Bar (Foo x y) r
instance Zoo z r => Bar (Foo (Foo x y) z) r

Hugs’ type system misses the point tBat ' s second parameter is
still functionally dependent on part 8hr ' s first parameter.

Overlapping banned

We give up on persuading Hugs. Also, we do not want to depend
on the doubtful future of overlapping instances in gendtatther-
more, regimes for instance selection differ in ways othantbon-
sistency criteria for functional dependencies. For instaiGHC's
instance selection is lazy, whereas Hugs' is eager.

We avoid overlapping instances by reformulating our pnobieto
a case selection driven by a type-level Boolean denotingrgoated
type equality. The predicate for type equality is providedadiows:

class HBool b => TypeEq x y b | xy -> b
proxyEq :: TypeEq t t’ b => Proxy t -> Proxy t’
proxyeq _ _ = L

We take for granted that we can define type equality; see Sec. 9
Using type equality, we replace the overlapping instanags f
HDel et eMany by the following case-preparing instance:

instance ( HList |, TypeEq e ' b
, HDel eteManyCase b e e' | |
= HDel et eMany e (HCons e’ 1)
wher e hDel et eMany p (HCons e’ |)
= hDel et eManyCase (proxyEq p (toProxy e')) p e |

That is, we compute type equality so that we are able to decide
whether the head needs to be deleted. This decision is thga-im
mented by the helper clasBel et eManyCase with instances (i.e.,
branches) for the two Booleans:

-> D

)
K

class HDeleteManyCase bee | |I' | bee | ->1’
where
hDel et eManyCase :: b -> Proxy e -> e -> 1| -> |’

instance HDel eteMany e | |’

=> HDel eteManyCase HTrue e e | |’
where hDel eteManyCase _ p _ | = hDeleteMany p |
instance HDel eteMany e | |’

=> HpDel et eManyCase HFal se e e | (HCons e’ 1)

where hDel eteManyCase _ p e’ |
= HCons e' (hDeleteMany p I)

This idiom works equally well for other type-based openasio

Type-to-natural mapping

We can even factor out case discriminations for type equtdibe
used in just a single location, namely in a type-to-naturapping.
The remaining type-based access operations can then ethigoy
mapping completed by numeral-based access.

The type-to-natural mapping is hosted by the following €las
class HNat n => HType2HNat e |l n| el ->n
The implementation adopts the overlapping-free idiom:

instance (TypeEq e¢' e b, HType2HNatCase b e | n)
=> HType2HNat e (HCons €' |) n

class (HBool b, HNat n)

=> Hiype2HNatCase b el n| b el ->n
i nstance HOccursNot e |
=> HType2HNat Case HTrue e | Hzero

instance HType2HNat e | n
=> HType2HNat Case HFalse e | (HSucc n)

We note that the firstinstance carries a consttdintur sNot e | .
This makes sure that the tygein question is associated with a
single natural as index. Alternatively, we could returns bf a
indexes for elements of type This would be necessary for the
reconstruction of operations like&ccur shMany.

For instance, type-based delete can now be expressed elgriais
terms of numeral-based delete — without the hassle of a helpe
class for case discrimination on Booleans:

hDelete p | = hDel eteAt HNat (hType2HNat p |) |
Here we invoke the type-to-natural mapping using this fiamct

hType2HNat :: HType2HNat e | n => Proxy e -> | ->n
hType2HNat _ = L



Aside: type schemas and class-based programming

The fine details of our heterogeneous collections reflectethe
ployment of Haskell's class concept. Most notably, all ineol
type schemas must be sufficiently instantiated to allowrietance
selection without causing ambiguities. This is just the sam in
the case ofhow . read whose application to a string cannot be
evaluated because the type of the intermediate result iixeot

We can store and look up polymorphic values as long as theér ty
schemas are not needed for instance selection. So nunzeredib
access works fine even for arbitrary polymorphic elemermsabse
the element types do not drive instance selection:

ghci - or- hugs> hLookupByHNat hZero (id .*. HNil) $ 42
42

The following type-based access still works:

ghci -or-hugs> hQccursMany (id .*. HNil) :: [Bool]

(]

We note thahCccur sMany compares its result type with all element
types. The type schenfarall a. a -> a of i d is sufficiently
instantiated for that, i.eforal | a. a -> aisdifferent fromBool
for all possiblea. Here is an example of an ambiguous situation:
ghci - or - hugs> hQccurshMany (L .*. HNil) :: [Bool]
No instance for ... <snipped>
The interaction of polymorphic elements in collections afabs-
based programming will continue to be a topic in the nextisect

7 Type-indexed products

As a refinement of type-based access to heterogeneousticolec
one can even require that a given collection is entitghg-indexed
i.e., that no type occurs more than once. Imposing this rement
on lists, we obtain so-called type-indexed products (T|®H). We
will now briefly describe an implementation of TIPs. The daél
TIPs, TICs, are defined in App. C.

We wrap TIPs in a newtype so that we make the status of beimrg typ
indexed explicit in type signatures. Also, we can providecipl
instances for TIPs once we made this type distinction:

newtype TIP | TIP1 -- to be constrained
unTIP (TIP 1) = |

The public constructor for TIPs supplies the key constifainT IPs:

nkTIP :: HTypelndexed | =>1 -> TIP |
nkTIP = TIP

The clasdHTypel ndexed is defined as follows:

class HList | => HTypel ndexed |

i nstance HTypel ndexed HNi |

i nstance (HOccursNot e |, HTypel ndexed 1)
=> HTypel ndexed (HCons e |)

instance (HAppend | |' |'", HTypelndexed |'")
=> HAppend (TIP 1) (TIPI") (TIPI'")
where hAppend (TIP 1) (TIPI') = nkTIP (hAppend | 1)

Likewise we overload . *.) to work for TIPs, i.e., extensions are
assured to preserve the TIP property. To illustrate exbensie
labelnyTi py Cow with BSE:
ghci - or - hugs> BSE . *.
TIP (HCons BSE ...)
The animahyTi pyCowis a cow; so it can’'t be a sheep then:
ghci - or - hugs> Sheep .*. nyTi pyCow
No instance for (Fail (TypeFound Breed))

myTi pyCow

Subtype constraints

TIPs naturally give rise to a subtype property. One TIP tiyea
subtype of another TIP tydéif | contains all types frortl. This is
expressed as follows:

class SubType | I’

i nstance SubType (TIP 1) (TIP HNil)

instance (HOccurs e |, SubType (TIP 1) (TIP 1))
=> SubType (TIP 1) (TIP (HCons e |"))

From this it is clear that we do not care about the order of elgm
in the type-indexed products. We also note that the intdseof
HSubType x y and HSubType y x immediately provides a faithful
form of type equivalence for TIPs (while mere equality of the
derlying type sequences would not be faithful).

As an aside, we can also instantiate subtyping for recordhis (
can be used in deriving an effective object system in Hagkall
record typer is a subtype of some record typeif r contains at
least the labels af', and the component types for the shared labels
are the same. Projection according to label sets is of uge her

instance ( HzZip Is vs r’
, HProjectByLabels |s (Record r) (Record r’) )
= SubType (Record r) (Record r’)

An idiom for constraint annotation

Let us review idiomatic support for adding extra constminEor
instance, let us deploy a constraing@tcur s that is meant to re-
turn theKey of an animalish TIP. TIPs that are not of a subtype of
TI P Ani nal are to be rejected — even if they carri{gy. This can

be encoded as follows:

animal Key :: ( SubType | (TIP Animal) -- extra
, HCccurs Key | -- inplied
) =1 -> Key
ani mal Key = hCccurs
The trouble is that this conservative approach forces omatioer
all the implied constraints and to make them explicit justreesex-
tra constraints. There is an idiom that allows one to solalyneer-
ate extra constraints. Essentially, one defines a conettadtentity

The instances traverse over the type sequence, and the clasgnction that imposes the constraints of interest on itsiment.

HCOccur sNot is employed to assure that the type of the head does
not occur (again) in the tail.

Let us upgradengus to a TIP:
ghci - or-hugs> let nyTi pyCow = TIP angus

Lifting operations
Most trivially, there is a replacement felNi | :
enptyTIP = nkTIP HNi |
Operations on TIPs are lifted as followd‘P" is unwrapped in ar-
guments, and it is wrapped in the result (if this is a TIP),levshbn-

straints are added so that tHEypel ndexed property is enforced.
For instance:

The following identity function insists on animals:
animalish :: SubType | (TIP Animal) =>1 -> |
animalish =id

We can now discipline thikey getter as follows:
ani mal Key | = hCccurs (animalish ) :: Key

The subtype constraint takes action as one can see here:
ghci - or - hugs> ani mal Key nyTi pyCow
Key 42
ghci -or-hugs> ani mal Key (Key 42 .*. enptyTIlP)
No instances for (Fail (TypeNotFound Price),

Fai | (TypeNot Found Breed),
Fail (TypeNot Found Nane))



The error message lists the types that are missing Amnmal .

A polymorphism benchmark

As proposed by a reviewer of this paper, we will now consider a
example from [31], which is, in a way, about type-based miatch

The following function selects two elements from a collewti

tuple | =1let x = hCccurs |
|’ = hDel et eAt Proxy (toProxy x) |
y = hCccurs |’
in (x,y)

The following session
a collection in whatever order, while the overloaded openatin
t upl e are resolved by the consumers of the matched values:

ghci -or-hugs> let one = (1::1nt)
ghci-or-hugs> let inc x = x + one
ghci-or-hugs> let incNot (a,b) = (inc a, not h)
ghci -or-hugs> let notinc (a,b) = (not b,inc a)

| et oneTrue = one .*. True .*. HNi|

incNot (tuple oneTrue)

ghci - or - hugs>
ghci - or - hugs>
(2, Fal se)
ghci - or - hugs>
(Fal se, 2)

The following example should arguably work, but it doesn’t:

ghci-or-hugs> inc $ fst (tuple oneTrue)

No instances for ... <snipped>
We are going to make this work as well! We note thaeTr ue
stores two components; so by fixing the type of one comporent t
I nt, it should not matter that the type of the other componerfts |
unspecified. The problem boils down to the following issue:

ghci - or-hugs> hQccurs (HCons True HNil)

No instance for (HOccurs e (HCons Bool HNil))
We would like to defaule to Bool here. Rather than comparing
the type of the head with a not yet instantiated result tylpe ftvo
types should be unified. Th&ccur s operation for TIPs does this:

ghci -or-hugs> hQccurs (True .*. enptyTIP)

True

notlnc (tuple oneTrue)

ghci -or-hugs> | et oneTrue = one .*. True .*. enptyTIP
ghci-or-hugs> inc $ fst (tuple oneTrue)

2

Even the following added polymorphism is handled:
ghci-or-hugs> let oneNull = one .*. [] .*. enptyTIP
ghci-or-hugs> inc $ fst (tuple oneNull)

2

The key idea is to provide a special instance for singletsts,liand
to replace the test for type equality by unification via typstc
instance TypeCast e' e

=> HOccurs e (TIP (HCons e HNil))
wher e hQccurs (TIP (HCons e _)) = typeCast e’
i nstance HOccurs e (HCons x (HCons y 1))

=> HOccurs e (TIP (HCons x (HCons y 1)))
where hCccurs (TIP 1) = hCeccurs |
This example reveals that type cast provides a powerfuhridiar
type improvement— a more fine-grained one than functional de-
pendencies. That is, type cast operates at the instandeateop-
posed to the class level!

8 Database programming

We will now demonstrate heterogeneous collections fordeta
programming in Haskell. To this end, we adopt concepts fraia L
jen and Meijer's embedding approach for SQL [20]. We employ
extensible records for two purposes:

shows that we can match the elements of

e to represent the results of queries, and

e to represent schemas for relational algebra operations.
A detailed discussion of the approach is beyond the scopesyba-
per. We note however that the approach scales to the futloet
algebra, and to arich set of SQL idioms including all kindgoafs,
existential quantification, nested queries, and tablestants.

We recall the simple query from the beginning of the paper:
SELECT key, nane FROM Ani mal WHERE breed = ’'sheep’;
In Haskell, we can now write this query in a type-safe manner.
selectBreed b = -- argunent b for the breed
do rl <- table animal Tabl e
r2 <- restrict r1 (\r ->r .1,
r3 <- project r2 (key .*.
doSel ect r3
Type inference works fine, but here is the type of the queryvagy
selectBreed :: Breed -> Query [
Tkey := Animalld :*:
Tname :=: String :*: HNil ]
That is, the result is a query for records with two compone(itke
types for the labelkey andnane are denoted bykey andTnane.)
The above do sequence encodes the SQL query in four steps:
e rl: We identify the table as inFROM Ani nal "
e r2: We restrict the table according to tHERE condition.
e r3: We perform projection as irSELECT key, nane”.
e doSel ect r3: The actual query is issued.
Steps 1-3 daot involve any database access. (Monadic style is
used for hygienic name supply.) The operatioaBl e, restri ct,

proj ect create or modifytype-annotated, syntactical expressions
for relations. The underlying key data structure looks #s\ics:

data Relation schema -- type annotation |ayer
= Relation schema Sql Rel ation

data Sql Rel ation -- expression |ayer

breed ‘ SQL.eq" b)
nane .*. HNil)

= SqlRelation {
r Tag :: Sql Tag,
r Sour ce .1 Sql Sour ce,

rRestrictlList
r Proj ect Li st

[ Sql Expression],
[ Sql Expression],

r G oupli st [ Sql Expression],

rOrderLi st [ Sql Expression] }
That is, relations carry a schema, and their structuraleidignts
comprise a unique tag, a source (i.e., a database table}lhasv
lists of expressions describing restrictions WHfERE), projections
(including computed columns), grouping and ordering.

The type of the relational schema for animals is the follayin
type Ani mal Schema =

Tkey = Attribute Animalld SgllInteger :*:
Tnane := Attribute String Sql Varchar :*:
Threed :=: Attribute Breed Sql Varchar : *:
Tprice :=: Attribute Float Sql Nuneric :*:
Tfarm := Attribute Farmid Sqgllnteger :*: HNil

The schema type lists both the domain of a column and the cor-
responding SQL type. For instance, the Haskell type forkihe
component is the newtypéni mal | d rather than the SQL type
Sql I nt eger. This ‘domain asiewt ypes’ technique increases type
safety: one cannot possibly confuse Aminal | d and aFarm d.

We note that some of the column types could be wrappééyibe,

but this is not the case féni mal Schena.

The datatypeAttribute is a phantom type in its two type
parameters. These phantoms drive coercions and make at-
tribute access type-safe. For instance, consider the préssion



r.!. breed ‘SQL.eq" b for restriction in the above query. The
look-upr .!. breed does not just establish that there idreeed
component, but it also delivers a phantom-typed attribsibethat
its use in the compound expression is type-constrained.

Structurally, attributes keep track of some details sugbrasision,
andNULL constraints. All such information is extracted from the
data dictionary of a database.

Here is a shippet of the extracted table description for afim

ani mal Tabl e :: Tabl e Ani mal Schema

ani mal Tabl e = nkTable "Animal" (

key .= Attribute { ... } .*.

nane .= Attribute { ... } .*.
HNE T )

This is all what's needed to make attribute access type-faée
turning typed query results relies on further provisionsaflis, the
actiondoSel ect for executing a query has to recast query results
such that they are phrased in the Haskell types for columragtesn

The code for the execution 8ELECTs makes it all clear:

doSel ect (Rel ation schema rel) = do
sql Do (showSql Rel ation rel)
rows <- getSgl Rows
return $ map ( |abel H.ist |abels
readHLi st val ues
) rows
where (Il abels, values) = hUnzip schema

The subexpressioshowSql Rel ation rel computes theSELECT
statement as a string, which is then givesgbDo — the low-level,
ODBC-based SQL handler. In the next step, we get all the gderi
rows as a lazy list of lists using this SQL service:

get Sql Rows :: Sgl Handl e [[Maybe String]]

The subsequemntap transforms the string-basedws into typeful
ones in two steps. Firstly, we build &hi st from the strings with
readHLi st, while we use the attributes from the schema to drive
this heterogeneous list construction. Secondly, we tuerHth st

into a record, while we reuse the labels of the schema.

9 By chance or by design?

We will now discuss the issues surrounding the definitionyp&t
equality, inequality, and unification — and give impleméeiatas
differing in simplicity, genericity, and portability.

We define the clasBypeEq x y b for type equality. The class re-
lates two types andy to the typeHTrue in case the two types
are equal; otherwise, the types are relatetiRal se. We should
point out however groundness issueshylfeEq is to returnHTr ue,
the types must be groundlypeEq can returrHFal se even for un-
ground types, provided they are instantiated enough taméate
that they are not equal. SdypeEq is total for ground types, and
partial for unground types. We also define the clagseCast x
y: a constraint that holds only if the two typesandy are unifi-
able. Regarding groundnessxéndy, the classTypeCast is less
restricted tharTypeEq. That is,TypeCast x y succeeds even for
unground types andy in case they can be made equal through
unification. TypeEq andTypeCast are related to each other as fol-
lows. WhenevefypeEq succeeds withiTr ue, TypeCast succeeds
as well. WheneveTypeEq succeeds witliFal se, TypeCast fails.
But for unground types, whefypeCast succeedsTypeEq might
fail. So the two complement each other for unground typesoAl
TypeEq is a partial predicate, whil€peCast is a relation. That's
why both are useful.

A representation-based equality predicate
The predicatdypeEq x y b was introduced in Sec. 6 as follows:
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class HBool b => TypeEq x y b | xy -> b

We now need to provide instances of the class. A very naive im-
plementation would be to explore all combinations of allgible
types; see the HIST source distribution for an illustration. Albeit
being portable (Haskell 98 + multi-parameter classes3,l##ds to
an impractical, exponential explosion in the number ofanses.
A more scalable approach is to introduce a family of infinjeets
for type-level type representations. That is, we assotygkes with
type representations via a bijection, and we make sureytpatep-
resentations are more easily compared than the types themse
We already have all tools for constructing the family of tyee-
resentations: we can associate with each type constructdiaa ,
and associate with each type termHimst of the representations
for the type constructor and its arguments. For instandague’
for Bool , ‘1’ for I nt, ‘2’ for - >, we obtain:

class TTypeable a b | a-> b

i nstance TTypeabl e Bool (HCons HZero HNi )

nstance TTypeable Int (HCons (HSucc HZero) HNiI)

nstance (TTypeable a al, TTypeable b bl)

=> TTypeabl e (a->b) (HCons (HSucc (HSucc HzZero))
(HCons al (HCons bl HNil)))

Because these type representations are constructed inlamegy
with ever-increasing naturals, it is sufficient to accomatedype-
level equality such that it can compare heterogeneousolisigpe-
level naturals. Type-level equality for naturals was giieec. 4.
Here are the remaining instances bk | andHCons:

instance HEq HNil HNi | HTrue
instance HList | => HEq HNil (HCons e |) Hral se

instance HList | => HEq (HCons e |) HNil Hral se
instance ( HList I, HList I’
, HEg e ¢ b, HEg | I’ b, HAnd b b b’

) => HEq (HCons e |) (HCons e ') b’
All the involved functionality does not go beyond Haskell &8d

multi-parameter classes with uni-directional functiodapenden-
cies. GHC and Hugs readily support this combination.

We can now define the cla3gpeEq, using the following instance:

instance ( TTypeable t tt, TTypeable t' tt’
, HEq tt tt" b ) => TypeEq t t' b

We make use of a generic instance, which is a common Haskell 98
extension. In turns out that we have essentially transpoded's
known as thebat a. Typeabl e approach [19] to the type level. We
share the drawback of this approach: we need to define amagsta
of TTypeabl e for each new type constructor. When adding new in-
stances, we have to maintain the bijection between typesyaed
representations. On the other hand, the remaining codellys fu
generic and does not need to be amended at all.

A generic type equality predicate

We have seen that we can implem@&ppeEq in a portable and even
practically usable way, using only commonly supported ledsk
extensions. We would like to introduce a fully generic apmin
which does not need to be amended when a new type constructor
is introduced. Alas, this elegant approach leads us outeottfie
haven into uncharted waters of experimental extensions.

The most concise implementation reuses the overlappickstthat
were discussed in Sec. 6, which makes the solution GHC{speci

i nstance TypeEq x x HTrue
i nstance (HBool b, TypeCast Hral se b)
=> TypeEg x y b

Here we take advantage BfpeCast , which we define next.



Reification of type unification

The classTypeCast was introduced in Sec. 6 and further em-
ployed in Sec. 7.TypeCast x y differs from just type equality
TypeEg x y HTrue as follows. IfTypeCast x y succeeds, then
the two types are unified. The difference between unificadioth
just equality emerges when the types are not groundedwiten
they contain uninstantiated type variables. The tyjmds(e.g., of
the polymorphic constaiff ) and[ Bool | are unifiable, but they are
not equal.TypeEq cannot establish equality for ungrounded types;
however it can establish disequality in case the schemasuffie
ciently instantiated to determine that they are not equal.

The most generic implementation ©fpeCast, which works for
both Hugs and GHC, is as follows:

i nstance TypeCast x x where typeCast = id

For this implementation to work, we need to import it at a leigh
level in the module hierarchy than all clients of the clagseCast .
Otherwise, type simplification will turn constraints of tii@m
TypeCast x vy intothe formTypeCast x X, and thereby inline the
unification. We refer to App. D, where we give another impleme
tation of TypeCast, which does not require separate compilation.
This time, we effectively delay the simplification step wikie help
of two auxiliary classes. It seems that this delay of typepdifina-
tion is at the core of all attempts at type-safe cast or typealy
(e.g., [4]).

A specific property of oufypeCast is that it allows us to con-
trol type improvement on a per-instance basis, as the palyhniem
benchmark for TIPs showed in Sec. 7. So the utility'ppeCast
goes strictly beyond a generic implementatiomypfeEq.

10 Related work

Heterogeneous lists

Type-level list-processing is a relatively obvious oppaity once
we get hold on faked dependently typed programming in Hasl|
pioneered by Hallgren and McBride [12, 21]. For instancento
geneous type-level vectors are considered in [21]. Theaflbet-
erogeneous type-level constructors (what we lddll andHCons)
occurs elsewhere in the literature. In App. H of [9], Duck let@o-
tivate their CHR-based model of functional dependencie®y
erating on such lists using numeral-based access (similauits

in Sec. 4); Sulzmann also gives a related implementatiorén t
Haskell-style language Chameleon [33]. In[22, 23], Negbat al.
motivate Haskell extensions for a functional notation ofdtional
dependencies, and for functional logic overloading. Thiénens
consider examples like type-level functioagpendandlength as
well as record-like operations. By contrast, our goal wasqalore
the various kinds of access operations for heterogenediecco
tions: list processing, numeral-based, label-based, yethased
operations. HLST is the first heterogeneous collection library to
the best of our knowledge.

Type-indexed rows

Shield and Meijer have studied the type theory of extenséserds
and variants starting from a more basic principle, namepety
indexed rows (TIRs) [31]. A TIR is nothing but a type expressi
that enumerates types. This resembtesst s, but TIRs do not
comprise any values. So we could go for constructor-lesgyjas:

class TIRr
data Enpty; instance TIR Enpty
data e :#: r; instance TIRr => TIR (e :#: )

A TIR is well-formed if the enumerated types are distinct. IWe
formedness corresponds to ddifypel ndexed constraint. Shield
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and Meijer provide type-level operatofd L and ONE that, given

a TIR, derive types for type-indexed products (TIPs; reSalt. 7)
and type-indexed co-products (TICs; see App. C for thedtlim-
plementation of TICs). We could redefine our datatypes f&sTI
and TICs such that they take a TIR as parameter, but these def-
initions and their usage would be more complicated in Héskel
Shield and Meijer argue that, conceptually, a newtype-tilecha-
nism is sufficient for labelling. Our development providabéls as
first-class citizens, and we can provide labelled collectiovithout
reference to general type-indexing (i.e., numeral indgxénsuffi-
cient). Our Haskell-based reconstruction of TIPs and Ti&@sschot
require new language extensions.

Extensible records

Foundations of extensible records have been studied ingins
Several Haskell language extensions have been propose8110
29], alike for other languages, e.g., (S)ML [6, 30]. There also
record calculi by Bracha, Ohori and others [5, 24]. Thererare
lated type systems, e.g., for relational algebra [14]. Welshhown
that we can reconstruct extensible records in Haskellistaftom
simpler notions; in particular: heterogeneous lists andbty and
of type-level naturals. We cover all typical record opemasi. We
have also defined subtyping constraints in our framework.

Labels, values and records are all first-class citizens imsiLSo
we can write abstractions that take and produce entitieB thfese
kinds. For instance, here is an operation to rename a reabett |

hRenameLabel | |' r =’ where
v r .@ | -- look up by Iabel
r roo.-. | -- delete at | abel
r'’ |" .= v .* r' -- add new | abel,

ol d val ue

Type equality and type cast

In our development of heterogeneous collections, we relplon
servability of type equality. Also, we employed a reified eyp
unification (‘type-level type cast) in a few places. Related
pressiveness has been studied in the context of intensmhgl
morphism [13], dynamic typing [2, 3], and universal reprdae
tions [36]. Some more recent Haskell-biased work on these no
tions [34, 8, 4] is not directly usable for our purposes. Ehap-
proaches either require the programmer to use type refetiaers,

or they make a closed-world assumption with regard to the cov
ered types, or they are focused on sums-of-products (assefpo
to the immediate coverage of Haskell's newtypes and daga)yp
or they involve existential quantification (which makes iffidult

to perform more arbitrary operations on elements in theecell
tions). Most notably, we require a type cast that is resobtegipe-
checking time; run-time would be too late.

Haskell's type classes

Multi-parameter classes [7, 15, 16, 28] with functional elegen-
cies [17, 9] are crucial for type-level programming in Hdkke
These typing notions are reasonably understood. There @man
going debate if instance selection should be programmaplesh
ing constraint-handling rules or functional logic evalaaf32, 23].
Also, the mere notation for encoding type-level functioasld per-
haps be improved [22]. We have considered using overlapgping
stances for the definition of some access operations, botaitly
we eliminated use of this debated extension in a systematimer.

Statically enforced invariants

The TI P newtype is an example of a data structure with a stati-
cally checked invariant (i.e., uniqueness). Okasaki ahdrsthave
worked on statically assuring invariants of complex dajeesy e.g.,



that a matrix is square [25]. These examples normally relglew
erly chosen data constructors, which make it impossibleoto ¢
struct “wrong” data structures. Our approach is differetype
classes let us impose static constraints irrespectivetafaestruc-
tors. Indeed, we use the same data constritZons to build het-
erogeneous lists with and without duplicates. We expressdin-
straints in types (sometimes, in phantom types). Our agprdaes
not require extraordinary cleverness in the design of dgieesen-
tation. Furthermore, in the case of constraints encodetiamtom
types, there is no run-time or -space overhead of storingramdrs-
ing chains of data constructorsl @ is just as efficient aslLi st ).
BecauseTl P is essentiallyHLi st , we were able to trivially lift all
list-processing functions tdl Ps. Statically checking complex in-
variants on data structures, such as well-formedness ellsaik
trees and size-boundaries of lists, is a known applicatfaepen-
dently typed programming [35]. The latter requires nowidtiex-
tensions to a programming language. We have shown thaircerta
invariants, e.g., size boundaries fdii st s, or uniqueness ifil Ps,
can be statically expressed in Haskell's type system ajread

11 Conclusion

We have systematically developed a Haskell library ovemrstly-
typed data structures for heterogeneous collections -s; bstays,
extensible records, and others. The composition of suchta da
structure, e.g., the types of all elements, is manifessityjte. This
makes it possible to strongly type the operations on cadlest e.qg.,
look-ups, updates, insertions, and projections. The nafrtheo
library, HLIST, emphasises that all data structures are built from
typeful heterogeneous lists. We have defined restrictddatimns,
e.g., TIPs, constrained by the requirement that no two elésmeay
have the same type. The constraints are again manifest iypghe

of the collections and are enforced by the type checker.

The immediate application of our H&T library is a database ac-
cess library that covers SQL92, returns the query resuliseream
of records, and statically checks that all the queries ansistent
with the database schema.

The implications of the library HLST turn out far reaching, and are
still under active investigation. Our TIPs and records aterssible
and offer subtyping polymorphism. Our records have firasslla-
bels that can be reused across several record types. We tiudic
HLiIsT is implemented in Haskell with only common extensions.
Hence the HIsT library addresses the challenge for better Haskell
records, without breaking existing programs, as artieddty Si-
mon Peyton Jones at the Haskell Workshop 2003 [11]. Our dscor
also let us implemeniagdlacks record concatenation, length vs.
depth subtyping. We can now experiment with these features i
real programs — again, without requiring any language esten
Extensible TIPs and records can be the foundation of the gen-
uine object system. The latter offers subtyping polymaphicf.
OCaml) as opposed to the class-bounded polymorphism ofgHask
It is remarkable that type classes themselves were instriainie
implementing open TIPs. Extensible records can also beoelab
rated to provide strongly typed keyword arguments with ables
labels. That is, function arguments can be addressed bydtegw
and these arguments can be optional or mandatory. ThesHL
source distribution demonstrates keyword arguments. UEIPS
are open TICs, offering us dynamics with a statically-cladxé
constraint on the sort of types encapsulated in the dynamie-e
lope (cf. App. C). The lists, TIPs, TICs and records of thelsfi.
library can also be employed in typeful foreign-functioteirfaces
and in XML processing.

Our code relies on the most common Haskell extensions; #efus
overlapping instances can be circumvented. In fact, a geimer
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plementation of the predicafypeEq for type equality would still
rely on overlapping in a single location. We can also impleme
TypeEq in a portable but non-generic manner relying on one in-
stance per user-defined datatype. Our development sughatts
fundamental solution could be to offer type equality as anjiive

in Haskell. We have also identified the utility of reified typueifi-
cation (or ‘type-level type cast’) as a tool for type improvent —
more fine-grained than functional dependencies. More relsésa
needed to deliver foundational clarifications.
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A Some trivial list-processing operators

We will now transpose several normal list-processing dpesao
the heterogeneous situation.

Transposition of head andt ai |

class HList r => HHead r a | r -> a
where hHead :: r -> a
instance Fail HListEnpty => HHead HNil ()

where hHead _ = ()

instance HList r => HHead (HCons ar) a
where hHead (HCons a _) = a

class (HList r,Hlist r') => HTail rr’ | r ->r1’

where hTai r->r’

instance Fail HListEnpty => HTail HNil HNi|
where hTail _ = HNi |

instance HList r => HTail (HCons ar) r

where hTail (HCons _r) =r
In the above instances, we use the same technique for ersr me
saging as explained in Sec. 6. That is, we employFtié class to
handle invalid applications of the operations. In parécuthere is
an error messagélLi st Enpt y, whenever we attempt to access an
empty list where a nonempty list is needed. Thus, we have:

class Fail x -- no instances!
data HListEnpty -- no structure!

Transposition of nul |

class HBool b =>H\WIl | b | | ->b
instance HNull HNi | HTrue
instance H\Null (HCons e |) HFal se

Transposition of | engt h

class HNat n => H.ength I n| | ->n
instance HLength HNi| HZero
instance HLength | n

=> HLength (HCons e |) (HSucc n)



B A heterogeneously typed fold operator

We go for the fold operation because it is the ultimate examph
higher-order list-processing function. We dedicate astties| dr
to right-associative folding. ThéFol dr instances will lift the
defining equations fdrol dr to the class level:

class HList | =>Hroldr f v I r | fvl ->r
wher e
hFoldr :: f ->v ->1| ->7r

The instance for empty lists is trivial:
instance Hroldr f v HNil v

wher e

hFoldr _ v _=v
The instance foHCons follows the normalf ol dr again, but we
assume that function application is modelled by an extrascla
HAppl y. This allows us to uséFol dr for functions that require
specific constraints on the involved types:
instance (HFoldr f v I r, HApply f (e,r) r’)

=> HFoldr f v (HCons e |) r’

wher e

hFoldr f v (HCons e |) = hApply f (e, hFoldr f v I)
The clasdHAppl y resembles function application, indeed:
class Hpply f ar | f a->r
wher e

hApply :: f ->a ->r
For instance, we can now redefim&ppend in terms ofhFol dr :
hAppend | |’ = hFol dr ApplyHCons |’ |
The datatypé\ppl yHCons stands for “application dfiCons”:
data Appl yHCons =

Appl yHCons -- a proxy for instance selection

This meaning ofppl yHCons is registered as afAppl y instance:
i nstance HApply Appl yHCons (e,l) (HCons e I)

wher e
hApply _ (e,l) = HCons e |

C Type-indexed co-products

We will now dualise TIPs to arrive at so-called type-indesedns
(or co-products; TICs). A TIC-typed data structure holdatuch of
one out of a fixed collection of types. So at the value level|GT
typed data structure is not really a collection, but just dagum.
However, at the type level we use a list of type proxies to madin
the valid element types of a specific TIC type, and thereby ave ¢
restrict construction and destruction of TIC-like dataistures.

A TIC demo

We first define an actual TIC type, namely one that models wario
element types for collections related to the animals in fhet*n-
mouth’ database:

type Animal Col =

Key :+: Name :+: Breed :+ Price :+ HNI

Here we use:“+: " rather than ¢ *: ” to point out that we are inter-
ested in a type-indexed co-product rather than a productcatle
now construct actual TIC-like data. For instance:

ghci -or-hugs> let myCol = nkTIC Cow :: TIC Animal Col
We can also destruatyCol . If we ask for the ‘right’ type, then
destruction succeeds with a result of the fdnmst . .. ; otherwise
we obtainNot hi ng:

ghci - or - hugs> unTI C nyCol Maybe Breed
Just Cow

ghci - or - hugs> unTI C nyCol Maybe Price
Not hi ng
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Most notably, TICs restrict destruction with regard toistatping:

ghci - or - hugs> unTI C nyCol Maybe String
Type error ...

Sequences of type proxies

We used the alias *+: " above to enumerate the summands of a TIC
type. In fact, “ +: " is constructed such that it lines up proxy types
in a sequence. Value types would be misleading and conflisireg
because the sequence of summands is meant for nothingting lis
‘options’. So the alias is defined as follows:

type e :+: | = HCons (Proxy e) |
The actual property of a type sequences to consist only ofypro
types is easily specified.
class HTypeProxied |
i nstance HTypeProxied HNi |

i nstance HTypeProxied |
=> HTypeProxi ed (HCons (Proxy e) I)

TICs as constrained dynamics

The demo suggests that a TIC is more constrained than the type
Dynam c. So in turn, one can define more constrained collection
types than jusf Dynami ¢] or String -> Dynami c. There exist
different implementations of TICs, but we will favour henmeecthat
indeed directly employs Haskell's dynamics at the valuellev

A TIC type is then of the following form:
data TIC| = TIC Dynamic -- to be constrained

The phantom type parametéerof Tl C enumerates the admitted
types that can be injected into this TIC, and that can be stibje
extraction attempts. The public constructor for TICs (akadtion)
lists all the necessary constraints:

nmkTI C :: ( HTypel ndexed |
, HTypeProxied |
, HOccurs (Proxy i) |
, Typeable i

-> TIC |

mkTICi = TIC (toDyn i)
TheHTypel ndexed andHTypePr oxi ed constraints require thatis
a type-indexed sequences of type proxies. Heur s constraint
ensures that the proxy type of the injected valug covered by the
sequence of proxies. Finally, theTypeabl e constraint allows us
to use Haskell’s modulBat a. Dynami c.

It remains to define destruction (or projection), which haqpto
simply invert the constrained value-to-dynamics conzarsi

unTIC :: ( HTypel ndexed |
, HTypeProxied |
, HCccurs (Proxy o) |
, Typeable o

=

)
=> TICI| -> Maybe o
unTIC (TIC i) = fronDynanic i



D Generic type unification cont’d

The clasdypeCast was described in the subsection 'Reification of
type unification’ of Sec. 9.

class TypeCast a b | a->b, b->a
where typeCast :: a->b

That section showed the most straightforward implemeosriagif
that class: a single instancBpeCast x x with the method
typeCast being just the identity. However, that simple implemen-
tation was difficult to use. Separate compilation had to heguse

in some tricky way. Indeed, recall the following example sing
TypeCast from Sec. 7:

instance TypeCast e' e
=> HOccurs e (TIP (HCons e HNil))
wher e hQccurs (TIP (HCons € _)) = typeCast e’

When the compiler sees the instafig@eCast x x and combines
that with the functional dependencies>h, b- >a of the class, the
compiler infers that the two parametersTyfpeCast must be the
same. That conclusion is correct — the type cast is meant &ambe
isomorphism on types (in fact, the identity function). Wisatrou-
blesome is that the type checker applies that conclusion a-tygse
simplification rule — to theéiOccur s instance above and infers that
e must bee’ . That is a problem however: if a type signature con-
tains distinct type variables, one should be able to ingttnthem,
at least in principle, with distinct types. Otherwise, tiéeired
type is less polymorphic than the explicit signature priéssr.

This is the same sort of error that arises in the followingecod
foo:: a->b
foo x = X

When processing the instance declaraticur s, the compiler
eagerlyapplies the correct type simplification rule — the two pa-
rameters offypeCast must be the same — and infers that two type
variablese ande’ must be the same. The eagerness creates the
problem. We would like to delay the type simplification uraft

ter the instancéiCccur s has been selected andinde’ have been
instantiated. In other words, we would like to unify ttypesthat

e ande’ are instantiated with, rather than the tiype variables
themselves.

To keep the compiler from applying the type simplificatiotertoo
early, we should prevent the early inference of the rule ftom
instance offypeCast in the first place. For example, we may keep
the compiler from seeing the instanbgeCast x x until the very
end. Thatis, we place that instance in a separate modulergoatti

it at a higher level in the module hierarchy than all clientgie
classTypeCast . That was the approach described in Sec. 9.

We will now give another implementation ®fpeCast , which does
not require separate compilation. It effectively delays simplifi-
cation step with the help of two auxiliary classes.

Our new implementation must keep the semantics of the @nstr
TypeCast a b should hold if and only if the type corresponding
to a can be unified with the type correspondingotoOn the other
hand, we need to allow for polymorphism and pretend that in a
constraintTypeCast a b, b may be something other than— so
to keep the typechecker from unifying the type variataes b in
occurrences of that constraint. Fortunately, the typeesyss not
very smart: when choosing the instances the type-checlkidss lo
only at the syntactic form of the type terms involved. Theref
to fool the type-checker into thinking th@iypeCast a b is more
polymorphic than it really is, we introduce a series of rediions
and eventually arrive at the following implementation.
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class TypeCast’ t ab| ta->b tbh->a
where typeCast’ t->a->b
class TypeCast’' t ab | ta->b th->a
where typeCast’’ t->a- >b
i nstance TypeCast’ () a b => TypeCast a b

where typeCast x = typeCast’ () x

instance TypeCast'' t a b => TypeCast’ t a b

where typeCast’ = typeCast’’
instance TypeCast’’ () a a
where typeCast’' _ x =X

The auxiliary classe$ypeCast’ andTypeCast’'' have an extra,

dummy type parameter, which we instantiaté Ydan the instances.
Any other ground type would have sufficed. The key to solvhmgy t
polymorphism quandary is the last instarfggeCast’’ () a a.

It signifies that in the constraifiypeCast’’ t a b,bisnot neces-

sarily a, because can be something other thé&h. Semantically,

though, it can never be anything but. However, the typeidarec
cannot see that and remains satisfied.

Alas, this implementation is specific to GHC; it does not work
in Hugs because of the peculiarities of that system withnega
multi-parameter type classes and functional dependeneieish
we briefly hinted at in Sec. 6. That shows that multi-parantgfee
classes with functional dependencies are hard to get right.

While this code works in GHC and is logically sound, we have
to admit that we turned the drawbacks of the type-checkeuto o
advantage. This leaves a sour after-taste. We would haferpze

to rely on a sound semantic theory of overloading rather thran
playing games with the type-checker. Hopefully, the resaftthe
foundational work by Sulzmann and others [32, 23] will eustily

be implemented in all Haskell compilers.



